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1. Introduction

LetK(n) be the n-th MoravaK-theory at a fixed prime p. The Adams-Novikov
Spectral Sequence for computing the homotopy groups of theK(n)-local sphere
LK(n)S

0 can be identified by [2] with a descent spectral sequence

(1) Es,t2
∼= Hs(Gn, (En)t) =⇒ πt−s(LK(n)S

0) .

Here Gn denotes the automorphism group of the pair (Fpn ,Γn), where Γn is
the Honda formal group law; the group Gn is a profinite group and cohomology
is continuous cohomology. The spectrum En is the 2-periodic Landweber exact
ring spectrum so that the complete local ring (En)0 classifies deformations of
Γn.
In this paper we focus on the case p = 3 and n = 2. In [4], we constructed a
resolution of the K(2)-local sphere at the prime 3 using homotopy fixed point
spectra of the form EhF2 where F ⊆ G2 is a finite subgroup. These fixed point
spectra are well-understood. In particular, their homotopy groups have all been
calculated (see [4]) and they are closely related to the Hopkins-Miller spectrum
of topological modular forms. The resolution was used in [6] to redo and refine
the earlier calculation of the homotopy of the K(2)-localization of the mod-3

1The first author was partially supported by the National Science Foundation (USA). The
second author was partially supported by ANR “HGRT”. The first two authors dedicate this
work to the memory of their friend, teacher and coauthor, Mark Mahowald.
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Moore spectrum [14]. In this paper we show how the results of [6] imply the
calculation of the rational homotopy of the K(2)-local sphere. Let Qp be the
field of fractions of the p-adic integers and Λ the exterior algebra functor.

Theorem 1.1. There are classes ζ ∈ π−1(LK(2)S
0) and e ∈ π−3(LK(2)S

0)⊗Q

that induce an isomorphism of algebras

ΛQ3
(ζ, e) ∼= π∗(LK(2)S

0)⊗Q .

Our result is in agreement with the result predicted by Hopkins’ chromatic
splitting conjecture [8], and in fact, we will establish this splitting conjecture
for n = 2 and p = 3.
We will prove a more general result which will be useful for calculations with
the Picard group of Hopkins [17]. Before stating that, let us give some notation.
If X is a spectrum, then we define

(En)∗X
def
= π∗LK(n)(En ∧X) .

Despite the notation, (En)∗(−) is not quite a homology theory, because it
doesn’t take wedges to sums; however, it is a sensitive and tested algebraic
invariant for the K(n)-local category. The (En)∗-module (En)∗X is equipped
with the m-adic topology where m is the maximal ideal in (En)0. With respect
to this topology, the group Gn acts through continuous maps and the action is
twisted because it is compatible with the action of Gn on the coefficient ring
(En)∗. This topology is always topologically complete but need not be sepa-
rated. See [4] §2 for some precise assumptions which guarantee that (En)∗X is
complete and separated. All modules which will be used in this paper will in
fact satisfy these assumptions.
Let E(n) denote the nth Johnson-Wilson spectrum and Ln localization with
respect to E(n). Note that E(0)∗ is rational homology and E(1) is the Adams
summand of p-local complex K-theory. Let Snp denote the p-adic completion
of the sphere.

Theorem 1.2. Let p = 3 and let X be any K(2)-local spectrum so that
(E2)∗X ∼= (E2)∗ ∼= (E2)∗S

0 as a twisted G2-module. Then there is a weak
equivalence of E(1)-local spectra

L1X ∼= L1(S
0
3 ∨ S−1

3 ) ∨ L0(S
−3
3 ∨ S−4

3 ) .

We will use Theorem 1.1 to prove Theorem 1.2, but we note that Theorem 1.1
is subsumed into Theorem 1.2. Indeed, π∗X ⊗Q ∼= π∗L1X ⊗Q and

π∗L1S
0
3 ⊗Q ∼= π∗L0S

0
3
∼= Q3

all concentrated in degree zero. The generality of the statement of Theorem 1.2
is not vacuous; there are such X which are not weakly equivalent to LK(2)S

0

– “exotic” elements in the K(2)-local Picard group. See [5] and [10].
We remark that Theorem 1.1 disagrees with the calculation by Shimomura and
Wang in [15]. In particular, Shimomura and Wang find the exterior algebra on
ζ only.
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An interesting feature of our proof of Theorem 1.1 is that it does not require a
preliminary calculation of all of π∗(LK(2)S

0). In fact, we get away with much
less, namely with only a (partial) understanding of the E2-term of the Adams-
Novikov Spectral Sequence converging to π∗LK(2)(S/3) where S/3 denotes the
mod-3 Moore spectrum (see Corollary 3.4). Our method of proof can also be
used to recover the rational homotopy of LK(2)S

0 as well as the chromatic
splitting conjecture at primes p > 3 [16]; we only need to use the analog of
Corollary 3.4 for the E2-term of the Adams-Novikov spectral sequence of the
K(2)-localization of the mod-p Moore spectrum for p > 3.
In section 2 we give some general background on the automorphism group G2

and we review the main results of [4]. In section 3 we recall those results of [6]
which are relevant for the purpose of this paper. Section 4 gives the calculation
of the rational homotopy groups of LK(2)S

0 and in the final section 5 we prove
Theorem 1.2 and the chromatic splitting conjecture for n = 2 and p = 3. See
Corollary 5.11.

2. Background

Let Γ2 be the Honda formal group law of height 2; this is the unique 3-typical
formal group law over F9 with 3-series [3](x) = x9. We begin with a short
analysis of the Morava stabilizer group G2, the group of automorphisms of
the pair (F9,Γ2). Let W = W(F9) denote the Witt vectors of F9 and let
(−)σ : W → W be the lift of the Frobenius. Define

O2 = W〈S〉/(S2 = 3, wS = Swσ) .

