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Abstract. We describe a new operator space structure on Lp when
p is an even integer and compare it with the one introduced in our
previous work using complex interpolation. For the new structure,
the Khintchine inequalities and Burkholder’s martingale inequalities
have a very natural form: the span of the Rademacher functions is
completely isomorphic to the operator Hilbert space OH , and the
square function of a martingale difference sequence dn is Σ dn ⊗ d̄n.
Various inequalities from harmonic analysis are also considered in the
same operator valued framework. Moreover, the new operator space
structure also makes sense for non-commutative Lp-spaces associated
to a trace with analogous results. When p → ∞ and the trace is
normalized, this gives us a tool to study the correspondence E 7→ E
defined as follows: if E ⊂ B(H) is a completely isometric emdedding
then E is defined so that E ⊂ CB(OH) is also one.
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Introduction

In probability theory and harmonic analysis, the classical inequalities for mar-
tingales in Lp due to Don Burkholder, and also to Richard Gundy and Burgess
Davis have had an invaluable impact, with multiple interaction with other
fields. See [8] for a recent review.
In [26], a non-commutative version of Burkholder’s martingale inequalities is
given. This is valid in any non-commutative Lp-space say Lp(τ) (associated to
a finite trace τ on a von Neumann algebra) for any 1 < p < ∞. In particular
this applies to martingales of the form fn =

∑n
1 εk ⊗ xk where xk ∈ Lp(τ)

and (εn) is a standard random choice of signs εn = ±1 (equivalently we can
think of (εn) as the Rademacher functions on [0,1]). In that case, Burkholder’s
inequality reduces to Khintchine’s inequality, for which the non-commutative
case is due to Lust–Piquard ([20]).
In the classical setting, Khintchine’s inequality expresses the fact that the closed
span in Lp of {εn} is isomorphic to ℓ2 (as a Banach space). If {εn} is replaced
by a sequence (gn) of independent standard Gaussian random variables, the
span in Lp becomes isometric to ℓ2. In the recently developed theory of op-
erator spaces, Lust–Piquard’s non-commutative Khintchine inequalities can be
interpreted (see [23, p. 108]) as saying that the span in Lp of [εn] (or (gn)) is
completely isomorphic to a Hilbertian operator space that we will denote here
by KHp. The precise description of KHp is not important for this paper, but
for reference let us say merely that, for 2 < p < ∞ (resp. 1 ≤ p < 2), KHp
has the structure of intersection (resp. sum) of row and column spaces in the
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Schatten class Sp. For the non-commutative Burkholder inequalities from [26],
the situation is analogous: the relevant square function combines the two cases
of “row” and “column” in analogy with the definition of KHp.
This result was a bit of a disappointment because there is a canonical notion of
“operator Hilbert space,” namely the space OH from [22] and one would have
expected in closer analogy to the classical case, that the span in Lp of [εn] (or
(gn)) should be completely isomorphic to OH . In the preceding references, the
spaces Lp (commutative or not) are always equipped with what we call their
“natural” operator space structure defined using complex interpolation. Then
the space KHp is completely isomorphic to OH only when p = 2.

In the present paper, we take a different route. We will equip Lp with another
o.s.s., hopefully still rather natural, but limited to p equal to an even integer
(for some of our results we even assume p = 2k). Roughly we imitate the
classical idea that f ∈ L4 iff |f |2 ∈ L2 in order to define our new o.s.s. on L4

and then we iterate the process to define the same for L6, L8 and so on. Thus
given the space Lp(Ω, µ) we can associate to it (assuming p ∈ 2N and p ≥ 2)
an operator space that we denote by Λp(Ω, µ) that is isometric to the original
Lp(Ω, µ) as a Banach space.

It turns out that with this new structure a quite different picture emerges for
Khintchine’s (or more generally Burkholder’s) inequalities. Indeed, we will
prove that the span of {εn} in Λp(Ω, µ) is completely isomorphic to the space
OH , (i.e. to ℓ2 equipped with the o.s.s. of OH). Similarly we will prove
martingale inequalities involving a square function that is simply defined as
S =

∑
dn ⊗ d̄n when (dn) is a martingale difference sequence.

We limit our treatment to Lp for p an even integer. Thus we stopped shy of
making the obvious extensions: we can use duality to define Λq for 1 < q < 2 of
the form q = 2n

2n−1 for some integer n > 1 and then use complex interpolation
to define Λp in the remaining intermediate values of p’s or q’s. While this
procedure makes perfectly good sense it is rather “unnatural” given that if
p(0), p(1) and p(θ) are even integers such that p0 < pθ < p1 and p(θ)−1 =
(1 − θ)p(0)−1 + θp(1)−1, the space Λp(θ) does not coincide (in general) with
(Λp(0),Λp(1))θ. This happens for instance when p(0) = 2, p(1) = ∞ and θ =
1/2, since the spaces L4 and Λ4 differ as operator spaces.

We will now review the contents of this paper. After some general background
in §1, we explain in §2 some basic facts that will be used throughout the paper.
The main point is that we use an ordering on B(H)⊗B(H) denoted by T ≺ S
that is such that

0 ≺ T ≺ S ⇒ ‖T ‖ ≤ ‖S‖

where the norm is the minimal (or spatial) tensor product on B(H)⊗minB(H),
i.e. the norm induced by B(H ⊗2 H). As we explain in §2, it is convenient
to abuse the notation and to extend the notation T ≺ S to pairs, T, S in
B(H1)⊗ · · · ⊗B(H2n) when the collection {H1, . . . , H2n} can be permuted to
be of the form {K1, . . . ,Kn,K1, . . . ,Kn} so that T, S can be identified with
elements of B(H)⊗B(H) with H = K1 ⊗ · · · ⊗Kn.
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1370 Gilles Pisier

In §3, we use the properties of this ordering to prove a version of Hölder’s
inequality that allows us to introduce, for each even integer p, a new operator
space structure on the space Lp(Ω,A, µ) associated to a general measure space
(Ω,A, µ). We follow the same route that we used for p = 2 in [22] to define
the space OH starting from Haagerup’s Cauchy–Schwarz inequality. Suitable
iterations of the latter leads to versions of Hölder’s inequality in L4, L6, L8, . . .
from which a specific norm can be introduced on B(H) ⊗ Lp(µ) that endows
Lp(µ) with an operator space structure. We denote by Λp(Ω,Σ, µ) the resulting
operator space. It is natural to identify Λ1(Ω,Σ, µ) with L1(µ) equipped with
its maximal operator space structure in the Blecher-Paulsen sense (see e.g.
[11, 25] for details on this).

Some of the calculations involving Λp(µ) are rather satisfactory, e.g. for any
fj ∈ B(Hj) ⊗ Lp(µ), j = 1, . . . , p the pointwise product Lp × · · · × Lp → L1

applied to (f1, . . . , fn) leads to an element denoted by F = f1⊗̇ · · · ⊗̇fn in
B(H1)⊗ · · · ⊗B(Hn)⊗ L1, and if H = H1 ⊗ · · · ⊗Hn we have

‖F‖B(H)⊗minΛ1(µ) ≤ Π‖fj‖B(Hj)⊗minΛp
.

In particular, if q ≤ p are even integers and if µ(Ω) = 1, the inclusion Λp(µ)→
Λq(µ) is completely contractive. We also show that all conditional expectations
are completely contractive on Λp(µ). When p → ∞, we recover the usual
operator space structure of L∞(µ) as the limit of those of Λp(µ).

In §4 we prove a version of Burkholder’s square function inequalities for mar-
tingales in Λp(µ). If (dn) is a sequence of martingale differences in B(H)⊗Lp
the relevant square function is S = Σdn⊗̇d̄n. Here we restrict to p = 2k for
some k, but at least one side of the inequality is established for any even p by
a different argument in §13. We also prove an analogue for Λp of the inequal-
ity due to Stein expressing that for any sequence (fn) in Lp the Lp-norm of
(
∑ |fn|2)1/2 dominates that of (

∑ |En(fn)|2)1/2 for any 1 < p <∞.

In §5, we consider the conditioned square function σ =
∑

En−1(dn⊗̇d̄n) and we
prove a version of the Burkholder–Rosenthal inequality adapted to Λp(µ). As
can be expected, the preceding inequalities imply the complete boundedness of
the multipliers called “martingale transforms”. Not surprisingly, in §6 we can
also prove similar results for the Hilbert transform, say on T or R, using the
well known Riesz-Cotlar trick.

In §7, we compare the “old” and the “new” o.s.s. on Lp(µ). We show that the
(isometric) inclusion Lp(µ) → Λp(µ) is completely contractive, but its inverse
is not completely bounded and we show that its c.b. norm in the n-dimensional

case grows at least like n
1
2 (

1
2−

1
p ).

In §8, we turn to the non-commutative case. We introduce the space Λp(τ)
associated to a non-commutative measure space (M, τ). By this we mean a
von Neumann algebraM equipped with a semi-finite faithful normal trace τ .

In §9, we repeat the comparison made in §7. It turns out that the non-
commutative case is significantly more intricate, mainly because the (joint)
complete boundedness of the product map Lp×Lq → Lr (p

−1+ q−1 = r−1) no
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longer holds in general (I am grateful to Quanhua Xu for drawing my attention
to this). This leads us to consider yet another operator space structure on Lp(τ)
that we denote by Lp(τ) for which it still holds (see Proposition 9.1). When
p ∈ 2N, we then extend the main result of §7 by showing (see Corollary 9.2) that
the identity defines a completely contractive map Lp(τ) ∩ Lp(τ)op → Λp(τ).
In the commutative case Lp(τ) and Lp(τ) are identical. We give estimates of
the growth in n of the c.b. norms of the maps Lp(Mn, tr) → Λp(Mn, tr) and
Λp(Mn, tr)→ Lp(Mn, tr) induced by the identity.

In §10, assuming τ(1) = 1, we study the “limit” when p → ∞ of the spaces
Λp(M, τ), that we denote by Λ∞(M, τ). Surprisingly, we are able to identify
the resulting operator space: Indeed, when (M, τ) is Mn equipped with its
normalized trace then Λ∞(M, τ) can be identified completely isometrically
with CB(OHn, OHn), i.e. the space of c.b. maps on the n-dimensional operator
Hilbert space. More generally (see Theorem 10.3), whenM⊂ B(H), the o.s.s.
of Λ∞(M, τ) can be identified with the one induced by CB(OH,OH), where
by OH we mean H equipped with its unique self-dual structure in the sense of
[25]. The verification of these facts leads us to several observations on the space
CB(OH,OH) that may be of independent interest. In particular, the latter
space satisfies a curious identity (see (10.4)) that appears like an operator space
analogue of the Gelfand axiom for C∗-algebras. Furthermore, to any operator
space E ⊂ B(H), we associate the operator space E ⊂ CB(OH) (equipped
with the operator space structure induced by CB(OH)), and we show that if
F is another operator space, for any cb-map u : E → F we have

‖u : E → F‖cb ≤ ‖u : E → F‖cb.

In §12 we extend the Burkholder inequalities except that—for the moment—
we can only prove the two sides of the martingale inequality for p = 4. Note
however that the right hand side is established for all even p in §13 by a different
method based on the notion of p-orthogonality.

Nevertheless, in §11, using Buchholz’s ideas in [7] we can prove versions of
the non-commutative Khintchine inequalities for Λp(τ) with optimal constants
for any even integer p. We may consider spin systems, free semi-circular (or
“free-Gaussian”) families, or the free generators of the free group in the as-
sociated free group factor. Returning to the commutative case this yields the
Rademacher function case with optimal constants. The outcome is that the
span of each of these sequences in Λp is completely isomorphic to OH and
completely complemented.

In §14 we transplant the results of [13] (see also [14]) on non-commutative lacu-
nary series to the setting of Λp(τ). We use the view point of [24] to abbreviate
the presentation. Let Γ be a discrete group. We will consider Λ(p)-sets in
Rudin’s sense inside Γ. The main point is that a certain class of Λ(p)-subsets
of Γ again spans a copy of OH in the operator spaces Λp(M, τ) when M is the
von Neumann algebra of Γ. For our new o.s.s. the relevant notion of Λ(p)-set
is slightly more general than the one needed in [13].
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1372 Gilles Pisier

Lastly in the appendix §15 we include a discussion of elements that have p-th
moments defined by pairings as in Buchholz’s paper [7]. We simply translate in
the abstract language of tensor products some very well known classical ideas
on Wick products for Gaussian random variables. Our goal is to emphasize the
similarity between the Gaussian case and the free or q-Gaussian analogues. We
feel this appendix fits well with the extensive use of tensor products throughout
the sections preceding it.
The proof of the initial non-commutative martingale inequalities of [26] is the
main source of inspiration for the present results. We also make crucial use
of our version for the space Λp of Junge’s “dual Doob” inequality from [15].
Although we take a divergent route, we should point out to the reader that
the methods of [26] have been considerably improved in a series of important
later works, such as [17, 18, 19], by M. Junge and Q. Xu, or [28, 29, 21] by
N. Randrianantoanina and J. Parcet. See also [16, 30, 31, 32, 37] for progress
related to Khintchine’s inequalities. The reader is referred to these papers to
get an idea of what the “main stream” on non-commutative martingale and
Khintchine inequalities is about.

1 Background on operator spaces

In this section we summarize the Theory of Operator Spaces. We refer either
to [11] or [25] for full details.
We recall that an operator space is just a closed subspace of the algebra B(H)
of all bounded operators on a Hilbert space H .
Given an operator space E ⊂ H , we denote by Mn(E) the space of n × n
matrices with entries in E and we equip it with the norm induced by that of
Mn(B(H)), i.e. by the operator norm on H ⊕ · · ·⊕H (n times). We denote by
E ⊗ F the algebraic tensor product of two vector spaces E,F .
If E ⊂ B(H) and F ⊂ B(K) are operator spaces, we denote by E ⊗min F the
closure of E⊗F viewed as a subspace of B(H⊗2K). We denote by ‖ ‖min the
norm induced by B(H⊗2K) on E⊗F or on its closure E⊗minF . A linear map
u : E → F between operator spaces is called completely bounded (c.b. in short)
if the associated maps un : Mn(E) → Mn(F ) defined by un([xij ]) = [u(xij)]
are bounded uniformly over n, and we define

‖u‖cb = sup
n≥1
‖un‖.

We say that u is completely isometric if un is isometric for any n ≥ 1 and that
u is a complete isomorphism if it is an isomorphism with c.b. inverse.
By a well known theorem due to Ruan (see [11, 25]), an operator space E can
be characterized up to complete isometry by the sequence of normed spaces
{Mn(E) | n ≥ 1}. The data of the sequence of norms on the spaces Mn(E)
(n ≥ 1) constitutes the operator space structure (o.s.s. in short) on the vector
space underlying E. Note thatMn(E) = B(Hn)⊗minE where Hn denotes here
the n-dimensional Hilbert space.
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Actually, the knowledge of the o.s.s. on E determines that of the norm on
B(H) ⊗ E for any Hilbert space H . Therefore we (may and) will take the
viewpoint that the o.s.s. on E consists of the family of normed spaces (before
completion)

(B(H)⊗ E, ‖ · ‖min),

where H is an arbitrary Hilbert space. The reader should keep in mind that
we may restrict either to H = ℓ2 or to H = ℓn2 with n ≥ 1 allowed to vary
arbitrarily. (If we fix n = 1 everywhere, the theory reduces to the ordinary
Banach space theory.) To illustrate our viewpoint we note that

‖u‖cb = sup
H
‖uH : B(H)⊗min E → B(H)⊗min F‖

where the mapping uH is the extension (by density) of id⊗ u.
The most important examples for this paper are the spaces Lp(µ) associated to
a measure space (Ω,A, µ). Our starting point will be the 3 cases p =∞, p = 1
and p = 2. For p = ∞, the relevant norm on B(H) ⊗ L∞(µ) is the unique
C∗-norm, easily described as follows: any f in B(H) ⊗ L∞(µ) determines a
function f : Ω→ B(H) taking values in a finite dimensional subspace of B(H)
and we have

‖f‖B(H)⊗minL∞(µ) = ess sup
ω∈Ω

‖f(ω)‖B(H). (1.1)

For p = 1, the relevant norm on B(H)⊗ L1(µ) is defined using operator space
duality, but it can be explicitly written as follows

‖f‖B(H)⊗minL1(µ) = sup

∥∥∥∥
∫
f(t)⊗ g(t) dµ(t)

∥∥∥∥
B(H⊗2K)

(1.2)

where the sup runs over all g in the unit ball of (B(K)⊗ L∞(µ), ‖ · ‖min) and
over all possible K. Equivalently, we may restrict to H = K = ℓ2. This
is consistent with the standard dual structure on the dual E∗ of an operator
space. There is an embedding E∗ ⊂ B(H) such that the natural identification

B(H)⊗ E∗ ←→ B(E,B(H))

defines for any H an isometric embedding

B(H)⊗min E
∗ ⊂ CB(E,B(H)).

With this notion of duality we have L1(µ)
∗ = L∞(µ) completely isometrically.

Moreover the inclusion L1(µ) ⊂ L∞(µ)∗ is completely isometric, and this is
precisely reflected by the formula (1.2).
To define the o.s.s. on L2(µ), we will use the complex conjugate H of a
Hilbert space H . Note that the map x → x∗ defines an anti-isomorphism
on B(H). Since B(H) = B(H) (canonically), we may view x → x∗ as a lin-
ear ∗-isomorphism from B(H) = B(H) to B(H)op where B(H)op is the same
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C∗-algebra as B(H) but with reversed product. Then for any xk ∈ B(H),
yk ∈ B(K) we have

∥∥∥
∑

xk ⊗ yk
∥∥∥
min
= sup

{∥∥∥
(∑

xk ⊗ yk
)
(ξ)
∥∥∥
H⊗2K

| ξ ∈ H ⊗K, ‖ξ‖H⊗2K ≤ 1

}
.

Let us denote by S2(H,K) the class of Hilbert–Schmidt operators from H to
K with norm denoted by ‖ · ‖S2(H,K) or more simply by ‖ ‖2. We may identify

canonically ξ ∈ H ⊗2 K with an element ξ̂ : K∗ → H with Hilbert–Schmidt
norm ‖ξ̂‖2 = ‖ξ‖H⊗2K . Then for any y ∈ B(K) let ty : K∗ → K∗ denote the
adjoint operator. We have then

∥∥∥
∑

xk ⊗ yk
∥∥∥
min

= sup
{∥∥∥
∑

xk ξ̂
tyk

∥∥∥
2

∣∣∣ ‖ξ̂‖2 ≤ 1
}
.

Using the identification B(K) = B(K)op via x̄→ x∗, (let x→ x̄ be the identity
map on B(K) viewed as a map from B(K) to B(K)) we find
∥∥∥
∑

xk ⊗ ȳk
∥∥∥
B(H⊗2K)

= sup
{∥∥∥
∑

xkay
∗
k

∥∥∥
2

∣∣∣ a ∈ S2(K,H), ‖a‖2 ≤ 1
}
.

