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ABSTRACT. In this paper, we give a Prym-Tjurin construction for
the cohomology and the Chow groups of a cubic hypersurface. On
the space of lines meeting a given rational curve, there is the inci-
dence correspondence. This correspondence induces an action on the
primitive cohomology and the primitive Chow groups. We first show
that this action satisfies a quadratic equation. Then the Abel-Jacobi
mapping induces an isomorphism between the primitive cohomology
of the cubic hypersurface and the Prym-Tjurin part of the above ac-
tion. This also holds for Chow groups with rational coefficients. All
the constructions are based on a natural relation among topological
(resp. algebraic) cycles on X modulo homological (resp. rational)
equivalence.
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1. INTRODUCTION

Algebraic cycles on a cubic hypersurface have been serving as an interesting
but nontrivial example in the study of Chow groups. In [Sh], we obtained
natural relations among 1-cycles and gave some applications of those relations.
This paper is a continuation of [Sh] and generalization of the results to higher
dimensional cycles on cubic hypersurfaces. Throughout the paper, we will
work over the field C of complex numbers. In this article, all homology and
cohomology groups are modulo torsion.

Let X C P**! be a smooth cubic hypersurface of dimension n > 3. We first
establish Theorem which gives a natural relation among cycles on X. To
get an idea of what such a relation is, we first fix a smooth curve C' C X of
degree e. Let T C X be a closed subvariety of dimension r. Let T/ C X be the
subvariety swept out by lines on X that meet both C and T. When C and T
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are in general position, then 7" has expected dimension r. If » > 2, then the
relation we get is

2T +T =ah™", in CH.(X)
for some integer a > 0, where h is the class of a hyperplane section of X. If
r = 1, the relation we get is

2T+ T +2deg(T)C =bh™ !, in CHy(X)

for some integer b > 0. The second case was first proved in [Sh].

Let F' be the Fano scheme of lines on X. Let p : P(X) — F be the total family
of lines on X and ¢ : P(X) — X be the natural morphism. Then we have the
natural cylinder homomorphism ¥ = ¢,p* and its transpose, the Abel-Jacobi
homomorphism, & = p,q*. These are defined on the cohomology groups and
the Chow groups. The following theorem is a more concise expression of the

above relations; see Corollary 2241

THEOREM 1.1. Let v € H,(X,Z), a € CH1(X) and b € CH,.(X). We use h to
denote the class of a hyperplane in either the Chow group or the cohomology
group of X. Then the following are true.

(1) 2deg(a)y + ¥U(®(y) - ®([a])) = 3deg(y)deg(a)h? in H,(X,Z), where the
right hand side is 0 if n is odd.

(2) If n—2 > r > 2, then 2deg(a)b + U(P(a) - (b)) = 3deg(a) deg(b)h™ " in
CH,(X).

(3) If r = 1, then 2 deg(a)b+ 2 deg(b)a+ ¥ (P(a)- ®(b)) = 3deg(a) deg(b)h™ !
in CHy(X).

REMARK 1.2. If n > 5, then CH;(X) = Z; see [Pa, Proposition 4.2]. In this
case, a € CH;(X) is the same as deg(a)[l], where [!] is the class of a line. For
fixed n, the groups CH,(X) are expected to be trivial (isomorphic to Z) when
r is small or large enough. Hence, the above relations are interesting when r is
in the middle range.

With these relations, we will realize the Hodge structure and Chow groups of
X as Prym-Tjurin constructions.

A Prym variety is constructed from a curve together with an involution and
they form a larger class of principally polarized abelian varieties (p.p.a.v.) than
the Jacobian of curves. Mumford gives this a modern treatment in [Mu]. He
also uses Prym varieties to characterize the intermediate Jacobian of a cubic
threefold, see the appendix of [CG]. In [Tj], Tjurin generalizes this idea by re-
placing the involution with a correspondence that satisfies a quadratic equation.
This gives what we now call Prym-Tjurin varieties. This was further developed
and completed by S. Bloch and J.P. Murre, see [BM]. Welters has proved that
all p.p.a.v.’s can be realized as Prym-Tjurin varieties, see [We]. Roughly speak-
ing, this means that every principally polarized weight one Hodge structure can
be realized via a Prym-Tjurin construction on some curve. We naturally ask
whether similar constructions can be done for higher weight Hodge structures.
The work of Lewis in [Lew| sheds some light on this question. Izadi gives a
Prym construction for the cohomology of cubic hypersurfaces in [Iz].
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DEFINITION 1.3. Let A be an abelian group and ¢ : A — A an endomorphism.
Assume that o satisfies the quadratic equation (o — 1)(c + ¢ — 1) = 0. Then
the Prym-Tjurin part of A is defined as

P(A,0) =Im(c — 1)

REMARK 1.4. In many cases when A carries some extra structure such as a
Hodge structure, the homomorphism o is usually compatible with that extra
structure and P(A, o) carries an induced such structure. One very interesting
case is when A = H*(Y, Z) together with the natural Hodge structure and o is
an action that is induced by some correspondence I' € CHY™ Y (Y x Y).

Let X C Pg“ be a smooth cubic hypersurface as above. We start with a general
rational curve C C X of degree e > 2. Let S¢ be a natural resolution (in fact
the normalization) of the space of lines on X that meet C. Let F' = F(X) be
the Fano scheme of lines on X, p : P — F the total family with a morphism
q: P — X. Then S¢c = ¢~ 1(C). In particular, we have a morphism ¢q : S¢ —
C. Consider the family pc : Po — Sc¢ of lines parameterized by Sc with the
morphism g¢ : Po — X. We have the natural cylinder homomorphisms V¢ =
(qC)*(pc)* : Hn72(Sc,Z) — Hn(X, Z) and \I/C = (qC)*(pc)* : CHT(Sc) —
CH,4+1(X). Similarly we have its transpose ®¢ = (po)«(gc)* : H*(X,Z) —
H"2(S¢,Z) and ®¢ = (pc)«(qc)* : CH,11(X) — CH,(S¢). On Sc we have
the incidence correspondence which induces an action o on the cohomology
groups and the Chow groups. Note that there is a natural morphism from S¢
to the Grassmannian G = G(2,n + 2). The Pliicker embedding of G induces
a ample class g on S¢. On S¢, we have another divisor class ¢’ = ¢(pt) for
some pt € C. Let Qlg, g'] € H*(S¢, Q) be the subring generated by g and ¢'.
Given a compact manifold Y, we can define the intersection pairing on H*(Y)
by

(a,ﬁ):/yauﬁ.

By abuse of notation, when « and [ are of complementary dimension, we also
write « - 8 for (o, 8). With this notion, we define the primitive cohomology
(or cycle) classes on Sc to be those which are orthogonal to the classes in
Q[g, ¢']. The primitive cohomology is denoted by H*(S¢,Z)° and the primitive
Chow group is denoted by CH.(S¢)°. The subring Q[g, ¢’] is invariant under
the action of o and hence ¢ acts on the primitive cohomology and also the
primitive Chow groups. Our main result is the following

THEOREM 1.5. Let C' C X be a general rational curve of degree e > 2 as above.
Let o be the action of the incidence correspondence on either the primitive
cohomology or the primitive Chow group of Sc. Then the following are true.
(1) The action o satisfies the following quadratic relation

(c—1)(c+2e—1)=0
(2) The map O induces an isomorphism of Hodge structures

o : HY(X, Z) prim — P(H" (S, Z2)°,0)(—1)
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where the (—1) on the right hand side means shifting of degree by (1,1). The
intersection forms are related by the following identity

Do(a) - Po(B) = —2ea- B, for all o, B € H* (X, Z) prim.-
(8) The map O induces an isomorphism
(I)C : AZ(X)@ — P(CHi_l(Sc)(a,O')

This is proved in section 4 (Theorem A3]). In [Iz], Izadi proved a variant of
statement (2) for C being a line. In [Sh], we proved the above theorem for cubic
threefolds where (3) holds true for integral coefficients. Besides the natural
relations stated at the very beginning of this section, another ingredient to
carry out the Prym-Tjurin construction is the surjectivity of ¥ on primitive
cohomologies.

THEOREM 1.6. The natural homomorphism
Ve :H" (S, Z)° — H"(X, Z)prim
between the primitive cohomologies is surjective.

This is proved in Section 5 using the Clemens-Letizia method (see [Cl] and
L.

Acknowledgement. The author was supported by Simons Foundation as a Si-
mons Postdoctoral Fellow during the completion of this work. Part of this work
was completed when the author was visiting Beijing International Center for
Mathematical Research. He thanks E. Izadi for explaining her results of [Iz].
NOTATION:

X c P**!, smooth cubic hypersurface of dimension n > 3 with h the hyper-
plane class;

G = G(2,n + 2), the Grassmannian of lines in P"*1;

F = F(X) C G, Fano scheme of lines on X, smooth of dimension 2n — 4; see
[CG] and also [AK].

I C X, aline on X; [|] € F the corresponding point on F;

P = P(X), the universal family of lines on X, namely we have the following
diagram

P(X)Lsx

)

I C F x F, the incidence correspondence, i.e. the closure of {([l1],[l2]) : l1 #
la, I3 Ny # 0}; Note that I has codimension n — 2 in F X F;

® = p,q*, homomorphism from either the cohomology groups or the Chow
groups of X to those of F’;

U = ¢,p*, homomorphism from either the cohomology groups or the Chow
groups of F' to those of X;

g, the polarization on F that comes from the Pliicker embedding, g = ®(h?);
F, C F, the subscheme of lines passing through = € X; it is a (2,3) complete
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intersection in P(7x ;) and smooth for general x.

D, C X, the variety swept out by all lines through z; D, is a cone over Fy;
Fo C F, the subscheme parameterizing lines meeting a curve C' C X;

Sc = ¢ }(C) C P(X), note that there are natural morphism ic = p|s, : Sc —
FCCFandq0=q|sc :Sc—>C;

g|gc = (i¢)*g, by abuse of notation, we still use g to denote this class;

g = (qo)*[pt], where [pt] € C is a closed point;

9,9'] C H*(S¢,Q), the subring generated by ¢g and ¢';

Qlg
Pc = P(X)|s., to be more precise, we take the following fiber product

Po —2% P(X)
PC\L lp
Sc _e g
qgc =qojc;

®c = (pc)«(ge)*, homomorphism from either the cohomology groups or the
Chow groups of X to those of S¢;

Ve = (q0)«(pc)*, homomorphism from either the cohomology groups or the
Chow groups of S¢ to those of X;

De C X, the divisor swept out by all the lines meeting C; D¢ is linearly
equivalent to 5 deg(C)h; see Lemma 2711

Given a polarization H on Y, we use H*(Y, Z)prim to denote the primitive co-
homology;

Let (Y, H) be a polarized variety, we define A,(Y) C CH,(Y) to be the sub-
group of degree 0 (with respect to H) cycles;

For a vector bundle & on Y, we use P(&) to denote the geometric projec-
tivization which parameterizes all 1-dimensional linear subspaces of &; more
generally, if 1 <r; < --- < r, <rké& is an increasing sequence of integers, we
use G(r1,...,7k, &) to denote the relative flag variety of subspaces of & with
corresponding ranks.

2. THE FUNDAMENTAL RELATIONS

In this section we will establish a basic relation among algebraic/topological
cycles on X. To do that, we need the following lemma which says that the
space of lines on X meeting a given curve has the expected dimension.

LEMMA 2.1. (i) dimF, = n — 3 for all but finitely many points x;, called
Eckardt points. For each x;, we have dim Fy, =n — 2.

(ii) Let C C X be a smooth curve on X. Then F¢ if of pure expected dimension
n—2.

(11i) The divisor Do on X is linearly equivalent to 5deg(C)h.

Proof. In [CS| Lemma 2.1], it is shown that dim F,, = n — 3 for a general
point z € X. By [CS, Corollary 2.2], there are at most finitely many Eckardt
points z;; see [CS, Definition 2.3]. This proves (i). Statement (ii) follows
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from (i) directly. Statement (ii) further implies that D¢ is a divisor. Since
Pic(X) = Zh, the class of D¢ has to be a multiple of h. Let I C X be a
general line, then the intersection number of [ and D¢ is equal to the number
of lines meeting both C' and {. It is shown in [Shl Lemma 3.10] that the above
intersection number is 5 deg(C). O

THEOREM 2.2. Let C C X be a smooth curve of degree e. We use h to denote
the class of a hyperplane section on X, viewed as an element either in the Chow
group or the (co)homology group. Then the following are true.

(1) Let 7y be a topological cycle of real dimension n on X(C). Then

2e[y] + U(®([4]) - Fc) = 3edeg(y)h?

in H, (X)), where deg(y) = - h' if n = 2i and deg(y) = 0 otherwise.
(2) Let v be an algebraic cycle on X of dimension r with 2 <r <n—2. Then

2ey + W(®(y) - Feo) = 3edeg(y)h" ™,

in CH,.(X), where deg(y) =~ - h".
(3) Let v be an algebraic cycle of dimension 1 on X. Then

2ey + U(®(y) - Fo) + 2deg(y)C = 3edeg(y)h™ !
in CH (X).

REMARK 2.3. Statement (1) holds for other dimensional topological cycles too.
However, by the Lefschetz hyperplane theorem, it is only interesting when
has dimension n.

COROLLARY 2.4. Let v € H,(X,Z), a € CH1(X) and b € CH,(X). Then the
following are true

(i) 2 deg(a)y + W(B(3) - B([a])) = 3 deg(a) deg()h? in H, (X,Z).

(i1) If n —2 > r > 2, then 2deg(a)b + U (P(a) - &(b)) = 3deg(a) deg(b)h™ " in
CH,.(X).

(iii) If r = 1, then 2 deg(a)b+2deg(b)a+ ¥ (®(a)-®(b)) = 3deg(a) deg(b)h"*
in CH, (X).

LEMMA 2.5. Let y; and 72 be two disjoint irreducible topological cycles on P™+1
of real dimensions r1 and ro. Let L(y1,72) be the set swept out by all complex
lines meeting both 1 and 5. Assume that 1 and 7o are in general position
and L(v1,72) has expected dimension. Then we have
4
L(y1,72) = deg(y1) deg(y2)h™ ™2
in Hyy yryr2(P"TYZ). Here deg(y) = ~ - h2 if r = dimg(y) is even and 0
otherwise. By convention RFtE =0 for all integer k.

LEMMA 2.6. Assume thaty1 and y2 are two topological manifolds (resp. smooth
projective varieties). Let fi : v; — P i = 1,2, be two disjoint irreducible
topological (resp. algebraic) cycles on P, Let ¢ 1 v1 X y2 — G(2,n + 2)
be the map (resp. morphism) sending a pair of points (x,y) to the unique
complez line connecting them. Let & be the canonical rank 2 quotient bundle
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on G(2,n+2) and & = p*& its pullback. Let p; : y1 X va — v, i = 1,2, be
the two projections. Then

c1(6”) = pi(fih) + p3(f3h)

in H2(y1 X 72,Q) (resp. CH'(y1 x 7¥2)), where h is the class of a hyperplane.
In other words, c1(&’) is the pull-back of the class 7jh + w5h via the natural
map fi X fa 191 X o = PP PPHL where my : PP x PPEL 5 P gre the
projections.

Since the cohomology (resp. Chow ring) of P"*1 is generated by the class of a
hyperplane, both of the above lemmas can be reduced to the case where both
71 and 2 are complex linear subspaces. The proofs are left to the reader.

Proof of Theorem[22. To prove (1), we first reduce to the case v = f.[M],
where f : M — X is a continuous map from an n-dimensional topological
manifold M to X such that (i) C does not meet f(M); (ii) f.M intersects D¢
transversally and Ag := {t € M : f(t) € D¢} is of pure expected real dimension
dim M — 2. The reason why we can do the above reduction can be seen as
follows. First, v is always of the form of linear combinations of cycles of the
form f.[M]. If we can prove the statement (1) for each term in such a linear
combination, then we prove (1) for . To get (i) and (ii), we note that C is a
curve and D¢ is a divisor and hence we can always move the cycle v to a cycle
~" such that (i) and (ii) hold.

Now we assume the situation after reduction. For each pair of points (¢,z) €
M x C, there is a unique (complex projective) line passing through f(¢) and z.
This gives a continuous map ig : M x C' — G(2,n + 2). We get the following
diagram

(1) DiUDsUD Y X
l l l/ix
P % G(1,2,n+2) ¢_>Pn+1

wl ﬁl
Mx(C—2—G(2,n+2)
where all the squares are fiber products; Dy and D, are sections of 7 corre-
sponding to the points on f(M) and C respectively; D is the set of the third
points of the intersection of the lines with X. Let #/ : D — M x C be the
restriction of 7 to D. Let A C M x C' be the closed subset of points (¢, ) such
that the line through f(¢) and x is contained in X. By definition, A is the im-
age of A under the projection to the first factor M and hence dim A = dim Ay.
Then 7’ is one-to-one away from A while over A it is an S2-bundle with trivial
Euler class (this is because, by taking the point in which the line meets C, we
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have a section of this bundle). Consider the following diagram

(2) Pl = §2 E D

-

A——MxC

For a general point z = (tg,x0) € A, we use E, to denote the fiber of E — A
at the point z.

Claim1: E-E, = —1.

Proof of Claim 1. Let Uy C C be a small 2-dimensional (meaning real dimen-
sion) disc centered at the point zg € C. Let U, = {to} x Uy C M x C be
the corresponding small disc centered at z. By the assumption that z € A is
general, we see that U, meets A transversally at the point z. Then we easily
see that 7*U, = U, + E,, where U, = 'Y U \{2})U{yo € E.}. The existence
of the point yg can be seen as follows. Let fy : C --+ X be the rational map
defined by sending z € C C X to the third point of the intersection of X with
the line connecting f(tg) and x. Since C' is a smooth curve, this rational map
extends to a morphism fy : C — X. Then one easily sees that yo = fo(zo).
This implies that U.-E=1. The projection formula gives

(E,+U,) - E=a"U,-E=U, -n,E=U,-0=0.
It follows that E, - E = —1. O

Let g: D — X and g; : D; — X, i = 1,2, be the natural maps. Let h be the
(co)homology class of a hyperplane.

LEMMA 2.7. Let d = deg(f«[M]). The following are true.

(i) g.[D] = ed b3V in Ho(X);

(ii) g«(h|p) = ed h> in H,(X);

(iii) hlp + [E] = 21" c1(&), where & = i§&s is the pull back of the canonical
rank 2 quotient bundle & on G(2,n + 2);

(v) ¢1(&) = pi(hla) + p5(hle), wherepr : M x C — M and py: M x C — C
are the projections;

(v) g«(1"*c1(&)) = 2ed hz — e f.[M].

Proof of Lemma[2.7 For (i), we first note that the class of the image of [D1]+
[D2] + [D] on X is the restriction of [P] viewed as a class on P"*!. As a class
on P"*1 [P] = edh?~! by Lemma 25 However, if we identify D;, i = 1,2,
with M x C, then the natural map D; — X contacts either the factor M or
the factor C. Hence the classes of (g1)«[D1] and (g2).[D2] are all zero on X.
This proves (i).

For (ii), we note that by the projection formula, we have g.(h|p) = g«[D] - h.
Hence (ii) follows from (i). The identity in (iv) follows from Lemma 2.6l

To prove (iii), we first note that h|p + [E] restricts to zero on the fibers E,
of E = Asince h-E, =1and F-FE, = —1 (Claim 1). By the Leray-Hirsch
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theorem, this implies that h|p + [E] = 7"*a where a is a homology class on
M x C. Applying 7, to the above equation, we get a = n(h|p). Note that on
P, we have D1 + Dy + D = 3h, where, by abuse of notation, we still use h to
denote the pullback of the class of a hyperplane to P. Hence

(3) h-Dy+h-Dy+h-D = 3h?

Since P is the projectivization of & and h is the first Chern class of the relative
O(1)-bundle, we have h? — *c1(&)h + 7*ca(&) = 0. Applying 7, to @), we
get
7u(h- D) +mu(h - Dy) + mi(h - D) = 3m.(h?)
=3 (7" c1(&) - h — 1 ca(8))
=3c1(&) - mh = 3c1(&)
We also easily get that m.(h- D1) = p} f*h and 7. (h - D2) = p3(h|c). Combine
this with (iv), we get
a=m.(h|p) = m(h-D) =2c1(&).
To prove (v), we note that for any class a on M x C, if we pull back a to
Dy + Dy + D and then push forward to X, what we get is the same class as
we pull back a to P, then push forward to P**! and then restrict to X. As
a result, we always get a class coming from P"*!. When we take a = ¢1(&),

we get that the class of 7*a on P"*! is equal to 2edh=. This can be seen as
follows (using notation from Lemma 2.5]).

Gs(ig)«m"e1(&) = Gu(ig)wm™ (PL.f"h + p3hlc)
=L(f.M -h,C)+ L(M,C - h)
—edh"= "2 LedhnE
=2edh?.
Hence we have the following equalities.
go(m"*e1(8)) = 2ed h® — (g1, (z"c1()|py) + g ("1 () p2))
=2edh* — g1, (7" c1(8)|p,)
=2edh? — e f.[M)]

Here the second equality uses the fact that g2 : Dy — C C X contracts the
factor M which has dimension n > 3. This finishes the proof of the lemma. [

In the above lemma, we apply g. to (iii) and then take (ii) and (v) into account.
9+[E] = 29.(n""c1(£)) — g(hlp)

=4edh?® — 2e f,[M] —edh? = 3edh? — 2¢ f,[M]
Note that g.[E] = U(®(f«[M])- Fc). This way, we easily deduce the statement
(1) of Theorem 2.2 for v = f.[M] and the curve C.

Now we start to prove (2) and (3) of Theorem The basic strategy is the
same as above. The only difference is that we need to consider the more delicate
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rational equivalence rather than homological equivalence. By linearity of the
equalities in (2) and (3) and the Chow moving lemma, we reduce to the case
v = f«M where f: M — X is a morphism from a smooth projective variety
M to X such that (i) f is birational onto its image; (ii) f(M) does not meet C
and f,M intersects D¢ transversally. Let r be the dimension of M. As before
we construct the natural morphism ig : M x C — G(2,n + 2). Let & be the
pull back of the canonical rank 2 quotient bundle to M x C'. In this way, we
get the following diagram as before.

(4) DiUDyUD Y X
P$>G(1,2,n+2) _¢>Pn+1

MXCLG(Q,WJ‘FQ)

Here all the squares are fiber products; D and D5 are sections of m and con-
tracted to f(M) and C via g1 = ¢oig|p, : D1 — X and ga = @oi(|p, : Do — X
respectively; D corresponds to the third point of the intersection of the lines
with X. Let 7’ : D — M x C be the restriction of # to D. Then 7’ is a
birational morphism. Let A C M x C be the subvariety that consists of points
(t,x) such that the line through f(¢) and z is contained in X. By the assump-
tion that f,M intersects D¢ transversally, we conclude that A is generically
smooth. Let A*™9 be the singular locus of A. Let E = (7/)"*A C D and we
have E = P(&|a).

LEMMA 2.8. Away from A9, 7' is the blow-up along A.

Proof. Let & be the canonical rank 2 quotient bundle on G(2,n +2) and & =
i5&2. The point ig(t, z) € G(2,n + 2) represents the line connecting f(¢) and
x, which is also naturally P(é"gm)) Hence we have canonical homomorphisms
[/f(t) — é"(\{ym) and £, — é"(\t/@),
bundle on P"*1. And since f(t) # z, we have the natural identification

Sy = L) ® Lo

where £ = Opn+1(—1) is the tautological line

As (t,x) € M x C varies, this identification glues and gives a canonical isomor-
phism
Y = pif L@ p3(Llo).

Assume that ¢(Xo,...,X,1) € HOY(P* O(3)) is the homogeneous poly-
nomial defining X. Since we have the canonical identification 7,.g*O(3) =
Sym®(&), the section ¢ induces a global section ¢ of Sym®(&) and F C
G(2,n + 2) is defined by é = 0; see [AK]. Let ¢/ = Zng; be the induced
global section of Sym?® &. Tt follows from the expression of &Y that

&= pif O0x(1) ®p;0c(1)
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and hence
Sym® & = pif*Ox(3) ® € @ pi f*Ox (1) @ p30c(1) ® p30c(3).
Accordingly, we can write ¢' = ¢3 o + @[ ;4 + ¢p 3. Since f(M) C X and ¢
vanishes on X, we conclude that ¢35, = 0. Similarly, we have ¢y 5 = 0. It
follows that
¢ = druia € H'(M x C, & @ p} f*Ox (1) @ p;0c(1)).

The vanishing ¢’ = 0 at a point (¢,z) exactly means that the line connecting
f(t) and z is contained in X. Hence A C M x C is defined by ¢’ = 0. In
particular, A € M x C is a local complete intersection and

Namxe 2 E@p1fFOx(1) @ p30c(1)|a.
The section ¢’ can be viewed as a homomorphism

¢ piffOx(—1)®@p30c(—1) — &.
This gives a section s : M x C\A — P of 7 such that the image of s is the open
subset D\E of D. Let o : M x C — M x C be the blow-up of M x C along A
and Fy = 0~ 'A. As a consequence of the above description of Na/mxc, we
see that ¢’ extends to ]\ﬂ_/C\a_lAsmg and gives a rank one subbundle
P L
where . = o*(pjf*Ox(—1) ® p5O0c(—1)) ® O(Ep) is a line bundle on
J\Z_;(_/C\J*IA“'"Q. This further gives a morphism
§:M x C\o~ 1A% < P

such that o = mo5. Note that § extends s. Hence the image of 5 is contained in

D since that of s is. Since E — A and E — A are all P -bundles, we conclude
that The image of 3 is exactly D\(7')"1A%"9. This implies that

5:M x C\o 'AS™9 — D\(a/) LA™
is an isomorphism, since they are the same locally closed subvariety of P. [

Back to the proof of the theorem. We know from the above lemma that the
possible singularities of D can only appear over A%"9. Take a resolution of
singularities ' : D — D. Let E; be the exceptional divisors of r'. We use E’
to denote the strict transform of E in D. We still use h to denote the class of
a hyperplane in P"*!. Let g : D — X be the natural morphism.

LEMMA 2.9. Let d = deg(f.[M]), then the following are true.

(i) g« D = ed h»~ "1 in CH,;1(X);

(i1) g«(h|p) = edh™7;

(iii) hlp + E' + > a; E; = 2(n" o1')* ¢y (&), for some a; € Z;

(i) c1(&) = pi(f*h) + p3(hlo);

(v) If dim M > 2, then g.(r"*n'*c1(&)) = —e fuM + 2ed h™" in CH,.(X);
(vi) If M is a curve, then g.(r"*n"*c1(&£)) = ed h"~* —e f.M — dC in CH;(X).
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Proof of LemmalZ9. The proof is similar to that of Lemma[Z7 We note that
the push forward of Dy 4+ Dy + D to X is a class coming from P**! because
it is the restriction of the class of the image of P in P*"*!. By Lemma 2.5] the
class of P in P"*! is equal to ed h»~"~1. Since D; and D, are contracted to
smaller dimensions via g; and go respectively, we get (i).
Conclusion (ii) follows from the projection formula as before. (iv) follows from
Lemma
For (iii), note that on D — n'~1(A%"9), the class of h + E comes from a class
aon M x C — A% via pull back by 7’. Since the codimension of A%"9 in
M x C'is at least 3, we know that the divisor class group of M x C' — A% is
the same as that of M x C. Hence we can view a as a divisor class on M x C.
The equality

h+ E =n""a, on D\n'~!(A%™9)
gives an equation

r"*(h+ E) + Z a; B =r*1*a

for some a; € Z. By a very similar argument as before we know that the class
ais 2¢1(8).
To prove (v) and (vi), we do the following explicit calculation.

gur"" e (&) = g7 (pLf*h + p3hlc), by (iv)
= g« (p1 f*h + p3h|c)|pup,uD, — g1 (P17 + P3h|C)|D,
— g2 (PTf R+ p3hlc), g:DUDyUDy — X
G (i0)« (P1f"h + p3hlc)|x — 914(P3hlc) — g2« (p1 ")
(here we identify D; and Dy with M x C)
=L(f:M-h,C)|x + L(fsM,C - h)|x — e f. M — g2.(p1 " D)
= 2edh™T — ¢ fuM — gou (517 )

Note that go.(pff*h) is supported on the curve C. If dimM > 2, then
g2« (i f*h) = 0; if dim M = 1, then go.(pif*h) = deg(f«M)C. Hence (v)
and (vi) follow from the above computation. O

Now we come back the the proof of the theorem. In the above lemma, we first
apply g« to (iii) and note that all the E;’s map to zero. We also easily see
that g.E' = U(®(f.M) - Fc). Combine all these with (v) (or (vi) in the case
of 1-cycles), we get the conclusion (2) and (3) for v = f.M. By linearity, the
conclusions hold for any given . O

3. THE ACTION OF THE INCIDENCE CORRESPONDENCE

Let C C X be a smooth rational curve of degree e on X. We also assume
that C' is general, meaning that it comes from a non-empty open subset of
the corresponding component of the Hilbert scheme. Let S¢ = ¢~ 'C be the
inverse image of C under the morphism ¢ : P(X) — X. The points on S¢ can
be described as

Se={([l],x) e FxC:xzel}.
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Let go = q|s. : Sc — C.
LEmMA 3.1. If C is general, then Sc is smooth of dimension n — 2.

We will prove this lemma later. In [Shl Lemma 3.4], we show that for a general
rational curve C' of degree e > 2, there exist n, = M + 6 secant lines of
C, i.e. lines meeting C twice. Let Lc;, @ = 1,...,n., be all the secant lines of
C and [L¢ ;] € F the corresponding points on the variety of lines. Above each
point [L¢ 4], we have a pair of points {([Lc ], ¥i), ([Lc,), zi)} on S, where y;
and z; are the two points in which C intersects L¢ ;. Then Lemma Bl implies
that [L¢,]’s are the only singular points of Fo and p|s, : Sc — F¢ is the
normalization and also a desingularization since S¢ is smooth.

From now on, we make the assumption that e > 2, unless otherwise stated.

DEFINITION 3.2. We say that a correspondence I' C Y XY is generically defined
by y — > y; if T is the closure of the graph of this multi-valued map.

For a general point [l] € Fg, let @ = C N1 be the intersection point. By
(1] = ([I],z) € Sc, we view [I] as a point on Sc.

LEMMA 3.3. There exist e — 5 lines l1,1s, ..., l5c_5 meeting both I and C in
points different from x.

By abuse of language, these lines are called secant lines of the pair (I, C); see
[Shl Definition 3.1]. Each point [I;] can again be viewed as a point ([l;],z;) on
Sc, where z; = [; N C. A line meeting two disjoint curves Cp,Cy C X will
be called an incidence line of C; and Cy (note that they are also called secant
lines in [Sh]).

Proof of Lemmal[Z3 Note that if lis a general line, the number of incidence
lines of [ and C is 5e; this follows from a degree computation using (3) of
TheoremZZor [Sh, Lemma 3.10]. When [ specializes to [, five of these incidence
lines of [ and C will specialize to five lines passing through z and those five
lines are not counted as the secant lines of the pair (I,C). We will describe
this specialization in more details later. Hence the number of secant lines of
the pair (I, C) is 5e — 5. O

DEFINITION 3.4. Let the incidence correspondence I C Sc X S¢ be generically
defined by

5e—5
(5) Io: ([l)2) = Y ([l @),

i=1
where [ is a line meeting C' and [; are the secant lines of the pair (I,C). Let o
denote the action of I on either the cohomology groups or the Chow groups
of S¢. On F, we have the incidence correspondence I = {([l1],[l2]) € F x F :
l1 Ny # 0} C F x F. This induces a correspondence

I/C = (ic xi¢)*I € CH,_2(Sec x S¢),

where ic = pls. : S¢ — F is the natural morphism.
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REMARK 3.5. Note that (icxic) 11 has a component, namely Sc x ¢ Sc, which
has dimension larger than expected. The correspondence Ic C (ic x ic) 11 is
a component of expected dimension. It turns out later that one key ingredient
to understand the action of o is the difference between I¢ and Ij.

Note that on F', we have a natural polarization g given by the Pliicker embed-
ding of G(2,n+2). It can also be written as g = ®(h?). We fix g|s. = (ic)*g as
the polarization of S¢. By abuse of notation, we still use g to denote its restric-
tion to S¢. Recall that S¢ admits a natural morphism gy = ¢|s. : Sc — C.
This gives an extra class ¢’ = ¢jj[pt] on S¢. Note that ¢’ is never ample. The
following is the main result of this section.

THEOREM 3.6. Let C' C X be a general rational curve of degree e > 2 and o
the action of the incidence correspondence as above. Then the following are
true.
(1) Let a be a topological cycle of odd dimension on Sc. Then
o(a) = @c(Ve(a)) +a

in H*(X,Z).
(2) Let a be a topological cycle of dimension 2m or an algebraic cycle of dimen-
sion m on Sc, then in either the cohomology H>"~?m~4(X,7Z) or Chow group
CH,,(X), we have

o(a) = (Yo (a)) + a+ const.
where the constant only depends on the intersection numbers a - g" and a -
g'g™1; the constant is zero ifa- g™ =0 and a- g'g™ ! = 0.

Before proving the above theorem, we give some technical constructions related
to the geometry of S¢.

3.1. THE NORMAL BUNDLE OF A LINE MEETING C'. Recall from [CG| §6] that
for any line [ on X, we have either

Myx = 0(1)" 2 8 0%
in which case [ is said to be of first type, or
Myx 201" @ O(-1),
in which case [ is said to be of second type. A general line is of first type.

DEFINITION 3.7. Let ¢ be a vector bundle on P'. Then we have a decompo-
sition ¢ = @il:f O(a;), a; € Z. We define the positive part of & to be
Pos(¥) = @ O(a;).
a; >0
Similarly, we define the nonnegative part of 4 to be
NN(@) = P O(ai).
aiZO

LEMMA 3.8. Assume that C C X is general and | is a line meeting C' in a
point x. Then | meets C transversally at the point x.
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Proof. If | is tangent to C' at the point z, then [ is a secant line of C. We
call a secant line of C' simple if it meets C' in two distinct points. Then we
only need to show that the secant lines of a general curve C' are simple. Note
that having simple secant lines is an open condition and we only need to find
a degenaration of C' which has all secant lines being simple. First we note that
the concept of a secant line can be naturally extended to most nodal curves;
see [Sh]. For example, let C; = L; U Ly U Lg be a chain of three distinct
lines with L1 N Ly = z and Lo N Ly = y. Assume that the plane spanned by
Ly and Lo (resp. Lo and Ls) is not contained in X. Let l15 (resp. lag) be
the residue line, or equivalently the secant line, of Ly U Ly (resp. Lo U Ls).
If we further assume that the pair (Li, L3) has finitely many incidence lines
{Eo = Lo, E1, Es, E3, E4}. Then the set of secant lines of C is given by

{112; 123; E17 E27 E3; E4}

Let e > 2 be the degree of C. We construct a chain C' = U;l;, i =1,...,¢, of
distinct lines such that: (i) I; and [;41 meet in a point y;, i = 1,...,e — 1; (ii)
there are finitely many distinct secant lines of C’, which are different from the
lines in {l; : 4 =1,...,e}; (iii) all the lines I; are of first type. Such a curve C’
can be constructed inductively. The condition (ii) says that the curve C’ has
only simple secant lines. The condition (iii) implies that C’ can be deformed
to a smooth degree e rational curve on X. Since the space of degree e rational
curves on X are irreducible by [CS], we see that C’ is a specialization of C.
Hence the lemma is proved. O

DEFINITION 3.9. Let ([l],z) € Sc be a point where [ is a line on X and z is
a point in which [ meets C. Since C' is general, [ meets C transversally at the
point x. We define 47, x(Tc,z) < 4/ x to be the subsheaf of sections s such
that s(x) is in the direction of 7¢ .. Or equivalently, 47, x(7c,.) fits into the
following short exact sequence

Tx,x
‘/%/X Ti,2®Tc,« 0

0 —— Sx(Tc.x)
The tangent space of S¢ at a point ([{], z) is canonically identified as
Tso (.0 = B Ayx (Tew))
See [Ko, §I1.1]. It follows from the short exact sequence in Definition [3.9] that
XMy x(Tew) = x(Myx) — (n—2) =n—2=dim Sc

where we use the fact that dim S¢ = n — 2 which is a consequence of Lemma
21 Hence dim g, (,) = dim Se if and only if H (I, 4]/ x (Tc,2)) = 0. Equiv-
alently, we have the following

LEMMA 3.10. The wariety Sc is smooth at ([l],z) if and only if
hH (M x(Tew)) = 0.

PROPOSITION 3.11. The splitting of Aj;x(Tc,x) has the following possibilities.
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(i) If 1 is of first type and the image of Tcx in Nj/x, is not contained in
Pos(A7/x )z, then
Nyx(Tew) 20" 26 0(-1).
(i) If | is of first type and the image of Tc. in N x o is contained in
Pos(A/x)z, then
Myx(Tea) = 0(1) @ 0" 4 e O(-1)
(iii) If 1 is of second type and the image of Tc,» in N x o s not contained in
Pos(A7/x )z, then
Nyx(Tew) 20" 26 0(-1).
(iv) If 1 is of second type and the image of Tox in Nj/x , is contained in
Pos(A7/x )z, then
Mix(Tex) = 0(1) @ 0" 33 0(-2).

Proof. Let ry = rk(Pos(4;,x)) and a = dimc Im{Pos(A7,x) — %}
Consider the following commutative diagram ’ 7

0 @ 9 (Cn—Q—a ——=0
00— M/x(Tcz) Myx ﬁjg;Cz 0
0 —= O(1)"+~* & O ————— Pos(N/x) c 0

where all columns and rows are short exact. Note that 2 = O? if [ is of first
type and 2 = O(—1) if [ is of second type.
If [ is of first type and T¢,; is not contained in Pos(.47,x ), then Pos(.A47/x ). —

% is injective and hence a = n — 3. Since 2 = 02, the top row of the

above diagram gives 4 = O @ O(—1). It follows from the first column that
Nyx(Tez) = 0" 2@ O(—1) since 14 =n — 3.
If [ is of first type and T, is contained in Pos(.47,x), then Pos(A]/x)s —

% has a 1-dimensional kernel and hence a = n — 4. Since 2 = 02,

the top row of the above diagram gives ¥ = O(—1)2. It follows from the first
column that A}, x(Toe) = O(1) ® O"* @ O(—1)? since ry =n — 3.

If [ is of second type and 7g, is not contained in Pos(.4],x), then
Pos(A7/x)z — % is injective and hence a = n — 2. Since 2 = O(-1),
the top row of the above diagram gives ¥ = O(—1). It follows from the first
column that A}, x(To,e) = O™ 2 @ O(—1) since r4 =n — 2.

If [ is of second type and T¢ is contained in Pos(.47,x), then Pos(.A7/x )z —

% has a 1-dimensional kernel and and hence ¢« = n — 3. Since 2 =

O(—1), the top row of the above diagram gives & = O(—2). It follows from the
first column that A}, x (To.) = O(1) ® O™ * @ O(-2) since ry =n—2. O
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COROLLARY 3.12. S¢ s singular at ([I],z) if and only if I is of second type
and the image of To,x in N /x o is contained in Pos(A]/x)z.

DEFINITION 3.13. The curve C has a bad direction at a point = € C' if there
exists a line [ of second type through z such that the image of 7¢ . in A/ x ,
is contained in Pos(.47,x).. Otherwise, we say that C' has a good direction at
T.

LEMMA 3.14. If C is general, then C' has good directions everywhere.

Proof. Given a line | C X of second type and a point x € [, the positive part
of A, x together with [ itself determines an n — 1 dimensional linear subspace
Piz of Tx o. Let Fy C F be the closed subscheme of lines of second type on
X. By [CGl Corollary 7.6], we know that dim Fy < n — 2. Let Dy C X be
the locus swept by all lines of second type. Then dim Ds < n — 1. Let C be
a general rational curve on X. Then C' can meet Dy in at most finitely many
points x;, i = 1,...,m and through each point z;, there is a unique line [; of
second type. The condition that C has a good direction at x; is equivalent to
To,5; & Pry.;- We first note that it is proved in [Izl Lemma 1.4] that a general
line has good directions everywhere. It is proved in [CS] that the moduli space
of degree e rational curves on X is irreducible. Hence to prove the lemma, we
only need to construct one such curve C' whose tangent directions are all good.
This can be obtained by smoothing a chain of lines as follows. Take a chain
of lines L = Uj_; L; such that (i) each line L; is of first type and has good
directions everywhere and (ii) none of the nodes of L is on a line of second
type. Since all the components L; are of first type, the chain L is smoothable;
see [Ko, Chapter II, Theorem 7.9]. Then a general smoothing of L has good
directions everywhere since having a bad direction is a closed condition. O

LEMMA 3.15. Letl C X be a line of first type and x €l be a point, then F, is
smooth at [].

Proof. Deformation theory gives us
Tr, iy =H(L Ay x ® Ou(=2)) =H(1,0"? & O(-1)*) = C"*.
Hence dim 75, ;j = n — 3 = dim F,.. Tt follows that F, is smooth at [I]. O

Proof of Lemmal3 1. We first deal with the case when C' is a general line. In
this case, we see from [[z, Lemma 1.4] that F is smooth away from the point
[C] and hence so is S¢ — p~t[C]. Thus the singularities of S¢ can only appear
on C' = p~1[C] = C. Recall that we have the natural morphism gy = g|s. :
S — C and C is a section of qo. If qgly is smooth at the point § = C' N qaly
for some y € C, then S¢ is smooth at . Note that if we identify qo_ly with F,
then § = [C] € Fy. It follows that singularities of S¢ can only appear at the
points § € C such that F, is singular at the point [C], where y = go(5) € C.
But this can never happen if C' is of first type by Lemma 315

Assume that e > 2. By Corollary B12] we only need to show that when C
is general, it does not have a bad direction, which is established in Lemma

B.I14 O
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3.2. FIRST ORDER DEFORMATIONS OF C.

DEFINITION 3.16. Let C' C X be a general smooth rational curve of degree
e > 2. Then C is free since it passes through a general point of X; see [Kol
Chapter II, Theorem 3.11]. In other words, .4¢,x is globally generated. Let
v e H(C, A6 /x) be a general section of the normal bundle. Then v is nowhere
vanishing since 4, x is globally generated with rank n —1 > 2. We define the
rank 2 subbundle 7, C Tx|c, associated to v, to be such that

TX,CE
TCQ,‘}

)

%’m:{TETX@S’FGC’UCJVC/X@:

for all z € C. Let
EW = {([l],l’) € SC : 7;,:6 C 771793}

REMARK 3.17. Note that we have natural embeddings
So L P(Tx o) <ZP(T,),

where j; is defined by ([I], ) = {Ti» C Tx,} and jo is induced by the natural
subbundle structure T, C Tx|c. We know that dim S¢ = n—2, dimP(Tx|¢) =
n and dimP(7,) = 2. Furthermore, the set X, is precisely the intersection of
P(T,) and Sc.

LEmMMA 3.18. If v is general, then Sc intersect P(T,) transversally in the set
Yo = {([Li), zi)};2y, where x; # x; for i # j. In particular, ¥, is finite.

Proof. By [CGL Lemma 6.5], we see that S¢ is a fiberwise (2,3) complete in-
tersection of P(Tx|c). In other words, for each point 2 € C, there exist

¢o.n: Sym*(Tx2) = C  and @3, : Sym*(Tx..) — C

such that qo_lx = F, C P(Tx,) is defined by ¢2, = 0 and ¢3, = 0. The
tangent direction 7¢ , defines a point & = [Tc ] € P(To,z) C P(Tx ). Lemma
implies that the point Z is not contained in F,. Note that P(7, ) can
be viewed as a line in P(7x ) passing through the point Z. Since A x is
globally generated, we see that for a fixed € C the line P(7, ) is a general
line passing through #. Now since F, C P(Tx ) has codimension 2, the line
does not meet F,.. This shows that when v is general, there are at most finitely
many points x; € C such that F,, meets P(7, ,). For any of such point z;,
since &; ¢ F, the line P(7y,,,,) meets Fy, in at most finitely many points. This
proves that Sc intersects P(7,) transversally. We still need to rule out the
situation z; = x; = ¥.

Let X — X be the blow-up of X along the curve C with F & P(Ac/x) C X
being the exceptional divisor. Consider the diagram

E—=X

|

C——X
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For a point z € C and a line L passing through z, Lemma implies that
T, defines a 1-dimensional linear space in .4¢/x , and hence gives a point
2 € B, = 7 'x. When (L, z) varies, the point z traces out a subvariety Z C E.
Note that z is simply the intersection point of the strict transform L of L and
the exceptional divisor E. This gives rise to a morphism f, : F,, — FE,. First
we note that for general x € C', the morphism f, is generically 1-to-1. This can
be seen as follows. When x is a general point, the tangent direction 7¢, defines
a general point & € P(Tx ;). Then for a general point [L] € F,, C P(Tx ), the
line connecting # and [L] meets F, in the single point [L]. Let Z;y C Z be
the set of points having at least two preimages under f, for some x € C'. The
above discussion together with the fact dim F, = n — 3 for all z € C (since C
does not pass any Eckardt point) implies

dimZ =n— 2, dim Z; <n — 3.

A section v € H°(C, Neyx) defines a section C,, C E. Since ¢, x is globally
generated, the curves {C,} form a covering family of movable curves on E.
Note that dim £ = n — 1. It follows that for a general v, the curve C, does not
meet Z7.

If z; = z; = y, then we have two distinct lines L; and L; passing through y
such that 7z, 4, 71, and v(y) give the same point z € P(A¢/x ;). This means
that C, meets Z; at the pint z. But this does not happen for general v by the
above discussion. g

REMARK 3.19. The element v € H°(C, 45/ x) can be viewed as a first order
deformation of C. Note that we have a canonical identification

Thin(x),ic] = H*(C, A5 x).

Since [C] € Hilb®(X) is a smooth point, we can find a smooth pointed curve ¢ :
(T,0) — (Hilb(X), [C]) such that dp(Tr,0) = Cv. The curve T parameterizes
a 1-dimensional family of curves on X,

C—X
T

such that 65 = C. Let Xy = {L;+}, t # 0, be the set of all incidence lines of %;
and C' (meaning lines meeting both €; and C'). We have proved in [Shl Lemma
3.10] that the cardinality of ¥ is equal to 5 deg(%;) deg(C) = 5e2. If we take
the limit as t — 0 (see [Ful, §11.1]), then we see that ¥; specializes to the set
¥,. Hence we get ro = |, | = 5e2. We will write

Sy = (L) 1 = 1,2, 5e2).
LEMMA 3.20. If C is general, then L; is of first type and
N x(Tom,) 2O 2@ 0(-1), 1<i<5e?
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Furthermore, we have a decomposition
(6) NN(ALyx(Tea.))a; = Pos(A, x )a; © T a,
which is canonical upto a scalar multiplication on Pos(A7, /x )z, -

Proof. When C' and also v are general, all the lines L; are of first type and
Tc,z; is not pointing to the positive part of .47, ,x. Hence (i) of Proposition
[BIT applies. Consider the following short exact sequence

(7) 0 —=Pos(AN1,/x)e; —== NN(AL,/x (T ), T, 0,

where t; is a local uniformizer of C' at the point z; and 7_'0,11. is the image of
Tc,z; in AL, x 2, The natural homomorphism

Tow: = Txwi = /X0
factors through NN(A7, /x (Tc,e;))e; — A1, /X2, and gives a homomorphism
0; : '7_'095 — A1,/x(Tc,z:))z;- This homomorphism 6; canonically splits the
sequence (7). After identifying 7 ¢ 5, with Tc 4, we get the decomposition.

Note that the only choice made here is the local parameter t;. A different
choice of ¢; induces a scalar multiplication on Pos(A47,, /x ), - g

LEMMA 3.21. Let V C Tx,» be a 3-dimensional vector space containing T .,
for some x € C. We view P(V) as the space of lines tangent to X at x in a
direction of V. Then F, NP(V) is a zero dimensional scheme of length 6 if
x # x;. If x = x; for some 1 < i < 5e2, then F, N P(V') can have at most one
component of dimension 1 and this component has to be a line (on P(V) = P?)
if it exists.

Proof. If we show that F, NIP(V) is zero dimensional, then it of length 6 since
it is a (2,3)-complete intersection in P(V) = P2. Assume that B C P(V) N F,
is a curve. Then BNP(7, ) is nonempty, where P(7, ;) is viewed as a line on
P(V). Or in other words, P(7, ) contains a line L of X. This exactly means
that (L,z) € X,. Hence such B does not exist if  # z;. If x = x;, we have
already seen that P(7, ;) contains the unique line L; of X. Hence B C P(V)
is of degree 1, namely a line, if it exists. This is because B can only meet the
line P(7, ) in the point [L;]. |

3.3. THE RATIONAL MAP p. Let % be the quotient of Tx|c by T,. The natural
quotient homomorphism 7x|c — % induces a rational map 8 : P(Tx|c) --»
P(%). By definition, the indeterminacy locus of § is exactly P(7,). Let p =
Boj1: Sc --+ P(F), where j; : S — P(T'x|¢) is the closed immersion induced
by ([{],z) — [Ti.» C Tx,z); see Remark BI7 Then the indeterminacy locus of
p is the set 3,. This shows that we have a morphism

p:Sc—X, = P(F).

LEMMA 3.22. Let f : Y1 --» Y5 be a rational map between two smooth projective
varieties whose indeterminacy locus 3 C Y1 1is a finite set of closed points. Let
I'y C (Y1 —X) xY; be the graph of f and T'y C Y1 x Ys the closure of T'y. We
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define the pull-back f* and push-forward f. (on either the cohomology groups
or the Chow groups) as

f*a:pl,*(f‘f'p;a)a f*a:p2,*(f‘f'pia)a
where p; : Y1 X Yo = Y, is the projection to the corresponding factor. Then we
have f*(a¥) = (f*a)*, for all a € Pic(Y2) and k < dimY;.

Proof. Let E =X x YaN T be the exceptional set of the morphism Ff - Y.
Let D and Dy be two divisors on Y; X Y5 such that D - Ff =Do-Ty+m
where ~; is a cycle supported on E. We conclude from the above that for all
1<k<dimYi,

(8) D*-Ty=Dg§-Ts+m

where v is a cycle supported on E. This can be proved by induction. In
equation (), we apply p1 « to both sides and note that py .y, =0, 1 < k <
dimY; — 1, since p; contracts E to points while dim~y; > 1. It follows that

p1o(D¥-Tp) =p1.(DF-Tf), 1<k<dimY;— 1.
For any divisor D on Y] xYa, we take Dy = pip; «(D- f‘f) Since p1|F ff —Y:

is an isomorphism away from E, we see that D - T = Do - r ¢ + 71 for some
cycle v supported on E. Hence we get

p1+(D" - T) = p1 (DG - Tp)
:plv*(pi(Dl)k'ff)v Dl:pl,*(D'ff)
= (Dl)k “p1aLg, (the projection formula)
= (D)f = (p1.(D-Ty))k

for all divisors D on Y7 X Y5 and 1 < k < dimY; — 1. In particular, if we take
D = p3a for some a € Pic(Y>), then we get

frab = p1a(Ty - p3a®) = pr. (T - (P50)%) = (pr+(Ty - p3a)* = (f*a)",
where 1 < k < dimY; — 1. The case k = 0 is automatic. O

Let T'y C (Sc —¥,) x P(F) be the graph of p and T', C S¢ x P(.F) its closure.

Note that for any 3-dimensional vector space V' C Tx , containing 7, 5, the

condition (([I],z),V/Ty2) € T, implies that [ C P(V). We define the closed

subvariety Z C S¢ x P(%) as
J

Z={(([1],x),V/Toz) € Sc xP(F) |l CP(V)}.
LEMMA 3.23. T = Z in CH,,_2(Sc x P(F)).
Proof. From Lemma 32|, Z agrees with I', away from ¥, namely
Ly =Z|(sc-3,)xp():
It follows that I', C Z. Hence we have

Z=T, +Z{ |, z)} x P(%,,),  in CH, 5(Sc x P(.%)).
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Since dimP(%,,) = n—3, we see that {([L;], z;)} x P(%,,) = 0 in CH,,_2(S¢c x
P(.Z)). Hence the lemma follows. O

DEFINITION 3.24. Let I', C Sc x S¢ be the closure of (Sc\X,) Xp(z) (Sc\Ey).

REMARK 3.25. Let ([I],z) € S¢ be a general point. Then 7; , and 7, , span a
linear 3-dimensional vector space V' C Tx , and p([l],z) = [V/Ty |- Then by
Lemma [B2]] there are 5 other lines I;, s = 1,...,5, such that 7;, , C V. Then
I',, is the correspondence generically defined by

5

where [y = [.
LEMMA 3.26. T, = ffj oI, in CH,—2(Sc x Sc).

Proof. By Lemma 3.23] we may replace I, by Z. By the definition of compo-
sition of correspondences (see [Ful §16.1]), we know that

Z' 0 Z = p13+(p12Z - p3s2")
=p13.+(Z x Sc N Sc x ZY)

It follows that Z* o Z is represented by the cycle
{(([1], ), ('], x)) € Sc x Sc : (1], [I'] € F, NP(V) for some [V/Ty.| € P(F:)}
One directly checks that this cycle is T',,. O
LEMMA 3.27. Let T, act either on the cohomology groups or on the Chow
groups of Sc.
(i) If a is an odd dimensional topological cycle, then (I')).a = 0;
(i) If a is zero dimensional, then (T'y).a is a constant that only depends on the
degree of a;
(iii) Let a = [S¢c], then (T'y).a = 6a;
(iv) If a is a topological cycle of real codimension 2m or an algebraic cycle of

codimension m, then (I',).a is a linear combination of g™ and g'g™ ' which
only depends on the intersection numbers a-g" ™2 and a - g'g" ™3,

Proof. By Lemma [3.26] we know that
(Tv)s = (f‘fo oly)w = (ffy)*(f‘p)* = p"ps.

Let ¢ be the relative Op(#)(1) class on P(.#). Then the cohomology of P(.%)
is naturally given by

H*(P(7)) = H* (C)[¢], & *+7"e(F) "% =0.

Where 7 : P(.%#) — C is the natural projection. Similarly, we have the descrip-
tion of the Chow ring as

CH*(P(Z)) = CH (O)[¢], &' 47 ci(F) -2 =0.
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Consider the following diagram

Se 2> P(Tx|c) =2 C
> |
S s
N s
\ Y

P(F)

The rational map f is defined by the natural homomorphism 7Tx|c — #. The
locus where 3 is not defined is exactly P(7,). The pull back 8*¢ restricts to
a hyperplane class on each fiber of a. The variety P(7x|c) parameterizes all
lines in P**! which are tangent to X at some point x € C' (remembering the
point x). Let § C P(Tx|c) be the divisor corresponding to all the lines meeting
a given linear P*~! C P"*! in general position. Then we see that i*§ = g|s.
and this is denoted again by ¢ for simplicity. One also sees that g restricts to a
hyperplane class of P(Tx ) = a~!(x). Thus g and 8*¢ differ by a class coming
from C. After pulling back to S¢, we get

prE=g+rg
for some integer r. By Lemma [3.22] we get the following key equality
9) pret = (p ) = (g +rg)"

Let a € H?*™1(Sc) be a topological class of odd dimension, then p.a is an
element in H?"+1(P(%)) which is zero. Hence (I',).(a) = p*p.a = 0. Now
let a be an element of H?"(S¢x) (or CH™(S¢)), 0 < m < n — 2 (the cases of
m = 0,n—2 are quite easy to deal with). Then p.a is an element in H>™(P(.%))
(or CH™(P(%))). Then we have the following expression

pea = al™ + br*[pt] - €M,
for some a,b € Z. Apply p* to the above identity and use Lemma [3.22] we get
(To)u(a) = p*pua=alg+rg)" +bg'(g+7rg)" ™" = ag™ + (b+ma)g™ "¢’
Also, the numbers a and b can be determined in the following way
a= (ag™ +br*[pt]e™ ) - [pt)en T
= poa- 7 [pt]en "3
= a-p*(n*[ptle" " ?)
=a-g'(g+rg)""?, (by Lemma [3.22)
=a-g'g" "
To get b, we consider
pet- M7 = a2 4 b
=a(—m e (F)E P +b
= —adegF +0b
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Hence we have
b=adeg.F +a-p&n 2
=adeg(F) +a-(g+rg)" "7

n—m-—2 n—m-—3

Thus b only depends on the intersection numbers a - g and a-¢'g
This finishes the proof. O

3.4. PROOF OF THEOREM Let T C Hilb®(X) be a general smooth curve
passing through the point [C]. Let {&; : ¢ € T} be the corresponding 1-
dimensional family of rational curves on X such that the fiber 4y = C at
the special point 0 = [C] € T. Let S; = Sy, and iy = iy, : St — F. Let
I} C St x Sc, t # 0, be the natural incidence correspondence, namely

L ={"),2"),([l],z)) € St x S¢ : LNl # 0} = (ix x ic)*I € CH,_2(S: x S¢).
Let Iy C S¢ x S¢ be the correspondence generically defined by

(10) I ([, 2) = Z([lél,wé),

where ([I]',2’) € S; is a general point, I; the incidence lines of I’ and C, z} =
Lnc.

LEMMA 3.28. We have Iy = I] in CH,_2(S: X S¢).

Proof. Let I, = (iy x ic)~*I. By definition, I; is equal to the cycle class of
I;. Consider the projection p; : I — S;. Let ([I'],2’) € Sy be any point. If
I does not meet C, then py'([I'],2') = S2°°, ([li], #;) where I; run through all
the incidence lines of I’ and C; if I’ N C' = y, then p; '([I'],2’) is the union of
F, = ¢; 'y and the set of all secant lines of the pair (I, C). Tt follows that

5e2

fo= 10 (Lo 2300} % By,

Jj=1

where {Ljﬂf}?izl is the set of incidence lines of 4; and C, z;+ = L;, N %; and

yj¢ = LjNC. Since dim Fy,; , = n— 3, we see that the cycle class of I, is equal
to that of I7. m

Back to the proof of Theorem In equation (I0), when ¢ specializes to 0, I’
specializes to a line [ meeting C'; there are 5 lines, say l1, ..., I, among all the
I1’s, that specialize to five lines, E;, ¢ = 1,2,...,5, passing through z =N C;
all the other lines of the I}’s specialize to secant lines, I;, of the pair (I,C). We
have the following description of the F;’s.

Since T is a smooth curve in the Hilbert scheme of degree e rational curves on
X, the tangent space T gives a one dimensional subspace of Tipe(x),[c] =
HO(C, Neyx). Let v € HO(C, Nex) be a generator of Tro. By choosing
T general enough, we may assume that v, as a section of H°(C, Neyx), is
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general. To this v, we can associate T, C Tx|c with quotient %, ¥, C S¢ and
p:Sc\Xy — P(F) as before.

We use the notation and results of [Fu, §11.1]. Let Iy = lim;o ;. In the
equation (IT), we take the limit as ¢ — 0, then we get

(11) Z i +Z

where {I/}2¢. is the set of all secant lines of the pair (I,C) and z; = I/ N C.
Note that the rule in ([[I)) generically defines Ic + I', — Ag.. We see that
the difference of Iy and Ic + I';, — Ag, is supported on ¥, X P(%). Since
dim ¥, x¢ P(#) = n — 3, we have
(12) Ip=I1c+T1, — ASC; in CHn,Q(SC X Sc).
Note that I; = I|g,xs. for t # 0. By taking limits and applying [Ful Propo-
sition 11.1], we know that the class of Iy is equal to I restricted to S¢ x Sc.
Equivalently, we have Iy = I, in CH,,_2(Sc X S¢). Thus we get the following
key identity
(13) IICZIc—I—F,U—ASC.
Since ¥ = Vo (i), Pc = (ic)* o ® and ® o ¥ = I, we see that

Pro Ve = (’Lc)* ol,o (’Lc)* = ((’LC X Zc)*l)* = (IIC)*
Combine this with the equation (I3]), we obtain

DeoTe=0—1+(T)s

as actions on either the cohomology groups or the Chow groups of S¢. Then
Theorem follows easily from Lemma [3.271

3.5. THE SUBALGEBRA Q[g,¢’]. On S we have the polarization g and the
class ¢’ = ¢§[pt], where qo = q|s. : Sc¢ — C'is the natural morphism.

LEMMA 3.29. U(g - Pc(h™)) = 2™ T

Proof. First we note that Ue(g' - ®c(h™)) = U(F, - ®(h™)). Let M C X
be a general complete intersection of hyperplanes that represents h”". Choose
z € X to be a general point. Similar to the proof of Theorem 2.2] we consider
the following diagram

D1+ Dy + D Y X
P—G(1,2,n+2) —— pn+l

l“ |

M4¢>G2n+2

where all the squares are fiber products; ¢(z’) is the line through x and ', for
all ' € M; D; C P is a section of m and the natural morphism ¢g; : D; —
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X contracts Dy to x € X; Dy is a section of m and the natural morphism
g2 : Do — X maps Dy isomorphically to M C X; D corresponds to the third
point in the intersection of the lines with X. Let g : D — X be the natural
morphism. Let A C M be the intersection of M and D, (recall that D, is the
variety swept out by lines through z). Then, by Bertini’s theorem, A is smooth
of codimension 2 in M. As in Lemma [Z8] the natural map 7’ : D — M is the
blow-up along A. Let E C D be the exceptional divisor. As before, we have

(14) hlp + E = 2(r|p)"(h|n)

where h|p = g*h. One checks that the push-forward of 7*(h|as)|(p, +D,+D) tO
X is equal to 3™+ and that

(92)«(m* (hlar)|py) = M - b = R™
(91)«(7*(h|pm)|py) =0
It follows that
g+ (7 (h|ar)|p) = BR™ T — BT = 2pm

Note that the push-forward of D+ Dy + Ds to X is P|x = 3h™. We also know
that (g1)«D1 = 0 and (g2)«D2 = M = h™. Hence we get g.D = 2h™. As a
consequence, we have g.(h|p) = g.D-h = 2h™T1. We apply g. to the equality
(@) and note that g.E = ¥(F, - ®(h™)). Then we get

U(F, - ®(h™)) = 2g.(7"*h|nr) — gu(g*h) = 2(2h™ 1) — 2™ = opmF1,
Hence the lemma follows. O

PROPOSITION 3.30. The following statements hold in H*(S¢, Q).

(1) g™ is a linear combination of ®c(h™ ) and g'®c(h™); g'g™ ! is a mul-
tiple of ¢'®c(h™). The algebra Q|g,g’] is generated by cycles of the form
Oo(h™HY) with 0 <m <n —2 and ¢®c(h™) with 1 <m < n — 2.

(2) The restriction of H*(G) to H*(S¢) is equal to Q[g,9'g] C Qlg,d’].

(3) The action of o preserves the algebra Q[g,g'].

(4) Under ¥¢, the image of Qlg,g'] is Q[hlo<deg<n wWhere h is the class of a
hyperplane on X.

Proof. Before proving the proposition, we review a bit of Schubert calculus.
We refer to §14.7 of [Fu] for the details of the general theory. Schubert calculus
on G = G(2,n + 2) shows that CH™(G) = H*™(G) is generated by Schubert
varieties that are defined by flags P* ¢ P®* ¢ P"*! with a < b < n+ 1 and
a+b=2n+1—m. A Schubert variety is the space of lines meeting P® and
contained in P?. In our case, most of these classes restrict to 0 on Sc unless
b=norb=n+1. Ifb=n+1and a =n—m, where 0 < m < n— 1, then the
corresponding Schubert class restricts to ®(h™*1) on F and hence restricts to
dc(h™*) on S¢. If b = n and a = n — m + 1,where 2 < m < n, then the
corresponding Schubert class restricts to deg(C) ¢’ - @ (h™) on Sc. Here we
note that Fy, C S¢ represents ¢’ on Sc, for any y € C. As a cycle on F, the
class of F,, comes from the restriction of some class from G. However, viewed
as a class on S¢, Fy, is not the restriction of any class from G. The degree of a
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nonzero homogeneous element of Q[g, ¢'] means the degree of that element as
a polynomial.

Since g™ comes from G, we know that it can be written as a linear combination
of ®c(h™*1) and ¢'®c(h™). Hence we also see that g’g™~! is a multiple of
g'®c(h™) since (¢')? = 0. This proves (1).

The discussion of Schubert calculus above shows that the restriction of H*(G)
to Sc is generated by ®c(h™*t1), 0 < m < n—2and ¢'®c(h™),2<m <n—2.
Combining this fact with (1), we see that the image of the restriction H*(G) —
H*(S¢) consists of elements f € Q[g, ¢'] such that the coefficient of the term
¢’ in f is zero. This proves that the image of H*(G) — H*(S¢) is Q[g, ¢'¢].
To prove (3), we only need to consider the action of o on ®c(h™*!) and
g ®c(h™). By Proposition B.6] the following equations hold modulo Q|g, ¢'].

U((I)C(hm+1)) —
=0c(h™) + @V (Pc(h™))
= ®c o W(BA™HY) . Fp)

| ®c(3edeg(hm )R — 2en™ T, m<n-—2,
| @o(3edeg(R™ AL — 2epm Y — 2 deg(h"1)C), m=n—2

)0, m<n—2

] -690(C), m=n-—2
Here the first equation uses Proposition 3.6} the second equation uses the fact
that ®c(h™*1) € Q|g,¢']; the third equation uses Theorem 2.2 the last one
uses the fact that the degree of ™ with respect to the polarization h is 3. In
the case m = n — 2, we have that the cohomology class of ®¢(C) is 5e?[pt] €
H?"~4(S¢, Q). Note that H*"~*(S¢,Q) = Q[pt] = Q[g, ¢'ldeg=n—2. Hence we
also have ®¢(C) € Qlg,¢’]. Similarly, the following equalities hold modulo
Qly, g')-

o(g" - @c(h™)) = @co¥c(g - Pc(h™)) +g" - Pc(h™)
=20c (R ) + g e (h™)

where we use Lemma
To prove (4), we also consider the action of ¥ on ®¢(h™T!) and g'®c(h™).
By Theorem and Lemma [3.29 we know that the images are multiples of

™+ 0 < m < n —2 (we have this range since otherwise the cycles on Sc are
automatically zero for dimension reasons). O

4. THE QUADRATIC RELATION AND PRYM-TJURIN CONSTRUCTION

Let C C X be a general smooth rational curve on X with e = deg(C) > 2.
Let S¢ = ¢ (C). As was shown in Lemma B S¢ is smooth and it is the
normalization of the variety of all lines meeting C'. We will use the notation
from the previous section.
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DEFINITION 4.1. We define the primitive cohomology, H*(S¢,Z)°, of S¢, to be
the set of all elements o € H*(S¢, Z) such that

(. B) :=/S aUB=0, Y3 eQlsq)

We define the primitive Chow group, CH*(S¢)°, of S , to be the set of all
elements o € CH"(S¢) such that

(Lol B) = /S (0] UB = 0, V8 € Qlg, g

where [a] means the cohomoloy class of a. An element o € H*(S¢)° is called
a primitive cohomology class; an element o € CH*(S¢)° is called a primitive
cycle class.

REMARK 4.2. Since the restriction of H*(G,Q) to S¢ is Qlg, 9¢'], we deduce
that H"=2(S¢,Z)° (n # 4) consists of elements o such that (a, 8) = 0 for all
B coming from G. Note that the only difference between Q[g, ¢'] and Ql[g, g¢’]
is the element ¢’ since (¢')?> = 0; when n # 4, the equation (a,g’) = 0 is
automatic for dimension reasons since ¢’ € H?(S¢) and a € H"2?(S¢) are
not of complementary dimension. If n is odd, then every cohomology class in
H"~2(S¢) is primitive by definition.

By abuse of notation, we will also use « - 8 to denote {(a, 3) for o and 8 of
compementary dimensions.

By Proposition 330 the action o induces an action, still denoted by o, on the
primitive cohomology and the primitive Chow groups of Sc. This is because
o is symmetric and preserves Q[g,¢’]. Hence a - o(f) = o(a) - 8. If ais a
primitive class and § € Q|[g, ¢'], then the above identity shows that o(a)-5 =0
and hence o(«) is still primitive.

THEOREM 4.3. Let C C X be a general rational curve of degree e > 2 as
above. Let o be the action of the incidence correspondence on either H*(S¢)°
or CH*(S¢)°. Then the following are true.
(1) On the primitive part of either the cohomology groups or the Chow groups,
o satisfies the following quadratic relation

(c—1)(c+2e—1)=0
(2) The map O induces an isomorphism of Hodge structures
®c : HY(X, Z) prim — PH"?(S¢, 2)°,0)(—1)
The intersection forms are related by the following identity
Do(a) Po(f) = —2ea-p
(3) The map ®¢ induces an isomorphism

B¢ 1 Ai(X)g — P(CHi—1(Sc)8,0)
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Proof. Since T';, is also symmetric, we know that it acts on the primitive co-
homology and the primitive Chow groups. But by Lemma B.27] the image of
I, is always non-primitive unless it is zero. Hence we get that (I';). = 0 on
primitive cohomology and Chow groups. Hence on the primitive part of the
cohomology group and the Chow groups, we have

c=®s0WUs + 1.
The next fact that we need is

LEMMA 4.4. If a is a primitive class in either the cohomology group or the
Chow groups of Sc, then W (a) has h-degree zero.

The proof of the above lemma is easy. We note that Ue(a)-h! = a-®c(h?) = 0,
since ®¢(h') € Q[g, ¢']; see (1) of Proposition Now we can prove state-
ment (1) of the theorem. Theorem 2:2/shows that, on the primitive cohomology
and the primitive Chow groups, we have

\I/c(q)c(a)) + 2ea = 0.
From this we get
(0’ — 1)(0’ + 2e — 1)((1) =dco ‘Ilc(q)c oWUes + 26)((1)
= q)c(\I/c o @c(\llc(a))) + 2ed o \I/c(a)
=®c(—2eVc(a)) + 2ePc o Ue(a), (by Theorem 22)
=0
Now we prove (2). For simplicity, we write P for P(H""2(S¢,Z)°, o). Since
®coVeo = o—1 and that U is onto (Propositioon[4H]), we know that the image
of ®¢ is exactly P. By Theorem [Z.2] we know ¥ o @ = —2e. This implies
that ®¢ is injective. Hence ®¢ : H"(X,Z)prim — P is an isomorphism. ®¢

respects the Hodge structures and hence is an isomorphism of Hodge structures.
The intersection forms are related by

Po(a) - 2o(B) = a-¥e(Pc(B)) = a- (—2ef) = —2ea-
Statement (3) can be proved exactly in the same way. U
PROPOSITION 4.5. (1) The homomorphism

Ve H"2(Se, Z)° — H(X, Z) prim

on primitive cohomology is surjective.
(2) The homomorphism

Ve CHm(SCa Q)O - Aerl(Xa @)
on primitive Chow groups is surjective.

Proof. Statement (1) follows from Theorem ] (for n # 4) and Remark 510
(for n = 4). The proof of (2) is easy since we have Q coefficients. Let a €
CHyp41(X)g, take a = —-®c(a). Then we have a = Uo(a). Now assume
that « has h-degree 0. For any b € Qlg, ¢'], we have ®¢(a) -b=a-P¥e(b) =0
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since ¥¢(b) € Q[h]. This means that ®c(«) is a primitive cycle class. This
gives the surjectivity of U on primitive Chow groups. g

Let m : € — T be a family of curves together with a morphism f : € —
X. Then we can define the Abel-Jacobi homomorphism & := m, f* and the
cylinder homomorphism ¥r := f,7* on the cohomology groups and the Chow
groups. Let C C X be a general smooth rational curve of degree e > 2 as
before. Then there is a natural incidence correspondence I'r,c C T x S¢ given
by

ts Y ([l i)

where [; are the incidence lines of 6; and C (i.e. lines meeting both curves)
and x; = I; N C. This correspondence induces

(C1.c)s : CH,(T) — CH,(Sc)

and
[Crc]* : H"2(S¢, Z) — H" (T, Z)

We can define the primitive cohomology groups and the primitive Chow groups
of T as the classes that are orthogonal to ®7(Z[h]). Hence I'r ¢ also induces
homomorphisms between the primitive cohomology groups and the primitive
Chow groups.

PROPOSITION 4.6. Let € — T be a family of curves on X and C C X a general
rational curve of degree e as above. All the homomorphisms are restricted to
primitive classes. Then the following hold.

(1) The homomorphism [Lr.c]* : H*"%(S¢,Z)° — H" (T, Z) factors as ®} o
(0 — 1), where ® : P(H""2(S¢,Z)°,0) — H""2(T,Z) is a homomorphism
such that the following diagram is commutative.

H"(S¢, Z) — % H"(X, Z)prim

o e

<DT
PH"2(S¢,Z)°,0) ——=H""%(T,Z)

(2) This image of T'r,c)« : CH.(T,Q)° — CH,(Sc,Q)° is contained in the
subgroup P(CH,(Sc,Q)°,0), where CH,(T,Q)° is the subgroup of primitive
elements. In other words, the following diagram is commutative.

AT+1(X7 @)
% X
5 (Tr,c)« o
H'r‘(T; Q) P(CHT(507@) 70)
Proof. These are consequences of the identities [I'rc]* = &7 o Uo and
(FT,C)* = (I)C o ‘I/T. O
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Let C7 and C5 be two general rational curves on X of degree e; and ey re-
spectively. Then there is a natural incidence correspondence I'12 C S¢, X Sc,
defined by

562

(), z) = Z([Zi],xi)

where ([l],z) € S¢,, l; are the incidence lines of [ and Cs), z; = I; N Cy. Let
Y12 = (T'12)« be the induced homomorphism on either the cohomology groups
or the Chow groups. Note that by definition, we have y12 = ®¢, o ¥, . Since
both ®¢ and U respect primitive classes, the above identity implies that ;2
takes primitive classes to primitive classes. We still use 712 to denote the action
on the primitive cohomology and the primitive Chow groups.

PROPOSITION 4.7. Let C1, Cy C X be two general rational curves of degree at
least 2 and 12 be the homomorphism induced by incidence correspondence as
above. Let o1 and oo be the action of the self incidence correspondence on Sc,
and Sc, respectively. Then the following are true.

(1) The image of y12 : H*"2(S¢,,Z)° — H""2(S¢,,Z)° is always in the Prym-
Tyurin part. Furthermore there is an isomorphism of Hodge structures

tiz : PE""2(8¢,, 2)°, 01) — P(H""*(Sc,, Z)°, 02)

such that ®c, = t12 0 Pe, and y12 = t12(01 — 1).
(2) The same conclusions as in (1) hold for primitive Chow groups with Q-
coefficient.

Proof. For simplicity, we write A; = H"2(S¢,,Z)° for the primitive co-
homology and P; = Im(o; — 1) for the Prym-Tjurin part, ¢ = 1,2. Let
A = H'(X,Z)prim, . = ®¢c, : A — P,. Then one easily checks that
t1g = Py 0 (I)l_l satisfies (1). The proof of (2) is similar. O

5. SURJECTIVITY OF ¥ ON PRIMITIVE COHOMOLOGY

In this section we supply a proof of the surjectivity of W on the primitive
cohomologies. To do this, it is more convenient to consider homology instead
of cohomology. We define

(15) Viea(Se, Z) = ker{H,,_2(Sc,Z) — H,,—2(G,Z)},
and
(16) Vo(X,Z) = ker{H,,(X,Z) — Hn(]P’”H, Z)}.

Under the Poincaré duality H, 2(Sc,Z) = H"2(Sc,Z), the subspace
Vi—2(Sc,Z) corresponds to H"“2(S¢,Z)° if n # 4. When n = 4, since the
class ¢’ is not from G(2,6), we see that V5(S,Z) is larger than H?(Sc,Z)°.
Actually, we have

H?(Sc,Z)° = {0 € Va(Sc,Z) : g - o = 0}.
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Similarly the Poincaré duality on X allows us to identify V,,(X,Z) with
H"(X,Z)prim- Then the surjectivity of

Ve H"2(Sc, 2)° — H' (X, Z) prim
when n # 4, is equivalent to the following
THEOREM 5.1. The natural cylinder homomorphism
Ue: Via(Se,Z) = Vo(X,Z)
18 surjective.

The idea of the proof is the Clemens-Letizia method, see [Cl] and [Le]. Our
presentation closely follows that of [Shil §2,3]. Let #: V' — A be a proper flat
holomorphic map from a complex manifold V' of dimension m+ 1 onto the unit
disk A. This map is called a degeneration if w is smooth over the punctured
disk A* = A —0 and V; := m~1(#) is irreducible for ¢ # 0. Let Sing(Vy) denote
the singular locus of Vj.

DEFINITION 5.2. ([Shil Definition 1]) A degeneration 7 : V. — A is called
quadratic of codimension r if Sing(Vp) is connected and, for every point p €
Sing(Vp), there exist local coordinates (zg,...,zmn) of V around p such that
=224+ 22

PROPOSITION 5.3. For any smooth cubic hypersurface X C P"T1, there ewist
a Lefschetz pencil Xy C P! with t € B = P, such that

(1) The total space, F = [[,c 5 F'(Xt), of the associated Fano schemes of lines
s smooth.

(2) Xo = X is the cubic hypersurface we start with and Xy is smooth unless
te{ty,... ty}.

(8) For each degeneration pointt; € B, j =1,...,N, the family : F — B is
a quadratic degeneration of codimension n — 2 at the point t;.

This Proposition can be viewed as a special case of [Shi, Proposition 1]. Note
that we have no isolated singularities in F'(X}) since F(X;) is smooth as long as
X, is smooth. By the results of [CGl Theorem 7.8], we easily get a description
of the fibers of 5. If t € B — {t1,...,tn} then F; = F(X;) is smooth of
dimension 2n — 4. Let z; be the ordinary double point of X;, and I'; be the
lines on X;, that pass through z;. We know that I'; is smooth of dimension
n — 2. The singular fiber F;, is irreducible with I'; being the singular locus
which is an ordinary double subvariety. Let z € I'; be a point and Y C F be
an (n — 1)-dimensional complex submanifold is a small neighborhood of z. If Y’
meets I'; transversally in the point z, then z is a non-degenerate critical point
of Bly. There is an associated vanishing cycle o; € H,,—2(Y%, 4¢, Z).

The next observation we make is that a cubic hypersurface with an isolated
ordinary double point has enough rational curves in its smooth locus. Let
X C P! be a cubic hypersurface with an ordinary double point zq € X.
Then the projection from the point xy defines a morphism 7 : X = P", where

DOCUMENTA MATHEMATICA 19 (2014) 867903



PrRYM-TJURIN CONSTRUCTIONS ON CUBIC HYPERSURFACES 899

X = Bl,,(X) is the blow-up of X at the point 9. Let o : X — X be the blow-
up morphism. Then it is known that 7 is the blow-up of P™ along a smooth
(2, 3)-complete intersection Z C P"; see [CG| Lemma 6.5]. Let Q@ C P™ be the
unique quadric hypersurface containing Z and Q C X be the strict transform
of Q. Then o is an isomorphism on X \Q and it contracts Q to the singular
point z. Let h € Pic(X) be the class of a hyperplane section and H € Pic(P")
the class of O(1). Then on X, we have

c*h=37"H — E.

Let C' C X\{zo} be a degree e rational curve and C =0¢7'C C X. Then this
curve C satisfies the following conditions

C-3"H—-E)=e, C-2r"H-E)=C-Q=0.

This implies that C-7*H = e and C-E = 2e. Hence C' = 7(C') C P" is a degree
e rational curve which meets Z in 2e points and C is the strict transform of C.
Conversely, if we start with a degree e rational curve C/ C P" which meets Z
in 2e points. Let C be the strict transform of C’. Then C = o(C) € X\{zo}
is a rational curve of degree e.

LEMMA 5.4. Let X C P**! be a cubic hypersurface with an isolated ordinary
double point xg € X. Then there exists a free rational curve C C X\{xo} of
degree e > 1.

Proof. We only need to show that there is a rational curve of degree e through
a general point of X\{zo} and contained in X \{zo}. We first do this for e = 1.
In this case, we see from the above discussion that we only to show the following
Claim: Let y € P™ be a general point, then there is a line I’ on P that meets
Z in two points.

To prove the claim, we consider the projection, pry, : P"\{y} — P~ from
the point y. If there is no such line I/, then pry,|z : Z < P"! is a closed
immersion. But this would imply that Z is a degree 6 hypersurface in P~}
and hence —Kz = (n — 6)H where H is the class of a hyperplane section of
Z. Since Z C P™ is a (2, 3)-complete intersection, we also know that — Ky =
(n+1—-2—-3)H = (n —4)H, which is a contradiction.

For case of e > 1, we can take a chain of e lines on X\{zp} and smooth to a
degree e rational curve; see [Kol §I1.7]. Such a rational curve passes through a
general point since a line does. O

LEMMA 5.5. Under the situation of Proposition[5.3, there exists a contractible
analytic open neighborhood D of 0 € B containing {t1,...,tn} such that

(i) There is an analytic family of curves {C;y C X;™ :t € D} with Cy = C,
where X;™ is the smooth locus of X;.

(ii) S = UiepSe, C F is a complex manifold and p : S — D is smooth away
from the t;’s;

(i1i) As sub-manifolds of F, S meets each T'; transversally at finitely many
POINES 231y - -+ 5 Zigr-
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Proof. Let H/B be the component of relative Hilbert scheme of rational curves
on X;’s that contains C' as an element. This is well-defined since C' defines a
smooth point in the relative Hilbert scheme. We claim that, after shrinking
D, there exists a general analytic section s : t — C; € H satisfies C; C X
To prove this we first note that by Lemma [5.4] there is a free rational curve
C; € Xfim of the same degree e. Since Cj is free, it deforms to a curve C; in
nearby fibers. By the result of [CS| Theorem 1.1], the space of degree e rational
curves on a smooth cubic hypersurface is irreducible. This implies that C; is
a point of H and hence so is C;. So we can choose a family s : t — C; whose
specializations does not meet the points x; € X;,. This proves (i). We also get
(iii) easily by choosing s general enough. The smoothness of S follows from a
deformation argument. First by shrinking D, we may assume that S; is smooth
for all £ # t,. By choosing C; general, we may assume that S¢, is smooth away
from {21, 2, }. We only need to show that S is smooth at the points z = z;;.
Let L be the line corresponds to z and C; = Cy,. Let v € HO(Ci,JVCi/p7L+1)
be the section corresponding to % at the point C;. Let y = C; N L. Then

v(y) € Moy xy = 77__;“; determines a 2-dimensional subspace V, C Tx . Then

1

Ts,. CTF,. is naturally given by all sections v' € T, C H(L, N prtr) with
v'(y) € V,, where V, is the image of V, in 77:):—3 = N pn+1,y. When v(y) is

general, the above condition gives a codimension n — 2 subspace of 7x ., i.e.
dim S = dim 7s . This proves (ii). O

REMARK 5.6. From the above proof, we see that the family ¢ — C} can be
made algebraic on some finite cover of B = P'. The points z;j are exactly the
critical points of p and all of them are non-degenerate.

Now we fix a small € and let B; be the closed ball of radius € with center t;.
If € is small enough, we have B; C D. Pick a path [; connecting 0 and ¢; + €
such that U;l; is star-shaped and contractible. Let D; C P**! be a small open
ball centered at the double point z; € X;,. Let D; C F be the set of lines
L € F such that L meets D;. Thus Di is a small open neighborhood of T';. By
construction,
SQDiZUlU"'UUT

where U; are disjoint open balls in S. Let p; : P; — U; be the family of lines
parameterized by U;. Hence we get the following commutative diagram

Pj L)Y
le ‘(ﬂ'
Pj
Uj — B

where Y is the blow up of P**! along the base locus of the Lefschetz pencil
and p; = ply;. We fix a general analytic section s; : U; — P;.

LemMA 5.7. ([Shil Lemma 7]) There exists local analytic coordinates
U, UL, - - -, Uy of PPTL at the point x; such that
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i) The image of P;j in is locally given by ug + +/—1uy = 0;
) The i P; in P s locally gi b 1 0
i) The image q; o s;(U;) is given by ug = uy = 0;

i) The i j085(Uj) is gi b 0
(iti) m=t; +ud +ud + - +u.

Proof. We first show that ¢; has injective tangent map. For any tangent vector
v € Ty, 2;, it corresponds to a global section of A7 /pn+1, where Lj is the line
corresponding to z;. By the choice of C;, we know that Cy, meets the divisor
swept out by lines through x; transversally. Then v does not vanish at the
point z; € L;. This means that the point z; € L; actually moves when we
move L; in U;. Hence we get the injectivity of the tangent map of ¢;. Then
we can start with local coordinates on U; and extend to P; and then to P+,
See the proof of [Shil Lemma 7] for more details. O

Since we are doing local computations, by abuse of notation, we regard P; as
a submanifold of P**!. Using the local coordinates obtained in Lemma [5.7] it
is standard that a vanishing cycle associated to x; is given by

Yij={ui+-+ul=¢ upcR}
See [Lal] for more details. Note that the index j is used to remember that the
local coordinates are chosen with respect to P; as in Lemma 5.7 If we fix an
orientation of ¥;; and this gives an element [3;;] € H, (X}, +,Z). Also, by
Lemma [5.7] we know that o;; = (g; o s;)7'%;;, with the induced orientation,
gives a vanishing cycle for the critical point z;; € S. Let

[0i5] € Hy2(Sti4e, Z)

be the corresponding homology class. We choose the orientation of ¥;; such
that [X;;] = [¥;] is a fixed class. Then o;; has an induced orientation.

PropPoOSITION 5.8. ([Shil Proposition 2]) For any a € Hy,,_o(St, +¢,Z), we have
a-([oin] + -+ [ow]) = U(a) - [%i]
where ¥ = V¢, .

Proof. The proof goes the same as that of [Shi, Proposition 2]; we sketch it here
for completeness. We still use a to denote a topological cycle that represents
the class a. We use the notations above and set a; = anNU;. If L € a —
Uja;, then L NY; = 0. We may assume that a; meets o;; transversally at u
points ai,...,a, € o;;. Then the intersection of Upeq; L and ¥;; are exactly
sj(@1),...,s;(au). And by construction, this intersection is transversal. By
chasing the orientations, we see that the contributions to the two sides of the
identity are equal. O

REMARK 5.9. Since U;l; is contractible, Hy, (X4, 4¢,Z) is naturally identified
with H,(X,Z) via (I;).. We can similarly identify St ;. and S¢ = Sp. Hence
we can view [0;] as elements in V,,_2(S¢, Z) and [£;] as elements in V,,(X, Z).
Under this identification, the above proposition still holds true.

Now we are ready to prove the main result of this section. The proof follows
that of [Shil, Proposition 4].
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Proof. (of Theorem [B.1). By Lefschetz theory, V,,(X,Z) is generated by van-
ishing cycles, see [La]. Since ¥ = ¥ commutes with the specialization map,
we know that U([o;1]) = A[X;] for some A € Z. Now we see that

loir] - ([oir] + -+ + [oir]) = [oaa] - [o0n] = £2
See [Lal, p.40. By the above proposition, we get
U([oir]) - [Ba] = A[E] - [E6] = 2

Comparing this with [¥;] - [¥;] = £2, we get A = £1. This shows that [¥;] is
in the image of ¥. This proves the theorem since [X;] generates V,,(X,Z). O

REMARK 5.10. To complete the picture, we still need to prove the surjectivity
of
Vo : H'2(80, 2)° = H'(X, Z)prim

for n = 4. Note that under Poincaré duality, H?(S¢,Z)° C H%(S¢,Z) consists
of all classes in V2(S¢,Z) which is orthogonal to ¢’. Hence we only need to
show that o;; - ¢ = 0. But this is easy to see from construction. In fact, we
pick a general point © € C}, 4., then ¢’ is represented by F, (all lines through
x). Then by construction, all lines through = avoids o;; (this is essentially due

to the fact that the surface swept out by lines in through z is 2h?; see Lemma
B:29). This means o;; - ¢’ = 0.
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