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1. Introduction

Let X = G/K be a Riemannian symmetric space. The mainstay of harmonic
analysis onX is the study of the asymptotic behaviour of the spherical functions
φλ [20, 23, 24]. These are K-invariant joint eigenfunctions of the G-invariant
differential operators D on X , viz.

Dφλ = Γ(D)(λ)φλ,

where Γ(D)(λ) is the value of the Harish-Chandra homomorphism.
A basic observation is that φλ(a) admits an asympotic series expansion whose
leading contribution is c(λ)e(λ−̺)(a), with ̺ the half sum of the positive roots.
Here, c(λ) is Harish-Chandra’s famous c-function.
Moreover, c(λ) admits an extension, as a meromorphic function, to the en-
tire dual a∗ of the complex Cartan subspace, due to the Gindikin–Karpelevič
formula

c(λ) = c0
∏

α

2λα−1Γ(λα)

Γ
(

1
2 (λα + mα

2 + 1)
)

Γ
(

1
2 (λα + mα

2 +m2α)
) ,

where the product is over all positive indivisible roots and λα := 〈λ,α〉
〈α,α〉 . This

equation is basic in the proof of the fundamental theorems of harmonic analysis
on Riemannian symmetric spaces: the support theorem for wave packets, the
inversion, Paley–Wiener, Plancherel and Schwartz isomorphism theorems for
the spherical Fourier transform.
Although the situation is more complicated for the Helgason–Fourier transform
(for τ -spherical functions) and even more so for reductive non-Riemannian
symmetric spaces, the basic philosophy of studying the asymptotics of spherical
functions (or their replacements by more general Eisenstein integrals) remains
valid, cf. Ref. [34].
In the present paper, we study the asymptotics of spherical functions defined
on a supersymmetric generalisation of Riemannian symmetric spaces. These
play a basic role in the so-called Efetov supersymmetry method of condensed
matter physics. Indeed, as shown by Zirnbauer [39, 40], harmonic analysis on
such superspaces can be used to give precise analytic expressions for the mean
conductance of quasi-one dimensional disordered fermionic systems.
Remarkably, contrary to the classical case, there are discrete contributions in
the Plancherel decomposition, and this is visible and relevant in the physics of
the corresponding systems. Since the Plancherel measure is governed by the
c-function, the failure of absolute continuity can already be observed from the
location of the c-function zeroes.
Indeed, let (G,K) be one of the symmetric pairs listed in Table 4.1 below. Fix
an indivisible restricted root α and h0 with α(h0) = 1. Let ̺ = 1

2 (mαα +
2m2αα) where mα and m2α are the multiplicities of α and 2α, respectively,
and identify λ ≡ λ(h0). Our first main result is the following theorem.
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Theorem A. For every ℜλ > 0, the limit

c(λ) = lim
t−→∞

φλ(e
th0)e−t(λ−̺)

exists. For some choice of c0 ≡ c0(̺) 6= 0, it is given by

(1.1) c(λ) = c0
2−λΓ(λ)

Γ
(

1
2

(

λ+ mα

2 + 1
))

Γ
(

1
2

(

λ+ mα

2 +m2α

))

if α is anisotropic, and if α is isotropic, then it is given by

(1.2) c(λ) = c0λ.

Formally, this result takes the same form as in the classical situation for the
case of an anisotropic root α. However, for an isotropic root α (of multiplicity
mα = −2), one would expect c(λ) ≃ (λ − 1) from Equation (1.1) and the
duplication formula. This differs from the true result in Equation (1.2) by
the absence of a ‘̺-shift’. This situation is similar for the Harish-Chandra
homomorphism, see Ref. [1].
Moreover, in the present supersymmetric setting, mα and hence ̺ may be arbi-
trarily large negative numbers, drastically changing the asymptotic behaviour
of φλ. Moreover, due to the shift in the denominator in Equation (1.1), c(λ)
picks up zeroes in the right half plane. These lead to discrete contributions in
the Plancherel formula, as we will show in a forthcoming paper.
The class of symmetric pairs considered in Theorem A is a choice of rank
one pairs that is generic in the sense that every rank one subpair of a reductive
symmetric pair (of even type) associated with a choice of indivisible root (even,
odd, ot both) is generated by copies of the pairs listed in Table 4.1 below:
An anisotropic root α such that 2α is a root corresponds to the gl case; an
anisotropic root such that 2α is not a root corresponds to the osp case, even it
is purely odd (here the parameter p = 0); finally, an isotropic root α corresponds
to the gl(1|1) case.
Choosing real forms of these symmetric pairs in such a way that the under-
lying symmetric spaces become Riemannian introduces extra conditions if one
insists on taking real forms also of the odd part of the Lie superalgebra. How-
ever, these conditions are artificial from a physical point of view and moreover
unnecessary for the analysis to go through. Therefore, we adopt the setting
of ‘cs manifolds’ invented by Joseph Bernstein, that is, of real manifolds with
complex sheaves of superfunctions. In many respects, this theory is parallel to
that of real supermanifolds; however, there are some caveats, and we carefully
lay the foundations to help the reader navigate these impasses in Section 2.
As the statement of Theorem A suggests, the general form of c-function for a
supersymmetric symmetric pair is not given by a simple-minded generalisation
of the Gindikin–Karpelevič formula, since the contributions from isotropic roots
are of a different form. Compare Ref. [6] for details.
The proof of Theorem A is somewhat more difficult than in the classical case.
The reason lies again in the changed growth behaviour of the exponential
et(λ−̺): Upon parametrising the geodesic sphere at infinity of X = G/K in
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stereographical coordinates, the integrals in question exhibit a singular be-
haviour. One therefore has to make a careful choice of cutoffs in a stereograph-
ical atlas parametrised by the Weyl group and keep track of this in the limit
of t −→ ∞.
In order for this to work, one needs to establish the Weyl group symmetry of
the symmetric superfunctions φλ (Corollary 3.20). Although this appears to
be quite innocent, it requires the extension of the usual integral formulæ for
the Iwasawa and Bruhat decompositions to the ‘parameter-dependent’ setting
of supermanifolds over a general base supermanifold. For this reason, we are
obliged to develop some foundational material in Subsections 2.6 and 3.2.
Once one has an explicit formula for the c-function, Harish-Chandra’s series
expansion of the spherical function carries over. (This also relies on Corol-
lary 3.20.) One has the following statement.

Theorem B. Let (G,K) be such that the root α is even and ℜλ > 0, λ /∈ 1
2Z.

Then we have

φλ|A+ =
∑

w∈W0

Φwλ, Φ±λ(e
th0) = et(±λ−̺)

∞
∑

ℓ=0

γℓ(λ)e
−2ℓt,

where A+ is the positive Weyl chamber, W0 is the Weyl group, γ0(±λ) = c(±λ),
and γℓ(λ) follow a two-term recursion.

In most cases, W0 = {±1}, but for a suitable choice of parameters in case
G is an orthosymplectic supergroup, it can be trivial. A similar situation
occurs when α is an odd anisotropic root (Proposition 4.16). In this case, the
complexification of G is GL(1|1,C).
Remarkably, when ̺ is a negative integer (as can happen in the osp case), the
above series expansion is finite, and φλ admits a simple closed expression in

terms of Jacobi polynomials (Corollary 5.6) P
(a,b)
n . Here, the parameters are

chosen such that n = −̺, so that in this case, the spherical superfunctions are
exponential polynomials of a fixed degree independent of λ.

We end this introduction by a synopsis of the paper’s contents. Section 2 is
devoted to a brief collection of basic facts on cs manifolds. We highlight some
points that to our knowledge are missing in the literature: Proposition 2.3 is a
generalisation of Leites’s theorem for morphisms from cs manifolds to complex
manifolds. Subsection 2.4 contains an account of the exponential morphism for
cs Lie supergroups. Subsection 2.5 explains cs forms of complex supergroups.
Subsection 2.6 is a brief account of the basic theory of Berezin fibre integrals.
In Subsection 2.7 a localization formula for Berezin integrals over superspheres
is derived.
Section 3 introduces the main players of this article, the spherical superfunc-
tions. It begins by setting the stage for symmetric superpairs in Subsection 3.1.
In Subsection 3.2, we collect some integral formulæ necessary for the manipula-
tion of the Harish-Chandra integral for φλ. Notably, we generalise the classical
formula for the Haar measure on a Lie group in exponential coordinates in
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Proposition 3.12, the nilpotent case being of particular importance to us. The
definition of the spherical functions is stated in Subsection 3.3; here, we also
show a basic symmetry property of the spherical functions (Corollary 3.20) that
is important in the proof both of Theorem A (Theorem 4.2) and of Theorem
B (Theorem 5.5).
Section 4 contains the statement and proof of Theorem A (Theorem 4.2). It is
also the place where the main analytic problems have to be tackled and where
the theory departs most from the classical cases (see the comments above). The
theorem is stated in Subsection 4.1 and proved in Subsection 4.2. The proof
proceeds case-by-case: the unitary case is contained in Subsubsection 4.2.1,
the orthosymplectic one in Subsubsection 4.2.2, and the case of an anisotropic
purely odd root (the ‘GL(1|1,C) case’) in Subsection 4.2.3. The latter also
contains the analytic expression for the spherical superfunctions φλ in this
case.
The final Section 5 is devoted to the asymptotic series expansion of φλ, that
is, the proof of Theorem B (Theorem 5.5). At this point, the main analytic
difficulties have been overcome, so we can follow the ususal procedure of making
a pertubation ansatz for the solutions of the eigenvalue equation for the radial
part of the Laplacian on X , deducing a two-term recursion for the coefficients,
and proving convergence via Gangolli estimates. The estimates miraculously
also go through in cases of negative multiplicity; if the half sum ̺ of positive
roots is a negative integer, the coefficients can even be computed explicitly, and
the series terminates. In this case, we derive an expression for φλ in terms of
Jacobi polynomials (Corollary 5.6) whose degree is fixed independent of λ.

Acknowledgements. This article is based in large parts on the second named
author’s doctoral thesis under the first named author’s guidance. We wish to
thank Martin Zirnbauer for constructive comments on early versions of our
results and the anonymous referee for the careful reading of our paper and for
giving detailed suggestions that helped to improve it.

2. Basic facts on cs manifolds

In this section, we collect some basic facts on cs manifolds and cs Lie su-
pergroups. As remarked above, this setting is necessary to cover the all the
symmetric pairs we are interested in a Riemannian incarnation. We shall be
suitably brief, including proofs only for those facts which so far have remained
undocumented in the literature.

2.1. Basic definitions. We will work with cs manifolds and complex super-
manifolds. The latter are covered by a wide literature, e.g. by Refs. [13,31,37].
The former, introduced by Joseph Bernstein, are covered to some degree in
Ref. [15]. In many respects, they are similar to real supermanifolds, so one
may follow the standard texts on that subject [15,30,37]. The differences that
exist are quite subtle, and we will comment on these to the extent required in
our applications. Specifically, we shall follow the conventions of Ref. [4].
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In particular, we will work in the framework of C-superspaces, that is, of locally
superringed spaces over SpecC. Our notation will always be X = (X0,OX)
for C-superspaces, and ϕ = (ϕ0, ϕ

♯) : X −→ Y for morphisms, where we may
consider ϕ♯ as a sheaf map OY −→ ϕ0∗OX or ϕ−1

0 OY → OX by the fundamen-
tal adjunction of the direct and inverse image functors, see e.g. Refs. [11, I.4,
Equation (5)] or [26, II.4, Theorem 4.8].
Somewhat abusing notation, we will also write X0 for the reduced superspace
associated with X , see [4, Construction 3.9]. There is a canonical closed em-
bedding

jX0 : X0 −→ X

and for any f ∈ OX(U), where U ⊆ X0 is open, and any x ∈ U , we denote by
f(x) := j♯X0

(f)(x) ∈ κ(x) := OX,x/mX,x the value of f at x. In the cases of
interest to us, we will always have κ(x) = C.
We define the cs and complex affine superspaces as

Ap|q := (Rp, C∞
Rp ⊗

∧

(Cq)∗), A
p|q
hol := (Cp,HCp ⊗∧

(Cq)∗),

where C∞
Rp is the sheaf of smooth complex-valued functions on Rp andHCp is the

sheaf of holomorphic functions on Cp, and we consider the Euclidean topology.
Then, by definition, a cs manifold is a C-superspace locally isomorphic to Ap|q,
whereas a complex supermanifold is one locally isomorphic to A

p|q
hol.

We are tempted speak of cs manifolds simply as “supermanifolds”, but for the
sake of convention, we will stick in this paper to the original appellation, which
was introduced by Joseph Bernstein, cf. Ref. [15].
More generally, given two cs manifolds X and S, a cs manifold over S is
a morphism X → S that is locally in X isomorphic to the projection of a
direct product S × Y → S. In this case dimS X := dim Y is called the fibre

dimension. Usually, we will just write X/S without mentioning the structural
morphism explicitly, denoting it by pX where necessary. In particular, A

p|q
S :

= S × Ap|q is a cs manifold over S. A morphism f : X/S → Y/S over S is
a morphism f : X → Y respecting the structural morphisms. Given an open
embedding X/S → A

p|q
S /S over S, the pullback of the standard coordinate

functions on Ap|q is called a fibre coordinate system (over S). We recover the
usual cs manifolds upon setting S = ∗, the terminal object of the category of
C-superspaces (i.e. the singleton space, together with the constant sheaf C),
but the relative point of will be important in Subsections 2.3, 2.6, 2.4, and 3.2.
In Ref. [30], the corresponding notion for real supermanifolds is discussed under
the name of families. In Ref. [4], which we follow, it is defined over base
superspaces S more general than cs manifolds.
A coordinate-free view on affine superspaces will be useful. To that end, we
define a cs vector space to be a real super-vector space V = V0̄ ⊕ V1̄ with a
distinguished complex structure on V1̄. We set

A(V ) :=
(

V0̄, C∞
V0̄

⊗∧

V ∗
1̄

)
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for any finite-dimensional cs vector space V . In particular, Ap|q = A(Rp⊕ΠCq).
Similarly, for any finite-dimensional complex super-vector space V, we define

Ahol(V ) :=
(

V0̄,HV0̄
⊗∧

V ∗
1̄

)

,

so that A
p|q
hol = Ahol(C

p|q), where we write Cp|q := Cp ⊕ΠCq.
We take note of the following trivial observation

V0̄ = 0 =⇒ A(V ) = Ahol(V ).

2.2. Morphisms to affine superspaces. One essential respect in which cs

manifolds differ from real or complex supermanifolds is that morphisms to
affine superspace are characterised in a subtly different fashion. Namely, for
any C-superspace X , denote by OX,R the sheaf whose local sections are the
superfunctions f (i.e. local sections of OX) whose values f(x) are real, for any
x ∈ X0 at which f is defined. Then we have the following generalisation of
Leites’s theorem on morphisms.

Proposition 2.1 ([4, Lemma 3.13, Corollary 4.15]). Let T be a cs manifold

and denote the standard coordinate system on Ap|q by (ta). Then the natural

map

Ap|q(T ) := Hom(T,Ap|q) −→ Γ
(

Op
X,R,0̄

×Oq
X,1̄

)

: f 7−→ (f ♯(ta))

is a bijection. Here and in what follows, Hom denotes morphisms of C-
superspaces and Γ denotes the global sections functor for sheaves.