We now define the “natural” o.s.s. on the space ℓ2 according to [22]. This is
defined by the following formula: for any f in B(H) ⊗ ℓ2, of the form f =∑n

1 xk ⊗ ek (here (ek) denotes the canonical basis of ℓ2) we have

‖f‖B(H)⊗minℓ2 =
∥∥∥
∑

xk ⊗ x̄k
∥∥∥
1/2

B(H⊗2H)
. (1.3)

The resulting o.s. is called “the operator Hilbert space” and is denoted by OH .
Actually, the same formula works just as well for any Hilbert space H with an
orthonormal basis (ei)i∈I . The resulting o.s. will be denoted by Hoh (so that
OH is just another notation for (ℓ2)oh).
In this paper our main interest will be the space L2(µ). The relevant o.s.s. can
then be described as follows: for any f in B(H)⊗ L2(µ) we have

‖f‖B(H)⊗minL2(µ)oh =

∥∥∥∥
∫
f(ω)⊗ f(ω)dµ(ω)

∥∥∥∥
1/2

B(H⊗2H)

. (1.4)

It is not hard to see that this coincides with the definition (1.3) when (en) is
an orthonormal basis of L2(µ).
We refer the reader to [22] for more information on the space Hoh, in particular
for the proof that this space is uniquely characterized by its self-duality in
analogy with Hilbert spaces among Banach spaces. We note that Hoh and Hoh

are completely isometric iff the Hilbert spaces H and H are isometric (i.e. of
the same Hilbertian dimension).
The “natural o.s.s.” on Lp = Lp(µ) is defined in [23] for 1 < p < ∞ using
complex interpolation. It is characterized by the following isometric identity:
For any finite dimensional Hilbert space H

B(H)⊗min Lp = (B(H) ⊗min L∞, B(H)⊗min L1)1/p.
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When p = 2 we recover the o.s.s. defined above for L2(µ)oh.
We now turn to multilinear maps. Let E1, . . . , Em and F be operator spaces.
Consider an m-linear map ϕ : E1× · · · ×Em → F . Let H1, . . . , Hm be Hilbert
spaces. We set Bj = B(Hj). By multilinear algebra we can associate to ϕ an
m-linear map

ϕ̂ : B1 ⊗ E1 × · · · ×Bm ⊗ Em → B1 ⊗ · · · ⊗Bm ⊗ F

characterized by the property that (∀bj ∈ Bj , ∀ej ∈ Ej)

ϕ̂(b1 ⊗ e1, · · · , bm ⊗ em) = b1 ⊗ · · · ⊗ bm ⊗ ϕ(e1, · · · , em).

We say that ϕ is (jointly) completely bounded (c.b. in short) if ϕ̂ is bounded
from

B1 ⊗min E1 × · · · ×Bm ⊗min Em to B1 ⊗min · · · ⊗min Bm ⊗min F.

It is easy to see that we may reduce to the case when H1 = H2 = · · · = Hm = ℓ2
(equivalently we could restrict to finite dimensional Hilbert spaces of arbitrary
dimension). With this choice of Hj we set

‖ϕ‖cb = ‖ϕ̂‖.

2 Preliminary results

We first recall Haagerup’s version of the Cauchy–Schwarz inequality on which
is based a lot of what follows.
Let H,K be Hilbert spaces, ak ∈ B(H), bk ∈ B(K) (k = 1, . . . , n). We have
then

∥∥∥
∑

ak ⊗ b̄k
∥∥∥
B(H⊗2K)

≤
∥∥∥
∑

ak ⊗ āk
∥∥∥
1/2

B(H⊗2H)

∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

B(K⊗2K)

where ⊗2 denotes the Hilbert space tensor product.
We will sometimes need the following reformulation: let H be another Hilbert
space and for any f ∈ H ⊗B(H), say f =

∑
xk ⊗ ak, and g ∈ H ⊗B(K), say

g =
∑
yℓ ⊗ bℓ let 〈〈f, g〉〉 ∈ B(H)⊗B(K) be defined by

〈〈f, g〉〉 =
∑

k,ℓ
〈xk, yℓ〉ak ⊗ b̄ℓ.

We have then

‖〈〈f, g〉〉‖B(H⊗2K) ≤ ‖〈〈f, f〉〉‖1/2‖〈〈g, g〉〉‖1/2. (2.1)

More generally for any finite sequences (fα)1≤α≤N in H⊗B(H) and (gα)1≤α≤N
in H⊗B(K) we have

∥

∥

∥

∑

α
〈〈fα, gα〉〉

∥

∥

∥

B(H⊗2K)
≤

∥

∥

∥

∑

α
〈〈fα, fα〉〉

∥

∥

∥

1/2

B(H⊗2H)

∥

∥

∥

∑

α
〈〈gα, gα〉〉

∥

∥

∥

1/2

B(K⊗2K)
.

(2.2)
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It is convenient to also observe here that if E1, E2 are orthogonal subspaces of
H and if fj ∈ Ej ⊗B(H) (j = 1, 2) then

〈〈f1 + f2, f1 + f2〉〉 = 〈〈f1, f1〉〉+ 〈〈f2, f2〉〉. (2.3)

We will use an order on B(H) ⊗ B(H): Let C+ be the set of all finite sums
of the form

∑
ak ⊗ āk. If x, y are in B(H) ⊗ B(H), we write x ≺ y (or

y ≻ x) if y − x ∈ C+. In particular x ≻ 0 means x ∈ C+. Any element x ∈
B(H)⊗B(H) defines a (finite rank) sequilinear form x̃ : B(H)∗×B(H)∗ → C.
More generally, for any complex vector space E, we may define similarly x ≻ 0
for any x ∈ E ⊗ Ē.
The following criterion is easy to show by linear algebra.

Lemma 2.1. Let x ∈ B(H)⊗B(H). Then x ∈ C+ iff x̃ is positive definite i.e.
x̃(ξ, ξ) ≥ 0 for any ξ in B(H)∗. Moreover, this holds iff x̃(ξ, ξ) ≥ 0 for any ξ
in the predual B(H)∗ ⊂ B(H)∗ of B(H). Lastly, if H is separable, there is a
countable subset D ⊂ B(H)∗ such that x ≻ 0 iff x̃(ξ, ξ) ≥ 0 for any ξ in D.

Proof. The first part is a general fact valid for any complex Banach space E in
place of B(H): Assume x ∈ E⊗ Ē, then x ∈ F ⊗ F̄ for some finite dimensional
F ⊂ E, thus the equivalence in Lemma 2.1 just reduces to the classical spectral
decomposition of a positive definite matrix. If E is a dual space with a predual
E∗ ⊂ E∗, then E∗ is σ(E∗, E)-dense in E∗, so the condition x̃(ξ, ξ) ≥ 0 will
hold for any ξ ∈ E∗ if it does for any ξ ∈ E∗. When the predual E∗ is separable,
the last assertion becomes immediate.

Remark 2.2. Let E be a complex Banach space. Let [aij ] be a complex n× n
matrix, xj ∈ E. Consider x =

∑
aijxi ⊗ x̄j ∈ E ⊗ Ē. Then x ≻ 0 if [aij ]

is positive definite, and if the xj ’s are linearly independent, the converse also
holds. Indeed, by the preceding argument, all we need to check is x̃(ξ, ξ) =∑
aijξ(xi)ξ(xj) ≥ 0.

The importance of this ordering for us lies in the following fact:

Lemma 2.3. If x, y ∈ B(H)⊗B(H) and 0 ≺ x ≺ y then

‖x‖min ≤ ‖y‖min

where ‖x‖min = ‖x‖B(H⊗2H).

Proof. Let x =
∑
ak ⊗ āk. Then the lemma is immediate from the identity

∥∥∥
∑

ak ⊗ āk
∥∥∥ = sup

{(∑
‖ξakη‖22

)1/2 ∣∣∣ ‖ξ‖4 ≤ 1, ‖η‖4 ≤ 1

}

for which we refer to [22]. Indeed, if d =
∑
bj ⊗ b̄j and y = x+ d this identity

applied to x+ d makes it clear that ‖x‖ ≤ ‖x+ d‖ = ‖y‖.
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It will be convenient to extend our notation: Let H1, H2, . . . , Hm be an m-tuple
of Hilbert spaces. For any k = 1, . . . ,m we set

Hm+k = Hk.

Let σ be any permutation of {1, . . . , 2m}. For any element x in B(H1)⊗ · · · ⊗
B(H2m) we denote by

σ · x ∈ B(Hσ(1))⊗ · · · ⊗B(Hσ(2m))

the element obtained from x by applying σ to the factors, i.e. if x = t1⊗· · ·⊗t2m
then σ · x = tσ(1) ⊗ · · · ⊗ tσ(2m) and x → σ · x is the linear extension of this
map.
Let H = H1 ⊗ · · · ⊗ Hm. Now if we are given a permutation σ and x, y in
B(Hσ(1))⊗ · · · ⊗B(Hσ(2m)) we note that

σ−1 · x, σ−1 · y ∈ B(H)⊗B(H).

We will write (abusively) x ≺ y (or y ≻ x) if we have

σ−1 · x ≺ σ−1 · y.

Of course this order depends on σ and although our notation does not keep
track of that, we will need to remember σ, but hopefully no confusion should
arise. While we will use various choices for σ, we never change our choice in
the middle of a calculation, e.g. when adding two “positive” terms.
For instance we allow ourselves to write that ∀ak ∈ B(H) ∀bk ∈ B(K) we have

∑
ak ⊗ āk ⊗ bk ⊗ b̄k ≻ 0 (2.4)

in B(H ⊗H ⊗K ⊗K), where implicitly we are referring to the permutation σ
that takes H ⊗H ⊗K ⊗ K to H ⊗K ⊗ H ⊗K. In particular, we note that
with this convention ∀x, y ∈ B(H)⊗B(H) ∀b ∈ B(K) we have

x ≺ y ⇒ b⊗ x⊗ b̄ ≺ b⊗ y ⊗ b̄. (2.5)

Note that since the minimal tensor product is commutative, we still have, for
any x, y in B(Hσ(1))⊗ · · · ⊗B(Hσ(2m)), that

0 ≺ x ≺ y ⇒ ‖x‖min ≤ ‖y‖min. (2.6)

From the obvious identity (x, y ∈ B(H))

(x+ y)⊗ (x+ y) + (x− y)⊗ (x− y) = 2(x⊗ x̄+ y ⊗ ȳ)

it follows that
(x + y)⊗ (x+ y) ≺ 2(x⊗ x̄+ y ⊗ ȳ). (2.7)
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Note that if we set Φ(x) = x ⊗ x̄, then the preceding expresses the “order
convexity” of this function:

Φ((x+ y)/2) ≺ (Φ(x) + Φ(y))/2.

More generally, for any finite set x1, . . . , xn in B(H) we have Φ(n−1
∑n

1 xk) ≺
n−1

∑n
1 Φ(xk), or

(∑n

1
xk

)
⊗
(∑n

1
xk

)
≺ n

∑n

1
xk ⊗ x̄k. (2.8)

We need to record below several variants of the “order convexity” of Φ.
From now on we assume that H is a separable Hilbert space.
More generally, for any x in B(H)⊗L2(Ω,A,P) and any σ-subalgebra B ⊂ A,
we may associate to x ⊗ x̄ the function x⊗̇x̄ : ω → B(H) ⊗ B(H) defined by
x⊗̇x̄(ω) = x(ω)⊗ x̄(ω). We have then almost surely

0 ≺ E
B(x⊗̇x̄), (2.9)

and more precisely (again almost surely)

(EBx)⊗̇(EBx) ≺ E
B(x⊗̇x̄). (2.10)

Indeed, (2.9) follows from Lemma 2.1 (separable case) and the right hand side
of (2.10) is equal to

(EBx)⊗̇(EBx) + E
B(y⊗̇ȳ) where y = x− E

Bx.

When B is the trivial algebra, we obtain

0 ≺
∫
x⊗̇x̄, (2.11)

and hence for any measurable subset A ⊂ Ω
∫

A

x⊗̇x̄ dP ≺
∫

Ω

x⊗̇x̄ dP, (2.12)

and also
(Ex) ⊗ (Ex̄) ≺ E(x⊗̇x̄). (2.13)

We need to observe that for any integer m ≥ 1 we have

0 ≺ x⇒ 0 ≺ x⊗m (2.14)

and more generally
0 ≺ x ≺ y ⇒ 0 ≺ x⊗m ≺ y⊗m. (2.15)

Furthermore, if x1, y1 ∈ B(H1)⊗B(H1) and x2, y2 ∈ B(H2)⊗B(H2)

0 ≺ x1 ≺ y1 and 0 ≺ x2 ≺ y2 ⇒ 0 ≺ x1⊗x2 ≺ y1⊗y2, (2.16)
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where the natural permutation is applied to x1⊗x2 and y1⊗y2, allowing to view
them as elements of B(H1 ⊗H2)⊗B(H1 ⊗H2).
Returning to (2.10), we note that it implies

((EBx)⊗̇(EBx))⊗2 ≺ (EB(x⊗̇x̄))⊗2 ≺ E
B(x⊗̇x̄⊗̇x⊗̇x̄),

and hence
‖((EBx)⊗̇(EBx))⊗2‖ ≤ ‖EB(x⊗̇x̄⊗̇x⊗̇x̄)‖.

More generally, iterating this argument, we obtain for any integer k ≥ 1

((EBx)⊗̇(EBx))⊗2k ≺ E
B((x⊗̇x̄)⊗2k). (2.17)

In particular

((Ex)⊗̇(Ex))⊗2k ≺ E((x⊗̇x̄)⊗2k), (2.18)

and consequently for any finite sequence x1, · · · , xn ∈ B(H)⊗ L2(Ω,A,P)

‖
∑

j
((EBxj)⊗̇(EBxj))

⊗2k‖ ≤ ‖
∑

j
E
B((xj⊗̇x̄j)⊗2k)‖. (2.19)

In a somewhat different direction, for any measure µ, let f ∈ B(H) ⊗ L2(µ),
let P be any orthogonal projection on L2(µ) and let g = (I ⊗ P )(f). Then

0 ≺
∫
g⊗̇ḡdµ ≺

∫
f⊗̇f̄dµ. (2.20)

Indeed, this is immediate by (2.3).

3 Definition of Λ2mΛ2mΛ2m

Our definition of the operator space Λ2m(µ) is based on the case m = 1, i.e. on
the operator Hilbert space OH , studied at length in [22]. The latter is based on
the already mentioned Cauchy–Schwarz inequality due to Haagerup as follows:
Let H,K be Hilbert spaces and let ak ∈ B(H), bk ∈ B(K)

∥∥∥
∑

ak ⊗ bk
∥∥∥ ≤

∥∥∥
∑

ak ⊗ āk
∥∥∥
1/2 ∥∥∥

∑
bk ⊗ b̄k

∥∥∥
1/2

. (3.1)

This is usually stated with
∑
ak ⊗ b̄k on the left hand side, but since the right

hand side is unchanged if we replace bk by b̄k we may write this as well. It will
be convenient for our exposition to use the functional version of (3.1) as follows:
For any Hilbert spaces H,K and any f ∈ B(H)⊗L2(µ) and g ∈ B(K)⊗L2(µ),
we denote by f⊗̇g the B(H)⊗B(K)-valued function defined by

(f⊗̇g)(ω) = f(ω)⊗ g(ω).

Of course, using the identity B(H)⊗B(H) ≃ B(H)⊗B(H), this extends the
previously introduced notation for f⊗̇f̄ : Ω→ B(H)⊗B(H).
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Similarly, given n measurable functions fj : Ω → B(Hj), we denote by
f1⊗̇ · · · ⊗̇fn the pointwise product viewed as a function with values in B(H1)⊗
· · · ⊗ B(Hn).
Note that if fj corresponds to an element in B(Hj) ⊗ Lpj with pj > 0 such

that
∑
p−1
j = p−1, then by Hölder’s inequality, f1⊗̇ · · · ⊗̇fn ∈ B(H1) ⊗ · · · ⊗

B(Hn)⊗ Lp.
By (2.1) applied with H = L2(µ), we have

∥∥∥∥
∫
f⊗̇ḡ dµ

∥∥∥∥
B(H⊗K)

≤
∥∥∥∥
∫
f⊗̇f̄ dµ

∥∥∥∥
1/2

B(H⊗H)

∥∥∥∥
∫
g⊗̇ḡ dµ

∥∥∥∥
1/2

B(K⊗K)

. (3.2)

Replacing ḡ by g, we obtain

∥∥∥∥
∫
f⊗̇g dµ

∥∥∥∥
B(H⊗K)

≤
∥∥∥∥
∫
f⊗̇f̄ dµ

∥∥∥∥
1/2

B(H⊗H)

∥∥∥∥
∫
g⊗̇ḡ dµ

∥∥∥∥
1/2

B(K⊗K)

. (3.3)

We note that this functional variant of (3.1) appears in unpublished work by
Furman and Shalom (personal communication).
We will also invoke the following variant: for any ψ ∈ B(ℓ2) ⊗ L∞ with norm
‖ψ‖min ≤ 1 we have

∥∥∥∥
∫
f⊗̇g⊗̇ψ dµ

∥∥∥∥
B(H⊗K⊗ℓ2)

≤
∥∥∥∥
∫
f⊗̇f̄ dµ

∥∥∥∥
1/2

B(H⊗H)

∥∥∥∥
∫
g⊗̇ḡ dµ

∥∥∥∥
1/2

B(K⊗K)

.

(3.4)
This (which can be interpreted as saying that the product map L2 × L2 → L1

is jointly completely contractive) can be verified rather easily using complex
interpolation, see e.g. the proof of Lemma 7.1 below for a more detailed argu-
ment.
For simplicity in this section we abbreviate Lp(µ) or Lp(Ω, µ) and we simply
write Lp instead.
We start by a version of Hölder’s inequality adapted to our needs that follows
easily from (3.3). The proof uses an iteration idea already appearing in [6].

Lemma 3.1. Let m ≥ 1 be any integer. Then for any f1, . . . , f2m in B(H)⊗L2m

we have f1⊗̇ · · · ⊗̇f2m ∈ B(H)⊗2m ⊗ L1 and

∥∥∥∥
∫
f1⊗̇ · · · ⊗̇f2m dµ

∥∥∥∥ ≤
2m∏

k=1

∥∥∥∥
∫
f ⊗̇m
k ⊗̇f̄ ⊗̇m

k dµ

∥∥∥∥
1

2m

, (3.5)

where we denote f ⊗̇m = f⊗̇ · · · ⊗̇f (m times).

Proof. By homogeneity we may (and do) normalize and assume that

∥∥∥∥
∫
f ⊗̇m
k ⊗̇f̄ ⊗̇m

k dµ

∥∥∥∥ ≤ 1. ∀k = 1, . . . , 2m
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Let

C = max
{∥∥
∫
g1⊗̇ · · · ⊗̇g2m dµ

∥∥}

where the maximum runs over all gk in the set {f1, . . . , f2m, f̄1, . . . , f̄2m}.
It clearly suffices to prove C ≤ 1. In the interest of the reader, we first do the
proof in the simplest case m = 2. We have by (3.3)

‖
∫
f1⊗̇ · · · ⊗̇f4dµ‖ ≤ ‖

∫
f1⊗̇f2⊗̇f1⊗̇f2dµ‖1/2‖

∫
f3⊗̇f4⊗̇f3⊗̇f4dµ‖1/2

which we may rewrite as

‖
∫
f1⊗̇ · · · ⊗̇f4dµ‖ ≤ ‖

∫
f1⊗̇f̄1⊗̇f2⊗̇f̄2dµ‖1/2‖

∫
f3⊗̇f̄3⊗̇f4⊗̇f̄4dµ‖1/2,

(3.6)
and by (3.3) again we have

‖
∫
f1⊗̇f̄1⊗̇f2⊗̇f̄2dµ‖1/2 ≤

≤ ‖
∫
f1⊗̇f̄1⊗̇f̄1⊗̇f1dµ‖1/2‖

∫
f2⊗̇f̄2⊗̇f̄2⊗̇f2dµ‖1/2 ≤ 1

and similarly for the other factor in (3.6). Thus we obtain the announced
inequality for m = 2.
To check the general case, let us denote

I(f1, . . . , f2m) =

∥∥∥∥
∫
f1⊗̇ · · · ⊗̇f2m dµ

∥∥∥∥ .

