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Abstract. Following the work of Altmann and Hausen we give
a combinatorial description for smooth Fano threefolds admitting a
2-torus action. We show that a whole variety of properties and in-
variants can be read off from this description. As an application we
prove and disprove the existence of Kähler-Einstein metrics for some
of these Fano threefolds, calculate their Cox rings and some of their
toric canonical degenerations.
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1 Introduction

Knowing the fan or the polytope of a projective toric variety does not only give a
concrete construction of the variety but also enables us to explore its properties
and to easily calculate a whole bunch of invariants. In low dimensions a close
look on the corresponding pictures is enough to obtain detailed information
about the variety. Loosely speaking we can even prove statements by drawing
pictures.
In [AH06] and [AHS08] the description of toric varieties by cones and fans was
generalized to the case of an arbitrary T -variety, i.e. a variety X endowed with
the effective action of an algebraic torus T . This general description consists
of combinatorial data living on the Chow quotient X//T . A series of papers
by different authors followed this approach to derive properties and calculate
invariants out of the combinatorial data. This works especially well for the case
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of complexity-one torus action, i.e. when the torus has one dimension less then
the variety and the Chow quotient is just a curve.
The aim of this paper is to make these results available for Fano threefolds with
an action of a two-dimensional torus. More precisely, we are going to state the
needed combinatorial description for a list of those Fano threefolds and relate
it to the classification of Mori-Mukai [MM86]. By the mentioned preliminary
results we can immediately derive a lot of additional information about these
Fano varieties.
We want to highlight two concrete applications. First, by [HS10] we are able
to calculate the Cox rings of these T-varieties. The knowledge of the Cox
ring may give further inside in the geometry of the variety. For example the
automorphism group can be studied by the methods from [AHHL12].
As a second application we consider the question of the existence of Kähler-
Einstein metrics on Fano manifolds. In general this is a hard question. There
are some known obstructions such as the vanishing of the Futaki character
[Fut83]. There is also a sufficient criterion due to Tian [Tia87]. Recently it
was shown that there is, indeed, a completely algebraic formulation of the
Kähler-Einstein property by the means of so called K-stability [CDS14, Tia12].
Nevertheless, for a given Fano variety it’s still hard to check this stability
condition directly.
Again for toric Fano varieties the Kähler-Einstein property can be easily re-
formulated in terms of the defining polytope. By a result of Wang and Zhu a
toric Fano variety is Kähler-Einstein if and only if the Futaki character van-
ishes [WZ04]. Moreover, the Futaki character can be easily calculated as the
barycenter of the polytope corresponding to the toric Fano manifold [Mab87].
We are going to generalize the last result for our situation of complexity-one
torus actions in order to show that the Futaki character does not vanish for
some of the threefolds, and hence disprove the existence of Kähler-Einstein
metrics for them. We are using an application of Tian’s criterion from [Süß13]
to prove the existence of Kähler-Einstein metrics for three of the remaining
ones.
Our main conclusions drawn from the given combinatorial description are sum-
marized in the following theorem.

Theorem 1.1. The Fano threefolds Q, 2.24∗, 2.29–2.32, 3.8∗, 3.10∗, 3.18–
3.24, 4.4, 4.5, 4.7 and 4.8 from Mori’s and Mukai’s classification admit a
2-torus action.
The moment polytopes together with their Duistermaat-Heckman measures are
given in Section 5. The Cox rings, Futaki characters F (X) as well as the
existence of a Kähler-Einstein metric can be found in the following table.

∗Only one variety of the family is known to admit a 2-torus action
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No. Cox ring F(X) Kähler-Einstein

Q k[T ]/(T1T2 + T3T4 + T 2
5 ) 0 yes

2.24∗ k[T ]/(T1T
2
2 + T3T

2
4 + T5T

2
6 ) 0 yes

2.29 k[T ]/(T1T
2
2 T3 + T4T5 + T 2

6 ) 0 ?

2.30 k[T , S1]/(T1T2 + T3T4 + T 2
5 )

(
0
−2

)
no

2.31 k[T ]/(T1T2 + T3T4 + T5T
2
6 )

(
−4/3
−4/3

)
no

2.32 k[T ]/(T1T2 + T3T4 + T5T6) 0 yes

3.8∗ k[T , S1]/(T1T
2
2 + T3T

2
4 + T5T

2
6 )

( 5/3
−5/6

)
no

3.10∗ k[T ]/(T1T
2
2 T3 + T4T

2
5 T6 + T 2

7 ) 0 yes

3.18 k[T , S1]/(T1T
2
2 T3 + T4T5 + T 2

6 )
(

0
−7/8

)
no

3.19 k[T , S1, S2]/(T1T2 + T3T4 + T 2
5 ) 0 ?

3.20 k[T ]/(T1T2 + T3T4 + T5T
2
6 T7) 0 ?

3.21 k[T , S1]/(T1T
2
2 + T3T

2
4 + T5T6)

(7/8
7/8

)
no

3.22 k[T , S1, S2]/(T1T2 + T3T4 + T 2
5 )

(
0

−2/3

)
no

3.23 k[T , S1]/(T1T2 + T3T4 + T5T
2
6 )

(−13/12
−53/24

)
no

3.24 k[T , S1]/(T1T2 + T3T4 + T5T6)
(−2/3
−4/3

)
no

4.4 k[T , S1, S2]/(T1T
2
2 T3 + T4T5 + T 2

6 ) 0 ?

4.5 k[T , S1, S2]/(T1T
2
2 + T3T

2
4 + T5T6)

(5/24
5/24

)
no

4.7 k[T , S1, S2]/(T1T2 + T3T4 + T5T6) 0 ?

4.8 k[T , S1, S2]/(T1T2 + T3T4 + T5T6)
(

0
−13/12

)
no

The paper is organized as follows. In Section 2 we recall the combinatorial
description of complexity-one torus actions from [AIP+11]. In Section 3 we
describe equivariant polarizations and give a characterization of the Fano prop-
erty. Moreover, we recall how to calculate the Cox ring from the combinatorial
description and we state a simple formula for the Futaki character. In Sec-
tion 4 we show how to find toric degenerations for our T-varieties. Finally in
Section 5 we state the list with the combinatorial descriptions for all the con-
sidered Fano varieties, which in turn leads to the proof of Theorem 1.1. The
appendix provides the proof for the formula for the Futaki character.

Acknowledgments

I would like to thank Ivan Arzhantsev, Nathan Ilten and Johan Martens for
their helpful comments and conversations.

2 Combinatorial description of torus actions of complexity one

F-divisors

We consider a variety X/C with an effective action of an algebraic torus T ∼=
(C∗)r. Then X is called a T -variety of complexity (dimX − dimT ). In the
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following we restrict ourselves to the case of rational T -varieties of complexity
one. Such objects where described and studied earlier in [KKMSD73, Tim08].
We are using the more general approach of [AH06] which describes T -varieties
of arbitrary complexity, but restrict it to the case of rational complexity-one
T -varieties. Our general references are [AH06, AHS08, AIP+11].
We follow the standard terminology for toric varieties. The character lattice of
the torus T is denoted by M and we set N := M∗. For the associated vector
spaces we write MQ and NQ or MR and NR, respectively.
For a polyhedron ∆ ⊂ NQ we consider its tail (or recession) cone tail∆ defined
by tail∆ := {v ∈ NQ | ∆+Q≥0 ·v = ∆}. For a complete polyhedral subdivision
Ξ of NQ the set of tail cones has the structure of a fan, which is called the tail
fan of Ξ and will be denoted by tail Ξ. Now, consider a pair

S =

(
∑

P∈P1

SP ⊗ P, deg S

)

Here,
∑

P SP ⊗ P is just a formal sum and SP are complete polyhedral subdi-
visions of NQ with some common tail fan denoted by tailS. For the moment
the degree deg S is just a subset of NQ. The subdivisions SP are called slices
of S. We assume that there are only finitely many non-trivial slices, i.e. those
which differ from the tail fan. Note, that for every full-dimensional σ ∈ tail(S)
there is a unique polyhedron ∆σ

P in SP with tail(∆σ
P ) = σ.

Definition 2.1. A pair as above is called a (complete) f-divisor if for any
full-dimensional σ ∈ tail(S) we have either deg S ∩ σ = ∅ or

∑

P

∆σ
P = degS ∩ σ ( σ.

A (complete) f-divisor S as above corresponds to a rational complete T -variety
X(S) of complexity one, see [AIP+11, Section 5.3]. It comes with a rational
quotient map π : X(S) 99K P1.

Example 2.2 (Fano threefold 3.10). We consider the f-divisor S with three
non-trivial slices and the degree given in Figure 1. It is straight forward to
check, that the condition of Definition 2.1 is indeed fulfilled.

b

S0

b

S∞

b

S1

b

deg S

Figure 1: f-divisor of the Fano threefold 3.10.

