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1. Introduction

In this note we make some corrections to [2]. It was pointed out to us by
Grushevsky and Hulek that the proof of Proposition 12.1 of loc. cit. is not
correct; see also [4]. Since this proposition is used in the proof of the main
result of [2] (the proof of Conjecture 9.1 in the case Ng,1) we will give an
alternative proof of this result that does not use Proposition 12.1. In this proof
we make essential use of the analysis in [4]. We refer to [2] for the notation we
use. We thank Grushevsky and Hulek for spotting the error in the proof and
for subsequent correspondence.

2. The Conjecture for Ng,1

Recall from [2] that Ng,k ⊂ Ag is the Andreotti-Mayer locus consisting of
isomorphism classes of principally polarised abelian varieties (B,Ξ) such that
the singular locus of Ξ has dimension ≥ k.
The main result [2, Thm 20.3] of [2] is:

Theorem 2.1. Let N be an irreducible component of Ng,1 with g ≥ 4, of
codimension 3 in Ag. If g = 4, assume also that the general point of N is not a
product of an elliptic curve with a 3-dimensional abelian variety. Then either
N = J5, the jacobian locus in A5, or N = H4, the hyperelliptic locus in A4.
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The proof of Theorem 2.1 given in [2] is based on [2, Proposition 20.1] and [2,
Lemma 20.2], in which we use [2, Proposition 12.1]. The proof of [2, Proposition
12.1] is wrong. The proposition is a generalization of [1, Prop. 3]. Since the
proof of [2, Thm. 20.3] depends on it, this proof is therefore faulty. We give
here a slightly different proof of [2, Proposition 20.1] and [2, Lemma 20.2],
though the basic idea is the same as in [2], but we have to consider other types
of degenerations of abelian varieties.
The statement of the theorem is well-established for g = 4 and g = 5, see the
references in [2]. We therefore assume in the following that g ≥ 6.
We begin by recalling the notation. For a principally polarized abelian variety
(B,Ξ) we define Nk,1(B,Ξ) to be the locus of u ∈ B such that singular locus
of the scheme-theoretic intersection Ξ · Ξu has dimension at least 1.
By Ãg we mean the perfect cone compactification of Ag. This is a stratified

space with strata A
(r)
g , with A

(r)
g the stratum of quasi–abelian varieties of

torus rank r, with closure A
(≥r)
g . Note that ∂Ãg := Ãg − Ag = A

(≥1)
g is the

‘boundary’ of Ãg. The stratum A
(1)
g is common to all toroidal compactifica-

tions of Ag, so also to the second Voronoi compactification. Finally, by Ñg,k

we mean the closure of the Andreotti–Mayer locus Ng,k in Ãg.

The statement of [2, Proposition 20.1], for which we will give a new proof, is
the following:

Proposition 2.2. Let g ≥ 6 and let N be an irreducible component of Ñg,1 of

codimension 3 in Ãg. Then N ∩ A
(1)
g 6= ∅.

Proof. By [3], N is not complete in Ag. Therefore N ∩ ∂Ãg 6= ∅. We shall

show that the closure of N ∩ Ag in Ãg intersects Mumford’s partial toroidal

compactification Ag
(≤1) inside Ãg. The reason for using the perfect cone com-

pactification is the fact that the locus Ag
(≥r) has codimension r in it.

Since ∂Ãg is a divisor in Ãg, it intersects N in codimension one. Let M be any

irreducible component of N ∩ ∂Ãg. We make a case distinction.

