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Abstract. Let X be a smooth, projective and geometrically con-
nected curve of genus at least two, defined over a number field. In
1984, Szpiro conjectured that X has a “small point”. In this paper we
prove that if X is a cyclic cover of prime degree of the projective line,
then X has infinitely many “small points”. In particular, we establish
the first cases of Szpiro’s small points conjecture, including the genus
two case and the hyperelliptic case. The proofs use Arakelov theory
for arithmetic surfaces and the theory of logarithmic forms.
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1 Introduction

Let X be a smooth, projective and geometrically connected curve of genus at
least two, defined over a number field. In 1984, Szpiro [Szp85a] conjectured that
X has a “small point”, where a “small point” is an algebraic point of the curve
X with “height” bounded from above in a certain way. We refer to Section
2 for a precise formulation of Szpiro’s small points conjecture. Szpiro proved
that his conjecture implies an “effective Mordell conjecture”. In other words,
Szpiro’s remarkable approach shows that to bound the height of all rational
points of any curve X , it suffices to produce for any curve X at least one
“small point”. The small points conjecture was studied in Szpiro’s influential
seminars [Szp85b, Szp90a], see also Szpiro’s articles [Szp86, Szp90b].
The results of this paper are as follows. Let C be the set of curves X as above
which are cyclic covers of prime degree of the projective line. For example, if X
has genus two or is hyperelliptic, then X ∈ C. Our first result (see Theorem 3.1)
gives that any X ∈ C has infinitely many “small points”. In particular, we
establish the first cases of Szpiro’s small points conjecture. Furthermore, we
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improve Theorem 3.1 for hyperelliptic curves (see Theorem 3.2) and for genus
two curves (see Theorem 3.3) in the sense that we produce “smaller points”
on such curves. To give the reader a more concrete idea of our results we now
state a special case of Theorem 3.3. If the curve X has genus two and is defined
over Q, then X has infinitely many algebraic points x that satisfy

max
(

hNT (x), h(x)
)

≤ (10
∏

p)10
6

with the product taken over all bad reduction primes p of X . Here hNT is the
Néron-Tate height and h is the stable Arakelov height, see Section 2. We also
give in Proposition 3.4 and Proposition 5.3 versions of the above theorems with
“exponentially smaller points”. However these versions are either conditional
on the abc conjecture, or they depend on lower bounds for Faltings’ delta
invariant which are not known to be effective.
We remark that “effective Siegel or Mordell” applications of our completely
explicit results require hyperbolic curves which admit Kodaira-Paršin type con-
structions with all fibers in C. There exists no hyperbolic curve for which Ko-
daira’s construction (see [Szp85b, p.266]) is of this form and we are not aware
of a hyperbolic curve for which Paršin’s construction (see Paršin [Par68], or
[Szp85b, p.268]) has all fibers in C. Therefore our results have at the time of
writing no “effective Siegel or Mordell” applications. However, there is the hope
that new and more suitable Kodaira-Paršin type constructions will be discov-
ered. For example, recently Levin [Lev12] gave a new Paršin type construction
for integral points on hyperelliptic curves with all fibers in C.
We next describe the main ingredients for our proofs. Let X be a smooth,
projective and geometrically connected curve of genus g ≥ 2, defined over a
number field K. On using fundamental results of Arakelov [Ara74], Faltings
[Fal84] and Zhang [Zha92], we show that for any ǫ > 0 there exist infinitely
many algebraic points x of X that satisfy

hNT (x) ≤ 2g(g − 1)h(x) ≤ g · e(X) + ǫ. (1)

Here e(X) is a stable Arakelov self-intersection number, see (7). Thus, to
produce “small points” of X , it suffices to estimate e(X) effectively in terms
of K,S and g, for S the set of finite places of K where X has bad reduction.
The proof of Theorem 3.1 uses properties of the Belyi degree degB(X) of X ,
which is defined in (8). From [Jav14, Thm 1.1.1] we obtain

e(X) ≤ 108degB(X)5g. (2)

To control degB(X) we use an effective version of Belyi’s theorem [Bel79],
worked out by Khadjavi in [Kha02]. We deduce an explicit upper bound for
degB(X) in terms of K, g and the heights h(λ) of the cross-ratios λ of four
(geometric) branch points of a finite morphism X → P1

K . To estimate h(λ) we
assume that X ∈ C and then we combine [dJR11, Prop 2.1] of de Jong-Rémond
with [vK14, Prop 6.1 (ii)]; here we mention that the latter result is based on the
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theory of logarithmic forms and the former result generalizes ideas of Paršin
[Par72] and Oort [Oor74]. This leads to an explicit upper bound, in terms
of K,S and g, for degB(X), then for e(X) by using (2), and then finally for
hNT (x) and h(x) by applying (1).
To discuss the proof of Theorem 3.3 we assume that g = 2. It was shown in
[vK14, Prop 5.1 (v)] that Faltings’ delta invariant δ(XC) of a compact con-
nected Riemann surface XC of genus two satisfies −186 ≤ δ(XC). Then the
Noether formula for arithmetic surfaces, due to Faltings [Fal84] and Moret-
Bailly [MB89], leads to the following explicit inequality

e(X) ≤ 12hF (J) + 201. (3)