Expanding on the above conventions, we let, for any cs manifolds X and T ,
X(T ) := Hom(T,X) denote the set of morphisms T −→ X . We call any such
morphism x : T −→ X a T -valued point and write x ∈T X . For a morphism
f : X → Y and x ∈T X , we denote by f(x) := f ◦ x ∈T Y . Given a T -valued
point x ∈T X where T/S is a cs manifold over S, we write x ∈T/S X/S (or
x ∈T/S X for brevity) if x is over S as a morphism T → X . We will use this
suggestive notation constantly. Together with the Yoneda lemma, it provides
a convenient way of defining and handling morphisms. We will be constantly
using this point of view, so Proposition 2.1 is basic to our study.
A coordinate-free version of Proposition 2.1 can be formulated as follows: Fol-
lowing Ref. [4], we define

(V ⊗W )0̄ := V0̄ ⊗R W0̄ ⊕ V1̄ ⊗C W1̄.

With this notation, the above proposition admits the following reformulation.

Corollary 2.2 ([4, Corollary 3.24]). Let V be a finite-dimensional cs vector

space and T a cs manifold. Then there is a natural bijection

A(V )(T ) = Hom(T,A(V )) −→ Γ
(

(OT,R ⊗ V )0̄
)

.

On the other hand, as the holomorphic version of Leites’s theorem states, mor-
phisms from a complex supermanifold T to A

p|q
hol constitute the same data as

tuples of superfunctions on T without any reality condition. Remarkably, this
carries over to the situation where T is a cs manifold, by the results of Ref. [4].
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Proposition 2.3. Let V be a finite-dimensional complex super-vector space

and T a cs manifold. Then there is a natural bijection

Ahol(V )(T ) = Hom(T,Ahol(V )) −→ Γ
(

(OT ⊗C V )0̄
)

.

Proof. Broadly following Ref. [4], a C-superspace T is called holomorphically

regular if the above natural map is bijective for any V and any open subspace
of T .
Thus, our claim is that any cs manifold is holomorphically regular. We will use
the terminology of Ref. [4]. Since its use will be localized to this proof, we refer
to that article for any undefined notions. Firstly, we may assume that V = Cn,
by Lemma 4.15 (op. cit.). Then Ahol(V ) = An

hol and An
hol(T ) = An

hol(T
0̄), where

T 0̄ := (T0,OT,0̄) is the even part of T , so it is sufficient to prove that T 0̄ is
holomorphically regular.
But by Proposition 5.24 (op. cit.), T 0̄ (and hence, any open subspace thereof)
admits a tidy embedding into some AN . In view of Proposition 5.11 and Lemma
5.2 (op. cit.), it is therefore sufficient to prove that AN is holomorphically
regular. By Lemma 5.2 (op. cit.) again, the natural map is injective for any
open subspace of AN . Let us prove that it is also surjective.
So, let U ⊆ RN be open and f1, . . . , fn ∈ OAN (U) = C∞(U,C). We may define
f0 := (f1, . . . , fn) : U → Cn, and this map is smooth. Setting

f ♯
V (h) := h ◦

(

f0|f−1
0 (W )

)

, h ∈ OAn
hol

(W ) = H(W ),

for any open W ⊆ Cn, defines a morphism f = (f0, f
♯) : AN |U → An

hol such
that f ♯(za) = fa, where (za) are the standard coordinates on An

hol. �

For any finite-dimensional complex super-vector space V , we define a set-valued
cofunctor AC(V ) on the category of cs manifolds by setting

AC(V )(T ) := Γ
(

(OT ⊗C V )0̄
)

on objects T , and by the obvious definition on morphisms. In these terms, Pro-
position 2.3 states that AC(V ) is the restriction to the category of cs manifolds
of the point functor of the complex supermanifold Ahol(V ). (Of course, the
restriction of the point functor of the algebraic affine superspace SpecS(V ∗) to
cs manifolds is also the same, but this is somewhat less remarkable.)
Proposition 2.3 has the following consequence, which will be important in the
applications to supergroups below.

Corollary 2.4. Let X and Y be complex supermanifolds and T a cs manifold.

Then the natural map

(X × Y )(T ) −→ X(T )× Y (T )

is a bijection.
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2.3. The tangent functor. Preparing for our discusson of the exponential
morphism of cs Lie supergroups below, we introduce the ‘total space’ of the
‘tangent bundle’. A subtlety for cs manifolds X is that such a ‘total space’
representing the (complex) tangent sheaf does not literally exist as a cs mani-
fold. In this section, we introduce a replacement on the level of functors. We
then single out a representable subfunctor, the ‘real tangent bundle’. We will
work with cs manifolds over an arbitrary base S. This will be used to the de-
fine the exponential morphism. It will also be important for the machinery of
Berezinian fibre integration that we introduce in Subsection 2.6, on which our
proof of the Weyl symmetry of the spherical superfunctions in Corollary 3.20
hinges.

Definition 2.5 (The tangent functor). Let X/S be a cs manifold over S. We
let TX/S be the sheaf of p−1

X,0OS-linear superderivations of OX , and call this
the tangent sheaf over S. Locally, it is spanned by fibre coordinate derivations
and hence locally free. We define the tangent functor TSX of X over S as the
set-valued cofunctor on cs manifolds given on objects T/S by

(TSX)(T/S) :=
{

(x, v)
∣

∣ x ∈T/S X, v ∈ Γ
(

(x∗TX/S)0̄
)}

and by the obvious definition on morphisms. There are canonical morphisms
of functors

0X : X −→ TSX : x 7−→ (x, 0), πX/S : TSX −→ X : (x, v) 7−→ x,

called the zero section and the projection, respectively. If S = ∗, we omit the
corresponding subscripts.
The construction of TSX is functorial: For any morphism ϕ : X/S → Y/S of
cs manifolds over S, the tangent morphism TSϕ : TSX → TSY is defined by

(TSϕ)T (x, v) :=
(

ϕ(x), Tx/Sϕ(v)
)

, (Tx/Sϕ)(v)(f) := v
(

ϕ♯(f)
)

for all f ∈ (ϕ−1
0 OY )(U), U ⊆ Y0 open. Here, we recall that x∗TX/S is the sheaf

of vector fields over S and along x.
Clearly, the functor TS : X 7→ TSX preserves fibre products over S, so TSS = S
and T ∗ = ∗, the point functor of the singleton space.

This definition of the tangent functor is compatible with the definition of the
tangent spaces. If x ∈ X0 is a point, considered as a morphism ∗ −→ X , then
the fibre product of functors (TSX)x = ∗ ×X TSX is given by

(TSX)x(T ) = (∗ ×X TSX)(T ) = Γ
(

(x∗T TX/S)0̄
)

=
{

ϕ ∈ HomS(T × SpecD0̄, X)
∣

∣ ϕ|ε=0 = xT
}

= AC(Tx/SX)(T ).

(2.1)

Here, xT is the specialization of x, i.e. the composite T −→ ∗ −→ X , and
Tx/SX is the tangent space of X over S at x—that is, the super-vector space
over C whose homogeneous elements are the OS,p0(x)-linear maps v : OX,x → C
such that

v(fg) = v(f)g + (−1)|f ||v|fv(g), ∀f, g.
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In other words, the fibre of TSX −→ X over x is the C-affine superspace of
Tx/SX . Moreover, SpecD0̄ = (∗,C[ε]/(ε2)), and (·)|ε=0 denotes the canonical

morphism T −→ T × SpecD0̄ that pulls back functions in OT [ε]/(ε
2) by drop-

ping the linear term in ε. The last of the equalities in Equation (2.1) amounts

to the routine check that the map ϕ♯ = x♯T + εv is an algebra morphism if and
only if v is a vector field over S along xT .
Similarly, one checks that for any morphism ϕ : X → Y , the action of Tϕ on
the fibre (TSX)x is simply given by the application of the functor AC(·) to the
ordinary tangent map Tx/Sϕ : TxX → Tϕ0(y)Y .

Besides the (complex) tangent space Tx/SX over S, we consider the real tangent
space, defined as the cs vector space

TR

x/SX :=
{

v ∈ Tx/SX
∣

∣ v(OX,R,0̄) ⊆ R
}

of real tangent vectors. More generally, we introduce the following.

Definition 2.6 (The real tangent bundle). The real tangent sheaf T R

X/S of X
over S as the subsheaf of TX/S whose local sections over an open set U ⊆ X0

are those v ∈ TX/S(U) such that

v(OX,R,0̄(V )) ⊆ OX,R(V )

for all open subsets V ⊆ U .
If (xa) = (u, ξ) are local fibre coordinates of X over S defined on U , then

T R

X/S

∣

∣

U
=

⊕

i

OX,R
∂

∂ui
⊕
⊕

j

OX
∂

∂ξj
,

where ∂
∂ui

and ∂
∂ξj

are the fibre coordinate derivations introduced by (u, ξ).
In this sense, T R

X/S is a ‘locally free graded module over the ring extension
(OX ,OX,R)’.
We define the real tangent functor TR

SX as the subfunctor of TSX given on
objects by

(TR

SX)(T/S) :=
{

(x, v) ∈ TSX(T/S)
∣

∣ v ∈ Γ
(

(x∗T R

X/S)0̄
)}

.

The condition on v in the last equation amounts to

v
(

(x−1
0 OX,R,0̄)(U)

)

⊆ OT,R(U)

for all open subsets U ⊆ T0. Due to the local freeness of T R

X/S , the functor
TR

SX is representable by a cs manifold, which is the total space of a vector
bundle over X . This vector bundle, also denoted by TR

SX , is called the real

tangent bundle of X.
By Proposition 2.1 or Corollary 2.2, its fibre at x ∈ X0 is computed to be

(TR

SX)x = A
(

TR

x/SX
)

,

the cs affine superspace associated with the cs vector space TR

x/SX .
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2.4. The exponential morphism of a cs Lie supergroup. It is a well-
known fact that there is an equivalence between the categories of Lie super-
groups and supergroup pairs, cf. Ref. [13, 15, 28, 29]. This is true in the real
and complex, smooth and analytical cases, and the arguments valid in these
cases carry over unchanged to the setting of cs Lie supergroups.
However, for applications, in particular those to Harmonic Superanalysis we
are concerned with in this paper, it useful to have a ‘geometric’ view on this
equivalence. This uses the exponential morphism and the Campbell–Hausdorff
series, neither of which has as yet been given a treatment in the literature in
this setting.
The exponential morphism will also be used extensively in Section 4, for the
derivation of the Iwawasa H-projection and the integration in exponential co-
ordinates on the nilpotent Iwawasa N supergroup (on the basis of Proposi-
tion 3.12), both of which are primordial for the c-function asymptotics. More-
over, the cs Lie supergroups we will consider (see below for the definition) will
be ‘forms’ of complex Lie supergroups. We will widely use their functors of
points, and the avalability of a manageable expression thereof will be crucial.
As we show below, in Proposition 2.14, such an expression can be derived by
means of the exponential morphism. We begin with some basic definitions.

Definition 2.7. By definition, a cs Lie supergroup is a group object G in the
category of cs manifolds.

Let G be a cs Lie supergroup. We set

g := T1G, gR := TR

1 G,

where we write TR
1 G = TR

1/∗G and otherwise use the notation from Subsection

2.3. We have

g =
{

x
∣

∣ g = 1 + εx0̄ + τx1̄ ∈ G(SpecD)
}

, D := C[ε|τ ]/(ε2, ετ),
where we set SpecD := (∗,D). Hence, for x, y ∈ g, we may define [x, y] by

a = 1 + ε[x, y]0̄ + τ [x, y]1̄, a := (ghg−1h−1)|ε=ε1ε2=τ1τ2,τ=τ1ε2=ε1τ2 ,

where

g := 1 + ε1x0̄ + τ1x1̄, h := 1 + ε2y0̄ + τ2y1̄.

With this bracket, g acquires the structure of a complex Lie superalgebra.
Moreover, we have gR,0̄ = g0 and g0̄ = g0 ⊗R C, where g0 is the Lie algebra of
the real Lie group G0. Note that by Corollary 2.2, we have

A(gR)(A
0|q) = TR

1 ((ΠT
q)G)0,

the Lie algebra of the real Lie group ((ΠT )qG)0 = G(A0|q).
When ϕ : G→ H is a morphism of cs Lie supergroups, then ϕ(1) = 1, so that
we have a map dϕ := T1ϕ : g = T1G → T1H = h. Using the definition of the
bracket, it is immediate that dϕ is a morphism of complex Lie superalgebras.
Moreover, we have dϕ(gR) ⊆ hR.
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We may now transfer the definition of the exponential morphism of a real Lie
supergroup [21] to the setting of cs Lie supergroups. We shall be terse on the
parts that are similar, highlighting only the use of the tangent functor.

Proposition 2.8. Let G be a cs Lie supergroup. There is a unique morphism

expG : A(gR) → G

of cs manifolds whose action on A0|q-valued points is precisely the exponential

map of the real Lie group ((ΠT )qG)0 = G(A0|q). The morphism expG is a local

isomorphism in a neighbourhood of zero.

Proof. The uniqueness is obvious, since the A0|q form a set of generators for
the category of cs manifolds.
For the existence, we construct a certain even vector field on G× A(gR). If m
is the multiplication of G, we consider

0G × ι : G× AC(g) → TG× TG, Tm : TG× TG = T (G×G) → TG,

where ι is the canonical morphism AC(g) = (TG)1 → TG.
Let L denote their composite. Explicitly, on points, it is given by

L(g, v) = Tm(g, 1, 0, v) =
(

g, vg
)

, vg(f) := (id⊗ v)
(

m(g, ·)♯(f)
)

.

The inverse morphism L−1 : TG→ G× AC(g) is given on points by

L−1(g, v) = (g, vg−1),

so that L is an isomorphism of functors.
Now, we define the morphism Θ : G× A(gR) −→ TG as the composite

G× A(gR) G× A(g) TG.L

By the Yoneda Lemma, Θ corresponds to a unique element (x, v) of

T (G)(G× A(gR)).

It is clear that πG ◦Θ = p1 : G× A(gR) → G, so that v ∈ Γ
(

(p∗1TG)0̄
)

.
We may promote v to an even vector field on G× A(gR) over A(gR). Arguing
as in [21, Lemma 4.1], one sees that v is real and complete. Let

γv : A1 ×G× A(gR) → G× A(gR)

be its global flow. We define expG as the composite

A(gR) A1 ×G× A(gR) G× A(gR) G.
(1,1)×id γv p1

Using the naturality of the morphism L, we see that v corresponds on G(A0|q)
to a similarly defined vector field that is known to generate the exponential
flow [27]. This implies the claim. �

Corollary 2.9. Let ϕ : G→ H be a morphism of cs Lie supergroups. Then

expH ◦ A(dϕ) = ϕ ◦ expG .
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Proof. It is sufficient to check the equality on A0|n-valued points, where it is
immediate from Proposition 2.8 and the classical theory [25]. �

The following is a form of the equivalence of supergroups and supergroup pairs,
stating that any supergroup G is G0-equivariantly split. (In fact, it gives the
essential bijection on objects; the equivalence on morphisms then follows from
Corollary 2.9.)

Corollary 2.10. Let G be a cs Lie supergroup. Then the morphism

G0 × A(g1̄) −→ G : (g, x) 7−→ g expG x

is a G0-equivariant isomorphism of cs manifolds.

