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Abstract. We prove that the class of principal coactions is closed
under one-surjective pullbacks in an appropriate category of algebras
equipped with left and right coactions. This allows us to handle cases
of C∗-algebras lacking two different non-trivial ideals. It also allows us
to go beyond the category of comodule algebras. As an example of the
former, we carry out an index computation for noncommutative line
bundles over the standard Podleś sphere using the Mayer-Vietoris-
type arguments afforded by a one-surjective pullback presentation of
the C∗-algebra of this quantum sphere. To instantiate the latter, we
define a family of coalgebraic noncommutative deformations of the
U(1)-principal bundle S7 → CP3.
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1026 Piotr M. Hajac, Elmar Wagner

1. Introduction and preliminaries

The idea of decomposing a complicated object into simpler pieces and connect-
ing data is a fundamental computational principle throughout mathematics.
In the case of (co)homology theory, it yields the Mayer-Vietoris long exact
sequence whose significance and usefulness can hardly be overestimated. The
categorical underpinning of all this are pullback diagrams: in a given category
they give a rigorous meaning to putting together two objects over a third one.

In the classical setting of spaces, the freeness of a group action is a local
property: if it is free on covering pieces, it is free everywhere. Slightly more
generally, if we take the pushout of two equivariant maps X12 → X1 and
X12 → X2 between spaces equipped with free actions, then the induced action
on the pushout space is again free provided that at least one of the pushout
maps is injective. Our aim is to work out a general noncommutative version
of this simple fact. Let us explain our generalization step by step.

First, let us assume that all spaces are compact Hausdorff and all maps are con-
tinuous. Then we can easily dualize the aforementioned equivariant pushout to
an equivariant pullback of homomorphisms of commutative unital C∗-algebras
of all continuous complex-valued functions on compact Hausdorff spaces. Our
assumption that at least one of the pushout maps is injective becomes now
an assumption that at least one of the pullback maps is surjective. The right
action X ×G→ X of a topological group G translates into a representation of
G in the automorphism group of the C∗-algebra C(X) of functions on X :

(1.1) α : G ∋ g 7−→ αg ∈ Aut(C(X)), (αgf)(x) := f(xg).

Replacing C(X) by an arbitrary unital C∗-algebra still allows us to consider
one-surjective equivariant pullback diagrams of G-C∗-algebras.

Next, let G be a compact Hausdorff topological group acting by automorphisms
on a unital C∗-algebra A. Then to define the freeness of such an action we need
to dualize it to coaction:

(1.2) δ : A −→ C(G,A) = A ⊗̄C(G), (δ(a))(g) := αga.

Here C(G,A) is the C∗-algebra of all norm continuous functions from
G to A naturally identified with the complete tensor product C∗-algebra
(e.g. see [33, Corollary T.6.17]). Now we can replace C(G) by the C∗-algebra
of a compact quantum group [34, 36], still consider one-surjective equivariant
pullback diagrams of C∗-algebras, and define freeness as a density condi-
tion [13].

Furthermore, we can define the Peter-Weyl functor [2] from the category of
unital C∗-algebras equipped with an action of a compact quantum group (i.e.
a coaction of its C∗-algebra) to the category of comodule algebras over the
Hopf algebra of regular functions on the compact quantum group [36]. The
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main theorem of [2] states that the aforementioned density condition defining
the freeness of an action of a compact quantum group on a unital C∗-algebra
is, via the Peter-Weyl functor, equivalent to the principality of the coaction
of the Hopf algebra of the compact quantum group. Thus the algebraic
condition of principality of an appropriate comodule algebra encodes the
analytical freeness condition of a compact quantum group action on a unital
C∗-algebra. In the commutative case, the latter is equivalent to the freeness
of a continuous compact Hausdorff group action on a compact Hausdorff space.

However, the category of principal comodule algebras, despite being very
ample and enjoyable, does not encompass all interesting examples coming from
quantizations along Poisson structures. A way to obtain a quantum group
is by deforming a Poisson-Lie group along its Poisson structure. It is well
known that Poisson-Lie groups admit few Poisson-Lie subgroups, so that it is
important to consider coisotropic subgroups of Poisson-Lie groups. But the
deformation along the Poisson structure of the natural action of a coisotropic
subgroup on its Poisson-Lie group leads to a coaction of a coalgebra rather
than a Hopf algebra [9, 20]. Such examples motivated the development of
general theory of principal coactions of coalgebras on algebras [5–7]. The
setting of our paper is based on this theory.

Finally, recall that coactions of discrete groups are defined as coactions of their
group-ring Hopf algebras, and it is very easy to understand the principality of
such coactions. Indeed, let P be a comodule algebra over a group ring kΓ. This
is equivalent to P being graded by Γ:

P =
⊕

γ∈Γ

Pγ , Pγ := {p ∈ P | δ(p) = p⊗ γ} , ∀ γ, γ′ ∈ Γ : PγPγ′ ⊆ Pγγ′ .

The coaction of kΓ on P is principal if and only if P is strongly graded by Γ [30],
i.e.

(1.3) ∀ γ, γ′ ∈ Γ : PγPγ′ = Pγγ′ .

The goal of this paper is to prove a general pullback theorem for principal
coactions that significantly generalizes the main result of [15] restricted to co-
module algebras and pullbacks of surjections. More precisely, our main result
is that the pullback of principal coactions over morphisms of which at least one
is surjective is again a principal coaction:
Theorem 2.2. Let C be a coalgebra, and let P be the pullback of C-
equivariant unital algebra homomorphisms π1 : P1 → P12 and π2 : P2 → P12.
Then, granted minor technical requirements, if π1 or π2 is surjective and both
coactions P1 → P1 ⊗ C and P2 → P2 ⊗ C are principal, then also the induced
coaction P → P ⊗ C is principal.
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1028 Piotr M. Hajac, Elmar Wagner

It may be viewed as a non-linear version of the Milnor construction yielding
an odd-to-even connecting homomorphism in algebraic K-theory [23]. Indeed,
linearizing our pullback theorem with the help of a corepresentation gives
precisely the odd-to-even construction of a projective module defining the
connecting homomorphism in K-theory.

We apply this new result in two cases. In the first case, we keep the comodule-
algebra setting but take a one-surjective pullback diagram (only one of the
defining morphisms is surjective). In the second case, we proceed the other
way round, that is we take a pullback diagram given by two surjections but
take coactions that are not algebra homomorphisms.

The pullback picture of the standard quantum Hopf fibration gives us our first
example. It provides a new way of computing the index pairing for the associ-
ated quantum Hopf line bundles (cf. [32]). This index pairing was computed
in [14] using a noncommutative index formula, and re-derived in [25]. Here we
give yet another method to compute it. This simple example shows the need
to generalize from two-surjective to one-surjective pullback diagrams, and the
pullback method of index computation seems attractive due to its inherent
simplicity.

To obtain our second example, we first show how the piecewise structure [15]
of a noncommutative join construction [11] allows one to define a certain class
of piecewise principal coactions. Although this class of examples can also
be handled by earlier methods, it definitely shows that there are interesting
piecewise principal coactions that are not algebra homomorphisms. To obtain
a concrete example, we take Pflaum’s instanton bundle S7q → S4q [26] as the
noncommutative join of SUq(2), and turn it into the coalgebraic quantum
principal bundle S7q → CP3

q,s. We do it with the help of the canonical surjec-
tions π : O(SUq(2)) → O(SUq(2))/Jq,s determined by the coideals right ideals
Jq,s := (O(S2q,s) ∩ kerε)O(SUq(2)), where S2q,s is a generic Podleś quantum
sphere [27] and kerε is the kernel of the counit map.

The paper is organized as follows. First, to make our exposition self-contained
and to establish notation, we recall fundamental concepts that we use later
on. The key Section 2 is devoted to the general pullback theorem for principal
coactions of coalgebras on algebras, Section 3 is on deriving the index pairing
for quantum Hopf line bundles as a corollary to the pullback presentation of
the standard Hopf fibration of SUq(2), and the final Section 4 presents new
examples of piecewise principal coactions that go beyond Hopf-Galois theory.
Throughout the paper, we work with algebras and coalgebras over a field. The
unadorned tensor product stands for the algebraic tensor product over this
field. We employ the Heyneman-Sweedler-type notation (with the summation
symbol suppressed) for the comultiplication ∆(c) =: c(1) ⊗ c(2) ∈ C ⊗ C and
for coactions ∆V (v) =: v(0) ⊗ v(1) ∈ V ⊗ C, V ∆(v) =: v(−1) ⊗ v(0) ∈ C ⊗ V .
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The convolution product of two linear maps from a coalgebra to an algebra is
denoted by ∗: (f∗g)(c) := f(c(1))g(c(2)). The set of natural numbers includes 0,
that is N := {0, 1, 2, . . .}.

1.1. Pullback diagrams and fibre products. The purpose of this section
is to collect some elementary facts about fibre products. We consider the
category of vector spaces as it will be the ambient category for all our pullback
diagrams. Let π1 : A1 → A12 and π2 : A2 → A12 be linear maps. The fibre
product of these maps is defined by

(1.4) A1 ×
(π1,π2)

A2 := {(a1, a2) ∈ A1 ×A2 | π1(a1) = π2(a2)} .

Together with the canonical projections

(1.5) pr1 : A1 ×
(π1,π2)

A2 −→ A1, pr2 : A1 ×
(π1,π2)

A2 −→ A2

it forms a universal construction completing the initially-given pair of linear
maps into the following commutative diagram:

(1.6)

A1 ×
(π1,π2)

A2
pr

2−−−−→ A2

pr
1

y π2

y

A1
π1−−−−→ A12 .

Such diagrams are called pullback diagrams, and fibre products are often
referred to as pullbacks.

Next, if π1 : A1 → A12 and π2 : A2 → A12 are morphisms of *-algebras, then
the fibre product A1×(π1,π2)A2 is a *-subalgebra of A1 × A2. Furthermore, if
we consider the pullback diagram (1.6) in the category of (unital) C∗-algebras,
then A1×(π1,π2)A2 with its componentwise multiplication and *-structure is a
(unital) C∗-algebra. Much the same, if B is an algebra and π1 : A1 → A12

and π2 : A2 → A12 are morphisms of left B-modules, then the fibre product
A1×(π1,π2)A2 is a left B-module via the componentwise left action b.(a1, a2) :=
(b.a1, b.a2).

1.2. Odd-to-even connecting homomorphism in K-theory. Consider a
pullback diagram

(1.7) A

wwooooooooo

''OOOOOOOOO

A1

π1 '' ''NNNNNNNN A2

π2wwpppppppp

A12
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1030 Piotr M. Hajac, Elmar Wagner

in the category of unital algebras, and assume that one of the defining mor-
phisms (here we choose π1) is surjective. Then there exists a long exact se-
quence in algebraic K-theory [23]

(1.8) · · · −→ K1(A12)
odd-to-even // K0(A) −→ K0(A1 ⊕A2) −→ K0(A12).

The mapping K1(A12)
odd-to-even // K0(A) is obtained as follows. First, given

left Ai-modules Ei, i = 1, 2, we obtain left A12-modules πi∗Ei defined by
A12 ⊗Ai

Ei. Since A12 is unital, there are canonical morphisms

(1.9) πi∗ : Ei −→ πi∗Ei , πi∗(e) = 1⊗Ai
e.

The modules Ei and πi∗Ei can also be considered as left modules over the fibre
product algebra A via the left actions given by a.ei := pri(a).ei, for ei ∈ Ei,
and a.fi := πi(pri(a)).fi, for fi ∈ πi∗Ei. Assume now that h : π1∗E1 → π2∗E2

is a morphism of left A12-modules. Then h ◦ π1∗ : E1 → π2∗E2 and
π2∗ : E2 → π2∗E2 can be lifted to morphisms of left A-modules, and we can
consider their pullback diagram in the category of left A-modules:

(1.10) E1 ×
(h◦π1∗,π2∗)

E2

pr
1

xxqqqqqqqqqqq pr
2

&&NNNNNNNNNNNN

E1

π1∗

��

E2

π2∗

��
π1∗E1

h
// π2∗E2 .