Here hF (J) is the stable Faltings height (see [Fal83, p.354]) of the Jacobian
J = Pic0(X) of X . The inequalities in [vK14, Prop 4.1 (i), Prop 6.1 (ii)]
slightly refine a method developed by Paršin [Par72], Oort [Oor74] and de
Jong-Rémond [dJR11]. On combining these inequalities, we deduce an explicit
upper bound, in terms of K,S and g, for hF (J), then for e(X) by using (3),
and then finally for hNT (x) and h(x) by applying (1).
To prove Theorem 3.2 we use the strategy of proof of Theorem 3.3. In par-
ticular, we combine this strategy with a formula of de Jong [dJ09, Thm 4.3]
and we use in addition the explicit estimate for the hyperelliptic discriminant
modular form which was established in [vK14, Lem 5.4].
The plan of this paper is as follows. In Section 2 we discuss Szpiro’s small points
conjecture and its variation which involves the Néron-Tate height. Then in Sec-
tion 3 we state our theorems, and we give Proposition 3.4 which is conditional
on the abc conjecture. In Section 4 we collect results from Arakelov theory
for arithmetic surfaces. We also give an upper bound for the Belyi degree of
X . In Section 5 we consider curves X ∈ C and we prove Theorem 3.1. We
also establish Proposition 5.3. It refines our theorems, with the disadvantage
inherent that it involves a lower bound for Faltings’ delta invariant which is
not known to be effective. In Section 6 we first show Lemma 6.1 and Lemma
6.2. They give explicit results for certain (Arakelov) invariants of hyperelliptic
curves which may be of independent interest. Then we use these lemmas to
prove Theorem 3.2. Finally, in Section 7, we give a proof of Theorem 3.3.

Notation

Throughout this paper we shall use the following notations and conventions.
Let K be a number field. We denote by K̄ a fixed algebraic closure of K. If
L is a field extension of K, then we write [L : K] for the relative degree of L
over K. By a curve X over K we mean a smooth, projective and geometrically
connected curve X → Spec(K). For any finite place v of K, we write Nv for
the number of elements in the residue field of v and we let v(a) be the order of
v in a fractional ideal a of K. We denote by |S| the cardinality of an arbitrary
set S. Finally, by log we mean the principal value of the natural logarithm and
we define the product taken over the empty set as 1.
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2 Small points conjectures

In this section we state and discuss Szpiro’s small points conjecture, and its
variation which involves the Néron-Tate height. Let K be a number field, let
g ≥ 2 be an integer and let X be a curve over K of genus g.
We take an algebraic point x ∈ X(K̄). The classical result of Deligne-Mumford
gives a finite extension L of K such that XL has semi-stable reduction over B
and such that x ∈ X(L), where B is the spectrum of the ring of integers of L.
We denote by ωX/B the relative dualizing sheaf of the minimal regular model
X of XL over B. Let ω = (ωX/B, ‖·‖) with ‖·‖ the Arakelov metric, let (·, ·) be
the intersection product of Arakelov divisors on X and identify ω and x with
the corresponding Arakelov divisors on X , see [Fal84, Section 2] for definitions.
Then the stable Arakelov height h(x) of x is the real number defined by

[L : Q]h(x) = (ω, x). (4)

The factor [L : Q] and the semi-stability of X assure that the definition of h(x)
does not depend on the choice of a field L with the above properties.
Let S be a set of finite places of K. We say that a constant c, depending on
some data (D), is effective if one can in principle explicitly determine the real
number c provided that (D) is given. In 1984, Szpiro [Szp85a, p.101] formulated
his small points conjecture in terms of the Arakelov self-intersection (x, x) of
x. However, Arakelov’s adjunction formula (ω, x) = −(x, x) in [Ara74] shows
that Szpiro’s small points conjecture coincides with the following conjecture.

Conjecture (sp). There exists an effective constant c, depending only on K,
S and g, with the following property. Suppose that X is a curve over K of
genus g, with set of bad reduction places S. If X has semi-stable reduction over
the ring of integers of K, then there exists x ∈ X(K̄) that satisfies h(x) ≤ c.

It is known (see Szpiro [Szp85a, p.101]) that this conjecture implies an “effec-
tive Mordell conjecture”. Further, Szpiro established a rather strong geometric
analogue of Conjecture (sp) in [Szp81]. We also mention that if Conjecture (sp)
holds, then it holds without the semi-stable assumption. Indeed, on combin-
ing results of Grothendieck-Raynaud [GR72, Proposition 4.7] and Serre-Tate
[ST68, Theorem 1] with Dedekind’s discriminant theorem, one obtains a finite
field extension M of K such that XM has semi-stable reduction over the ring
of integers ofM and such that [M : K] and the relative discriminant ofM over
K are effectively controlled in terms of K, S and g.
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In the Grothendieck Festschrift, Szpiro [Szp90b] formulated another version of
Conjecture (sp). This formulation involves the Néron-Tate height

hNT (x) (5)

of x ∈ X(K̄) which is defined as the Néron-Tate height of the divisor class
(2g − 2)x − Ω1 in the Jacobian Pic0(XL) of XL for L as above. Here Ω1

denotes the sheaf of differential one-forms of the curve XL over L. We now
give a version of Szpiro’s “Conjecture des deux petits points pour Néron-Tate”
which was stated by Szpiro in [Szp90b, p.244].

Conjecture (sp)∗. Any curve X over K of genus g has two distinct points
xi ∈ X(K̄), i = 1, 2, that satisfy hNT (xi) ≤ c, where c is an effective constant
which depends only on K, g and the geometry of the bad reduction of X.