By (3.3) we find

I(f1, . . . , f2m) ≤ (I(f1, . . . , fm, f̄1, . . . , f̄m)C)1/2.

Note that I(f1, . . . , f2m) is invariant under permutation of entries. Thus we
have

I(f1, . . . , fm, f̄1, . . . , f̄m) = I(f1, f̄1, f2, f̄2, . . . , fm, f̄m).

Using (3.3) again we find

I(f1, . . . , fm, f̄1, . . . , f̄m) ≤ (I(f1, f̄1, f1, f̄1, f2, f̄2, . . .)C)
1/2

and continuing in this way we obtain

I(f1, . . . , f2m) ≤ I(f1, f̄1, f1, f̄1, . . . , f1, f̄1)θC1−θ

where 0 < θ < 1 is equal to 2−K with K the number of iterations.
Since we assume I(f1, f̄1, . . . , f1, f̄1) ≤ 1 we find

I(f1, . . . , f2m) ≤ C1−θ.
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But we may replace f1, . . . , f2m by g1, . . . , g2m and the same argument gives us

I(g1, . . . , g2m) ≤ C1−θ

and hence C ≤ C1−θ, from which C ≤ 1 follows immediately.

Proposition 3.2. Let m ≥ 1 be an integer and p = 2m. There is an isometric
embedding

Lp(µ) ⊂ B(H)
so that for any f ∈ B(H)⊗ Lp(µ) and any H we have

‖f‖B(H⊗H) =

∥∥∥∥
∫
f ⊗̇m⊗̇f̄ ⊗̇m dµ

∥∥∥∥
1

2m

where we again denote f ⊗̇m = f⊗̇ · · · ⊗̇f (m times).

Proof. Let B = B(H). With the notation in Lemma 3.1 we have

∥∥∥∥
∫
f ⊗̇m⊗̇f̄ ⊗̇m dµ

∥∥∥∥
1

2m

= max{I(f, f̄ , g2, ḡ2, . . . , gm, ḡm)1/2} (3.7)

where the supremum runs over all g2, . . . , gm in B ⊗ L2m such that∥∥ ∫ g⊗̇mk ⊗̇ḡ⊗̇mk dµ
∥∥ ≤ 1 for any k = 1, . . . ,m.

Indeed, it follows easily from (3.5) that the latter maximum is attained for the

choice of g2 = · · · = gm = λf with λ =
∥∥ ∫ f ⊗̇m⊗̇f̄ ⊗̇m dµ

∥∥−1/2m
. Thus we can

proceed as in [22] for the case m = 1: We assume H = ℓ2 to fix ideas. Let S
denote the collection of all G = g2⊗̇ · · · ⊗̇gm where (g2, . . . , gm) runs over the
set appearing in (3.7). Note that by (3.5) we know that for any f in B⊗Lp we
have f⊗̇G ∈ B(H⊗m)⊗L2. Then for any G in S we introduce the linear map

uG : Lp(µ)→ B(H⊗m)⊗min (L2)oh

defined by
uG(f) = f⊗̇G.

Then (3.5) and (1.4) imply ‖uG‖ ≤ 1. We then define the embedding

u : Lp(µ)→
⊕

G∈S

B(H⊗m−1)⊗min (L2)oh

by setting

u(f) =
⊕

G

uG(f).

Then (3.7) gives us that for any f in B ⊗ Lp we have

‖(id⊗ u)(f)‖ =
∥∥∥∥
∫
f ⊗̇m⊗̇f̄ ⊗̇m dµ

∥∥∥∥
1

2m

.

Thus the embedding u has the required properties.
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Definition 3.3. We denote by Λp(µ) (p = 2m) the operator space appearing
in Proposition 3.2. Note that Λp(µ) is isometric to Lp(µ) and for any H and
for any f ∈ B(H)⊗ Λp(µ) we have

‖f‖B(H)⊗minΛp(µ) =

∥∥∥∥
∫
f ⊗̇m⊗̇f̄ ⊗̇m dµ

∥∥∥∥
1

2m

. (3.8)

Proposition 3.4. Let f be as in Definition 3.3 with p = 2m. Then

‖f‖B(H)⊗minΛp
= ‖f ⊗̇m‖1/mB(H⊗m)⊗minL2

= ‖f ⊗̇m⊗̇f̄ ⊗̇m‖
1

2m

B(H⊗m⊗H̄⊗m)⊗minL1

(3.9)
where L2 and L1 are equipped respectively with their oh and maximal operator
space structure. So if we make the convention that Λ1 = L1 equipped with its
maximal o.s.s. then we have

‖f‖B(H)⊗minΛ2m
= ‖(f⊗̇f̄)⊗̇m‖

1
2m

B((H⊗H̄)⊗m)⊗minΛ1
.

Proof. The first equality is immediate since it is easy to check that for any
g ∈ B(H)⊗ L2 we have

‖g‖min =

∥∥∥∥
∫
g⊗̇ḡ dµ

∥∥∥∥
1/2

B(H⊗H)

.

For the second one, we use (1.2): for any ϕ in B(H)⊗ L1

‖ϕ‖B(H)⊗minL1
= sup

{∥∥∥∥
∫
ϕ⊗̇ψ dµ

∥∥∥∥
}

where the supremum runs over all ψ in B(ℓ2)⊗L∞ with ‖ψ‖min ≤ 1. Applying

this to ϕ(t) = f(t)⊗m ⊗ f(t)⊗m we find using (3.4)

‖f⊗m ⊗ f̄⊗m‖B(H)⊗minL1
≤ ‖f‖2mB(H)⊗minΛp

,

and the choice of ψ ≡ 1 shows that this inequality is actually an equality.

Notation: For any f ∈ B(H) ⊗ Lp(µ) (or equivalently f ∈ B(H) ⊗ Λp(µ)),
we denote

‖f‖(p) = ‖f‖B(H)⊗minΛp(µ).

The preceding Proposition shows that if p = 2m, we have

‖f‖(p) = ‖f ⊗̇p/2‖2/p(2) = ‖(f⊗̇f̄)⊗̇p/2‖1/p(1) .

Note that by (2.15), if g, f ∈ B(H)⊗ Lp(µ) and p = 2m

(
g(ω)⊗̇ḡ(ω) ≺ f(ω)⊗̇f̄(ω) ∀a.s ω ∈ Ω

)
⇒ ‖g‖(p) ≤ ‖f‖(p). (3.10)
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Corollary 3.5. The conditional expectation EB is completely contractive on
Λp for any p ∈ 2N.

Proof. The case p = 2 is clear by the homogeneity of the spaces OH . Using
(2.10) one easily passes from p to 2p. By induction, this proves the Corollary
for any p of the form p = 2m. For p equal to an arbitrary even integer, we
need a different argument. Let f ∈ B(H)⊗ Λp and g = EBf . By the classical
property of conditional expectations, we have

‖g‖p(p) = ‖
∫
g⊗̇ḡ⊗̇g⊗̇ḡ · · · dµ‖ = ‖

∫
f⊗̇ḡ⊗̇g⊗̇ḡ · · · dµ‖

and hence by (3.5) ‖g‖p(p) ≤ ‖f‖(p)‖g‖
p−1
(p) or equivalently ‖g‖(p) ≤ ‖f‖(p).

With the above definition, Lemma 3.1 together with (3.4) immediately implies
(see the beginning of §7 for the definition of jointly completely contractive
multilinear maps):

Corollary 3.6. Let p = 2m. The product mapping (f1, . . . , f2m) 7→ f1 ×
. . . × f2m is a jointly completely contractive multilinear map from Λp(µ)

2m to
Λ1(µ) = L1(µ).

Proof. By Lemma 3.1 and (3.4) we have for any ψ ∈ B(ℓ2) ⊗ L∞ with norm
‖ψ‖min ≤ 1

‖
∫
f1⊗̇ · · · ⊗̇fp⊗̇ψ‖ ≤

p∏

1

‖fj‖(p).

Taking the supremum over all such ψ we obtain

‖f1⊗̇ · · · ⊗̇fp‖(1) ≤
p∏

1

‖fj‖(p),

which is nothing but a reformulation of the assertion of this corollary.

Corollary 3.7. Let p ≥ q ≥ 2 be even integers. If µ is a probability, the
inclusion Lp(µ) ⊂ Lq(µ) is a complete contraction from Λp(µ) to Λq(µ).

Proof. Take p = 2m, q = 2n and r = 2m − 2n with n < m. Let f ∈ B(H) ⊗
Lp(µ) and g ∈ B(H)⊗Lp(µ). Consider f1⊗· · ·⊗f2m = (f⊗ f̄)n⊗g⊗r, and let
us choose for g the constant function that is identically equal to the identity
operator on H . Then, using (3.8), (3.5) yields

‖f‖qB(H)⊗minΛq(µ)
≤ ‖f‖qB(H)⊗minΛp(µ)

× 1p−q

and hence ‖f‖B(H)⊗minΛq(µ) ≤ ‖f‖B(H)⊗minΛp(µ).
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Remark 3.8. Let f ∈ B(H)⊗L∞(µ). We may view f as an essentially bounded
B(H)-valued function. Then if µ is finite we have

‖f‖L∞(µ;B(H)) = lim
p→∞

‖f‖(p). (3.11)

Indeed, we may assume µ(Ω) = 1 and it clearly suffices to prove that for any
measurable subset A ⊂ Ω with µ(A) > 0 we have

∥∥∥∥∥∥
µ(A)−1

∫

A

f dµ

∥∥∥∥∥∥
≤ lim
p→∞

‖f‖(p). (3.12)

To verify this let fA = µ(A)−1
∫
A

f dµ. By (2.17) with p = 2k we have

‖fA‖ = ‖(fA ⊗ f̄A)⊗p‖
1
2p ≤

∥∥∥∥∥∥
µ(A)−1

∫

A

(f⊗̇f̄)⊗̇p
∥∥∥∥∥∥

1
2p

≤ µ(A)− 1
2p ‖f‖(2p)

where we also use (2.12) and Lemma 2.3, and hence letting p → ∞ we obtain
(3.12).

4 Martingale inequalities in ΛpΛpΛp

Our main result is the following one. This is an operator valued version of
Burkholder’s martingale inequalities. Although our inequality seems very dif-
ferent from the one appearing in [26], the method used to prove it is rather
similar.
Throughout this section H is an arbitrary Hilbert space and we set B = B(H).
We give ourselves a probability space (Ω,A,P) and we set Lp = Lp(Ω,A,P).
We also give ourselves a filtration (An)n≥0 on (Ω,A,P). We assume that A0

is trivial and that A∞ = σ
(⋃

n≥0An
)
is equal to A.

We may view any f in B ⊗Lp as a B-valued random variable f : Ω→ B. We
denote Enf = EAnf , d0 = E0f and dn = Enf − En−1f for any n ≥ 1. We will
say that f ∈ B⊗Lp is a test function if it is AN -measurable for some N ≥ 1, or
equivalently if f can be written as a finite sum f =

∑∞
0 dn. We then denote

S(f) =
∑∞

0
dn⊗̇d̄n.

We also denote
σ(f) = d0⊗̇d̄0 +

∑∞

1
En−1(dn⊗̇d̄n).

We recall the notation
x⊗̇m = x⊗̇ · · · ⊗̇x

where x is repeated m times. Note that σ(f) ∈ B ⊗B ⊗ Lp/2 and also that

(dn⊗̇d̄n)⊗̇p/2 ∈ (B ⊗B)⊗p/2 ⊗ L1.
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Theorem 4.1. For any p ≥ 2 of the form p = 2k for some k ≥ 1 there are
positive constants C1(p), C2(p) such that for any test function f in B ⊗ Lp we
have

C1(p)
−1‖S(f)‖1/2

B⊗minB⊗minΛp/2
≤ ‖f‖B⊗minΛp ≤ C2(p)‖S(f)‖1/2B⊗minB⊗minΛp/2

.

(4.1)

First part of the proof. We start by the case p = 4. Let f =
∑
dn, S = S(f)

and σ = σ(f). Then
f⊗̇f̄ = S + a+ b

where a =
∑
dn⊗̇f̄n−1 and b =

∑
fn−1⊗̇d̄n. Let g = a+b so that f⊗̇f̄−S = g.

Note that by (2.7) applied pointwise (or, say, alomst surely)

g⊗̇ḡ ≺ 2(a⊗̇ā+ b⊗̇b̄)

and hence E(g⊗̇ḡ) ≺ 2E(a⊗̇ā) + 2E(b⊗̇b̄). By Lemma 2.3 we have

‖E(g⊗̇ḡ)‖ ≤ 2‖E(a⊗̇ā)‖+ 2E(b⊗̇b̄)‖. (4.2)

Note that for any f
‖E(f⊗̇f̄)‖1/2 = ‖f‖B⊗minΛ2 .

By orthogonality E(a⊗̇ā) = E(
∑
dn⊗̇f̄n−1⊗̇d̄n⊗̇fn−1). By (2.10) we have

f̄n−1⊗̇fn−1 ≺ En−1(f̄⊗̇f)

therefore by (2.5)

dn⊗̇d̄n⊗̇f̄n−1⊗̇fn−1 ≺ dn⊗̇d̄n⊗̇En−1(f̄⊗̇f)

and hence

E(dn⊗̇d̄n⊗̇f̄n−1⊗̇fn−1) ≺ E(En−1(dn⊗̇d̄n)⊗̇f̄⊗̇f)

which yields (after a suitable permutation) by Lemma 2.3

‖E(a⊗̇ā)‖ ≤ ‖E(σ⊗̇f̄⊗̇f)‖,

and hence by Haagerup’s Cauchy–Schwarz inequality

‖E(a⊗̇ā)‖ ≤ ‖E(σ⊗̇σ̄)‖1/2‖E(f̄⊗̇f⊗̇f⊗̇f̄)‖1/2. (4.3)

Similarly we find

‖E(b⊗̇b̄)‖ ≤ ‖E(σ⊗̇σ̄)‖1/2‖E(f⊗̇f̄⊗̇f̄⊗̇f)‖1/2. (4.4)

We now claim that

‖E(σ⊗̇σ̄)‖1/2 ≤ 2‖E(S⊗̇S)‖1/2.
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Using this claim the conclusion is easy: By (4.2), (4.3), (4.4) we have

‖E(g⊗̇ḡ)‖ ≤ 8‖E(S⊗̇S)‖1/2‖E(f⊗̇f̄⊗̇f⊗̇f̄)‖1/2.

But now g → ‖E(g⊗̇ḡ)‖1/2 = ‖g‖B⊗minL2 is a norm so by its subadditivity,
recalling g = f⊗̇f̄ − S, we have

∣∣‖f⊗̇f̄‖B⊗minL2 − ‖S‖B⊗minL2

∣∣ ≤ ‖g‖B⊗minL2 ≤ 81/2xy

where x2 = ‖f⊗̇f̄‖Bmin⊗L2 and y2 = ‖S‖B⊗minL2 . Equivalently, we have

|x2 − y2| ≤ 81/2xy

from which it immediately follows that

max

{
x

y
,
y

x

}
≤
√
2 +
√
3.

Thus, modulo our claim, we obtain the announced inequality (4.1) for p = 4.
To prove the claim we note that it is a particular case of the “dual Doob
inequality” appearing in the next Lemma.

Lemma 4.2. Let θ1, . . . , θN be arbitrary in B ⊗ L4. Let α =
∑N

1 En(θn⊗̇θ̄n)
and β =

∑N
1 θn⊗̇θ̄n. Then

‖E(α⊗̇ᾱ)‖1/2 ≤ 2‖E(β⊗̇β̄)‖1/2.

Proof. Let αn = En(θn⊗̇θ̄n) and βn = θn⊗̇θ̄n. Note that βn ≻ 0 and αn ≻ 0.
We have α⊗̇ᾱ =

∑
n,k αn⊗̇ᾱk and hence

E(α⊗̇ᾱ) = E



∑

n≤k

Enβn⊗̇Ekβk


+ E

(
∑

n>k

Enβn⊗̇Ekβk
)

= E

(∑
n≤k

(Enβn)⊗̇β̄k
)
+ E

(∑
n>k

βn⊗̇(Ekβk)
)

= I + II.

Using a suitable permutation (as explained before (2.5)) we have by (2.5) or
(2.16)

(Enβn)⊗̇β̄k ≻ 0 and βn⊗̇(Ekβk) ≻ 0.

Therefore, using (2.9), it follows from Lemma 2.3 that

‖I‖ ≤
∥∥∥
∑

n,k
E((Enβn)⊗̇β̄k)

∥∥∥ = ‖E(α⊗̇β̄)‖,

and hence by (3.3)

‖I‖ ≤ ‖E(α⊗̇ᾱ)‖1/2‖E(β⊗̇β̄)‖1/2.
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A similar bound holds for ‖II‖. Thus we obtain

‖E(α⊗̇ᾱ)‖ ≤ ‖I‖+ ‖II‖ ≤ 2‖E(α⊗̇ᾱ)‖1/2‖E(β⊗̇β̄)‖1/2.

After division by ‖E(α⊗̇ᾱ)‖1/2 we find the inequality in Lemma 4.2.

We will need to extend Lemma 4.2 as follows:

Lemma 4.3. Let m ≥ 1 be any integer. Let θ1, . . . , θN be arbitrary in B⊗L2m.
Let α, β be as in the preceding lemma. Then

‖E(α⊗̇m)‖ ≤ mm‖E(β⊗̇m)‖. (4.5)

Proof. Note that up to a permutation of factors (α)⊗̇2 and α⊗̇ᾱ are the same.

In any case ‖E((α)⊗̇2)‖ = ‖E(α⊗̇ᾱ)‖, so the case m = 2 follows from the
preceding lemma (and m = 1 is trivial).
We use the same notation as in the preceding proof. We can write

(α)⊗̇m =
∑

n(1),...,n(m)

αn(1)⊗̇αn(2)⊗̇ · · · ⊗̇αn(m).

We can partition the set of m-tuples n = (n(1), . . . , n(m)) into subsets
S1, . . . , Sm so that we have

n(1) = max
j
n(j), ∀n ∈ S1

n(2) = max
j
n(j), ∀n ∈ S2

and so on. Let then T (j) = E

(∑
n∈Sj

αn(1)⊗̇ · · · ⊗̇ᾱn(m)

)
. Consider j = 1 for

simplicity, arguing as in the preceding proof, we have

T (1) =
∑

n∈S1

E(αn(1)⊗̇ · · · ⊗̇αn(m))

=
∑

n∈S1

E(βn(1)⊗̇αn(2) · · · ⊗̇αn(m))

≺
∑

n(1),...,n(m)

E(βn(1)⊗̇αn(2) · · · ⊗̇αn(m)) = E(β⊗̇α⊗̇m−1)

and hence by (3.5)

‖ET (1)‖ ≤ ‖E(β⊗̇α⊗̇m−1)‖ ≤ ‖E(β⊗̇m)‖ 1
m ‖E(α⊗̇m)‖m−1

m .

A similar bound holds for each T (j) (j = 1, . . . ,m). Thus we find

‖E(α⊗̇m)‖ =
∥∥∥
∑m

1
ET (j)

∥∥∥ ≤ m‖E(β⊗̇m)‖ 1
m ‖E(α⊗̇m‖m−1

m ,

and again after a suitable division we obtain (4.5).
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Proof of Theorem 4.1 in the dyadic case. Assume that dn⊗̇d̄n is An−1-
measurable. Note that this holds in the dyadic case when Ω = {−1, 1}N
as well as for the filtration naturally associated to the Haar orthonormal
system. In that case we can give a short proof of the following inequality for
any m ≥ 1

‖E(S(a)⊗̇m)‖ 1
m ≤ m‖E(S⊗̇2m)‖ 1

2m ‖E((f⊗̇f̄)⊗̇2m)‖ 1
2m , (4.6)

and a similar bound for ‖E(S(b)⊗̇m)‖ 1
m .