In [23, Section 2], it is proven in detail that, if Ei is a finitely generated projec-
tive module over Ai, i = 1, 2, and h is an isomorphism, then the fibre product
M := E1 ×(h◦π1∗ , π2∗) E2 is a finitely generated projective A-module. Further-
more, up to isomorphism, every finitely generated projective module over A
has this form, and the Ai-modules Ei and pri∗M := Ai ⊗A M , i = 1, 2, are
naturally isomorphic. In particular, if E1

∼= An
1 and E2

∼= An
2 , the isomorphism

h : π1∗E1 → π2∗E2 is given by an invertible matrix U ∈ GLn(A12). Using the
canonical embedding GLn(A12) ⊆ GL∞(A12), we get a map

(1.11) GL∞(A12) ∋ U 7−→M ∈ Proj(A)

given by the pullback diagram

(1.12) M

uukkkkkkkkkkkk

))SSSSSSSSSSSS

An
1

π1
(( ((PPPPPPPPP An

2

π2vvnnnnnnnnn

An
12

U
∼= An

12 .
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This map induces an odd-to-even connecting homomorphism on the level of
both algebraic [23] and C∗-algebraic [17] K-theory. An explicit description
of the module M is as follows. Assume that π1 : A1 → A12 is surjective.
Then there exist liftings c, d ∈ Matn(A1) such that evaluating π1 on c and d
componentwise yields U−1 and U respectively. Applying [12, Theorem 2.1] to
our situation yields E1 ×(h◦π1∗ , π2∗) E2

∼= A2np, where

(1.13) p :=

(
(c(2− dc)d, 1) (c(2 − dc)(1− dc), 0)
((1 − dc)d, 0) ((1 − dc)2, 0)

)
∈ Mat2n(A).

1.3. Principal coactions and associated projective modules. Recall
first the general definition of an entwining structure. Let C be a coalgebra with
comultiplication ∆ and counit ε, and let A be an algebra with multiplication
m and unit η. A linear map

(1.14) ψ : C ⊗A −→ A⊗ C

is called an entwining structure if and only if it is unital, counital, and distribu-
tive with respect to both the multiplication and comultiplication:

ψ ◦ (id⊗m) = (m⊗ id) ◦ (id⊗ ψ) ◦ (ψ ⊗ id), ψ ◦ (id⊗ η) = (η ⊗ id) ◦ flip,

(1.15)

(id⊗∆) ◦ ψ = (ψ ⊗ id) ◦ (id⊗ ψ) ◦ (∆⊗ id), (id⊗ ε) ◦ ψ = flip ◦ (ε⊗ id).

(1.16)

If ψ is an entwining of a coalgebra C and an algebra A, and M is a right
C-comodule and a right A-module, we call M an entwined module [4] when it
satisfies the compatibility condition

(1.17) (ma)(0) ⊗ (ma)(1) = m(0)ψ(m(1) ⊗ a).

Next, let P be an algebra equipped with a coaction ∆P : P → P ⊗ C of a
coalgebra C. Define the coaction-invariant subalgebra of P by

(1.18) B := P coC := {b ∈ P | ∆P (bp) = b∆P (p) for all p ∈ P}.

We call the inclusion B ⊆ P a C-extension. We call it a coalgebra-Galois
C-extension when the canonical left P -module right C-comodule map

(1.19) can : P ⊗
B
P−→P ⊗ C, p⊗

B
p′ 7−→ p∆P (p

′),

is bijective [5]. Note that the bijectivity of can allows us to define the so-called
translation map

(1.20) τ : C −→ P ⊗
B
P, τ(c) := can

−1(1⊗ c).

Moreover, every coalgebra-Galois C-extension comes naturally equipped with
a unique entwining structure that makes P a (P,C)-entwined module in the
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1032 Piotr M. Hajac, Elmar Wagner

sense of (1.17). It is called the canonical entwining structure [5], and is very
useful in calculations or further constructions. Explicitly, it can be written as:

(1.21) ψ(c⊗ p) := can(can−1(1⊗ c)p).

An algebra P with a right C-coaction ∆P is said to be e-coaugmented if and
only if there exists a group-like element e ∈ C such that ∆P (1) = 1 ⊗ e.
We call the C-extension B := P coC ⊆ P e-coaugmented. (Much in the same
way, one defines the coaugmentation of left coactions.) For the e-coaugmented
coalgebra-Galois C-extensions, one can show that the coaction-invariant sub-
algebra defined in (1.18) can be expressed as

(1.22) P coC = {p ∈ P | ∆P (p) = p⊗ e}.

Indeed, Formula (1.21) allows us to express the right coaction in terms of the
entwining

(1.23) ∆P (p) = ψ(e⊗ p),

and Equation (1.15) yields the right-in-left inclusion. The opposite inclusion
is obvious.

Next, if ψ is invertible, one can use (1.16) to show that the formula

(1.24) P∆(p) := ψ−1(p⊗ e)

defines a left coaction P∆ : P → C ⊗ P . We define the left coaction-invariant
subalgebra coCP as in (1.18), and derive the left-sided version of (1.21). Hence,
for any e-coaugmented coalgebra-Galois C-extension with invertible canoni-
cal entwining, the right coaction-invariant subalgebra coincides with the left
coaction-invariant subalgebra:

(1.25) P coC = {p ∈ P | ∆P (p) = p⊗ e} = {p ∈ P | P∆(p) = e⊗ p} = coCP.

Finally, we need to assume one more condition on C-extensions to obtain a
suitable definition of a principal coaction: equivariant projectivity. It is a piv-
otal property that guarantees the projectivity of associated modules, and thus
leads to index pairings between K-theory and K-homology. Putting together
the aforementioned four conditions, we say that a coalgebra C-extension B ⊆ P
is principal (or simply that P is principal) [6] iff:

(i) The canonical map can : P ⊗B P→P ⊗ C, p ⊗B p′ 7→ p∆P (p
′), is

bijective (Galois condition).
(ii) The right coaction is e-coaugmented for some group-like e ∈ C, i.e.

∆P (1) = 1⊗ e.
(iii) The canonical entwining ψ : C⊗P→P ⊗C, c⊗p 7→ can(can−1(1⊗c)p),

is bijective.
(iv) The algebra P is C-equivariantly projective as a left B-module, i.e.

there exists a left-B-linear and right-C-colinear splitting of the multi-
plication map B ⊗ P → P .
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In the framework of coalgebra extensions, the role of connections on principal
bundles is played by strong connections [6]. Let P be an algebra and both a left
and right e-coaugmented C-comodule. (Note that the left and right coactions
need not commute.) A strong connection is a linear map ℓ : C → P ⊗ P
satisfying

c̃an ◦ ℓ=1⊗ id, (id⊗∆P ) ◦ ℓ=(ℓ⊗ id) ◦∆,

(P∆⊗ id) ◦ ℓ=(id⊗ ℓ) ◦∆, ℓ(e) = 1⊗ 1.
(1.26)

Here c̃an : P ⊗ P → P ⊗ C is the lifting of can to P ⊗ P . Assuming that
there exists an invertible entwining ψ : C ⊗P → P ⊗C making P an entwined
module, the first three equations of (1.26) read in the Heyneman-Sweedler-type
notation c 7→ ℓ(c)〈1〉 ⊗ ℓ(c)〈2〉 as follows:

ℓ(c)〈1〉ψ(e⊗ ℓ(c)〈2〉) = ℓ(c)〈1〉ℓ(c)〈2〉(0) ⊗ ℓ(c)〈2〉(1)

= 1⊗ c ,(1.27)

ℓ(c)〈1〉 ⊗ ψ(e⊗ ℓ(c)〈2〉) = ℓ(c)〈1〉 ⊗ ℓ(c)〈2〉(0) ⊗ ℓ(c)〈2〉(1)

= ℓ(c(1))
〈1〉 ⊗ ℓ(c(1))

〈2〉 ⊗ c(2) ,(1.28)

ψ−1(ℓ(c)〈1〉 ⊗ e)⊗ ℓ(c)〈2〉 = ℓ(c)〈1〉(−1) ⊗ ℓ(c)〈1〉(0) ⊗ ℓ(c)〈2〉

= c(1) ⊗ ℓ(c(2))
〈1〉 ⊗ ℓ(c(2))

〈2〉 .(1.29)

Applying id⊗ ε to (1.27) yields a useful formula

(1.30) ℓ(c)〈1〉ℓ(c)〈2〉 = ε(c).

It is worthwhile to observe the left-right symmetry of principal extensions. We
already noted (see (1.25)) the equality of the left and right coaction-invariant
subalgebras. Now let us define the left canonical map as

(1.31) canL : P ⊗
B
P ∋ p⊗ q 7−→ p(−1) ⊗ p(0)q ∈ C ⊗ P.

One can check that it is related to the right canonical map can by the formula [7]

(1.32) ψ ◦ canL = can.

Also, if ℓ is a strong connection and c̃anL := (id⊗m) ◦ (P∆⊗ id) is the lifted
left canonical map, then c̃anL ◦ ℓ = id⊗ 1. Hence

(1.33) c⊗ p 7−→ ℓ(c)〈1〉 ⊗ ℓ(c)〈2〉p

is a splitting of c̃anL just as

(1.34) p⊗ c 7−→ pℓ(c)〈1〉 ⊗ ℓ(c)〈2〉

is a splitting of c̃an.

Lemma 1.1. Let P be an object in the category C
eAlgC

e of all unital algebras
with e-coaugmented left and right C-coactions. Assume that there exists an
invertible entwining ψ : C ⊗P → P ⊗C making P an entwined module. Then,
if P admits a strong connection ℓ, it is principal.
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1034 Piotr M. Hajac, Elmar Wagner

Proof. Following [6], first we argue that

(1.35) σ : P ∋ p 7−→ p(0)ℓ(p(1))
〈1〉 ⊗ ℓ(p(1))

〈2〉 ∈ B ⊗ P

is a left-B-linear splitting of the multiplication map. Indeed, m◦σ = id because
of (1.30), and the calculation

(1.36) ψ(e ⊗ p(0)ℓ(p(1))
〈1〉)⊗ ℓ(p(1))

〈2〉 = p(0)ℓ(p(1))
〈1〉 ⊗ e⊗ ℓ(p(1))

〈2〉,

obtained using (1.15), proves that σ(P ) ⊆ B ⊗ P . This splitting is evidently
right C-colinear, so that its existence proves the equivariant projectivity.

Next, let us check that the formula

(1.37) can
−1 : P ⊗ C −→ P ⊗

B
P, p⊗ c 7−→ pℓ(c)〈1〉 ⊗

B
ℓ(c)〈2〉,

defines the inverse of the canonical map can, so that the coaction of C is Galois.
It follows from (1.27) that

(1.38) can(can−1(p⊗ c)) = pℓ(c)〈1〉ℓ(c)〈2〉(0) ⊗ ℓ(c)〈2〉(1) = p⊗ c .

On the other hand, taking advantage of (1.30) and (1.35), we see that

can
−1(can(p⊗

B
q)) = pq(0)ℓ(q(1))

〈1〉⊗
B
ℓ(q(1))

〈2〉 = p⊗
B
q(0)ℓ(q(1))

〈1〉ℓ(q(1))
〈2〉 = p⊗

B
q.

Thus the conditions (i) and (iv) of the principality of a C-extension are satisfied.
Finally, Condition (ii) is simply assumed, and Condition (iii) follows from the
uniqueness of an entwining that makes P an entwined module. �

Note that, if there exists a strong connection ℓ, then (1.37) yields

(1.39) τ(c) = ℓ(c)〈1〉 ⊗
B
ℓ(c)〈2〉.

