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1 Introduction

Let k be a field. Let G be a semiabelian variety over k. By definition, G is an
extension of an abelian variety A of dimension g by a torus T of rank r, i.e.
there is the following exact sequence of smooth group schemes over k:

1→ T → G→ A→ 1. (1.1)

We say that G is of rank r if the rank of T is r. A semiabelian variety of rank
zero means an abelian variety.
In this paper, we study structure of motivic homology Hp(G,Q(q)) (cf. Nota-
tion) and Bloch’s higher Chow group CHq(G, s;Q) ([6]). For an abelian variety
A, Beauville [2] proved the following theorem (cf. [9, 18]):

Theorem 1.1 (Beauville [2]). Let A be an abelian variety of dimension g over
a field k. Let q be an integer with 0 ≤ q ≤ g. For an integer i, let CHq(G;Q)(i)

denote the subspace of the Chow group CHq(A;Q) :

CHq(A;Q)(i) := {α ∈ CHq(A;Q) | n∗
Aα = niα for all n}.
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Here n∗
A is the pull-back along the map A

×n
−→ A of multiplication by an integer

n. Then CHq(A;Q)(i) is zero for i 6∈ [q, g + q] and the Chow group CHq(A;Q)
is decomposed as follows: for 0 ≤ q ≤ g,

CHq(A;Q) =

g+q⊕

i=q

CHq(A;Q)(i).

Note that the index is different from the one of Beauville [2] (his notation
CHp

s(A) corresponds to our CHp(A;Q)(2p−s)).

Bloch [5] studied an iterated Pontryagin product I∗rA of the kernel IA of the
degree map CH0(A)→ Z for an abelian variety A over an algebraically closed
field, and he proved the following theorem:

Theorem 1.2 (Bloch [5]). Let A be an abelian variety of dimension g over an
algebraically closed field. Then I∗iA = 0 for i > g.

For a smooth k-scheme X , motivic cohomology Hp(X,R(q)) (cf. Notation) is
isomorphic to its higher Chow groups for any coefficients R ([26]): for any
p, q ∈ Z,

Hp(X,R(q)) ≃ CHq(X, 2q − p;R). (1.2)

By Poincaré duality (cf. [11]), for a smooth proper scheme X of pure dimension
d, motivic homology agrees with motivic cohomology:

Hp(X,R(q)) ≃ H
2d−p(X,R(d− q)). (1.3)

In this paper, we generalize Theorem 1.1 and Theorem 1.2 to semiabelian
varieties and to motivic homology and higher Chow groups.

Let G be a semiabelian variety over k. For an integer n, let nG denote the

map G
×n
−→ G of multiplication by n. For an integer i, we define the subgroup

CHq(G, s;Q)(i) of the higher Chow group CHq(G, s;Q) as follows (cf. Notation):

CHq(G, s;Q)(i) := {α ∈ CHq(G, s;Q) | n∗
Gα = niα for all n}.

Here n∗
G is the pull-back along nG. Similarly, for an integer i, we define the

subgroup Hp(G,Q(q))(i) of the motivic homology Hp(G,Q(q)) as follows:

Hp(G,Q(q))(i) := {α ∈ Hp(G,Q(q)) | nG∗α = niα for all n}.

Here nG∗ denotes the push-forward map along nG.

Theorem 1.3 (Corollary 3.5). Let G be a semiabelian variety over a perfect
field k, which is an extension of an abelian variety of dimension g by a torus
of rank r.
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(1) We have the following natural decomposition

CHq(G, s;Q) =

j1⊕

i=j0

CHq(G, s;Q)(i)

where j0 = max{0, q − s} and j1 = min{2g + r, g + q}.

In the special case where s = 0 and q ≥ 0, the decomposition is

CHq(G;Q) =

g+q⊕

i=q

CHq(G;Q)(i).

(2) We have the following natural decomposition

Hp(G,Q(q)) =

i1⊕

i=i0

Hp(G,Q(q))(i)

where i0 = max{0, q} and i1 = min{2g + r, g + r + p− q}.

In the special case where q = 0 and p ≤ g, the decomposition is

Hp(G,Q) =

g+r+p⊕

i=0

Hp(G,Q)(i)

Remark 1.4. (a) For an abelian variety, Theorem 1.3 (1) and (2) are the same
by the isomorphism (1.3). The special case in Theorem 1.3 (1) for abelian
varieties is Beauville’s result (Theorem 1.1).
(b) Let notation be as in Theorem 1.3. Let q ∈ [0, g] be an integer. Beauville
[2] has conjectured that for i > 2q,

CHq(A;Q)(i) = 0.

Beauville’s conjecture implies that H2q−r(G,Q(q))(i) = 0 for i < 2q − r and

that CHq(G;Q)(i) = 0 for i > 2q (see Theorem 3.1 (4)).

We denote the 0-th Suslin homology ofG with Z-coefficient byHS
0 (G,Z). Using

Theorem 1.3 (2) in case that p = q = 0 and results on Rojtman’s theorem (see
Theorem 4.3) by Spiess–Szamuely [22] and Geisser [13], we obtain Bloch’s result
for semiabelian varieties and 0-th Suslin homology:

Corollary 1.5 (Corollary 4.1). Let G be a semiabelian variety over k, which
is an extension of an abelian variety of dimension g by a torus of rank r. Let
IG be the kernel of the degree map deg : HS

0 (G,Z) → Z. Then an iterated
Pontryagin product I∗iG is torsion for i > g + r.
In particular, if k is an algebraically closed field, then I∗iG = 0 for i > g + r.
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Remark 1.6. The subgroups H0(G,Q)(i) have a description in terms of K-
groups attached to the semiabelian variety G (see Proposition 4.8).

Remark 1.7. One can remove the assumption that a base field k is perfect in
the above theorems, by a result of Cisinski-Déglise on a comparison of Beilinson
motives DMb (see [7, §14]) with Voevodsky motives: If k is not perfect, then
we take the perfect closure k′ of k. By [7, Proposition 2.1.9, Theorem 14.3.3],
the pull-back functor

DMb(k)→ DMb(k
′)

is an equivalence. By [7, Theorem 16.1.4], the above categories of Beilinson
motives are equivalent to DM(k,Q) and DM(k′,Q) respectively.