Proof. Since d expG = idg by Proposition 2.8 and the morphism is G0-
equivariant, it has invertible tangent map at every point. The underlying map
is idG0 , so the claim follows from the inverse function theorem [13, 15, 30]. �

We end this subsection by a discussion of the adjoint action. This is the
action AdG := Ad of G on AC(g) = (TG)1, given as follows: For g ∈S G and
x ∈ (TG)1(S), regard x as an element of G(S×SpecD0̄) such that x|ε=0 = 1S .
(See the comments after Equation (2.1) for explanation.) Then

Ad(g)(x) := gxg−1 ∈ G(S × SpecD0̄),

where g is specialized to S × SpecD0̄ via the first projection. It follows that

Ad(g)(x)|ε=0 = gg−1 = 1S ,

so Ad(g)(x) ∈S (TG)1 = AC(g). Using the definitions, it is easy to check that
for any morphism ϕ : G→ H of cs Lie supergroups, we have

AdH(ϕ(g))(AC(dϕ)(x))) = AC(dϕ)
(

AdG(g)(x)
)

for any g ∈S G, x ∈S AC(g).
If we let G0 ×G0 act on G0 ×A(g1̄) by (g1, g2)(g, x) = (g1gg

−1
2 ,Ad(g2)(x)) for

(g1, g2) ∈T G0×G0, then we see that the isomorphism stated in Corollary 2.10
is even (G0 ×G0)-equivariant.
Remarkably, the adjoint action of G passes to A(gR). Namely, let g ∈S G
and x ∈S A(gR). We need to check that for any f ∈ Γ(OG,R,0̄), we have
y(f) ∈ Γ(OS,R) for y := Ad(g)(x). By the definition, we have

y(f) = (id⊗ x)(f(g(·)g−1)),

where id⊗ x denotes the promotion of x to a vector field over S (which exists
because of the local freeness of the tangent sheaf over S, cf. [30, Lemma 2.2.3]).
Since f(g(·)g−1) = (m(g,m(·, g−1)))♯(f) is an even and real-valued superfunc-
tion on S ×G, the assertion is immediate from the assumption on x.

Corollary 2.11. Let G be a cs Lie supergroup. If g ∈S G and x ∈S A(gR),
then

expG Ad(g)(x) = g(expG x)g
−1.
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Proof. By the above, both sides of the equation are well-defined. Hence, it is
sufficient to check the equality on A0|q-valued points, for every q. But on that
level, it follows from Proposition 2.8 and the classical theory [25]. Alternatively,
one may use a parameter version of Corollary 2.9. �

Remark 2.12. Although gR is in general not a Lie algebra, the bracket is
well-defined on A(gR). Indeed, g has a homogeneous basis (ea) contained
in gR. Then x, y ∈ Γ

(

OT,1̄ ⊗ g1̄
)

admit representations x =
∑

a xae
a and

y =
∑

a yae
a, and

[x, y] = −
∑

abc

xaybC
ab
c ec

where Cab
c ∈ C are the structure constants of g. But xaybC

ab
c has the value

zero, so that it is a section of OT,R,0̄.

2.5. Complex supergroups and cs forms. Our interest in cs supergroups
comes from the fact that their are many ‘cs forms’ of complex Lie supergroups,
whereas there are comparatively few real forms. (See the examples we will be
considering in Section 4 and beyond, and compare Ref. [15] for a more extensive
list of reasons. In any case, any real Lie supergroup defines a cs Lie supergroup
by the complexification of its structure sheaf.)
Since we will encounter many such cs forms, it will be useful to have a uniform
description of their functors of points. We will derive such a description by the
use of the exponential morphism.

Definition 2.13 (Forms of complex supergroups in cs manifolds). Let GC be
a complex Lie supergroup with associated complex supergroup pair (g, GC,0).
Let G0 be a real form of GC,0, i.e. a closed subgroup whose Lie algebra is a
real form of g0̄. The cs Lie supergroup G associated with (g, G0) is called a cs
form of GC.

Any cs form G of a complex Lie supergroup GC comes with a canonical mor-
phism G −→ GC of C-superspaces. It can be given an expression in terms of
the exponential morphism, as follows.
The real Lie supergroup (GC)R associated with GC has an exponential mor-
phism [21]. Since its differential is complex linear for the complex structure
induced by g, it is holomorphic, and therefore induced by a unique morphism
denoted by expGC

: Ahol(g) → GC.
By the above and Corollary 2.4, the canonical morphism G → GC is given on
T -valued points as follows:

G −→ GC : g expG(x) 7−→ g expGC
(x), g ∈T G0, x ∈T A(g1̄) = Ahol(g1̄)

Thus, the T -valued points of G can be characterised within GC as follows.

Proposition 2.14. Let GC be a complex Lie supergroup and G a cs form of

GC. For any cs manifold T , the T -valued points of G are given by

G(T ) =
{

g ∈T GC

∣

∣ g0 ∈T0 G0

}

.
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Proof. Express a T -valued point of GC as g expGC
(x) where g ∈T GC,0, x ∈T

Ahol(g1̄). By the above considerations, g expGC
(x) ∈ G(T ) if and only if g ∈T

G0.
Thus, we need to see that

g ∈T G0 ⇐⇒ g0 ∈T0 G0.

Since (expGC
(x))0 = 1, this will already be sufficient to prove the claim. Cer-

tainly, the left-hand statement implies that on the right-hand side.
On the other hand, assume that g0 ∈T0 G0. This pins down the map underly-
ing g. Local coordinates on G0 can be chosen in such a way that they are the
restriction of holomorphic local coordinates (za) on GC,0. Then g ∈T G0 trans-
lates to the requirement that g♯(za) be real-valued. Since (g♯(za))0 = za ◦ g0,
this is immediate by the assumption, thereby proving the claim. �

2.6. Integration on relative cs manifolds. Below, in Corollary 3.20, we
prove the Weyl symmetry of the spherical superfunctions φλ by the use of
integral geometry. Without this fact, we would not be able to prove convergence
in the delicate c-function expansion, nor could we derive the Harish-Chandra
series, so the result is absolutely essential.
In the proof of loc. cit., we will need to handle integrals with parameters. A
suitable formalism is that of fibre integrals over relative cs manifolds. We very
briefly collect the basic definitions and facts to it set up.

Definition 2.15 (Relative Berezinian densities). Assume given a cs manifold
X/Y over Y . For any fibre coordinate neighbourhood U ⊆ X0, we let

BerX/Y |U := Ber
(

T ∗
X/Y (U)

)

.

(Compare Ref. [31] for the definition of the Berezinian module of a free module.)
This defines a locally free OX -module BerX/Y with local basis of sections

Dx = D(u, ξ) = du1 · · · dup
∂

∂ξ1
· · · ∂

∂ξq

of parity ≡ q (2), for any local fibre coordinate system x = (xa) = (u, ξ).
Twisting by the relative orientation sheaf, we obtain |Ber|X/Y := orX0/Y0

⊗Z

BerX/Y , with corresponding local basis of sections |Dx| = |D(u, ξ)|. The local
sections of the latter sheaf are called relative Berezinian densities.

Definition 2.16 (Relative Berezin integral). Let X/Y be a cs manifold over
Y . A retraction r : X → X0 (i.e. a left inverse of jX0 : X0 → X) is called
a retraction over Y if there is a retraction rY : pX(X) → pX(X)0 such that
rY ◦ pX = pX0 ◦ rX . Here, pX(X) ⊆ Y is the open subspace of Y over the open
set pX,0(X0) ⊆ Y0.
Fix a retraction r of X over Y . A local system (u, ξ) of fibre coordinates is
called r-adapted if u = r♯(u0) for some fibre coordinate system u0 of X0/Y0.
Let ω ∈ Γ(|Ber|X/Y ). Then we may define

Y

 r

X

ω ∈ OY (pX,0(X0)),
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the relative Berezin integral or fibre integral of ω, as follows.
Let (Ui) be a collection of open subspaces of X , such that suppω ⊆

⋃

i Ui,0,
there are r-adapted fibre coordinate systems (ui, ξi) over Y defined on Ui,
and there are rY -adapted coordinate systems (vi, ηi) on Vi := pX(Ui), such

that (ui, p♯X(vi), ξi, p♯X(ηi)) form coordinate systems of Ui. Let (χi) be a (not
necessarily compactly supported) partition of unity on

⋃

i Ui,0, subordinate to
the cover.
We may expand

ω|Ui,0 = |D(ui, ξi)| f i, f i =
∑

I,J

ξIp♯X(ηJ )r♯(giIJ), giIJ ∈ OX0(Ui,0),

with I ranging through the subsets of {1, . . . , q}, p|q := dimY X , and J ranging
though the subsets of {1, . . . , n}, m|n := dimY .
With these data, we define

Y

 r

X

ω :=
∑

i,J

ηJp♯Y

(

Y0

 

X0

|dui0|χig
i
qJ

)

,

whenever the integrals and the series converge absolutely.
Here, q = {1, . . . , q} and

Y0

ffl

X0
̟ denotes the function y 7−→

´

p−1
X,0(y)

̟|p−1
X,0(y)

,

defined on pX,0(X0).

Remark 2.17. In Definition 2.16, the retraction rY is uniquely determined by r.
In particular, not every retraction of X is over Y . For example, the retraction
r on A2|2, given by r(s) := (s1 + s2s3s4, s2) for an T -valued point s ∈T A2|2,
has no counterpart under the submersion ψ : A2|2 −→ A1|2, (s1, s2, s3, s4) 7−→
(s1, s3, s4).

Up to some computations in coordinates, the following fact is no harder to
prove than the absolute situation where Y = ∗, cf. Ref. [3].
Theorem 2.18. The relative Berezin integral is well-defined independent of all

choices and depends only on the choice of a retraction. In case the integrand ω ∈
Γ(|Ber|X/Y ) is compactly supported in the fibres over Y , i.e. pX,0 : suppω → Y0
is a proper map, then the integral is independent of the retraction.

Recalling the definition of the direct image with proper supports from Ref. [11],
the condition in the above theorem be succintly rephrased as follows:

ω ∈ Γ(pX,0!|Ber|X/Y ).

We will use this notation in the sequel.

Corollary 2.19. Let ϕ : X ′/Y → X/Y be a morphism of cs manifolds.

Let r and r′ be retractions of X and X ′ over Y , respectively. Assume that

r ◦ ϕ = ϕ0 ◦ r′. Then for any ω ∈ Γ(|Ber|X/Y ), we have

Y

 r′

X′

ϕ♯(ω) =
Y

 r

X

ω

i.e. both integrals exist if only one of them does, in which case they coincide.
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2.7. Integral localization in polar coordinates. It is known that un-
der suitable symmetry assumptions, there are remarkable integral localization
theorems for supermanifolds [16, 35]. Here, we show that for the special case
of the supersphere, a precise form thereof can obtained by the use of polar
coordinates.
We shall make extensive use of the formalism of T -valued points. Compare the
remarks in Subsection 2.2; the reader may also consult Ref. [1, Appendix B].
Denote by y = (ya) = (v, η) the standard coordinates on Ap|2q and the Berezin–
Lebesgue density by |Dλ| := (−2π)−q|Dy|. The retraction associated with y
is

r(x) := x0̄ := (x1, . . . , xp), x ∈ Ap|2q(T ) = Γ
(

Op
T,0̄,R

×Oq
T,1̄

)

.

One should avoid to confuse x0̄ ∈ Ap(T ) with the underlying morphism x0 ∈
Ap(T0).
Furthermore, ‖ · ‖2 : Ap|2q → A1 shall be given by

(2.2) ‖x‖2 :=

p
∑

i=1

x2i + 2

q
∑

j=1

xp+2j−1xp+2j

for x ∈T Ap|2q. Using the positive square root, this yields

‖ · ‖ :=
√

◦ ‖ · ‖2 : Ap|2q
6=0 → A1

>0,

where A
p|2q
6=0 := Ap|2q|Rp\{0} and similarly for the subscript “> 0”.

Definition 2.20 (Rotationally invariant superfunctions). Let f ∈
Γ(OS×Ap|2q ), where S is any cs manifold. In case p > 0, f will be
called rotationally invariant over S if for some ε > 0, there exists an
f◦ ∈ OS×A1(S0 × (−ε,∞)) such that

f(s, x) = f◦(s, ‖x‖), (s, x) ∈T S × A
p|2q
6=0 .

In case p = 0, ‖ · ‖ is not defined, so the definition of rotational invariance
has to be modified as follows: f is called rotationally invariant over S if there
exists g ∈ Γ(OS×A1), with

f(s, x) = g(s, ‖x‖2), (s, x) ∈T Ap|2q.

In this case, we define f◦(s, t) := g(s, t2).

Remark 2.21. In the case p > 0, the super function f◦|S0×(0,∞) extends to a

superfunction on S × A1 such that f(s, t) = f(s,−t). Such an extension is
given by f◦(s, t) := f(s, te1), where t ∈T A1 and e1 is the first standard basis
vector of Rp.
Since f◦ is even in the second component, there is an extension g of f◦ ◦ (idS ×√

) to S × A1, and f(s, x) = g(s, ‖x‖2) for all (s, x) ∈T S × Ap|2q.

Here and in what follows, when handling Berezin (fibre) integrals, we will use
Theorem 2.18 and Corollary 2.19 implicitly.
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Proposition 2.22. Let f ∈ Γ(OS×Ap|2q ) be rotationally invariant over S. Then

S

 r

S×Ap|2q

|Dλ(x)| f(s, x) =











π
p−2q

2 (−1)q

Γ(p2 )

ˆ ∞

0

dr r
p
2−1∂qrf

◦(s,
√
r), p > 0,

(−π)−q∂qr=0f
◦(s,

√
r), p = 0,

in the sense that the integral exists if and only if the right-hand side exists, and

in this case, they are equal.

Proof. Consider the superfunction g from above. Applying Taylor expansion
yields

g(s, t+ t′) ≡
q

∑

k=1

1

k!
t′k∂kt′=0g(s, t+ t′) ≡

q
∑

k=1

1

k!
t′k∂kt g(s, t) mod (t′q+1)

with t = t′ = idA1 . Hence, we have

f(s, y) = g(s, ‖v‖2 + ‖η‖2) =
q

∑

k=1

1

k!
∂k2 g(s, ‖v‖2)‖η‖2k,

where y = idAp|q , v = idAp , η = idA0|q , and (∂2g)(s, t) := ∂tg(s, t).
The expression ‖η‖2k contains η1 · · · η2q if and only if k = q. In this
case, it equals 2qq!η1 · · · η2q. For p = 0, this means that the integral is
(−π)−q∂qt=0g(s, t), as claimed. Similarly, if p > 0, then it takes the form

S

 r

S×Ap|2q

|Dλ(x)| f(s, x) = (−π)−q

ˆ

Rp

|dv0| ∂q2g(s, ‖v0‖2).

Applying polar coordinates for p > 2, we obtain for C = 2π
p−2q

2 (−1)qΓ(p2 )
−1

= C

ˆ ∞

0

dr rp−1∂q2g(s, r
2) =

C

2

ˆ ∞

0

dr r
p
2−1∂qrg(s, r).

In case p = 1, one obtains the same result by symmetry. �

We obtain the following localization formula.

Corollary 2.23. Let k 6 min(p2 , q) and f ∈ Γ(OS×Ap|2q ) be rotationally

invariant and compactly supported in the fibres over S. Then

S

 r

S×Ap|2q

|Dλ(x)| f(s, x) =
S

 r

S×Ap−2k|2q−2k

|Dλ(x)| f◦(s, x).

Proof. Use Proposition 2.22 and integration by parts for k < p
2 . The funda-

mental theorem of calculus needs to be applied for k = p
2 . �

Combining our results, the integral of rotationally invariant superfunctions
takes the following form, which depends only on p− 2q and not on p|2q.
Corollary 2.24. Let f ∈ Γ(OS×Ap|2q ) be rotationally invariant and compactly

supported along the fibres over S. Then

S

 r

S×Ap|2q

|Dλ(x)| f(s, x) = 2π
p−2q

2

Γ(p−2q
2 )

ˆ ∞

0

dr rp−2q−1f◦(s, r), p− 2q > 0.
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If p− 2q 6 0, then the following two cases occur:














(−π) p−2q
2 ∂

2q−p
2

r=0 f◦(s,
√
r) = (−π) p−2q

2
(2q−p

2 )!

(2q − p)!
∂2q−p
r=0 f◦(s, r), 2 | p− 2q 6 0,

(−π) p−1−2q
2

ˆ ∞

0

dr r−
1
2 ∂

2q+1−p
2

r f◦(s,
√
r), 2 ∤ p− 2q < 0.