It follows for example from Lemma 4.5 below that Conjecture (sp) implies
Conjecture (sp)∗. An unconditional proof of the converse implication seems
to be difficult. However, we point out that Szpiro’s arguments in [Szp90b,
p.244] combined with Moret-Bailly’s proof of [MB90, Théorème 5.1] show that
Conjecture (sp)∗ still implies an “effective Mordell conjecture”.
We mention that the conjecture in [Szp90b, p.244] describes the constant c in
Conjecture (sp)∗ more precisely. See also [JvK13, Section 2] for a discussion of
the possible shape of the constants in Conjectures (sp) and (sp)∗. For further
discussions and conjectures related to the small points conjecture, we refer the
reader to the works of Paršin [Par88] and Moret-Bailly [MB90].

3 Statements of results

In this section we state and discuss Theorems 3.1, 3.2 and 3.3. We also give
Proposition 3.4 which relies on the abc conjecture.
To state our results we need to introduce some notation. Let g ≥ 2 be an
integer, let K be a number field and let S be a set of finite places of K. We
denote by DK the absolute value of the discriminant of K over Q and we write
d = [K : Q] for the degree of K over Q. To measure K, S and g we use

DK , d, NS =
∏

v∈S

Nv, g and ν = d(5g)5. (6)

We mention that the only purpose of introducing ν is to simplify the exposition.
Let h be the stable Arakelov height and let hNT be the Néron-Tate height.
These heights are defined in (4) and (5) respectively. Let C = C(K) be the set
of curvesX overK of genus≥ 2 such that there is a finite morphismX → P1

K of
prime degree which is geometrically a cyclic cover. Our first theorem establishes
in particular Conjectures (sp) and (sp)∗ for all curves X ∈ C.

Theorem 3.1. Let X be a curve over K of genus g, with set of bad reduction
places S. If X ∈ C then there exist infinitely many x ∈ X(K̄) that satisfy

logmax
(

hNT (x), h(x)
)

≤ νdν(NSDK)ν .
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Next, we present two results which improve Theorem 3.1 in certain cases. We
say that a curve X over K of genus g is a hyperelliptic curve over K if there is
a finite morphism X → P1

K of degree two. For example, any genus two curve
over K is a hyperelliptic curve over K. We obtain in particular the following
theorem for hyperelliptic curves over K.

Theorem 3.2. Suppose that X is a hyperelliptic curve over K of genus g, with
set of bad reduction places S and set of Weierstrass points W. Then it holds

∑

x∈W

hNT (x) ≤ ν8
gdν(NSDK)ν .

The Néron-Tate height hNT is non-negative, and any hyperelliptic curve over
K of genus g has exactly 2g + 2 Weierstrass points. Thus Theorem 3.2 gives
another proof of Conjecture (sp)∗ for all hyperelliptic curves over K of genus
g. Our next result refines Theorem 3.1 in the special case of genus two curves.

Theorem 3.3. Suppose that X is a curve over K of genus two, with set of bad
reduction places S. Then there are infinitely many x ∈ X(K̄) that satisfy

max
(

hNT (x), h(x)
)

≤ ν2dν(NSDK)ν , ν = 105d.

To state Proposition 3.4 we need to recall the abc-conjecture of Masser-Oesterlé
[Mas02] over number fields. For any non-zero triple α, β, γ ∈ K we denote by
H(α, β, γ) the usual absolute multiplicative Weil height of the corresponding
point in P2(K), see [BG06, 1.5.4]. We define the height function HK = Hd and
we write SK(α, β, γ) =

∏

Nev
v with the product extended over all finite places

v of K such that v(α), v(β) and v(γ) are not all equal, where ev = v(p) for
p the residue characteristic of v. We mention that Masser [Mas02] added the
ramification index ev in the definition of the support SK to obtain a natural
behaviour of SK with respect to finite field extensions.

Conjecture (abc). For any integer n ≥ 1, and any real r, ǫ > 1, there is a
constant c, which depends only on n, r, ǫ, such that if K is a number field of
degree [K : Q] ≤ n, and α, β, γ ∈ K are non-zero and satisfy α + β = γ, then
HK(α, β, γ) ≤ cSK(α, β, γ)rDǫ

K .

The following proposition is conditional on Conjecture (abc). It improves ex-
ponentially, in terms of NS and DK , the inequalities in our theorems. We put
u(g) = 8(11g)

38g and now we can state Proposition 3.4.

Proposition 3.4. Let r, ǫ > 1 be real numbers and write

Ω = (r +
ǫ

d
) logNS +

ǫ

d
logDK .

Suppose that Conjecture (abc) holds for n = 24g4d, r, ǫ with the constant c.
Then there exist effective constants c1, c2, c3, depending only on c, r, ǫ, d and g,
such that for any curve X over K of genus g, with set of bad reduction places
S, the following statements hold.
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(i) If X ∈ C, then there are infinitely many x ∈ X(K̄) that satisfy

logmax
(

hNT (x), h(x)
)

≤ ννΩ+ c1.

(ii) Suppose that X is a hyperelliptic curve over K, with set of Weierstrass
points W. Then it holds

∑

x∈W

hNT (x) ≤ u(g)(3g − 1)(8g + 4)Ω + c2.

(iii) If g = 2, then there are infinitely many x ∈ X(K̄) that satisfy

1

4
hNT (x) ≤ h(x) ≤ 6u(2)Ω + c3.