Theorem 1.3 is deduced form a result on vanishing of motivic (co)homology
(Theorem 3.1) and a description of the motive M(G) in DM

eff
−,Nis(k,Q) in

terms of symmetric products:

ϕG : M(G)
≃
−→ Sym

(
M1(G)

)

which is due to Ancona–Enright-Ward–Huber [1] (see Theorem 2.5, Corollary
2.7). Here M1(G) denotes the complex consisting of the homotopy invariant

Nisnevich sheaf G̃ := HomSch/k(−, G)⊗Q with transfers concentrated in degree
zero (see Definition 2.1).
There are two key ingredients in the proof of vanishing of motivic (co)homology.
One is an exact triangle which relatesG to a semiabelian variety of rank rk(G)−
1 (Lemma 3.9, Lemma 3.10). The exact triangle allows us to use induction on
rank of G. Another is to interpret the Weil-Barsotti formula for an abelian
variety in terms of motives in DM

eff
−,Nis. Using this interpretation, one can

generalize Beauville’s result to higher Chow groups, i.e. Theorem 1.3 for an
abelian variety.

This paper is organized as follows: In Section 2, we recall the result (Theo-
rem 2.5) on the description of the motive M(G) of a semiabelian variety G in
DM

eff
−,Nis(k,Q). We give a consequence of the description which is a decompo-

sition of motivic (co)homology of semiabelian varieties.
In Section 3, we state and prove our main result on the vanishing of motivic
(co)homology (Theorem 3.1) and a consequence of the main result (Theorem
1.3). We first prove the main result in case of a torus and an abelian variety.
Lastly, we prove the general case by induction, using key triangles (Lemma
3.9, Lemma 3.10) in DM

eff
−,Nis. Lemma 3.10 is proved by applying a result

on a filtration on symmetric products ([1, Proposition C.3.4]) to the category
ShTNis(k,Q) of Nisnevich sheaves of Q-modules with transfers. To apply the
result, we need the exactness of the tensor product in ShTNis(k,Q). The
exactness is proved in Appendix A of this paper (Proposition A.1).
In Section 4, we consider 0-th Suslin homology and prove Corollary 1.5 (Corol-
lary 4.1). We also give a description of rational 0-th Suslin homology of a
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semiabelian variety G in terms of K-groups attached to G (Proposition 4.8,
Remark 4.9).

In Appendix A, we make some remarks about the tensor product in the category
ShTNis(k,Q). The main part is to show the exactness of the tensor product
(Proposition A.1).
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Notation

1. Let k be a perfect field. For a commutative ring R, let DM
eff
−,Nis(k,R)

denote Voevodsky’s tensor triangulated category of effective motives over
k with R-coefficients (cf. [25]). In case R = Q, we simply write DM

eff
−,Nis

for DM
eff
−,Nis(k,Q).

2. Let X be a smooth scheme of finite type over k. Let R be a commuta-
tive ring. We denote the motive of X in DM

eff
−,Nis(k,R) by M(X). For

any integers p and q, we denote the motivic (co)homology of X with
R-coefficients by

Hp(X,R(q)) := HomDMeff
−,Nis(k,R)(R(q)[p],M(X));

Hp(X,R(q)) := HomDMeff
−,Nis(k,R)(M(X), R(q)[p]).

3. For an integer i ≥ 0, we define the subgroup Hp(G,Q(q))(i) (resp.
Hp(G,Q(q))(i)) of Hp(G,Q(q)) (resp. Hp(G,Q(q)))) as follows:

Hp(G,Q(q))(i) := {α ∈ Hp(G,Q(q)) | nG∗α = niα for all n},

Hp(G,Q(q))(i) := {α ∈ Hp(G,Q(q)) | n∗
Gα = niα for all n}.

Here nG denotes the map G
×n
−→ G of multiplication by an integer n.

4. For a positive integer n, let Σn denote the group of permutations on
n letters. Let C be a idempotent complete Q-linear symmetric tensor
category, and let M be an object of C. Then we have a representation
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Σn → End(M⊗n), and we let σM denote the endomorphism of M corre-
sponding to σ ∈ Σn. We define snM as follows:

snM :=






id
1

if n = 0,
1

n!

∑

σ∈Σn

σM if n > 0.

Here 1 denotes the unit object of C. Then one can easily see that snM
is idempotent. We define the n-th symmetric product SymnM of M as
follows:

SymnM := Im(snM ).

This image exists since C is idempotent complete. We denote the canon-
ical projection M⊗n → SymnM by snM , and the canonical embedding
SymnM →M⊗n by ιnM .

5. Let F
f
→֒ G be a subobject in C. We define a subobject FilFi Sym

n(G) of
Symn(G) as follows: for an integer i with 0 ≤ i ≤ n,

FilFi Sym
n(G) :=

Im
(
snG ◦ (f

⊗i ⊗ id
⊗(n−i)
G ) : F⊗i ⊗G⊗(n−i) → G⊗n → Symn(G)

)
.

For i > n, put FilFi Sym
n(G) = 0. By definition, there is an inclusion

map FilFi+1Sym
n(G)→ FilFi Sym

n(G).

2 The motive of a semiabelian variety

2.1 The isomorphism ϕG

We recall here a recent result on the decomposition of the motive of semia-
belian varieties in DM

eff
−,Nis(k,Q), which is due to Enright-Ward [10]/Ancona–

Enright-Ward–Huber [1].

Definition 2.1. (1) Let G be a semiabelian variety over k. We denote by G
the étale sheaf HomSch/k(−, G) associated to G. Then the étale sheaf G
has a canonical structure of an étale sheaf with transfers, and furthermore
G is homotopy invariant ([22, proof of Lemma 3.2] [3, Lemma 1.3.2]).

We denote by G̃ the étale sheaf of Q-modulus with transfer attached to G,
i.e., G̃(S) = G(S)⊗Z Q = HomSch/k(S,G)⊗Z Q for any smooth scheme S.

(2) For a homotopy invariant Nisnevich sheaf with transfers F , we denote by
F [0] the complex consisting of F concentrated in degree one.

Following [1, 10], for a semiabelian variety G, we define

M1(G) := G̃[0] in DM
eff
−,Nis.
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Construction of ϕG: According to Spiess–Szamuely [22], we have morphism
Ztr(G)→ G of étale sheaves with transfers, and therefore there is a morphism
in DM

eff
−,Nis:

aG : M(G)→ M1(G).