Proof. In view of Proposition 2.22 and Corollary 2.23, the only case that needs
some consideration is that of p = 0. Here, Faà di Bruno’s formula gives

∂2qr=0f
◦(s, r) = ∂2qr=0f

◦(s,
√
r2) =

∑

k1+2k2=2q

(2q)!

k1!k2!
∂k1+k2

t=0 f◦(s,
√
t) 0k11k2 .

All summands except for k2 = q vanish. �

3. Symmetric superspaces and spherical superfunctions

In this section, we introduce our main objects, the spherical superfunctions.
Before proceeding to the definition of the spherical superfunctions, we collect
some ancillary facts concerning symmetric superpairs and integration formulæ.

3.1. Symmetric superpairs. We review some facts on symmetric superpairs,
referring to Refs. [1, 6] for omitted details.

Definition 3.1 (Symmetric superpairs and Cartan decomposition). A sym-
metric superpair is a pair (g, θ), where g be a complex Lie superalgebra and θ
an involutive automorphism of g. The eigenspace decomposition

g = k⊕ p, k := ker(1− θ), p := ker(1 + θ)

is called Cartan decomposition of (g, θ).
Let (G,K, θ) be given, where G is a cs Lie supergroup with Lie superalgebra
g, θ is an involutive automorphism of G, and K is a closed subsupergroup,
θ|K = idK , and its Lie superalgebra is k = ker(1 − θ) (denoting the derivative
of θ by the same letter). Then (G,K, θ) is called a symmetric supertriple, and
the symmetric superpair (g, θ) is called the infinitesimal superpair associated
with (G,K, θ).
Then (G,K, θ) is said to admit a global Cartan decomposition if the morphism

K × A(pR) −→ G : (k, x) 7−→ kex(3.1)

is an isomorphism of cs manifolds. Here, we write ex := expG(x).

Proposition 3.2. A pair (G,K, θ) admits a global Cartan decomposition if

and only if this is true for (G0,K0, θ0).

Proof. The morphism in (3.1) is a local isomorphism at (1, z), for any z ∈
A(pR)0, since its derivative is given by k × p −→ g : (y, x) 7−→ y + x. Since
the morphism is K-equivariant, it is everywhere a local isomorphism. By the
inverse function theorem [30], it is an isomorphism if and only if the underlying
map is a bijection. �
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Definition 3.3 (Reductive and even type conditions). The notions of a reduc-

tive, strongly reductive, or even type symmetric superpair (g, θ) are defined in
Ref. [1].
If (g, θ) is the infinitesimal superpair of a symmetric supertriple (G,K, θ), then
we accordingly apply these adjectives to (G,K, θ).

Definition 3.4. Let (g, θ) be a reductive symmetric superpair of even type
with even Cartan subspace a. Then

(3.2) g = m⊕ a⊕
⊕

α∈Σ

gα, m := zk(a), gα :=
⋂

h∈a

ker(adh− α(h)),

where Σ ⊆ a∗ \ 0, called the set of restricted roots, is the finite set defined by
this equation. A root α ∈ Σ is called even and odd, if, respectively, gα0̄ 6= 0 and
gα1̄ 6= 0. Note that roots may simultaneously be even and odd.
Given h ∈ aR such that α(h) ∈ R \ 0 for all α ∈ Σ, the subset

Σ+ :=
{

α ∈ Σ
∣

∣ α(h) > 0
}

is called a positive system. Roots α ∈ Σ+ for which α
2 /∈ Σ are called indivisible.

We set ̺ := 1
2

∑

α∈Σ+ mαα, where mα := sdim gα = dim gα0̄ − dim gα1̄ .

Fixing a positive system Σ+, Equation (3.2) takes on the form

g = n̄⊕m⊕ a⊕ n, n :=
⊕

α∈Σ+

gα, n̄ := θ(n) =
⊕

α∈Σ+

g−α,

the Bruhat decomposition of g. Since gα ⊕ g−α is θ-invariant, we have

g = k⊕ a⊕ n,

the Iwasawa decomposition of g.

For the remainder of this subsection, let (G,K, θ) be a reductive symmetric
supertriple of even type. Fix an even Cartan subspace and a positive system of
roots. Denote by N , N̄ , and A the analytic subsupergroups of G corresponding
to n, n̄, and a, respectively. Here, the analytic subsupergroup ofG corresponding
to a subalgebra h ⊆ g such that h0̄,R := h ∩ g0̄,R is a real form of h0̄ is defined
to be the cs Lie supergroup associated with the supergroup pair (h, H0), where
H0 is the analytic (i.e. , connected) subgroup of G0 with the Lie algebra h0̄,R.
Moreover, let M be the closed subsupergroup associated with the supergroup
pair (m,M0), where M0 := ZK0(a).
The following proposition follows in the same way as Proposition 3.2.

Proposition 3.5 (Global Bruhat decomposition). The morphism

N̄ ×M ×A×N 7−→ G : (n̄,m, a, n) 7−→ n̄man

is an open embedding if and only if this is true for the underlying map. In this

case, we say that (G,K, θ) admits a global Bruhat decomposition.

For the following proposition, consult Refs. [1, 6].
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Proposition 3.6 (Global Iwasawa decomposition). Both of the morphisms

K ×A×N −→ G : (k, a, n) 7−→ kan,

N ×A×K −→ G : (n, a, k) 7−→ nak

are isomorphisms if and only if this is already true for one of the underlying

maps. In this case, we say that (G,K, θ) admits a global Iwasawa decomposi-
tion.

Remark 3.7. Observe that M centralises a, since

Ad(mex)(h) = Ad(m)
(

ead(x)(h)
)

= h

for m ∈S M0, x ∈S A(m1̄), h ∈S A(aR). Similarly, M normalises N and N̄ .

Let (G,K, θ) admit a global Iwasawa decomposition. We define morphisms

k, u : G→ K, A,H : G→ A(aR), n, n1 : G→ N

by requiring, for g ∈S G, that

(3.3) g = k(g)eH(g)n(g) = n1(g)e
A(g)u(g).

Then

(3.4) n1(g) = n(g−1)−1, A(g) = −H(g−1), u(g) = k(g−1)−1.

In view of Remark 3.7, H and k are right M -invariant, i.e.

(3.5) H(gm) = H(g), k(gm) = k(g), g ∈S G,m ∈S M.

Moreover, we note for later reference that

(3.6) H(gh) = H
(

gk(h)) +H(h), k(gh) = k
(

gk(h)
)

,

for all g, h ∈S G. This follows from a straightforward computation on points.
The importance of the above decompositions is that they give rise to natural
coordinate systems on certain homogeneous superspaces. Here and in the se-
quel, we will use quotients of cs Lie supergroups. They are defined in the same
way as for real Lie supergroups, see Refs. [2,13] for the latter. We will need the
fact that for a closed cs Lie subsupergroup H of G, the sheaf of superfunctions
on G/H is the direct image under the canonical projection G0 −→ G0/H0 of
the sheaf of H-invariant superfunctions on G.

Proposition 3.8. Let (G,K, θ) admit a global Iwasawa decomposition. The

morphism

G −→ N ×A : g 7→
(

n1(g), e
A(g)

)

induces an isomorphism G/K −→ N ×A.

Let Q =MAN be the closed subsupergroup of G generated by M , A, and N .

Proposition 3.9. Let (G,K, θ) admit global Bruhat and Iwasawa decomposi-

tions. The composite

G K K/Mk

induces an isomorphism G/Q→ K/M . The composite
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N̄ G G/Q K/Mk̇

is an open embedding, which is also denoted by k.

3.2. Integral formulæ for supergroups and symmetric superspaces.
In this subsection, we derive integral formulæ for the decompositions given
above. These are crucial for the proof of the central Corollary 3.20 and therefore
for the proof of the c-function asymptotics and the Harish-Chandra series.
Moreover, the proof of loc. cit. hinges on the parameter-dependent version
of these formulæ, which are therefore technically not a simple-minded copy of
their classical relatives. We begin with some generalities, cf. Ref. [2].

Definition 3.10 (Invariant Berezinian densities). LetG be a cs Lie supergroup
and a : G×X → X an action. Consider the cs manifold XG := G×X over G.
A Berezinian density ω ∈ Γ(|Ber|X) is said to be G-invariant if

(a, pX)♯
(

p♯X(ω)
)

= p♯X(ω).

Here, pX : XG → X is the projection.

The following is straightforward.

Lemma 3.11. Let ω ∈ Γ(|Ber|X) be a Berezinian density. Then ω is G-
invariant if and only if, the following is true:

ˆ

X

ω(x)f(gx) =

ˆ

X

ω(x)f(x)

for any g ∈S G, any cs manifold S, and any f ∈ Γc(pX,0!OXG
).

The G-superspace X is called analytically unimodular if there is a non-zero
G-invariant Berezinian density. If the action is transitive and X is analytically
unimodular, then |Ber|X has a global module basis, given by the choice of such
a Berezinian density; moreover, it is unique up to a multiplicative constant
[2]. Sufficient conditions for the analytic unimodularity of homogeneous G-
superspaces are stated in [1, Proposition A.2].

Proposition 3.12. Let G be analytically unimodular and |Dg| a non-zero G-
invariant Berezinian density. Let U = −U ⊆ A(gR)0 be an open neighbourhood

of 0 such that expG : A(gR)|U → G is an open embedding. Then

exp♯G(|Dg|) = |Dλ|(x) |Ber|
(1− e− ad x

adx

)

on A(gR)|U . Here, |Dλ| is an adequately normalized Berezin–Lebesgue density.

When G is nilpotent, then str adx = 0 for the generic point x of A(gR). Hence,
by [1, Proposition A.2] and Proposition 3.12, the following is immediate.

Corollary 3.13. Let G be a nilpotent cs Lie supergroup. Then G is analyti-

cally unimodular and

exp♯G(|Dg|) = |Dλ|
for an appropriate normalization of the invariant density |Dg| and the Berezin–

Lebesgue density |Dλ|.
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Proof of Proposition 3.12. The claim follows along the lines of the classical
result [23, Chapter I, § 2, Theorem 1.14].
If V is a sufficiently small neighbourhood of 0 ∈ g0, then the Campbell–
Hausdorff morphism

C : A(gR)|U × A(gR)|V → A(gR), expG C(x, y) = (expG x)(expG y)

is well-defined. We let

X := A(gR)|U × A(gR)|V , S := A(gR),

and consider X as a cs manifold over S via p1.
Set ϕ := (p1, C) and let exp♯(|Dg|) = |Dλ|ρ for some ρ ∈ OA(gR)(U). For any
f ∈ Γc(OA(gR)|U ), we have

ˆ

A(gR)

|Dλ| ρf =

ˆ

G

|Dg| f(log g) =
ˆ

G

|Dg| f
(

log(expG(−x)g)
)

=

ˆ

A(gR)

|Dλ(y)| ρ(y)f
(

C(−x, y)
)

=

ˆ

A(gR)

|Dλ(y)| |Ber|(Tϕ/S)ρ(C(x, y))f(y).

Here, x is the generic point of T := A(gR)|U and the identity y = C(x,C(−x, y))
was applied. Since f was chosen arbitrarily, this implies

ρ(y) = |Ber|
(

Tϕ/S

)

(x, y)ρ(C(x, y)), y ∈T g|V .
Setting y = 0 shows

ρ(x) = |Ber|
(

Tϕ/S

)

(x, 0)−1ρ(0).

Hence, the claim will follow after suitable normalization and computing
Tϕ/S |y=0. For the latter, it suffices to prove

T(x,0)/S(ϕ) =
adx

1− e− ad x

where we consider adx as an OT -linear endomorphism of OT ⊗ g. Interpreting
vector fields as morphisms via dual numbers D0̄ (see Subsection 2.3) this re-
duces to an equation between morphisms, which can be checked on A0|q-valued
points, and hence follows from the classical situation [25]. �

For the remainder of this subsection, let (G,K, θ) be a reductive symmet-
ric supertriple of even type, such that a global Iwasawa decomposition exists.
Further, assume that K0 is compact. Then the G × G-superspace G, the G-
superspace G/K, and the K-superspace K/M are all analytically unimodular.

We choose corresponding invariant Berezinian densities |Dg|, |Dġ|, and |Dk̇|, as
well as invariant densities |Dn| and |Dn̄| = θ♯(|Dn|) on N and N̄ , respectively,
and a Haar density da on A. The normalization of these relative to each other is
fixed by the Propositions 3.14, 3.15, and 3.17, which are simple generalizations
of integral formulæ from Refs. [1, 6].
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We will use without further mention the fact that for compactly supported
integrands, the Berezin (fibre) integral is independent of the choice of retraction
(Theorem 2.18) and thus admits coordinate transformations (Corollary 2.19).

Proposition 3.14 ([1, Proposition 2.2]). The pullback of the invariant Berezin

density |Dġ| via the Iwasawa isomorphism is |Dk| ⊗ da⊗ |Dn|. In particular,

ˆ

G

|Dg| f(s, g) =
ˆ

K

|Dk|
ˆ

A

da

ˆ

N

|Dn| f(s, kan)e2̺(log a)

for f ∈ Γc(p1!OS×G).

Proposition 3.15 ([6, Lemma 4.2]). Let f, h ∈ Γc(p1!OS×K/M ). Then

ˆ

K

|Dk| f(s, k(g−1k))h(s, k) =

ˆ

K

|Dk| f(s, k)h(s, k(gk))e−2̺(H(gk))

for any s ∈T S and all cs manifolds T .

Corollary 3.16. Let f ∈ Γ(OS×K/M ). Then for any s ∈T S, we have

ˆ

K/M

|Dk̇| f
(

s, k(g−1k)
)

=

ˆ

K/M

|Dk̇| f(s, k)e−2̺(H(gk)).

Proof. In the classical case, this equation follows directly from Proposition 3.15.
In the super setting, the volume of K may vanish, so one has to argue with
greater care. Let χ ∈ Γc(OK), such that

´

K |Dk′|χ(k′) = 1. Writing B =
K/M ,

ˆ

B

|Dk̇| f(s, k(g−1k)) =

ˆ

K

|Dk′|χ(k′)
ˆ

B

|Dk̇| f
(

s, k(g−1k′k)
)

=

ˆ

B

|Dk̇|
ˆ

K

|Dk′|χ(k′k−1)f
(

s, k(g−1k′)
)

,

by the left-invariance of |Dk̇| and the right-invariance of |Dk′|. By Proposi-
tion 3.15, this equals

=

ˆ

B

|Dk̇|
ˆ

K

|Dk′|χ
(

k(gk′)k−1
)

f(s, k′)e−2̺(H(gk′)),

so on applying the right-invariance of |Dk′| and the left-invariance |Dk̇| again,
we obtain the equalities

=

ˆ

K

|Dk′|
ˆ

B

|Dk̇|χ
(

k(gk′k)k−1
)

f(s, k′k)e−2̺(H(gk′k))

=

ˆ

K

|Dk′|
ˆ

B

|Dk̇|χ
(

k(gk)k−1k′
)

f(s, k)e−2̺(H(gk)).
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Finally, the left-invariance of |Dk′| gives

=

ˆ

B

|Dk̇|
(
ˆ

K

|Dk′|χ(k′)
)

f(s, k)e−2̺(H(gk))

=

ˆ

B

|Dk̇| f(s, k)e−2̺(H(gk)),

which is the desired statement. �

We have the following fact from Ref. [6].

Proposition 3.17 ([6, Proposition 4.4]). The pullback of the invariant Berezin

density |Dk̇| on K/M via the open embedding k from Proposition 3.9 is

|Dn̄|e−2̺(H(n̄)).