As we will see later, this f-divisor corresponds to a blow up of the quadric
threefold in two disjoint conics, i.e. it is an element of the family 3.10 from the
classification of Mori and Mukai.
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By [LS10, Proposition 5.1, Theorem 5.3] we have the following criterion for the
smoothness of X(S).

Theorem 2.3. The T-variety X(S) is smooth if and only if for every cone
σ ∈ tailS one of the following two conditions is fulfilled

i. if σ ∩deg S = ∅ then cone Q≥0 · (∆×{1} + σ×{0}) is regular, for every
P and every maximal polyhedron ∆ ⊂ SP with tail cone σ.

ii. if σ is maximal and σ ∩ deg S 6= ∅ then for at most two points P = Q,R
the polyhedron ∆σ

P is not a lattice translate of σ and the cone

Q≥0 ·
( ∑

P 6=Q

∆σ
P × {1} ∪ σ × {0} ∪ ∆σ

Q × {−1}
)

is regular.

Example 2.4 (Fano threefold 3.10 (continued)). We consider again the f-
divisor from Example 2.2. There is no maximal polyhedron ∆ with tail∆ ∩
deg S = ∅. Look at the shaded polyhedra in Figure 1. They have tail cone
σ = Q≥0 · (−1, 0) +Q≥0 · (−1, 1). Only ∆σ

1 and ∆σ
∞ are not a lattice translate

of σ and we obtain

Q≥0 ·
(
(∆σ

1 + (−1,0))× {1} ∪ σ × {0} ∪ ∆σ
∞ × {−1}

)

= Q≥0 · (−1, 1, 2) + Q≥0 · (0, 0,−1) + Q≥0 · (0,−1,−2),

which is regular cone. Similarly for the other cones from the tail fan we get
the same result. Hence, by Theorem 2.3 we obtain the smoothness of X(S).

Symmetries

In [AIP+11, Section 5.3] there is also a characterization of f-divisors giving
rise to isomorphic T-varieties. We consider isomorphisms ϕ : P1 → P1 and
F : N → N ′. Having this we define

F (ϕ∗S) :=

(
∑

P

(F (Sϕ−1(P )))⊗ P, F (deg S)

)
.

Definition 2.5. Two f-divisors S, S ′ on P1 are called equivalent if deg S =
deg S ′ and there are lattice points vP ∈ N with

∑
P vP = 0, such that SP+vP =

S ′
P . In this situation we write S ∼ S ′.

Proposition 2.6. S and S ′ lead to isomorphic T-varieties if and only if there
are isomorphisms ϕ : P1 → P1 and F : N → N ′, such that F (ϕ∗S) ∼ S ′.

By considering the case S = S ′ we even obtain a description of the group of
equivariant automorphisms AutT (X). Therefore, we consider the set Aut(S) of
pairs (F, ϕ) as above, such that F (ϕ∗S) ∼ S holds. This set becomes a group
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via (F, ϕ) ◦ (F ′, ϕ′) := (F ◦ F ′, ϕ′ ◦ ϕ). Note, that there is a natural action of
Aut(S) on the characters M and on P1, by considering only the first or only
the second component of the pairs, respectively.
Now, we have the following proposition, due to [AIP+11, Section 5.3].

Proposition 2.7. The group Aut(S) is isomorphic to AutT (X(S))/T .

Moreover, this isomorphism preserves the natural action of AutT (X(S))/T on
M by conjugation. Hence, we will identify AutT (X(S))/T and Aut(S).

Definition 2.8. A T -variety of complexity one is called symmetric if there is
a finite subgroup G ⊂ AutT (X(S)), with MG = {0}.

Lemma 2.9. Consider a complete rational variety X with torus action of
complexity ≤ 1. Let T be the maximal torus of the automorphisms. Then
AutT (X)/T is finite and AutT (X) is reductive.

Proof. If X is a toric variety the statement is well known. Hence, we may
consider the case of a complexity-one torus action. We consider the f-divisor
S with X = X(S) with non-trivial slices SP1 , . . . ,SPℓ

. All other slices are
assumed to be just lattice translates of the tail fan. Assume that ℓ = 2 then we
may assume, that P1 = 0 and P2 = ∞. Now, every element ϕ ∈ C∗ ⊂ Aut(P1)
will give rise to a pair (id, ϕ) ∈ Aut(S). Hence, T was not a maximal torus and
X is just a toric variety with an restricted torus action. Further on we may
assume that ℓ ≥ 3.
Consider an element (F, ϕ) of Aut(S). Since, F has to be an automorphism
of the tail fan, there are only finitely many choices for F . Since, ℓ ≥ 3 the
automorphism ϕ of P1 is induced by a permutation of P1, . . . , Pℓ. Hence, there
are only finitely many choices of for ϕ, as well.
Since, X is complete AutT (X) is an algebraic group and we have a Levi decom-
position AutT (X) = H⋉Ru, where H is reductive and Ru is the unipotent rad-
ical. We may assume that T ⊂ H . Hence, we obtain AutT (X)/T ∼= H/T ×Ru.
By the finiteness of AutT (X)/T we conclude that Ru is trivial and AutT (X)
is reductive.

Proposition 2.10. Consider an f-divisor S on P1 with at least three non-trivial
slices. Then X = X(S) is symmetric if and only if MAut(S) = 0 holds.

Proof. One direction is obvious. Now, assume that MAut(S) = 0. By
Lemma 2.9 we know that Aut(S) = AutT (X)/T is finite and AutT (X) is
reductive. Now by the results of [Tit66] we can lift Aut(S) to a finite subgroup
G ⊂ AutT (X), where G is not necessarily isomorphic to Aut(S). Now, we also
have MG = 0.

The notion of symmetry for toric varieties goes back to [BS99] it was generalized
in [Süß13] to give a sufficient criterion for the existence of a Kähler-Einstein
metric on X(S). For a vertex v in SP let us denote by µ(v) the minimal natural
number, such that µ(v) · v is a lattice point. We call µ(v) the multiplicity of v.
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For P ∈ P1 we set µ(P ) = max{µ(v) | v ∈ S
(0)
P }, where S

(0)
P denotes the set of

vertices in SP .

Theorem 2.11. Let X = X(S) be a symmetric smooth Fano T -variety of
complexity one, given by an f-divisor S. If one of the following conditions is
fulfilled:

i. there are three points P1, P2, P3 ∈ P1 such that µ(Pi) > 1 for i = 1, 2, 3,

ii. there are two points as in (i) which are swapped by an element of Aut(S),

iii. Aut(S) acts fixed-point-free on P1,

then X is Kähler-Einstein.

Proof. This is only a reformulation of [Süß13, Theorem 1.1]. The condition that
T acts on π−1(P ) with disconnected stabilizers is replaced by our condition
µ(P ) > 1. But this is equivalent by [HS10, Proposition 4.11].

Now, we make use of Proposition 2.10 to check the symmetry of a varietyX(S).

Example 2.12 (Fano threefold 3.10 (continued)). We reconsider the f-divisor
and variety from Example 2.2. By setting v0 = (−1, 0), v1 = (−1, 0), v∞ =
(1, 1) and vP = 0 for all other points P ∈ P1 we see that S ∼ −S. Hence, the
pair (− idN , idP1) is an element of Aut(S). Hence, X(S) is symmetric, since
− idN has only 0 as a fixed point. Moreover, in the slices S0,S∞,S1 there
are vertices of multiplicity 2. By Theorem 2.11 (i) this shows, that this Fano
threefolds is actually Kähler-Einstein.

3 Torus invariant divisors

In this section we recall the results of [PS11] concerningWeil and Carier divisors
on T-varieties, see also [AIP+11, IS10].

The class group

On a T-variety X(S) we find two different types of torus invariant prime di-
visors. Every vertex v in SP correspond to a so called vertical prime divisors
Vv := VP.v which projects to the point P ∈ P1, via the quotient map π. We

denote the set of all vertices in SP by S
(0)
P and the disjoint union

∐
P S

(0)
P by

S(0). As before, for a vertex v ∈ S
(0)
P we denote by µ(v) the smallest positive

integer µ such that µ ·v ∈ N . Horizontal prime divisors Hρ project surjectively
onto P1 via the quotient map π. They correspond to the rays ρ in tailS which
do not intersect deg S. We denote the set of all such rays by (tailS)×.
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Theorem 3.1 ([PS11, Cor. 3.15]). The divisor class group of X(S) is isomor-
phic to ⊕

ρ∈(tailS)×

Z ·Hρ ⊕
⊕

v∈S(0)

Z · Vv

modulo the relations
∑

v∈S
(0)
P

µ(v)Vv =
∑

v∈S
(0)
Q

µ(v)Vv ,

0 =
∑

ρ

〈u, ρ〉Hρ +
∑

P,v

µ(v)〈u, v〉Vv .

where P,Q ∈ P1 and u ∈ M .