Step 1. Suppose first M ⊆ A
(≥4)
g . For dimension reasons we then have

M = A
(≥4)
g . So the general point of M corresponds to a general standard

compactification (X,Ξ) of torus rank 4 (see [2, §16]) with abelian part (B,Ξ)
general in Ag−4. Recall that (X,Ξ) corresponds to the datum of a point b =
(b1, . . . , b4) ∈ B4 and a 4×4 matrix T = (tij) with entries in C∗ such that tii = 1

and tij = t−1
ji . By letting some tij with i 6= j tend to 0 (or equivalently to ∞)

we obtain special points of M = A
(4)
g , see [2, §17] for a similar discussion in the

case of torus rank 2. We now write down a local equation for the generalized
theta divisor. We let z = (z1, . . . , zg−4) ∈ Cg−4 be coordinates on the universal
cover of B, and ξ(z) = 0 the equation of Ξ. Given ζ = (ζ1, . . . , ζ4) ∈ C4, we set
ui = exp(2πζi) for 1 6 i 6 4, u = (u1, . . . , u4), and uI =

∏
i∈I ui. Finally, we

set tI =
∏

i,j∈I,i≤j tij and bI =
∑

i∈I bi and let ωI ∈ Cg−r represent bI ∈ B.

We use the convention t∅ = 1, b∅ = 0, ω∅ = 0. The generalized theta divisor Ξ
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of X as in [2, §16] is given by the equation

(1) x(z, u, b, T ) =
∑

I⊆{1,...,4}

uI tI ξ(z − ωI) = 0 .

By the hypothesis, the system

(2)

x =0

uh∂uh
x =0 for 1 6 h 6 4

∂zi x =0 for 1 6 i 6 g − 4

has an at least 1–dimensional set of solutions in z, u for all b and T and (B,Ξ) ∈
Ag−4 general. As pointed out above, in (1) we may even take tij = 0 for all
pairs (i, j) with i < j and bi = b ∈ B, and accordingly ωi = ω, for all i with
1 ≤ i ≤ 4. Then (2) reads

(3)

ξ(z) + (

4∑

i=1

ui)ξ(z − ω) =0

uhξ(z − ω) =0 for 1 6 h 6 4

∂ziξ(z) + (

4∑

i=1

ui)∂ziξ(z − ω) =0 for 1 6 i 6 g − 4

which still has an at least 1-dimensional set of solutions in z, u for all b ∈ B

and general (B,Ξ) in Ag−4. If for all these solutions one has
∑4

i=1 ui = 0, then
(3) implies

ξ(z) = ∂ziξ(z) = 0 for 1 6 i 6 g − 4

implying (B,Ξ) ∈ Ng−4,1, a contradiction, because (B,Ξ) ∈ Ag−4 is taken

general. So we may assume
∑4

i=1 ui 6= 0; in particular, there is an h with
1 ≤ h ≤ 4 such that uh 6= 0. Then (3) reads

ξ(z) = 0, ξ(z − ω) = 0, ∂ziξ(z) + (

4∑

i=1

ui)∂ziξ(z − ω) = 0 for 1 6 i 6 g − 4 .

This implies that N1,1(B,Ξ) = B, which is impossible by [2, Proposition 11.6]
since (B,Ξ) ∈ Ag−4 is general. Or, alternatively, [1, Proposition 3] implies
(B,Ξ) ∈ Ng−4,0, again a contradiction.

Remark 2.3. In the argument here we used specialization. This may bring us
into a deeper stratum. But the local equation for the generalized theta divisor
in the deeper stratum is a limit of the local equation of the generalized theta
divisor. Similarly the limits of the equations (2) that describe the singularities
gives the singular locus in the limit. Since the flat limit of the solution space
is contained in the set of solutions of the limit set of equations, we see that
the singular locus has a dimension that is not less than the dimension of the
singular locus in the generic fibre of our local family. This argument will be
used repeatedly in what follows.
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Step 2. Assume next M ∩ A
(3)
g 6= ∅, so that M has codimension 1 in A

(≥3)
g .

There are three possibilities. Either the general point of M corresponds to
a standard compactification, or M coincides with one of the two strata of
codimension 4 and torus rank 3 of the perfect cone decomposition. See the
table on p. 1321 of [4].