We remark that the factor u(g) appearing in Proposition 3.4 is not optimal. Its
origin shall be explained after Proposition 5.3. We also point out that Propo-
sition 3.4 only requires the validity of (abc) for some fixed n, r, ǫ, instead of all
n, r, ǫ, and (abc) with fixed n, r, ǫ is often called “weak abc conjecture”. Further
we mention that Elkies [Elk91] used Belyi’s theorem to show that (effective)
(abc) implies (effective) Mordell. However, it is not clear if Conjecture (sp) or
Conjecture (sp)∗ follows from the effective version of the Mordell conjecture
which Elkies deduces from an effective version of (abc).
In general, we conducted some effort to obtain constants reasonably close to
the best that can be acquired with the present method of proof. However,
to simplify the form of our inequalities we freely rounded off several of the
numbers appearing in our estimates.

4 Self-intersection, Belyi degree and heights

In this section we first give two lemmas which describe properties of the Belyi
degree, and then we collect results from Arakelov theory for arithmetic surfaces.
We also prove a lemma which was used in Section 2.
Throughout this section we denote by X a curve of genus g ≥ 2, defined over
a number field K. Suppose that L, ω and (·, ·) are as in Section 2. Then the
stable self-intersection e(X) of ω is the real number defined by

[L : Q]e(X) = (ω, ω). (7)

We observe that this definition does not depend on any choices. Let D be
the set of degrees of finite morphisms XK̄ → P1

K̄
which are unramified outside

0, 1,∞. Belyi’s theorem [Bel79] shows that D is non-empty, and then the Belyi
degree degB(X) of X is defined by

degB(X) = minD. (8)

Our proof of Theorem 3.1 uses two fundamental properties of the Belyi degree.
We now state the first of these properties in the following lemma.
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Lemma 4.1. It holds e(X) ≤ 108degB(X)5g.

Proof. The statement is proven in [Jav14, Theorem 1.1.1].

The next lemma gives the second property. It is a consequence of an effective
version of Belyi’s theorem [Bel79] worked out by Khadjavi [Kha02]. We denote
by H(α) the usual absolute multiplicative Weil height of α ∈ P1(K̄), defined
in [BG06, 1.5.4]. Then we define the height HΛ of a subset Λ of P1(K̄) by
HΛ = sup{H(λ), λ ∈ Λ}.

Lemma 4.2. If ϕ : X → P1
K is a finite morphism, with set of (geometric)

branch points Λ ⊂ P1(K̄) and if m = 4[K : Q](deg(ϕ) + g − 1)2, then

degB(X) ≤ (4mHΛ)
9m32m−2m!deg(ϕ).

Proof. The absolute Galois group Gal(Q̄/Q) of Q̄ over Q acts in the usual way
on P1(Q̄) ∼= P1(K̄). Let Λ′ = Gal(Q̄/Q) · Λ be the image of Λ under this
action. The classical result of Hurwitz [Liu02, Theorem 7.4.16] implies that
[K(λ) : K] and |Λ| are at most 2g− 2+2deg(ϕ) for K(λ) the field of definition
of λ ∈ Λ. This gives |Λ′| ≤ m, and the Galois invariance [BG06, 1.5.17] of H
showsHΛ = HΛ′ . Then an application of [Kha02, Theorem 1.1] with the Galois
stable set Λ′ gives a finite morphism ψ : P1

K̄
→ P1

K̄
with the following properties.

The morphism ψ is unramified outside 0, 1,∞, with ψ(Λ) ⊆ {0, 1,∞} and

deg(ψ) ≤ (4mHΛ)
9m32m−2m!.

We observe that the composition ψ◦ϕ : XK̄ → P1
K̄
is unramified outside 0, 1,∞.

This shows degB(X) ≤ deg(ψ)deg(ϕ) and then the displayed inequality implies
Lemma 4.2.

The bound in Khadjavi’s [Kha02, Theorem 1.1], and thus Lemma 4.2, can be
improved in special cases. See for example Liţcanu [Liţ04].
Let h be the stable Arakelov height defined in (4). To obtain infinitely many
small points we shall use the following lemma which relies on a fundamental
result of Zhang [Zha92].

Lemma 4.3. Suppose that ǫ > 0 is a real number. Then there exist infinitely
many points x ∈ X(K̄) that satisfy

2(g − 1)h(x) ≤ e(X) + ǫ.

Proof. It follows for example from Lemma 4.4 (i) below that any point x ∈
X(K̄) satisfies h(x) ≥ 0. Then we see that [Zha92, Theorem 6.3] implies the
statement of Lemma 4.3.

We remark that Moret-Bailly showed that for any real number ǫ > 0, there
exists an algebraic point x ∈ X(K̄) which satisfies 4(g − 1)h(x) ≤ e(X) + ǫ.
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For details we refer the reader to the proof of [MB90, Proposition 3.4] which
uses in particular Faltings’ result [Fal84, Corollary, p.406].
The following lemma is a direct consequence of classical results of Arakelov
[Ara74], Faltings [Fal84] and Moret-Bailly [MB89]. To state this lemma we
need to introduce more notation. For any embedding σ : K →֒ C, we denote
by Xσ the compact connected Riemann surface which corresponds to the base
change of X to C with respect to σ. Let δ(Xσ) be Faltings’ delta invariant of
Xσ, defined in [Fal84, p.402]. We denote byMg(C) the moduli space of smooth,
projective and connected curves over C of genus g. Faltings’ delta invariant,
viewed as a function Mg(C) → R, has a minimum which we denote by

cδ(g). (9)

If g ≥ 3, then effective lower bounds for cδ(g) are not known. Let hF (J) be the
stable Faltings height [Fal83, p.354] of the Jacobian J = Pic0(X) of X , and let
hNT be the Néron-Tate height defined in (5). We now can state the lemma.

Lemma 4.4. The following statements hold.

(i) Any x ∈ X(K̄) satisfies hNT (x) ≤ 2g(g − 1)h(x).

(ii) It holds e(X) + cδ(g) ≤ 12hF (J) + 4g log(2π).

Proof. To show (i) we take x ∈ X(K̄). Let L, X → B, ω and (·, ·) be as in
(4). We identify x with the corresponding Arakelov divisor on X . Let Φ be the
(unique) vertical Q-Cartier divisor on X such that the supports of Φ and x(B)
are disjoint and such that any irreducible component Γ of any fiber of X → B
satisfies ((2g − 2)x − ω + Φ,Γ) = 0. Szpiro [Szp85c, p.276] observed that the
adjunction formula in [Ara74] together with [Fal84, Theorem 4.c)] leads to

2hNT (x) = −e(X) + 4g(g − 1)h(x) +
1

[L : Q]
(Φ,Φ).

Further, [Fal84, Theorem 5.a)] provides that −e(X) ≤ 0. Therefore the in-
equality (Φ,Φ) ≤ 0 implies assertion (i).
We now prove (ii). If v ∈ B is closed, then δv denotes the number of singular
points of the geometric special fiber of X over v. The (logarithmic) stable
discriminant ∆(X) of X is the real number defined by

[L : Q]∆(X) =
∑

δv logNv (10)

with the sum taken over all closed points v of B. Then we see that Moret-
Bailly’s refinement [MB89, Théorème 2.5] of the Noether formula [Fal84, The-
orem 6] implies the following formula

12hF (J) = ∆(X) + e(X)− 4g log(2π) +
1

[L : Q]

∑

δ(Xσ)

with the sum taken over all embeddings σ : L →֒ C. Therefore the estimates
∆(X) ≥ 0 and

∑

δ(Xσ) ≥ [L : Q]cδ(g) prove assertion (ii) and this completes
the proof of Lemma 4.4.
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The above results lead to the following useful lemma.

Lemma 4.5. Suppose that ǫ > 0 is a real number and assume that x0 ∈ X(K̄).
Then there exist infinitely many x ∈ X(K̄) that satisfy

hNT (x) ≤ 4g2(g − 1)h(x0) + ǫ.

Proof. On combining Lemma 4.3 with Lemma 4.4 (i), we see that there exist
infinitely many points x ∈ X(K̄) that satisfy

hNT (x) ≤ g · e(X) + ǫ. (11)

Further [Fal84, Theorem 5.b)] gives that any x0 ∈ X(K̄) satisfies the inequality
e(X) ≤ 4g(g − 1)h(x0) and thus (11) implies Lemma 4.5.

We conclude this section by the following remarks. Let S be the set of finite
places of K where X has bad reduction. Suppose that there exists a finite
morphism ϕ : X → P1

K , with deg(ϕ) and HΛ effectively bounded in terms
of K, S and g, where HΛ is the height of the set Λ of (geometric) branch
points of ϕ. Then Lemma 4.1, Lemma 4.2 and Lemma 4.3 show that X has
infinitely many “small points”, and therefore X satisfies in particular Szpiro’s
small points conjecture. Similarly, if degB(X) is effectively bounded in terms
of K, S and g, then Lemma 4.1 and Lemma 4.3 show that X has infinitely
many “small points”. For example, if the base change of X to C, with respect
to some embedding K →֒ C, is a classical congruence modular curve, then a
result of Zograf in [Zog91] gives degB(X) ≤ 128(g + 1).

5 Cyclic covers of prime degree

In this section we prove Theorem 3.1 and Proposition 3.4 (i). We also give
Proposition 5.3 which may be of independent interest. It improves certain
aspects of the inequalities in Theorem 3.1 and Proposition 3.4 (i). However,
Proposition 5.3 has the disadvantage inherent that it now involves a constant
which is not known to be effective.
Let X be a curve over a number field K of genus g ≥ 2. We denote by S the set
of finite places of K where X has bad reduction. Further we write C = C(K)
for the set of cyclic covers of prime degree which was introduced in Section 3.
In this section we assume throughout that X ∈ C.
We now give two lemmas which will be used in our proof of Theorem 3.1.
To state and prove these lemmas we have to introduce some notation. Our
assumption that X ∈ C provides a finite morphism ϕ : X → P1

K which is
geometrically a cyclic cover of prime degree. Let q be the degree of ϕ and let
L be a finite extension of K. We denote by U = S(L, q) the set of places of L
which divide q or a place in S. Let O×

U be the U -units in L and let h(α) be
the usual absolute logarithmic Weil height of α ∈ L, defined in [BG06, 1.6.1].
We write µU = sup(h(λ), λ ∈ O×

U and 1 − λ ∈ O×

U ). Let R be the set of field
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extensions L of K such that L is the compositum of the fields of definition of
four distinct (geometric) ramification points of ϕ. We define

µX = sup(1, µS(L,q)) (12)

with the supremum taken over all fields L ∈ R. Let degB(X) be the Belyi
degree of X , defined in (8), and let d be the degree of K over Q. We recall
that ν = d(5g)5 and now we can state the following lemma.

Lemma 5.1. It holds log degB(X) ≤ νν/2µX .

To prove this lemma we shall combine the estimate for degB(X) in Lemma
4.2 with the following observation of Paršin in [Par72]: The cross-ratios of
the branch points, of a hyperelliptic map of a genus two curve X over K, are
solutions of certain S(L, 2)-unit equations. Oort [Oor74, Lemma 2.1] and de
Jong-Rémond [dJR11, Proposition 2.1] generalized Paršin’s idea to hyperellip-
tic curves and to cyclic covers of prime degree.