Corollary 3.2. The class group of X has rank

1 +
∑

P

(#S
(0)
P − 1) + #(tailS)× − dimN.

Example 3.3 (Fano threefold 3.10 (continued)). We are coming back to our
T-variety from Example 2.2. Since every ray in tailS intersects the degree, by
Theorem 3.1 the divisor class group of X is generated by the seven vertical
divisors

D1 = V0,(0,0), D2 = V0,(−1/2,0), D3 = V0,(−1,0),
D4 = V∞,(0,0), D5 = V∞,(0,−1/2), D6 = V∞,(0,−1),

D7 = V1,(1/2,1/2).

The relations are given by the rows of the following matrix

M =

( 1 2 1 0 0 0 −2
0 0 0 1 2 1 −2
−1 −1 0 0 0 0 1
0 0 0 0 −1 −1 1

)

Calculating the Smith normal form D = P ·M ·Q gives

D =

(
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

)
, P = I4, Q =




0 0 −1 1 −1 1 1
0 0 0 0 1 0 0
1 0 1 1 −1 1 1
0 1 0 2 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 1 1




Hence, Cl(X) ∼= Z3. Where the identification is given by the last three columns
of Q, i.e. [D1], [D3] 7→ (−1, 1, 1), [D2] 7→ (1, 0, 0), [D4] 7→ (0, 0, 1), [D5] 7→
(0, 1, 0), [D6] 7→ (0, 0, 1), [D7] 7→ (0, 1, 1).

Ample divisors

We consider a piecewise affine concave function Ψ : � → DivR P1, defined on a
lattice polytope � ⊂ MR. It induces corresponding piecewise affine and concave
functions ΨP : � → R via Ψ(u) =

∑
P∈P1 ΨP (u) · P . Using this notation we

are going to define the crucial object of this section.
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Definition 3.4. A divisorial polytope is a continuous piecewise affine concave
function Ψ : � → DivR P1, such that

i. for every u in the interior of �, deg Ψ(u) > 0,

ii. for every P the graph of ΨP is integral, i.e. has its vertices in M × Z.

We define the support function of Ψ to be the family Ψ∗ = {Ψ∗
P}P∈P1 of

piecewise affine concave functions Ψ∗
P : NR → R with

Ψ∗
P := min

u∈�h

(〈u, v〉 −ΨP (u)).

We call lin(Ψ∗) := min〈�, ·〉 the linear part of Ψ∗. It is a piecewise linear
function on the normal fan of �.

Proposition 3.5 ([AIP+11, Theorem 63], [IS10, Theorem 3.2]). There is a
one-to-one correspondence between invariant ample divisors D on X(S) and
divisorial polytopes Ψ : � → DivR P1, with

i. Ψ∗
P induces the subdivision SP , i.e. the maximal polyhedra of SP are the

regions of affine linearity of Ψ∗
P ,

ii. degΨ(u) = 0 holds for a point u ∈ �D iff 〈u, v〉 = min〈�, v〉 for some
v ∈ deg S.

Moreover, by [PS11, Corollary 3.19, Theorem 3.12] Ψ as in Proposition 3.5
corresponds to an anti-canonical divisor onX = X(S), if there exists an integral
divisor KP1 =

∑
aP · P of degree −2 on P1, such that

Ψ∗
P (v) = −aP − 1 + 1/µ(v), lin(Ψ∗)(vρ) = 1 (1)

for every vertex v ∈ SP and every ray ρ of (tailS)×. In particular, X will be
Fano. In this case we say that Ψ is a divisorial polytope corresponding to the
Fano T-variety X .

Remark 3.6. By Proposition 3.5 (i) we have a one-to-one correspondence be-
tween facets of the graph of ΨP and vertices of SP . A facet of the graph of
ΨP projects to a region U ⊂ � where ΨP is affine linear, i.e. ΨP |U = 〈·, v〉+ c
for some v ∈ NR. The corresponding vertex of SP is exactly v and we have
Ψ∗(v) = c. Taking this into account we can reformulate condition (1) as follows.

i. For every facet F of the graph of ΨP + aP + 1 there is a vertex v such
that 〈 · , µ(v)(v, 1)〉 ≡ 1 on F . In particular, F has lattice distance 1
from the origin. Moreover, we have ΨP ≡ −aP if SP is trivial.

ii. the facets F of � with degΨ|F 6≡ 0 have lattice distance 1 from the origin.

Definition 3.7. The volume of a divisorial polytope is defined, by

volΨ :=

∫

�

degΨ dµ.
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Here, we are integrating with respect to the Euclidean measure µ induced by
the inclusion M ⊂ MR.

Theorem 3.8 ([PS11, Proposition 3.31]). If D is ample on a T-variety X =
X(S) of dimension n, then its top self intersection number is given by

(D)n = n! volΨD.

Example 3.9 (Fano threefold 3.10 (continued)). In Figure 2 the divisorial
polytope Ψ : � → DivR P1 for the canonical divisor is sketched. More precisely
we give the non-trivial concave functions ΨP by drawing � and the regions of
affine linearity of ΨP and giving the values of Ψ at the vertices of these regions.

Ψ0
0

0
−1
−2

−1
−2

0
0

Ψ∞
0

0
0
0

−2
−1

−2
−1

Ψ1
0

0
1
2

3
3

2
1

degΨ

b

0
0

0
0

0
0

0
0

1/2

Figure 2: A divisorial polytope for the threefold 3.10.

We have degΨ = 0 on the boundary of � and deg S intersects all tail cones.
Hence, condition (ii) of Proposition 3.5 is fulfilled. We will now check that the
Ψ induces the subdivisions SP and fulfills (1), for KP1 = −2 · [1]. Calculating
Ψ∗ gives

Ψ∗
0 = min

(
〈
(
2
1

)
, ·〉+ 2, 〈

(
1
2

)
, ·〉+ 1, 〈

(
−1
2

)
, ·〉+ 0, 〈

(
−2
1

)
, ·〉+ 0,

〈
(

2
−1

)
, ·〉+ 2, 〈

(
1
−2

)
, ·〉+ 1, 〈

(
−1
−2

)
, ·〉+ 0, 〈

(
−2
−1

)
, ·〉+ 0

)
.

Ψ∗
∞ = min

(
〈
(
2
1

)
, ·〉+ 0, 〈

(
1
2

)
, ·〉+ 0, 〈

(
−1
2

)
, ·〉+ 0, 〈

(
−2
1

)
, ·〉+ 0,

〈
(

2
−1

)
, ·〉+ 1, 〈

(
1
−2

)
, ·〉+ 2, 〈

(
−1
−2

)
, ·〉+ 2, 〈

(
−2
−1

)
, ·〉+ 1

)
.

Ψ∗
1 = min

(
〈
(
2
1

)
, ·〉 − 2, 〈

(
1
2

)
, ·〉 − 1, 〈

(
−1
2

)
, ·〉+ 0, 〈

(
−2
1

)
, ·〉+ 0,

〈
(

2
−1

)
, ·〉 − 3, 〈

(
1
−2

)
, ·〉 − 3, 〈

(
−1
−2

)
, ·〉 − 2, 〈

(
−2
−1

)
, ·〉 − 1

)
.

It’s not hard to check, that Ψ∗
P is affine linear exactly on the maximal polyhedra

of SP . Hence, by Proposition 3.5 it corresponds to an ample divisorD onX(S).
Moreover, we obtain

Ψ∗
0(0, 0) = 0 h0(−1/2, 0) = 1/2 h0(−1, 0) = 0

Ψ∗
∞(0, 0) = 0 h∞(0,−1/2) = 1/2 h∞(0,−1) = 0

Ψ∗
1(1/2, 1/2) = 1

Hence, (1) is fulfilled for our choice KP1 = −2 · [1] and D is an anti-canonical
divisor.
By elementary calculations for volΨ we get

volΨ =

∫

�

degΨ =
13

3
.
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Putting together the observations of Example 2.2, 3.3 and 3.9 we conclude that
X is a smooth Fano threefold of Picard rank 3 and Fano degree 26. By [MM86]
this is a blow up of the quadric threefold in two disjoint conics.