Step 2a. We first deal with the first case. We have a map q : A
(≥3)
g 99K Ãg−3.

derived from the map to the Satake compactification. We denote by F(B,Ξ) the
fibre of q over (B,Ξ) ∈ Ag−3. By Step 1, the rational map q is defined at the
general point of M and q(M) ∩ Ag−3 6= ∅. Then,

(1) either q|M is dominant onto Ãg−3 and, for (B,Ξ) ∈ Ag−3 general, M
intersects F(B,Ξ) in codimension 1;

(2) or q(M) has codimension 1 in Ãg−3 with full fibres contained in M .

As in Step 1, F(B,Ξ) contains a dense open subset consisting of pairs (b, T ),

with b = (b1, b2, b3) ∈ B3 and T a 3 × 3 matrix with entries in C∗ such that
tii = 1 and tij = t−1

ji . We can obtain special points of F(B,Ξ) as limits by letting

some tij , with i 6= j, tend to 0 (or, which is the same, to ∞), cf. Remark 2.3.
Case (2) can be excluded by repeating the same argument as in Step 1 and
taking into account that, by [2, Theorem 8.6], q(M) is not contained in Ng−3,1.
(Note that the general point of q(M) corresponds to a simple abelian variety,
so that [2, Proposition 11.6] can be applied; see [2, §7].)
In case (1), we take (B,Ξ) ∈ Ag−3 general. The fibre F(B,Ξ) is fibered over B3

with fibres torus embeddings of G3
m. The image L of M ∩ F(B,Ξ) in B3 under

the projection map to B3 is of codimension ≤ 1.
First, suppose the codimension is 1. Since the fibre ofM∩F(B,Ξ) → B3 contains

the full fibre of p : F(B,Ξ) → B3, we can let the tij for i < j tend to zero and
find the set of equations

(4)

ξ(z) + u1ξ(z − ω1) + u2ξ(z − ω2) + u3ξ(z − ω3) = 0

u1ξ(z − ω1) = 0, u2ξ(z − ω2) = 0, u3ξ(z − ω3) = 0

∂ziξ(z) + u1∂ziξ(z − ω1) + u2∂ziξ(z − ω2) + u3∂ziξ(z − ω3) = 0

which for every triple (b1, b2, b3) in the image has an at least 1-dimensional set
of solutions in z and ui. If for general (b1, b2, b3) ∈ L we have u1 = u2 = u3 = 0,
then B ∈ Ng−3,1, against our assumptions. If for general (b1, b2, b3) in L exactly
s (with 1 ≤ s ≤ 3) ui are not identically zero then we see that the projection
of L to Bs lies in N1,s(B,Ξ). But this contradicts [2, Proposition 11.6], which
says that the codimension in Bs is at least 2. (Alternatively, use [1, Proposition
3].)
Second, we treat the case L = B3. Then M ∩F(B,Ξ) intersects the general fibre

of p, which is a torus embedding of G3
m, in a surface. Then we may let two

tij , e.g., t13 and t23, tend to 0, cf. Remark 2.3. Set t = t12. Then we find the
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system
(5)
ξ(z) + u1ξ(z − ω1) + u2ξ(z − ω2) + u3ξ(z − ω3) + tu1u2ξ(z − ω1 − ω2) = 0

ui(ξ(z − ωi) + tu3−iξ(z − ω1 − ω2)) = 0, 1 6 i 6 2

u3ξ(z − ω3) = 0

∂ziξ(z) + u1∂ziξ(z − ω1) + u2∂ziξ(z − ω2) + u3∂ziξ(z − ω3)

+ tu1u2∂ziξ(z − ω1 − ω2) = 0, 1 6 i 6 g − 3

which for every triple (b1, b2, b3) ∈ L = B3 and a suitable t has an at least 1-
dimensional set Z of solutions in z and ui. If t is not constant, we may let t tend
to 0 (or ∞ which amounts to the same), in which case we find a contradiction
as before. Similarly if t = 0. So we may assume that t is a non–zero constant.
If u1 = u2 = 0, then either (B,Ξ) ∈ Ng−3,1 (if u3 = 0) or N1,1(B,Ξ) = B (if

u3 6= 0); the former case is not possible because q(M) = Ãg−3, the latter is not
possible by [2, Proposition 11.6]. So we may assume that one of the variables
u1, u2, e.g., u1, is not identically zero. Suppose u2 = 0. Since we are assuming
(b1, b2, b3) ∈ B3 general, we can specialize to b1 = b3. Then (5) becomes