In the Heyneman-Sweedler-type notation, we write τ(c) = τ(c)[1] ⊗B τ(c)[2].
Then the canonical entwining reads

ψ(c⊗ p) = τ(c)[1](τ(c)[2] p)(0) ⊗ (τ(c)[2] p)(1)

= ℓ(c)〈1〉(ℓ(c)〈2〉 p)(0) ⊗ (ℓ(c)〈2〉 p)(1).(1.40)

Remark 1.2. In [6], there is the converse statement: if P is principal, it admits
a strong connection. Thus, among all extensions satisfying the assumptions of
Lemma 1.1, principal extensions can be characterized as these that admit a
strong connection.

Recall now that classical principal bundles can be viewed as functors trans-
forming finite-dimensional vector spaces into associated vector bundles. Analo-
gously, one can prove that a principal C-extension B ⊆ P defines a functor from
the category of finite-dimensional left C-comodules into the category of finitely
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generated projective left B-modules [6]. Explicitly, if V is a left C-comodule
with coaction V ∆, this functor assigns to it the cotensor product

(1.41) P ✷
C
V := {

∑
i
pi ⊗ vi ∈ P ⊗ V |

∑
i
∆P (pi)⊗ vi =

∑
i
pi ⊗ V ∆(vi)}.

In particular, if g ∈ C is a group-like element, the formula C∆(1) := g ⊗ 1
defines a one-dimensional corepresentation, and

(1.42) P ✷
C
C= {p∈P | ∆P (p)=p⊗ g} =: Pg

can be viewed as a noncommutative associated complex line bundle. Then the
general formula for computing an idempotent Eg of the associated module Pg

out of a corepresentation and a strong connection becomes a very simple special
case of [6, Theorem 3.1]:
(1.43)

Pg
∼= BnEg , (Eg)

n
i,j=1 :=

(
gRi g

L
j

)n
i,j=1

, ℓ(g) =:

n∑

k=1

gLk ⊗ gRk ∈ Pg−1 ⊗ Pg .

A fundamental special case of principal extensions is provided by principal
comodule algebras. One assumes then that C = H is a Hopf algebra with bi-
jective antipode S, the canonical map is bijective, and P is an H-equivariantly
projective left B-module. This brings us in touch with compact quantum
groups. Assume that H̄ is the C∗-algebra of a compact quantum group in the
sense of Woronowicz [34,36], and H is its dense Hopf *-subalgebra spanned by
the matrix coefficients of the irreducible unitary corepresentations. Let P̄ be a
unital C∗-algebra and δ : P̄ → P̄ ⊗̄H̄ an injective C∗-algebraic right coaction
of H̄ on P̄ . (See [1, Definition 0.2] for a general definition and [3, Definition 1]
for the special case of compact quantum groups.) Here ⊗̄ denotes the minimal
C∗-completion of the algebraic tensor product P̄ ⊗ H̄.

To extend Woronowicz’s Peter-Weyl theory [36] from compact quantum
groups to compact quantum principal bundles, one defines [2] the subalgebra
Pδ(P̄ ) ⊆ P̄ of elements for which the coaction lands in P̄ ⊗H , i.e.

(1.44) Pδ(P̄ ) := {p ∈ P̄ | δ(p) ∈ P̄ ⊗H}.

One easily checks that it is an H-comodule algebra. We call Pδ(P̄ ) the Peter-
Weyl comodule algebra associated to the C∗-coaction δ. It follows from results
of [3] and [28] that Pδ(P̄ ) is dense in P̄ . Also, it is straightforward to verify [2]
that the operation P̄ 7→ Pδ(P̄ ) gives a functor commuting with taking fibre

products (pullbacks), and that Pδ(P̄ )
coH coincides with the C∗-algebra P̄ coH̄ .

Finally, let us recall that, for a compact Hausdorff topological group G
and a unital C∗-algebra A, we can use Formula (1.2) to translate a right
C(G)-coaction into a G-action. Thus we can use the terminology of right
C(G)-comodule C∗-algebras and G-C∗-algebras synonymously. It is im-
portant to bear in mind that the Peter-Weyl functor maps G-equivariant
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*-homomorphisms to colinear homomorphisms of right O(G)-comodule alge-
bras [2].

1.4. Standard Hopf fibration of quantum SU(2). The standard quan-
tum Hopf fibration is given by an action of U(1) on the quantum group SUq(2),
q ∈ (0, 1). The coordinate ring of O(SUq(2)) is generated by α, β, γ, δ with
relations

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ, βγ = γβ,(1.45)

αδ − qβγ = 1, δα− q−1βγ = 1,(1.46)

and involution α∗ := δ, β∗ := −qγ. It is a Hopf *-algebra with comultiplica-
tion ∆, counit ε, and antipode S given by

∆(α) = α⊗ α+ β ⊗ γ, ∆(β) = α⊗ β + β ⊗ δ,(1.47)

∆(γ) = γ ⊗ α+ δ ⊗ γ, ∆(δ) = γ ⊗ β + δ ⊗ δ,(1.48)

ε(α) = ε(δ) = 1, ε(β) = ε(γ) = 0,(1.49)

S(α) = δ, S(β) = −q−1β, S(γ) = −qγ, S(δ) = α.(1.50)

Let O(U(1)) denote the commutative and cocommutative Peter-Weyl Hopf
*-algebra of U(1), and let u stand for its unitary group-like generator. Note
that the counit ε and the antipode S satisfy ε(u) = 1 and S(u) = u∗. There is
a Hopf *-algebra surjection
(1.51)
π : O(SUq(2)) −→ O(U(1)), π(α) := u, π(δ) := u−1, π(β) := 0 =: π(γ).

Setting ∆R := (id⊗ π) ◦∆, we obtain a right O(U(1))-coaction on O(SUq(2)).
On generators, the coaction reads

(1.52) ∆R(α) =α⊗u, ∆R(β) = β⊗u−1, ∆R(γ) = γ⊗u, ∆R(δ) = δ⊗u−1.

The *-subalgebra of coaction invariants defines the coordinate ring of the stan-
dard Podleś quantum sphere:

(1.53) O(S2q) := O(SUq(2))
coO(U(1))

= {a ∈ O(SUq(2)) | ∆R(a) = a⊗ 1} .

One can prove (see [27]) that O(S2q) is isomorphic to the *-algebra generated
by B and self-adjoint A satisfying the relations

(1.54) AB = q2BA, B∗B = A−A2, BB∗ = q2A− q4A2.

An isomorphism is explicitly given by the formulas A = −q−1βγ and B = −βα.
The irreducible Hilbert space representations of O(S2q) are given by

ρ0(A) = ρ0(B) = 0, ρ0(1) = 1 on H = C,(1.55)

ρ+(A)en = q2nen, ρ+(B)en = qn(1− q2n)1/2en−1 on H = ℓ2(N),(1.56)

where {en | n = 0, 1, . . .} is an orthonormal basis of ℓ2(N).
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Let C(S2q) denote the universal C∗-algebra generated by A and B satisfy-

ing (1.54). From the above representations, it follows that C(S2q) is the minimal
unitalization of K(ℓ2(N)), that is,

C(S2q)
∼= K(ℓ2(N))⊕ C ⊆ B(ℓ2(N)),(1.57)

(k + α)(k′ + α′) = (kk′ + α′k + αk′) + αα′, k, k′ ∈ K(ℓ2(N)), α, α
′ ∈ C.

Here K(ℓ2(N)) and B(ℓ2(N)) denote the C∗-algebras of compact and bounded
operators respectively on the Hilbert space ℓ2(N). The isomorphism (1.57) im-
plies that K0(C(S

2
q))

∼= Z⊕Z, where one generator of K-theory is given by the

class of the unit 1 ∈ C(S2q), and the other by the class of the one-dimensional
projection onto Ce0 ⊆ ℓ2(N).

Furthermore, K0(C(S2q))
∼= Z ⊕ Z. We identify one generator of K-homology

with the class of the pair of representations [(id, ε)], where id(k + α) = k + α
and ε(k + α) = α for all k ∈ K(ℓ2(N)) and α ∈ C. The other generator can be
given by the class of the pair of representations [(ε, ε0)] with the (non-unital)
representation ε0 of K(ℓ2(N))⊕ C defined by ε0(k + α) = αSS∗, where

(1.58) S : ℓ2(N) −→ ℓ2(N), Sen = en+1,

denotes the unilateral shift on ℓ2(N). (See [22] for a detailed treatment of the
K-homology and K-theory of Podleś quantum spheres.)

We shall also consider the coordinate ring of the quantum disc O(Dq) generated
by z and z∗ with the relation

(1.59) z∗z − q2zz∗ = 1− q2.

Its bounded irreducible Hilbert space representations are given by

µθ(z) = eiθ on H = C, θ ∈ [0, 2π),(1.60)

µ(z)en = (1 − q2(n+1))1/2en+1 on H = ℓ2(N).(1.61)

It has been shown in [18] that the universal C∗-algebra of O(Dq) is isomorphic
to the Toeplitz algebra given as the C∗-algebra generated by the unilateral
shift S of Equation (1.58). The representation µ defines then an embedding of
O(Dq) into T .

Let C(U(1)) denote the C∗-algebra of continuous functions on the unit circle S1,
and let u be its unitary generator. The Toeplitz algebra gives rise to the
following short exact sequence of C∗-algebras:

(1.62) 0 −→ K(ℓ2(N)) −→ T
σ

−→ C(U(1)) −→ 0.

Here the so-called symbol map σ : T → C(U(1)) is given by σ(S) := u. Since
S− µ(z) belongs to K(ℓ2(N)), it follows in particular that σ(µ(z)) = u.
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Now let us consider the associated quantum line bundles as finitely generated
projective modules. They are defined by the one-dimensional corepresentations
C ∋ 1 7→ uN ⊗ 1, N ∈ Z, as cotensor products (1.42):

(1.63) MN := {p ∈ O(SUq(2)) | ∆R(p) = p⊗ uN}.

Since ∆R is a morphism of algebras, MN is an O(S2q)-bimodule. Our next step
is to determine explicitly projections describing these projective modules.

For l ∈ 1
2N and i, j = −l,−l + 1, . . . , l, let tli,j denote the matrix elements of

the irreducible unitary corepresentations of O(SUq(2)), so that we have

(1.64) ∆(tli,j) =

l∑

k=−l

tli,k ⊗ tlk,j ,

l∑

k=−l

tl∗k,i t
l
k,j =

l∑

k=−l

tli,k t
l∗
j,k = δij .

By the Peter-Weyl theorem for compact quantum groups [35],

(1.65) O(SUq(2)) =
⊕

l∈ 1

2
N

l⊕

i,j=−l

Ctli,j .

From the explicit description of tli,j [19, Section 4.2.4] and the definition of ∆R,

it follows that ∆R(t
l
i,j) = tli,j ⊗ u−2j, whence tli,−j ∈ M2j . It can be shown

[16, 29] that t
|j|
i,−j , i = −|j|, . . . , |j| generate M2j as a left O(S2q)-module and

M2j
∼= O(S2q)

2|j|+1
E2j for all j ∈ 1

2Z, where

(1.66) E2j :=




t
|j|
−|j|,−j

...

t
|j|
|j|,−j




(
t
|j|∗
−|j|,−j , · · · , t

|j|∗
|j|,−j

)
∈ Mat2|j|+1(O(S2q)).

It is clear that E∗
2j = E2j , and it follows from (1.64) that E2

2j = E2j . Hence
E2j is a projection.

2. Principality of one-surjective pullbacks

We begin by defining an ambient category for pullback diagrams appearing
in the second part of this section. Let P be a unital algebra equipped with
both a right coaction ∆P : P → P ⊗ C and a left coaction P∆ : P → C ⊗ P
of the same coalgebra C. We do not assume that these coactions commute,
but we do assume that they are coaugmented by the same group-like element
e ∈ C, i.e. ∆P (1) = 1 ⊗ e and P∆(1) = e ⊗ 1. For a fixed coalgebra C and a

group-like e ∈ C, we consider the category C
eAlgC

e of all such unital algebras
with e-coaugmented left and right C-coactions. Here morphisms are bicolinear
algebra homomorphisms.