Then O2 is isomorphic to the ring of endomorphisms of Γ2 over F9; hence
O×

2 is isomorphic to the group S2 of automorphisms of Γ2 over F9. This is a
subgroup of the group G2 of automorphisms of the pair (F9,Γ2), which is the
group of pairs (f, φ) with φ : F9 → F9 a field isomorphism and f : φ∗Γ2 → Γ2

an isomorphism of formal group laws over F9. Since Γ2 is defined over F3, there
is a splitting

G2
∼= S2 ⋊Gal(F9/F3)

with Galois action given by φ(x + yS) = xσ + yσS.
The 3-adic analytic group S2 ⊆ G2 contains elements of order 3; indeed, an
explicit such element is given by

a = −
1

2
(1 + ωS)

where ω is a fixed primitive 8-th root of unity in W. If C3 is the cyclic group of
order 3, the mapH∗(S2,F3) → H∗(C3,F3) defined by a is surjective and, hence,
S2 and G2 cannot have finite cohomological dimension. As a consequence,
the trivial module Z3 cannot admit a projective resolution of finite length.
Nonetheless, G2 has virtual finite cohomological dimension, and admits a finite
length resolution by permutation modules obtained from finite subgroups. Such
a resolution was constructed in [4] using the following two finite subgroups of
G2. The notation 〈−〉 indicates the subgroup generated by the listed elements.
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(1) Let G24 = 〈a, ω2, ωφ〉 ∼= C3 ⋊Q8. Here Q8 is the quaternion group of
order 8. Note ω2 acts non-trivially and ωφ acts trivially on C3.

(2) SD16 = 〈ω, φ〉. This subgroup is isomorphic to the semidihedral group
of order 16.

Remark 2.1. The group G2 splits as a product G2
∼= G1

2 ×Z3. To be specific,
the center of G2 is isomorphic to Z×

3 and there is an isomorphism from the
additive group Z3 onto the multiplicative subgroup 1 + 3Z3 ⊆ Z×

3 sending 1
to 4. There is also a reduced determinant map G2 → Z3. (See [4].) The
composition Z3 → G2 → Z3 is multiplication by 2, giving the splitting. All
finite subgroups of G2 are automatically finite subgroups of G1

2.

Because of this splitting, any resolution of the trivial G1
2-module Z3 can be

promoted to a resolution of the trivial G2-module. See Remark 2.4 below.
Thus we begin with G1

2.
If X = limXα is a profinite set, define Z3[[X ]] = lim Z/3n[Xα]. The following
is the main algebraic result of [4].

Theorem 2.2. There is an exact complex of Z3[[G
1
2]]-modules of the form

0 → C3 → C2 → C1 → C0 → Z3

with
C0 = C3

∼= Z3[[G
1
2/G24]]

and

C1 = C2
∼= Z3[[G

1
2]]⊗Z3[SD16] Z3(χ)

where Z3(χ) is the SD16 module which is free of rank 1 over Z3 and with ω
and φ both acting by multiplication by −1.

We recall that a continuous Z3[[G2]]-module M is profinite if there is an iso-
morphism M ∼= limαMα where each Mα is a finite Z3[[G2]] module.

Corollary 2.3. Let M be a profinite Z3[[G
1
2]]-module. Then there is a first

quadrant cohomology spectral sequence

Ep,q1 (M) ∼= Extq
Z3[[G1

2
]]
(Cp,M) =⇒ Hp+q(G1

2,M)

with
E0,q

1 (M) = E3,q
1 (M) ∼= Hq(G24,M)

and

E1,q
1 (M) = E2,q

1 (M) ∼=

{
HomZ3[SD16](Z3(χ),M) q = 0

0 q > 0 .

Remark 2.4. These ideas and techniques can easily be extended to the full
group G2 using the splitting G2

∼= G1
2 × Z3. Let ψ ∈ Z3 be a topological

generator; then there is a resolution

0 // Z3[[Z3]]
ψ−1 // Z[[Z3]] // Z3

// 0 .
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Write C• → Z3 for the resolution of Theorem 2.2. Then the total complex of
the double complex

C•⊗̂{ Z3[[Z3]]
ψ−1 // Z[[Z3]] }

defines an exact complex D• → Z3 of Z3[[G2]]-modules. The symbol ⊗̂ in-
dicates the completion of the tensor product. From this we get a spectral
sequence analogous to that of Corollary 2.3.

Remark 2.5. In our arguments below, we will use the functors on profinite
Z3[[G

1
2]]-modules to profinite abelian groups given by

M 7→ Ep,02 (M) = Hp(HomZ3[[G1
2
]](C•,M)) .

Here C• is the resolution of Theorem 2.2; thus, we are using the q = 0 line
of the E2-page of the spectral sequence of Corollary 2.3. We would like some
information on the exactness of these functors; for this we need a hypothesis.
If M is a profinite Z3[[G2]]-module then

HomZ3[[G1
2
]](C•,M) = limαHomZ3[[G1

2
]](C•,Mα)

is also necessarily profinite as a Z3-module. Since profinite Z3-modules are
closed under kernels and cokernels, the groups Ep,02 (M) are also profinite. We
will use later that ifM is a finitely generated profinite Z3-module andM/3M =
0, then M = 0.

Lemma 2.6. Suppose 0 → M1 → M2 → M3 → 0 is an exact sequence of
profinite Z3[[G

1
2]]-modules such that H1(G24,M1) = 0. Then there is a long

exact sequence of profinite Z3-modules

0 → E0,0
2 (M1) → E0,0

2 (M2) → E0,0
2 (M3) → E1,0

2 (M1) → . . .

· · · → E3,0
2 (M2) → E3,0

2 (M3) → 0 .

Proof. In general the sequence of complexes

0 → HomZ3[[G1
2
]](C•,M1) → HomZ3[[G1

2
]](C•,M2) → HomZ3[[G1

2
]](C•,M3) → 0

of profinite Z3-modules need not be exact; however, by Corollary 2.3, the failure
of exactness is exactly measured by H1(G24,M1). Therefore, if that group is
zero, then we do get an exact sequence of complexes, and the result follows. �

Remark 2.7. By [4], the resolution C• → Z3 of Theorem 2.2 can be promoted

to a resolution of (E2)∗E
hG1

2

2 by twisted G2-modules

(2)
(E2)∗E

hG1
2

2 → (E2)∗E
hG24

2 → (E2)∗Σ
8EhSD16

2

→ (E2)∗Σ
8EhSD16

2 → (E2)∗E
hG24

2 → 0.

We have Σ8EhSD16

2 because C1 is twisted by a character. From §5 of [4] we
get the following topological refinement: there is a sequence of maps between
spectra

E
hG1

2

2 → EhG24

2 → Σ8EhSD16

2 → Σ40EhSD16

2 → Σ48EhG24

2(3)
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realizing the resolution (2) and with the property that any two successive maps
are null-homotopic and all possible Toda brackets are zero modulo indeter-
minacy. Note that there is an equivalence Σ8EhSD16

2 ≃ Σ40EhSD16

2 , so that
suspension is for symmetry only; however,

Σ48EhG24

2 6≃ EhG24

2

even though

(E2)∗Σ
48EhG24

2
∼= (E2)∗E

hG24

2 .

This suspension is needed to make the Toda brackets vanish. Because these
Toda brackets vanish, the sequence of maps in the topological complex (3)
further refines to a tower of fibrations

(4) E
hG1

2

2
// X2

// X1
// EhG24

Σ45EhG24

2

OO

Σ38EhSD16

2

OO

Σ7EhSD16

2

OO

There is a similar tower for the sphere itself, using the resolution of Remark
2.4.

Remark 2.8. Let Σ−pFp denote the successive fibers in the tower (4); thus,

for example, F3 = Σ48EhG24

2 . Then combining the descent spectral sequences
for the groups G24, SD16 and G1

2 with Corollary 2.3 and the spectral sequence
of the tower, we get a square of spectral sequences

(5) Ep,q1 ((E2)tX)

'&%$ !"#1
��

'&%$ !"#2
+3 Hp+q(G1

2, (E2)tX)

'&%$ !"#3
��

πt−qLK(2)(Fp ∧X)
'&%$ !"#4

+3 πt−(p+q)LK(2)(E
hG1

2

2 ∧X) .

We will use information about spectral sequences (1) and (2) to deduce infor-
mation about spectral sequences (3) and (4). See Lemmas 4.4 and 5.3.
There is a similar square of spectral sequences where the lower right corner
becomes π∗LK(2)S

0. This uses the resolution of Remark 2.4 and the subsequent
tower for the sphere.

3. The algebraic spectral sequences in the case of (E2)∗/3

Let S/3 denote the mod-3 Moore spectrum. Then, in the case of (E2)∗/3 =
(E2)∗(S/3) the spectral sequence of Corollary 2.3 was completely worked out
in [6]. We begin with some of the details.
First note that this is a spectral sequence of modules over H∗(G2; (E2)∗/3).
We will describe the E1-term as a module over the subalgebra

F3[β, v1] ⊆ H∗(G2; (E2)∗/3)
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where β ∈ H2(G2, (E2)12/3) detects the image of the homotopy element β1 ∈
π10S

0 in π10(LK(2)(S/3)) and v1 := u1u
−2 detects the image of the homotopy

element in π4(S/3)

S4 // Σ4(S/3)
A // S/3

of the inclusion of the bottom cell composed with the v1-periodic map con-
structed by Adams.
In the next result, the element α of bidegree (1, 4) detects the image of the
homotopy element α1 ∈ π3S

0 and the element α̃ of bidegree (1, 12) detects an
element in π11(LK(2)(S/3)) which maps to the image of β1 in π10(LK(2)S

0)

under the pinch map S/3 → S1 to the top cell. For more details on these
elements, as well as for the proof of the following theorem we refer to [6]. We
write

Ep,q,tr = Ep,qr ((E2)t/3)

for the Er-term of the spectral sequence of Corollary 2.3. For example, if p = 0
or p = 3, then

Ep,∗,t1 = H∗(G24, (E2)t/3) .

By the calculations of [4] §3, there is an invertible class ∆ ∈ H0(G24, (E2)24).
We also write ∆ for its image in H0(G24, (E2)24/3).

Theorem 3.1. There are isomorphisms of F3[β, v1]-modules, with β acting
trivially on Ep,∗,∗1 if p = 1, 2:

Ep,∗,∗

1
∼=






F3[[v
6

1∆
−1]][∆±1, v1, β, α, α̃]/(α

2, α̃2, v1α, v1α̃, αα̃+ v1β)ep p = 0, 3

ω2u4F3[[u
4

1]][v1, u
±8]ep p = 1, 2 .

Remark 3.2. The module generators ep are of tridegree (p, 0, 0). If p = 0 or

p = 3, then Ep,0,∗1 is isomorphic to a completion of the ring of mod-3 modular
forms for smooth elliptic curves. Indeed, by Deligne’s calculations [1] §6, the
ring of modular forms is F3[b2,∆

±1] where b2 is the Hasse invariant and ∆ is
the discriminant. The Hasse invariant of an elliptic curve can be computed as
v1 of the associated formal group, so we can write b2 = v1.
If p = 1 or p = 2, we have written Ep,0,∗1 as a submodule of (E2)∗/3 =
F9[[u1]][u

±1]. Recall that there is a 3-typical choice for the universal defor-
mation of the Honda formal group Γ2 with v1 = u1u

±2 and v2 = u−8.

All differentials in the spectral sequence of Corollary 2.3 with M = (E2)∗/3
are v1-linear. This follows from the fact that v1 is an element in the homotopy
groups of the spectrum S/3. In particular, d1 is determined by continuity and
the following formulae established in [6].

Theorem 3.3. There are elements

∆k ∈ E0,0,24k
1 , b2k+1 ∈ E1,0,16k+8

1 , b2k+1 ∈ E2,0,16k+8
1 , ∆k ∈ E3,0,24k

1

for each k ∈ Z satisfying

∆k ≡ ∆ke0, b2k+1 ≡ ω2u−4(2k+1)e1, b2k+1 ≡ ω2u−4(2k+1)e2, ∆k ≡ ∆ke3
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(where the congruences are modulo the ideal (v61∆
−1) resp. (v41u

8) and in the
case of ∆0 we even have equality ∆0 = ∆0e0 = e0) such that

d1(∆k) =





(−1)m+1b2.(3m+1)+1 k = 2m+ 1,m ∈ Z

(−1)m+1mv4.3
n

−2
1 b2.3n(3m−1)+1 k = 2m.3n,m ∈ Z,

m 6≡ 0 mod (3), n ≥ 0

0 k = 0

d1(b2k+1) =





(−1)nv6.3
n+2

1 b3n+1(6m+1) k = 3n+1(3m+ 1),

m ∈ Z, n ≥ 0

(−1)nv10.3
n+2

1 b3n(18m+11) k = 3n(9m+ 8),

m ∈ Z, n ≥ 0

0 else

d1(b2k+1) =





(−1)m+1v21∆2m 2k + 1 = 6m+ 1,m ∈ Z

(−1)m+nv4.3
n

1 ∆3n(6m+5) 2k + 1 = 3n(18m+ 17),

m ∈ Z, n ≥ 0

(−1)m+n+1v4.3
n

1 ∆3n(6m+1) 2k + 1 = 3n(18m+ 5),

m ∈ Z, n ≥ 0

0 else .

We will actually only need the following consequence of these results, which
follows after a little bookkeeping.

Corollary 3.4. There is an isomorphism

Ep,02 ((E2)0/3) ∼=

{
F3 p = 0, 3

0 p = 1, 2 .

Remark 3.5. We also record here the integral calculation H∗(G24, (E2)∗) from
[4]; we will use this in Proposition 5.5. There are elements c4, c6 and ∆ in
H0(G24, (E2)∗) of internal degrees 8, 12 and 24 respectively. The element ∆ is
invertible and there is a relation

c34 − c26 = (12)3∆ .

Define j = c34/∆ and let M∗ be the graded ring

M∗ = Z3[[j]][c4, c6,∆
±1]/(c34 − c26 = (12)3∆,∆j = c34).

There are also elements α ∈ H1(G24, (E2)4) and β ∈ H2(G24, (E2)12) which
reduce to the restriction (from G2 to G24) of the elements of the same name in
Theorem 3.1. There are relations

3α = 3β = α2 = 0

c4α = c4β = 0(6)

c6α = c6β = 0.
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Finally
H∗(G24, (E2)∗) =M∗[α, β]/R

where R is the ideal of relations given by (6). The element ∆ has already
appeared in Theorem 3.1. Modulo 3, c4 ≡ v21 and c6 ≡ v31 up to a unit in
H0(G24, (E2)0/3) = F3[[j]]. Compare [3], Proposition 7.

4. The rational calculation

The purpose of this section is to give enough qualitative information about the
integral calculation of H∗(G2, (E2)∗) in order to prove Theorem 1.1. Much of
this is more refined than we actually need, but of interest in its own right.
The following result implies that the rational homotopy will all arise from
H∗(G2, (E2)0).

Proposition 4.1. a) Suppose t = 4.3km with m 6≡ 0 mod (3). Then
3k+1H∗(G2, (E2)t) = 0.
b) Suppose t is not divisible by 4. Then H∗(G2, (E2)t) = 0.

Proof. Part (b) is the usual sparseness for the Adams-Novikov Spectral Se-
quence. We can prove this here by considering the spectral sequence

Hp(G2/{±1}, Hq({±1}, (E2)t) =⇒ Hp+q(G2, (E2)t)

given by the inclusion of the central subgroup {±1} ⊂ Z×

3 ⊂ G2. The central
subgroup Z×

3 acts trivially on (E2)0 and by multiplication on u; that is, if
g ∈ Z×

3 then g∗(u) = gu. In particular we find

Hq({±1}, (E2)t) = 0

unless t is a non-zero multiple of 4 and q = 0. From this (b) follows.
For (a) we use the spectral sequence

Hp(G1
2, H

q(Z3, (E2)t)) =⇒ Hp+q(G2, (E2)t)

If ψ ∈ Z3 is a topological generator, then ψ ≡ 4 modulo 9. In particular,

ψ(ut/2) = (1 + 2.3k+1m)ut/2 mod (3k+2)

and we have that Hq(Z3, (E2)t) = 0 unless q = 1 and

3k+1H1(Z×

3 , (E2)t) = 0 .

Then (a) follows. �

It’s not possible to be quite so precise in the case of G1
2. However, we do have

the following result.

Proposition 4.2. Suppose s > 3 or t is not divisible by 4. Then

Hs(G1
2, (E2)t)⊗Q = 0 .

Proof. This follows from tensoring the spectral sequence of Corollary 2.3 with
Q and noting that

Hs(G24, (E2)t)⊗Q = Hs(SD16, (E2)t)⊗Q = 0

if s > 0 or t is not divisible by 4. �
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To isolate the torsion-free part of the cohomology of either G2 or G1
2 we use

the spectral sequences of Corollary 2.3. From Remark 3.5 we have an inclusion
which is an isomorphism in positive cohomological degrees

Z3[β
2∆−1]/(3β2∆−1) ⊆ H∗(G24, (E2)0).

In the notation of the spectral sequences of Corollary 2.3 and Remark 2.4 we
then have inclusions

Z3[β
2∆−1]/(3β2∆−1)ep ⊆ Ep,∗1 (G1

2, (E2)0), p = 0, 3.

Here is the main algebraic result.

Theorem 4.3. a) There is an element e ∈ H3(G1
2, (E2)0) of infinite order so

that

H∗(G1
2, (E2)0) ∼= Λ(e)⊗ Z3[β

2∆−1]/(3β2∆−1) .

b) There is an element ζ ∈ H1(G2, (E2)0) of infinite order so that

H∗(G2, (E2)0) ∼= Λ(ζ) ⊗H∗(G1
2, (E2)0) .

Proof. For the proof of part (a) we consider the functors from the category of
profinite Z3[[G

1
2]]-modules to 3-profinite abelian groups introduced in Remark

2.5 and given by

M 7→ Ep,02 (M) = Hp(HomZ3[[G1
2
]](C•,M)) .

Here C• is the resolution of Theorem 2.2.
From Remark 3.5 we know that the hypothesis of Lemma 2.6 is satisfied for
the short exact sequence

0 → (E2)0
×3
−→ (E2)0 → (E2)0/3 → 0 .

Then Corollary 3.4, the long exact sequence of Lemma 2.6, and the fact that
the groups Ep,02 (G1

2, (E2)0) are profinite Z3- modules give

Ep,02 (G1
2, (E2)0) ∼=

{
Z3, p = 0, 3;

0, p = 1, 2 .

See Remark 2.5. This implies that the E2-term of the spectral sequence of
Corollary 2.3 is isomorphic to

Λ(e3)⊗ Z3[β
2∆−1]/(3β2∆−1) .

Since there can be no further differentials, part (a) follows.

Since the central Z3 acts trivially on (E2)0, we have a Künneth isomorphism

H∗(Z3,Z3)⊗H∗(G1
2, (E2)0) ∼= H∗(G2, (E2)0) .

Part (b) follows. �

We are now ready to state and prove the main result on rational homotopy.
Note that Theorem 1.1 of the introduction is an immediate consequence of
Proposition 4.1, of Theorem 4.3, of the spectral sequence

Hs(G2, (E2)t)⊗Q =⇒ πt−sLK(2)S
0 ⊗Q .
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and part (b) of the following Lemma.

Let κ2 be the set of isomorphism classes of K(2)-local spectra X so that
(E2)∗X ∼= (E2)∗ = (E2)∗S

0 as twisted G2-modules. This is a subgroup of
the K(2)-local Picard group; the group operation is given by smash product.
In [5] we show that κ2 ∼= (Z/3)2.

For the next result, the spectra Fp were defined in Remark 2.8.

Lemma 4.4. (a) Let X ∈ κ2. Then for p = 0, 1, 2, 3, the edge homomorphism
of the localized descent spectral sequence

Ep,q,t2 = Extq
Z3[[G1

2
]]
(Cp, (E2)tX)⊗Q =⇒ πt−qLK(2)(Fp ∧X)⊗Q

induces an isomorphism

π∗LK(2)(Fp ∧X)⊗Q ∼= HomZ3[[G1
2
]](Cp, (E2)∗X)⊗Q .

(b) Let F = G1
2 or G2. Then the localized spectral sequence

Hs(F, (E2)tX)⊗Q =⇒ πt−sLK(2)(E
hF
2 ∧X)⊗Q

converges and collapses.

Proof. For (a), the spectral sequence

Hs(F, (E2)tX) =⇒ πt−sLK(2)(E
hF
2 ∧X)

has a horizontal vanishing line at E∞ by the calculations of §3 of [4]. Thus the
rationalized spectral sequence

Hs(F, (E2)tX)⊗Q =⇒ πt−sLK(2)(E
hF
2 ∧X)⊗Q

converges. The result follows in this case.
For (b) we first do the case of G1

2. We localize the square of spectral sequences
of (5) to get a new square of spectral sequences

(7) Ep,q1 ((E2)tX)⊗Q

'&%$ !"#1
��

'&%$ !"#2
+3 Hp+q(G1

2, (E2)tX)⊗Q

'&%$ !"#3
��

πt−qLK(2)(Fp ∧X)⊗Q
'&%$ !"#4

+3 πt−(p+q)LK(2)(E
hG1

2

2 ∧X)⊗Q .

We will show that spectral sequence (3) converges and the result will follow.
First note that spectral sequences (2) and (4) are the localizations of finite and
convergent spectral sequences, so must converge. We have noted in the proof of
part (a) that the spectral sequences of (1) converge. Now we note that spectral
sequence (2) with q = 0 and the spectral sequence of (4) have the same d1, by
the construction of the tower.
From this we conclude that the E2-term of the spectral sequence (4) is

Ep,t2
∼= Hp(G1

2, (E2)tX)⊗Q .
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Proposition 4.2 implies that the spectral sequence (4) collapses and that, in
fact, if

πnLK(2)(E
hG1

2

2 ∧X)⊗Q 6= 0

there are unique integers p and t with t− p = n and

πnLK(2)(E
hG1

2

2 ∧X)⊗Q ∼= Hp(G1
2, (E2)tX)⊗Q.

It follows immediately that spectral sequence (3) converges and collapses.
There is an analogous argument for G2, using the expanded square of spec-
tral sequences for this group. See Remark 2.8. The needed properties of
Hp(G2, (E2)tX) ⊗ Q are obtained by combining Proposition 4.1 with Theo-
rem 4.3.b. �

Theorem 4.3 and Lemma 4.4 immediately imply the following results. Let Snp
denote the p-complete sphere.

Theorem 4.5. Let X ∈ κ2. Then the rational Hurewicz homomorphism

π0L0X−→ π0L0LK(2)(E2 ∧X) ∼= (E2)0X ⊗Q

is injective. Given a choice of isomorphism f : (E2)∗ → (E2)∗X of twisted
G2-modules the image of the multiplicative unit 1 under the isomorphism

Q3
∼= Q⊗H0(G2, (E2)0) ∼= π0L0X

extends to a weak equivalence of L0LK(2)S
0-modules

L0LK(2)S
0 ≃ L0X .

Theorem 4.6. The localized spectral sequence of Lemma 4.4

Q⊗Hs(G2, (E2)t) =⇒ πt−sL0LK(2)S
0

determines an isomorphism

ΛQ3
(ζ, e) ∼= π∗L0LK(2)S

0.

Furthermore, there is a weak equivalence

L0(S
0
3 ∨ S−1

3 ∨ S−3
3 ∨ S−4

3 ) ≃ L0LK(2)S
0.

5. The chromatic splitting conjecture

In this section we prove a refinement of Theorem 1.2 of the introduction.
Our main result, Theorem 5.10, analyzes L1X for X ∈ κ2. For this we will use
the chromatic fracture square

(8) L1X //

��

LK(1)X

��
L0X // L0LK(1)X .
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We made an analysis of L0X in Theorem 4.5. The calculation of LK(1)X has a
number of interesting features, so we dwell on it. In particular, we will produce
weak equivalences

LK(1)S
0 → LK(1)LK(2)(E

hG1
2

2 ∧X)

which will be the key to the entire calculation.
We begin with the following general result. Let S/pn denote the Moore spec-
trum.

Lemma 5.1. Let X be a spectrum. Then

LK(1)X = holimn v
−1
1 S/pn ∧X

where vt1 : Σ2t(p−1)S/pn → S/pn is any choice of v1-self map.

Proof. By Proposition 7.10(e) of [9] we know that

(9) LK(1)X = holimn S/p
n ∧ L1X .

Since L1 is smashing, we may rewrite (9) as

LK(1)X = holimn L1(S/p
n) ∧X .

Thus it is sufficient to know L1(S/p
n) = v−1

1 S/pn. This follows from the
Telescope Conjecture for n = 1; see [11] and [12]. �

If R is a discrete ring, then the Laurent series over R is the ring R((x)) =
R[[x]][x−1].

Proposition 5.2. (a) There are isomorphisms

(10) F3((v
6
1∆

−1))[v±1
1 ] ∼= v−1

1 H∗(G24, (E2)∗/3)

and

(11) F3((v
4
1v

−1
2 ))[v±1

1 ] ∼= v−1
1 H∗(SD16, (E2)∗/3) .

(b) There are isomorphisms

(12) F3[v
±1
1 ]⊗ Λ(v−1

1 b1) ∼= v−1
1 H∗(G1

2, (E2)∗/3)

and

(13) F3[v
±1
1 ]⊗ Λ(v−1

1 b1, ζ) ∼= v−1
1 H∗(G2, (E2)∗/3) .

The element b1 has bidegree (1, 8) and the element v−1b1 detects the image of
the homotopy class α1 ∈ π3S

0/3. The element ζ has bidegree (1, 0) and is the
image of the class of the same name in H1(G2, (E2)0) from Theorem 4.3.b.

Proof. The results in (a) are immediate consequences of Theorem 3.1. See also
[4] §3. For (b), the two isomorphisms both follow from Theorem 3.3 and the
algebraic spectral sequences of Corollary 2.3. That v−1

1 b1 detects the image of
α1 is proved in Proposition 1.5 of [6]. �

Here is our key lemma. Compare Lemma 4.4 in the rational case.
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Lemma 5.3. Let X ∈ κ2 and let X/3 = S/3 ∧X.
(a) Suppose that F = G24 or SD16. Then the edge homomorphism induces an
isomorphism

π∗LK(1)LK(2)(E
hF
2 ∧X/3)

∼= // v−1
1 H0(F, (E2)∗X/3) .

(b) Let F = G1
2 or G2. Then the localized spectral sequence

(v−1
1 Hs(F, (E∗X)/3))t =⇒ πt−sLK(1)(E

hF
2 ∧X/3)

converges and collapses.

Proof. The proof of Lemma 4.4 goes through mutatis mutandis. We need only
replace the localization H∗(F,M) 7→ H∗(F,M)⊗Q with the localization

H∗(F,M) 7−→ v−1
1 H∗(F,M/3)

throughout, and use Theorem 3.3 in place of Proposition 4.1 and Theorem
4.3. �

We now have the following remarkable calculation.

Proposition 5.4. Let X ∈ κ2. Then the K(1)-localized Hurewicz homomor-
phism

π0LK(1)X/3−→ π0LK(1)LK(2)(E2 ∧X/3)

is injective. Any choice of isomorphism (E2)∗
∼= (E2)∗X of twisted G2-modules

uniquely defines a generator of

π0(LK(1)LK(2)(E
hG1

2

2 ∧X/3)) ∼= (v−1
1 H0(G1

2, (E2)∗/3)0 ∼= F3 .

This generator extends uniquely to a weak equivalence

LK(1)S
0/3 ≃ LK(1)LK(2)(E

hG1
2

2 ∧X/3) .

Proof. We use the localized spectral sequence

(v−1
1 Hs(G1

2, (E2)∗/3))t =⇒ πt−sLK(1)LK(2)(E
hG1

2

2 ∧X/3).

This converges by Lemma 5.3.b. The choice of isomorphism (E2)∗
∼= (E2)∗X is

used to identify the E2-term. By the isomorphism of (12) this spectral sequence
collapses. By [11], we know that there is an isomorphism

F3[v
±1
1 ]⊗ Λ(α) ∼= π∗LK(1)S/3

where α is the image of α1 ∈ π3S
0/3. The result now follows from Proposition

5.2. �

This result will be extended to an integral calculation in Proposition 5.7.
For a complete local ring A with maximal ideal m define

A((x)) = limk

{
A/mk((x))

}
.
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This a completion of the ring of Laurent series. Recall that v1 = u1u
−2 and

v2 = u−8 for the standard p-typical deformation of the Honda formal group
over (E2)∗. As a first example, Lemma 5.1 immediately gives

(14) π∗LK(1)E2 = W((u1))[u
±1] .

We now give a calculation of π∗LK(1)E
hF
2 for our two important finite sub-

groups. The elements c4, c6, ∆ were all introduced in Remark 3.5.

Proposition 5.5. Let X ∈ κ2 and fix an isomorphism (E2)∗X ∼= (E2)∗ of
twisted G2-modules.
(a) The edge homomorphism of the homotopy fixed point spectral sequence in-
duces an isomorphism

π∗LK(1)LK(2)(E
hG24

2 ∧X) ∼= lim v−1
1 H0(G24, (E2)∗/3

n) .

Define b2 = c6/c4 and j = c34/∆. Then these choices define an isomorphism

Z3((j))[b
±1
2 ] ∼= lim v−1

1 H0(G24, (E2)∗/3
n) .

(b) The edge homomorphism of the homotopy fixed point spectral sequence in-
duces an isomorphism

π∗LK(1)LK(2)(E
hSD16

2 ∧X) ∼= lim v−1
1 H0(SD16, (E2)∗/3

n) .

Define w = v41/v2. Then this determines an isomorphism

Z3((w))[v
±1
1 ] ∼= lim v−1

1 H0(SD16, (E2)∗/3
n) .

Proof. For (a), the first isomorphism follows from Proposition 5.2, Lemma 5.1,
and a five lemma argument. For the second isomorphism, we know by Remark
3.5 that c4 ≡ v21 and c6 ≡ v31 modulo 3 and up to a unit. It follows that c4 is
invertible in the inverse limit and that we have a map

Z3((j))[b
±1
2 ] → lim v−1

1 H0(G24, (E2)∗/3
n) .

By Proposition 5.2, this map induces an isomorphism modulo 3 and the result
follows.
Part (b) follows directly from [4] §3. �

Lemma 5.6. Let X ∈ κ2 and let F = G24 or SD16. Given a choice of isomor-
phism (E2)∗

∼= (E2)∗X of twisted G2-modules the image of the multiplicative
unit 1 under the isomorphisms

lim(v−1
1 H0(F,E∗/3

n))0 ∼= lim(v−1
1 H0(F,E∗X/3

n))0 ∼= π0LK(1)LK(2)(E
hF
2 ∧X)

extends to a weak equivalence of LK(1)E
hF
2 -modules

LK(1)E
hF
2 ≃ LK(1)LK(2)(E

hF
2 ∧X) .

Proof. Let Z = LK(2)(E
hF
2 ∧ X). By Proposition 5.5, the given isomorphism

of Morava modules determines a map g : S0 → LK(1)Z. By induction and a

five lemma argument, the induced map S0 → LK(1)Z∧S/3n extends to a weak

equivalence of LK(1)E
hF
2 -modules

LK(1)E
hF
2 /3n ≃ LK(1)Z ∧ S/3n
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and the result follows from Proposition 5.1. �

Theorem 5.7. Let X ∈ κ2. Then the localized Hurewicz homomorphism

π0LK(1)X−→ π0LK(1)LK(2)(E2 ∧X)

is injective. Given a choice of isomorphism (E2)∗
∼= (E2)∗X of twisted G2-

modules the image of the multiplicative unit 1 under the isomorphisms

Z3
∼= lim(v−1

1 H0(G1
2, (E2)∗/3

n))0 ∼= π0(LK(1)LK(2)(E
hG1

2

2 ∧X))

extends to a weak equivalence of LK(1)S
0-modules

LK(1)S
0 ≃ LK(1)LK(2)(E

hG1
2

2 ∧X) .

Proof. Let Y = LK(2)(E
hG1

2

2 ∧X). Take the tower of 2.7 and apply the local-
ization functor LK(1)LK(2)(− ∧X) to produce a tower with homotopy inverse

limit LK(1)Y . By Lemma 5.6, the fibers are all of the form Σ8kLK(1)E
hF
2 with

F = G24 or F = SD16. Using Proposition 5.5, we then see that the map

S0 → LK(1)LK(2)(E
hG24

2 ∧X) ≃ LK(1)E
hG24

2

induced by the given isomorphism of Morava modules lifts uniquely to a map

ι : LK(1)S
0 → LK(1)Y .

By Proposition 5.4 this induces a weak equivalence

LK(1)S/3 ≃ LK(1)Y ∧ S/3 .

Then, using the natural fiber sequence

LK(1)S/3 ∧ Y → LK(1)S/3
n ∧ Y → LK(1)S/3

n−1 ∧ Y,

induction, and Lemma 5.1, we obtain the desired weak equivalence. �

We record the following result for later use. It is an immediate consequence of
Theorem 5.7.

Corollary 5.8. Let X ∈ κ2. Given a choice of isomorphism (E2)∗
∼= (E2)∗X

of twisted G2-modules the image of the multiplicative unit 1 under the isomor-
phisms

Z3
∼= lim(v−1

1 H0(G1
2, (E2)∗/3

n))0 ∼= π0(LK(1)LK(2)(E
hG1

2

2 ∧X))

extends to a weak equivalence of LK(1)E
hG1

2

2 -modules

LK(1)E
hG1

2

2 ≃ LK(1)LK(2)(E
hG1

2

2 ∧X) .

We now want to extend Theorem 5.7 to the sphere itself. Recall that there is
a fiber sequence

LK(2)S
0 // E

hG1
2

2

ψ−1 // E
hG1

2

2
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where ψ is a topological generator of the central Z3 ⊆ G2. For any K(2)-local
X , we may apply the functor LK(2)((−) ∧X) to get a fiber sequence

(15) X // LK(2)(E
hG1

2

2 ∧X)
ψ−1 // LK(2)(E

hG1
2

2 ∧X) .

Theorem 5.9. a) Let X ∈ κ2. Given a choice of isomorphism (E2)∗
∼= (E2)∗X

of twisted G2-modules the image of the multiplicative unit 1 under the isomor-
phisms

Z3
∼= lim(v−1

1 H0(G2, (E2)∗/3
n)∗)0 ∼= π0LK(1)X

extends to a weak equivalence of LK(1)LK(2)S
0-modules

LK(1)LK(2)S
0 ≃ LK(1)X .

b) The weak equivalence LK(1)S
0 ≃ LK(1)LK(2)E

hG1
2

2 of Proposition 5.7 factors

uniquely though LK(1)LK(2)S
0 and extends to a weak equivalence

LK(1)S
0 ∨ LK(1)S

−1 ≃ LK(1)LK(2)S
0

where LK(1)S
−1 → LK(1)LK(2)S

0 is induced by ζ ∈ π−1LK(2)S
0.

Proof. Let f : LK(1)E
hG1

2

2 → LK(1)LK(2)(E
hG1

2

2 ∧ X) be the equivalence of

Corollary 5.8. Since ψ : E
hG1

2

2 → E
hG1

2

2 is a morphism of ring spectra, we get a

diagram of LK(1)E
hG1

2

2 -module maps

LK(1)E
hG1

2

2

f //

ψ−1

��

LK(1)LK(2)(E
hG1

2

2 ∧X)

(ψ−1)∧X

��

LK(1)E
hG1

2

2

f // LK(1)LK(2)(E
hG1

2

2 ∧X) .

By Theorem 5.7, there is an equivalence LK(1)S
0 ≃ LK(1)E

hG1
2

2 . Hence, to
check that the diagram commutes, we need only verify that it commutes after
applying π0, and this is obvious. Part (a) follows.

We now prove part (b). Let f0 : LK(1)S
0−→ LK(1)E

hG1
2

2 be the equivalence, as
in Theorem 5.7. The composition (ψ − 1)f0 is zero, as ψ induces a ring map
on (E2)0. Because π1LK(1)S

0 = 0, f0 lifts uniquely to a map f : LK(1)S
0 →

LK(1)LK(2)S
0 and we get a weak equivalence

f ∨ g : LK(1)S
0 ∨ LK(1)S

−1−→ LK(1)LK(2)S
0

where g is the desuspension of the composition

LK(1)S
0 f0

≃

// LK(1)E
hG1

2

2
// ΣLK(1)LK(2)S

0 .

As ζ is defined to be the image of unit in π0E
hG1

2

2 in π−1LK(2)S
0, the result

follows. �

We now come to our main theorems.
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Theorem 5.10. Let X ∈ κ2. Then the localized Hurewicz homomorphism

π0L1X−→ π0L1LK(2)(E2 ∧X)

is injective. A choice of isomorphism f : (E2)∗ → (E2)∗X determines a gen-
erator of π0L1X ∼= Z3. This generator extends uniquely to a weak equivalence
of L1LK(2)S

0-modules

L1LK(2)S
0 ≃ L1X .

Proof. From Theorem 5.9 we have that π1LK(1)X = 0 for all X ∈ κ2. The
result then follows by the chromatic fracture square (8), Theorem 4.5 and
Theorem 5.9. �

Theorem 5.11 (Chromatic Splitting). If n = 2 and p = 3, then

L1LK(2)S
0 ≃ L1(S

0
3 ∨ S−1

3 ) ∨ L0(S
−3
3 ∨ S−4

3 )

where Snp denotes the p-complete sphere.

Proof. We use the chromatic square of (8). Let X = LK(2)S
0. Theorem 5.9

implies

L0LK(1)X ≃ L0LK(1)(S
0 ∨ S−1) .

From Theorem 4.6 we have that

L0X ≃ L0(S
0
3 ∨ S−1

3 ∨ S−3
3 ∨ S−4

3 ) .

Thus we need only show that the map

L0X −→ L0LK(1)X

is equivalent to the composition

L0(S
0
3 ∨ S−1

3 ∨ S−3
3 ∨ S−4

3 )−→ L0(S
0
3 ∨ S−1

3 )−→ L0LK(1)(S
0 ∨ S−1)

where the first map is projection and the second map is the L0 localization of
the canonical map S0

3 ∨ S−1
3 → LK(1)(S

0 ∨ S−1). This follows from Theorem
4.6 and Theorem 5.9.b. �
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