Indeed, recall a =
∑
dn⊗̇f̄n−1. Note that S(a) is up to permutation the same

as
S1 =

∑
dn⊗̇f̄n−1⊗̇fn−1⊗̇d̄n.

By (2.10) and (2.5), we have

S1 ≺
∑

dn⊗̇En−1(f̄⊗̇f)⊗̇d̄n =
∑

En−1(dn⊗̇f̄⊗̇f⊗̇d̄n)

where the last equality holds because dn⊗̇d̄n is assumed (n− 1)-measurable.
By (2.15) this implies

S⊗̇m
1 ≺

(∑
En−1(dn⊗̇f̄⊗̇f⊗̇d̄n)

)⊗̇m

and hence by (4.5) (recall S = S(f) and the permutation invariance of the
norm)

‖E(S⊗̇m
1 )‖ ≤ mm

∥∥∥∥E
((∑

dn⊗̇f̄⊗̇f⊗̇d̄n
)⊗̇m)∥∥∥∥

= mm‖E((S⊗̇f̄⊗̇f)⊗̇m)‖

and hence by Lemma 3.1

≤ mm‖E(S⊗̇2m)‖1/2‖E((f⊗̇f̄)⊗̇2m)‖1/2.

Thus we obtain (4.6) as announced:

‖E(S(a)⊗̇m)‖ = ‖E(S⊗̇m
1 )‖ ≤ mm‖E(S⊗̇2m)‖1/2‖E((f⊗̇f̄)⊗̇2m)‖1/2.

The proof with b in place of a is identical.
Using (4.6) and the analogue for b, it is easy to show (assuming that dn⊗̇d̄n is
An−1-measurable) that the validity of (4.1) for p = 2m implies its validity for
p = 4m. Indeed, let us assume (4.1) for p = 2m and let C = C2(2m). We find,
recalling f⊗̇f̄ − S = a+ b

‖f⊗̇f̄ − S‖B⊗minΛ2m ≤ ‖a‖B⊗minΛ2m + ‖b‖B⊗minΛ2m

≤ C(‖S(a)‖1/2B⊗minΛm
+ ‖S(b)‖1/2B⊗minΛm

)
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and hence by (4.6)

≤ 2Cm1/2‖S‖1/2B⊗minΛ2m
‖f⊗̇f̄‖1/2B⊗minΛ2m

.

Therefore, again setting x = ‖f⊗̇f̄‖B⊗minΛ2m and y = ‖S‖B⊗minΛ2m we find

|x− y| ≤ 2Cm1/2√xy,

and we conclude as before that x and y are comparable, so that (4.1) holds for
p = 4m.

The next corollary is now immediate from the dyadic case. However, we will
later show that it is valid for any p in 2N (see Corollary 11.3).

Corollary 4.4. Assume p ≥ 2 of the form p = 2k for some k ≥ 1. If
Ω = {−1,+1}N, the closed span of the coordinates (εn) (or equivalently, of
the Rademacher functions on Ω = [0, 1]) in Λp is completely isomorphic to the
space OH, i.e. to ℓ2 equipped with the o.s.s. of OH. Moreover, the orthogonal
projection P onto it is c.b. on Λp.

Proof. Let f =
∑
xnεn (xn ∈ B(H)). By (4.1) , ‖f‖(p) is equivalent to

‖∑xn⊗ x̄n‖1/2 and the latter is equal to the norm of
∑
en⊗xn in OH⊗minB

where (en) is any orthonormal basis of OH . Thus the closed span of (εn) in
Λp is isomorphic to OH . We skip the proof of the complementation because
we give the details for that in the proof of Proposition 11.1 below.

Proof of the right hand side of (4.1). We will use induction on k. The case
k = 1 is clear. Assume that the right hand side of (4.1) holds for p = m, we
will show it for p = 2m. With the preceding notation, recall g = a + b and
hence our assumption yields

‖g‖B⊗B⊗Λm
≤ ‖a‖B⊗B⊗Λm

+ ‖b‖B⊗B⊗Λm
≤ C2(m)(‖S(a)‖1/2• + ‖S(b)‖1/2• )

(4.7)
where the dot stands for B ⊗min B ⊗min B ⊗min B ⊗min Λm/2. Since by (2.7)

f̄n−1⊗̇fn−1 ≺ 2(f̄n⊗̇fn + d̄n⊗̇dn)

we have using (2.5) and (2.6) (in a suitable permutation)

‖S(a)‖1/2• =
∥∥∥
∑

dn⊗̇f̄n−1⊗̇d̄n⊗̇fn−1

∥∥∥
1/2

•
≤ I + II

where

2−1/2I =
∥∥∥
∑

dn⊗̇f̄n⊗̇d̄n⊗̇fn
∥∥∥

1
2

•
and 2−1/2II =

∥∥∥
∑

dn⊗̇d̄n⊗̇d̄n⊗̇dn
∥∥∥

1
2

•
.

Note that for any F in B ⊗ B ⊗ B ⊗ B ⊗ Λm/2 we have ‖F‖• =

‖E((F ⊗̇F )⊗̇m/4)‖ 2
m .
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Recall that, by (2.10), fn⊗̇f̄n ≺ En(f⊗̇f̄). Thus we have by (2.5) (2.6) and
(2.15)

2−1/2I ≤
∥∥∥∥E
((∑

dn⊗̇d̄n⊗̇En(f⊗̇f̄)
)⊗̇m/2)∥∥∥∥

1
m

=

∥∥∥∥E
((∑

En(dn⊗̇d̄n⊗̇f⊗̇f̄)
)⊗̇m/2)∥∥∥∥

1
m

and hence by (4.5) and (3.5) (or actually (3.3))

≤ (m/2)1/2‖E((S⊗̇f⊗̇f̄)⊗̇m/2)‖ 1
m

≤ (m/2)1/2‖E(S⊗̇m)‖ 1
2m ‖E((f⊗̇f̄)⊗̇m)‖ 1

2m .

Moreover, recalling (2.4), we have obviously 0 ≺ dn ⊗ d̄n ⊗ d̄k ⊗ dk for all n, k
and hence

∑
dn⊗̇d̄n⊗̇d̄n⊗̇dn ≺ S⊗̇S. Therefore, again by (2.6) and (2.15)

2−1/2II ≤ ‖E((S⊗̇S⊗̇S⊗̇S)m/4)‖1/m = ‖E(S⊗̇m)‖ 1
m .

Let x = ‖E(S⊗̇m)‖ 1
m and y = ‖E(f⊗̇f̄)⊗̇m‖ 1

m . This yields

‖S(a)‖
1
2
• ≤
√
m
√
xy +

√
2x

and a similar bound for S(b). Thus we obtain

‖g‖B⊗B⊗Λm
≤ 2C2(m)(

√
m
√
xy +

√
2x).

Since g = f⊗̇f̄ − S we have
∣∣‖f⊗̇f̄‖B⊗B⊗Λm

− ‖S‖B⊗B⊗Λm

∣∣ ≤ ‖g‖B⊗B⊗Λm

and hence we obtain

|y − x| ≤ 2C2(m)(
√
m
√
xy +

√
2x)

From the latter it is clear that there is a constant C2(2m) such that
√
y ≤ C2(2m)

√
x

and this is the right hand side of (4.1) for p = 2m,

To prove the general case of both sides of (4.1), the following Lemma will be
crucial. We will use this only for m = 1, but the inductive argument curiously
requires to prove it for all dyadic m.

Lemma 4.5. Let f ∈ B(H)⊗L4mp be a test function. As before we set fn = Enf
and dn = fn − fn−1 for all n ≥ 1. Let p = 2k for some integer k ≥ 0. Then,
for any integer m ≥ 1 of the form m = 2ℓ for some ℓ ≥ 0, there is a constant
C = C(m, p) such that

∥∥∥
∑∞

1
(dn⊗̇d̄n)⊗̇m⊗̇(fn−1⊗̇f̄n−1)

⊗̇m
∥∥∥
(p)
≤ C‖S‖m(2mp)‖f‖2m(4mp). (4.8)
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Proof. We use induction on k starting from p = 1. We may assume d0 = 0 for
simplicity. Let

I(m, p) =
∥∥

∞∑

1

(dn⊗̇d̄n)⊗̇m⊗̇(fn−1⊗̇f̄n−1)
⊗̇m
∥∥
(p)
.

By (2.17) and (2.5) (and by the self-adjointness of En−1) we have

I(m, 1) ≤
∥∥∥E
(∑∞

1
(dn⊗̇d̄n)⊗̇m⊗̇En−1((f⊗̇f̄)⊗̇m)

)∥∥∥

=
∥∥∥E
(∑∞

1
En−1((dn⊗̇d̄n)⊗̇m)⊗̇(f⊗̇f̄)⊗̇m

)∥∥∥ ,

and hence by (3.3)

≤ ‖E(σm⊗̇σ̄m)‖1/2‖E((f⊗̇f̄)⊗̇2m)‖1/2

where we have set

σm =
∑∞

1
En−1((dn⊗̇d̄n)⊗̇m).

Note that by Lemma 4.2

‖σm‖(2) ≤ 2‖
∑∞

1
(dn⊗̇d̄n)⊗̇m‖(2)

but obviously (recalling (2.4))
∑

(dn⊗̇d̄n)⊗̇m ≺ (
∑
dn⊗̇d̄n)⊗̇m and hence (re-

calling (2.15))
(∑

(dn⊗̇d̄n)⊗̇m
)⊗̇2

≺ S⊗̇2m (4.9)

so we obtain

‖E(σm⊗̇σ̄m)‖1/2 ≤ 2‖S‖m(2m).

Thus we find

I(m, 1) ≤ 2‖S‖m(2m)‖f‖2m(4m),

so that (4.8) holds for p = 1 and any m ≥ 1 with C(m, 1) = 2.
Let us now denote by (4.8)p the inequality (4.8) meant for a given fixed p but
for any m ≥ 1. We will show that for any p ≥ 2

(4.8)p/2 ⇒ (4.8)p.

Assuming that m ≥ 1 is fixed, let xn = (dn⊗̇d̄n)⊗̇m and yn = (fn−1⊗̇f̄n−1)
⊗̇m.

We write

∑
xn⊗̇yn = a+ b

with a =
∑

En−1(xn)⊗̇yn and b =
∑

(xn − En−1(xn))⊗̇yn.
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We have I(m, p) = ‖∑xn⊗̇yn‖(p) and hence

I(m, p) ≤ ‖a‖(p) + ‖b‖(p), (4.10)

so it suffices to majorize a and b separately. We have by (2.17)

a ≺
∑

En−1(xn)⊗̇En−1((f⊗̇f̄)⊗̇m) =
∑

En−1(En−1(xn)⊗̇(f⊗̇f̄)⊗̇m))

and hence by (4.5) and (3.3)

‖a‖(p) ≤ p
∥∥∥
∑

En−1(xn)⊗̇(f⊗̇f̄)⊗̇m
∥∥∥
(p)

≤ p‖σm⊗̇(f⊗̇f̄)⊗̇m‖(p)
= p‖σ⊗̇p

m ⊗̇(f⊗̇f̄)⊗̇mp‖1/p(1)

≤ p‖σ⊗̇p
m ‖

1
p

(2)‖(f⊗̇f̄)⊗̇mp‖
1
p

(2)

= p‖σm‖(2p)‖f‖2m(4mp).

But now by (4.5) again

‖σm‖(2p) ≤ 2p
∥∥∥
∑

(dn⊗̇d̄n)⊗̇m
∥∥∥
(2p)

and hence by (4.9)

‖σm‖(2p) ≤ 2p‖S‖m(2mp).

Thus we obtain
‖a‖(p) ≤ p(2p)‖S‖m(2mp)‖f‖2m(4mp). (4.11)

We now turn to b. Note that since yn is “predictable” {(xn − En−1(xn))⊗̇yn}
is a martingale difference sequence. We will apply the right hand side of (4.1)
to b. Note that

S(b) ≈
∑

(xn − En−1(xn))⊗̇(xn − En−1(xn))⊗̇yn⊗̇ȳn,

and hence by (2.7)

1

2
S(b) ≺

∑
xn⊗̇xn⊗̇yn⊗̇yn +

∑
En−1(xn)⊗̇En−1(xn)⊗̇yn⊗̇yn.

By (2.10) we get (since yn is predictable)

1

2
S(b) ≺

∑
xn⊗̇xn⊗̇yn⊗̇yn +

∑
En−1(xn⊗̇xn⊗̇yn⊗̇yn)

and hence

1

2
‖S(b)‖(p/2) ≤

∥∥∥
∑

xn⊗̇xn⊗̇yn⊗̇yn
∥∥∥
(p/2)

+
∥∥∥
∑

En−1(xn⊗̇xn⊗̇yn⊗̇yn)
∥∥∥
(p/2)

.

Documenta Mathematica 19 (2014) 1367–1442



1394 Gilles Pisier

By (4.5) this yields

‖S(b)‖(p/2) ≤ 2(1 + (p/2))
∥∥∥
∑

xn⊗̇xn⊗̇yn⊗̇yn
∥∥∥
(p/2)

.

But since
∑

xn⊗̇xn⊗̇yn⊗̇yn ≈
∑

(dn⊗̇d̄n)⊗̇2m⊗̇(fn−1⊗̇f̄n−1)
⊗̇2m

we may use the induction hypothesis (4.8)p/2 (with m replaced by 2m) and we
obtain

‖S(b)‖(p/2) ≤ 2(1 + (p/2))C(2m, p/2)‖S‖2m(2mp)‖f‖4m(4mp).
By the right hand side of (4.1)p we then find

‖b‖(p) ≤ C2(p)‖S(b)‖1/2(p/2)

≤ C′(m, p)‖S‖m(2mp)‖f‖2m(4mp)
for some constant C′(m, p). Thus we conclude by (4.10) and (4.11)

I(m, p) ≤ (p(2p) + C′(m, p))‖S‖m(2mp)‖f‖2m4mp.

In other words we obtain (4.8)p. This completes the proof of (4.8)p for p = 2k

by induction on k.

Proof of Theorem 4.1 (General case). We will show that (4.1)p ⇒ (4.1)2p. We
again start from

f⊗̇f̄ − S = a+ b

where a =
∑
dn⊗̇f̄n−1 and b =

∑
fn−1⊗̇d̄n. By the right hand side of (4.1)p

we have

‖f⊗̇f̄ − S‖(p) ≤ 2C2(p)
∥∥∥
∑

dn⊗̇d̄n⊗̇fn−1⊗̇f̄n−1

∥∥∥
1/2

(p/2)

and hence by (4.8)

≤ 2C2(p)C(1, p/2)
1/2‖S‖1/2(p) ‖f‖(2p).

Thus we find a fortiori setting C′′ = 2C2(p)C(1, p/2)
1/2

∣∣‖f⊗̇f̄‖(p) − ‖S‖(p)
∣∣ ≤ C′′‖S‖1/2(p) ‖f‖(2p).

Thus setting again x = ‖f‖(2p), y = ‖S‖1/2(p) we find

|x2 − y2| ≤ C′′xy

and we conclude that x and y must be equivalent quantities, or equivalently
that (4.1)2p holds. By induction this completes the proof.
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5 Burkholder-Rosenthal inequality

Let 2 < p <∞ be fixed. The usual form of the Burkholder-Rosenthal inequality
expresses the equivalence, for scalar valued martingales, of ‖∑ dn‖p and

BR∞ = ‖σ‖p + ‖ sup |dn|‖p. (5.1)

It is easy to deduce from that the equivalence of that same norm with

BRq = ‖σ‖p +
∥∥∥∥
(∑

|dn|q
)1/q∥∥∥∥

p

(5.2)

for any q such that 2 < q ≤ ∞.
Indeed, we have obviously BR∞ ≤ BRq. Conversely, using (here 1

q = 1−θ
2 + θ

∞ )

∥∥∥∥
(∑

|dn|q
)1/q∥∥∥∥

p

≤ ‖S‖1−θp ‖ sup |dn|‖θp

and the equivalence ‖S‖p ≃ ‖
∑
dn‖p, one can easily deduce that there is a

constant C′ such that

BRq ≤ C′‖
∑

dn‖1−θp BRθ∞.

Thus an inequality of the form

∥∥∥
∑

dn

∥∥∥
p
≤ CBR∞

implies “automatically”

BR∞ ≤ BRq ≤ C′C1−θBR∞.

Similarly,

∥∥∥
∑

dn

∥∥∥
p
≤ CBRq ⇒

∥∥∥
∑

dn

∥∥∥
p
≤ CC′‖

∑
dn‖1−θp BRθ∞ ⇒

⇒
∥∥∥
∑

dn

∥∥∥
p
≤ (CC′)1/θBR∞.

Thus, modulo simple manipulations, the Burkholder-Rosenthal inequality re-
duces to the equivalence for some q such that 2 < q ≤ ∞ of ‖∑dn‖p and
BRq.

Note that the one sided inequality expressing that BRq = ‖σ‖p +
‖(∑ |dn|q)1/q‖p is dominated by ‖∑dn‖p reduces obviously to

‖σ‖p ≤ C
∥∥∥
∑
|dn|2

∥∥∥
1/2

p/2
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that holds for p ≥ 2 by Burkholder–Davis–Gundy dualization of Doob’s in-
equality. Therefore, the novelty of the Burkholder-Rosenthal inequality is the
fact that there is a constant C′′′ such that

‖
∑

dn‖p ≤ C′′′BRq.

In the original Rosenthal inequality, restricted to sums of independent dn’s, or
in the non-commutative version of [17, 19], the value q = p is the most inter-
esting choice. In the inequalities below, for p = 2k ≥ 4, we will work with q = 4.

We will use the following extension of (3.3).

Proposition 5.1. For any integer m ≥ 1 and finite sequences (ak), (bk) in
B(H)⊗ L2m we have

∥

∥

∥

∥

E

(

(

∑

ak⊗̇bk

)⊗̇m
)∥

∥

∥

∥

≤

∥

∥

∥

∥

E

(

(

∑

ak⊗̇āk

)⊗̇m
)∥

∥

∥

∥

1/2 ∥
∥

∥

∥

E

(

(

∑

bk⊗̇b̄k

)⊗̇m
)∥

∥

∥

∥

1/2

.

(5.3)

More generally, consider finite sequences (a
(j)
k ), (b

(j)
k ) in B(H)⊗ L2m for j =

1, . . . ,m.

Let Tj =
∑
k a

(j)
k ⊗̇ b

(j)
k and let αj =

∑
k a

(j)
k ⊗a

(j)
k and βj =

∑
k b

(j)
k ⊗ b

(j)
k . We

have then

‖E(T1⊗̇ · · · ⊗̇Tm)‖ ≤ ‖E(α1⊗̇ · · · ⊗̇αm)‖1/2‖E(β1 ⊗ · · · ⊗ βm)‖1/2. (5.4)

Proof. Up to permutation, E((
∑
ak⊗̇bk)⊗̇m) is the same as

E




∑

k(1),...,k(m)

ak(1)⊗̇ · · · ⊗̇ak(m)⊗̇bk(1)⊗̇ · · · ⊗̇bk(m)


 .

Therefore, by (3.3) we have

∥∥∥∥E
((∑

ak⊗̇bk
)⊗̇m)∥∥∥∥ ≤

∥∥∥∥∥∥
E

∑

k(1),...,k(m)

ak(1) . . . ak(m)⊗̇āk(1) . . . āk(m)

∥∥∥∥∥∥

1
2

×

∥∥∥∥∥∥
E

∑

k(1),...,k(m)

bk(1) . . . bk(m)⊗̇b̄k(1) . . . b̄k(m)

∥∥∥∥∥∥

1
2

=

∥∥∥∥E
((∑

ak⊗̇āk
)⊗̇m)∥∥∥∥

1
2
∥∥∥∥E
((∑

bk⊗̇b̄k
)⊗̇m)∥∥∥∥

1
2

.