Using this map, we define ϕi
G : M(G) → Symi(M1(G)) to be the composite

morphism in DM
eff
−,Nis:

M(G)
M(∆i

G)
// M(G)⊗i

a⊗i
G

// M1(G)
⊗i

siM1(G)
// Symi(M1(G)).

Proposition 2.2 ([1, Proposition 5.1.1],[10, Lemma 5.7.4]). Let G be a semi-
abelian variety over k, which is an extension of an abelian variety of dimension
g by a torus of rank r. Then Symi(M1(G)) is zero in DM

eff
−,Nis for i > 2g + r.

In particular, Symsg+r(M1(G)) ≃ Λ(g+r)[2g+r] with a tensor-invertible Artin
motive Λ. If the torus part of G is split, then Λ = Q (the unit motive).

Proposition 2.2 for a torus is proved by Biglari [4, Proposition 2.3]. For the
general case, by Lemma 3.10, we may assume that G is an abelian variety A.
The statement for A is essentially deduced from the oddly finite-dimensionality
for the Chow motive h1(A)([17], [18]).

Let Sym(M1(G)) denote the direct sum
⊕

i≥0

Symi(M1(G)). Here the sum is

finite from Proposition 2.2. Then we define

ϕG :=
⊕

ϕi
G : M(G)→ Sym(M1(G)). (2.1)

The motive M(G) has a canonical Hopf algebra structure defined by morphisms
of schemes:

• the multiplication by the group law mG : G×G→ G;

• the comultiplication by the diagonal map ∆G : G→ G×G;

• the antipodal map by the inverse on G;

• the unity by the neutral element;

• the counit by the structure map G→ Spec(k).

Definition 2.3. We define a Hopf algebra structure on Sym(M1(G)) as follows:

(multiplication) For any i, j ≥ 0,

(i+ j)!

i!j!
si+j
M1(G) ◦ (ι

i
M1(G) ⊗ ι

j
M1(G)) :

Symi(M1(G))⊗ Symj(M1(G))→ Symi+j(M1(G));
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(comultiplication) For any i, j ≥ 0,

(siM1(G) ⊗ s
j
M1(G)) ◦ ι

i+j
M1(G) :

Symi+j(M1(G))→ Symi(M1(G)) ⊗ Symj(M1(G)).

The antipodal map, the unity and the counit are induced by the inverse map,
the unit map and the structure map of M1(G).

Remark 2.4. The definition of the bialgebra structure on Sym in the above

definition is not the standard one. The coefficient (i+j)!
i!j! is usually used for

the comultiplication. The reasons why we use the above definition are to fit
into the classical result on motivic decomposition of Chow motive of abelian
varieties (cf. [18]) and to make the map (2.1) to be an isomorphism of Hopf
algebra objects in DM

eff
−,Nis. For details see [1].

Theorem 2.5 (Ancona–Enright-Ward–Huber [1, Theorem 7.1.1]). Let G be a
semiabelian variety over a perfect field k and let M(G) be the motive of G in
DM

eff
−,Nis(k,Q). Then there exists a natural isomorphism of Hopf algebras in

DM
eff
−,Nis(k,Q):

ϕG : M(G)
≃
−→ Sym

(
M1(G)

)
.

In particular, the following diagrams commute:

M(G)⊗M(G)

ϕG⊗ϕG ≃

��

M(mG)
// M(G)

≃ ϕG

��

Sym
(
M1(G)

)
⊗ Sym

(
M1(G)

)
// Sym

(
M1(G)

)
;

(2.2)

M(G)

≃ ϕG

��

M(∆G)
// M(G)⊗M(G)

ϕG⊗ϕG ≃

��

Sym
(
M1(G)

)
// Sym

(
M1(G)

)
⊗ Sym

(
M1(G)

)
.

(2.3)

2.2 Decomposition of motivic (co)homology of a semiabelian va-
riety

We give a decomposition of motivic (co)homology and a relationship between
the decomposition and product structure, which is a consequence of Theorem
2.5. We first introduce product on motivic (co)homology.

Definition 2.6. (1) Let a and b be elements in Hp(G,Q(q)) and Hp′(G,Q(q′))
respectively. Then we define the Pontryagin product a ∗ b of a and b to be the
image of (a, b) under the morphism

Hp(G,Q(q))×Hp′(G,Q(q′))→Hp+p′(G×G,Q(q + q′))
mG∗→ Hp+p′(G,Q(q + q′)). (2.4)
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Here the first map is induced by the tensor structure in DM
eff
−,Nis. For any

subgroups F ⊂ Hp(G,Q(q)) and G ⊂ Hp′(G,Q(q′)), we write F ∗ G for the
subgroup generated by the image of F ×G under the morphism (2.4).

(2) For a ∈ Hp(G,Q(q)) and b ∈ Hp′

(G,Q(q′)), we define the cup product a∪ b
to be the image of (a, b) under the morphism

Hp(G,Q(q))×Hp′

(G,Q(q′))→Hp+p′

(G×G,Q(q + q′))

∆∗
G→ Hp+p′

(G,Q(q + q′)). (2.5)

For any subgroups F ⊂ Hp(G,Q(q)) and G ⊂ Hp′

(G,Q(q′)), we write F ∪ G
for the subgroup generated by the image of F ×G under the morphism (2.5).

Corollary 2.7. Let G be a semiabelian variety over k, which is an extension
of an abelian variety of dimension g by a torus of rank r. Let p, q be integers.
Then we have the following natural decomposition of motivic (co)homology of
G:

Hp(G,Q(q)) =

2g+r⊕

i=0

Hp(G,Q(q))(i), Hp(G,Q(q)) =

2g+r⊕

i=0

Hp(G,Q(q))(i)

which satisfies

Hp(G,Q(q))(i) ∗Hp′(G,Q(q′))(i′) ⊂ Hp+p′(G,Q(q + q′))(i+i′),

Hp(G,Q(q))(i) ∪Hp′

(G,Q(q′))(i
′) ⊂ Hp+p′

(G,Q(q + q′))(i+i′).

Proof. The map nG on Symi(M1(G)) is n
i · idSymi(M1(G)). Thus we have

Hp(G,Q(q))(i) = HomDMeff
−,Nis

(Q(q)[p], Symi(M1(G))),

Hp(G,Q(q))(i) = HomDMeff
−,Nis

(Symi(M1(G)),Q(q)[p]).

The assertion follows from this description and Theorem 2.5.

3 Main result

In this section, we state the main result on the vanishing of motivic
(co)homology of a semiabelian variety and its consequences.

Theorem 3.1. Let G be a semiabelian variety over k, which is an extension
of an abelian variety of dimension g by a torus of rank r. Let p, q be integers.
Then

(1) Hp(G,Q(q)) vanishes in the following cases

(a) p < q;
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(b) g + r < q;

(c) p− 2q + r < 0;

(d) q = g + r and p− 2q + r ≥ 1;

(e) q = g + r − 1 and p− 2q + r ≥ 2.

(2) Let i0 = max{0, q} and i1 = min{2g+r, g+r+p−q}. Then Hp(G,Q(q))(i)
vanishes for i 6∈ [i0, i1].

(3) Let s ≥ 0 be an integer. Let j0 = max{0, q−s} and j1 = min{2g+r, g+q}.
Then CHq(G, s;Q)(i) vanishes for i 6∈ [j0, j1].

(4) Beauville’s conjecture implies that H2q−r(G,Q(q))(i) = 0 for i < 2q−r and

that CHq(G;Q)(i) = 0 for i > 2q.

Remark 3.2. By the definition of higher Chow groups and a computation
of codimension one cycles (see Bloch [6]), we know the following result on
vanishing of higher Chow groups:

Theorem 3.3. For any smooth scheme Xof dimension d over a field k and for
any abelian group R, we have CHi(X, s;R) = 0 in the cases:
(1) s < 0; (2) i 6∈ [0, d+ s]; (3) i = 0 and s ≥ 1; (4) i = 1 and s ≥ 2.

Remark 3.4. For an abelian variety A of dimension g, by Poincaré duality
([11, 25]), we have

M(A) ≃ M(A)∗(g)[2g] in DM
eff
−,Nis.

Here ∗ denotes the dual in DM
eff
−,Nis. Thus we have an isomorphism (cf. (1.3))

Hp(A,Q(q)) ≃ H2g−p(A,Q(g − q)) ≃ CHg−q(A, p− 2q;Q).

The last isomorphism is the isomorphism (1.2) in the introduction. Further-
more, for 0 ≤ i ≤ 2g, the isomorphism induces an isomorphism

Hp(A,Q(q))(i) ≃ H
2g−p(A,Q(g − q))(2g−i) ≃ CHg−q(A, p− 2q;Q)(2g−i).

Therefore Theorem 3.1 (1) is the same as Theorem 3.3, and Theorem 3.1(2)
and (3) are the same.

The following corollary immediately follows from Corollary 2.7 and Theorem
3.1.

Corollary 3.5 (Theorem 1.3). Let notation be as in Theorem 3.1. Then the
decompositions in Corollary 2.7 are

Hp(G,Q(q)) =

i1⊕

i=i0

Hp(G,Q(q))(i), CHq(G, s;Q) =

j1⊕

i=j0

CHq(G, s;Q)(i).

Documenta Mathematica 19 (2014) 1061–1084



Motivic Homology of Semiabelian Varieties 1071

3.1 Proof of main result

Let G be a semiabelian variety over k, which is an extension of an abelian
variety of dimension g by a torus of rank r.

3.1.1 Reduction to the case of an algebraically closed base field

Let L/k be a finite extension. Let GL denote the scalar extension G⊗k L and
let fL/k : GL → G be the projection. Then the composition of the following
homomorphisms is the multiplication by the degree [L : k]:

Hp(G,Q(q))
f∗
L/k
−→ Hp(GL,Q(q))

fL/k∗−→ Hp(G,Q(q)).

Hence we obtain that the push- forward map fL/k
∗ is injective, and that there

is a natural injection

Hp(G,Q(q)) →֒ colim
L/k

Hp(GL,Q(q)).

By a result of Ivorra [14, Proposition 4.16], we have a bijection

colim
L/k

Hp(GL,Q(q)) ≃ Hp(Gk̄,Q(q)).

Here k̄ denotes an algebraic closure of k. Thus we have an injection

Hp(G,Q(q)) →֒ Hp(Gk̄,Q(q)).

Note that a similar assertion holds for Hp(G,Q(q))(i), CHq(G, s;Q) and

CHq(G, s;Q)(i). Therefore we may assume that k is algebraic closed.

3.1.2 The case of a torus

Let G = T be a torus of rank r. By the above argument, we may assume that
T = Gr

m. In this case, we know that

M(Gr
m) ≃

r⊕

i=0

(
Q(i)[i]

)⊕ci
,

where ci =
(
r
i

)
denotes the binomial coefficient. Thus, by isomorphism 2.1, we

obtain that for 0 ≤ i ≤ r,

Hp(T,Q(q))(i) ≃ CHi−q(k, i+ p− 2q;Q)⊕ci . (3.1)

From this equation and Theorem 3.3, one can easily obtain the following propo-
sition which induces Theorem 3.1 for a torus.

Proposition 3.6. Let T be the torus Gr
m of rank r. Let p, q be integers. Let

i be an integer with 0 ≤ i ≤ r. Then Hp(T,Q(q))(i) vanishes in the following
cases: (1) q > p; (2) q > i; (3) i < 2q − p; (4) q = i and p − 2q + i ≥ 1;
(5) q = i− 1 and p− 2q + i ≥ 2.
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3.1.3 The case of abelian varieties

Let G be an abelian variety A of dimension g over an algebraically closed field
k. By Remark 3.4, it enough to prove Theorem 3.1 (2).

Lemma 3.7. Let Â be the dual abelian variety of A. There is an isomorphism
in DM

eff
−,Nis

M1(Â) ≃ (M1(A))
∗(1)[2].

Here ∗ denotes the dual in DM
eff
−,Nis.

Proof. By the Weil-Barsotti formula, we have an isomorphism

Â ≃ Ext1(A,Gm).

The assertion follows from a result of Barbieri-Viale–Kahn ([3, §4]) on a com-
parison between Cartier dual of 1-motives and motivic dual of corresponding
motives.

Remark 3.8. Lemma 3.7 also follows from the Weil-Barsotti formula in Chow
motives and Voevodsky’s functor ψ from the category of non-effective Chow
motives to the category DMgm of geometric motives deduced from [25, Propo-
sition 2.1.4]. We used here the fact that the functor commutes with duality as
a tensor functor, and Proposition 4.3.3 in [1] that ψ sends the Chow motive
h1(A) to M1(A).

Proof of Theorem 3.1 (2). By Lemma 3.7 and replacing (A, Â) by (Â, A), for
an integer i ≥ 0, we have an isomorphism

Symi(M1(A)) ≃
(
Symi(M1(Â))

)∗
(i)[2i].

¿From this isomorphism, we have

Hp(A,Q(q))(i) = HomDMeff
−,Nis

(Q(q)[p], Symi(M1(A)))

= Hom
DM

eff
−,Nis

(Q(q)[p], (Symi(M1(Â)))
∗(i)[2i])

= HomDMeff
−,Nis

(Symi(M1(A)),Q(i − q)[2i− p])

= CHi−q(Â, p− 2q;Q)(i)

⊂ CHi−q(Â, p− 2q;Q).

¿From Theorem 3.3, CHi−q(Â, p− 2q;Q) = 0 for i − q 6∈ [0, g + p− 2q]. Thus
Hp(A,Q(q))(i) = 0 for i 6∈ [i0, i1], since Symi(M1(A)) = 0 for i 6∈ [0, 2g] by
Proposition 2.2.
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3.1.4 The general case

We prove Theorem 3.1 by induction on rank of a semiabelian variety G. Fol-
lowing [10], we first give some triangles in DM

eff
−,Nis which allow us to use

induction on the rank of a semiabelian variety.
We first give an exact sequence of smooth group schemes. Let G be a semia-
belian variety of rank r over an algebraically closed field k. Then there is an
exact sequence of smooth group schemes over k of the following form:

1→ Gr
m

i
→ G

f
→ A→ 1.

Then, following [10, Section 5.2], we consider the cokernel H of the composite
map

Gm → Gr
m

i
→ G,

where the first map is the inclusion to the first factor of Gr
m. Then H is a

semiabelian variety of rank r − 1 over k which fits into

1→ Gm → G→ H → 1, (3.2)

1→ Gr−1
m

i
→ H

f̄
→ A→ 1.

Lemma 3.9 ([1, 10]). Let notation as above. Then we have the following exact
triangles in DM

eff
−,Nis:

M(H)(1)[1]→ M(G)→ M(H)→ M(H)(1)[2].

Proof. From (3.2), we may regard G as a Gm-torsor on H . Let E be the line
bundle over H associated to the Gm-torsor G. Let s : H → E be the zero
section. By the Gysin triangle attached to E and s(H), we have an exact
triangle in DM

eff
−,Nis

M(E − s(H))→ M(E)→ M(s(H))(1)[2]→ M(E − s(H))[1]

Since E − s(H) is isomorphic to G and M(E) ≃ M(H) ≃ M(s(H)), we get the
desired triangle after shifting.

Lemma 3.10 ([1, 10]). Let notation as above. Then we have the following exact
triangles in DM

eff
−,Nis:

Symn−1(M1(H))(1)[1]→ Symn(M1(G))

→ Symn(M1(H))→ Symn−1(M1(H))(1)[2].

Proof. By Corollary A.3, there is an isomorphism in DM
eff
−,Nis

Symn(M1(G)) ≃ Symn(G̃)[0]. (3.3)
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For the definition of G̃ and a complex F [0], see Definition 2.1. By the isomor-
phism (3.3), we may work in the category ShTNis(k,Q) of Nisnevich sheaves
of Q-modules with transfers. We have an exact sequence in ShTNis(k,Q):

1→ G̃m → G̃→ H̃ → 1.

Proposition A.1 allows us to apply [1, Proposition C.3.4] to the above exact
sequence in ShTNis(k,Q). Then we have exact triangles for i ≥ 0,

FilG̃m

i+1Sym
n(G̃)[0]→ FilG̃m

i Symn(G̃)[0]

→ Symi(M1(Gm))⊗ Symn−i(M1(H))→ FilG̃m

i+1Sym
n(G̃)[1].

For the definition of FilG̃m

i Symn(G̃), see Notation. We know that

M1(Gm) ≃ G̃m[0] ≃ Q(1)[1] in DM
eff
−,Nis. Therefore, by [4, Proposition

2.3], Symn(M1(Gm)) ≃ Altn(Q)(n)[n] = 0 for n ≥ 2 in DM
eff
−,Nis. Thus we

have

FilG̃m

i Symn(G̃)[0] ≃






Symn(M1(G)) if i = 0,

Symn−1(M1(H))(1)[1] if i = 1,

0 otherwise.

Hence we have the desired triangle.

Proof of Theorem 3.1. By Lemma 3.9, we have an exact sequence

· · · → Hp−1(H,Q(q − 1))→ Hp(G,Q(q))→ Hp(H,Q(q))→ · · · .

By Lemma 3.10, we also have exact sequences

· · · → Hp−1(H,Q(q − 1))(i−1) → Hp(G,Q(q))(i) → Hp(H,Q(q))(i) → · · · ,

· · · ← CHq−1(H, 2q − p− 1;Q)(i−1) ← CHq(G, 2q − p;Q)(i)

← CHq(H, 2q − p;Q)(i) ← · · · .

By these exact sequences, the assertion for a semiabelian variety G follows from
the induction hypothesis and the assertion for abelian varieties.

4 0-th Suslin homology

We consider here 0-th Suslin homology HS
0 (G,Z) of a semiabelian variety G,

and prove Corollary 1.5 (Corollary 4.1). We also give a description of rational
0-th Suslin homology HS

0 (G,Q) in terms of K-groups (Proposition 4.8), using
a result of Kahn–Yamazaki [16] (see Theorem 4.5).
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4.1 Bloch’s result for a semiabelian variety

Corollary 4.1 (Corollary 1.5). Let G be a semiabelian variety over k, which
is an extension of an abelian variety of dimension g by a torus of rank r. Let
IG be the kernel of the degree map HS

0 (G,Z)→ Z. Then an iterated Pontryagin
product I∗iG is torsion for i > g + r.
In particular, if k is an algebraically closed field, then I∗iG = 0 for i > g + r.