Since we work over a field, this category is evidently closed under any pullbacks.
If π1 : P1 → P12 and π2 : P2 → P12 are morphisms in C

eAlgC
e , then the fibre
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product algebra P := P1×(π1,π2)P2 becomes a right C-comodule via

(2.1) ∆P (p, q) := (p(0), 0)⊗ p(1) + (0, q(0))⊗ q(1),

and a left C-comodule via

(2.2) P∆(p, q) := p(−1) ⊗ (p(0), 0) + q(−1) ⊗ (0, q(0)).

Also, it is clear that ∆P (1, 1) = (1, 1)⊗ e and P∆(1, 1) = e⊗ (1, 1).

2.1. Principality of images and preimages. In the following lemma, we
prove that any surjective morphism in C

eAlgC
e whose domain is a principal

extension can be split by a left-colinear map and by a right-colinear map (not
necessarily by a bicolinear map). Note that the first part of the lemma is proved
much in the same way as in the Hopf-Galois case [15, Lemma 3.1]:

Lemma 2.1. Let π : P → Q be a surjective morphism in the category C
eAlgC

e of
unital algebras with e-coaugmented left and right C-coactions. If P is principal,
then:

(i) The induced map πcoC : P coC → QcoC is surjective.
(ii) There exists a unital right-C-colinear splitting of π.
(iii) There exists a unital left-C-colinear splitting of π.
(iv) Q is principal.

Furthermore, if Q′ ∈ C
eAlgC

e , Q
′ ⊆ Q, is principal, then so is π−1(Q′).

Proof. It follows from the right colinearity and surjectivity of π that
π(P coC) ⊆ QcoC . To prove the converse inclusion, we take advantage of the
left-P coC -linear retraction of the inclusion P coC ⊆ P that was used to prove [6,
Theorem 2.5(3)]:

(2.3) σϕ : P −→ P coC , σϕ(p) := p(0)ℓ(p(1))
〈1〉ϕ(ℓ(p(1))

〈2〉) .

Here ℓ is a strong connection on P and ϕ is any unital linear functional on
P . It follows from (1.35) that σϕ(p) ∈ P coC . If π(p) ∈ QcoC , then σϕ(p) is a
desired element of P coC that is mapped by π to π(p). Indeed, since

(2.4) π(p(0))⊗ p(1) = π(p)(0) ⊗ π(p)(1) = π(p)⊗ e,

using the unitality of π, ϕ, and ℓ(e) = 1⊗ 1, we compute

(2.5) π(σϕ(p)) = π(p(0))π(ℓ(p(1))
〈1〉)ϕ(ℓ(p(1))

〈2〉) = π(p).

To show the second assertion, let us choose any unital k-linear splitting of
π↾P coC and denote it by αcoC . We want to prove that the formula

(2.6) αR(q) := αcoC(q(0)π(ℓ(q(1))
〈1〉))ℓ(q(1))

〈2〉

Documenta Mathematica 19 (2014) 1025–1060



1040 Piotr M. Hajac, Elmar Wagner

defines a unital right-colinear splitting of π. Since π is surjective, we can write
q = π(p). Then, using properties of π, we obtain:

q(0)π(ℓ(q(1))
〈1〉)⊗ ℓ(q(1))

〈2〉 = π(p)(0)π(ℓ(π(p)(1))
〈1〉)⊗ ℓ(π(p)(1))

〈2〉

= π(p(0))π(ℓ(p(1))
〈1〉)⊗ ℓ(p(1))

〈2〉

= π(p(0)ℓ(p(1))
〈1〉)⊗ ℓ(p(1))

〈2〉.(2.7)

Now it follows from (1.35) that the above tensor is in QcoC ⊗ P . Hence αR is
well defined. It is straightforward to verify that αR is unital, right colinear,
and splits π. (Note that, since q ∈ QcoC implies q(0) ⊗ q(1) = q ⊗ e, we have

αcoC = αR ↾QcoC .) The third assertion can be proven in an analogous manner.

To prove (iv), we first show that the inverse of the canonical map canQ :
Q⊗QcoC Q→ Q ⊗ C (see (1.19)) is given by

(2.8) can
−1
Q : Q⊗ C −→ Q ⊗

QcoC

Q, q ⊗ c 7−→ qπ(ℓ(c)〈1〉) ⊗
QcoC

π(ℓ(c)〈2〉).

Using the properties of π and ℓ, we get

(canQ ◦ can−1
Q ) (π(p)⊗ c) = canQ

(
π(pℓ(c)〈1〉) ⊗

QcoC

π(ℓ(c)〈2〉)
)

= π
(
p ℓ(c)〈1〉 ℓ(c)〈2〉(0)

)
⊗ ℓ(c)〈2〉(1)

= π(p)⊗ c.(2.9)

Similarly,

(can−1
Q ◦ canQ)

(
π(p) ⊗

QcoC

π(p ′)
)
= can

−1
Q

(
π(pp ′

(0))⊗ p ′
(1)

)

= π(pp ′
(0)ℓ(p

′
(1))

〈1〉) ⊗
QcoC

π(ℓ(p ′
(1))

〈2〉)

= π(p) ⊗
QcoC

π(p ′
(0)ℓ(p

′
(1))

〈1〉ℓ(p ′
(1))

〈2〉)

= π(p) ⊗
QcoC

π(p ′).(2.10)

Here we used the fact that π(p ′
(0)ℓ(p

′
(1))

〈1〉) ⊗ ℓ(p ′
(1))

〈2〉 ∈ QcoC ⊗ P . Hence

the extension QcoC ⊆ Q is Galois, and we have the canonical entwining
ψQ : C ⊗Q→ Q⊗ C.

Our next aim is to prove that ψQ is bijective. We know by assumption that
the canonical entwining ψP : C ⊗ P → P ⊗ C is invertible. To determine its
inverse, recall that the left and right coactions are given by ψ−1

P (p ⊗ e) and
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ψP (e⊗ p) respectively. Then apply (1.15) to compute

ψP

(
(pℓ(c)〈1〉)(−1) ⊗ (pℓ(c)〈1〉)(0) ℓ(c)

〈2〉
)
= pℓ(c)〈1〉ψP

(
e⊗ ℓ(c)〈2〉

)

= pℓ(c)〈1〉ℓ(c)〈2〉(0) ⊗ ℓ(c)〈2〉(1)

= p⊗ c.(2.11)

Hence ψ−1
P (p⊗ c) = (pℓ(c)〈1〉)(−1) ⊗ (pℓ(c)〈1〉)(0) ℓ(c)

〈2〉. On the other hand,

ψQ(c⊗ π(p)) = π(ℓ(c)〈1〉)
(
π(ℓ(c)〈2〉)π(p)

)
(0)

⊗
(
π(ℓ(c)〈2〉)π(p)

)
(1)

= π
(
ℓ(c)〈1〉

)
π
(
(ℓ(c)〈2〉 p)(0)

)
⊗ (ℓ(c)〈2〉 p)(1)

= (π ⊗ id)
(
ψP (c⊗ p)

)
,(2.12)

(id⊗ π)
(
ψ−1
P (p⊗ c)

)
= (p ℓ(c)〈1〉)(−1) ⊗ π

(
(p ℓ(c)〈1〉)(0)

)
π
(
ℓ(c)〈2〉

)

=
(
π(p ℓ(c)〈1〉)

)
(−1)

⊗
(
π(p ℓ(c)〈1〉)

)
(0)
π(ℓ(c)〈2〉)

= Q∆(π(p)π(ℓ(c)〈1〉))π(ℓ(c)〈2〉).(2.13)

The second part of the above computation implies that the assignment

(2.14) ψ−1
Q : Q ⊗ C −→ C ⊗Q, π(p)⊗ c 7−→ (id⊗ π)(ψ−1

P (p⊗ c)),

is well defined. Now it follows from the first part that ψ−1
Q is the inverse of ψQ:

ψQ

(
ψ−1
Q

(
π(p)⊗ c

))
= ψQ

(
(id⊗ π)

(
ψ−1
P (p⊗ c)

))

= (π ⊗ id)
(
ψP

(
ψ−1
P (p⊗ c)

))
= π(p)⊗ c,(2.15)

ψ−1
Q

(
ψQ

(
c⊗ π(p)

))
= ψ−1

Q

(
(π ⊗ id)

(
ψP (c⊗ p)

))

= (id⊗ π)
(
ψ−1
P

(
ψP (c⊗ p)

))
= c⊗ π(p).(2.16)

On the other hand, we observe that (π ⊗ π) ◦ ℓ is a strong connection on Q.
Combining it with the just-proven existence of a bijective entwining that makes
Q an entwined module, we can apply Lemma 1.1 to conclude the proof of (iv).

To prove the final statement of the lemma, note first that π−1(Q′) ∈ C
eAlgC

e .
Next, observe that, if ℓ′ : C → Q′ ⊗Q′ is a strong connection on Q′, then it is
also a strong connection on Q. Now, it follows from (1.40) that for any q ∈ Q′

(2.17) ψQ(c⊗ q) = ℓ′(c)〈1〉
(
ℓ′(c)〈2〉 q

)
(0)

⊗
(
ℓ′(c)〈2〉 q

)
(1)

∈ Q′ ⊗ C.

In much the same way, it follows from the Q-analog of the formula following
(2.11) that ψ−1

Q (Q′ ⊗ C) ⊆ C ⊗Q′. Hence to see that ψP and ψ−1
P restrict to

π−1(Q′), we can apply (2.12) and (2.14) respectively.
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A key step now is to construct a strong connection on π−1(Q′). Let αR and αL

be, respectively, right and left colinear unital splittings of π. Their existence is
guaranteed by the already proven (ii) and (iii). The map

(2.18) (αL ⊗ αR) ◦ ℓ
′ : C −→ π−1(Q)⊗ π−1(Q)

is bicolinear and satisfies

(2.19) αL(ℓ
′(e)〈1〉)⊗ αR(ℓ

′(e)〈2〉) = 1⊗ 1.

However, it is possible that

1⊗c−
(
c̃an◦ (αL⊗αR)◦ ℓ

′
)
(c) = 1⊗c−αL(ℓ

′(c(1))
〈1〉)αR(ℓ

′(c(1))
〈2〉)⊗c(2) 6= 0.

To solve this problem, we apply to it the splitting of the lifted canonical map
given by a strong connection ℓ (see (1.34)), and add to (αL ⊗ αR) ◦ ℓ

′ :
(2.20)

ℓR(c) := (αL ⊗αR)(ℓ
′(c)) + ℓ(c)−αL(ℓ

′(c(1))
〈1〉)αR(ℓ

′(c(1))
〈2〉)ℓ(c

〈1〉
(2))⊗ ℓ(c

〈2〉
(2)).