Up to permutation T1⊗̇ · · · ⊗̇Tm is the same as

∑

k(1),...,k(m)

a
(1)
k(1)⊗̇ · · · ⊗̇ a

(m)
k(m)⊗̇ b

(1)
k(1)⊗̇ · · · ⊗̇ b

(m)
k(m),

Documenta Mathematica 19 (2014) 1367–1442



Martingale Inequalities and . . . 1397

which can be written as
∑
k ak⊗̇ bk with k = (k(1), . . . , k(m)), ak =

a
(1)
k(1)⊗̇ · · · ⊗̇ a

(m)
k(m) and bk = b

(1)
k(1)⊗̇ · · · ⊗̇ b

(m)
k(m). Therefore (5.4) follows from

the m = 1 case of (5.3).

Remark 5.2. Let H = ℓ2 and B = B(H). The preceding Proposition shows
that ∥∥∥

∑
ak⊗̇āk

∥∥∥
1
2

(m)
= sup

{∥∥∥
∑

ak⊗̇bk
∥∥∥
(m)

}
(5.5)

where the supremum runs over the set D of all finite sequences (bk) in B⊗L2m

such that ‖∑ bk⊗̇bk‖(m) ≤ 1. (Indeed the sup is attained for bk = āk, suitably
normalized.) Thus (5.5) allows us to define an o.s.s. on the space L2m(Ω, µ; ℓ2),
corresponding to “Λ2m with values in OH”. Indeed, we can proceed as before
for Λp: we consider the subspace E0 ⊂ L2m ⊗ ℓ2 formed of all finite sums∑
ak ⊗ ek (ak ∈ L2m) and we define

J : E0 −→
⊕

(bk)∈D

(Λm ⊗min B)

by

J
(∑

ak ⊗ ek
)
=

⊕

(bk)∈D

∑
ak⊗̇bk.

This produces an o.s.s. on L2m(µ; ℓ2). It is easy to see that if a ∈ L2m is fixed
in the unit sphere, the restriction of J to a⊗ ℓ2 induces on ℓ2 the o.s.s. of OH
while if x ∈ ℓ2 is fixed in the unit sphere, restricting J to L2m ⊗ x induces on
L2m the o.s.s. of Λ2m.
Note in passing that, in sharp contrast with [23], except for the preceding
special case, we do not have any reasonable definition to propose for the “vector
valued” analogue of the Λp spaces.

As a consequence we find an analogue of Stein’s inequality (here we could
obviously replace En−1 by En):

Corollary 5.3. Let xn be an arbitrary finite sequence in B(H)⊗ L4m.
Let v =

∑
En−1(xn⊗̇x̄n)⊗̇En−1(x̄n⊗̇xn) and δ =

∑
xn⊗̇x̄n⊗̇x̄n⊗̇xn. Then for

any integer m ≥ 1

‖E(v⊗̇m)‖ ≤ mm‖E(δ⊗̇m)‖. (5.6)

Proof. Let w =
∑

En−1(xn⊗̇x̄n⊗̇x̄n⊗̇xn). By (2.10) we have v ≺ w. Then by
(2.15), (2.11), Lemma 2.3 and (4.5), we have

‖E(v⊗̇m)‖ ≤ ‖E(w⊗̇m)‖ ≤ mm‖E(δ⊗̇m)‖.
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Lemma 5.4. Let p = 2k ≥ 4 as before. Let δ =
∑
dn⊗̇d̄n⊗̇d̄n⊗̇dn. There is a

constant C4(p) such that

‖E(S⊗̇p/2)‖1/p ≤ C4(p)[‖E(σ⊗̇p/2)‖ 1
p + ‖E(δ⊗̇p/4)‖ 1

p ]. (5.7)

Proof. Note that

S − σ =
∑

dcn

where cn = dn⊗̇d̄n − En−1(dn⊗̇d̄n). Thus by the right hand side of (4.1) we
have

‖S − σ‖B⊗minB⊗minΛp/2
≤ C2(p/2)‖S(c)‖1/2B⊗minB⊗minB⊗minB⊗minΛp/4

.

By (2.7)

1

2
dcn⊗̇dc̄n ≺ dn⊗̇d̄n⊗̇d̄n⊗̇dn + En−1(dn⊗̇d̄n)⊗̇En−1(d̄n⊗̇dn)

therefore

1

2
S(c) ≺ δ + v,

where we now set v =
∑

En−1(dn⊗̇d̄n)⊗̇En−1(d̄n⊗̇dn). Thus we find
∣∣∣‖S‖B⊗minB⊗minΛp/2

− ‖σ‖B⊗minB⊗minΛp/2

∣∣∣ ≤ ||S − σ‖B⊗minB⊗minΛp/2

≤ C2(p/2)
√
2(‖δ‖

1
2
• + ‖v‖

1
2
• )

where ‖ ‖• is the norm in B ⊗min B ⊗min B ⊗min B ⊗min Λp/4. By (5.6) we
have

‖v‖• ≤ (p/4)‖δ‖•
and hence

‖S‖B⊗B⊗Λp/2
≤ ‖σ‖B⊗B⊗Λp/2

+ C2(p/2)
√
2(1 + (p/4)

1
2 )‖δ‖

1
2
• .

Taking the square root of the last inequality we obtain (5.7).

We now give a version (corresponding to BRq with q = 4) for Λp of the
Burkholder-Rosenthal inequality :

Theorem 5.5. For any p ≥ 4 of the form p = 2k for some k ≥ 1 there are
positive constants C′

1(p), and C
′
2(p) such that for any test function f in B⊗Lp

we have
C′

1(p)
−1[f ]p ≤ ‖f‖B⊗minΛp ≤ C′

2(p)[f ]p (5.8)

where

[f ]p = ‖σ(f)‖1/2B⊗minB⊗minΛp/2
+
∥∥∥E(

∑
dn⊗̇d̄n⊗̇dn⊗̇d̄n)⊗̇p/4

∥∥∥
1/p

.
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Proof. Note that S and S are the same after a transposition of the two factors,
thus the same is true for S⊗̇S and S⊗̇2, and we have

‖E(S⊗̇S)‖ = ‖E(S⊗̇2)‖

and similarly for any even m ≥ 1

E((S⊗̇S)⊗̇m/2)‖ = ‖E(S⊗̇m)‖.

Recall that in a suitable permutation we may write 0 ≺ dn⊗̇d̄n⊗̇d̄k⊗̇dk for all
n, k and hence

∑
dn⊗̇d̄n⊗̇d̄n⊗̇dn ≺

∑
n,k

dn⊗̇d̄n⊗̇d̄k⊗̇dk = S⊗̇S,

and hence for any even integer m

(
∑

dn⊗̇d̄n⊗̇d̄n⊗̇dn)⊗̇m/2 ≺ S⊗̇m.

Therefore ∥∥∥∥E
(∑

dn⊗̇d̄n⊗̇dn⊗̇d̄n
)⊗̇m/2∥∥∥∥ ≤ ‖E(S⊗̇m)‖. (5.9)

Let σ = σ(f). Now if p = 2m, (4.5) implies

‖σ‖1/2
B⊗minB⊗minΛp/2

= ‖E(σ⊗̇m)‖ 1
2m ≤ m1/2‖E(S⊗̇m)‖ 1

2m , (5.10)

and hence by (5.9) and (5.10)

[f ]p ≤ (m1/2 + 1)‖E(S⊗̇m)‖1/2m

= (m1/2 + 1)‖S‖1/2
B⊗minB⊗minΛm

.

Thus the left hand side of (5.8) follows from (4.1). Since the converse inequality
follows from Lemma 5.4 and (4.1), this completes the proof.

6 Hilbert transform

Consider the Hilbert transform on Lp(T, dm). We will show that this defines a
completely bounded operator on Λp(T,m) again for p ≥ 2 of the form p = 2k

with k ∈ N. The proof is modeled on Marcel Riesz’s proof as presented in
Zygmund’s classical treatise on trigonometric series. One of the first refer-
ences using this trick in a broader context is Cotlar’s paper [10]. Let f be

a trigonometric polynomial with coefficients in B(H), i.e. f =
∑

n∈Z
f̂(n)eint

with f̂ : Z → B(H) finitely supported. The Hilbert transform Tf is defined
by

Tf =
∑

n∈Z
ϕ(n)f̂ (n)eint (6.1)
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where ϕ(0) = 0 and
ϕ(n) = −i sign(n). ∀n ∈ Z

Note that T 2 = −id on the subspace {f | f̂(0) = 0}. We will use the follow-
ing classical identity valid for any pair f, g of complex valued trigonometric
polynomials

T (fg − (Tf)(Tg)) = fTg + (Tf)g. (6.2)

This can be checked easily as a property of ϕ since it reduces to the case
f = zn, g = zm (n,m ∈ Z). A less pedestrian approach is to recall that if f
is real valued, Tf is characterized as the unique real valued v, the “conjugate
function”, actually here also a trigonometric polynomial, such that v̂(0) = 0
and z 7→ f(z) + iv(z) is the boundary value of an analytic function (actu-
ally a polynomial in z) inside the unit disc D. Then (6.2) boils down to the
observation that since (f + iT f)(g + iT g) is the product of two analytic func-
tions on D, f(Tg) + (Tf)g must be the “conjugate” of fg − (Tf)(Tg). The
complex case follows from the real one: for a complex valued f , we define
Tf = T (ℜ(f))+ iT (ℑ(f)) and (6.2) remains valid. From (6.2) in the C-valued
case, it is immediate to deduce that for any pair f, g of B(H)-valued trigono-
metric polynomials we have

T (f⊗̇g − (Tf)⊗̇(Tg)) = f⊗̇(Tg) + (Tf)⊗̇g (6.3)

where (as before) the notation f⊗̇g stands for the B(H)⊗B(H) valued function
z → f(z)⊗g(z) on T, and where we still denote by T the mapping (that should
be denoted by T ⊗ I) taking f ⊗ b (f ∈ L2, b ∈ B(H)) to (Tf)⊗ b. Now, it is
a simple exercise to check that for any such f

Tf = T (f̄)

(this is an equality between two B(H) valued functions). Therefore we have
also:

T (f ⊗ ḡ − (Tf)⊗̇T (ḡ)) = f ⊗ T (ḡ) + Tf ⊗ ḡ. (6.4)

We can now apply the well known Riesz–Cotlar trick to our situation:

Theorem 6.1. For any p ≥ 2, of the form p = 2k with k ∈ N, the Hilbert
transform T is a c.b. mapping on Λp(T,m).

Proof. If we restrict (as we may) to functions such that f̂(0) = 0, we have
T 2 = −id and hence (6.4) implies

Tf⊗̇T f̄ − f⊗̇f̄ = T (f⊗̇(Tf) + (Tf)⊗̇f̄). (6.5)

We can then again use induction on k. Assume the result known for p, i.e. that
there is a constant C such that

‖Tf‖B(H)⊗minΛp
≤ C‖f‖B(H)⊗minΛp

.
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We will prove that the same holds for 2p in place of p (with a different constant).
Let B = B(H). By (6.5), we have

‖Tf⊗̇Tf − f ⊗ f̄‖B⊗minB⊗minΛp
≤ 2C‖f ⊗ Tf‖B⊗minB⊗Λp

.

By (3.5), this term is

≤ 2C‖f ⊗ f̄‖1/2
B⊗minB⊗minΛp

‖Tf ⊗ Tf‖1/2
B⊗minB⊗Λp

.

We have
‖f‖2B⊗minΛ2p

= ‖f⊗̇f‖B⊗minB⊗minΛp

and
‖Tf‖2B⊗minΛ2p

= ‖Tf⊗̇Tf‖B⊗minB⊗minΛp
.

Therefore, denoting this time x = ‖Tf‖B⊗minΛ2p and y = ‖f‖B⊗minΛ2p , and
using

| ‖Tf⊗̇Tf‖(p) − ‖f ⊗ f̄‖(p)| ≤ ‖Tf⊗̇Tf − f ⊗ f̄‖(p)
we find again

|x2 − y2| ≤ 2Cxy.

Thus we conclude that x and y are “equivalent,” completing the proof with 2p
in place of p.

7 Comparison with LpLpLp

Let B = B(H) with (say) H = ℓ2. Let E1, · · · , Em and G be operator spaces.
Recall that an m-linear mapping

u : E1 × · · · × Em → G

is called (jointly) completely bounded (j.c.b. in short) if the associatedm-linear
mapping from

û : (B ⊗min E1)× · · · × (B ⊗min Em)→ B ⊗min · · · ⊗min B ⊗min G

is bounded. We set ‖u‖cb = ‖û‖, and we say that u is (jointly) completely
contractive if ‖u‖cb ≤ 1. Note the obvious stability of these maps under com-
position: for instance if F,L are operator spaces and if v : G × F → L is
bilinear and j.c.b. then the (m+1)-linear mapping w; E1× · · ·×Em×F → L
defined by

w(x1, · · · , xm, y) = v(u(x1, · · · , xm), y)

is also j.c.b. with ‖w‖cb ≤ ‖u‖cb‖v‖cb. Moreover, if in the above definition we
replace B by the space K of compact operators on ℓ2, the definition and the
value of ‖u‖cb is unchanged. This allows to extend (following [23]) the complex
interpolation theorem for multilinear mappings. In particular, we have
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Lemma 7.1. Let 1 ≤ p, q, r ≤ ∞ be such that 1/p + 1/q = 1/r. Then the
pointwise product from Lp×Lq to Lr is completely contractive. More generally,
if 1 ≤ pj ≤ ∞ (1 ≤ j ≤ N) are such that

∑
1/pj = 1/r, the product map

Lp1 × · · · × LpN → Lr is completely contractive. In particular, if p is any
positive integer, the pointwise product Pp from Lp× · · ·×Lp (p-times) to L1 is
completely contractive.

Proof. The three cases either q = ∞, p = r or p = ∞, q = r or q = p′, r = 1
are obvious. By interpolation and then exchanging the roles of p and q, this
implies the general case. By the preceding remark, one can iterate and the
second assertion becomes clear.

Theorem 7.2. Let p = 2m, m ∈ N. The identity map Lp → Λp is completely
contractive.

Proof. By the preceding Lemma 7.1, Pp : Lp × · · · × Lp → L1 is completely
contractive. Therefore

∥∥∥∥
∫
f1⊗̇ · · · ⊗̇fp/2⊗̇f̄1⊗̇ · · · ⊗̇f̄p/2

∥∥∥∥ ≤



p/2∏

1

‖fj‖B⊗minLp




2

.

Thus taking f1 = · · · = fp/2 we get by (3.8)

‖f‖pB⊗minΛp
≤ ‖f‖pB⊗minLp

and we obtain ‖Lp → Λp‖cb = 1.

Remark 7.3. The preceding argument (together with Corollary 3.6) shows
that the o.s.s. on Λp is essentially the minimal one on Lp such that
Pp : Λp × · · · × Λp → L1 is completely contractive. More precisely, assume
p ∈ N. Let Qp : Lp × · · · × Lp × L̄p × · · · × L̄p (where Lp and L̄p are re-
peated p/2 times) be the p-linear mapping taking (f1, · · · , fp/2, ḡ1, · · · , ḡp/2)
to
∫
f1 · · · fp/2ḡ1, · · · , ḡp/2dµ. Then if Xp is an o.s. isometric to Lp, such that

Qp : Xp×· · ·×Xp× X̄p×· · ·× X̄p → L1 is completely contractive, the identity
map Xp → Λp is completely contractive.
In the case of Lp itself with its interpolated o.s.s. we could consider Pp instead
of Qp because the map f 7→ f̄ is a completely isometric antilinear isomorphism
from Lp to itself, and hence defines a completely isometric linear isomorphism
from Lp to L̄p. (This can be checked easily by interpolation starting from
p =∞ and-by duality-p = 1.)

This remark leads to:

Corollary 7.4. For any integer p ≥ 1, we have a completely contractive
inclusion

(Λp, L∞)1/2 → Λ2p.

Documenta Mathematica 19 (2014) 1367–1442



Martingale Inequalities and . . . 1403

Proof. Let X2p = (Λp, L∞)1/2. We will argue as in the proof of Lemma 7.1,
applying complex interpolation to the product map P2p : (x1, · · · , x2p) 7→
x1 · · ·x2p. Clearly, by Lemma 7.1, P2p is completely contractive both as a map
from (Λp)

p × (L̄∞)p to L1 and as one from (L∞)p × (Λ̄p)
p to L1. Therefore,

by interpolation, P2p : X2p × · · · ×X2p × X̄2p × · · · × X̄2p → L1 is completely
contractive. The preceding remark (applied with 2p in place of p) then yields
this corollary.

Remark 7.5. We wish to compare here the operator spaces Lp and Λp. We
already know that they are different since the Khintchine inequalities lead to
two different operator spaces in both cases, but we can give a more precise
quantitative estimate.
Let us denote by Lnp the space Lp(Ωn, µn) when Ωn = [1, . . . , n] and µn is the
uniform probability measure on Ω. We then set

Λnp = Λp(Ωn, µn).

We claim that for any even integer p > 2, there is δp > 0 such that for any n
the identity map (denoted id) satisfies

‖id : Λnp → Lnp‖cb ≥ δpn
1
p (

1
2−

1
p ).

To prove this, we will use an adaptation (with Λp instead of Lp) of the results in
[13, 24]. Indeed, by Corollary 14.2 below, using the classical “Rudin examples”
of Λ(p)-sets, one can show that the space Λnp contains a subspace En ⊂ Λnp
with dimEn = d(n) ≥ n2/p and such that the inclusion OHd(n) ⊂ En satisfies
‖OHd(n) → En‖cb ≤ χp. Moreover, there is a projection Pn : Λnp → En with
‖Pn‖cb ≤ χp. Here p is an even integer > 2 and χp is a constant depending only
on p. In addition, by [13], the same space En considered in Lnp is (uniformly
over n) completely isomorphic to Rp(d(n)) ∩Cp(d(n)) (intersection of row and

column space in S
d(n)
p ). In fact we use only the easy direction of this result,

namely that ‖En → Rp(d(n))‖cb ≤ 1 and ‖En → Cp(d(n))‖cb ≤ 1.
It follows that there is a constant δp > 0 such that if id denotes the identity
map we have

‖id : Λnp → Lnp‖cb ≥ δp‖OHd(n) → Cp(d(n))‖cb.

Recall that (see [25, p. 219]) ‖OH(d)→ C∞(d)‖cb = d1/4. Thus by interpola-
tion, we have for any d if 1

p = θ
2

‖Cp(d)→ C∞(d)‖cb ≤ ‖OH(d)→ C∞(d)‖θcb = dθ/4,

also

‖OH(d)→ Cp(d)‖cb‖Cp(d)→ C∞(d)‖cb ≥ ‖OH(d)→ C∞(d)‖cb,

therefore we find
‖OH(d)→ Cp(d)‖cb ≥ d1/4d−θ/4
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and we conclude for some δ′p > 0

‖id : Λnp → Lnp‖cb ≥ δ′p(n2/p)
1−θ
4 = δ′pn

θ(1−θ)
4 .

A similar argument applies to compare Λnp with either min(Lnp ) or max(Lnp ).
Using the projections Pn, we easily deduce that for some constant χ′

p > 0

‖Λnp → max(Lnp )‖cb ≥ χ′
p‖OHd(n) → max(ℓ

d(n)
2 )‖cb

and
‖min(Lnp )→ Λnp‖cb ≥ χ′

p‖min(ℓ
d(n)
2 )→ OHd(n)‖cb.

But it is known (see [25, p. 220]) that for any d

‖OHd → max(ℓd2)‖cb = ‖min(ℓd2)→ OHd‖cb ≃ cd1/2

where c > 0 is independent of d. Thus we obtain

‖Λnp → max(Lnp )‖cb ≥ cχ′
pd(n)

1/2 ≃ c′n1/p

and similarly
‖min(Lnp )→ Λnp‖cb ≥ c′n1/p.

8 The non-commutative case

LetM be a von Neumann algebra equipped with a normal semi-finite faithful
trace τ , and let Lp(τ) be the associated “non-commutative” Lp-space. The
preceding procedure works equally well in the non-commutative case, but re-
quires a little more care. To define the o.s.s. on Lp(τ) that will be of interest
to us we consider f in B(H)⊗Lp(τ) of the form f =

∑n
1 bk⊗xk and we define

f∗ ∈ B(H)⊗ Lp(τ) by
f∗ =

∑n

1
b̄k ⊗ x∗k.

Consider f =
∑n

1 bk⊗xk ∈ B(H)⊗Lp(τ) as above and g =
∑
cj⊗yj ∈ B(K)⊗

Lq(τ) (p, q ≥ 1). We denote by f⊗̇g ∈ B(H)⊗B(K)⊗Lr(τ)
(
r ≥ 1, 1r = 1

p+
1
q

)

the element defined by

f⊗̇g =
∑

k,j
bk ⊗ cj ⊗ xkyj.

Given f ∈ B(H)⊗ L1(τ) we denote τ̂ = idB(H) ⊗ τ : B(H)⊗ L1(τ)→ B(H).
More explicitly if f is as above (here p = 1) we set

τ̂ (f) =
∑

bkτ(xk),

and since the norm and the cb-norm coincide for linear forms, we have

‖τ̂(f)‖ ≤ ‖f‖B⊗minL1(τ).
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Then, by the trace property, if r = 1, τ̂ (f⊗̇g) and τ̂ (g⊗̇f) are the same up
to transposition of the two factors, and hence have the same minimal norm.
More generally, given finite sequences fℓ ∈ B(H) ⊗ Lp(τ) as above and gℓ ∈
B(K)⊗ Lq(τ) (r ≥ 1, 1/r = 1/p+ 1/q), the same reasoning yields

‖τ̂(
∑

ℓ
fℓ⊗̇gℓ)‖ = ‖τ̂ (

∑
ℓ
gℓ⊗̇fℓ)‖. (8.1)

This identity (8.1) will considerably facilitate the generalization of most of the
preceding proofs to the non-commutative case, in a rather easier fashion than
for the corresponding steps in [26].
Now, Haagerup’s version of the Cauchy–Schwarz inequality for the Hilbert
space ℓ2(L2(τ)) becomes:

Lemma 8.1. Let fk, gk ∈ B ⊗ L2(τ) (k = 1, . . . , N). Then

∥∥∥∥
∑N

1
τ̂(f∗

k ⊗̇gk)
∥∥∥∥ ≤

∥∥∥
∑

τ̂(f∗
k ⊗̇fk)

∥∥∥
1/2 ∥∥∥

∑
τ̂
(∑

g∗k⊗̇gk
)∥∥∥

1/2

, (8.2)

and actually this is valid when τ is any (not necessarily tracial) state on M .

Proof. Let H be the Hilbert space obtained (after quotient and completion)
from M equipped with the scalar product 〈x, y〉 = τ(y∗x). Then this lemma
appears as a particular case of (2.2).

We will use repeatedly the identification

B(H) = B(H).

The operator space Λp(τ) will be defined as isometric to Lp(τ) but with an
o.s.s. such that for any f in B(H)⊗ Lp(τ) (p an even integer) we have

‖f‖B(H)⊗minΛp(τ) = ‖τ̂(f∗⊗̇f ⊗ · · · ⊗̇f∗⊗̇f)‖
1
p

B(H⊗2H⊗2···⊗2H⊗2H)
(8.3)

where f∗⊗̇f and H ⊗2 H are repeated p/2-times.
To prove that (8.3) really defines a norm (and an o.s.s.) on B(H) ⊗ Lp(τ) we
proceed exactly as in the commutative case by first establishing a Hölder type
inequality:

Lemma 8.2. Let p ≥ 2 be an even integer. Consider fj ∈ B(Hj)⊗ Lp(τ). Let

‖fj‖(p) = ‖τ̂(f∗
j ⊗̇fj⊗̇ · · · ⊗̇f∗

j ⊗̇fj)‖1/pB(Hj⊗Hj⊗···⊗Hj⊗Hj)

where f∗
j ⊗̇fj is repeated p/2 times. We have then

‖τ̂(f1⊗̇ · · · ⊗̇fp)‖ ≤
p∏

j=1

‖fj‖(p). (8.4)
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Proof. We will use repeatedly the fact that the minimal tensor product is com-
mutative i.e. a permutation σ of the factors induces a complete isometry (and
actually a ∗-isomorphism) from B(H1 ⊗2 · · · ⊗Hn) to

B(Hσ(1) ⊗2 · · · ⊗2 Hσ(n)).

Thus for any x =
∑
b1j ⊗ · · · ⊗ bnj ⊗ xj ∈ B(H1) ⊗ · · · ⊗ B(Hn) ⊗ Lp(τ), if we

denote σ[x] =
∑
b
σ(1)
j ⊗ · · · ⊗ bσ(n)j ⊗ xj we have

‖x‖min = ‖σ[x]‖min.

Let y = σ[x]. To indicate that one can pass from x to y by a permutation, it
will be convenient to write x ≈ y.
Thus x ≈ y guarantees ‖x‖min = ‖y‖min. For example, let

f1 ∈ B(H1)⊗ Lp(τ) f2 ∈ B(H2)⊗ Lp(τ).

Then τ̂ ((f1⊗̇f2)∗) ≈ τ̂ (f∗
2 ⊗̇f∗

1 ) and hence

‖τ̂((f1⊗̇f2)∗)‖ = ‖τ̂(f∗
2 ⊗̇f∗

1 )‖.

Also using the trace property we have for any f in B(H)⊗ L2(τ)

τ̂ (f∗⊗̇f) ≈ τ̂ (f⊗̇f∗)

and hence
‖f‖(2) = ‖f∗‖(2). (8.5)

More generally, for any f1, . . . , fp as before we have by (8.1)

‖τ̂(f1⊗̇ · · · ⊗̇fp)‖B(H1⊗2···⊗2Hp) = ‖τ̂(fp⊗̇f1⊗̇ · · · ⊗̇fp−1)‖B(Hp⊗2···⊗2Hp−1).
(8.6)

In particular this gives us for any j

‖fj‖(p) = ‖τ̂ (fj⊗̇f∗
j ⊗̇ · · · ⊗̇fj⊗̇f∗

j )‖
1
p (8.7)

or equivalently
‖fj‖(p) = ‖f∗

j ||(p). (8.8)

To prove the Lemma, we start with p = 2. In that case (8.4) reduces to (8.1).
Let us denote by (8.4)p the inequality (8.4) for a given value of p. We will show

(8.4)p ⇒ (8.4)2p.

This covers only the case p = 2k, but actually the argument used earlier for
Lp(µ) (see Lemma 3.1) when p is an even integer can be easily adapted to the
case of Lp(τ) (note that the invariance of I(f1, · · · , fp) = τ̂ (f1⊗̇ · · · ⊗̇fp) under
cyclic permutations suffices to adapt this argument here). We leave the details
to the reader at this point.
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So assume (8.4)p proved for some integer p ≥ 2. Consider

fj ∈ B(Hj)⊗ L2p(τ) j = 1, . . . , 2p.

Let

gj = f2j−1⊗̇f2j ∈ B(H2j−1 ⊗2 H2j)⊗ Lp(τ) (j = 1, . . . , p).

By (8.4)p we have

‖τ̂(g1⊗̇ · · · ⊗̇gp)‖ ≤
p∏

1

‖gj‖(p). (8.9)

Moreover using (8.6) we find

‖gj‖(p) = ‖τ̂(f∗
2j−1⊗̇f2j−1⊗̇f2j⊗̇f∗

2j⊗̇ · · · )‖
1
p

where the preceding expression is repeated p/2 times.
By (8.4)p we have

‖gj‖(p) ≤ ‖f∗
2j−1⊗̇f2j−1‖

1
2

(p)‖f2j⊗̇f∗
2j‖

1
2

(p)

and hence by (8.7)

≤ ‖f2j−1‖(2p)‖f2j‖(2p).
Thus we find that (8.9) implies (8.4)2p.

We then have just like in the commutative case:

Theorem 8.3. Let p ≥ 2 be an even integer. The space Lp(τ) can be equipped
with an o.s.s. so that denoting by Λp(τ) the resulting operator space we have
for any H and any f in B(H)⊗ Lp(τ)

‖f‖B(H)⊗minΛp(τ) = ‖f‖(p).
Proof. We may reduce consideration to H = ℓ2 for simplicity of notation. We
have then by (8.4)

‖f‖(p) = sup ‖τ̂(f⊗̇f2⊗̇ · · · ⊗̇fp)‖ (8.10)

where the supremum runs over all fj in B(H) ⊗ Lp(τ) (2 ≤ j ≤ p) with
‖fj‖(p) ≤ 1. We then define for any x in Lp(τ)

J(x) = ⊕[τ̂(x⊗̇f2⊗̇ · · · ⊗̇fp)] (8.11)

where the direct sum runs over all choices of (fj) (j ≥ 2) as before. Then (8.10)
ensures that

‖f‖(p) = ‖(idB(H) ⊗ J)(f)‖min.

Thus J defines an isometric embedding of Lp(τ) into some B(H) (here H is a
suitably “huge” direct sum) as in (8.11) so that the associated o.s.s. satisfies
the desired property.
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By exactly the same argument as for Corollary 3.7 above, we have

Corollary 8.4. Let p ≥ q ≥ 2 be even integers. If τ(1) = 1, the inclusion
Λp(τ) ⊂ Λq(τ) is a complete contraction from Λp(τ) to Λq(τ).

It is important for the sequel to observe that 0 ≺ τ̂ (f∗⊗̇f) for any f in B ⊗
L2(τ). This follows from a very general fact on sesquilinear forms.

Lemma 8.5. Let B and E be complex vector spaces. Let x ∈ (B⊗E)⊗(B ⊗ E)
be such that x ≻ 0, meaning by this that x can be written as a finite sum x =∑
tk⊗t̄k with tk ∈ B⊗E. We will use the natural identification B ⊗ E = B⊗E.

Let ϕ : E ⊗ E → C be a bilinear form (equivalently ϕ defines a sesquilinear
form on E ×E). Let y = (ϕ⊗ idB⊗B)(x) ∈ B ⊗B (more precisely here ϕ acts
on the second and fourth factors, so, to indicate this, the notation y = (ϕ)24(x)
would be less abusive). If ϕ is positive definite (meaning that ϕ(a ⊗ ā) ≥ 0
∀a ∈ E), then y ≻ 0.

Proof. Note that we may as well assume B and E finite dimensional. Consider
then t =

∑
bk ⊗ ak ∈ B ⊗ E, ξ ∈ B∗ and s = (ξ ⊗ idE)(t) ∈ E. We have

(ξ⊗ ξ̄⊗ idE⊗E)(t⊗ t̄) = s⊗ s̄ ≻ 0 and hence (ξ⊗ ξ̄)(y) = ϕ(s⊗ s̄) ≥ 0. By the
proof of Lemma 2.1 we conclude that y ≻ 0.

In particular, since τ(a∗a) = τ(aa∗) ≥ 0 for any a in L2(τ), this implies:

Lemma 8.6. For any f in B ⊗ L2(τ), we have

τ̂ (f∗⊗̇f) ≻ 0 (and τ̂ (f⊗̇f∗) ≻ 0).

Remark 8.7. By the classical property of conditional expectations, if 1 ≤ p, p′ ≤
∞ are conjugate (i.e. p′ = p(p − 1)−1) and if T : Lp(τ) → Lp(τ) is the con-
ditional expectation with respect to a (von Neumann) subalgebra of M , then:
∀x ∈ Lp(τ) ∀y ∈ Lp′(τ) we have

τ(T (x)y) = τ(xT (y)) = τ(T (x)T (y)).

Therefore for any f ∈ B(H1)⊗ Lp(τ) and g ∈ B(H2)⊗ Lp′(τ) we have:

τ̂ (T (f)⊗̇g) = τ̂ (f⊗̇T (g)) = τ̂(T (f)⊗̇T (g)) (8.12)

where we still denote abusively by T the operator I⊗T acting either on B(H1)⊗
Lp(τ) or on B(H2)⊗Lp′(τ). Moreover, it is easy to check that T (f∗) = T (f)∗

for any f ∈ B ⊗ Lp(τ).
In the rest of this section we continue to abusively denote by T the operator
I ⊗ T on B ⊗ Lp(τ).
Lemma 8.8. Let T : Lp(τ)→ Lp(τ) be the conditional expectation with respect
to a von Neumann subalgebra N ⊂ M. Let p = 2m be an even integer. Then
for any f in B ⊗ Lp(τ) we have

‖Tf‖(p) ≤ ‖f‖(p). (8.13)
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Proof. By (8.12), we have

τ̂(T (f)⊗̇T (f)∗⊗̇ · · · ⊗̇T (f)⊗̇T (f)∗) = τ̂(f⊗̇T (f)∗⊗̇ · · · ⊗̇T (f)⊗̇T (f)∗).

Indeed, just observe that if g = T (f)∗⊗̇ · · · ⊗̇T (f)⊗̇T (f)∗ then T (g) = g.
Therefore by (8.4) we have

‖T (f)‖p(p) ≤ ‖f‖(p)‖T (f)‖
p−1
(p)

and hence after a suitable division we obtain (8.13).

Remark 8.9. In the preceding situation for any f in B ⊗ L2(τ), let f0 = T (f)
and d1 = f − T (f). We have then T (f∗⊗̇f) = f∗

0 ⊗̇f0 + T (d∗1⊗̇d1), and hence
(since τ̂T = τ̂ ) τ̂ (f∗⊗̇f) = τ̂ (f∗

0 ⊗̇f0) + τ̂ (d∗1⊗̇d1) Therefore, by Lemma 8.6, we
have both τ̂(f∗

0 ⊗̇f0) ≺ τ̂(f∗⊗̇f) and τ̂ (d∗1⊗̇d1) ≺ τ̂ (f∗⊗̇f).
By Corollary 8.4, assuming τ(1) = 1, for all even integers p ≥ q ≥ 2, and any
f ∈ B ⊗M, we have ‖f‖(p) ≤ ‖f‖(q), so that it is again natural to define

‖f‖(∞) = lim
p→∞

‖f‖(p).

This norm is clearly associated to a well defined o.s.s. onM, so we are led to
the following

Definition 8.10. Assume τ(1) = 1. We will denote by Λ∞(M, τ) the Banach
spaceM equipped with the o.s.s. determined by the identities

∀f ∈ B ⊗M ‖f‖B⊗minΛ∞(M,τ) = ‖f‖(∞) = sup
p∈2N

‖f‖(p).

We warn the reader that in sharp contrast with the commutative case, in general
Λ∞(M, τ) is not completely isometric toM. See §10 below for more on this,
including the case study ofM =Mn equipped with its normalized trace.

9 Comparisons

We need to recall the definition of the “opposite” of an operator space E ⊂
B(H). The “opposite” of E, denoted by Eop, is the same Banach space as E,
but equipped with the following norms on Mn(E). For any (aij) in Mn(E) we
define

‖(aij)‖Mn(Eop)
def
= ‖(aji)‖Mn(E).

Equivalently, Eop can be defined as the operator space structure on E for which
the transposition: x → tx ∈ B(H∗) defines a completely isometric embedding
of Eop into B(H∗).
LetM be a von Neumann algebra equipped with a normal semi-finite faithful
trace τ , and let Lp(τ) be the associated “non-commutative” Lp-space. We
need to recall the definition of the “natural” o.s.s. on Lp(τ) in the sense of
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[23] (we follow the clarification in [25, p. 139] that is particularly important
at this point). We set L∞(τ) =M. Of course we view L∞(τ) as an operator
space completely isometric toM. The space L1(τ) is classically defined as the
completion of {x ∈ M | τ(|x|) < ∞} for the norm x 7→ ‖x‖1 = τ(|x|). It
can be identified isometrically with M∗ via the mapping x 7→ ϕx defined by
ϕx(a) = τ(xa). The space M∗ ⊂ M∗ is equipped with the o.s.s. induced by
the dual of the von Neumann algebraM (this duality uses Ruan’s theorem, see
e.g. [25, 11]). The “natural” o.s.s. on L1(τ) is defined as the one transferred
from the spaceMop

∗ via the preceding isometric identification x 7→ ϕx. In short
we declare that L1(τ) = Mop

∗ completely isometrically. Then using complex
interpolation, we define the “natural” o.s.s. on Lp(τ) (1 < p < ∞) by the
completely isometric identity Lp(τ) = (L∞(τ), L1(τ))1/p.
For example, when (M, τ) = (B(ℓ2), tr), the space Lp(τ) can be identified
with the Schatten p-class. The column (resp. row) matrices in B(ℓ2) form an
operator space usually denoted by C (resp. R). However, when considered as
a subspace of L1(τ) they are completely isometric to R (resp. C), while when
considered as subspaces of L2(τ) they both are completely isometric to OH .
The non-commutative case of §7 requires us to introduce yet another o.s.s. on
Lp(τ).
We set again L∞(τ) =M but we set L1(τ) =M∗ (so that L1(τ) = L1(τ)

op)
and we denote by Lp(τ) the operator space defined by

Lp(τ) = (L∞(τ),L1(τ))1/p.

The space Lp(τ) is isometric to Lp(τ) but in the non-commutative case its
o.s.s. is different. For instance if (M, τ) = (B(ℓ2), tr), the column (resp. row)
matrices in Lp(τ) form an operator space that is completely isometric to C
(resp. R), for all 1 ≤ p ≤ ∞. In sharp contrast, the o.s.s. of the subspace
formed of the diagonal matrices is the same in Lp(τ) or Lp(τ), and it can be
identified completely isometrically with ℓp equipped with its natural o.s.s. . In
particular, L2(τ) is isometric to the Hilbert-Schmidt class S2, but the column
(resp. row) matrices in L2(τ) are completely isometric to C (resp. R) while
the diagonal ones are completely isometric to OH .

Proposition 9.1. Let 1 ≤ p, q, r ≤ ∞ be such that r−1 = p−1 + q−1. The
product mapping

(x, y) 7→ xy

is (jointly) completely contractive from Lp(τ) × Lq(τ) to Lr(τ).
Proof. We start by the two cases p = r = 1, q =∞ and q = r = 1, p =∞. We
need to show that (x, ϕy) 7→ ϕxy (resp. (ϕx, y) 7→ ϕxy) are (jointly) completely
contractive from M×M∗ to M∗ (resp. from M∗ ×M to M∗). Consider
x = [xkl] ∈ Mm(M) with ‖x‖ ≤ 1 and y = [yij ] ∈ Mn(M∗) with ‖y‖ ≤ 1
(resp. x = [xkl] ∈ Mm(M∗) with ‖x‖ ≤ 1 and y = [yij ] ∈ Mn(M) with
‖y‖ ≤ 1). It suffices to show that in both cases we have ‖[ϕxklyij ]‖Mmn(M∗) ≤ 1.
Equivalently, we need to show that the map u : M → Mn ⊗Mm defined by
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u(a) =
∑
eij ⊗ ekl τ(yijaxkl) satisfies ‖u‖cb ≤ 1.

Consider v : M → Mm ⊗M defined by v(a) =
∑
ekl ⊗ axkl = (I ⊗ a)x.

Clearly ‖v‖cb ≤ ‖x‖ ≤ 1. Let w : M → Mn defined by w(a) =
∑
eijτ(yija).

Then ‖w‖cb = ‖y‖Mn(M∗) ≤ 1. We have (I ⊗ w)v(a) = ∑ ekl ⊗ eij τ(yijaxkl)
which is u(a) up to permutation of the tensor product. Therefore ‖u‖cb ≤
‖I ⊗ w‖cb‖v‖cb ≤ ‖w‖cb‖v‖cb ≤ 1
(resp. let V : M → Mn ⊗M and W : M → Mm be defined by V (a) =∑
eij ⊗ ayij and W (a) =

∑
eklτ(xkla), then we have u(a) = (I ⊗W )V (a) and

we conclude similarly).

Corollary 9.2. For any p ∈ 2N and any f ∈ B ⊗ Lp(τ) we have

‖f‖(p) = ‖f‖B⊗Λp(τ) ≤ max{‖f‖B⊗minLp(τ), ‖f∗‖B̄⊗minLp(τ)}.

In other words, the identity defines a completely contractive map Lp(τ) ∩
Lp(τ)op → Λp(τ) (where Lp(τ) ∩ Lp(τ)op denotes the o.s.s. on Lp(τ) induced
by the embedding x 7→ x⊕ x ∈ Lp(τ) ⊕ Lp(τ)op.

Proof. By iteration, the preceding statement implies that for any integer N the
product mapping is (jointly) completely contractive from Lp1(τ)×· · ·×LpN (τ)
to Lr(τ) when 1/r =

∑
1/pj. Equivalently, setting B1 = · · · = BN = B,

the mapping (f1, · · · , fN ) 7→ f1⊗̇ · · · ⊗̇fN is contractive from B1⊗minLp1 (τ)×
· · · × BN ⊗min LpN (τ) to B1 ⊗min · · · ⊗min BN ⊗min Lr(τ). A fortiori, when
r = 1, (f1, · · · , fN) 7→ τ̂ (f1⊗̇ · · · ⊗̇fN) is contractive from B1 ⊗min Lp1(τ) ×
· · ·×BN ⊗minLpN (τ) to B1⊗min · · ·⊗minBN . Therefore, if p is an even integer,
we have

‖f‖p(p) = ‖τ̂(f∗⊗̇f⊗̇ · · · ⊗̇f∗⊗̇f)‖ ≤ ‖f‖p/2B⊗minLp(τ)
‖f∗‖p/2

B̄⊗minLp(τ)
.

A fortiori we obtain the announced result. Note that x̄ 7→ x∗ is a completely
isometric linear isomorphism both from M̄ toMop and from M̄∗ toMop

∗ , and
hence also from Lp(τ) to Lp(τ)op for all 1 ≤ p ≤ ∞. Therefore, if f =

∑
bj⊗xj

we have ‖f∗‖B̄⊗minLp(τ) = ‖
∑
b̄j⊗x∗j‖B̄⊗minLp(τ) = ‖

∑
b̄j⊗x̄j‖B̄⊗minLp(τ)op

=

‖∑ bj ⊗ xj‖B⊗minLp(τ)op . Thus ‖f∗‖B̄⊗minLp(τ) = ‖f‖B⊗minLp(τ)op , whence the
last assertion.

We will now examine the particular case when (M, τ) = (B(ℓ2), tr). Recall
that R (resp. C) is the subspace ofM = B(ℓ2) formed by all row (resp. col-
umn) matrices. More generally, we denote by Rp (resp. Cp) the operator space
obtained by equipping R (resp. C) with the o.s.s. induced by Lp(τ). We also
denote by Rnp (resp. Cnp ) the n-dimensional version of Rp (resp. Cp).

Similarly, we will denote by R̃p (resp. C̃p) the operator space obtained by
equipping R (resp. C) with the o.s.s. induced by Λp(τ).

Furthermore, let D̃p be the operator subspace of Λp(τ) formed of all the diago-
nal matrices. As a Banach space this is isometric to ℓp, and it is easy to check

that as an operator space D̃p is completely isometric to the space λp = Λp(N, µ)
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with µ equal to the counting measure on N.
Let bj ∈ B (j = 1, · · · , n) and let f =

∑
bj⊗e1j ∈ B⊗R (resp. g =

∑
bi⊗ei1 ∈

B ⊗ C). Then f⊗̇f∗ =
∑
bj ⊗ b̄j ⊗ e11 (resp. g∗⊗̇g =

∑
b̄j ⊗ bj ⊗ e11). Note

that ‖∑ b̄j ⊗ bj‖1/2 = ‖∑ bj ⊗ b̄j‖1/2. Therefore, viewing f and g as elements
of B ⊗ Λp(τ), for any p ∈ 2N, we have

‖f‖(p) = ‖g‖(p) = ‖
∑

bj ⊗ b̄j‖1/2.

Thus we find:

Lemma 9.3. The spaces R̃p and C̃p are both completely isometric to OH for

any p ∈ 2N, while D̃p is completely isometric to λp.

Again let bj ∈ B (j = 1, · · · , n) and let f =
∑
bj⊗ e1j. We have ‖f‖B⊗Lp(τ) =

sup{‖∑ bjab
∗
j‖

1/2
p | ‖a‖p ≤ 1} (see [22, p. 83-84] or [36] for details). In case

bj = ej1, this gives us ‖f‖B⊗Lp(τ) = n1/2p. Therefore the natural inclusion

Rnp → Rn2 has c.b. norm ≥ n1/4−1/2p. Similarly, using instead bj = e1j, we find

‖f‖B⊗Lp(τ) = n(1/2)(1−1/p) and hence ‖Rn2 → Rnp‖cb ≥ n1/4−1/2p. This shows:

Lemma 9.4. For any p ∈ 2N and any integer n ≥ 1, the n-dimensional identity
maps satisfy

‖Lp(Mn, tr)→ Λp(Mn, tr)‖cb ≥ n1/4−1/2p

and
‖Λp(Mn, tr)→ Lp(Mn, tr)‖cb ≥ n1/4−1/2p.

10 Connection with CB maps on OH

Given a Hilbert space H we denote by OH the operator Hilbert space isometric
to H , as defined in [22]. This means that whenever (Tj) is an orthonormal basis
of OH , for any finitely supported family (bj) in B we have

‖
∑

bj ⊗ Tj‖ = ‖
∑

b̄j ⊗ bj‖1/2. (10.1)

AssumeM⊂ B(H) and τ(1) = 1. We will compare the limit o.s.s. of Λp(M, τ)
when p → ∞ to the one induced on M by CB(OH) equipped with its usual
operator space structure.
The latter can be described as follows (see e.g. [11]): Whenever E,F are
operator spaces the space CB(E,F ) of all c.b. maps from E to F is equipped
with the (unique) o.s.s. determined by the isometric identity

∀N ≥ 1 MN(CB(E,F )) = CB(E,MN (F )).

More generally, we have an isometric embedding

B ⊗min CB(E,F ) ⊂ CB(E,B ⊗min F ). (10.2)

Documenta Mathematica 19 (2014) 1367–1442



Martingale Inequalities and . . . 1413

If either E or F is finite dimensional, we may identify completely iso-
metrically CB(E,F ) with E∗ ⊗min F . When E = F , we denote simply
CB(E) = CB(E,E). Thus in particular CB(OHn) can be identified with
OH∗

n⊗minOHn, or equivalently by the selfduality of OHn, with OHn⊗minOHn

or OHn ⊗min OHn. We first recall a well known fact.

Lemma 10.1. Let E,F,G be operator spaces. Let B′ = B(H ′) for some Hilbert
space H ′. Then for any f =

∑
bj ⊗ xj ∈ B ⊗ CB(F,G) and g =

∑
b′k ⊗ yk ∈

B′ ⊗ CB(E,F ) we have

‖f⊗̇g‖B⊗minB′⊗minCB(E,G) ≤ ‖f‖B⊗minCB(F,G) ‖g‖B′⊗minCB(E,F ), (10.3)

where, as before, we denote f⊗̇g =
∑
j,k bj ⊗ b′k ⊗ xjyk ∈ B ⊗B′ ⊗CB(E,G).

In other words, the composition (x, y) 7→ xy is (jointly) completely contractive
from CB(F,G) × CB(E,F ) to CB(E,G).

Proof. To prove (10.3), note that f (resp. g) defines a c.b. map f̃ : F →
G ⊗min B (resp. g̃ : E → F ⊗min B

′) and ‖f‖B⊗minCB(F,G) = ‖f̃‖cb (resp.
‖g‖B′⊗minCB(E,F ) = ‖g̃‖cb). Indeed, recall that, if we wish, G ⊗min B can
be identified with B ⊗min G. Similarly, f⊗̇g defines a c.b. map Ψ : E →
G ⊗min B ⊗min B

′ such that ‖f⊗̇g‖B⊗minB′⊗minCB(E,G) = ‖Ψ‖cb. But since

Ψ = (f̃ ⊗ IdB′) ◦ g̃ we have ‖Ψ‖cb ≤ ‖f̃‖cb‖g̃‖cb and (10.3) follows.

Remark 10.2. In particular, the preceding Lemma implies a fortiori that if
D,E, F,G are operator spaces and if u ∈ CB(D,E) and v ∈ CB(F,G) are fixed
complete contractions, then the mapping x 7→ vxu is a complete contraction
from CB(E,F ) to CB(D,G). Indeed, the latter can be viewed as the restriction
of the triple product map to Cv × CB(E,F )× Cu.

Theorem 10.3. Let (M, τ) be as before with M ⊂ B(H) and τ(1) = 1. Let
us denote by M the operator space obtained by equipping M with the o.s.s.
induced by CB(OH). Then

Λ∞(M, τ) =M
completely isometrically.

The proof of this Theorem will require some observations about the space
CB(OH) that may be of independent interest.
The following rather striking identity (10.4) appears as analogous to Gelfand’s
axiom (namely ‖x‖2 = ‖x∗x‖) for C∗-algebras. It seems to express that
CB(OH) is an o.s. analogue of a C∗-algebra...

Theorem 10.4. Let us denote simply by B the operator space CB(OH). (Note
that B is isometric to B(H) as a Banach space.) For any f ∈ B ⊗ B we have

‖f‖2B⊗minB = ‖f∗⊗̇f‖B̄⊗minB⊗minB = ‖f⊗̇f∗‖B⊗minB̄⊗minB. (10.4)

Moreover, we also have

‖f∗‖B̄⊗minB = ‖f‖B⊗minB. (10.5)
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Proof. Let Hi ⊂ H be an increasing net of finite dimensional subspaces with
dense union. Assuming f =

∑
bj ⊗ xj , let f(i) =

∑
bj ⊗ PHixj |Hi

∈ B ⊗
CB(OHi). Then, using the homogeneity of OH in the sense of [22, p. 19]
or [23], one checks that each side of either (10.4) or (10.5) is equal to the
supremum over i of the expression obtained after substituting fi for f . Thus
it suffices to prove (10.4) or (10.5) when dim(H) <∞.
In that case, denoting by Tj an orthonormal basis of OHn, and using the
identity CB(OHn) = OHn ⊗min OHn, we may write any f ∈ B ⊗ B as f =∑
bij⊗Ti⊗T̄j with bij ∈ B, and ‖f‖B⊗B = ‖∑ bij⊗Ti⊗T̄j‖B⊗minOHn⊗minOHn

.
Using ‖x‖ = ‖x̄‖ for any operator x, and permuting the second and third
factors, we have then obviously (the norm being the min-norm)

‖
∑

bij⊗Ti⊗T̄j‖ = ‖
∑

b̄ij⊗T̄i⊗Tj‖ = ‖
∑

b̄ij⊗Tj⊗T̄i‖ = ‖
∑

b̄ji⊗Ti⊗T̄j‖,

and this is clearly equivalent to (10.5).
Let yi =

∑
j bij⊗ T̄j. By (10.1), we have ‖∑ bij⊗Ti⊗ T̄j‖B⊗minOHn⊗minOHn

=

‖∑ yi⊗Ti‖ = ‖
∑
ȳi⊗yi‖1/2 = ‖∑ yjk⊗Tj⊗ T̄k‖1/2 where yjk =

∑
i b̄ij⊗bik.

Using again the identity CB(OHn) = OHn⊗minOHn we find f∗⊗̇f =
∑
yjk⊗

Tj ⊗ T̄k. Thus, we have ‖f‖ = ‖f∗⊗̇f‖1/2, and by (10.5) we obtain (10.4).

Remark 10.5. Note that after iteration, for any p = 2m (m ≥ 1), (10.4) yields

‖f‖pB⊗minB
= ‖f∗⊗̇f⊗̇f∗⊗̇f · · · ‖B̄⊗minB⊗min···⊗minB. (10.6)

Corollary 10.6. Let HI = ⊕i∈IHi be an orthogonal decomposition of a
Hilbert space HI . We have then a completely isometric embedding

⊕i∈ICB(OHi) ⊂ CB(OHI).

Proof. Let u : ⊕i∈ICB(OHi)→ CB(OHI ) denote this embedding. It is easy
to reduce the proof to the finite case so we assume |I| <∞. Since the coordi-
natewise inclusions and projections relative to OHI are all completely contrac-
tive, it is easy to check using Lemma 10.1 that ‖u‖cb ≤ |I| <∞. Consider now
f ∈ B ⊗min (⊕i∈ICB(OHi)) and let g = (IdB ⊗ u)(f) ∈ B ⊗min CB(OHI).

We need to show that ‖g‖ = ‖f‖. Note that (IdB̄⊗B⊗··· ⊗ u)(f∗⊗̇f)⊗̇m) =

(g∗⊗̇g)⊗̇m. Thus, by (10.3) and (10.4) we have for any integer m

‖g‖ = ‖(g∗⊗̇g)⊗̇m‖1/2m ≤ (|I|‖(f∗⊗̇f)⊗̇m‖)1/2m = |I|1/2m‖f‖
so that letting m → ∞ we obtain ‖g‖ ≤ ‖f‖. Since the converse inequality
follows easily from Remark 10.2 applied to the coordinate projections, we have
equality.

Theorem 10.7. Let E ⊂ B(H) be any operator space. Let us denote again by
E the operator space obtained by inducing on E the o.s.s. of CB(OH). Let
F ⊂ B(K) be another operator space. Then for any u ∈ CB(E,F ) we have

‖u‖CB(E,F ) ≤ ‖u‖CB(E,F ).

In particular, if u : E → F is completely isometric, then u : E → F also is.
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Proof. We may clearly assume F = B(K) and F = CB(OK) and by the same
argument as in the preceding proof, we may assume dim(K) = n <∞. Assume
‖u‖CB(E,F ) ≤ 1. Then u extends to a c.b. map û : B(H) → B(K) with the
same cb-norm. Since Mn(B(H)∗) = Mn(B(H)∗)

∗∗ isometrically (see e.g. [11,
p. 75]) û is then a point norm limit of normal maps with cb-norm ≤ 1, so we
may assume that u is normal on E = B(H). Then (see [34, p. 45]) there is a
factorization of u of the form u(x) = V ρ(x)W with ‖V ‖ ≤ 1, ‖W‖ ≤ 1 where
ρ is an “ampliation”, i.e. ρ takes its values in B(⊕i∈IHi) for some set I with
Hi = H for all i ∈ I and ρ(x) = ⊕i∈Iρi(x) with ρi(x) = x for all i ∈ I. This
reduces the Lemma to the case when u is an ampliation and to the case when
u is of the form u(x) = V xW .
Let us first assume u(x) = V xW with V : H → K and W : K → H
of norm 1. By the homogeneity of OH we know that the cb norm of V :
OH → OK is 1, and similarly for W : OK → OH . Then by Remark 10.2
‖u‖CB(CB(OH),CB(OK)) ≤ 1.
We now assume that u is an ampliation i.e. u = uI where uI(x) = ⊕i∈Iui(x) ∈
B(⊕i∈IHi) with Hi = H and ui(x) = x for all i ∈ I. Let HI = ⊕i∈IHi. By
Corollary 10.6 uI is a complete isometry from CB(OH) to CB(OHI). Since
both multiplications and ampliations have been checked, the proof of the first
assertion is complete. The second assertion is then immediate.

Corollary 10.8. Let E ⊂ B(H) be any operator space. The o.s.s. of E
(induced on E by that of CB(OH)) is independent of the completely isometric
embebdding E ⊂ B(H), i.e. it depends only on the o.s.s. of E.

Proof of Theorem 10.3. We first give a simple argument for the special case
when M = Mn equipped with its normalized trace τn. We will show that
Λ∞(Mn, τn) can be identified completely isometrically with CB(OHn) for any
n ≥ 1. We first claim that the identity from OHn ⊗ OHn to itself induces
a mapping Vn : OHn ⊗h OHn → OHn ⊗min OHn such that ‖Vn‖cb ≤ 1
and ‖V −1

n ‖cb ≤ n1/2. By the minimality of the minimal tensor product the
first assertion is obvious. To check the second one, recall the identity map on
n-dimensional Hilbert space defines an isomorphism un : Rn → OHn such
that ‖un‖cb = ‖u−1

n ‖cb = n1/4 (see e.g. [25, p. 219]). Therefore, we have a
factorization of V −1

n as follows

OHn ⊗min OHn
Id⊗u−1

n→ OHn ⊗min Rn = OHn ⊗h RnId⊗un→ OHn ⊗h OHn,

where we used the identity E ⊗min Rn = E ⊗h Rn for which we refer e.g. to
[25, p. 95]. From this follows ‖V −1

n ‖cb ≤ ‖u−1
n ‖cb‖un‖cb = n1/2.

More explicitly, recall that for any pair of Hilbert spaces H,K we have (see
[22, Cor. 2.12])

OH ⊗h OK = O(H ⊗2 K);

in particular, Λ2(Mn, tr) is the same as L2(Mn, tr) = OHn⊗hOHn. Therefore,
for any g ∈ B ⊗ Λ2(Mn, tr) we have

‖g‖B⊗minCB(OHn) ≤ ‖g‖B⊗minΛ2(Mn,tr) ≤ n1/2‖g‖B⊗minCB(OHn). (10.7)
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Consider an even integer p and f ∈ B ⊗Mn. Let g = f∗⊗̇f⊗̇ · · · (here there
are p/2 factors equal to f∗⊗̇f). We have by (10.4)

‖g‖2B̄⊗min···⊗minCB(OHn)
= ‖g⊗̇g∗‖B̄⊗min···⊗minCB(OHn).

We have also g⊗̇g∗ = f∗⊗̇f⊗̇ · · · (here there are p such factors) and hence,
assuming p = 2m for some m and using (10.6), we find

‖g‖2B̄⊗min···⊗minCB(OHn)
= ‖f‖pB⊗minCB(OHn)

. (10.8)

By definition of Λp we have

‖f‖pB⊗minΛp(Mn,tr)
= ‖g‖2Λ2(Mn,tr)

and hence by (10.7)

‖g‖2B⊗minCB(OHn)
≤ ‖f‖pB⊗minΛp(Mn,tr)

≤ n‖g‖2B⊗minCB(OHn)
.

Then by (10.8) we obtain

‖f‖pB⊗minCB(OHn)
≤ ‖f‖pB⊗minΛp(Mn,tr)

≤ n‖f‖pB⊗minCB(OHn)
,

and, if we take the p-th root and let p→∞ this yields

‖f‖B⊗minCB(OHn) = ‖f‖B⊗minΛ∞(Mn,τn).

We now consider the general case. Let f ∈ B ⊗M. For any p ∈ 2N we have
‖f‖p(p) = τ̂(f∗⊗̇f · · · ). As a linear form on M, τ has norm 1, and hence c.b.

norm equal to 1 onM. Therefore

‖f‖p(p) = ‖τ̂(f∗⊗̇f · · · )‖ ≤ ‖f∗⊗̇f · · · ‖B̄⊗···B⊗M = ‖f∗⊗̇f · · · ‖B̄⊗···B⊗B

and by (10.6) (assuming p = 2m)

‖f∗⊗̇f · · · ‖B̄⊗···B⊗B = ‖f‖pB⊗minB
= ‖f‖pB⊗minM

.

Thus we obtain ‖f‖(p) ≤ ‖f‖B⊗minM, and taking the supremum over p yields

‖f‖B⊗minΛ∞(M,τ) ≤ ‖f‖B⊗minM.

It remains to prove the converse inequality.
Consider f ∈ B ⊗M. Let F : OH → OH ⊗min B be the associated c.b.
map (as in the proof of Lemma 10.1). By Corollary 10.8 we may assume that
H = L2(τ) and that the inclusionM⊂ B(L2(τ)) is the usual realization ofM
acting on L2(τ) by left multiplication.
Let B′ be another copy of B. Note that for any ξ ∈ B′ ⊗OH we have

‖ξ‖B′⊗minOH = ‖ξ‖(2).
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Moreover, if ξ ∈ B′ ⊗ M ⊂ B′ ⊗ OH , then up to permutation of factors
(IdB′ ⊗ F )(ξ) ≈ f⊗̇ξ. Since ‖F‖cb = ‖IdB′ ⊗ F‖cb, the definition of the o.s.s
of CB(OH) (see (10.2) above) shows that

‖f‖B⊗minM = ‖F‖cb = sup{‖f⊗̇ξ‖(2) | ξ ∈ B′ ⊗M, ‖ξ‖(2) ≤ 1}.

Fix ξ ∈ B′⊗M with ‖ξ‖(2) ≤ 1. To complete the proof it suffices to show that

‖f⊗̇ξ‖(2) ≤ sup
p∈2N

‖f‖(p) = ‖f‖B⊗minΛ∞(M,τ).

To verify this, we claim that for any p of the form p = 2m we have

‖f⊗̇ξ‖(2) ≤ ‖τ̂ ((f∗⊗̇f)⊗̇p/2⊗̇ξ⊗̇ξ∗)‖1/p. (10.9)

This is easy to check by induction on m. Indeed, by (8.3) (for p = 2), equality
holds in the case m = 1 and if we assume our claim proved for a given value
of m then the Haagerup-Cauchy-Schwarz inequality (8.2) shows that it holds
also for m+ 1, because we may write (recall (8.1))

‖τ̂((f∗⊗̇f)⊗̇p/2⊗̇ξ⊗̇ξ∗)‖ ≤ ‖(f∗⊗̇f)⊗̇p/2⊗̇ξ‖(2)‖ξ∗‖(2) =
= ‖τ̂ ((f∗⊗̇f)⊗̇p⊗̇ξ⊗̇ξ∗)‖1/2‖ξ∗‖(2),

and by (8.5) ‖ξ∗‖(2) ≤ 1, so we obtain (10.9) with 2p in place of p.
We now use the claim to conclude: By (8.2) again (or by (8.4)) we have

‖τ̂((f∗⊗̇f)⊗̇p/2⊗̇ξ⊗̇ξ∗)‖1/p ≤ ‖f‖(2p)‖ξ⊗̇ξ∗‖1/p(2) .

Now ξ ∈ B′ ⊗M implies ξ⊗̇ξ∗ ∈ B′ ⊗ B̄′ ⊗M and, since τ is finite, we have

‖ξ⊗̇ξ∗‖(2) < ∞, therefore ‖ξ⊗̇ξ∗‖1/p(2) → 1 when p → ∞ and we deduce from

(10.9)

‖f⊗̇ξ‖(2) ≤ lim sup
p→∞

‖τ̂ ((f∗⊗̇f)⊗̇p/2⊗̇ξ⊗̇ξ∗)‖1/p ≤ lim sup
p→∞

‖f‖(2p) = sup
p∈2N

‖f‖(p),

which completes the proof.

Remark 10.9. By the minimality of the min tensor product, we know that
we have a completely contractive inclusion OH∗ ⊗h OH → OH∗ ⊗min OH ⊂
CB(OH). Therefore, for any pair of sets I, J , in analogy with the inclusion
of the Hilbert-Schmidt class into the bounded operators, we have a completely
contractive inclusion

OH(I × J)→ CB(OH(I), OH(J)).
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11 Non-commutative Khintchine inequalities

We start by a fairly simple statement mimicking a classical commutative fact:

Proposition 11.1. Let p = 2n. Let {xk} be a sequence in Lp(τ), such that,
for some constant C, for any finite sum f =

∑
bk ⊗ xk with coefficients bk in

B(H), we have

‖f‖(p) ≤ C
∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

. (11.1)

Assume moreover that {xk} is orthonormal in L2(τ) and τ(1) = 1. Then the
closed span of (xk) in Λp(τ) is completely isomorphic to OH and completely
complemented in Λp(τ). More precisely the orthogonal projection P onto this
span satisfies ‖P : Λp → Λp‖cb ≤ C.

Proof. Let P be the orthogonal projection on Λ2 onto the span under consider-
ation. For any f ∈ B⊗Λp, let h = (Id⊗P )(f). By a well known fact (see [22,
p. 19]), P is completely contractive on Λ2, so that ‖h‖(2) ≤ ‖f‖(2). By Corol-
lary 8.4, we have ‖f‖(2) ≤ ‖f‖(p) and by our assumption ‖h‖(p) ≤ C‖h‖(2).
Therefore ‖h‖(p) ≤ C‖f‖(p). Thus, the c.b. norm of P acting from Λp to
itself is automatically ≤ C. Moreover, for any h ∈ B ⊗ span[xk], we have
‖h‖(2) ≤ ‖h‖(p) ≤ C‖h‖(2), which shows that the span is completely isomor-
phic to OH .

With the “natural” o.s.s. introduced in [23] the Khintchine inequalities for
1 < p <∞ are due to F. Lust-Piquard [20] . For p an even integer, A. Buchholz
[7] found a beautiful proof that yields optimal constants. His proof is valid for
a much more general class of variables instead of the Rademacher functions.
We will now follow his ideas to investigate the analogous question in the space
Λp.
Let P2(2n) denote the set of all partitions of [1, . . . , 2n] onto subsets each with
exactly 2 elements. So an element ν in P2 can be described as a collection
of disjoint pairs {ki, ji} (1 ≤ i ≤ n) with ki 6= ji such that {1, . . . , 2n} =
{k1, . . . , kn, j1, . . . , jn}.
We call such a partition into pairs a 2-partition. Let p = 2n be an even integer
≥ 2. Following [6] we say that a sequence {xk} in Lp(τ), has p-th moments
defined by pairings if there is a function ψ : P2(2n)→ C defined on the set of
2-partitions of [2n] = {1, . . . , 2n} such that for any k1, . . . , k2n we have

τ(xk1x
∗
k2xk3 . . . xk2n−1x

∗
k2n) =

∑

ν∼(k1,...,k2n)

ψ(ν)

where the notation ν ∼ (k1, . . . , k2n) means that ki = kj whenever the pair
{i, j} is a block of the partition ν.
Note that, for each k, taking the kj ’s all equal to k, this implies

τ(|xk|p) =
∑

ν∈P2(2n)
ψ(ν). (11.2)
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Now let E = span[xj ] and B = B(H). Consider f ∈ B ⊗ E of the form

f =
∑

bj ⊗ xj .

We have

τ̂ ((f⊗̇ f∗)⊗̇n) =
∑

k1,...,k2n

∑

ν∼(k1,...,k2n)

ψ(ν)bk1 ⊗ b̄k2 ⊗ · · · ⊗ bk2n−1 ⊗ b̄k2n .

Therefore

‖f‖2n(2n) =

∥∥∥∥∥∥

∑

ν∈P2(2n)

ψ(ν)
∑

(k1,...,k2n)∼ν

bk1 ⊗ b̄k2 ⊗ · · · ⊗ b̄k2n

∥∥∥∥∥∥

≤
∑

ν∈P2(2n)

|ψ(ν)|

∥∥∥∥∥∥

∑

(k1,...,k2n)∼ν

bk1 ⊗ b̄k2 ⊗ · · · ⊗ b̄k2n

∥∥∥∥∥∥
.

But now let

Φ(ν) =
∑

(k1,...,k2n)∼ν

bk1 ⊗ b̄k2 ⊗ · · · ⊗ bk2n−1 ⊗ b̄k2n .

Then up to permutation Φ(ν) is equal to a product of n terms of the form
either

∑
bk ⊗ bk,

∑
b̄k ⊗ b̄k or

∑
bk ⊗ b̄k. Let T1, · · ·Tn be an enumeration

of the latter terms. Since the permutation leaves the norm invariant, we have
‖Φ(ν)‖ = ∏n

1 ‖Tj‖. By (3.1) ‖Tj‖ ≤ ‖
∑
bk ⊗ b̄k‖ for each j (actually there is

equality for terms the third kind), and hence

‖Φ(ν)‖ ≤
∥∥∥
∑

bk ⊗ b̄k
∥∥∥
n

and we conclude that

‖f‖(2n) ≤


 ∑

ν∈P2(2n)

|ψ(ν)|




1/2n ∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

. (11.3)

Moreover by (11.2) we know that if ψ(ν) ≥ 0 for all ν, then the constant∑
ν∈P2(2n)

|ψ(ν)| is optimal. Recapitulating, we have proved:

Theorem 11.2. Let p = 2n. Let {xk} be as above a sequence in Lp(τ), with
p-th moments defined by pairings via a function ψ : P2(2n) → C. Then for
any finite sum f =

∑
bk ⊗ xk (bk ∈ B(H)), we have

‖f‖(p) ≤ Cψ,p
∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

, (11.4)

where Cψ,p =
(∑

ν∈P2(2n)
|ψ(ν)|

)1/2n
. Moreover this constant is optimal if

ψ(ν) ≥ 0 for all ν.
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Buchholz applied the preceding statement to a q-Gaussian family with q ∈
[−1, 1]. The latter have moments defined by pairings. When q ∈ [0, 1], the
function ψ is non-negative, so the constant Cψ,p is optimal and, by (11.2), we
know Cψ,p = ‖x1‖p. In particular, we have:

Corollary 11.3. Let (xk) be a sequence of independent Gaussian normal ran-
dom variables on a probability space (Ω,P). Then the span of (xk) is completely
isomorphic to OH and is completely complemented in Λp(Ω,P) for every even
integer p. Moreover, (11.4) holds with a constant Cψ,p = ‖x1‖p that is O(

√
p)

when p→∞.

Remark 11.4. The preceding Corollary also holds when (xk) is a sequence
(εk) of independent symmetric ±1 valued variables (or equivalently for the
Rademacher functions). We show this in Corollary 11.12 below, but here is a
quick proof with a slightly worse constant. Let (xk) be independent Gaussian
normal random variables and assume that (εk) is independent from (xk). It is
well known that (xk) has the same distribution as (εk|xk|). Let δ = E(|xk|) =
2/
√
π. The conditional expectation E with respect to (εk) satisfies E(εk|xk|) =

δεk. Therefore δ
∑
εkbk = E(∑ εk|xk|bk), and by (8.13), this implies

δ‖
∑

εkbk‖(p) ≤ ‖
∑

εk|xk|bk‖(p) = ‖
∑

xkbk‖(p).

So we obtain the Rademacher case with a constant≤ δ−1Cψ,p since Proposition
11.1 ensures the complete complementation.

The preceding result applies to q-Gaussian and in particular free semi-circular
(or circular) elements, see [7] for details. We have then Cψ,p ≤ 2/

√
1− |q| for

all even p.
In either the semi-circular (q = 0) or the circular case, we have Cψ,p ≤ 2 for all
even p, and hence:

Corollary 11.5. For any even integer p, the closed span of a free semi-
circular (or circular) family, is completely isomorphic to OH and completely
complemented (by the orthogonal projection) in the space Λp for the associated
trace (on the free group factor). Moreover, the corresponding constants are
bounded by 2 uniformly over p.

Corollary 11.6. Let M be the von Neumann algebra of the free group F∞

with infinitely many generators (gk). For any p = 2n and any finite sum
f̃ =

∑
bk ⊗ λ(gk) (bk ∈ B(H)), we have

∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

≤ ‖f̃‖(p) ≤ 2
∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

. (11.5)

More generally, let Wd ⊂ F∞ denote the subset formed of the reduced words of
length d. Then for any finitely supported function b : Wd → B we have

‖
∑

t∈Wd

b(t)⊗ λ(t)‖B⊗M ≤ (d+ 1)
∥∥∥
∑

t∈Wd

b(t)⊗ b̄(t)
∥∥∥
1/2

. (11.6)
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Proof. The left hand side of (11.5) follows from Corollary 8.4 with q = 2 and
the orthonormality of (λ(gk)) in L2(τ). By [5, Th. 2.8] the operator space
spanned by {λ(t)}t∈Wd

is completely isomorphic to the intersection X of a
family of d + 1 operator spaces Xi, 0 ≤ i ≤ d, with associated constant equal
to d+ 1. On one hand, the space X0 (resp. Xd) is completely isometric to R
(resp. C), the underlying respective Hilbert space being ℓ2(Wd). On the other
hand, when 0 < j < d the space Xj is completely isometric to the subspace
of B(ℓ2(Wd−j), ℓ2(Wj)) associated to matrices of the form [a(st)] when a is
supported on Wd. Identifying each Wi simply with N we see that X0 (resp.
Xd) is completely isometric to OH(N), while Xi is completely isometric to the
associated subspace of CB(OH(N)). By Remark 10.9 we have a completely
isometric inclusion X0 → Xi for any 0 ≤ i ≤ d, therefore the intersection of the
family Xi 0 ≤ i ≤ d is completely isometric to OH with H = ℓ2(Wd). Since by
Corollary 10.6 we know that X = ∩0≤i≤dXi, (11.6) follows.

Remark 11.7. A comparison with known results (see [7] for detailed references)
shows that the limit of ‖f̃‖(p) when p→∞ is not equivalent to ‖f̃‖B(H)⊗minM

(here M is the von Neumann algebra of the free group with infinitely many
generators), in sharp contrast with (3.11) above.

More generally, let Lp(N , ϕ), or briefly Lp(N , ϕ), be another non-commutative
(semi-finite) Lp-space. Consider fk ∈ B ⊗ Lp(ϕ) and let

F =
∑

fk ⊗ xk ∈ B ⊗ Lp(ϕ× τ)

where {xk} is as in Theorem 11.2. We have then:

Theorem 11.8. Let p = 2n and let C = Cψ,p be the constant appearing in
(11.4). Then for any F as above we have

‖F‖(p) ≤ Cmax

{∥∥∥
∑

fk⊗̇f∗
k

∥∥∥
1/2

(p/2)
,
∥∥∥
∑

f∗
k ⊗̇fk

∥∥∥
1/2

(p/2)

}
. (11.7)

Proof. Repeating the steps of the proof of Theorem 11.2, all we need to do is
majorize ∥∥∥∥∥∥

ϕ̂




∑

(k1,...,k2n)∼ν

fk1⊗̇f∗
k2⊗̇ · · · ⊗̇f∗

k2n



∥∥∥∥∥∥

by the right side of (11.7). This is established in Lemma 11.11 below that is a
rather easy adaptation to our Λp-setting of [6, Lemma 2].

By the same argument as in Remark 11.4, the case of the free generators of the
free group can be deduced from the “free-Gaussian” one. Indeed, let (ck) be
a free circular family (sometimes called “complex free-Gaussian”). The polar
decomposition ck = uk|ck|, is such that the ∗-distribution of (uk) is identical
to that of a free family of Haar unitaries in the sense of [35], or equivalently
(uk) has the same ∗-distribution as that of the free generators λ(gk) in the von
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Neumann algebra of the free group with infinitely many generators. Moreover,
a simple calculation relative to the circular distribution yields ‖ck‖1 = 8/3π.
These observations lead us to :

Corollary 11.9. With the same notation as in Corollary 11.6, let F̃ =
∑
fk⊗

λ(gk). We have then

(3π/4)−1‖F̃‖(p) ≤ max

{∥∥∥
∑

fk⊗̇f∗
k

∥∥∥
1/2

(p/2)
,
∥∥∥
∑

f∗
k ⊗̇fk

∥∥∥
1/2

(p/2)

}
≤ ‖F̃‖(p)

(11.8)

Proof. Let τ̃ denote the normalized trace on the von Neumann algebra of the
free group with generators (gk). Let E denote the conditional expectation equal

to the orthogonal projection from L2(ϕ⊗ τ̃ ) onto L2(ϕ)⊗1. Then E(F̃ ⊗̇F̃ ∗) =∑
f∗
k ⊗̇fk. Since ‖F̃‖2(p) = ‖F̃ ⊗̇F̃ ∗‖p/2 and ‖F̃ ⊗̇F̃ ∗‖p/2 ≥ ‖E(F̃ ⊗̇F̃ ∗)‖p/2 by

(8.13), the right hand side follows. To prove the left hand side, consider F =∑
fk⊗ ck =

∑
fk⊗uk|ck| with (ck) free circular as above and note that by the

preceding observations (this is similar to Remark 11.4) we have
∑
fk ⊗ uk =

(3π/8)(Id ⊗ E1)(
∑
fk ⊗ uk|ck|) where E1 denotes the conditional expectation

from the von Neumann algebra generated by {ck} onto the one generated by
{uk}. Since {uk} and {λ(gk)} have identical ∗-moments, we find

‖F̃‖(p) = ‖
∑

fk⊗uk‖(p) ≤ (3π/8)‖
∑

fk⊗uk|ck|‖(p) = (3π/8)‖
∑

fk⊗ck‖(p)

and hence the left hand side of (11.8) follows from (11.7), recalling that C ≤ 2
when (xk) is a free circular sequence.

Remark 11.10. A more careful estimate probably yields the preceding Corollary
with the constant 2 in place of 3π/4.

Lemma 11.11. With the preceding notation let

S(ν) =
∑

(k1,...,k2n)∼ν

fk1⊗̇f∗
k2⊗̇ · · · ⊗̇f∗

k2n ,

and let ν′0 (resp. ν′′0 ) denote the partition of [1, . . . , 2n] into consecutive pairs
of the form {1, 2}, {3, 4}, . . . (resp. {2n, 1}, {2, 3}, {4, 5}, . . .). We have then

‖ϕ̂(S(ν))‖ ≤ max{‖ϕ̂(S(ν′0))‖, ‖ϕ̂(S(ν′′0 ))‖}.

Sketch of Proof. We set
C = sup ‖ϕ̂(S(ν))‖

where the sup runs over all pair partitions ν in P2(2n). By the cyclicity of the
trace (see (8.1)) we may assume that k1, . . . , k2n is such that for some j with
n < j ≤ 2n, the pair {kn, kj} is a block of our partition ν. Let

F (ν) =
∑

k1,...,k2n∼ν

fk1⊗̇f∗
k2⊗̇ · · · ⊗̇f∗

k2n .
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We may rewrite F (ν) as

F (ν) =
∑

α

∑
β
aα,β⊗̇bα,β (11.9)

where α represents the set of indices kj such that the pair containing j is
split by the partition [1, . . . , n][n+ 1, . . . , 2n], and β represents the remaining
indices, and the sum is restricted to (k1, . . . , k2n) ