Documenta Math.

A Remark on the Gradient Map

LEONARDO BILIOTTI, ALESSANDRO GHIGI, AND PETER HEINZNER¹

Received: February 7, 2014

Communicated by Thomas Peternell

ABSTRACT. For a Hamiltonian action of a compact group U of isometries on a compact Kähler manifold Z and a compatible subgroup G of $U^{\mathbb{C}}$, we prove that for any closed G-invariant subset $Y \subset Z$ the image of the gradient map $\mu_{\mathfrak{p}}(Y)$ is independent of the choice of the invariant Kähler form ω in its cohomology class $[\omega]$.

2010 Mathematics Subject Classification: 53D20

1. INTRODUCTION

Let (Z, ω) be a compact Kähler manifold and let U be a compact connected semisimple Lie group such that $U^{\mathbb{C}}$ acts holomorphically on Z, U preserves ω and there is a momentum map $\mu : Z \to \mathfrak{u}^*$. Let $G \subset U^{\mathbb{C}}$ be a *compatible* subgroup. By this we mean a subgroup which is compatible with the Cartan involution Θ of $U^{\mathbb{C}}$ which defines U, i.e. if $\mathfrak{p} = \mathfrak{g} \cap i\mathfrak{u}$ and $K = U \cap G$, then $G = K \cdot \exp \mathfrak{p}$. Let $\mu_{\mathfrak{p}} : Z \to \mathfrak{p}$ be the associated gradient map (see [4, 5] or section 2).

In this note we prove the following.

THEOREM 1. Let $Y \subset Z$ be a closed G-stable subset. Then up to translation the set $\mu_{\mathfrak{p}}(Y)$ is independent of the choice of the invariant Kähler form ω in the cohomology class $[\omega]$.

¹The first two authors were partially supported by a grant of Max-Plank Institute für Mathematik, Bonn and by FIRB 2012 MIUR "Geometria differenziale e teoria geometrica delle funzioni". author was partially supported also by PRIN 2009 MIUR "Moduli, strutture geometriche e loro applicazioni". The third author was partially supported by DFG-priority program SPP 1388 (Darstellungstheorie).

L. BILIOTTI, A. GHIGI, AND P. HEINZNER

Since Z is compact and G is compatible there is a stratification of Z analogous to the Kirwan stratification, see [4]. This gives a stratification of any closed Ginvariant subset Y of Z, by intersecting the strata in Z with Y. It follows from Theorem 1 that when the momentum map is properly normalized (see Lemma 2) this stratification does not depend on the choice of ω in its cohomology class. When Z is a projective manifold and ω is the pull-back of a Fubini-Study form via an equivariant embedding of Z in \mathbb{P}^N , Kirwan [6, §12] proved that the stratification in terms of a properly normalized μ can be defined purely in terms of algebraic geometry. In the present note we give a proof of this fact for a general compact Kähler manifold Z in the more general setting of *gradient* maps for actions of compatible subgroups on closed G-invariant subsets of Z. Another consequence of the above is the following. Assume that Z is a projective manifold and that $[\omega]$ is an integral class. Let $Y \subset Z$ be a closed G-invariant real semi-algebraic subset whose real algebraic Zariski closure is irreducible. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal subalgebra and let \mathfrak{a}_+ be a closed Weyl chamber in \mathfrak{a} . Then $A(Y)_+ := \mu_{\mathfrak{p}}(Y) \cap \mathfrak{a}_+$ is convex (see [2], which deals with the case when ω is the restriction of a Fubini-Study metric).

ACKNOWLEDGEMENTS. The first two authors are grateful to the Fakultät für Mathematik of Ruhr-Universität Bochum for the wonderful hospitality during several visits. They also wish to thank the Max-Planck Institut für Mathematik, Bonn for excellent conditions provided during their visit at this institution, where part of this paper was written.