Now c̃an ◦ ℓR = 1⊗ id, as needed. Also, ℓR(e) = 1⊗ 1 and ((π⊗ id) ◦ ℓR)(C) ⊆
Q′ ⊗P . The right colinearity of ℓR is clear. To check the left colinearity of ℓR,
using the fact that P is a ψP entwined and e-coaugmented module, we show
that (mP ◦ (αL ⊗ αR) ◦ ℓ

′) ∗ ℓ is left colinear. (Here mP is the multiplication
of P .) First we note that

(2.21) (P∆⊗ id)◦((mP ◦(αL⊗αR)◦ℓ
′)∗ℓ) = (id⊗(mP ◦(αL⊗αR)◦ℓ

′)∗ℓ)◦∆

is equivalent to

αL(ℓ
′(c(1))

〈1〉)αR(ℓ
′(c(1))

〈2〉)ℓ(c(2))
〈1〉⊗e⊗ ℓ(c(2))

〈2〉

= ψP

(
c(1) ⊗ αL(ℓ

′(c(2))
〈1〉)αR(ℓ

′(c(2))
〈2〉)ℓ(c(3))

〈1〉
)
⊗ ℓ(c(3))

〈2〉.(2.22)

Since c(1) ⊗ αL(ℓ
′(c(2))

〈1〉) ⊗ ℓ′(c(2))
〈2〉 = ψ−1

P

(
αL(ℓ

′(c)〈1〉) ⊗ e
)
⊗ ℓ′(c)〈2〉, we

obtain

ψP

(
c(1) ⊗ αL(ℓ

′(c(2))
〈1〉)αR(ℓ

′(c(2))
〈2〉)ℓ(c(3))

〈1〉
)
⊗ ℓ(c(3))

〈2〉

= αL(ℓ
′(c(1))

〈1〉)ψP

(
e⊗ αR(ℓ

′(c(1))
〈2〉)ℓ(c(2))

〈1〉
)
⊗ ℓ(c(2))

〈2〉

= αL(ℓ
′(c(1))

〈1〉)αR(ℓ
′(c(1))

〈2〉)ψP

(
c(2) ⊗ ℓ(c(3))

〈1〉
)
⊗ ℓ(c(3))

〈2〉

= αL(ℓ
′(c(1))

〈1〉)αR(ℓ
′(c(1))

〈2〉)ψP

(
ψ−1
P

(
ℓ(c(2))

〈1〉 ⊗ e
))

⊗ ℓ(c(2))
〈2〉

= αL(ℓ
′(c(1))

〈1〉)αR(ℓ
′(c(1))

〈2〉) ℓ(c(2))
〈1〉 ⊗ e⊗ ℓ(c(2))

〈2〉.(2.23)

Hence ℓR is a strong connection with the property ℓR(C) ⊆ π−1(Q′) ⊗ P .
In a similar manner, we construct a strong connection ℓL with the property
ℓL(C) ⊂ P ⊗ π−1(Q′). Now we need to apply the splitting of the lifted left
canonical map given by ℓ (see (1.33)) to derive the formula

(2.24) ℓL := (αL ⊗ αR) ◦ ℓ
′ + ℓ− ℓ ∗ (mP ◦ (αL ⊗ αR) ◦ ℓ

′).
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It is clear that ℓL(e) = 1⊗ 1 and ℓL(C) ⊆ P ⊗π−1(Q′). A computation similar
to (2.23) shows the right colinearity of ℓL. Since furthermore ψP (1⊗ c) = c⊗ 1
for any c ∈ C and c̃an = ψP ◦ c̃anL, we obtain

(2.25) c̃an(ℓL(c)) = ψP

(
c̃anL(ℓ(c))

)
= ψP (c⊗ 1) = 1⊗ c.

Hence ℓL is a desired strong connection. Plugging it into (2.20) instead of ℓ,
we get a strong connection

(2.26) ℓLR = (αL ⊗ αR) ◦ ℓ
′ + ℓL − (mp ◦ (αL ⊗ αR) ◦ ℓ

′) ∗ ℓL

with the property ℓLR ⊆ π−1(Q′) ⊗ π−1(Q′). Applying now Lemma 1.1 ends
the proof of this lemma. �

2.2. The one-surjective pullbacks of principal coactions are prin-
cipal. Our goal now is to show that the subcategory of principal extensions is
closed under one-surjective pullbacks. Here the right coaction is the coaction
defining a principal extension and the left coaction is the one defined by the
inverse of the canonical entwining (see (1.24)). With this structure, principal

extensions form a full subcategory of C
eAlgC

e . The following theorem is the
main result of this paper generalizing the theorem of [15] on the pullback of
surjections of principal comodule algebras:

Theorem 2.2. Let C be a coalgebra, e ∈ C a group-like element, and P the
pullback of π1 : P1 → P12 and π2 : P2 → P12 in the category C

eAlgC
e of unital

algebras with e-coaugmented left and right C-coactions. If π1 or π2 is surjective
and both P1 and P2 are principal e-coaugmented C-extensions, then also P is
a principal e-coaugmented C-extension.

Proof. Without loss of generality, we assume that π1 is surjective. We first
show that P inherits an entwined structure from P1 and P2.

Lemma 2.3. Let ψ1 and ψ2 denote the entwining structures of P1 and P2 re-
spectively. Then P is an entwined module with an invertible entwining structure

(2.27) ψ = ψ1 ◦ (id⊗ pr1) + ψ2 ◦ (id⊗ pr2).

Here pr1 and pr2 are morphisms of the pullback diagram as in (1.6).

Proof. Our strategy is to construct a bijective map

(2.28) ψ̃ : C ⊗ (P1 × P2) −→ (P1 × P2)⊗ C,

and to show that it restricts to a bijective entwining on C ⊗ P . We put

(2.29) ψ̃ := ψ1 ◦ (id⊗ p̃r1) + ψ2 ◦ (id⊗ p̃r2).

The symbols p̃r1 and p̃r2 stand for respective componentwise projections. Their

restrictions to P yield pr1 and pr2. It is easy to check that the inverse of ψ̃ is
given by

(2.30) ψ̃−1 = ψ−1
1 ◦ (p̃r1 ⊗ id) + ψ−1

2 ◦ (p̃r2 ⊗ id).
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To show that ψ̃(C ⊗ P ) ⊆ P ⊗C and ψ̃−1(P ⊗C) ⊆ C ⊗ P , we note first that
P12 and π2(P2) are principal by Lemma 2.1(iv). Consequently, their canonical
entwinings ψ12 and ψπ2(P2) are bijective. Furthermore, arguing as in the proof

of Lemma 2.1, we see that ψπ2(P2) = ψ12↾C⊗π2(P2) and ψ
−1
π2(P2)

= ψ−1
12 ↾π2(P2)⊗C .

An advantage of having both summands in terms of ψ12 is that we can apply
(2.12) to compute

(
(π1 ◦ p̃r1 − π2 ◦ p̃r2)⊗ id

)
◦ ψ̃

= (π1 ◦ p̃r1⊗ id)◦ψ1 ◦ (id⊗ p̃r1)− (π2 ◦ p̃r2⊗ id)◦ψ1 ◦ (id⊗ p̃r1)

+ (π1 ◦ p̃r1⊗ id)◦ψ2 ◦ (id⊗ p̃r2)− (π2 ◦ p̃r2⊗ id)◦ψ2 ◦ (id⊗ p̃r2)

= (π1⊗ id)◦ψ1 ◦ (id⊗ p̃r1)− (π2 ⊗ id)◦ψ2 ◦ (id⊗ p̃r2)

= ψ12 ◦ (id⊗ π1) ◦ (id⊗ p̃r1)− ψπ2(P2) ◦ (id⊗ π2) ◦ (id⊗ p̃r2)

= ψ12 ◦
(
id⊗ (π1 ◦ p̃r1 − π2 ◦ p̃r2)

)
.(2.31)

Hence ψ̃(C ⊗ P ) ⊆ P ⊗ C. In much the same way, using (2.14) instead

of (2.12), we show that ψ̃−1(P ⊗ C) ⊆ C ⊗ P .

It remains to verify that the bijection ψ = ψ̃ ↾C⊗P is an entwining that makes
P an entwined module. The former is proven by checking directly (1.15)
and (1.16). The latter follows from the fact that P1 and P2 are, respectively,
ψ1 and ψ2 entwined modules:

∆P (pq) = ∆P1
(pr1(p)pr1(q)) + ∆P2

(pr2(p)pr2(q))

= pr1(p(0))ψ1(p(1) ⊗ pr1(q)) + pr2(p(0))ψ2(p(1) ⊗ pr2(q))

=
(
pr1(p(0)) + pr2(p(0))

)(
ψ1(p(1) ⊗ pr1(q)) + ψ2(p(1) ⊗ pr2(q))

)

= p(0)ψ(p(1) ⊗ q).(2.32)

This proves the lemma. �

Let α1
L and α1

R be a unital left-colinear splitting and a unital right-colinear
splitting of π1, respectively. Also, let α2

R be a right-colinear splitting of π2
viewed as a map onto π2(P2). Such maps exist by Lemma 2.1. Furthermore,
by [6, Lemma 2.2], since P1 and P2 are principal, they admit strong connections
ℓ1 and ℓ2 respectively. For brevity, let us introduce the notation

α12
L := α1

L ◦ π2, α12
R := α1

R ◦ π2,

α21
R := α2

R ◦ π1 ↾π−1

1
(π2(P2))

, L := mP1
◦ (α12

L ⊗ α12
R ) ◦ ℓ2 ,

(2.33)
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where mP1
is the multiplication of P1. The situation is illustrated in the fol-

lowing diagram:

(2.34) C

L

��

P

pr
1

yyrrrrrrrrrrrrrrrrrrrrrrrrrrr

pr
2

%%KKKKKKKKKKKKKKKKKKKKKKKKKKKK

π−1
1 (π2(P2))G

g

ttiiiiiiiiiiiiiiiii

α21

R **UUUUUUUUUUUUUUUUUU

P1

II
II

II
II

II
II

P2 .

α12

Loo

α12

R

oo

vv
vv

vv
vv

vv
vv

π2

ttttjjjjjjjjjjjjjjjjjjjjj

π1

%% %%KKKKKKKKKKKK π2(P2)

α2

R

44jjjjjjjjjjjjjjjjjjjjj

_�

��

π2

yyssssssssssss

P12

α1

L

eeJJJJJJJJJJJJJJJJJJJJJJJJJJJ

α1

R

eeJJJJJJJJJJJJJJJJJJJJJJJJJJJ

Our proof hinges on constructing a strong connection on P out of strong con-
nections on P1 and P2. Roughly speaking, the basic idea is to take a strong
connection on P2, induce a strong connection on the the common part P12, and
prolongate it to P1. To this end, we check that (α12

L +id)⊗(α12
R +id) is a unital

bicolinear map from P2 ⊗ P2 to P ⊗P . Therefore, as a first approximation for
constructing a strong connection on P , we choose the formula

(2.35) ℓI :=
(
(α12

L + id)⊗ (α12
R + id)

)
◦ ℓ2.

It is a bicolinear map from C to P ⊗ P satisfying ℓI(e) = 1⊗ 1 as needed.

However, it does not split the lifted canonical map:

(c̃an ◦ ℓI)(c)− 1⊗ c

= α12
L (ℓ2(c)

〈1〉)α12
R (ℓ2(c)

〈2〉)(0) ⊗ α12
R (ℓ2(c)

〈2〉)(1)

+ ℓ2(c)
〈1〉ℓ2(c)

〈2〉
(0) ⊗ ℓ2(c)

〈2〉
(1) − 1⊗ c

= α12
L (ℓ2(c(1))

〈1〉)α12
R (ℓ2(c(1))

〈2〉)⊗ c(2) + (0, 1)⊗ c− 1⊗ c

= L(c(1))⊗ c(2) − (1, 0)⊗ c ∈ P1 ⊗ C.(2.36)

We correct it by adding to ℓI(c) the splitting of the lifted canonical map on
P1 ⊗ P1 afforded by ℓ1 and applied to (1, 0)⊗ c− L(c(1))⊗ c(2):

ℓII(c) = ℓI(c) + ℓ1(c)
〈1〉 ⊗ ℓ1(c)

〈2〉 − L(c(1))ℓ1(c(2))
〈1〉 ⊗ ℓ1(c(2))

〈2〉

= (ℓI + ℓ1 − L ∗ ℓ1)(c).(2.37)

The above approximation to a strong connection on P is clearly right colinear.
Using the fact that P1 is a ψ1-entwined and e-coaugmented module, we follow
the lines of (2.21)–(2.23) to show that L ∗ ℓ1 is left colinear. Hence ℓII is
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bicolinear. It also satisfies ℓII(e) = 1⊗ 1.

The price we pay for having ℓII(c)
〈1〉 ℓII(c)

〈2〉
(0) ⊗ ℓII(c)

〈2〉
(1) = 1 ⊗ c is that

the image of ℓII is no longer in P ⊗ P . The troublesome term ℓ1 − L ∗ ℓ1
takes values in P ⊗ P1. Now one would like to compose id ⊗ (id + α21

R ) with
ℓ1 − L ∗ ℓ1 to force it taking values in P ⊗ P . However, since α21

R is defined

only on π−1
1 (π2(P2)), we need to replace an arbitrary strong connection ℓ1 by a

strong connection taking values in P1⊗π
−1
1 (π2(P2)). Such a strong connection

is provided for us by (2.24):

(2.38) ℓ̃1 := (α12
L ⊗ α12

R ) ◦ ℓ2 + ℓ1 − ℓ1 ∗ L.