3.1 Moment map and Duistermaat-Heckman measure

In this section we give an interpretation of divisorial polytopes in terms of
moment maps.
The polarisation of a T-variety X by L = O(D), for an ample invariant divi-
sor D, induces a symplectic structure on X by pulling back the Fubini-Study
form of the corresponding torus equivariant embedding into projective space
(at least for a suitable multiple of D). The action of the algebraic torus action
on X induces a Hamiltonian action of the contained (maximal) compact torus
Tc on the corresponding symplectic manifold. This action comes with a mo-
ment polytope P and a moment map φ : X → P . Now, the push forward of
the canonical symplectic measure on X via the moment map gives a measure
on P . This measure is called the Duistermaat-Heckman measure and the cor-
responding continuous density function f is called the Duistermaat-Heckman
function. It is known to be piecewise polynomial and the degree corresponds
to the complexity of the torus action, cf. [DH82].
The global sections L decompose in homogeneous components of weight u ∈ M .
By [PS11, Proposition 3.23] we may express such a homogeneous component
in terms of the corresponding divisorial polytope ΨD:

H0
(
X,L

)
u
∼=

{
H0
(
P1, O(ΨD(u))

)
, u ∈ �D

0 , else
(2)

From this one can deduce that � = �D equals the moment polytope P , see
[AIP+11, Section 14.7]. More generally for powers if L we get by [IS10, Prop.
3.1]

H0
(
X,L⊗k

)
k·u

= H0
(
P1, O(k ·ΨD(u))

)
(3)

for u ∈ � ∩ 1
k ·M .

One obtains the value f(0) as the volume of the symplectic reduction of
the moment fiber φ−1(0). By the Kempf-Ness Theorem the symplectic re-
duction of φ−1(0) by Tc is the same as the GIT quotient Y = X//LT =
Proj

⊕
k H

0(X,L⊗k)T . The GIT quotient comes together with a polarization
by a Q-line bundle OY (1), given by the invariant sections of L. This polariza-
tion is compatible with the symplectic structure on φ−1(0)/Tc. Hence, we have
volφ−1(0)/Tc = (OY (1))

dimY .
If 0 is in the interior of � we get Y = X//LT = P1. Moreover, by (2) we have
OY (1) = O(Ψ(0)) and we get f(0) = deg(Ψ(0)). By shifting the linearization
of L (and therefore the moment map) by u ∈ � ∩M we get f(u) = deg(Ψ(u))
for all lattice points in �. By (3) we get the same for rational points in � and
eventually by continuity for all points.
Altogether we obtain
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Proposition 3.10. The Duistermaat-Heckman function corresponding to the
polarization given by an invariant ample divisor D with divisorial polytope ΨD

is given by degΨ : �D → R.

The other way around, we may interpret the divisorial polytope ΨD as a de-
composition of the Duistermaat-Heckman function corresponding to the polar-
ization of X by L. This shows the relation between our divisorial polytopes
and the description of Hamiltonian torus actions given by Karshon and Tolman
in [KT03, KT14].

The Cox ring

For a normal variety with a class group isomorphic to Zr the Cox ring is defined
as

Cox(X) =
⊕

α∈Zr

H0 (X,O(
∑

i αiDi)) ,

with D1, . . . , Dr being a basis of Cl(X). For class groups which are not free
the definition is little bit more involved. Since smooth Fano varieties always
have free class group, we don’t have to discuss this here.
In [HS10, Theorem 1.2] the Cox ring of a T-variety was calculated in terms of
the combinatorial data. Due to [AIP+11] we have the following reformulation
of this theorem in our language.

Theorem 3.11 ([AIP+11, Theorem 40]).

Cox(X) =
C
[
Tv, Sρ | v ∈ S(0), ρ ∈ (tailS)×

]

〈T µ(0) + cT µ(∞) + T µ(c) | c ∈ C∗〉
,

where T µ(P ) =
∏

v∈S
(0)
P

T
µ(v)
v .

The Cl(X)-grading is given by deg(Tv) = [Vv], deg(Sρ) = [Hρ].

Example 3.12 (Fano threefold 3.10 (continued)). For our f-divisor from Ex-
ample 2.2 we get the Cox ring

C[T1, . . . , T7]/〈T1T
2
2 T3 + T4T

2
5 T6 + T7〉.

The grading is given by deg(Ti) = [Di], with the notation of Example 3.3.
Using the identification ClX ∼= Z3 from Example 3.3 we obtain the weight
matrix

T1 T2 T3 T4 T5 T6 T7



−1 1 −1 0 0 0 0

1 0 1 0 1 0 1

1 0 1 1 0 1 1
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The Futaki character

In [Fut83] Futaki introduced the invariant as an obstruction for the existence
of Kähler-Einstein metrics on Fano manifolds. Hence, for a Kähler-Einstein
Fano manifold the Futaki character has to vanish.
Donaldson gave a an algebraic redefinition of this invariant in [Don02], which
we are using in the following. Consider a C∗-action λ on a normal vari-
ety X of dimension n and an invariant Cartier divisor D. Now, let lk =
dimH0(X,O(kD)) and wk the total weight of the C∗-action on H0(X,O(kD)),
i.e. wk =

∑
i i · dimH0(X,O(kD))i. Then lk and wk obtain expansions

lk = a0k
n + a1k

n−1 +O(kn−2),

wk = b0k
n+1 + a1k

n +O(kn−1).

Definition 3.13. The Futaki invariant of this C∗-action is defined as

FD(λ) = 2 ·
a1b0 − a0b1

a0
.

Remark 3.14. Note, that we choose a different scaling and sign as Donaldson
for the invariant. More precisely his invariant equals − 1

2a0
FD in our notation.

By plugging in one-parameter subgroups of an acting torus we obtain a linear
map FD : N → R, hence an element of MR. If X is Fano we set F (X) :=
F(−KX ).
For a toric variety Donaldson in [Don02] gives an easy formula to actually
calculate the Futaki character. Let ∆ be the polytope corresponding to an
ample divisor D on a toric variety. Then the Futaki character is given by

FD(v) =

∫

∂∆

v dµ1 −
vol1 ∂∆

vol∆
·

∫

∆

v dµ. (4)

Here, we are integrating over ∆ with the Euclidean measure µ induced by the
lattice M ⊂ MR. For integrating over the boundary we are using the facet
measure µ1, which is induced by (R · δ) ∩ M for every facet δ ≺ ∆. The
corresponding facet volume is denoted by vol1 and the facet barycenter by bc1.
Note, that up to scaling by (vol1 ∂∆), for the Futaki character we obtain the
difference of the barycenters of ∆ and its boundary:

FD = (vol1 ∂∆) · (bc1(∂∆)− bc(∆)). (5)

It’s easy to see that for the standard polytope of the canonical divisor ∆ =
{u | ∀ρ∈Σ(1) : 〈u, nρ〉 ≥ −1} the formula simplifies to F (X) = vol∆ · bc∆, i.e.
the Futaki character is up to positive scaling given by the barycenter of the
polytope. This was already observed by Mabuchi [Mab87]. For generalizing the
last result to our case we define the barycenter bc(Ψ) of a divisorial polytope
Ψ : � → DivR P1 by

〈bc(Ψ), v〉 =

∫

�h

v · degΨ dµ.

Documenta Mathematica 19 (2014) 905–940



Fano Threefolds with 2-Torus Action 918

This gives the same as the projection to MR of the barycenter of

∆ := ∆(degΨ) := {(u, x) | u ∈ �, 0 ≤ x ≤ deg(u)}.

Theorem 3.15. For a Fano T-variety X and a corresponding divisorial poly-
tope Ψ we have

F (X) = volΨ · bcΨ.

We postpone the proof to the appendix.

Remark 3.16. By Proposition 3.10 we may interpret the Futaki character as
barycenter of the moment polytope with respect to the Duistermaat-Heckman
measure (degΨ) ·µ, see also [Mab87, Theorem 9.2.3] for closely related results.

Example 3.17. We would like to compute the Futaki invariant of the Fano
threefold 3.23. Its divisorial polytope Ψ is given by Figure 3. We can read off
∆(degΨ) directly from the rightmost picture. The barycenter of this poly-

Ψ0

00
0
0 0

−1
−3
−3

Ψ∞

−1
0
0

−1
0
0

Ψ1

1
0
0

2
3
3

degΨ

×
b

1/20
0
0 3/2

3/2
0

0
0

Figure 3: Divisorial polytope of 3.23

tope is (0,−9/40, 37/80)t and the volume 20/3. Note, that we have volΨ =
vol∆(degΨ). Hence, by applying Theorem 3.15 we get F (X) =

(
0

−3/2

)
6= 0. In

particular, there does not exists a Kähler-Einstein metric on X .

4 Toric degenerations

We are using the notation and results of [IV12] to describe degenerations to
toric varieties via f-divisors.
First note, that the torus action of a T-varietyX(S) is not necessarily maximal.
Consider an f-divisor S with two non-trivial slices S0 and S∞. Remark 1.8 in
[IV12] shows that the T -action on X(S) extends to the action of a torus T ′ of
full dimension. Hence, X is essentially toric with a fan Σ as follows: We embed
the polyhedra of S0 in height 1 of NQ×Q and consider the fan Σ0 consisting of
the cones over these polyhedra. We are doing the same with S∞ embedded in
height −1 and obtain Σ∞. Now, we obtain Σ from Σ0 ∪ Σ∞ by joining cones
which intersect in a common facet of the form σ×{0}, such that σ∩deg S 6= ∅.