Remark 3.18. Note that the standard retraction on N̄ is in general not compat-
ible via k with any globally defined retraction on K/M . Hence, Theorem 2.18
does not apply, and the equality

ˆ

K/M

|Dk̇| f(s, k) =
ˆ r

N̄

|Dn̄| f
(

s, k(n̄)
)

e−2̺(H(n̄))

will in general not hold for superfunctions f ∈ Γ(OS×K/M ), unless the inter-

section supp f with the image of S × N̄ is not compact along the fibres of p1.
Below, where we derive the leading asymptotics of the spherical superfunctions
on G/K, we will resolve these issues by introducing an atlas of similar charts
and cutting off the integrand in these charts by the choice of a partition of
unity.
A similar problem occurs if we use polar coordinates on G/K, in fact, it is
more severe, leading to singularities at the boundary of the Weyl chamber.
In a forthcoming paper, where we treat the inversion formula for the spheri-
cal Fourier transform in rank one, we will discuss these singularities and the
‘boundary terms’ that they introduce at length.

3.3. Definition of the spherical superfunctions. Keeping the above
assumptions, we can now define, for λ ∈ a∗, the spherical superfunction φλ ∈
Γ(OX), where X := G/K, as follows. For g ∈T G, where T is any cs manifold,
we let

(3.7) φλ(g) :=

ˆ

K/M

|Dk̇| e(λ−̺)(H(gk)).

By Lemma 3.11, this defines a superfunction on X.
We will derive some alternative integral expressions for φλ in this subsection—
in particular, we will obtain the symmetry property stated in Corollary 3.20,
which will be essential for the Harish-Chandra series expansion of φλ. The
statements we give here are essentially identical to the classical case, and their
derivations are parallel to those given in Refs. [23,24]. However, they are based
on Corollary 3.16, whose proof was a little more subtle than classically, so we
briefly give the details.
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Proposition 3.19. For any λ ∈ a∗ and g, h ∈T G, we have

φλ(hg
−1) =

ˆ

K/M

|Dk̇| e(λ−̺)(H(hk))e(−λ−̺)(H(gk))

Proof. On applying Equation (3.6) twice, we obtain

H(hg−1k) = H
(

hk(g−1k)
)

+H(g−1k) = H
(

hk(g−1k)
)

−H
(

gk(g−1k)
)

,

so that

φλ(hg
−1) =

ˆ

K/M

|Dk̇| e(λ−̺)(H(hk(g−1k)))e−(λ−̺)(H(gk(g−1k))).

Setting S := G × G and f(g, h, k) := e(λ−̺)(H(hk))e−(λ−̺)(H(gk)) in Corol-
lary 3.16, we arrive at our claim. �

Setting h = 1 in Proposition 3.19, the following fact is immediate. It will be
instrumental in deriving a series expansion for φλ.

Corollary 3.20. For λ ∈ a∗ and g ∈T G, we have φλ(g
−1) = φ−λ(g).

This allows us to derive an alternative expression for φλ, as follows: Consider
the isomorphism ı̃K :M\K → K/M induced by the inversion morphism iK of
K. The Berezinian density

|Dk̇r| := ı̃♯K(|Dk̇|),
where |Dk̇| is theK-invariant Berezinian density onK/M , is rightK-invariant.
We have the following formula, which will be used in a subsequent paper.

Corollary 3.21. For any λ ∈ a∗ and g ∈T G, we have

φλ(g) =

ˆ

M\K

|Dk̇r| e(λ+̺)(A(kg)).

where A(·) is defined in Equation (3.3).

Proof. We have by the definition of |Dk̇r| and Equation (3.4)

φλ(g) =

ˆ

K/M

|Dk̇|e(λ−̺)(H(gk))

=

ˆ

K/M

|Dk̇|e(−λ+̺)(A(k−1g−1)) =

ˆ

M\K

|Dk̇r |e(−λ+̺)(A(kg−1)),

so the assertion follows from Corollary 3.20. �

4. The Harish-Chandra c-function

In this section, unless something else is stated, let (G,K, θ) be a reductive
symmetric supertriple of even type admitting global Iwasawa and Bruhat de-
compositions. A fixed even Cartan subspace a and positive system Σ+ are un-
derstood, and in all the cases we will consider, the rank dim a−dim a∩dim z(g)
will be one. The notation introduced in Subsection 3.1 will be used freely.
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We will derive the leading asymptotics of the spherical superfunctions φλ.
These are governed by the Harish-Chandra c-function. We compute these ex-
plicitly in terms of Euler Γ functions. While the general structure of these
functions is similar to the even setting, the occurrence of negative root multi-
plicities leads to a shift in the location of poles and zeroes.
By a rank reduction procedure, this result has, in Ref. [6], been extended to
arbitrary rank, on the basis of our results. In general, isotropic restricted roots
occur, leading to terms in the general c-function formula that are not simply
shifted versions of the ‘purely even’ c-function.
Moreover, contrary to the ‘classical’ setting of Riemannian symmetric spaces of
the non-compact type, where the proof of convergence of the leading asymptotic
term of φλ is a simple argument based on the dominated convergence theorem,
in the super setting, this becomes a quite subtle issue. We need to cover
the ‘maximal boundary’ B = K/M by a whole atlas of Weyl-group related
‘stereographical charts’. In the situations we consider (whose common feature
is that they are of rank one), B is a ‘geodesic supersphere at infinity’, and
this makes for two chart domains. These are essential, since the integrals
on the individual domains are both divergent unless the integrand is cut off
appropriately.
For the divergences in this expansion to cancel, the Weyl symmetry of the
spherical functions (Corollary 3.20), derived above without any restriction on
the rank, by the use of relative cs manifolds and fibre integrals, will be of
central importance.
Based on the derivation of the leading asymptotics, we prove the existence of
a full Harish-Chandra series expansion, similar to the even case.
We will show the existence of the c-function in three cases of rank one and
compute it explicitly. Contrary to the classical situation, the proof of existence
is by far the more difficult of these steps. Both (the proof of existence and the
explicit determination) will be performed on a case-by-case basis.

4.1. Definition and statement of the main result.

Definition 4.1. Let h0 ∈ a such that α(h0) > 0 for all α ∈ Σ+. The Harish-

Chandra c-function is defined as follows:

(4.1) c(λ) := lim
t→∞

e−(λ−̺)(th0)φλ(e
th0),

for λ ∈ a∗, ℜλ(h0) > 0, provided that the limit exists.
Unless the rank of (G,K, θ), defined to be dim a− dim a∩ z(g), is one, it is not
obvious per se that this definition is independent of the choice of h0.

We will consider the cases stated in Table 4.1 below, where we abbreviate
gl(p|q,C) by glp|q, etc., and allow arbitrary integers p, q > 0. We refer the
reader to the following subsubsections for the precise definitions, in particular,
regarding the cs supergoups G and K.
For any of these symmetric pairs, we have the following statement.
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g k G K

gl2+p|q gl1 × gl1+p|q Ucs(1, 1 + p|q) U(1)×Ucs(1 + p|q)
osp2+p|2q osp1+p|2q SOSp+cs(1, 1 + p|2q) SOSpcs(1 + p|2q)

gl1|1 × gl1|1 gl1|1 (GL×GL)+
C|R(1|1) UGL+

R
(1|1)

Table 1. Riemannian symmetric superspaces under consideration

Theorem 4.2. Let be (G,K) be one of the symmetric pairs listed in Table 4.1

and let α be a choice of positive indivisible restricted root. The c-function c(λ)
exists for ℜλ > 0. For some c0 ≡ c0(̺) 6= 0, it is given by

c(λ) = c0
2−λΓ(λ)

Γ
(

1
2

(

λ+ mα

2 + 1
))

Γ
(

1
2

(

λ+ mα

2 +m2α

))

if α is anisotropic, and if α is isotropic, then it is given by

c(λ) = c0λ.

Here, we identify λ ≡ 〈λ,α〉
〈α,α〉 if α is anisotropic and λ ≡ 〈λ, α〉 otherwise.

In particular, up to the constant c0, the value of the c-function c(λ) is inde-
pendent of the choice of h0 with α(h0) > 0. After suitable normalisation of h0,
the constants c0 depend on p and q only via ̺, see below for details.

4.2. Proof of Theorem 4.2. We now begin with the examination of the
c-function for the Riemannian symmetric superspaces X = G/K from Table
4.1, thereby proving Theorem 4.2 case-by-case. For the three individual cases,
the formula is proved below in Theorem 4.8, Theorem 4.14, and Corollary 4.17,
respectively.
We will constantly be using the functor of points, employing Proposition 2.1,
Corollary 2.2 and Proposition 2.3 to compute it explicitly.

4.2.1. The unitary case. In the following, let g := gl(2 + p|q,C). Moreover, we
let G := Ucs(1, 1 + p|q) denote the cs form of GL(2 + p|q,C) corresponding to

G0 := U(1, 1 + p)×U(q),

which is a the real form of the complex Lie group GC,0 := GL(2 + p,C) ×
GL(q,C).
An involution θ of G resp. of g is given by θ(x) := σxσ where

σ :=





−11 0 0
0 11+p 0
0 0 1q



 .(4.2)

Under this involution, g decomposes as g = k⊕ p with

k =





∗ 0 0
0 ∗ ∗
0 ∗ ∗



 , p =





0 ∗ ∗
∗ 0 0
∗ 0 0



 .
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Here, dashed lines in the matrices indicate the action of the involution, whereas
full lines signify the grading.
A non-degenerate invariant supersymmetric even bilinear form b on g is given
by b(x, y) := str(xy). We let aR ⊆ p0 be the subspace generated by the matrix

(4.3) h0 :=









0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









.

Here and in what follows, the dimension of the rows and columns in all matrices
will be 1, 1, p, and q, respectively.
As ungraded vector spaces, g = gl(2 + p + q,C), so since h0 is even, the root
decomposition is the same as in the classical case. Defining α ∈ a∗ by α(h0) = 1,
there are exactly four roots: ±α,±2α.
The general elements of gα and g−α are respectively

(4.4)









0 0 B0̄ B1̄

0 0 B0̄ B1̄

−C0̄ C0̄ 0 0
−C1̄ C1̄ 0 0









,









0 0 −B0̄ −B1̄

0 0 B0̄ B1̄

C0̄ C0̄ 0 0
C1̄ C1̄ 0 0









.

The general elements of g2α and g−2α are respectively








−A A 0 0
−A A 0 0
0 0 0 0
0 0 0 0









,









−A −A 0 0
A A 0 0
0 0 0 0
0 0 0 0









.

Moreover, m consists of the following matrices:








D 0 0 0
0 D 0 0
0 0 E F
0 0 G H









.

We let Σ+ := {α, 2α}, so that n = gα ⊕ g2α and n̄ = g−α ⊕ g−2α. From the
above, we see that

m±α = 2(p− q), m±2α = 1, ̺ = (1 + p− q)α.

The analytic subsupergroup K of G with Lie superalgebra k is U(1)×Ucs(1 +
p|q). The underlying Lie group is K0 = U(1) × U(1 + p) × U(q). Since the
Riemannian symmetric space G0/K0 = U(1, 1+p)/(U(1)×U(1+p)) is of non-
compact type, G0 admits global Iwasawa and Bruhat decompositions [22]. In
view of Proposition 3.6 and Proposition 3.5, the same is true of G.

We parametrise n and n̄ by setting τ :=
(

1 1 0
0 0 1p+q

)t
and

(4.5) X(D,E, F ) := τ

(

D E
F 0

)

τ tσ, X̄(D,E, F ) := στ

(

D E
F 0

)

τ t,
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so that

n =
{

X(D,E, F )
∣

∣ D ∈ C, E ∈ C1×p|q, F ∈ Cp|q×1
}

,

n̄ =
{

X̄(D,E, F )
∣

∣ D ∈ C, E ∈ C1×p|q, F ∈ Cp|q×1
}

.

Let gR := g0̄,R ⊕ g1̄, g0̄,R being the Lie algebra of G0, and AR := A∩ gR for any
A ⊆ g. Then by Proposition 2.14, we have an isomorphism ϕ, given by

ϕ : A1 × Ap|q × Ap|q −→ A(n̄R),

(a, b, c) 7−→ X
(

1
2ia,E(b, c), F (b, c)

)

,

on T -valued points b = b0̄ + b1̄, c = c0̄ + c1̄ ∈T Ap|q, where we set

E(b, c) :=
(

−(b0̄ − ic0̄)
t −(b1̄,1 − c1̄,1) · · · −(b1̄,q − c1̄,q)

)

,

F (b, c) :=
(

(b0̄ + ic0̄)
t b1̄,1 + c1̄,1 · · · b1̄,q + c1̄,q

)t
.

A similar statement holds for n.
In what follows, we will again make extensive use of the formalism of T -valued
points, see above for explanations. For any cs manifold T , the T -valued points
of N are of the form

nDEF := eX(D,E,F ) = 1 +X(D,E, F ) + 1
2X(D,E, F )2

= 12+p+q +X
(

D + 1
2EF,E, F

)

n̄DEF := eX̄(D,E,F ) = 12+p+q + X̄
(

D + 1
2EF,E, F

)

,

with D,E, F constrained appropriately, since τ tστ = ( 0 0
0 1 ). Obviously, we

have the equality θ(nDEF ) = n̄DEF .

Lemma 4.3. The restriction of H : G −→ A(aR) to N̄ is given by

H(n̄) =
1

2
log

(

(1−BC)2 − 4A2
)

h0, n̄ = n̄DEF ∈T N̄ .

Proof. Formally, the calculations are the same as in the classical case, the
only difference being that one has to work with generalised instead of ordinary
points.
Write n̄ = n̄DEF = keth0nD′E′F ′ , so that H(n̄) = th0. Then

(4.6) n(−A)(−B)(−C)n̄DEF = θ(n̄)−1n̄ = n̄(−D′)(−E′)(−F ′)e
2th0nD′E′F ′ .

Let v := (1, 1, 0). The simple identities

vστ = 0, vτ =
(

2 0
)

give

vnDEF =
(

1− 2D − EF 1 + 2D + EF 2E
)

, vn̄DEF = v,(4.7)

nDEF v
t = vt, n̄DEF v

t =
(

−2D− EF 1 + 2D + EF 2F
)t
.(4.8)

Applying these on the right-hand side of Equation (4.6) gives

vθ(n̄)−1n̄vt = cosh 2t+ sinh 2t = 2e2t.
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On the other hand, applying these on the left-hand side, we obtain

vθ(n̄)−1n̄vt = 2
(

(1− EF )2 − 4D2
)

.

This proves the lemma. �

The classical approach to derive c(λ) is to write

φλ(g) =

ˆ

K/M

|Dk̇|e(λ−̺)(H(gk)) =

ˆ

N̄

|Dn̄|e(λ−̺)(H(gk(n̄))).

However, if q 6= 0, this cannot be done, since the standard retraction on N̄
does not extend to K/M . Since ̺ can be an arbitarily large negative multiple
of α, the integral on the right-hand side does not even have to exist.
The next guess might be to interchange the limit in Equation (4.1) with the inte-
gral overK/M . However, this is not permitted, since exp(λ−̺)(H(eth0ke−th0))
does admit a smooth limit, even in the classical case.
The solution we propose is to apply Proposition 3.17 after cutting off the inte-
grand inside k0(N̄0). Thus, fix χ ∈ C∞

c (0,∞) such that χ = 1 on a neighbour-
hood of 1, and define Ξ ∈ Γ(OK/M ) by

Ξ(k(n̄)) := χ
(

(1− EF )2 − 4D2
)

, n̄ = n̄DEF ∈T N̄

on the open subspace k(N̄) ⊆ K/M , and by zero otherwise. Clearly, this
superfunction is well-defined and has compact support in the image k(N̄) of
k : N̄ → K/M .
Then for any w ∈M ′

0 := NK0(a), we have

φλ(g) =

ˆ

K/M

|Dk̇| e(λ−̺)(H(gk))Ξ(k) +

ˆ

K/M

|Dk̇| e(λ−̺)H(gwk)(1 − Ξ)(wk)

(4.9)

by K-invariance of |Dk|. Denote the summands by Iλ0 (g) and Iλ∞(g), respec-
tively.
Proposition 3.17 applies to the first of these two integrals. To do the same
for the second, a good choice for w has to be made. The Weyl group W0 =
M ′

0/M0 = {±1}; let w0 ∈M ′
0 be a representative of the non-trivial element.