Proof. ¿From Theorem 3.5, we have

IG ⊗Q =

g+r⊕

n=1

H0(G,Q)(n).

By compatibility of this decomposition with Pontryagin product (Corollary
2.7),

I∗iG ⊗Q ⊂

g+r⊕

n=i

H0(G,Q)(n).

Thus by Theorem 3.1 (2), we obtain that I∗iG ⊗Q = 0 for i > g + r.
For second assertion, we assume that k is algebraically closed. Then IG is
generated by cycles of the form [a] − [0G], where a, 0G ∈ G(k) and 0G is the
identity element of G. Thus I∗2G is generated by cycles of the form

[a+ b]− [a]− [b]− [0G]

for a, b ∈ G(k). Let albG be the albanese map from IG → G(k). Then it is
easily seen that

albG(I
∗2
G ) = 0G.

Since I∗iG ⊂ I
∗2
G for i ≥ 2, we have

albG(I
∗i
G ) = 0 for i ≥ 2. (4.1)

We claim that G has a smooth compactification. The following argument is
attributed by J.-L. Colliot-Thélène and M. Brion (see also [15, p. 13]): Let
0 → T → G → A → 0 be the canonical decomposition of G. Then we may
assume T = Gr

m since k is algebraically closed. Let Y := (P1)r be a smooth
compactification of T . Then the bundle G ×T Y associated to the T -torsor
G → A exists, which is a smooth compactification of G. Now the second
assertion follows from the first assertion, (4.1) and Theorem 4.3 below.

Remark 4.2. A smooth comapctification of a semiabelian variety over any
field exists, since the case of a torus is shown in [8] and the argument in the
proof of Corollary 4.1 works.

Theorem 4.3. Let X be a smooth, quasi-projective scheme of finite type over
an algebraically closed field k of characteristic p ≥ 0. Assume that X has a
smooth compactification. Then the albanese map

albX : HS
0 (X,Z)

0 → AlbX(k).
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from the degree-0-part of Suslin homology to the k-valued points of the Albanese
variety AlbX of X induces an isomorphism on torsion groups.

Remark 4.4. For an open variety of a smooth projective variety, the theorem
is proved by Spieß–Szamuely [22, Theorem 1.1] (prime-to-p-part) and Geisser
[13, Theorem 1.1] (p-part).

4.2 A description of rational Suslin homology

We first briefly recall the definition of K-groups attached to semiabelian vari-
eties. Let F1, . . . , Fr be homotopy invariant Nisnevich sheaves with transfers.
We then define the K-group K(k;F1 . . . , Fr) to be the quotient group

( ⊕

L/k:finite

F1(L)⊗ · · · ⊗ Fr(L)
)
/R (4.2)

where R is a subgroup whose elements corresponds to Projection formula and
Weil reciprocity. For example, if Fi = Gm (cf. Definition 2.1 (1)) for i =
1, . . . , r, then we have the r-th Milnor K-group

K(k;Gm, . . . ,Gm) = KM
r (k).

For the precise definition, see [21, 16].

Theorem 4.5 (Kahn–Yamazaki [16]). Let F1 . . . , Fr be homotopy invariant
Nisnevich sheaves with transfers . Then there is an isomorphism

K(k;F1 . . . , Fr) ≃ HomDMeff
−,Nis(k,Z)

(
Z, F1[0]⊗ · · · ⊗ Fr[0]

)
.

Definition 4.6. (1) For a semiabelian variety G over a perfect field k, let
Ki(k;G)Q denotes the K-group K(k;G, . . . , G) ⊗ Q attached to i copies of
the homotopy invariant Nisnevich sheaf with transfers G attached to G (cf.
Definition 2.1 (1)).
(2) For ai ∈ G(L), let {a1, . . . , ai}L/k denote the element of Ki(k;G)Q repre-
sented by a1 ⊗ · · · ⊗ ai. We define an action of the permutation group Σi on
Ki(k;G) as follows: for σ ∈ Σi and ai ∈ G(L),

σ({a1, . . . , ai}L/k) = {aσ(1), . . . , aσ(i)}L/k.

Then we define Si(k;G)Q to be the image of an idempotent map si :=
1

i!

∑

σ∈Σi

σ:

Si(k;G)Q := Im(si : Ki(k;G)Q → Ki(k;G)Q).

Example 4.7. For G = Gm and an integer i ≥ 0, we have

Ki(k;G) ≃ K
M
i (k).

Here KM
i (k) is the i-th Milnor K-group of k.
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Proposition 4.8 (Gazaki [12](for an abelian variety)). Let G be a semiabelian
variety over k, which is an extension of an abelian variety by a torus of rank
r. Let HS

0 (G,Q)(i) denote H0(G,Q(0))(i). Then for any 0 ≤ i ≤ r, we have

HS
0 (G,Q)(i) ≃ Si(k;G)Q.

In particular,

HS
0 (G,Q) ≃

g+r⊕

i=0

Si(k;G)Q

Proof. ¿From Theorem 4.5, we have the following commutative diagram

Ki(k;G)Q

si

��

HomDMeff
−,Nis

(Q,M1(G)
⊗i)

siM1(G)

��

(
(G̃)⊗

i
HI

)
(k)

si
G̃

��

Ki(k;G)Q HomDMeff
−,Nis

(Q,M1(G)
⊗i)

(
(G̃)⊗

i
HI

)
(k).

Here G̃ denotes the Nisnevich sheaf of Q-modules with transfers attached to G
(Definition 2.1 (1)). Since HS

0 (G,Q)(i) = HomDMeff
−,Nis

(Q, Symi(M1(G))), the

assertion follows from this diagram.

Remark 4.9. Let notation be as in Propostion 4.8. Let FnHS
0 (G) denote⊕g+r

i=n Si(k;G)Q. Then the filtration F •HS
0 (G) on HS

0 (G,Q) satisfies the fol-
lowing:

(a) F 1HS
0 (G) = Ker(deg : HS

0 (G)→ Q) = IG,Q;

(b) F 2HS
0 (G) = Ker

(
albG/k : F 1HS

0 (G) → G(k) ⊗ Q
)
. This map is induced

by the albanese map G→ AlbG;

(c) FnHS
0 (G) ∗ F

mHS
0 (G) ⊂ Fn+mHS

0 (G). Here ∗ denote the Pontryagin
product;

(d) (F 1HS
0 (G))

∗n = 0 for n > g + r (see Corollary 4.1).