Example 4.1. Consider the f-divisor pictured in Figure 4 having two non-
trivial slice S0 and S∞. The fan Σ0 from above consists of five maximal cones:
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S0 S∞ degS

Figure 4: F-divisor of a downgraded toric variety.

σ0 = pos
(
(0, 0, 1), (−1, 0, 1), (−1,−1, 1), (0,−1, 1)

)

σ1 = pos
(
(0, 0, 1), (−1, 0, 1), (1, 1, 0), (−1, 1, 0)

)

σ2 = pos
(
(0, 0, 1), (0,−1, 1), (1, 1, 0), (1,−1, 0)

)

σ3 = pos
(
(−1, 0, 1), (−1,−1, 1), (−1, 1, 0), (−1,−1, 0)

)

σ4 = pos
(
(−1,−1, 1), (0,−1, 1), (1,−1, 0), (−1,−1, 0)

)
.

The fan Σ∞ consists of the four cones

τ1 = pos
(
(1, 1,−2), (1, 1, 0), (−1, 1, 0)

)

τ2 = pos
(
(1, 1,−2), (1, 1, 0), (1,−1, 0)

)

τ3 = pos
(
(1, 1,−2), (−1, 1, 0), (−1,−1, 0)

)

τ4 = pos
(
(1, 1,−2), (1,−1, 0), (−1,−1, 0)

)
.

We have to join four pairs of cones (σi, τi), i = 1, . . . , 4 and obtain the fan Σ
consisting of the five maximal cones

δ0 = σ0

δ1 = pos
(
(0, 0, 1), (−1, 0, 1), (1, 1,−2)

)

δ2 = pos
(
(0, 0, 1), (0,−1, 1), (1, 1,−2)

)

δ3 = pos
(
(−1, 0, 1), (−1,−1, 1), (1, 1,−2)

)

δ4 = pos
(
(−1,−1, 1), (0,−1, 1), (1, 1,−2)

)
.

This is the fan of the projective cone over the quadric surface. Moreover, it is
the face fan of the (reflexive) polytope

conv
(
(0, 0, 1), (−1, 0, 1), (−1,−1, 1), (0,−1, 1), (1, 1,−2)

)

which has ID 544395 in the classification of canonical toric Fano threefolds from
[Kas10]†.

Now, we consider a polyhedral subdivision Ξ. A Minkowski-decomposition of
Ξ consist of polyhedral subdivisions ∆ = ∆1 + . . .+∆r for every ∆ ∈ Ξ such
that

†see http://grdb.lboro.ac.uk/search/toricf3c?ID=544395
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i. (∆ ∩∇)i = ∆i ∩∇i, for ∆,∇ ∈ Ξ and ∆ ∩ ∇ 6= ∅,

ii. For I ⊂ {1, . . . , r}, J ⊂ I ⊂ Ξ we have

∑

i∈I

⋂

∆∈I

∆i ≺
∑

i∈I

⋂

∆∈J

∆i

We obtain polyhedral subdivisions Ξi := {∆i | ∆ ∈ Ξ}. By abuse of notation
we will also write Ξ = Ξ1 + . . . + Ξr for this situation. Such a decomposi-
tion is called admissible if for every vertex v of Ξ there is at most one of the
corresponding vertices vi ∈ Ξi with v =

∑
i vi which is not a lattice point.

We may start with an f-divisor S with non-trivial slices Ξ0 = SP0 , . . . ,Ξℓ =
SPℓ

and an admissible Minkowski decomposition Ξ0 = Ξℓ+1 + . . . + Ξℓ+r. As
described in [IV12, Sections 2 and 4] this data gives rise to a deformation of
X(S). A general fiber of this deformation corresponds to an f-divisor S ′ with
non-trivial slices being exactly

S ′
P ′

1
= Ξ1, . . . , S

′
P ′

ℓ+r
= Ξℓ+r.

For some distinct points P ′
1, . . . P

′
ℓ+r ∈ P1.

We now reverse the above procedure in order to obtain toric degenerations.
Let’s start with an f-divisor and assume that all non-trivial slices are contained
in {SP1 , . . .SPr

,S∞} and the first r of them form an admissible Minkowski
decomposition of some subdivision Ξ

Ξ = SP1 + . . .+ SPr
.

Then X(S) is a deformation of the T-variety corresponding to the f-divisor

(Ξ⊗ [0] + S∞ ⊗ [∞], deg S)

which describes a subtorus action on a toric variety as we have seen above.

Example 4.2. We consider the f-divisor with slices S0, S∞, S1 and degree
sketched in Figure 5. The corresponding variety turns out to be the quadric
threefold.

S0 S∞ S1 deg S

Figure 5: F-divisor of the quadric threefold

Note, that S0 and S∞ form an admissible Minkowski decomposition, which is
sketched in Figure 6.
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= +

Figure 6: An admissible Minkowski decomposition

Hence, X degenerates to the toric variety from Example 4.1. We find another
toric degeneration to the canonical toric Fano variety with ID 547378 in [Kas10]
by adding up Ξ = S0 + S1. Adding up Ξ = S0 + S∞ + S1 will give a toric
degeneration to a non-canonical toric Fano variety.

Remark 4.3. Note, that we do not get all toric degeneration with this method,
but only those which are equivariant with respect to the T -action on X .

5 Proof by pictures

Aim of this section is to proof Theorem 1.1. For every variety from the list in
Theorem 1.1 we will state the f-divisor S and a divisorial polytope Ψ, which
corresponds to a canonical divisor. To verify the proof for a particular three-
fold one has to check first, that the f-divisor and divisorial polytope actually
correspond to the given threefold. This is done by carrying out the following
procedure.

A.1 Applying Theorem 2.3: checking the smoothness of X(S) by checking the
regularity of certain cones (Example 2.2).

A.2 Calculating the Picard rank of X(S) by Corollary 3.2.

A.3 Checking that Ψ corresponds to a canonical divisor (Example 3.9).

A.4 Calculating the Fano degree of X(S) by Theorem 3.8 (Example 3.9).

Now, by the classification in [MM86] we know that the given f-divisor describes
a Fano threefold in the stated family. Hence, we constructed a Fano threefold
with 2-torus action within this family. To check the other statement of Theo-
rem 1.1 we have to apply additional steps

B.1 Applying Theorem 3.11 to calculate the Cox ring (Example 3.12).

B.2 Applying Theorem 3.15 to calculate the Futaki invariant (Example 3.17).

B.3 Checking symmetry as in Example 2.12.

B.4 Checking if F (X) = 0 and if possible apply Theorem 2.11 to check for
the Kähler-Einstein property (Examples 2.12, 3.17).

B.5 “Adding up slices” to obtain toric degenerations (Example 4.2).
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Beside the given examples we leave it to the reader to carry out the verification
procedure for the given f-divisors.
We give some hints how to interpret the pictures and information given below.
As in the examples we first state the non-trivial slice S0, S∞, S1 and degS of
an f-divisor S. Next, we state the divisorial polytope of the canonical divisor by
giving Ψ0, Ψ∞ and Ψ1 (all other ΨP are assumed to be trivial). For convenience
of the reader we state degΨ, as well. In the pictures • marks the origin and ×
the Futaki character (if it differs from the origin). If there exists equivariant
degenerations to canonical toric varieties then we state the corresponding IDs
for the Fano polytopes in the Graded Ring Database [BDK+13].