Proof of Lemma 5.1. We take three distinct (geometric) ramification points of
ϕ. LetM be the compositum of their fields of definition. On composing ϕ with
a suitable automorphism of P1

M , we get a finite morphism XM → P1
M of degree

q such that {0, 1,∞} ⊂ Λ, where Λ is the set of (geometric) branch points of
ϕ. Let HΛ be the height of Λ, defined in Section 4. To prove the inequality

logHΛ ≤ µX ,

we may and do take λ ∈ Λ with λ 6= 0, 1,∞. We write U = S(K(λ), q). From
[dJR11, Proposition 2.1] we deduce that the cross-ratios λ = cr(∞, 0, 1, λ) and
1− λ = cr(∞, 1, 0, λ) are U -units in K(λ). This implies that h(λ) ≤ µX , since
K(λ) ⊆ L for some L ∈ R. Hence we obtain logHΛ ≤ µX as desired. Next,
we observe that the ramification indexes of ϕK̄ : XK̄ → P1

K̄
are in {1, q}, and

Gal(K̄/K) acts on the (geometric) ramification points of ϕ. Therefore Hurwitz
leads to q ≤ 2g + 1 and [M : Q] ≤ 15dg3. Then an application of Lemma 4.2
with XM → P1

M gives an upper bound for degB(X) which together with the
displayed inequality implies Lemma 5.1.

We remark that if L ∈ R, then Hurwitz (see the proof of Lemma 5.1) leads to
q ≤ 2g + 1 and [L : K] ≤ 24g4, and [dJR11, Lemme 2.1] of de Jong-Rémond
implies that L is unramified outside S(K, q).
Next, we go into number theory and we give an upper bound for µX in terms
of the quantities NS , ν, d and DK which are defined in (6).

Lemma 5.2. The following statements hold.

(i) It holds µX ≤ νdν/8(NSDK)ν .

(ii) Let r, ǫ > 1 be real numbers. Suppose (abc) holds for n = 24g4d, r, ǫ with
the constant c. Then there exists an effective constant c∗, depending only
on c, r, ǫ, d and g, such that

dµX ≤ (dr + ǫ) logNS + ǫ logDK + c∗.
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To prove (i) we use [vK14, Proposition 6.1 (ii)]. It is based on the theory of
logarithmic forms and we refer to the monograph of Baker-Wüstholz [BW07]
in which the state of the art of this theory is exposed.

Proof of Lemma 5.2. We take L ∈ R, and we write U = S(L, q), T = S(K, q)
and l = [L : K]. Then we observe that NT =

∏

v∈T Nv satisfies NT ≤ qdNS .
Furthermore, the remark after the proof of Lemma 5.1 gives that q ≤ 2g + 1
and l ≤ 24g4, and that L is unramified outside T . We now apply [vK14,
Proposition 6.1] with U = U , T = T and S = T , where the symbols U, T, S on
the left hand side of these equalities denote the sets in [vK14, Proposition 6.1].
In particular, [vK14, Proposition 6.1 (ii)] leads to µU ≤ νdν/8(DKNS)

ν which
implies statement (i).
To show statement (ii) we take real numbers r, ǫ > 1. We may and do assume
that Conjecture (abc) holds for n = 24g4d, r, ǫ with the constant c. Then
Conjecture (abc) holds in particular for n′ = ld, r, ǫ with the same constant c,
since n′ ≤ n. Then [vK14, Proposition 6.1 (iii)] gives

dµU ≤ (dr + ǫ) logNT + ǫ logDK + ǫdt log l −
ǫ

l
logNT +

1

l
log c

for t = |T |. From [vK14, Lemma 6.3] we get that ǫdt log l− ǫ
l logNT is bounded

from above by an effective constant, which depends only on ǫ, d and g. Hence
we deduce statement (ii) and Lemma 5.2.

We recall that h denotes the stable Arakelov height and that hNT denotes the
Néron-Tate height, defined in (4) and (5) respectively. We now prove Theorem
3.1 and Proposition 3.4 (i) simultaneously.

Proof of Theorem 3.1 and Proposition 3.4 (i). On combining Lemma 4.1,
Lemma 4.3, Lemma 4.4 and Lemma 5.1, we obtain infinitely many x ∈ X(K̄)
that satisfy logmax

(

hNT (x), h(x)
)

≤ 6νν/2µX . Therefore we see that Lemma
5.2 (i) and Lemma 5.2 (ii) imply Theorem 3.1 (i) and Proposition 3.4 (i)
respectively.

The remaining of this section is devoted to the following Proposition 5.3. Let
cδ(g) be the minimum of Faltings’ delta invariant on Mg(C), defined in (9).
We recall that if g ≥ 3, then effective lower bounds for cδ(g) in terms of g are

not known. Put u(g) = 8(11g)
38g and now we can state the following result.

Proposition 5.3. The following statements hold.

(i) There are infinitely many x ∈ X(K̄) that satisfy

h(x) ≤ ν8
gdν(DKNS)

ν − cδ(g).

(ii) Let r, ǫ > 1 be real numbers. Suppose that Conjecture (abc) holds for
n = 24g4d, r, ǫ with the constant c. Then there exists an effective constant
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c′1, depending only on c, r, ǫ, d and g, with the property that there are
infinitely many points x ∈ X(K̄) which satisfy

h(x) ≤ 6
u(g)

g − 1

(

(r +
ǫ

d
) logNS +

ǫ

d
logDK

)

+c′1 −
cδ(g)

2g − 2
.

We observe that these (ineffective) inequalities improve exponentially, in terms
of NS and DK , the estimates provided by Theorem 3.1 and Proposition 3.4 (i).
On using Lemma 4.4 one can formulate Proposition 5.3 also in terms of hNT .
Further we remark that the factor u(g) comes from explicit height compar-
isons of Rémond [Rém10] which rely inter alia on results of Bost-David-Pazuki
[Paz12]. In fact, Rémond’s explicit height comparisons hold for arbitrary curves
over K, and in our special case where X ∈ C it seems possible to improve these
height comparisons, and thus u(g), up to a certain extent.
Our proof of Proposition 5.3 uses in particular the following tools. We combine
Lemma 5.2 with [vK14, Proposition 4.1 (i)]. This slightly refines the method de-
veloped by Paršin [Par72], Oort [Oor74] and de Jong-Rémond [dJR11]. We also
use Lemma 4.3 which is based on a theorem of Zhang [Zha92], and Lemma 4.4
(ii) which relies inter alia on Moret-Bailly’s refinement [MB89] of the Noether
formula in Faltings’ article [Fal84].

Proof of Proposition 5.3. We denote by hF (J) the stable Faltings height of the
Jacobian J = Pic0(X) of X . The remark given below [vK14, Proposition 4 (i)]
provides the following explicit inequality

hF (J) ≤ u(g)µX . (13)

Then Lemma 4.4 (ii) shows e(X) ≤ 12u(g)µX − cδ(g) + 4g log(2π) for e(X) as
in (7). Hence Lemmas 4.3 and 5.2 imply Proposition 5.3.

We conclude this section by the following remarks. Let hF (J) be as above, let
∆(X) be the stable discriminant of X defined in (10) and let e(X) be as in (7).
Further, we define the quantity δ(X) = 1

d

∑

δ(Xσ) with the sum taken over all
embeddings σ : K →֒ C, where δ(Xσ) is defined in Section 4. Then it holds

logmax(e(X), δ(X), hF (J),∆(X)) ≤ νdν(DKNS)
ν . (14)

Indeed, [Jav14, Theorem 1.1.1] gives that e(X), δ(X), hF (J) and ∆(X) are
at most 109g2degB(X)5, and then Lemmas 5.1 and 5.2 prove the displayed
inequality. We mention that de Jong-Rémond [dJR11, Theorem 1.2] provides
an estimate for hF (J) which is better than (14). Further [vK14, Theorem
3.2] gives an upper bound for ∆(X) which is exponentially better than (14).
However, [vK14, Theorem 3.2] involves a constant, depending at most on g,
which is only known to be effective for hyperelliptic curves X over K. We note
that [dJR11, Theorem 1.2] and [vK14, Theorem 3.2] both depend inter alia on
the above mentioned explicit height comparisons of Rémond in [Rém10], and
such height comparisons are not used in our proof of (14).
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Finally we point out that the method of this paper using the Belyi degree gives
in addition the following generalizations: Theorem 3.1, Proposition 3.4 (i) and
inequality (14) hold more generally for any curve Y over K which admits a
finite étale morphism to some X ∈ C. Indeed on using that Y is an étale cover
of X we deduce from Hurwitz that degB(Y ) is explicitly bounded in terms of
degB(X) and the genus of Y , and then the above arguments prove the claimed
generalization. Here we applied in addition [LL99, Corollary 4.10] which gives
that Y has bad reduction at a finite place v of K if X has bad reduction at v.

6 Hyperelliptic curves

In this section we prove Theorem 3.2. We also show two lemmas which may
be of independent interest. They provide explicit results for certain (Arakelov)
invariants of hyperelliptic curves. Throughout this section we denote by X a
hyperelliptic curve of genus g ≥ 2, defined over a number field K.
As before, we denote by Xσ the compact connected Riemann surface cor-
responding to the base change of X to C with respect to an embedding
σ : K →֒ C. Let T (Xσ) be the invariant of de Jong. It is the norm of a
canonical isomorphism between certain line bundles on Xσ and we refer to
[dJ05, Definition 4.2] for a precise definition of T (Xσ).

Lemma 6.1. It holds −36g3 ≤ logT (Xσ).

To prove this lemma we use de Jong’s formula [dJ05, Theorem 4.7]. It expresses
T (Xσ) in terms of a certain hyperelliptic discriminant modular form, which we
then estimate by using the explicit inequality in [vK14, Lemma 5.4].

Proof of Lemma 6.1. We begin to state the formula for T (Xσ) in [dJ05, The-
orem 4.7]. Let Hg be the Siegel upper half plane of complex symmetric g × g
matrices with positive definite imaginary part. We denote by ∆g the hyper-
elliptic discriminant modular form on Hg, defined in [vK14, Section 5]. Since
X is hyperelliptic, there exists a finite morphism ϕ : Xσ → P1

C
of degree two.

Let H1(Xσ,Z) be the first homology group of Xσ with coefficients in Z. On
following Mumford [Mum07, Chapter IIIa] we construct a canonical symplectic
basis of H1(Xσ,Z) with respect to a fixed ordering of the 2g+2 branch points
of ϕ. Then [dJ05, Theorem 4.7] provides a basis of the global sections of the
sheaf of differentials on Xσ with the following property: Integration of this
basis over the canonical symplectic basis of H1(Xσ,Z) gives a period matrix
τσ ∈ Hg that satisfies

T (Xσ) = (2π)−2g
∣

∣∆g(τσ)det(im(τσ))
2a
∣

∣

−(3g−1)/(8bg)
,

where a =
(

2g+1
g+1

)

and b =
(

2g
g+1

)

. Furthermore, [vK14, Lemma 5.4] gives an
effective constant k1, depending only on g, such that

∣

∣∆g(τσ)det(im(τσ))
2a
∣

∣ ≤ k1.

Documenta Mathematica 19 (2014) 1085–1103



Szpiro’s Small Points Conjecture for Cyclic Covers 1099

The effective constant k1 is explicitly computed in [vK14, (15)], and then the
displayed formula for T (Xσ) leads to an inequality as stated in Lemma 6.1.

Let hF (J) be the stable Faltings height of the Jacobian J = Pic0(X) of X and
let hNT be the Néron-Tate height which is defined in (5).

Lemma 6.2. If W denotes the set of Weierstrass points of X, then
∑

x∈W

hNT (x) ≤ (3g − 1)(8g + 4)hF (J) + 293g5.

To prove Lemma 6.2 we use de Jong’s formula [dJ09, Theorem 4.3]. This
formula involves inter alia hF (J) and

∑

x∈W
hNT (x), and an analytic term

related to T (Xσ) which we control by Lemma 6.1.

Proof of Lemma 6.2. To state the formula in [dJ09, Theorem 4.3] we introduce
quantities A1, A2 and A3. Let L be a finite field extension of K such that XL

has semi-stable reduction over the spectrum B of the ring of integers of L and
such that all Weierstrass points of X are in X(L). We define

A1 = −4g(2g − 1)(g + 1) log(2π) +
8g2

[L : Q]

∑

logT (Xσ)

with the sum taken over all embeddings σ : L →֒ C. Let X → B, (·, ·) and ω be
as in (4). We denote by E the residual divisor on X defined in [dJ09, p.286].
Let ∆(X) be the stable discriminant of X in (10). Then we take

A2 = (2g − 1)(g + 1)∆(X) +
4

[L : Q]
(E,ω).

For any section x ∈ X (B) of X → B, we denote by Φx the (unique) vertical
Q-Cartier divisor on X with the following properties: The supports of Φx and
x(B) are disjoint, and any irreducible component Γ of any fiber of X → B
satisfies ((2g − 2)x− ω +Φx,Γ) = 0. We write

A3 =
1

[L : Q]g(g − 1)

∑

x∈W

−(Φx,Φx)nx

with nx the multiplicity of x in the Weierstrass divisor W on X , where W is
defined in [dJ09, p.286]. Then [dJ09, Theorem 4.3] gives

(3g − 1)(8g + 4)hF (J) = A1 +A2 +A3 +
2

g(g − 1)

∑

x∈W

hNT (x)nx.

We now estimate the quantities A1, A2 and A3 from below. To deal with A1

we use Lemma 6.1. It gives −293g5 ≤ A1. The divisor E on X is vertical and
effective, and our minimal X does not contain any exceptional curves. This
implies that (E,ω) ≥ 0. Then ∆(X) ≥ 0 and −(φx, φx) ≥ 0 show that A2

and A3 are both non-negative. Furthermore, [dJ09, Lemma 3.2] gives that
nx = g(g − 1)/2. Thus we see that the above displayed formula and the lower
bounds for A1, A2 and A3 imply an inequality as claimed in Lemma 6.2.
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On using the inequality given in Lemma 6.2 we now prove Theorem 3.2 and
Proposition 3.4 (ii) simultaneously.

Proof of Theorem 3.2 and Proposition 3.4 (ii). SinceX is a hyperelliptic curve
over K, there exists a finite morphism X → P1

K which is geometrically a cyclic
cover of prime degree two. Then, on combining Lemma 6.2, Lemma 5.2 and
inequality (13), we deduce Theorem 3.2 and Proposition 3.4 (ii).

Let x ∈ W . We remark that the arguments of Burnol [Bur92, Theorem B]
imply an upper bound for hNT (x) in terms of certain Arakelov invariants of
X . However, it turns out that the bound for hNT (x) in Lemma 6.2 leads to a
better inequality in Theorem 3.2.

7 Genus two curves

In this section we prove Theorem 3.3 and Proposition 3.4 (iii). Let cδ(2) be the
minimum of Faltings’ delta invariant on M2(C), see (9). The following lemma
was established in [vK14, Proposition 5.1 (v)].

Lemma 7.1. It holds −186 ≤ cδ(2).

We now combine Lemma 7.1 with the arguments used in the proof of Proposi-
tion 5.3 in order to prove Theorem 3.3 and Proposition 3.4 (iii).

Proof of Theorem 3.3 and Proposition 3.4 (iii). Let X be a genus two curve
which is defined over a number field K. It is a hyperelliptic curve over K by
[Liu02, Proposition 7.4.9]. Thus there exists a finite morphism X → P1

K which
is geometrically a cyclic cover of prime degree two. As before, we denote by
h and hNT the stable Arakelov height and the Néron-Tate height respectively,
defined in (4) and (5). Then Lemma 4.3, Lemma 4.4, inequality (13) and
Lemma 7.1 give infinitely many points x ∈ X(K̄) that satisfy

1

4
hNT (x) ≤ h(x) ≤ 6u(2)µX + 101

for µX as in (12) and u(2) as in Proposition 3.4. Therefore the upper bounds
for µX , given in Lemma 5.2 (i) and Lemma 5.2 (ii), imply Theorem 3.3 and
Proposition 3.4 (iii) respectively.
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