Bloch [5] studied a filtration on the Chow group CH0(A) of an abelian variety
over an algebraically closed field, which is defined by iterated Pontryagin prod-
uct I∗rA of the kernel IA of the degree map CH0(A) → Z. A similar filtration
on CH0(A) for an abelian variety over a field is studied by Gazaki [12], using
K-groups attached to A.

A Remarks on tensor product on ShTNis(k,Q)

We make here two remarks about the tensor product ⊗ShT on ShTNis(k,Q)
One is that the tensor product is exact (Proposition A.1). A key of a proof
of the exactness are results of Suslin–Voevodsky [23, 24] and Cisinski–Déglise
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[7]. Another is to give an example of étale sheaves with transfers for which
étale sheafification of presheaf tensor product is not isomorphic to the tensor
product ⊗ShT.
Let us fix notation:

• Schk : the category of separated schemes of finite type over k;

• Smk : the subcategory of Schk of smooth k-schemes;

• Schcor
k : the category of separated schemes of finite type over k with

morphism finite correspondences (which are given by universally integral
relative cycles ([24]));

• Smcor
k : the subcategory of Schcor

k of smooth k-schemes;

• PST(k,Q) : the category of presheaves of Q-modules on Smcor
k ;

• ShTNis(k,Q) : the category of Nisnevich sheaves of Q-modules on Smcor
k ;

• ShNis(k,Q) : the category of Nisnevich sheaves of Q-modules on Schk;

• ShTNis(k,Q) : the category of Nisnevich sheaves ofQ-modules on Schcor
k ;

• Shqfh(k,Q) : the category of qfh-sheaves of Q-modules on Schk.

We call an object of PST(k,Q) (resp. ShTNis(k,Q)) a presheaf (resp. Nis-
nevich) with transfers. We call an object of ShTNis(k,Q) a generalized Nis-
nevich sheaf with transfers.

A.1 Exactness of the tensor product on ShTNis(k,Q)

We recall the tensor product on PST: For X ∈ Smk, L(X) denotes the
representable presheaf with transfers. We first define the tensor product
L(X)⊗PST L(Y ) as

L(X)⊗PST L(Y ) := L(X × Y ).

Let F be presheaf with transfers. We have a canonical projective resolution
L(F )→ F of F of the following form

· · · →
⊕

j

L(Yj)→
⊕

i

L(Xi)→ F → 0

Then for presheaves with transfers F and G, the tensor product F ⊗PST G of
F and G is defined to be

H0

(
Tot(L(F ) ⊗PST L(G))

)
.

For Nisnevich sheaves with transfers F and G, the tensor product F ⊗ShTG is
given by

F ⊗ShT G =
(
F ⊗PST G

)
Nis
.
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Proposition A.1. The bifunctor ⊗ShT on ShTNis(k,Q) is exact.

Remark A.2. (1) The tensor product on ShTNis(k,Z) is right exact by con-
struction.
(2) If F is a presheaf of Q-modules with transfers, then FNis = Fét ([19, Corol-
lary 14.22] [20, Ex. 1.21]). Therefore, Proposition A.1 holds for ShTét(k,Q).

¿From Proposition A.1 and the definition of tensor product on the derived
category D−(ShTNis(k,Q)) of ShTNis(k,Q), we obtain the following:

Corollary A.3. Let F and G be Nisnevich sheaves of Q-modules with trans-
fers. Let F [0] denote the complex consisting of F concentrated in degree zero.
Then
(1) F [0]⊗G[0] is isomorphic to (F ⊗ShT G)[0] in D

−(ShTNis(k,Q)).
(2) Symi(F [0]) is isomorphic to Symi(F )[0] in D−(ShTNis(k,Q)).

We recall results of Suslin–Voevodsky [23, Corollary 6.6, Theorem 6.7][24, The-
orem 4.2.12] (cf. Cisinski–Déglise [7, Theorem 10.5.5]) to prove Proposition
A.1.

Theorem A.4. Let X ∈ Schk be a separated scheme of finite type over k. Let
L(X)Q ∈ ShTNis(k,Q) denote the generalized Nisnevich sheaf with transfers
represented by X. Then L(X)Q is a qfh-sheaf.
Furthermore, let Qqfh(X) ∈ Shqfh(k,Q) denote the qfh-sheaf represented by X.
Then L(X)Q is isomorphic to the qfh-sheaf Qqfh(X).

By this theorem, for any qfh-sheaf F ∈ Shqfh(k,Q), Cisinski–Déglise [7, §10]
defined a generalized Nisnevich sheaf with transfers ρ(F ) as follows: for any
X ∈ Schk,

ρ(F )(X) := HomShqfh(k,Q)(L(X)Q, F ).

Thus we have a functor

ρ : Shqfh(k,Q) −→ ShTNis(k,Q).

Now we have a functor

ψ : Shqfh(k,Q)
ρ
→ ShTNis(k,Q)

ι∗
→ ShTNis(k,Q).

where the second functor is the pull-back with respect to ι : Smcor
k → Schcor

k .
By [7, Lemma 10.4.6], the functor ι∗ admits a left adjoint ι! such that
ι!(L(X)) = L(X) for any X ∈ Smk. Thus we also have a functor

φ : ShTNis(k,Q)
ι!→ ShTNis(k,Q)→ ShNis(k,Q) −→ Shqfh(k,Q)

where the second one is the forgetful functor and the third one is the qfh-
sheafification. Cisinski-Déglise showed the following properties of the functors
ψ, φ:
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Proposition A.5 ([7, Proposition 10.5.14]). The following holds:

(1) For any smooth k- scheme X, ψ(Qqfh(X)) ≃ L(X)Q;

(2) The functor ψ admits the left adjoint φ;

(3) For any smooth k-scheme X, φ(L(X)Q) ≃ Qqfh(X);

(4) The functor ψ is exact and preserves colimits;

(5) The functor φ is exact, fully faithful and preserves colimits.

Proof of Proposition A.1. Since the tensor product on ShTNis(k,Q) is right
exact (cf. Remark A.2), it suffices to show that the tensor product is left
exact. Thus, we need to show that for any injection F1 → F2 in ShTNis(k,Q)
and any objects G,H of ShTNis(k,Q), the map

HomShTNis(H,F1 ⊗ShT G)→ HomShTNis(H,F2 ⊗ShT G)

is injective. Since the functor φ is fully faithful by Proposition A.5 (5), we have
the following commutative diagram

HomShTNis(k,Q)(H,F1 ⊗ShT G) // HomShTNis(k,Q)(H,F2 ⊗ShT G)

HomShqfh(k,Q)(φ(H), φ(F1 ⊗ShT G)) // HomShqfh(k,Q)(φ(H), φ(F2 ⊗ShT G))

Let us construct a natural isomorphism

φ(F ⊗ShT G) = φ(F )⊗ φ(G). (∗)

Granting this, the bottom horizontal map is

HomShqfh(k,Q)(φ(H), φ(F1)⊗ φ(G))→ HomShqfh(k,Q)(φ(H), φ(F2)⊗ φ(G)).

But, this map is injective because the functor φ is exact by Proposition A.5 (5)
and the tensor on Shqfh(k,Q) is exact. Now our task is to construct the natural
isomorphism (∗).
Let F,G ∈ ShTNis(k,Q) be Nisnevich sheaves with transfers. In case where
F = L(X)Q and G = L(Y )Q, we have

φ(L(X)Q ⊗ShT L(Y )Q) = φ(L(X × Y )Q)

≃ Qqfh(X × Y )

= Qqfh(X)⊗Qqfh(Y ) ≃ φ(L(X)Q)⊗ φ(L(Y )Q).

In general case, let L1(F ) (resp. L1(G)) be the presentation of F (resp. G)
truncated above degree one. Then by the right exactness of ⊗ShT, the trunca-
tion of Tot(L1(F ) ⊗ShT L1(G)) is a presentation of F ⊗ShT G. Thus from the
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the above special case and the exactness of φ, we obtain that

φ(F ⊗ShT G) = φ(H0(Tot(L1(F )⊗ShT L1(G))))

≃ H0(Tot(φ(L1(F ))⊗ φ(L1(G))))

= φ(F )⊗ φ(G).

A.2 An example

We prove that in general, the étale sheafification of a presheaf tensor L(X)⊗
L(Y ) can not be isomorphic to L(X ×k Y ), even after tensoring with Q.
We have a map

φ : L(X)⊗ L(Y )→ L(X ×k Y ).

and consider the étale stalks at a strictly Henselian local scheme S , which is

φS : Cor(S,X)⊗ Cor(S, Y )→ Cor(S,X ×k Y ), Z ⊗W 7→ [Z ×S W ].

The claim in the beginning of this section follows from Proposition A.6 below
for a strictly Henselian discrete valuation ring R.

Proposition A.6. Let X = Y = A1
k. Let R be a discrete valuation ring over

k and let S := Spec(R). Then φS is not surjective, even after tensoring with
Q.

To show Proposition A.6, we consider some concrete cycles: Write X =
Spec(k[x]) and Y = Spec(k[y]). Let t be a uniformizer of R. We define
f(x) ∈ R[x] as

f(x) =

{
x2 − t if char(k) 6= 2,

x3 − t if char(k) = 2.

and define cycles to be

Z := Spec(R[x]/(f(x))) ∈ Cor(S,X) andW := Spec(R[y]/(f(y))) ∈ Cor(S, Y ).

Then we have

T := Z ×S W = Spec(R[x, y]/(f(x), f(y))).

And we define T1 and T2 as follows: in case char(k) 6= 2,

T1 := Spec
(
R[x, y]/(f(x), x− y)

)
, T2 := Spec

(
R[x, y]/(f(x), x+ y)

)
;

in case char(k) = 2,

T1 := Spec
(
R[x, y]/(f(x), x− y)

)
, T2 := Spec

(
R[x, y]/(f(x), x2 + xy + y2)

)
.

Then, one easily sees that

φS(Z ⊗W ) = [T ] = T1 + T2 ∈ Cor(S,X ×k Y ).
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Lemma A.7. Let notation be as in above. The only pair (α, β) of integral cycles
α ∈ Cor(S,X) and β ∈ Cor(S, Y ) such that φS(α ⊗ β) contains T1(or T2) is
(Z,W ).

Proof. Integral cycles α and β are given by monic irreducible polynomials
g(x) ∈ R[x] and h(y) ∈ R[y] respectively, i.e.

α = Spec(R[x]/(g(x))) ⊂ S ×X, β = Spec(R[y]/(h(y))) ⊂ S × Y.

Put
γ := α×S β = Spec(R[x, y]/(g(x), h(y))) ⊂ S ×X × Y.

Suppose that our cycle T1 ⊂ γ is a irreducible component.
Let p, q denote the projections from S×X×Y to S×X and S×Y respectively.
Then,

p(T1) = Z, q(T1) =W.

Hence the images of γ along p and q contain Z and W respectively, i.e.

Z ⊂ Spec(R[x]/(g(x))) and W ⊂ Spec(R[y]/(h(y))).

These inclusions imply that

g(x) = a(x)f(x) and h(y) = b(y)f(y).

Since f, g and h are monic and irreducible, we have

g(x) = f(x), h(y) = f(y).

Hence α = Z, β =W .
The above argument works also for T2.

Proof of Proposition A.6. Assume that φS is surjective. Then we have an ele-
ment x :=

∑
nij(αi ⊗ βj) ∈ Cor(S,X)⊗ Cor(S, Y ) such that φS(x) = T1. For

some component αi ⊗ βj of x, φS(αi ⊗ βj) contains T1. By Lemma A.7, such
αi ⊗ βj is Z ⊗W only. Therefore we have

x = m(Z ⊗W ) +
∑

nij(αi ⊗ βj),

where m ≥ 1 and the sum is taken over all i, j such that (αi, βj) 6= (Z,W ).
Then

T1 = φS(x) = m(T1 + T2) +
∑

nijφS(αi ⊗ βj).

Hence
(1−m)T1 −mT2 = −

∑
nijφS(αi ⊗ βj).

But this equality cannot be happen by Lemma A.7. Thus φS is not surjective.
Since the above argument works even if the coefficients m,nij are rational
numbers, φS is not surjective even after tensoring with Q.
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