Name : Q Quadric threefold

Picard rank: 1 Fano Degree: 54 symm.: yes
Futaki-char.: 0 Degenerations: 544395, 547378
Cox ring: C[T1, . . . , T5]/〈T1T2 + T3T4 + T 2

5 〉 deg(T ) = (1, 1, 1, 1, 1)

0

−30

0

0

00

−3

0

30

3

b3/2

0

00

0

Name : 2.24 Divisor of bidegree (1, 2) in P2 × P2

Picard rank: 2 Fano Degree: 54 symm.: yes
Futaki-char.: 0 Degenerations: —
Cox ring: C[T1, . . . , T6]/〈T1T

2
2 + T3T

2
4 + T5T

2
6 〉 deg(T ) = ( 1 0 1 0 1 0

0 1 0 1 0 1 )

0 0

0
0

−2
−2 0

0
0

0

−2−2

2
2

0
0

22

b

0
0

0
0

00
1/2

1/21/2

Documenta Mathematica 19 (2014) 905–940



Fano Threefolds with 2-Torus Action 923

Name : 2.29 Blowup of Q in a conic

Picard rank: 2 Fano Degree: 40 symm.: yes
Futaki-char.: 0 Degenerations: 430083, 544339
Cox ring: C[T1, . . . , T6]/〈T1T

2
2 T3 + T4T5 + T 2

5 〉
(
−1 1 −1 0 0 0
1 0 1 1 1 1

)

−10

0 −3

−10

00

0 0

−2−2

10

0 3

32

b1

00

0 0

00

Name : 2.30 Blow up of Q in a point

Picard rank: 2 Fano Degree: 46 symm.: no

Futaki-char.:
(

0
−2

)
Degenerations: 520157, 544343

Cox ring: C[T1, . . . , T6]/〈T1T2 + T3T4 + T 2
5 〉

(
1 1 2 0 1 −1
0 0 −1 1 0 1

)

b

0 0
0

−2
−3

0

0
0

0
0

−3

0
0

2
3

3
×

b

0
0

0
0

0

1
3/2

Documenta Mathematica 19 (2014) 905–940



Fano Threefolds with 2-Torus Action 924

Name : 2.31 Blow up of Q in a line

Picard rank: 2 Fano Degree: 46 symm.: no

Futaki-char.: −
(4/3
4/3

)
Degenerations: 520058, 520159

Cox ring: C[T1, . . . , T6]/〈T1T2 + T3T4 + T5T
2
6 〉

(
0 1 1 0 −1 1
1 0 0 1 1 0

)

0 0

0 −2
−2

0

0 0

0 0
−1

−3

0 0

0 2
3

3

×
b

0 0

0 0
0

0

3/2 1
1

Name : W or 2.32 Divisor of bidegree (1, 1) in P2 × P2

Picard rank: 2 Fano Degree: 46 symm.: yes
Futaki-char.: 0 Degenerations: 520058, 520159
Cox ring: C[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 deg(T ) = ( 1 0 1 0 1 0

0 1 0 1 0 1 )

−2 0

0

00

−2

0 0

0

−2−2

0

2 0

0

22

2 b

0 0

0

00

0 2
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Name : 3.8 Blowup of 2.24 in a line

Picard rank: 3 Fano Degree: 24 symm.: no

Futaki-char.:
( 5/6
−5/3

)
Degenerations: —

Cox ring: C[T1, . . . , T7]/〈T1T
2
2 + T3T

2
4 + T5T

2
6 〉 deg(T ) =

(
1 1 1 1 1 1 0
0 1 2 0 2 0 0
0 0 −2 1 0 0 1

)

b b

0 0

0
0

−1

−2
−2 0

0
0

0

−1−1

2
2

0
0

220

×

b

0
0

0
0

0 01/21/2

1/21/2

Name : 3.10 Blowup of Q in two disjoint invariant conics

Picard rank: 3 Fano Degree: 26 symm.: yes
Futaki-char.: 0 Degenerations: —

Cox ring: C[T1, . . . , T7]/〈T1T
2
2 T3 + T4T

2
5 T6 + T 2

7 〉 deg(T ) =
(

0 1 0 0 1 0 1
1 0 1 0 1 0 1
1 0 1 1 0 1 1

)

0
0

−1
−2

−1
−2

0
0

0
0

0
0

−2
−1

−2
−1

0
0

1
2

3
3

2
1

b

0
0

0
0

0
0

0
0

1/2
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Name : 3.18 Blowup of Q in a point and a conic

Picard rank: 3 Fano Degree: 36 symm.: yes

Futaki-char.:
(

0
−7/8

)
Degenerations: 255687, 519918

Cox ring: C[T1, . . . , T7]/〈T1T
2
2 T3 + T4T5 + T 2

6 〉 deg(T ) =
(

0 1 0 2 0 1 −1
1 0 1 2 0 1 −1
1 0 1 1 1 1 0

)

bb

0
0

−3
−2

−1

−10

0

0
0

0
0

−2−2

0
0

3
2

32
×
b0

0
0

0

00

11

1/2 1/2

Name : 3.19 Blowup of Q in two points

Picard rank: 3 Fano Degree: 38 symm.: yes
Futaki-char.: 0 Degenerations: 430426, 519917

Cox ring: C[T1, . . . , T7]/〈T1T2 + T3T4 + T 2
5 〉 deg(T ) =

(
1 1 2 0 1 −1 0
0 0 −1 1 0 1 0
0 0 0 0 0 1 1

)

b

0
0

−3
−2

0 −20

0
0
0

0
0

−1 −1
0
0

3
2

1 3
b0

0
0

0

0 01

1
3/2
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Name : 3.20 Blowup of Q in two disjoint lines

Picard rank: 3 Fano Degree: 38 symm.: yes
Futaki-char.: 0 Degenerations: 255692, 430424

Cox ring: C[T1, . . . , T7]/〈T1T2 + T3T4 + T5T
2
6 T7〉 deg(T ) =

(
0 1 1 0 1 0 0
1 1 1 1 0 1 0
1 0 0 1 0 0 1

)

0
0 0

−2
−2

0

0 −1

0
0 0

−1
00

−2−2

0
0 0

2
3

0

2 3

b

0
0 0

0
0

0

0 0

3/21 1
1

1

Name : 3.21 Blowup of P1×P2 in a curve of degree (2,1)

Picard rank: 3 Fano Degree: 38 symm.: no

Futaki-char.:
(7/8
7/8

)
Degenerations: 429943

Cox ring: C[T1, . . . , T7]/〈T1T
2
2 + T3T

2
4 + T5T6〉 deg(T ) =

(
1 0 1 0 1 0 0
0 1 0 1 1 1 0
0 1 0 1 2 0 1

)

b b b

0 0

0
0

−2

−2

−1 0

0

0

0

−2 −2

−1

2

2

1

2 2

1
b
×

0

0

0

0 0

0

1/2

1/2

1

1
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Name : 3.22 Blowup of P1 × P2 in a conic in {0} × P2

Picard rank: 3 Fano Degree: 40 symm.: no

Futaki-char.:
(

0
−2/3

)
Degenerations: 430417, 519928

Cox ring: C[T1, . . . , T7]/〈T1T2 + T3T4 + T 2
5 〉 deg(T ) =

(
1 1 0 2 1 0 0
0 0 1 −1 0 0 1
0 0 0 0 0 1 1

)

b

00
0
0 0

−1
−3
−3

−1
0
0

−1
0
0

1
0
0

2
3
3 ×

b

1/20
0
0 3/2

3/2
0

0
0

Name : 3.23 Blowup of Q in a point and the strict
transform of a line passing through

Picard rank: 3 Fano Degree: 42 symm.: no

Futaki-char.:
(−13/12
−53/24

)
Degenerations: 254876, 430425

Cox ring: C[T1, . . . , T7]/〈T1T2 + T3T4 + T5T
2
6 〉 deg(T ) =

(
1 0 1 0 1 0 0
1 1 1 1 0 1 0
1 1 2 0 0 1 1

)

b b

0
0

−2
−10

−2

0

0
0

0
0

−1

−3

0
0

2
11

3

3 ×

b0
0

0
01

0

0

3/2 1
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Name : 3.24 Blowup of W in (0 : 0 : 1, ∗ : ∗ : 0)

Picard rank: 3 Fano Degree: 42 symm.: no

Futaki-char.:
( 2/3
−4/3

)
Degenerations: 429952, 430423

Cox ring: C[T1, . . . , T7]/〈T1T2 + T3T4 + T5T6〉 deg(T ) =
(

0 1 0 1 1 0 0
1 0 0 1 0 1 −1
1 0 1 0 0 1 0

)

b b

−2
−2 00

0

00

0
0 0

0

−2−2

2
2 02

0

22 ×
b0

0 1 01
0

00

2

Name : 4.4 Blow up of Q in 2 non-colinear points and the strict
transform of a conic passing through both of them

Picard rank: 4 Fano Degree: 32 symm.: yes
Futaki-char.: 0 Degenerations: 254352, 430357

Cox ring: C[T1, . . . , T8]/〈T1T
2
2 T3 + T4T5 + T 2

6 〉 deg(T ) =

(
0 1 0 2 0 1 0 1
1 0 1 2 0 1 0 1
1 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1

)

bb

0
0

−3
−2

0 −2−1

−1

0

0
0
0

0
0

−1 −1−1

0
0
0

3
2

1 3
b0

0
0

0

0 0
11

1/2

1/2

1/2

1/2
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Name : 4.5 Blowup of P1×P2 in curves of deg (2,1) and (1,0)

Picard rank: 3 Fano Degree: 32 symm.: no

Futaki-char.:
(5/24
5/24

)
Degenerations: 255339

Cox ring: C[T1, . . . , T8]/〈T1T
2
2 + T3T

2
4 + T5T6〉 deg(T ) =

(
1 0 1 0 1 0 0 0
1 1 1 1 2 1 0 0
0 1 0 1 2 0 1 0

)