2. Background

Let (Z, ω) be a compact Kähler manifold and let U be a compact Lie group. Assume that U acts on Z by holomorphic Kähler isometries. Since Z is compact the U-action extends to a holomorphic action of the complexified group $U^{\mathbb{C}}$. Assume also that there is a momentum map $\mu : Z \to \mathfrak{u}^* \cong \mathfrak{u}$, where \mathfrak{u}^* is identified with \mathfrak{u} using a fixed U-invariant scalar product on \mathfrak{u} that we denote by \langle , \rangle . We also denote by \langle , \rangle the scalar product on $\mathfrak{i}\mathfrak{u}$ such that multiplication by i is an isometry of \mathfrak{u} onto $i\mathfrak{u}$. If $\xi \in \mathfrak{u}$ we denote by ξ_Z the fundamental vector field on Z and we let $\mu^{\xi} \in C^{\infty}(Z)$ be the function $\mu^{\xi}(z) := \langle \mu(z), \xi \rangle$. That μ is the momentum map means that it is U-equivariant and that $d\mu^{\xi} = \mathfrak{i}_{\xi_Z}\omega$. For a closed subgroup $G \subset U^{\mathbb{C}}$ let $K := G \cap U$ and $\mathfrak{p} := \mathfrak{g} \cap \mathfrak{i}\mathfrak{u}$. The group Gis called *compatible* if $G = K \cdot \exp \mathfrak{p}$ [4, 5]. In the following we fix a compatible subgroup $G \subset U^{\mathbb{C}}$. If $z \in Z$, let $\mu_{\mathfrak{p}}(z) \in \mathfrak{p}$ denote $-\mathfrak{i}$ times the component of $\mu(z)$ in the direction of $\mathfrak{i}\mathfrak{p}$. In other words we require that $\langle \mu_{\mathfrak{p}}(z), \beta \rangle = -\langle \mu(z), \mathfrak{i}\beta \rangle$ for any $\beta \in \mathfrak{p}$. The map

$$\mu_{\mathfrak{p}}: Z \to \mathfrak{p}$$

is called the gradient map (see [3]) or restricted momentum map. Let $\mu_{\mathfrak{p}}^{\beta} \in C^{\infty}(Z)$ be the function $\mu_{\mathfrak{p}}^{\beta}(z) = \langle \mu_{\mathfrak{p}}(z), \beta \rangle = \mu^{-i\beta}(z)$. Let (,) be the Kähler metric associated to ω , i.e. $(v, w) = \omega(v, Jw)$. Then β_Z is the gradient of $\mu_{\mathfrak{p}}^{\beta}$ with respect to (,).

Documenta Mathematica 19 (2014) 1017-1023

A Remark on the Gradient Map

1019

EXAMPLE 1. (1) For any compact subgroup $K \subset U$, both K and its complexification $G = K^{\mathbb{C}}$ are compatible. In particular $G = U^{\mathbb{C}}$ is a compatible subgroup. (2) If G is a real form of $U^{\mathbb{C}}$, then G is compatible. (3) For any $\xi \in i\mathfrak{u}$, the subgroup $G = \exp(\mathbb{R}\xi)$ is compatible.

Next we recall the Stratification Theorem for actions of compatible subgroups. Given a maximal subalgebra $\mathfrak{a} \subset \mathfrak{p}$ and a Weyl chamber $\mathfrak{a}^+ \subset \mathfrak{a}$ define

$$\eta_{\mathfrak{p}}: X \to \mathbb{R} \qquad \eta_{\mathfrak{p}}(x) := \frac{1}{2} ||\mu_{\mathfrak{p}}(x)||^{2}$$
$$C_{\mathfrak{p}} := \operatorname{Crit}(\eta_{\mathfrak{p}}) \qquad \mathcal{B}_{\mathfrak{p}} := \mu_{\mathfrak{p}}(C_{\mathfrak{p}}) \qquad \mathcal{B}_{\mathfrak{p}}^{+} := \mathcal{B}_{\mathfrak{p}} \cap \mathfrak{a}^{+}$$
$$X(\mu) := \{ x \in X : \overline{G \cdot x} \cap \mu_{\mathfrak{p}}^{-1}(0) \neq \emptyset \}$$