By the Bruhat decomposition [22, Theorem 1.3], we have

(K0/M0) \ k0(N̄0) = w0o, o := k(1) = 1M0.

Since 1 − Ξ vanishes in a neighbourhood of o, this shows that the second
integrand in Equation (4.9) has compact support inside (K0/M0) \ {w0o} =
k0(N̄0).
On applying Theorem 2.18, Corollary 2.19, Equation (3.6), and Proposi-
tion 3.17, we obtain

Iλ0 (g) =

ˆ

N̄

|Dn̄|e(λ−̺)(H(gn̄))e−(λ+̺)(H(n̄))Ξ
(

k(n̄)
)

Iλ∞(g) =

ˆ

N̄

|Dn̄|e(λ−̺)(H(gw0n̄))e−(λ+̺)(H(n̄))(1 − Ξ)
(

w0k(n̄)
)

.

(4.10)
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For the following considerations, let g ∈T A. Moreover, we will identify a with
C via 1 7−→ h0 and a∗ with C via λ 7−→ λ(h0). It is obvious from Corollary 2.11
that

eth0 n̄DEF e
−th0 = expG e

t adh0(X̄(D,E, F )) = n̄e−2tD,e−tE,e−tF ,

and thus, we have for n̄ = n̄DEF :

H(eth0 n̄e−th0) = 1
2 log

(

(1− e−2tEF )2 − 4e−4tD2
)

,(4.11)

H(eth0w0n̄e
−th0) = H(e−th0 n̄eth0)− 2t

= 1
2 log

(

(e−2t − EF )2 − 4D2
)

,

(4.12)

H(eth0k(n̄)e−th0) = 1
2 log

(

(1− e−2tEF )2 − 4e−4tD2

(1− EF )2 − 4D2

)

,(4.13)

H(eth0w0k(n̄)e
−th0) = 1

2 log

(

(e−2t − EF )2 − 4D2

(1 − EF )2 − 4D2

)

,(4.14)

where in the third and fourth line, the identity H(ak(g)a−1) = H(aga−1) −
H(g), which follows from Equation (3.6), was applied.
Using Equation (4.13) and Corollary 2.11, one sees that

χ
(

e−2H(atk(n̄)a
−1
t )

)

= χ

(

(1− EF )2 − 4D2

(1− e−2tEF )2 − 4e−4tD2

)

−→ Ξ(k(n̄)) (t→ ∞)

for at = eth0 and n̄ = n̄DEF . The convergence is uniform with derivatives on
compact sets in n̄. In particular, it holds with k(n̄) replaced by the generic
point k of K. On applying Equation (4.12), we see that

Ξ(w0k(n̄)) = lim
t→∞

χ
(

e−2H(atw0k(n̄)a
−1
t )

)

= lim
t→∞

χ

(

(1 − EF )2 − 4D2

(e−2t − EF )2 − 4D2

)

= χ

(

(1− EF )2 − 4D2

(EF )2 − 4D2

)

We now apply the coordinates introduced by ϕ. We write (s, y) for the coordi-
nates and for the T -valued points of A1 × A2p|2q, where y = (b c). In terms of
the norm squared function ‖·‖2 defined in Equation (2.2), we have

−4D2 = s2, −EF = ‖y‖2, X̄(D,E, F ) = ϕ(s, y).

By Corollary 3.13 and since the isomorphism ϕ is linear, the pullback of |Dk̇|
via exp ◦ ϕ is a Berezin–Lebesgue density, which, by taking |Dk̇| to be nor-
malised adequately, may be assumed to be that from Subsection 2.7. We will
denote the latter by |Dµ| instead of |Dλ| to avoid confusion with the parameter
λ.
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Therefore, it is immediate that Equation (4.10) takes the form

Iλ0 (e
th0)e−t(λ−̺) =

ˆ

A1+2p|2q

|Dµ| ψ(1, e
−ty, e−2ts)

1
2 (λ−̺)

ψ(1, y, s)
1
2 (λ+̺)

χ
(

ψ(1, y, s)
)

Iλ∞(eth0)e−t(λ−̺) =

ˆ

A1+2p|2q

|Dµ| ψ(e
−2t, y, s)

1
2 (λ−̺)

ψ(1, y, s)
1
2 (λ+̺)

(1 − χ)

(

ψ(1, y, s)

ψ(0, y, s)

)

(4.15)

for ψ defined by
ψ(c, y, s) := (c+ ‖y‖2)2 + s2.

Since the integrands above are rotationally invariant over A1, Corollary 2.24
applies. (Here, y is the variable in which we rotate, and s is the base parameter.)
In particular, φλ only depends on mα and m2α. Therefore, if mα > 0, we
may assume that q = 0 and use the well-known formula for the c-function
in the classical case [23, Chapter IV, Theorem 6.4] to arrive at the following
conclusion.

Proposition 4.4. Let mα > 0 and ℜλ > 0. Then c(λ) exists and

c(λ) = c0
2−λΓ(λ)

Γ
(

1
2

(

λ+ mα

2 + 1
))

Γ
(

1
2

(

λ+ mα

2 +m2α

))

for some constant c0.

In case mα 6 0, we apply Proposition 2.22. Again, the rotation variable is y
and the parameter is s. If f is one of the integrands in Equation (4.15), then
f◦ is determined by replacing ψ with ψ◦, defined by

(4.16) ψ◦(c, r, s) := (c+ r)2 + s2.

We obtain the following intermediate result.

Lemma 4.5. Let mα 6 0 and ℜλ > 0. Then

c(λ) = C0

ˆ ∞

0

ds ∂
−mα

2
r=0 ψ◦(1, r, s)−(λ+̺)/2χ

(

ψ◦(1, r, s)
)

+ C0

ˆ ∞

0

ds ∂
−mα

2
r=0

ψ◦(0, r, s)(λ−̺)/2

ψ◦(1, r, s)(λ+̺)/2
(1− χ)

(

ψ◦(1, r, s)

ψ◦(0, r, s)

)(4.17)

and c(λ) is meromorphic.

Proof. The integrands have compact support, so we may interchange limt→∞

with the integral. The same can be done for ∂λ. �

In order to finally derive c(λ), the function χ needs to be removed. The result
is the following integral expression:

Proposition 4.6. If mα 6 0, and ℜλ > 0, then c(λ) exists, and we have

c(λ) = C0

ˆ ∞

0

ds ∂1−̺
r=0

(

(1 + r)2 + s2
)−(λ+̺)/2

.(4.18)

In the proof, the following estimate will be used repeatedly.

Documenta Mathematica 19 (2014) 1317–1366



1350 Alldridge, Palzer

Lemma 4.7. For all r, s > 0, z ∈ C, and k ∈ N, we have
∣

∣∂kr
(

(1 + r)2 + s2
)z/2∣

∣ < ck
(

(1 + r)2 + s2
)(ℜz−k)/2

,

where ck is some z-dependent constant independent of r, s.

Proof. As one can see by induction,

∂kr
(

(1 + r)2 + s2
)z/2

= pk

(

1 + r

s

)

sk
(

(1 + r)2 + s2
)(z−2k)/2

,

where pk is a polynomial of order at most k. Since limt→∞(t2 + 1)−
k
2 pk(t)

exists, there is a constant ck such that |(t2 + 1)−
k
2 pk(t)| < ck for all t > 0.

Taking t = s−1(1 + r), this implies
∣

∣∂kr
(

(1 + r)2 + s2
)z/2∣

∣ < ck
(

(1 + r)2 + s2
)(ℜz−k)/2

. �

Proof of Proposition 4.6. Firstly, note that −mα

2 = 1 − ̺. Denote the second

integral in Equation (4.17) by cII(λ). Since ψ
◦(c, ut, st) = t2ψ◦(ct−1, u, s), the

substitution r = su in the derivative yields

C−1
0 cII(λ) =

ˆ ∞

0

ds ∂1−̺
u=0s

̺−1ψ
◦(0, su, s)(λ−̺)/2

ψ◦(1, su, s)(λ+̺)/2
(1− χ)

(

ψ◦(1, su, su)

ψ◦(0, su, s)

)

=

ˆ ∞

0

ds ∂1−̺
u=0s

λ−1 ψ
◦(0, u, 1)(λ−̺)/2

ψ◦(1, su, s)(λ+̺)/2
(1− χ)

(

ψ◦(s−1, u, 1)

ψ◦(0, u, 1)

)

(4.19)

The next step is to exchange
´

ds and ∂qu. Since only the limit u → 0 is of
interest, u may be assumed to be small.
Let ε < 1 be small enough for (1− χ) = 0 on the interval [1, 1 + 4ε2]. Since

ψ◦(s−1, u, 1)

ψ◦(0, u, 1)
=

(s−1 + u)2 + 1

u2 + 1
6 1 + 4ε2, ∀s : sε > 1,

the function

[0, ε]× (0,∞) −→ [0, 1] : (u, s) 7−→ (1− χ)

(

(s−1 + u)2 + 1

u2 + 1

)

is of compact support. Therefore, ∂1−̺
u=0 and

´∞

δ
ds can be exchanged for any

δ > 0.
Now choose 0 < δ < 1 sufficiently small, such that

(1 − χ)

(

(s−1 + u)2 + 1

u2 + 1

)

= 1, ∀s ∈ (0, δ).

By Lemma 4.7, we have, for u 6 ε, s 6 δ, and k 6 q, that
∣

∣sλ−1∂kuψ
◦(1, su, s)−(λ+̺)/2

∣

∣ < cks
ℜλ−1+kψ◦(1, su, s)−(ℜλ+̺+k)/2

6 ck5
−̺/2sℜλ−1.

Since sℜλ−1 is integrable on [0, δ], we may also exchange
´ δ

0
ds and ∂1−̺

u=0.
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Therefore, the right-hand side of Equation (4.19) equals

∂1−̺
u=0

ˆ ∞

0

ds sλ−1 ψ
◦(0, u, 1)(λ−̺)/2

ψ◦(1, su, s)(λ+̺)/2
(1− χ)

(

ψ◦(s−1, u, 1)

ψ◦(0, u, 1)

)

= ∂1−̺
u=0

ˆ ∞

0

ds

s

ψ◦(0,
√
su,

√
s)(λ−̺)/2

ψ◦(1/
√
s,
√
su,

√
s)(λ+̺)/2

(1− χ)

(

ψ◦(1/
√
s,
√
su,

√
s)

ψ◦(0,
√
su,

√
s)

)

.

We substitute t−1 = ψ◦(0,
√
su,

√
s) = s(u2+1) in the integral. Since s−1ds and

ψ◦(1/
√
s,
√
su,

√
s) = s−1+2u+s(u2+1) are invariant under this substitution,

this leads to

∂1−̺
u=0

ˆ ∞

0

dt

t

t−(λ−̺)/2

ψ◦(1/
√
t,
√
tu,

√
t)(λ+̺)/2

(1− χ)
(

tψ◦(1/
√
t,
√
tu,

√
t)
)

,

= ∂1−̺
u=0

ˆ ∞

0

dt t̺−1ψ◦(1, tu, t)−(λ+̺)/2(1− χ)(ψ◦(1, tu, t)).

Again, the derivatives and the integral have to be exchanged. Possibly after
shrinking ε, one may assume that

(1− χ)((1 + tu)2 + t2) = 0, ∀t, u : 0 < t, u 6 ε.

Therefore, it suffices to consider the integral
´∞

ε dt. Clearly,
´ R

ε dt and ∂1−̺
u=0

may be exchanged, where R is large enough to arrange for

(1− χ)((1 + tu)2 + t2) = 0, ∀t : t > R.

On applying Lemma 4.7 once again, we see that
∣

∣∂kut
̺−1ψ◦(1, tu, t)−(λ+̺)/2

∣

∣ < ckt
̺−1+kψ◦(1, tu, t)−(ℜλ+̺+k)/2

6 ck5
−̺/2t−ℜλ−1,

which is integrable over (R,∞) for ℜλ > 0.

Thus,
´∞

R dt and ∂1−̺
u=0 can also be exchanged. Therefore, we find

cII(λ) = C0

ˆ ∞

0

dt ∂1−̺
u=0t

̺−1ψ◦(1, tu, t)−(λ+̺)/2(1 − χ)(ψ◦(1, tu, t))

= C0

ˆ ∞

0

dt ∂1−̺
r=0ψ

◦(1, r, t)−(λ+̺)/2(1− χ)(ψ◦(1, r, t))

upon substituting r = tu in the derivative. Up to a replacement of χ by
1−χ, this is equal to the first integral in Equation (4.17), and so, the assertion
follows. �

We now arrive at our conclusion in the unitary case.

Theorem 4.8. The c-function c(λ) for the symmetric pair of G = Ucs(1, 1 +
p|2q) and K = U(1)×Ucs(1 + p|q) exists for ℜλ > 0. Explicitly, it is given by

c(λ) = c0
2−λΓ(λ)

Γ
(

1
2

(

λ+ mα

2 + 1
))

Γ
(

1
2

(

λ+ mα

2 +m2α

)) , c0 ≡ c0(̺) 6= 0.

Documenta Mathematica 19 (2014) 1317–1366



1352 Alldridge, Palzer

Proof. The case of mα > 0 is the content of Proposition 4.4, so let mα 6 0.
Since c(λ) is meromorphic, we may assume that ℜλ > −̺. Proposition 4.6
gives

C−1
0 c(λ) =

ˆ ∞

0

ds ∂1−̺
r=0

(

(1+ r)2 + s2
)−λ+̺

2 = ∂1−̺
r=0

ˆ ∞

0

ds
(

(1+ r)2 + s2
)−λ+̺

2 .

Here, integral and derivative may be exchanged due to Lemma 4.7, since
∣

∣∂kr ((1 + r)2 + s2)−(λ+̺)/2
∣

∣ < ck((1 + r)2 + s2)−(ℜλ+̺+k)/2

6 ck(1 + s2)−(ℜλ+̺)/2.

for k 6 1− ̺. This is integrable by assumption.
Substitution with s = (1 + r)

√
t yields

c(λ) =
C0

2
∂1−̺
r=0 (1 + r)−λ−̺+1

ˆ ∞

0

dt t−
1
2

(

1 + t
)−(λ+̺)/2

=
C0(1− ̺)!(−1)1−̺

2

(

λ− 1

1− ̺

)

Γ
(

1
2

)

Γ
(

1
2 (λ+ ̺− 1)

)

Γ
(

1
2 (λ+ ̺)

)

=
C0

√
π(−1)1−̺

2

Γ(λ)Γ
(

1
2 (λ+ ̺− 1)

)

Γ(λ+ ̺− 1)Γ
(

1
2 (λ+ ̺)

) = C0(−2)1−̺π
2−λΓ(λ)

Γ
(

1
2 (λ+ ̺)

)2 .

Here, we have applied the integral formula for the Euler beta function, the
identity

(

−x
k

)

= (−1)k
(

x+k−1
k

)

, and the duplication formula

Γ(z) =
1√
π
2z−1Γ

(

1
2z

)

Γ
(

1
2 (z + 1)

)

.

The claim now follows from m2α = 1 and mα = 2(̺− 1). �

4.2.2. The ortho-symplectic case. Let g := osp(1, 1 + p|2q,C) be the complex
Lie subsuperalgebra of gl(2 + p|2q,C), given by

osp(1, 1 + p|2q,C) =
{

x ∈ gl(2 + p|2q,C)
∣

∣ xst
3

J + Jx = 0
}

,

where
(

R S
T V

)st3

:=

(

Rt T t

−St V t

)

and

J =





−11 0 0
0 11+p 0
0 0 Jq



 .(4.20)

Here Jq denotes the 2q× 2q matrix with q copies of the 2× 2 matrix
(

0 1
−1 0

)

on
the diagonal. Therefore, g consists of the matrices of the form





0 X12 X13

Xt
12 X22 X23

JqX
t
13 −JqXt

23 X33



 , X22 ∈ so(1 + p,C), X33 ∈ sp(2q,C),(4.21)
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with no further restrictions on the other entries. We let

gR := g0̄,R ⊕ g1̄, g0̄,R := so(1 + p,R)× usp(2q),

where usp(2q) is the compact form of sp(2q,C), given by usp(2q) := u(2q) ∩
sp(2q,C).
Let G = SOSp+cs(1, 1 + p|2q) be the cs form of OSp(2 + p|2q,C) given by the
underlying Lie group SO(1, 1 + p,R) × USp(2q). Here, USp(2q) := U(2q) ∩
Sp(2q,C).
The involution θ is the restriction of the one considered in the previous sub-
subsection. Let g = k⊕ p be the corresponding eigenspace decomposition. The
analytic subsupergroup K corresponding to k is K = SOSpcs(1 + p|2q), with
underlying Lie group SO(1 + p,R)× USp(2q) and Lie cs algebra k. For p = 0,
K is the semi-direct product USp(2q)⋉A0|2q, where A0|2q is given the additive
supergroup structure of the super-vector space C0|2q.
Let a ⊆ p0̄ be the even Cartan subalgebra generated by the element h0 de-
fined in Equation (4.3). Since σ and J commute, the restricted root space
decomposition for g is obtained by restricting that for gl from Equation (4.4)
to osp(1, 1 + p|2q,C).
Only two restricted roots remain: α and −α, where α(h0) = 1. The general
elements of gα and g−α are respectively

(4.22)









0 0 B0̄ B1̄

0 0 B0̄ B1̄

Bt
0̄ −Bt

0̄ 0 0
JqB

t
1̄ −JqBt

1̄ 0 0









,









0 0 B0̄ B1̄

0 0 −B0̄ −B1̄

Bt
0̄ Bt

0̄ 0 0
JqB

t
1̄ JqB

t
1̄ 0 0









.

The general element of m = zk(a) is








0 0 0 0
0 0 0 0
0 0 E F
0 0 −JqGt H









.

We take Σ+ := {α} as our positive system, hence n = gα and n̄ = g−α. From
Equation (4.22), we have mα = p− 2q, so ̺ = 1

2 (p− 2q)α.
Using the notation from Equation (4.5), we set

X(F ) := X(0, E, F ), X̄(F ) := X̄(0, E, F ), E :=
(

−F t
0̄ −F t

1̄Jq
)

.

Since the Iwasawa decomposition of g is the restriction of that for gl considered
above, we see that

n =
{

X(F )
∣

∣ F ∈ Cp|2q×1
}

, n̄ =
{

X̄(E)
∣

∣ E ∈ Cp|2q×1
}

.

Then by Proposition 2.14, we have an isomorphism ϕ, given by

ϕ : Ap|2q −→ A(n̄R) : y 7−→ X̄(y),

and similarly for n. The T -valued points of N and N̄ are

ny := expGX(y) = 12+p+2q +X(y), n̄b := 12+p+2q + X̄(y),
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where y ∈T Ap|2q and T is any cs manifold.
As in the previous subsubsection, we will identify a and a∗ with C via the bases
h0 and α. The Iwasawa decompositions for gl and osp are compatible, so that
we have the following lemma.

Lemma 4.9. The restriction to N̄ of the morphism H : N̄ → A(aR) is given by

H(n̄) = log(1 + ‖y‖2), n̄ = n̄y, y ∈T Ap|2q,

for any cs manifold T , where ‖·‖2 is defined in Equation (2.2).

Proof. Lemma 4.3 applies, since n̄y = n̄0yb where b = −(yt0̄ y
t
1̄Jq). We obtain

H(n̄) =
1

2
log

(

(1 − by)2
)

= log(1− by) = log(1 + ‖y‖2),

by the definition of the norm squared function. �

Equations (4.13) and (4.14) specialise to

H
(

eth0k(n̄y)e
−th0

)

= log

(

1 + e−2t‖y‖2
1 + ‖y‖2

)

,

H
(

eth0w0k(n̄y)e
−th0

)

= log

(

e−2t + ‖y‖2
1 + ‖y‖2

)

,

where w0 ∈ M ′
0 again denotes a representative of the non-trivial Weyl group

element.
Note that this only makes sense if p > 0. Otherwise, the root α is not even and
the Weyl group would be trivial in this case. Therefore, we assume p > 0 for
the time being, postponing the case of p = 0 to the end of this subsubsection.
Let χ be as before and define Ξ ∈ Γ(OK/M ) by

Ξ
(

k(n̄y)
)

:= χ(1 + ‖y‖2)

for n̄y ∈T N̄ . As functions on K/M , both Ξ and k 7→ (1 − Ξ)(w0k) have
compact support inside k0(N̄0), and

(1− Ξ)
(

w0k(n̄y)
)

= (1− χ)

(

1 + ‖y‖2
‖y‖2

)

.
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In analogy with Equations (4.9), (4.10), and (4.15), we have by Theorem 2.18
and Corollary 2.19 that

φλ(g) = Iλ0 (g) + I∞(g),

Iλ0 (g) :=

ˆ

K/M

|Dk̇| e(λ−̺)(H(gk))Ξ(k),

Iλ∞(g) :=

ˆ

K/M

|Dk̇| e(λ−̺)H(gwk)(1 − Ξ)(w0k),

Iλ0 (e
th0)e−t(λ−̺) =

ˆ

Ap|2q

|Dµ(y)| (1 + e−2t‖y‖2)λ−̺

(1 + ‖y‖2)λ+̺
χ(1 + ‖y‖2),

Iλ∞(eth0)e−t(λ−̺) =

ˆ

Ap|2q

|Dµ(y)| (e
−2t + ‖y‖2)λ−̺

(1 + ‖y‖2)λ+̺
(1− χ)

(

1 + ‖y‖2
‖y‖2

)

.

(4.23)

Here, again, |Dµ| denotes the Berezin–Lebesgue density on Ap|2q.
By Corollary 2.23, φλ and therefore c(λ) only depends on mα and not on p
and q separately in this case, too. Therefore, for mα > 0, [23, Chapter IV,
Theorem 6.4] implies the following.

Proposition 4.10. Let mα > 0. Then c(λ) exists for ℜλ > 0, and we have

c(λ) = c0
2−λΓ(λ)

Γ
(

1
2 (λ+ mα

2 + 1)
)

Γ
(

1
2 (λ+ mα

2 +m2α)
) , c0 ≡ c0(̺) 6= 0.

For 2̺ = mα 6 0, we get a similar expression.

Proposition 4.11. Let mα 6 0 and p > 0. Then c(λ) exists for ℜλ > 0, and

c(λ) = c′0
Γ(λ)

Γ(λ+ ̺)
, c′0 ≡ c′0(̺).

Proof. Following Corollary 2.24, we distinguish between the even and odd cases.
Firstly, assume that mα be even. In this case, the integrals in Equation (4.23)
reduce to a pointwise derivative, which may be exchanged with limits to arrive
at

c(λ) = C∂−̺
r=0

(

(1 + r)−(λ+̺)χ(1 + r) + rλ−̺(1 + r)−(λ+̺)(1− χ)

(

1 + r

r

))

.

for some constant C. As functions of r, χ(1 + r) and (1 − χ)(r−1(1 + r)) are
constant near zero. Furthermore, ∂kr=0r

λ−̺ = 0 for k 6 −̺, so that

c(λ) = Cq!

(−(λ+ ̺)

−̺

)

= C(−1)̺q!

(

λ− 1

−̺

)

= C(−1)̺
Γ(λ)

Γ(λ+ ̺)
.
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Now, assume that mα < 0 is odd. By Lemma 4.7, we may exchange limits and
integrals, to obtain

c(λ) = C

ˆ ∞

0

dr r−
1
2 ∂

1
2−̺
r

(

(1 + r)−(λ+̺)χ(1 + r)
)

+ C

ˆ ∞

0

dr r−
1
2 ∂

1
2−̺
r

(

rλ−̺(1 + r)−(λ+̺)(1 − χ)
(

r−1(1 + r)
))

.

(4.24)

Denote the two integrals by cI(λ) and cII(λ), respectively. As in the proof
of Proposition 4.6, we will rewrite these in order to show that the respective
contributions of the cutoff function χ cancel.
This will be done by integrating by parts. Recall that (1− χ)(r−1(1 + r)) = 1
for small r. Therefore, for ℜλ > 0 and k 6 1

2 − ̺, we have

lim
r→0

(∂k−1
r r−

1
2 )∂

−̺− 1
2−k

r

(

rλ−̺(1 + r)−(λ+̺)(1− χ)
(

r−1(1 + r)
))

= lim
r→0

r
1
2−k

∑
1
2−̺−k

ℓ=0
cℓr

λ−̺−( 1
2−̺−k−ℓ)(1 + r)−(λ−̺)−ℓ

= lim
r→0

∑

1
2−̺−k

ℓ=0
cℓr

λ+ℓ(1 + r)−(λ−̺)−ℓ = 0

Therefore, no boundary terms occur upon integrating by parts, and

cII(λ) =
(

1
2 − ̺

)

!

( −̺
1
2 − ̺

)
ˆ ∞

0

dr

r
rλ(1 + r)−(λ+̺)(1 − χ)

(

r−1(1 + r)
)

=
(

1
2 − ̺

)

!

( −̺
1
2 − ̺

)
ˆ ∞

0

ds

s
s−λ

(

s−1(1 + s)
)−(λ+̺)

(1− χ)(1 + s)

=
(

1
2 − ̺

)

!

( −̺
1
2 − ̺

)
ˆ ∞

0

ds

s
s̺(1 + s)−(λ+̺)(1− χ)(1 + s).

where r̺−1rλ−̺ = rλ−1 and the substitution s = r−1 were applied.
Since similarly, for k 6 1

2 − ̺, we have as r → ∞

∂k−1
r r−

1
2 ∂

1
2−̺−k
r

(

(1 + r)−(λ+̺)(1− χ)(1 + r)
)

≃ r
1
2−k(1 + r)−λ− 1

2+k −→ 0,

we may integrate by parts to find
ˆ ∞

0

dr r−
1
2 ∂

1
2−̺
r

(

(1 + r)−(λ+̺)(1 − χ)(1 + r)
)

=
(

1
2 − ̺

)

!

( −̺
1
2 − ̺

)
ˆ ∞

0

ds

s
s̺(1 + s)−(λ+̺)(1− χ)(1 + s),

since (1− χ)(1 + r) vanishes for r small and equals 1 for r large.
Combining cI(λ) and cII(λ) leads to

c(λ) = C

ˆ ∞

0

dr r−
1
2 ∂

1
2−̺
r (1 + r)−(λ+̺) = C(−1)−̺− 1

2
√
π

Γ(λ)

Γ(λ+ ̺)

for ℜλ > −̺, as in the proof of Theorem 4.8. Moreover, Equation (4.24)
shows that c(λ) is holomorphic in λ for ℜλ > 0, since the integrands are

Documenta Mathematica 19 (2014) 1317–1366



Spherical Superfunctions in Rank One 1357

sufficiently bounded. Therefore, the case of 0 < ℜλ 6 −̺ follows by analytic
continuation. �

The case where p = 0 is still open. This situation is interesting, in that there are
only purely odd restricted roots (which, however, are anisotropic). Fortunately,
one can evaluate φλ explicitly in this case.

Proposition 4.12. If p = 0, then φλ is for some constant c1 given by

φλ(e
th0) = c1e

λt

−
∑̺

k=0

(

λ− ̺

k

)(−λ− ̺

−̺− k

)

e(−̺−2k)t

Proof. The cs manifolds K/M and N̄ admit only one retraction, since the
underlying spaces are trivial. Hence, we may by Theorem 2.18 and Corol-
lary 2.19 pull back the defining integral of φλ and apply Equation (3.6), to
obtain

φλ(e
th0)e−t(λ−̺) =

ˆ

N̄

|Dn̄| e(λ−̺)(H(eth0 n̄e−th0 ))e−(λ+̺)(H(n̄))

=

ˆ

A0|2q

|Dµ(y)| (1 + e−2t‖y‖2)λ−̺(1 + ‖y‖2)−(λ+̺)

≃ ∂qr=0(1 + e−2tr)λ−̺(1 + r)−(λ+̺)

≃ q!
∑q

k=0

(

λ− ̺

k

)(−λ− ̺

q − k

)

e−2kt.

This proves the claim. �

Corollary 4.13. If p = 0, the c(λ) exists for ℜλ > 0 and

c(λ) = c′0
Γ(λ)

Γ(λ+ ̺)
, c′0 ≡ c′0(̺).

Using the duplication formula, Proposition 4.10, Proposition 4.11, and Corol-
lary 4.13 combine to the following result.

Theorem 4.14. The c-function c(λ) for the symmetric pair of the cs Lie su-

pergroups G = SOSp+cs(1, 1+p|2q) and K = SOSpcs(1+p|2q) exists for ℜλ > 0.
Explicitly,

c(λ) = c0
2−λΓ(λ)

Γ
(

1
2

(

λ+ mα

2 + 1
))

Γ
(

1
2

(

λ+ mα

2 +m2α

)) , c0 ≡ c0(̺) 6= 0.

4.2.3. The case of GL(1|1). Let g := gl(1|1,C)×gl(1|1,C). Then g0̄ is Abelian.
We will write the elements of g as double matrices of the form

(

A B E F
C D G H

)

.

Let gR := g0̄,R ⊕ g1̄ be given by requiring g0̄,R to be the Lie algebra of the Lie
group G0 whose general elements are

(

z 0 z̄−1 0
0 r 0 s

)

, z ∈ C×, r, s > 0.
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The cs form G of GC = GL(1|1,C)×GL(1|1,C) defined by G0 will be denoted
by (GL×GL)+

C|R(1|1). An involution θ on g can be defined by

θ

(

A B E F
C D G H

)

=

(

E F A B
G H C D

)

.

The general elements of the eigenspaces k and p are respectively
(

A B A B
C D C D

)

,

(

A B −A −B
C D −C −D

)

.

Let K be the analytic cs Lie subgroup of G with Lie cs algebra k, denoted by
K = UGL+

R
(1|1). The general element of K0 is

(

z 0 z 0
0 r 0 r

)

, z ∈ U(1), r > 0.

Note that although K0 is not compact, its adjoint image in GL(p0̄,R) is. This
explains why there is no contradiction in the fact that the negative of the
supertrace form is actually positive on p0̄,R, so that (G0,K0) is a Riemannian
symmetric pair.
The only choice of Cartan subalgebra is a := p0̄, since p0̄ is Abelian and consists
of semisimple elements. Let

h1 :=

(

1 0 −1 0
0 0 0 0

)

, h2 :=

(

0 0 0 0
0 1 0 −1

)

be a basis of a. An easy calculation shows that there are only the roots ±α,
with α defined by

α(a1h1 + a2h2) := a1 − a2.

We have m = zk(a) = k. The general elements of gα and g−α are respectively
(

0 B 0 0
0 0 G 0

)

,

(

0 0 0 F
C 0 0 0

)

.