0 0

0
0

−2
−2

−1

0

0
0

0

0

−2−2

−1

0

2
2

1

2 2

1
b×

1/2

1/2

0
0

0

0 0

0

1/2

1/2

1

1

Name : 4.7 Blowup of W in (0 : 0 : 1, ∗ : ∗ : 0)
and (∗ : ∗ : 0, 0 : 0 : 1)

Picard rank: 4 Fano Degree: 36 symm.: yes
Futaki-char.: 0 Degenerations: 254603, 255837

Cox ring: C[T1, . . . , T8]/〈T1T2 + T3T4 + T5T6〉 deg(T ) =

(
0 1 1 0 1 0 0 0
1 0 1 0 0 1 0 1
1 0 0 1 0 1 0 0
0 0 0 0 0 0 1 1

)

b b

−2
−2 0

0
0−10

0
0
0 0

0
−1−1

2
2 0

0
02 2

2
b0

0 1 01
0

11 00
2
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Name : 4.8 Blowup of (P1)3 in a curve of degree (0, 1, 1)

Picard rank: 4 Fano Degree: 38 symm.: no

Futaki-char.:
(

0
−13/12

)
Degenerations: 255836, 428555

Cox ring: C[T1, . . . , T8]/〈T1T2 + T3T4 + T5T6〉 deg(T ) =

(
0 1 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1

)

b b

−2
−2

−10

0
0
0

0
2
2

1
2
2

1
−2
−2

−10

0
0
0

0

×
b0

0

0
0
0

0
2
1

2

A Calculating the Futaki character

The Appendix is devoted to the, somewhat technical, proof of Theorem 3.15.
For an invariant ample Cartier divisor D we have the divisorial polytope Ψ :
� → DivR P1, with � ⊂ MR. We cannot directly use Donaldson’s result for the
toric case, since the dimension of the global sections ofO(kD) does not grow like
the number of lattice points of a multiple of a polytope. But as it turns out it
grows like the number of “lattice points” of a weighted sum of polytopes. More
precisely, we consider the abelian group Π̃(V ) generated by all polytopes in
some R-vector space V with the relations [∆]+[∇] = [∆∪∇]+[∆∩∇], whenever
∆,∇,∆ ∪ ∇ are polytopes. A subset of V which is covered by polyhedra
∇ =

⋃
i∈I ∆i can be naturally identified with an element of this group

[∇] :=
∑

J⊂I

(−1)|J|+1 ·
[⋂

j∈J ∆j

]
. (6)

In particular this applies for the relative boundary d∆ of a polytope. We also
introduce a boundary operator ∂ for the class of a polytope in Π̃.

∂[∆] :=





[d∆] , codim(∆) = 0

2[∆]− [d∆] , codim(∆) = 1,

0 , else.

(7)

For an object ∆ =
∑

i ai[∆i] ⊂ Π̃ simply by linear continuation we have well
defined notions of dilation, boundary, volume, numbers of lattice point, and
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barycenter:

k ∗∆ :=
∑

i

ai · [k∆i],

∂∆ :=
∑

i

ai · ∂[∆i],

vol(∆) :=
∑

i

ai · vol(∆i),

N(∆) :=
∑

i

ai ·N(∆i),

bc(∆) :=
∑

i

ai ·
vol(∆i)

vol(∆)
· bc(∆i).

Similarly we can extend the facet volume vol1 and the facet barycenter bc1 to
Π̃, where vol1 and bc1 are defined to be zero for polytopes of codimension 6= 1.
More generally, we may integrate linear forms on V over elements of Π̃.

Proposition A.1. For an element ∆ ⊂ Π̃(Rm) we have the following asymp-
totic formula for the number of lattice points

N(k ∗∆) = (vol∆) · km +
vol1 ∂∆

2
· km−1 +O(km−2).

Proof. This is a well known fact for polytopes of maximal dimension (see also
[Don02, Proposition 4.1.3] for a proof). The same fact follows for weighted
sums of maximal dimensional polytopes just by linearity. Our definition (7) of
a boundary ∂[P ] makes it work for polytopes of lower dimension, as well.

We are now going to associate to a divisorial polytope Ψ an element [Ψ] of

Π̃(MR × R). We consider the natural projection MR × R → MR and inclusion
NR →֒ NR × R. First, we need some notation. For a function f : Rn ⊃ U → R

with f ≥ R let ∆R(f) be the region enclosed by its graph and the R-level:

∆R(f) = {(u, a) ∈ MR × R | u ∈ D,R ≤ a ≤ f(u)}.

If f is non-negative we set ∆(f) := ∆0(f). Now, for a concave piecewise affine

function f on � we denote its graph by f̂ and associate an element [f ] ⊂ Π̃
which correspond to the area enclosed by the graph of f and the 0-level. More
precisely, we choose an integer R ≤ 0 such that f ≥ R and define

[f ] = [∆R(f)] − [�×[R, 0]] (8)

Note, that [f ] does not depend on the particular choice of R. Now, to a

divisorial polytope Ψ : � → DivR P1 we associate a class [Ψ] ∈ Π̃(MR × R) by

[Ψ] := [�̃] +
∑

P

[ΨP ]. (9)

Here, we set �̃ := �× {0}. The following proposition justifies this definition.
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Proposition A.2. For an ample divisor D on a T-variety X(S) of dimension
n and the corresponding divisorial polytope Ψ = ΨD we have

i. (D)n = volΨ = vol[Ψ],

ii. dimH0(X,O(D)) = N([Ψ]).

iii. dimH0(X,O(D))u = Nu([Ψ]).

Here, Nu([Ψ]) is the number of lattice point that project to u ∈ MR if we
consider the projection MR × R → MR for every element in the sum (9).

Proof. By Theorem 3.8 we only have to prove volΨ = vol[Ψ] to obtain (i). The
only summand of (9) that contributes to the volume is [ΨP ], since all other
polytopes have lower dimension. Now, by the basic rules of integration we
have

∫
�
ΨP = vol[ΨP ]. Hence, we obtain

vol[Ψ] =
∑

P

vol[ΨP ] =
∑

P

∫

�

ΨP =

∫

�

degΨ = volΨ.

We prove (iii). Remember, that the global sections of weight u ∈ � ∩M are
given by H0(P1,O(Ψ(u))). Hence, we have to check that the number Nu of
lattice points of [Ψ], that project to u equals dimH0(P1,O(Ψ(u))). Looking at
(9) and (8) gives

Nu = 1+
∑

P

(⌊ΨP (u)−RP ⌋+1−(1−RP )) = 1+
∑

P

⌊ΨP (u)⌋ = 1+deg⌊Ψ(u)⌋,

since the intervals [RP ,ΨP (u)] and [RP , 0] contain ⌊Ψy(u)−RP ⌋+1 and 1−RP

integers, respectively. We have dimH0(X,O(Ψ(u)) = 1 + deg⌊Ψ(u)⌋ and the
claim follows. Obviously (ii) follows from (iii).

Theorem A.3. The Futaki character FD : NR → R of an divisor D with
corresponding divisorial polytope Ψ = ΨD is given by

FD(v) =

∫

∂[Ψ]

v −
vol1 ∂[Ψ]

volΨ

∫

[Ψ]

v. (10)

Proof. We are using exactly the same arguments as in the proof of Theo-
rem 4.2.1 in [Don02]. For an element v ∈ N we are interested in the to-
tal weight of H0(X,O(D)) with respect to this one-parameter subgroup. By
Proposition A.2 it is given by

w(H0(X,O(D))) =
∑

u∈�∩M

〈u, v〉 ·Nu([Ψ])

Note, that we have [ΨkD] = k ∗ [ΨD], by [IS10, Proposition 3.1]. We are now

constructing an element Q of Π̃(MR × R) fulfilling

N(k ∗Q)−N(k ∗ [Ψ]) =
∑

u∈�∩M

〈u, v〉 ·Nu(k ∗ [Ψ]). (11)
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For every elementary summand [∆i] of (9) (which is the class of a polytope)
we are using the construction from [Don02, Section 4.2], i.e. we fix an integer
R, such that 〈·, v〉 ≤ R on ∆i and define

Qi := {(u, t) | u ∈ ∆i, 0 ≤ t ≤ R− 〈u, v〉}.

Now, by Proposition A.2 and Proposition A.1 we have

lk = N(k ∗ [Ψ]) = (vol[Ψ]) · km +
vol1 ∂[Ψ]

2
· km−1 +O(km−2).

Moreover, from the proof of [Don02, Theorem 4.2.1] we have

N(kQi) = km+1

∫

∆i

(R− v) +
km

2

∫

∂∆i

(R− v) +N(k∆i) +O(km−1).

By linearity and (11) we obtain

wk = km+1

∫

[Ψ]

(R− v) +
km

2

∫

∂[Ψ]

(R− v) +O(km−1)

Now, plugging in the coefficient in Definition 3.13 gives the desired result.

Corollary A.4.

FD = (vol1 ∂[Ψ]) · (bc1(∂[Ψ])− bc([Ψ])),

where bc and bc1, respectively denotes the projection of the barycenters in MR×
R to MR.

Proof. If we plug into the right hand side of (10) the elements of a lattice basis
e1, . . . , en of N ×Z, by the definition of a barycenter we obtain the coordinates
of

L = (vol1 ∂[Ψ])(bc1(∂[Ψ])− bc([Ψ]))

with respect to the dual basis e∗1, . . . , e
∗
n. By definition L is an element of

(NR × R)∗ = MR × R and FD ∈ N∗
R is just the restriction L|NR

, i.e. the
projection of L to MR.

To simplify our notation we set ∆ := ∆(degΨ) and denote by ∆∂ the part of
∆ → � that projects to ∂�.

Lemma A.5. For the volume and barycenter of [Ψ] we get

bc([Ψ]) = bc(∆)

vol([Ψ]) = vol(∆).
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Proof. In the proof of Proposition A.2 we have seen already that vol([Ψ]) =∫
�
degΨ and hence vol([Ψ]) = vol(∆). For the projected barycenter we use

the same argument. The only summands that contribute to bc([Ψ]) are [ΨP ].
We may interpret bc([ΨP ]) as a linear form on v ∈ NR and by definition of the
barycenter and basics of integration we have

vol([ΨP ]) · bc([ΨP ])(v) =

∫

∆RP (ΨP )

v −

∫

�×[RP ,0]

v

=

∫

�

(ΨP −RP ) · v +RP ·

∫

�

v

=

∫

�

ΨP · v.

Hence, we obtain

vol([Ψ]) · bc[Ψ] =
∑

P

vol([ΨP ]) · bc[ΨP ]

=
∑

P

∫

�

ΨP · v

=

∫

�

degΨ · v

= vol(∆)bc(degΨ)

= vol([Ψ])bc(degΨ).

Lemma A.6. If we assume that ΨP is constant for P /∈ {P1, . . . , Pr}, then we
can calculate volume and barycenter of ∂[Ψ] as follows.

bc1(∂[Ψ]) = bc1

(
[∆∂ ] + (2− r)[�̃] +

r∑

i=1

[Ψ̂Pi
]

)
,

vol1(∂[Ψ]) = vol1

(
[∆∂ ] + (2 − r)[�̃] +

r∑

i=1

[Ψ̂Pi
]

)
,

where Ψ̂Pi
denotes the graph of ΨPi

.

Proof. When calculating vol1 and bc1 we have to consider only summands of
∂[Ψ] of codimension one. For every P we have

∂[ΨP ] = [Ψ̂P ]− [�×RP ] + [∆(ΨP |∂�)]− [∂�× [RP , 0]] + . . . ,

where . . . consists of lower dimensional summands. Now, we have bc1[�×RP ] =
bc1[�] and vol1[� ×RP ] = vol1[�]. Applying Lemma A.5 to every facet of �
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gives

bc1

(
∑

P

[∆RP (ΨP |∂�)]− [∂�× [RP , 0]]

)
= bc1[∆

∂ ],

vol1

(
∑

P

[∆RP (ΨP |∂�)]− [∂�× [RP , 0]]

)
= vol1[∆

∂ ].

Hence,

bc1∂

r∑

i=1

[ΨPi
] = bc1

(
[∆∂ ]− r · [�] +

r∑

i=1

[Ψ̂Pi
]

)

vol1 ∂

r∑

i=1

[ΨPi
] = vol1

(
[∆∂ ]− r · [�] +

r∑

i=1

[Ψ̂Pi
]

)

Looking at (9) and taking into account our definition of the boundary for lower

dimensional polytopes we see, that we still have to add bc1(∂�̃) = 2bc1(�̃) or

vol1(∂�̃) = 2 vol1(�̃), respectively which gives the desired result.

For a polytope ∇ ⊂ MR × R we define ∇+ to be the part of ∇ lying above
the 0-level with respect to the last component. Similarly we define ∇− to
be the part below the 0-level. We define the pyramid pyr(∇) as the class

pyr(∇) := [conv(∇+, 0)] − [conv(∇−, 0)] in Π̃. The pyramid operator extends

by linearity to Π̃.
Now we have the following equivalent to Lemma A.6 for the full-dimensional
volume and barycenter.

Lemma A.7. If we assume that ΨP ≡ 0 for P /∈ {P1, . . . , Pℓ}, then we can
calculate volume and barycenter of [Ψ] as follows.

bc[Ψ] = bc

(
pyr

(
[∆∂ ] +

ℓ∑

i=1

[Ψ̂Pi
]
)
)
,

vol[Ψ] = vol

(
pyr

(
[∆∂ ] +

ℓ∑

i=1

[Ψ̂Pi
]
)
)
,

Proof. For a polytope ∇ ⊂ MR × R and a point u ∈ MR we denote by ∇u the
length of its fiber over u ∈ MR. Again we may extend this notion linearly to
Π̃. For proving the claim, by Lemma A.5 it’s sufficient to show that

degΨ(u) = pyr(∆∂)u +

r∑

i=1

pyr(Ψ̂Pi
)u.
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For a point u = w ∈ ∂� this equality holds, since we have pyr(Ψ̂Pi
)w = 0 and

pyr(∆∂)w = degΨ(w) by definition. Moreover, for the point u = 0 the equality

is fulfilled, as well, since, pyr(∆∂)0 = 0 and pyr(Ψ̂Pi
)0 = ΨPi

holds. Now, the
equality follows by linearity for all points on the line segment connecting w and
0, hence, for all points in �.

Proof of Theorem 3.15. Consider a Fano T-variety given by an f-divisor S with
nontrivial slices SP1 , . . . ,SPr

. First we choose a special representation for the

canonical divisor KP1 =
∑r−2

j=1 Pr+j −
∑r

i=1 Pi. Where P1, . . . , P2r−2 are dis-

tinct points on P1. Now, by Remark 3.6 the corresponding divisorial polytope
fulfills

i. ΨP ≡ 0 for P 6= Pi, i = 1, . . . 2r − 2,

ii. ΨP ≡ −1 for P = Pi, i = r + 1, . . . 2r − 2,

iii. The facets of the graph of ΨP have lattice distance 1 to the origin for
P 6= Pi, i = 1, . . . 2r − 2,

iv. the facets F of � with degΨ|F 6≡ 0 have lattice distance 1 from the origin.

By Corollary A.4 we have

F (X) = vol1([Ψ])(bc1∂[Ψ]− bc[Ψ])

We set

C := [∆∂ ] + (2− r)[� × {−1}] +
ℓ∑

i=1

[Ψ̂Pi
].

Now, by Lemma A.6 we have vol1([Ψ]) = vol1(C) and bc1([Ψ]) = bc1(C).
Moreover, by Lemma A.7 we obtain vol([Ψ]) = vol(pyr(C)) and bc([Ψ]) =
bc(pyr(C)). Since, C is a sum over polytopes in lattice distance 1 from the
origin we may apply Lemma A.8 and obtain

F (X) = vol1(∂[Ψ])(bc1(∂[Ψ])− bc[Ψ])

= vol1(C) ·
(
bc1(C) − bc(pyr(C))

)

= vol(pyr(C)) · bc(pyr(C))

= vol[Ψ] · bc([Ψ])

= vol∆ · bc(∆).

Lemma A.8. Assume that ∆1, . . . ,∆r ⊂ MR ×R are polytopes of codimension
1 with lattice distance 1 from the origin. Then for C =

∑
ai · [∆i] we have

vol1(C) · (bc1(C)− bc(pyr(C))) = vol(pyr(C)) · bc(pyr(C)).
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Proof. We set n = dimMR + 1. Now, by elementary geometry we have

vol1 ∆i = n · vol(pyr(∆i)), bc1(∆i) =
n

n− 1
· bc(pyr(∆i)).

It follows that vol1 C = n · vol pyr(C). Hence, we get

bc1(C) =
∑

ai
vol1(∆i)

vol1(C)
bc1(∆i) =

∑
ai
vol(pyr(∆i))

vol(pyr(C))
·

n

n− 1
· bc(pyr(∆i))

=
n

n− 1
· bc(pyr(C)).

Now, plugging in n
n−1 ·bc(pyr(C)) for bc1(C) into vol1(C)·(bc1(C)−bc(pyr(C)))

gives the desired result.
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