ξ(z) + (u1 + u3)ξ(z − ω1) = 0

u1ξ(z − ω1) = u3ξ(z − ω3) = 0

∂ziξ(z) + (u1 + u3)∂ziξ(z − ω1) = 0, 1 6 i 6 g − 3

which implies that either (B,Ξ) ∈ Ng−3,1 (if u1 + u3 = 0) or N1,1(B,Ξ) = B

(if u1 + u3 6= 0), both leading to contradictions. Thus we may assume that u1

and u2 are both not identically 0. Suppose that one of u1 and u2 is constant
on the solution set Z of (5) for general (b1, b2) ∈ B2. Let C be an irreducible
curve in the projection of Z to B. By either the second or the third equation in
(5) we have OC(Ξbi −Ξb1+b2)

∼= OC . Since B is general, the map B → Pic(C)
sending b to OC(Ξb − Ξb1+b2) has finite kernel. Hence bi has finite order, a
contradiction, since bi ∈ B is general. So u1 and u2 are non–constant. Then
by taking the limit case where u2 = 0, the system (5) becomes like (4) with
u2 = 0. If u1 and u3 are both non–zero, then N0,2(B,Ξ) = B2, contradicting
[2, Proposition 11.6]. If one of u1 and u3 is zero, a similar argument works.

Step 2b. Here we assume that M coincides with the component of the per-
fect cone compactification that parametrizes compactifications of semi-abelian
varieties that are a union of two P1 × P2-bundles over an abelian variety B of
dimension g − 3. This type has been described in [4, Section 7]. Here we find
a theta divisor given on one component by an equation

ξ(z)+u1 ξ(z − ω1) + u2 ξ(z − ω2) + u ξ(z − ω3) +

u1u t13ξ(z − ω1 − ω3) + u2ut23 ξ(z − ω2 − ω3) = 0 .

Again we have cases (1) and (2) as in Step 2a. Case (2) can be eliminated as
above. In case (1) we can assume that t13 and t23 tend to 0. Then we find a
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system of equations

ξ(z) + u1ξ(z − ω1) + u2ξ(z − ω2) + uξ(z − ω3) = 0

u1ξ(z − ω1) = 0, u2ξ(z − ω2) = 0, uξ(z − ω3) = 0

∂ziξ(z) + u1∂ziξ(z − ω1) + u2∂ziξ(z − ω2) + x∂ziξ(z − ω3) = 0

which has a 1-dimensional set of solutions in z and u1, u2, u (the affine coor-
dinates on P2 and P1) for all bi ∈ B and (B,Ξ) ∈ Ag−3 general. Note that
the equations coincide with those of (4) and this case can be eliminated by a
variant of the arguments used above.
Step 2c. The final case left to be dealt with is the case whereM coincides with
the codimension 4 stratum of torus rank 3 which parametrizes compactifications
whose toric part corresponds to a union of two P3 and an intersection of two
quadrics in P5, see [4, Section 7]. The case of a 1-dimensional singular locus
on one of the two P3 follows along the same lines as the cases above. For the
intersection of quadrics, the theta divisor is described by an equation of the
form (see [4])

(6)
ξ(z − ω1) + u1ξ(z − ω2 − ω3) + tu2ξ(z − ω2)+

tu3ξ(z − ω1 − ω3) + su4ξ(z − ω3) + su5ξ(z − ω1 − ω2) = 0

where the ω1, ω2, ω3 can vary freely in Cg−2. Again we can let s and t tend to
0 and then the arguments of Step 1 can be applied.