where X is a compact G-invariant subset of Z. Points lying in $X(\mu)$ are called *semistable*. Using semistability and the function η_{p} one can define a stratification of X in the following way, see [6] and [4]. For $\beta \in \mathcal{B}_{\mathfrak{p}}^+$ set

$$\begin{split} X_{||\beta||^2} &:= \{ x \in X : \overline{\exp(\mathbb{R}\beta) \cdot x} \cap (\mu^{\beta})^{-1}(||\beta||^2) \neq \emptyset \} \\ X^{\beta} &:= \{ x \in X : \beta_X(x) = 0 \} \\ X^{\beta}_{||\beta||^2} &:= X^{\beta} \cap X_{||\beta||^2} \\ X^{\beta+}_{||\beta||^2} &:= \{ x \in X_{||\beta||^2} : \lim_{t \to -\infty} \exp(t\beta) \cdot x \text{ exists and it lies in } X^{\beta}_{||\beta||^2} \} \\ G^{\beta+} &:= \{ g \in G : \text{the limit } \lim_{t \to -\infty} \exp(t\beta) g \exp(-t\beta) \text{ exists in } G \}. \end{split}$$

Set also

$$G^{\beta} := \{g \in G : \operatorname{Ad} g(\beta) = \beta\} \qquad \mathfrak{p}^{\beta} := \{\xi \in \mathfrak{p} : [\xi, \beta] = 0\}$$

The group $G^{\beta} = K^{\beta} \cdot \exp(\mathfrak{p}^{\beta})$ is a compatible subgroup of $U^{\mathbb{C}}$ and the set $X^{\beta+}_{||\beta||^2}$ is $G^{\beta+}$ -invariant. Denote by $\mu_{\mathfrak{p}^{\beta}}$ the composition of $\mu_{\mathfrak{p}}$ with the orthogonal projection $\mathfrak{p} \to \mathfrak{p}^{\beta}$. Then $\mu_{\mathfrak{p}^{\beta}}$ is a gradient map for the G^{β} -action on $X_{||\beta||^2}^{\beta+}$. We set $\widehat{\mu_{\mathfrak{p}^{\beta}}} := \mu_{\mathfrak{p}^{\beta}} - \beta$. Since β lies in the center of \mathfrak{g}^{β} and since G^{β} is a compatible subgroup of $(U^{\beta})^{\mathbb{C}} = (U^{\mathbb{C}})^{\beta}$, it is a gradient map too. We let $S^{\beta+}$ denote the set of G^{β} -semistable points in $X^{\beta+}_{||\beta||^2}$ with respect to $\widehat{\mu_{\mathfrak{p}^{\beta}}}$, i.e.

$$S^{\beta+} := \{ x \in X^{\beta+}_{||\beta||^2} : \overline{G^{\beta} \cdot x} \cap \mu_{\mathfrak{p}^{\beta}}^{-1}(\beta) \neq \emptyset \}.$$

The set $S^{\beta+}$ coincides with the set of semistable points of the group G^{β} in $X_{||\beta||^2}^{\beta+}$ after shifting. By definition the β -stratum is given by $S_{\beta} := G \cdot S^{\beta+}$.

STRATIFICATION THEOREM. (See [4, Thm. 7.3]) Assume that X is a compact *G*-invariant subset of Z. Then $\mathcal{B}_{\mathfrak{p}}^+$ is finite and

$$X = \bigsqcup_{\beta \in \mathcal{B}_{\mathfrak{p}}^+} S_{\beta}.$$

DOCUMENTA MATHEMATICA 19 (2014) 1017-1023

L. BILIOTTI, A. GHIGI, AND P. HEINZNER

Moreover

$$\overline{S_{\beta}} \subset S_{\beta} \cup \bigcup_{||\gamma|| > ||\beta||} S_{\gamma}.$$

3. Proof of Theorem 1

For a U-invariant function f on Z we set

 $\tilde{\omega} := \omega + dd^c f$

where $d^c f := -2J^* df$. Since Z is compact and U acts by holomorphic transformations, any U-invariant Kähler form $\tilde{\omega}$ in the Kähler class $[\omega]$ can be written in this way. Since pluriharmonic functions on Z are constant, the function f is unique up to a constant.