We let Σ+ := {α} be our positive system, so n = gα, n̄ = g−α, mα = −2, and
̺ = −α. Since G0 admits a global Iwasawa decomposition, this is also the case
for G. Indeed, every element in G0 can be decomposed uniquely as
(

z 0 z̄−1 0
0 r 0 s

)

=

( z
|z| 0 ∗ ∗
0

√
rs ∗ ∗

)(

log |z| 0 ∗ ∗
0 1

2 log(
r
s ) ∗ ∗

)

,

where the first factor is in K0 and the second in A0. Note that N0 = 1.
For any cs manifold T , the T -valued points of N and N̄ are of the form

nB,G =

(

1 B 1 0
0 1 G 1

)

, n̄C,F =

(

1 0 1 F
C 1 0 1

)

, B, C, F,G ∈ Γ(OT,1̄).

Lemma 4.15. The restriction to N̄ of the morphism H : G → A(aR) is given

by

H(n̄) = 1
2CFh

+, n̄ = n̄C,F ∈T N̄ ,

where we set h± := h1 ± h2.
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Proof. Again, H : N̄ −→ a will be derived from the equation

θ(n̄C,F )
−1n̄C,F = θ(nB,G)

−1 exp(2H(n̄C,F ))nB,G, n̄C,F ∈T N̄ , nB,G ∈T N.

The left-hand side equals
(

1 −F 1 0
0 1 −C 1

)(

1 0 1 F
C 1 0 1

)

=

(

1− FC −F 1 F
C 1 −C 1− CF

)

.

Upon writing H(n̄C,F ) = h1t1 + h2t2 for some t1, t2 ∈ Γ(OT,0̄), the right-hand
side takes the form
(

1 0
−G 1

1 −B
0 1

)(

e2t1 0 e−2t1 0
0 e2t2 0 e−2t2

)(

1 B 1 0
0 1 G 1

)

=

(

e2t1 Be2t1 e−2t1 −BGe−2t2 −Be−2t2

−Ge2t1 e2t2 −GBe2t1 Ge−2t2 e−2t2

)

,

Therefore, e2t1 = 1− FC and e−2t2 = 1− CF = 1 + FC, so that

t1 = t2 = − 1
2FC = 1

2CF,

which proves the lemma. �

We find the following formula for φλ.

Proposition 4.16. For a suitable normalisation of the invariant density on

K/M , we have for any λ ∈ a∗

φλ(e
h) = −λ(h+)eλ(h) sinhα(h), h ∈T A(aR).

Remarkably, the function φλ is not invariant under the symmetry h 7−→ −h.
This is due to the fact that there are no even restricted roots in the case under
consideration, so that the even Weyl group is trivial.

Proof of Proposition 4.16. We introduce coordinates ξ1, ξ2 on N̄ by

ξ1(n̄C,F ) = C, ξ2(n̄C,F ) = F.

In terms of these coordinates, we may take |Dn̄| = |Dξ| = |D(ξ1, ξ2)|.
The spaces K/M and N̄ being of purely odd dimension, they both admit only
one retraction. Thus, we may by Theorem 2.18 and Corollary 2.19 pull back
the defining integral of φλ, leading to

φλ(e
h)e−(λ−̺)(h) =

ˆ

N̄

|Dn̄|e(λ−ρ)(H(ehn̄e−h))e−(λ+̺)(H(n̄))(4.25)

for h ∈T A(aR), by Proposition 3.17 and Equation (3.6).
Clearly, we have by Corollary 2.11 that

ehn̄C,F e
−h = n̄e−2α(h)C,e−2α(h)F ,

and ̺(h+) = −α(h+) = 0. Furthermore, Lemma 4.15 gives

eλ(H(n̄C,F )) = e
1
2λ(h

+)CF = 1 + 1
2λ(h

+)CF.
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Inserting these findings into Equation (4.25), we arrive at

φλ(e
h)e−(λ−̺)(h) =

ˆ

N̄

|Dξ|
(

1 + 1
2λ(h

+)e−2α(h)ξ1ξ2
) (

1− 1
2λ(h

+)ξ1ξ2
)

= 1
2λ(h

+)(e−2α(h) − 1) = −λ(h+)e̺(h) sinhα(h),
proving the assertion. �

We immediately obtain the following expression for the c-function.

Corollary 4.17. Let λ ∈ a∗ be arbitrary. Using h0 = c+h
+ + c−h

− in

Equation (4.1), c(λ) exists if and only if c− = 0 or ℜc− > 0, and then

c(λ) =

{

0, c− = 0,

− 1
2λ(h

+), ℜc− > 0.

Proof. Since α(h+) = 0 and α(h−) = 2, we have

e̺(th0) sinhα(th0) = e−2c−t sinh 2c−t =
1
2

(

1− e−4c−t
)

.

Thus, the limit for t → ∞ exists if and only if c− = 0 or ℜc− > 0. In these
cases, it equals 0 and 1

2 , respectively. �

Thus, in particular, c(λ) can be defined independently of a choice of h0 with
α(h0) = 2c− > 0. Since α(h) = 1

2 〈h+, h〉, the above result for c(λ) can be
rewritten in the form stated in Theorem 4.2.

5. Determination of the spherical functions

In this subsection, we derive a convergent series expansion for the function
φλ. The standard procedure to do so is to solve a differential equation by a
pertubation ansatz, cf. [23, Chapter IV, 5]. We follow the same procedure.
In the following, suppose (G,K) is one of the two following symmetric pairs

(5.1)

(

Ucs(1, 1 + p|2q),U(1)×Ucs(1 + p|2q)
)

,
(

SOSp+cs(1, 1 + p|2q), SOSpcs(1 + p|2q)
)

.

For (G,K) =
(

(GL×GL)+
C|R(1|1),UGL+

R
(1|1)

)

, a closed expression for φλ was

derived above in Proposition 4.16. Moreover, in the orthosymplectic case, a
closed expression was obtained for p = 0, in Proposition 4.12. This section
aims to remove such restrictions.
Let h0 ∈ aR be determined uniquely by α(h0) = 1. By the use of the bases
h0 and α of a and a∗, respectively, we will identify these spaces with C where
convenient.

Proposition 5.1. Let ∆(L) be the differential operator on A given by

∆(L)(f)(eth0) :=
(

∂2t + (mα coth(t) + 2m2α coth(2t))∂t
)

f(eth0).

Then, for any λ ∈ a∗, φλ is an eigenfunction of ∆(L). More precisely,

∆(L)φλ = (λ2 − ̺2)φλ.(5.2)
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Proof. One follows the standard procedure, showing that ∆(L) is the N -radial
part of the Laplacian on G/K, cf. [20, 4.2]. This can also be seen by a com-
putation in U(g) along the lines of the proof of [38, Proposition 9.1.2.11]. The
eigenvalue equation is derived as in Ref. [1]. �

Since e(λ−̺)t is an eigenfunction of ∂t(∂t + 2̺) for the correct eigenvalue, we
make the following perturbation ansatz:

Φλ(e
th0) = e(λ−̺)t

∑∞

ℓ=0
γℓ(λ)e

−2ℓt, eth0 ∈ A+,(5.3)

where A+ is the open subset of A0 = A defined by A+ := exp((0,∞)h0). For
ε > 0, we denote by A+

ε the subset of A0 defined by A+
ε := exp([ε,∞)h0).

Proposition 5.2. Let λ ∈ a∗, λ ≡ λ(h0) /∈ N. Assuming that the series Φλ in

Equation (5.3) converges to a solution of Equation (5.2), absolutely on A+
ε for

any ε > 0, the coefficients γℓ(λ) are determined by the choice of γ0(λ) and the

relation

ℓ(ℓ− λ)γℓ(λ) =
mα

2

(

̺− λ+ 2(ℓ− 1)
)

γℓ−1(λ)

+
(

̺− λ+ ℓ− 2
)(

̺+ ℓ− 2
)

γℓ−2(λ).
(5.4)

Conversely, define γℓ(λ) by the above equation. Then the series Φλ converges

to a solution of Equation (5.2), absolutely on A+
ε for all ε > 0.

Proof. In view of Proposition 5.1, we may follow the standard procedure from
Ref. [23, Chapter IV, § 5]. We obtain the recursion relation

(5.5) ℓ(ℓ− λ)γℓ(λ) =

2
∑

n=1

nmnα

2

∑

k>1,ℓ>nk

(

̺− λ+ 2(ℓ− nk)
)

γℓ−nk(λ).

On the right-hand side, the contribution of the three terms corresponding to
(n, k) = (1, 1), (1, 2), (2, 1) is

mα

2

(

̺− λ+ 2(ℓ− 1)
)

γℓ−1(λ) + ̺(̺− λ+ 2(ℓ− 2))γℓ−2(λ).

On applying the recursion relation to the remaining terms, we see that the
remainder amounts to

(ℓ − 2)(ℓ− 2− λ)γℓ−2(λ).

Thus, we obtain Equation (5.4).
For the convergence, we follow the procedure of [23, Chapter IV, §5, Lemma
5.3]: Since we have

ℓ(ℓ− λ)

ℓ2
−→ 1,

̺− λ+ 2ℓ

ℓ + 1
−→ 2

for ℓ→ ∞, there are constants 0 < c < 1
2 and 2 < C <∞ such that

|̺− λ+ 2ℓ| 6 C(ℓ+ 1), |ℓ(ℓ− λ)| > 2cℓ2
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for all ℓ ∈ N. For any ε > 0, there is some ℓ0 ∈ N, ℓ0 > 2, such that

2
∑

n=1

nmnα

4

(

coth
(

nt
2

)

− 1
)

6
cℓ0
C
, ∀t : t > ε.

Choose K = Kε > 0 such that

|γℓ(λ)| 6 Keℓt, ∀ℓ, t : ℓ 6 ℓ0, t > ε.

We claim that the ‘Gangolli estimate’ |γℓ(λ)| 6 Keℓt holds for all ℓ ∈ N and
t > ε. Indeed, assume that this holds for all ℓ′ < ℓ1, where ℓ1 > ℓ0. Then
Equation (5.5) and the assumption imply

|γℓ1(λ)| 6
C(ℓ1 + 1)

2cℓ21

2
∑

n=1

n|mnα|
2

∑

k>1,ℓ>nk

|γℓ−nk(λ)|

6
KeℓtC

ℓ0c

2
∑

n=1

n|mnα|
4

(

coth
(

nt
2

)

− 1
)

6 Keℓt

because ℓ0(ℓ1+1) 6 2ℓ21 and coth( t
2 )−1 = 2

∑∞
k=1 e

−kt. This proves our claim.
In particular, we have

∞
∑

ℓ=0

∣

∣γℓ(λ)e
−2ℓt

∣

∣ 6 K

∞
∑

ℓ=0

e−ℓt 6
K

1− e−ε
<∞

and the series converges absolutely on A+
ε . This justifies the term-by-term

differentiation and implies that the limit Φλ is a solution of Equation (5.2). �

Remark 5.3. When m2α = 0 (i.e. in the orthosymplectic case), the two-term
recursion for γℓ(λ) simplifies, and we easily obtain the following closed expres-
sion

γℓ(λ) = γ0(λ)

ℓ−1
∏

m=0

(m+ ̺)(m+ ̺− λ)

(m+ 1)(m+ 1− λ)

= γ0(λ)c(−λ)(−1)l
(−̺
ℓ

) −λ
(ℓ− λ)c(ℓ − λ)

.

(5.6)

Using this formula, the convergence of the Harish-Chandra series follows from
a simple-minded application of the ratio test.

From now on, will make the choice

(5.7) γ0(λ) := c(λ).

Contrary to the classical situation of Riemannian symmetric spaces of non-
compact type, the Harish-Chandra series may be finite.

Corollary 5.4. If G = SOSpcs(1, 1 + p|2q) and mα = p − 2q ≤ 0 is even,

then the series Φλ is finite. More precisely, we have

Φλ(e
th0) = c1e

(λ−̺)t

−
∑̺

ℓ=0

(

λ− ̺

ℓ

)(−λ− ̺

−̺− ℓ

)

e−2ℓt.
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for some constant c1. In particular, Φλ is well-defined on A.

Proof. In view of Equation (5.6), we have γℓ(λ) = 0 for ℓ > −̺. Recall from
Proposition 4.11 and Corollary 4.13 that

(5.8) c(λ) = c′0
Γ(λ)

Γ(λ+ ̺)
= c′0

−
∏̺

k=1

(λ− k).

Inserting γ0(λ) = c(λ) into Equation (5.6), we obtain

γℓ(λ) = c′0(−1)ℓ
(−̺
ℓ

) −
∏̺

k=ℓ+1

(λ− k)
ℓ−1
∏

m=0

(λ− ̺−m)

= c′0(−̺)!
(−λ− ̺

−̺− ℓ

)(

λ− ̺

ℓ

)

.

(5.9)

By the definition of Φλ, this proves the claim. �

Combining the above results, we arrive at the following expression for the
spherical superfunctions.

Theorem 5.5. Let (G,K) be one of the symmetric pairs in Equation (5.1).
For ℜλ > 0 and λ /∈ 1

2Z, we have

φλ|A+ =
∑

w∈W0

Φwλ,

where Φλ is defined by Equations (5.3) and (5.7). Moreover, W0 = {±1} unless

G = SOSpcs(1, 1|2q), in which case W0 = {1}.
Proof. Firstly, Equation (4.1), Theorem 4.2, and Proposition 5.2 lead to

(5.10) lim
t→∞

φλ(e
th0)e−(λ−̺)t = c(λ) = lim

t→∞
Φλ(e

th0)e−(λ−̺)t.

Therefore, in caseW0 is trivial, then Proposition 4.12 and Corollary 5.4 combine
to prove φλ = Φλ.
It remains to prove the assertion in case W0 is non-trivial. We observe that by
Proposition 5.2 again, the functions Φ±λ are solutions of Equation (5.2). This
is a differential equation of order two and Φ±λ are visibly linearly independent,
so

φλ = b1Φλ + b2Φ−λ, b1, b2 ∈ C.

Let w0 ∈M ′
0 be a representative of the non-trivial Weyl group element. Using

Corollary 3.20 and the K ×K-invariance of φλ, we derive for any a ∈ A+ that

φλ(a) = φ−λ(a
−1) = φ−λ(waw

−1) = φ−λ(a).

This implies b1 = b2. Using Equation (5.10), and

lim
t→∞

Φ−λ(e
th0)e−(λ−̺)t = 0,

which is derived easily from Proposition 5.2, we conclude that b1 = 1. �

The result of Theorem 5.5 can be given a more explicit form in the cases where
the Harish-Chandra series is finite.
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Corollary 5.6. Let G = SOSpcs(1, 1 + p|2q) and mα = p− 2q ≤ 0 be even.

Then

φλ(e
th0) = c1e

(λ−̺)tP
(−λ,2̺−1)
−̺ (1− 2e−2t),

where the P
(a,b)
n denote the Jacobi polynomials.

Proof. By [18, §10.8, (16)], we have

P (a,b)
n (x) =

(

n+ a

n

)

2F1

(

−n, 1 + a+ b+ n; a+ 1;
x− 1

2

)

,

where 2F1 is the Gaussian hypergeometric function. Inserting the hypergeo-
metric series, we obtain easily that

P (a,b)
n (x) =

(a+ n)!

n!(a+ b+ n)!

n
∑

ℓ=0

(

n

ℓ

)

(a+ b+ n+ ℓ)!

(a+ ℓ)!

(

x− 1

2

)ℓ

,

where we write y! = Γ(y + 1). Let

n := −̺ = q − p

2
, a := −λ, b := 2̺− 1 = p− 2q − 1.

On applying Equation (5.9) and Corollary 5.4, we obtain

Φλ(e
th0) = c′0(−1)−̺P (a,b)

n (x)

for x = 1− 2e−2t, c′0 denoting the constant from Equation (5.8). �
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