Step 3. Next we may assume M ∩ A
(2)
g 6= ∅, and then M has codimension 2

in A
(≥2)
g . Consider the dominant map q : A

(≥2)
g 99K Ãg−2, which, by Steps 1

and 2, is defined at the general point of M and we have q(M)∩Ag−2 6= ∅. The
fibre F(B,Ξ) of q is now a compactified Gm-bundle over B2 with t := t12 the
coordinate on Gm. There are three possibilities:

(1) either q|M is dominant onto Ãg−2 and, for (B,Ξ) ∈ Ag−2 general, M
intersects F(B,Ξ) in codimension 2;

(2) or q(M) has codimension 1 in Ãg−2 and, for (B,Ξ) ∈ q(M) general, M
intersects F(B,Ξ) in codimension 1;

(3) or q(M) has codimension 2 in Ãg−2 with full fibres contained in M .

Case (3) can be excluded with the same argument in Step 1. Case (2) can be
excluded with an argument similar to the one we gave in Step 2. Indeed, we
take (B,Ξ) ∈ q(M) general. The image L of the projection of an irreducible
component of M ∩ F(B,Ξ) to B2 has either codimension 1 in B2 or L = B2.
The relevant system is now
(7)

ξ(z) + u1 ξ(z − ω1) + u2 ξ(z − ω2) + tu1u2 ξ(z − ω1 − ω2) = 0

u1 ξ(z − ω1) + u1u2t ξ(z − ω1 − ω2) = 0,

u2 ξ(z − ω2) + u1u2t ξ(z − ω1 − ω2) = 0,

∂ziξ(z) + u1 ∂ziξ(z − ω1) + u2 ∂ziξ(z − ω2) + u1u2t ∂ziξ(z − ω1 − ω2) = 0 .

with an at least 1–dimensional set of solutions Z.
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If codimB2(L) = 1, then the full fibre of F(B,Ξ) → B2 is contained inM∩F(B,Ξ).
Therefore we can let t = 0 in (7) and we can argue as in Step 2 (Case (1),
codimB3(L) = 1).
If L = B2, we may assume, as above, that both u1, u2 do not vanish identically
on Z. By taking ui = 0 in (7), we see that N0,1(B,Ξ) = B, contradicting [2,
Proposition 11.6].
Also case (1) can be treated in a similar way. We take (B,Ξ) ∈ Ag−2 general.
The image L of the projection of an irreducible component of M ∩F(B,Ξ) onto

B2 has either codimension 1 or 2 in B2. We let L1 (resp. L2) be the projection
of L on the first (resp. second) factor of B2.
If codimB2(L) = 2, then the full fibre of F(B,Ξ) → B2 is contained inM∩F(B,Ξ).
Therefore we can let t = 0 in (7). As usual we may get rid of the case in
which u1 = u2 = 0 on the set Z of solutions of (7). Assume next that only
one among u1, u2, e.g. u1 vanishes identically. Then L2 ⊆ N1,1(B,Ξ) and
[2, Proposition 11.6] tells us that L2 = N1,1(B,Ξ) has codimension 2 in B.
But then N1,1(B,Ξ) is positive-dimensional and Proposition [1, Proposition 3]
yields (B,Ξ) ∈ Ng−2,0, again a contradiction.
So we may assume that u1, u2 both do not vanish identically on Z. By taking
ui = 0, we see that Li ⊆ N0,1(B,Ξ), for i ∈ {1, 2}. By [2, Proposition 11.6],
we have Li = N0,1(B,Ξ), for 1 6 i 6 2, and L = L1 × L2, hence L intersects
the diagonal of B2. Therefore we can take ω1 = ω2 = ω (corresponding to
b ∈ N0,1(B,Ξ) general) and t = 0 in (7), so that this system becomes

(8)

ξ(z) + (u1 + u2) ξ(z − ω) = 0

u1 ξ(z − ω) = 0, u2 ξ(z − ω) = 0

∂ziξ(z) + (u1 + u2) ∂ziξ(z − ω) = 0, 1 6 i 6 g − 2.

If u1 + u2 = 0 identically on Z, we have (B,Ξ) ∈ Ng,0, a contradiction. If
u1+u2 is not identically 0, then (8) shows that N1,1(B,Ξ) = N0,1(B,Ξ) which
is a divisor on B, contradicting [2, Proposition 11.6].
Finally, assume codimB2(L) = 1. As before we get rid of the case in which one
of u1 and u2 vanishes identically on the solution set Z for some triple (b1, b2, t).
If for some pair (b1, b2) ∈ L we can take the limiting case t = 0, we are also
done. So we may assume that u1, u2, t are non–zero and t is constant. If u1

and u2 are constant on Z we find a contradiction as in Step 2a. So we may
assume that u1 and u2 are both non–constant and again we can finish as in
Step 2a.

In conclusion M 6⊆ A
(≥2)
g , hence M ∩A

(1)
g 6= ∅, proving the assertion.

�

Keeping the above notation, by Proposition 2.2 the map q : A
(1)
g 99K Ãg−1

is defined at the general point of M . We finish by giving a new proof of [2,
Lemma 20.2].

Lemma 2.4. In the above setting, the Zariski closure of q(M) in Ãg−1 is:
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(i) either an irreducible component N1 of Ñg−1,1 of codimension 3 in Ãg−1;
or

(ii) an irreducible component N0 of Ñg−1,0 and if (B,Ξ) ∈ N0 is general, then
M ∩ F(B,Ξ) is an irreducible component of N1,1(B,Ξ) of codimension 2

in B. Moreover, if ξ = (X,Ξ) ∈ M is a general point, then Singvert(Ξ)
meets the singular locus D of X in one or two points, whose associated
quadric has corank 1.

Proof. If q(M) ⊆ Ng−1,1, then [2, Theorem 8.6] implies 3 ≤
codimAg−1

(q(M)) ≤ codim∂Ãg
(M) = 3 and we are in case (i). If

q(M) 6⊆ Ng−1,1, the argument in the proof of Proposition 2.2 shows that
q(M) ⊆ Ng−1,0 and M ∩ F(B,Ξ) ⊆ N1,1(B,Ξ). By [2, Proposition 11.6] we
have codimB(N1,1(B,Ξ)) ≥ 2 and since Ng−1,0 is a divisor in Ag−1 we are in
case (ii). The final assertion follows just as in the proof of [2, Lemma 20.2,
(ii)] that does not depend on [2, Proposition 12.1], and goes through without
change. �

3. Further Corrections

In the proof of [2, Corollary 12.2] we erroneously refer to (a non–existing)
Corollary 11.1. The reference should instead have been to Proposition 12.1,
whose proof is incorrect. Hence the proof of Corollary 12.2 is faulty. However,
this Corollary 12.2 has never been used in [2]. Proposition 12.1 of [2] is used in
the proof of [2, Lemma 16.1], which is therefore incorrect. Lemma 16.1 is used
to justify the final assertion of [2, Remark 18.1], which is however not used
later. Remark [2, 12.3] is also based on the incorrect analysis of the proof of
[2, Prop. 21.1].
We point out one more (inconsequential) error in [2, §17, p. 485, l. 22–23]. It is
stated there that, for a general quasi–abelian variety (X,Ξ) of torus rank 2 with
abelian part (B,Ξ), the point x ∈ X − Sing(X), corresponding to coordinates
(u, z), is a vertical singularity of Ξ if and only if z is singular for the divisor H
of B defined by

ξ(τ, z − ω1)ξ(τ, z − ω2) = t ξ(τ, z)ξ(τ, z − ω1 − ω2).

Four lines below, we state that the existence of a vertical singularity of Ξ implies
that Ξ, Ξb1 , Ξb2 and Ξb1+b2 are tangentially degenerate at some point of B.
Both assertions are incorrect. If x as above is a vertical singularity, then z is
singular for H , but in general the converse does not hold. Moreover, if the
theta divisors Ξ, Ξb1 , Ξb2 and Ξb1+b2 are tangentially degenerate at some point
of B, this may give rise to a vertical singularity, but does not do so necessarily.
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