LEMMA 2. If $\mu: Z \to \mathfrak{u}$ is a momentum map for the U-action on Z with respect to ω , then the map $\tilde{\mu}: Z \to \mathfrak{u}$ defined by

$$\tilde{\mu}^{\xi} := \mu^{\xi} - d^c f(\xi_Z) \tag{3}$$

is a momentum map for the U-action on Z with respect to $\tilde{\omega}$.

Proof. That $\tilde{\mu}$ is a momentum map follows from Cartan formula using that $L_{\xi_Z} d^c f = d^c L_{\xi_Z} f = 0$. This in turn follows from the assumption that the action of U is holomorphic and f is U-invariant.

A more precise version of Theorem 1 is the following.

THEOREM 4. For any closed G-stable subset $Y \subset Z$ we have $\mu_{\mathfrak{p}}(Y) = \tilde{\mu}_{\mathfrak{p}}(Y)$.

Proof. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal subalgebra and set $A := \exp \mathfrak{a}$. The group A is a compatible subgroup. Let $\mu_{\mathfrak{a}} : Z \to \mathfrak{a}$ be the restricted gradient map. Any connected subgroup $B \subset A$ is compatible. Given such a B, set $Z^{(B)} := \{z \in Z : A_z = B\}$. A connected component S of $Z^{(B)}$ will be called an A-stratum of type \mathfrak{b} . For a given S let C denote the connected component of Z^B containing S. Then C is a complex submanifold of Z and the Slice Theorem (see Theorem 14.10 and 14.21 in [3] or Theorem 2.2 in [2]) applied to the A-action on C shows that S is open and dense in C.

Let A^c be the Zariski closure of A in $U^{\mathbb{C}}$. The group A^c is a compatible subgroup of $U^{\mathbb{C}}$, $A^c \cap U = T$ is a torus and $A^c = T \exp(i\mathfrak{t})$, where \mathfrak{t} denotes the Lie algebra of T. Moreover \overline{S} is A^c -stable [2, Lemma 3.3 (1)]. Denote by $\mu_{\mathfrak{t}}: Z \longrightarrow \mathfrak{t}$ the momentum map obtained by projecting $\mu: Z \longrightarrow \mathfrak{u}$ to \mathfrak{t} , and denote by $\Pi: i\mathfrak{t} \to \mathfrak{a}$ the orthogonal projection. Then $\mu_{\mathfrak{a}} = \Pi \circ i\mu_{\mathfrak{t}}$ and $\mu_{\mathfrak{a}}(\overline{S}) = \Pi(i\mu_{\mathfrak{t}}(\overline{S}))$. By the convexity theorem of Atiyah-Guillemin-Sternberg $\mu_{\mathfrak{t}}(\overline{S})$ is a convex polytope and its vertices are images of points fixed by A^c . It follows that $\mu_{\mathfrak{a}}(\overline{S})$ is a convex polytope as well. Since Π is linear, any vertex of $\mu_{\mathfrak{a}}(\overline{S})$ is the projection of at least one vertex of $i\mu_{\mathfrak{t}}(\overline{S})$. Therefore $\mu_{\mathfrak{a}}(\overline{S})$ is the convex hull of $\mu_{\mathfrak{a}}(\overline{S}^A)$. Now we use Lemma 2: if $x \in \overline{S}^A$, then $\xi_Z(x) = 0$, so $\tilde{\mu}^{\xi}(x) = \mu^{\xi}(x)$, for any $\xi \in \mathfrak{a}$. Therefore $\tilde{\mu}_{\mathfrak{a}}(x) = \mu_{\mathfrak{a}}(x)$ for every A-fixed point

Documenta Mathematica 19 (2014) 1017-1023

A Remark on the Gradient Map

1021

x. It follows that both $\mu_{\mathfrak{a}}(\overline{S})$ and the affine subspace spanned by $\mu_{\mathfrak{a}}(S)$ do not depend on the choice of the Kähler form ω .