Inserting ℓ̃1 in place of ℓ1 allows us to apply the correction map id⊗ (id+α21
R )

to obtain

(2.39) ℓIII = ℓI +
(
id⊗ (id + α21

R )
)
◦ (ℓ̃1 − L ∗ ℓ̃1).

To end the proof, let us check that ℓIII is indeed a strong connection on P .
First, since ℓI(C) ⊆ P ⊗P and (id+α21

R )(π−1
1 (π2(P2))) ⊆ P , we conclude that

ℓIII takes values in P ⊗ P . Next, it is bicolinear because α21
R is right colinear.

Also, it is clearly unital. To verify that ℓIII splits the canonical map, first we
note that c̃an◦ (id⊗α21

R )◦ (ℓ̃1−L ∗ ℓ̃1) = 0 because mP1×P2
(p1⊗p2) = 0 for all

p1 ∈ P1 and p2 ∈ P2. Combining this with the fact that c̃an ◦ (ℓ′1 −L ∗ ℓ′1) does
not depend on the choice of a strong connection ℓ′1, we infer that c̃an ◦ ℓIII =
c̃an◦ ℓII = 1⊗ id. Thus ℓIII is a strong connection on P as desired. Combining
this fact with Lemma 2.3 and Lemma 1.1 proves the theorem. �

Putting together the formulas in the proof of Theorem 2.2 , we obtain the
following strong connection on P :

ℓ = ((α12
L + id)⊗ (α12

R + id)) ◦ ℓ2

+ (η1 ◦ ε− L) ∗ ((id⊗ (id + α21
R )) ◦ (ℓ1 − ℓ1 ∗ L+ (α12

L ⊗ α12
R ) ◦ ℓ2)).(2.40)

3. The pullback picture of the standard quantum Hopf fibration

Recall that the classical Hopf fibration is a U(1)-principal bundle given by the
maps

π : S3 := {(z1, z2) ∈ C
2 | |z1|

2 + |z2|
2 = 1} −→ S2 ∼= CP1,(3.1)

π((z1, z2)) := [(z1 : z2)],

S3 ×U(1) −→ S3, (z1, z2) ⊳ u := (z1u, z2u).(3.2)

To unravel the structure of this non-trivial fibration, we split S3 into two disjoint
parts:

(3.3) S3 = {(z1, z2) ∈ C
2 | |z1|

2 < 1, |z2|
2 = 1− |z1|

2} ∪ {(z1, 0) | |z1| = 1}.

Note that both sets are invariant under the U(1)-action. The second set is U(1),
and first set is U(1)-equivariantly homeomorphic to the interior of the solid
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torus D×U(1) equipped with the diagonal action. (Here D = {z ∈ C | |z| ≤ 1}.)
By an appropriate U(1)-equivariant gluing of the boundary torus of D ×U(1)
with U(1), we recover S3 with its U(1)-action:

(3.4) S3

φ1(z, v) := (z, v
√
1−|z|2) φ2(u) := (u, 0)

D× U(1)

φ1

>>|||||||||
U(1)

φ2

``AAAAAAAAA

(ι, id)(u, v) := (u, v) pr1(u, v) := u.

U(1)×U(1)

pr
1

>>|||||||||
(ι,id)

aaCCCCCCCCC

However, to view D×U(1) as a trivial U(1)-principal bundle, we need to gauge
the diagonal action to the action on the right slot. This is achieved with the
help of the following homeomorphism intertwining these two actions:

Ψ : D×U(1) −→ D×U(1), Ψ(x, v) := (xv, v), Ψ(x, vu) = Ψ(x, v) ⊳ u.

Let us denote the restriction of Ψ to U(1)×U(1) by the same symbol. Now we
can extend the above pushout diagram to the commutative diagram

(3.5) S3

D×U(1)
Ψ // D×U(1)

φ1

<<zzzzzzzzz

U(1)

φ2

^^>>>>>>>>

U(1)
idoo

U(1)×U(1)

pr
1

@@��������
(ι,id)

aaDDDDDDDDD

U(1)×U(1) ,

(ι,id)

ddJJJJJJJJJJJJJJJJJJJJJJJJJJJ
Ψ

OO m

<<zzzzzzzzzzzzzzzzzzzzzzz

where m is the multiplication map. The outer diagram is again a pushout dia-
gram of U(1)-spaces, but now its defining U(1)-spaces are trivial U(1)-principal
bundles. It is the outer pushout diagram that we shall use to analyse a non-
commutative deformation of the Hopf fibration.

3.1. Pullback comodule algebra. We consider the tensor products P1 :=
T ⊗ O(U(1)), P2 := C⊗O(U(1)) = O(U(1)) and P12 := C(U(1)) ⊗ O(U(1)).
These algebras are right O(U(1))-comodule algebras for the coaction x⊗uN 7→
x ⊗ uN ⊗ uN , N ∈ Z. Moreover, P1 and P2 are trivially principal with strong
connections ℓi : O(U(1)) → Pi ⊗ Pi given by

(3.6) ℓi(u
N) := (1 ⊗ uN∗)⊗ (1⊗ uN ), i=1, 2.
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To construct a pullback of P1 and P2, we define the following morphisms of
right O(U(1))-comodule algebras:

π1 : T ⊗ O(U(1)) −→ C(U(1)) ⊗O(U(1)), π1(t⊗ w) := σ(t) ⊗ w,(3.7)

π2 : O(U(1)) −→ C(U(1)) ⊗O(U(1)), π2(w) := ∆(w).(3.8)

Then the fibre product P := T ⊗ O(U(1)) ×(π1,π2) O(U(1)) defined by the
pullback diagram

(3.9) T ⊗ O(U(1)) ×
(π1,π2)

O(U(1))

pr
1

vvmmmmmmmmmmmmm pr
2

''OOOOOOOOOOOO

T ⊗ O(U(1))

π1 ))RRRRRRRRRRRRRR
O(U(1))

π2vvmmmmmmmmmmmm

C(U(1)) ⊗O(U(1))

is a right O(U(1))-comodule algebra. By Proposition 2.2, it is principal.

Furthermore, define unital, respectively, left-colinear and right-colinear split-
tings of π1 by

(3.10) α1
L(f ⊗ uN ) := Tf ⊗ uN =: α1

R(f ⊗ uN), N ∈ Z.

Here f ∈ C(U(1)) and Tf denotes the Toeplitz operator with symbol f . In

particular, TuN = SN and Tu∗N = S∗N . A right-colinear splitting of the map
π2 : O(U(1)) → π2(O(U(1))) is given by

(3.11) α2
R(u

N ⊗ uN ) := uN , N ∈ Z.

Inserting the definitions of α1
L, α

i
R and ℓi, i = 1, 2, into (2.33) and (2.40), we

obtain the following strong connection on P :

ℓ(uN ) = (S∗N ⊗ u∗N , u∗N )⊗ (SN ⊗ uN , uN),(3.12)

ℓ(u∗N ) = (SN ⊗ uN , uN )⊗ (S∗N ⊗ u∗N , u∗N)

+ ((1− SNS∗N )⊗ uN , 0)⊗ ((1− SNS∗N )⊗ u∗N , 0), N ∈ N.(3.13)

Note next that, by construction, we have

(3.14) P =
{∑

k(tk⊗u
k, αku

k) ∈
(
T ⊗O(U(1))

)
×O(U(1))

∣∣∣ σ(tk) = αku
k
}
,

where αk ∈C. For C∆(1) := uN ⊗ 1, let

(3.15) LN := P �
O(U(1))

C = {p ∈ P | ∆P (p) = p⊗ uN}.
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Then L0 = P coO(U(1)), each LN is a left P coO(U(1))-module and P =
⊕

N∈Z LN .
From

(3.16) ∆P

(∑

k

(tk⊗u
k, αku

k)
)
=
∑

k

(tk⊗u
k, αku

k)⊗ uk,

it follows that

(3.17) LN =
{
(t⊗ uN , αuN ) ∈

(
T ⊗ O(U(1))

)
×O(U(1))

∣∣∣ σ(t) = αuN
}
.

The next proposition shows that L0
∼= T ×(σ,1)C is isomorphic to the C∗-algebra

of the standard Podleś sphere and that

(3.18) LN
∼= T ×(u−Nσ,1) C,

where T ×(uNσ,1) C is given by the pullback diagram

(3.19) T ×
(u−Nσ,1)

C

pr
1

xxqqqqqqqqqqq pr
2

&&MMMMMMMMMMM

T

σ

��

C

α7→α1

��
C(U(1))

f 7→u−Nf

// C(U(1)).

Proposition 3.1. The fibre product T ×(σ,1)C is isomorphic to the C∗-algebra

C(S2q), and LN is isomorphic to T ×(u−Nσ,1) C as a left C(S2q)-module with

respect to the left C(S2q)-action on T ×(u−Nσ,1) C given by (t, α) · (h, β) :=
(th, αβ).

Proof. For N = 0, the mappings T ∋ t 7→ σ(t) ∈ C(U(1)) and C ∋ α 7→ α1 ∈
C(U(1)) are morphisms of C∗-algebras, so that T ×(σ,1)C is a C∗-algebra. Next,

recall that C(S2q)
∼= K(ℓ2(N))⊕ C (see (1.57)), and define

φ : T ×
(σ,1)

C −→ K(ℓ2(N))⊕ C, φ(t, α) := t,(3.20)

φ−1 : K(ℓ2(N)) ⊕ C −→ T ×
(σ,1)

C, φ−1(k + α) := (k + α, α).(3.21)

Clearly, φ : T ×(σ,1)C → B(ℓ2(N)) is a morphism of C∗-algebras. Since
φ(t, α) = (t − α) + α, and σ(t − α) = 0 by the pullback diagram (3.19), it
follows from the short exact sequence (1.62) that t − α ∈ K(ℓ2(N)). Hence
φ(t, α) ∈ K(ℓ2(N)) ⊕ C. One easily sees that φ−1 is the inverse of φ, so that
T ×(σ,1)C

∼= K(ℓ2(N))⊕ C.

The fact that T ×(u−Nσ,1)C with the given C(S2q)-action is a left C(S2q)-module
follows from the discussion preceding the pullback diagram (1.10) with the free
rank one modules E1 = T , E2 = C and π1∗E1 = π2∗E2 = C(U(1)). Obviously,
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LN ∋ (t ⊗ uN , αuN ) 7→ (t, α) ∈ T ×(u−Nσ,1)C defines an isomorphism of left

C(S2q)-modules. �

3.2. Equivalence of the pullback and standard constructions.
Let us view U(1) as a compact quantum group. We consider its C∗-algebra
C(U(1)) of all continuous function together with the obvious coproduct, counit
and antipode given by ∆(f)(x, y) = f(xy), ε(f) = f(1) and S(f)(x) = f(x−1),
respectively. Furthermore, let ⊗̄ stand for the completed tensor product of
C∗-algebras. In our case it is unique because of the nuclearity of the involved
C∗-algebras.

Now let π2 : C(U(1)) → C(U(1))⊗̄C(U(1)) be given by the coproduct,
i.e. π2(f)(x, y) := (∆f)(x, y) = f(xy), and let σ denote the symbol map
T → C(U(1)). Then P̄ := T ⊗̄C(U(1)) ×(π1,π2) C(U(1)) is defined by the
pullback diagram

(3.22) T ⊗̄C(U(1)) ×
(π1,π2)

C(U(1))

pr
1

vvmmmmmmmmmmmmm pr
2

''PPPPPPPPPPPP

T ⊗̄C(U(1))

π1=σ⊗id ))RRRRRRRRRRRRRR
C(U(1))

π2=∆vvmmmmmmmmmmmmm

C(U(1)) ⊗̄C(U(1)) .

With the C(U(1))-coaction given by the coproduct ∆ on the right tensor factor
C(U(1)), π1 and π2 are morphisms in the category of right C(U(1))-comodule
C∗-algebras. Equivalently, we can view this diagram as a diagram in the cate-
gory of U(1)-C∗-algebras (see Section 1.3). Therefore, P̄ inherits the structure
of a right U(1)-C∗-algebra. Using the counit ε : C(U(1)) → C and the fact that
the Peter-Weyl functor commutes with taking pullbacks, we easily conclude
that the Peter-Weyl comodule algebra P∆(P̄ ) = T ⊗O(U(1))×(π1,π2)O(U(1)),

so that P∆(P̄ ) is the comodule algebra P of Section 3.1.

Consider next the *-representation of O(SUq(2)) on ℓ2(N) given by [31]

ρ(α)en := (1− q2n)1/2en−1, ρ(β)en := −qn+1en,

ρ(γ)en := qnen, ρ(δ)en := (1− q2(n+1))1/2en+1.
(3.23)

Note that ρ(β), ρ(γ) ∈ K(ℓ2(N)). Comparing ρ with the representation µ of
O(Dq) from (1.61), one readily sees that ρ(O(SUq(2))) ⊆ T . Furthermore, the
symbol map σ yields σ(ρ(β)) = σ(ρ(γ)) = 0. Using an appropriate diagonal
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compact operator k, we also obtain

σ(ρ(α)) = σ(ρ(α)− S∗) + σ(S∗) = σ(kS∗) + σ(S∗) = u−1,

σ(ρ(δ)) = σ(ρ(α))∗ = u.
(3.24)

Thus we obtain a U(1)-equivariant *-algebra homomorphism O(SUq(2))
ι
→ P

by setting

(3.25) ι(α) := (ρ(α)⊗ u, u), ι(γ) := (ρ(γ)⊗ u, 0).

One easily checks that the image of a Poincaré-Birkhoff-Witt basis ofO(SUq(2))
remains linearly independent, so that ι is injective, and we can consider
O(SUq(2)) as a subalgebra of P . In particular, we have ι(MN ) ⊆ LN as left
O(S2q)-modules. (See Section 1.4 and Section 3.1 for the definitions of MN and
LN respectively.)

The main objective of this section is to establish a U(1)-C∗-algebra isomor-
phism between C(SUq(2)) and P̄ . The universal C∗-algebra C(SUq(2)) of
O(SUq(2)) has been studied in [21] and [35]. Here we shall use the fact from [21,
Corollary 2.3] that there is a faithful *-representation ρ̂ of C(SUq(2)) on the
Hilbert space ℓ2(N)⊗̄ℓ2(Z) given by

(3.26) ρ̂(α)(en⊗bk) := (1−q2n)1/2en−1⊗bk−1, ρ̂(γ)(en⊗bk) := qnen⊗bk−1,

where {en}n∈N and {bk}k∈Z denote the standard bases of ℓ2(N) and ℓ2(Z)
respectively. To compare (3.26) with [21, Corollary 2.3], one has to apply the
unitary transformation

(3.27) T : ℓ2(N)⊗̄ℓ2(Z) −→ ℓ2(N)⊗̄ℓ2(Z), T (en ⊗ bk) := en ⊗ bk−n.

A right C(U(1))-coaction on C(SUq(2)) is given by (id⊗π̄)◦∆, where ∆ denotes
the coproduct of the compact quantum group C(SUq(2)) and π̄ is the extension
of the Hopf *-algebra surjection π : O(SUq(2)) → O(U(1)) defined in (1.51)
to C(SUq(2)). Using the faithfulness of ρ̂, we can transfer π̄ to ρ̂(C(SUq(2))).
In [21], it is shown that π̄ gives rise to the short exact sequence of C∗-algebras:

(3.28) 0 // K(ℓ2(N))⊗̄C(U(1))
� � // ρ̂(C(SUq(2)))

π̄ // C(U(1)) // 0 .

Here C(U(1)) is naturally identified with the operator algebra on ℓ2(Z) gener-
ated by the unilateral down-shift.

Theorem 3.2. The U(1)-C∗-algebras C(SUq(2)) and P̄ are isomorphic.

Proof. First note that ker(pr1) = {(0, y) ∈ P̄ |π2(y) = ∆(y) = 0} = 0. Hence
we can identify P̄ with the image of pr1 in T ⊗̄C(U(1)). We will prove the
theorem by applying the Five Lemma to the following commutative diagram
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of U(1)-C∗-algebras:

(3.29) 0 // K(ℓ2(N))⊗̄C(U(1))

id

��

� � // ρ̂(C(SUq(2)))
π̄ //

τ

��

C(U(1))

id

��

// 0

0 // K(ℓ2(N))⊗̄C(U(1))
� � // pr1(P̄ )

ω // C(U(1)) // 0 .

To define τ , recall that we realize C(U(1)) as a concrete C∗-algebra of bounded
operators on ℓ2(Z) by setting u(bk) = bk−1. Then

ρ̂(α) = ρ(α)⊗ u = pr1(ρ(α)⊗ u, u) ∈ pr1(P̄ ),(3.30)

ρ̂(γ) = ρ(γ)⊗ u = pr1(ρ(γ)⊗ u, 0) ∈ pr1(P̄ ).

Since C(SUq(2)) is generated by α and γ, we take τ to be the inclusion
ρ̂(C(SUq(2))) ⊂ pr1(P̄ ). Next, we define the U(1)-C∗-algebra homomorphism
ω by

(3.31) ω : pr1(P̄ ) −→ C(U(1)), ω := (ε ◦ σ)⊗ id.

The surjectivity of ω follows from uk = ω(ρ(αk)⊗uk) and u−k = ω(ρ(α∗k)⊗u∗k)
for all k ∈ N.

To prove the exactness of the lower row, note that

(3.32) K(ℓ2(N))⊗̄C(U(1)) = ker(σ)⊗̄C(U(1)) ⊆ ker(ω).

Now, let f ∈ pr1(P̄ ) \ ker(σ)⊗̄C(U(1)). Then (σ ⊗ id)(f) 6= 0. By the
commutativity of Diagram (3.22), there exists a non-zero element g ∈ C(U(1))
such that (σ ⊗ id)(f) = ∆(g). Hence ω(f) = (ε ⊗ id) ◦∆(g) = g 6= 0, which
proves that ker(ω) = K(ℓ2(N))⊗̄C(U(1)).

It remains to show that Diagram (3.29) is commutative. This is clear for the
left part since τ is just the inclusion. The commutativity of the right part
follows from

ω
(
τ
(
ρ̂(α)

))
= ε

(
σ
(
ρ(α)

))
⊗ u = ε(u)u = u = π̄(ρ̂(α)),(3.33)

ω
(
τ
(
ρ̂(γ)

))
= ε

(
σ
(
ρ(γ)

))
⊗ u = 0 = π̄(ρ̂(γ)),(3.34)

since α and γ generate C(SUq(2)). Therefore, by the Five Lemma, τ is an
isomorphism of U(1)-C∗-algebras. �

By the paragraph below Diagram (3.22), we conclude from Theorem 3.2 that
the Peter-Weyl comodule algebra P∆(C(SUq(2))) and the comodule algebra
P are isomorphic. We use this isomorphism to identify associated projective
modules. For N ∈ Z and the left O(U(1))-coaction on C given by C∆(1) :=
uN ⊗ 1, we define a “completed” version of MN (see (1.63)):

M̄N :=P∆(C(SUq(2))) �
O(U(1))

C(3.35)

={p ∈ P∆(C(SUq(2))) | ((id ⊗ π̄) ◦∆)(p) = p⊗ uN}.
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Now it follows from Equation (3.15) that M̄N
∼= LN . Applying the same

arguments as at the end of Section 1.4, we infer that M̄N
∼= C(S2q)

N+1
EN ,

with EN being the projection matrix of Equation (1.66). Taking advantage of
these isomorphisms of modules, we prove:

Lemma 3.3. Identifying C(S2q) with K(ℓ2(N)) ⊕ C, we obtain the following

isomorphisms of left C(S2q)-modules:

C(S2q)
N+1

EN
∼= C(S2q)pN , pN := SNSN∗, N ≥ 0,(3.36)

C(S2q)
|N |+1

EN
∼= C(S2q)

2
pN , pN :=

(
1 0

0 1− S|N |S|N |∗

)
, N < 0.(3.37)

Proof. We apply (1.43) to construct projections PN , N ∈ Z, from the strong
connection given in (3.12) and (3.13). For N < 0, we obtain

(PN )11 = (S∗|N | ⊗ uN , uN)(S|N | ⊗ u|N |, u|N |) = (1⊗ 1, 1),(3.38)

(PN )12 = (PN )∗21 = (S∗|N | ⊗ uN , uN)((1 − S|N |S∗|N |)⊗ u|N |, 0) = 0,(3.39)

(PN )22 = ((1 − S|N |S∗|N |)⊗ uN , 0)((1− S|N |S∗|N |)⊗ u|N |, 0)(3.40)

= ((1 − S|N |S∗|N |)⊗ 1, 0).

Analogously, for N ≥ 0, we get

(3.41) (PN )11 = (SN ⊗ uN , uN)(S∗N ⊗ u∗N , u∗N) = (SNS∗N ⊗ 1, 1).

Finally, applying the isomorphism (3.20) componentwise to PN , N ∈ Z, yields
the result. �

The projections pN of Lemma 3.3 can also be obtained from the odd-to-even
construction in Section 1.2. First, let N < 0. Since LN

∼= T×(u−Nσ,1)C

(see (3.18)), we can apply Formula (1.13) by taking E1 = T , E2 = C, π1∗E1 =
π2∗E2 = C(U(1)), and choosing h in (1.10) to be the isomorphism given by the
multiplication with u|N |. As the symbol map σ applied to S is u (see (1.62)),

we can lift u|N | and its inverse u−|N | to S|N | and S|N |∗ respectively. Inserting

c = S|N |∗ and d=S|N | into (1.13) gives T ×(u−Nσ,1)C
∼= (T ×(σ,1)C)

2QN , where

(3.42) QN =

(
(1, 1) (0, 0)

(0, 0) (1− S|N |S|N |∗, 0)

)
.

Finally, applying the isomorphism (3.20) yields the projection in (3.37). Simi-

larly, for N ≥ 0, we insert c = SN and d = SN∗ into (1.13). Since SN∗SN = 1,
we obtain T ×(u−Nσ,1)C

∼= (T ×(σ,1)C)
2QN with

(3.43) QN =

(
(SNSN∗, 1) (0, 0)

(0, 0) (0, 0)

)
,

which is equivalent to T ×(u−Nσ,1)C
∼= C(S2q)S

NSN∗.
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3.3. Index pairing. Recall that for a C∗-algebraA, a projection p ∈ Matn(A),
and *-representations ρ+ and ρ− of A on a Hilbert space H such that
[(ρ+, ρ−)] ∈ K0(A) (e.g. see [10, Chapter 4]), one has the following: if the
operator TrMatn(ρ+ − ρ−)(p) is trace class, then the formula

(3.44) 〈[(ρ+, ρ−)], [p]〉 = TrH (TrMatn(ρ+ − ρ−)(p))

yields a pairing between the K-homology group K0(A) and the K-theory
group K0(A).

In this section, we compute the pairing between the K0-classes of the projective
C(S2q)-modules describing quantum line bundles and two generators of K0(A).
By Lemma 3.3, we can take the projections pN as representatives of respective
K0-classes. Their simple form makes it very easy to compute the index pairing.

Theorem 3.4. Let M̄N be the associated modules of (3.35), and let [(id, ε)]
and [(ε, ε0)] denote the generators of K0(C(S2q)) given in Section 1.4. Then,
for all N ∈ Z,

(3.45) 〈[(ε, ε0)], [M̄N ]〉 = 1, 〈[(id, ε)], [M̄N ]〉 = −N.

Proof. Let N ≥ 0. Then pN = SNSN∗ = (SNSN∗ − 1) + 1, so that ε(pN ) = 1
and ε0(pN ) = SS∗. Furthermore, since for any N ∈ N\{0}, the image of the

projection 1−SNSN∗ is span{e0, . . . , eN−1} ⊂ ℓ2(N), the projection 1−SNSN∗

is trace class. Moreover, with the help of Lemma 3.3 and Formula (3.44), it
implies that

〈[(ε, ε0)], [M̄N ]〉 = Trℓ2(N)(ε− ε0)(pN ) = Trℓ2(N)(1− SS∗) = 1,(3.46)

〈[(id, ε)], [M̄N ]〉 = Trℓ2(N)(id− ε)(pN ) = Trℓ2(N)(S
NSN∗ − 1) = −N.(3.47)

For N < 0, we have TrMat2(pN ) = 2 − S|N |S|N |∗ = 2 − p|N |. Combining this
with the above index pairing for p|N |, the formulas (ε − ε0)(2) = 2(1 − SS∗)
and (id− ε)(2) = 0, and (3.44), we obtain

〈[(ε, ε0)], [M̄N ]〉 = Trℓ2(N)(ε− ε0)(2− p|N |) = Trℓ2(N)(1− SS∗)(3.48)

= 1,

〈[(id, ε)], [M̄N ]〉 = Trℓ2(N)(id− ε)(2− p|N |) = Trℓ2(N)(1 − S|N |S|N |∗)(3.49)

= −N.

This completes the proof. �

The above theorem agrees with the classical situation. Indeed, the pairing
〈[(ε, ε0)], [M̄N ]〉 yields the rank of the line bundles, and 〈[(id, ε)], [M̄N ]〉 com-
putes the winding number of the map u−N : S1 → S1.
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4. Examples of piecewise principal coalgebra coactions

We begin by recalling the piecewise structure [15] of a noncommutative join
construction proposed in [11]. Then we specify it to SUq(2) to obtain a quantum
instanton bundle S7q → S4q [26] as a piecewise trivial principal comodule algebra.
A key step is then to replace the Hopf algebra O(SUq(2)) by the quotient of
O(SUq(2)) by a coideal right ideal (O(S2q,s) ∩ kerε)O(SUq(2)) provided by a

generic Podleś quantum sphere S2q,s, s 6= 0 [27]. The quotient coalgebra is
isomorphic with O(U(1)) [24]. Applying our main theorem, we will prove that
the induced right coaction of O(U(1)) is principal.

4.1. Piecewise principal coactions from a noncommutative join. Let
H̄ be the C∗-algebra of a compact quantum group and H its Peter-Weyl Hopf
algebra [34,36]. We take the algebra of norm continuous functions C([a, b], H̄)
from a closed interval [a, b] to the C∗-algebra H̄ , and define

P1 := {f ∈ C([0, 12 ], H̄)⊗H | f(0) ∈ ∆(H)},(4.1)

P2 := {f ∈ C([ 12 , 1], H̄)⊗H | f(1) ∈ C⊗H}.(4.2)

Here we identify elements of C([a, b], H̄)⊗H with functions [a, b] → H̄⊗H . The
Pi’s are right H-comodule algebras for the coaction ∆Pi

= idC([ai,bi],H̄) ⊗ ∆,
where ∆ stands for the coproduct of H . The subalgebras of coaction invariants
can be identified with

B1 := {f ∈ C([0, 12 ], H̄) | f(0) ∈ C},

B2 := {f ∈ C([ 12 , 1], H̄) | f(1) ∈ C}.

The comodule algebra P2 is evidently the same as B2 ⊗ H . Unlike P2, the
comodule algebra P1 does not coincide with B1 ⊗ H . However, there is a
cleaving map j : H → P1 given by j(h)(t) :=

(
t 7→ h(1)

)
⊗ h(2), that is

j(h)(t) := ∆(h) for all t ∈ [0, 12 ]. Since j is an algebra homomorphism, it
identifies the comodule algebra P1 with a smash product B1#H .

Now one can define the noncommutative join of H̄ as the pullback right
H-comodule algebra

(4.3) P := {(p, q) ∈ P1 ⊕ P2 |π1(p) = π2(q)}

given by the evaluation maps

π1 := ev 1

2

⊗ id : P1 → P12 := H̄ ⊗H, π2 := ev 1

2

⊗ id : P2 → P12 := H̄ ⊗H,

where evt is defined by the evaluation of functions of C([a, b], H̄) at t ∈ [a, b].

Our next goal is to replace H by a quotient coalgebra without losing princi-
pality. Using [7, Example 2.29], it is straightforward to verify the following
lemma.

Lemma 4.1. Let H be a Hopf algebra with bijective antipode, let ∆P : P →
P ⊗ H be a coaction making P a right H-comodule algebra, and let J be a
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coideal right ideal of H. Then C := H/J is a coalgebra coacting on P via
ρR := (id ⊗ π) ◦ ∆P , where π : H → C the canonical surjection, and the
formula

(4.4) Ψ : C ⊗ P ∋ π̄(h)⊗ p 7−→ p(0) ⊗ π(hp(1)) ∈ P ⊗ C

defines a bijective entwining making P an entwined module. The inverse of Ψ
is given by

(4.5) Ψ−1(p⊗ π(h)) = π(hS−1(p(1)))⊗ p(0),

and defines a left coaction on P via

(4.6) ρL : P ∋ p 7−→ Ψ−1(p⊗ π(1)) = π(S−1(p(1)))⊗ p(0) ∈ C ⊗ P.

Lemma 4.2. Let P be a principal H-comodule algebra for ∆P : P → P ⊗ H.
Also, let J be a coideal right ideal of H defining a coalgebra C := H/J , let
ρR := (id ⊗ π) ◦ ∆P , with π : H → C the canonical surjection, be its right
coaction on P , and let i : C → H be a unital (i.e., i(π(1)) = 1) C-bicolinear
(for the coactions ∆H := (id ⊗ π) ◦∆ and H∆ := (π ⊗ id) ◦∆) splitting (i.e.,
π ◦ i = id). Then P is principal for the coaction ρR.

Proof. Let ℓ : H → P ⊗ P be a strong connection on P . One can easily check
that ℓ ◦ i : C → P ⊗ P is a strong connection on P for the right coaction
ρR := (id⊗ π) ◦∆P and the left coaction ρL := (π⊗ id) ◦ P∆, where P∆(p) :=
S−1(p(1))⊗p(0) gives the leftH-coaction on P viewed as a principalH-comodule
algebra. Furthermore, it follows from Lemma 4.1 that

(4.7) Ψ : C ⊗ P ∋ π(h) ⊗ p 7−→ p(0) ⊗ π(hp(1)) ∈ P ⊗ C

is a bijective entwining making P an entwined module. Therefore, since
ρR(1) = 1 ⊗ π(1), ρL(1) = π(1) ⊗ 1, and ρL(p) = Ψ−1(p ⊗ π(1)) for all
p ∈ P by (4.6), the principality of P for the C-coaction ρR follows from
Lemma 1.1. �

Combining Lemma 4.2 with Theorem 2.2 yields the following result.

Theorem 4.3. Let H̄ be the C∗-algebra of a compact quantum group, H its
Peter-Weyl Hopf algebra, J a coideal right ideal of H and π : H → C := H/J
the canonical surjection. Also, let

P1 := {f ∈ C([0, 12 ], H̄)⊗H | (ev0 ⊗ id)(f) ∈ ∆(H)},(4.8)

P2 := {f ∈ C([ 12 , 1], H̄)⊗H | (ev1 ⊗ id)(f) ∈ C⊗H},(4.9)

be right and left C-comodules for the right and left coactions

(4.10) ρiR := (id⊗ π) ◦∆Pi
, ρiL := (π ⊗ id) ◦ Pi

∆, i = 1, 2,

respectively. Here ∆Pi
:= id ⊗∆ and Pi

∆ := (S−1 ⊗ id) ◦ flip ◦∆Pi
. Then, if

there exists a unital bicolinear splitting i : C → H of π : H → C, the pullback
algebra and π(1)-coaugmented C-comodule

(4.11) P :=
{
(p1, p2) ∈ P1 × P2 | (ev 1

2

⊗ id)(p1) = (ev 1

2

⊗ id)(p2)
}

is principal.
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First observe that, if both of π1 and π2 defining the pullback diagram (2.34)
are surjective, then (2.40) simplifies to

ℓ = ((α12
L + id)⊗ (α12

R + id)) ◦ ℓ2(4.12)

+ (η1 ◦ ε−mP1
◦ (α12

L ⊗ α12
R ) ◦ ℓ2) ∗

(
(id⊗ (id + α21

R )) ◦ ℓ1
)
.

Indeed, since now α21
R is defined on the whole comodule P1, a special connection

ℓ̃1 constructed in (2.39) can be replaced by any strong connection ℓ1 on P1.
(Note that specializing (4.12) to comodule algebras coincides with what was
obtained in [15].)

Next, specializing to the setting of Theorem 4.3, observe that the formulas

α1 : P12 −→ P1, α1(h̄⊗ h) := 2th̄⊗ h+ (1− 2t) ε̄(h̄)h(1) ⊗ h(2),(4.13)

α2 : P12 −→ P2, α2(h̄⊗ h) := 2(1− t) h̄⊗ h+ (2t− 1) ε̄(h̄)⊗ h,(4.14)

where ε̄ is any unital linear functional on H̄ , define unital C-bicolinear splittings
of π1 and π2 respectively. Hence we can take α12

L = α12
R = α1 ◦ π2 and α21

R =
α2 ◦ π1. Combining this with the fact that a cleaving map j defines a strong
connection via ℓ := (j−1 ⊗ j) ◦∆, we obtain very explicit formulae for strong
connections on P1 and P2:

(4.15) ℓ1 := (j−1
1 ⊗ j1) ◦∆ ◦ i, ℓ2 := (j−1

2 ⊗ j2) ◦∆ ◦ i.

Here j1 : H → P1, j1(h) := (t 7→ h(1))⊗ h(2), and j2 : H → P2, j2(h) := 1⊗ h
are cleaving maps for P1 and P2 respectively.

4.2. Quantum complex projective spaces CP3
q,s. Finally, we specify

H̄ to be C(SUq(2)), H = O(SUq(2)), J = (O(S2q,s) ∩ kerε)O(SUq(2)), and

ε̄ : C(SUq(2)) → C to be the counit. Here O(S2q,s) stands for the coordinate al-

gebra of a Podleś quantum sphere S2q,s, s ∈ [0, 1], [8]. (Note that the case s = 0
brings us to the comodule-algebra setting.) The most interesting part of this
structure is the unital bicolinear splitting of π : O(SUq(2)) → O(SUq(2))/J
given by [8, Proposition 6.3].

All of this defines a family of noncommutative deformations of the
U(1)-principal bundle S7 → CP3. More precisely, we obtain deformations
of a U(1)-principal action on

(4.16) S7 :=
{
(z1, z2, z3, z4) ∈ C

4
∣∣ |z1|2 + |z2|

2 + |z3|
2 + |z4|

2 = 1
}

given by

(4.17) (z1, z2, z3, z4)e
iϕ = (z1e

iϕ, z2e
−iϕ, z3e

iϕ, z4e
−iϕ).

However, this is isomorphic to the diagonal action of U(1) on S7, so that the
quotient space is again CP3. Thus out of Pflaum’s S7 we obtain a family of
quantum projective spaces CP3

q,s. A very explicit Mayer-Vietoris-type formula

for a strong connection on S7q → CP3
q,s should allow us to study the K-theoretic
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aspects of the tautological line bundle over CP3
q,s, but this is beyond the scope

of the present paper.
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Brzeziński for helping us with Section 2, Simon Brain and Ulrich Krähmer
for proofreading the manuscript, and Nicola Ciccoli for Poisson-geometric
consultations.

References

[1] Baaj, S., G. Skandalis: Unitaires multiplicatifs et dualité pour les produits
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Podleś’ quantum spheres. J. Lie Theory 17 (2007), 751–790.

[30] Ulbrich, K.-H.: Vollgraduierte Algebren. Abh. Math. Sem. Univ. Hamburg

51 (1981), 136–148.
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