Let Σ be the collection of affine hyperplanes of \mathfrak{a} that are affine hulls of $\mu_{\mathfrak{a}}(\overline{S})$ for some A-stratum S. Set $P := \mu_{\mathfrak{a}}(Z)$ and

$$P_0 := P - \bigcup_{H \in \Sigma} P \cap H.$$

(This construction is similar to the one in [2, §§4-5].) The set P_0 is an open subset of \mathfrak{a} . Let $C(P_0)$ denote the set of its connected components. This is a finite set. For $\gamma \in C(P_0)$ let $P(\gamma)$ be the closure of the connected component γ . Then $P(\gamma)$ is a convex polytope. Since both P and the hyperplanes Hare independent of ω , also the polytopes $P(\gamma)$ do not depend on ω . By [2, Corollary 5.8]

$$\mu_{\mathfrak{p}}(Y) \cap \mathfrak{a} = \bigcup_{\gamma \in F(\omega)} P(\gamma),$$

where $F(\omega) \subset \Gamma$ is some subset of $C(P_0)$. One can join ω to $\tilde{\omega}$ continuously, e.g. by $\omega_t := \omega + tdd^c f$. Then $\tilde{\mu}_t := \mu - td^c f(\cdot_Z)$ also depends continuously on t. So $P(\gamma) \subset \mu_{\mathfrak{p}}(Y) \cap \mathfrak{a}$ if and only if $P(\gamma) \subset \mu_{t,\mathfrak{p}}(Y) \cap \mathfrak{a}$. Therefore $F(\omega_t)$ is independent of t. Thus $\mu_{\mathfrak{p}}(Y) \cap \mathfrak{a} = \tilde{\mu}_{\mathfrak{p}}(Y) \cap \mathfrak{a}$. Since $\mu_{\mathfrak{p}}(Y) = K(\mu_{\mathfrak{p}}(Y) \cap \mathfrak{a})$ this implies $\mu_{\mathfrak{p}}(Y) = \tilde{\mu}_{\mathfrak{p}}(Y)$.

COROLLARY 5. Assume that Z is connected and let ω and $\tilde{\omega}$ be two cohomologous Kähler forms with momentum maps μ and $\tilde{\mu}$ respectively as in Lemma 2. Then $\tilde{\mu}$ is the unique momentum map such that $\mu(Z) = \tilde{\mu}(Z)$.

Proof. Since two momentum maps with respect to $\tilde{\omega}$ differ by addition of an element of the center of \mathfrak{u} , it is clear that there is at most one such map with the image equal to $\mu(Z)$. To complete the proof it is therefore enough to check that $\tilde{\mu}(Z) = \mu(Z)$. This is a special case of the previous theorem. \Box

THEOREM 6. Let ω and $\tilde{\omega}$ be two cohomologous Kähler forms on Z, with momentum maps μ and $\tilde{\mu}$ respectively as in Lemma 2. Then the set $\mathcal{B}_{\mathfrak{p}}^+$ is the same for both momentum maps and the two stratifications of X coincide.

Proof. By [4, Corollary 7.6]

$$\mathcal{B}_{\mathfrak{p}} = \{\beta \in \mathfrak{p} : \text{ there exists } x \in X : \frac{||\beta||^2}{2} = \inf_{G \cdot x} \eta_{\mathfrak{p}} \text{ and } \beta \in \mu_{\mathfrak{p}}(\overline{G \cdot x})\}.$$
(7)

Moreover for $\beta \in \mathcal{B}_{\mathfrak{p}}$

$$S_{\beta} = \{ x \in X : \frac{||\beta||^2}{2} = \inf_{G \cdot x} \eta_{\mathfrak{p}} \text{ and } \beta \in \mu_{\mathfrak{p}}(\overline{G \cdot x}) \}.$$
(8)

For any point $x \in X$, the set $\overline{G \cdot x}$ is closed and G-invariant. Hence by Theorem 4 $\mu_{\mathfrak{p}}(\overline{G \cdot x}) = \tilde{\mu}_{\mathfrak{p}}(\overline{G \cdot x})$. From this it follows that $\inf_{G \cdot x} \eta_{\mathfrak{p}} = \inf_{G \cdot x} \tilde{\eta}_{\mathfrak{p}}$, where $\tilde{\eta}_{\mathfrak{p}} := ||\tilde{\mu}_{\mathfrak{p}}||^2/2$. The result follows from (7) and (8).

¿From the above we obtain the following generalization.

Documenta Mathematica 19 (2014) 1017-1023

L. BILIOTTI, A. GHIGI, AND P. HEINZNER

COROLLARY 9. If Z is a complex projective manifold, U is a compact connected semisimple Lie group acting on Z, ω is a U-invariant Hodge metric and $Y \subset Z$ is a closed G-invariant real semi-algebraic subset whose real algebraic Zariski closure is irreducible, then $A(Y)_+$ is convex. Moreover if G is semisimple, then $X(\mu)$ is dense (if it is nonempty).

Proof. By assumption there is a very ample line bundle $L \to Z$ such that $[\omega] = 2\pi c_1(L)/m$ for an interger m > 0. Let ω_{FS} be a U-invariant Fubini-Study metric on $\mathbb{P}(H^0(Z,L)^*)$. Let μ_{FS} be the momentum map with respect to $\omega_{FS}|_Z$. In [2] the convexity theorem has been proved for μ_{FS} . A rescaling in the symplectic form yields a corresponding rescaling in the momentum map. Therefore the convexity theorem also holds for the momentum map $\tilde{\mu}$ relative to the symplectic form $\tilde{\omega} := \omega_{FS}/m$. So it holds also for μ , since $\mu_{\mathfrak{p}}(Y) = \tilde{\mu}_{\mathfrak{p}}(Y)$ by Theorem 4. The proof of the last statement is similar: see [2] and Corollary 5.

COROLLARY 10. Under the same assumptions, any local minimum of $||\mu_{\mathfrak{p}}||^2$ is a global minimum.

Proof. This follows since $||\mu_{\mathfrak{p}}||^2$ is K-invariant and $\mu(Z)_+$ is a convex subset of \mathfrak{a}_+ .

COROLLARY 11. If ω and ω' are cohomologous Kähler forms on Z with momentum maps μ and $\tilde{\mu}$ as in Lemma 2, then $X(\mu) = X(\tilde{\mu})$.

Proof. It is enough to observe that $X(\mu) = S_0$.

References

- P. Heinzner and A. Huckleberry. Kählerian potentials and convexity properties of the moment map. *Invent. Math.*, 126(1):65–84, 1996.
- [2] P. Heinzner and P. Schützdeller. Convexity properties of gradient maps. Adv. Math., 225(3):1119–1133, 2010.
- [3] P. Heinzner and G. W. Schwarz. Cartan decomposition of the moment map. Math. Ann., 337(1):197–232, 2007.
- [4] P. Heinzner, G. W. Schwarz, and H. Stötzel. Stratifications with respect to actions of real reductive groups. *Compos. Math.*, 144(1):163–185, 2008.
- [5] P. Heinzner and H. Stötzel. Critical points of the square of the momentum map. In *Global aspects of complex geometry*, pages 211–226. Springer, Berlin, 2006.
- [6] F. C. Kirwan. Cohomology of quotients in symplectic and algebraic geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1984.

A Remark on the Gradient Map

Leonardo Biliotti Università di Parma leonardo.biliotti@unipr.it Alessandro Ghigi Università di Milano Bicocca alessandro.ghigi@unimib.it

Peter Heinzner Ruhr Universität Bochum peter.heinzner@rub.de

Documenta Mathematica 19 (2014) 1017–1023

1024

Documenta Mathematica 19 (2014)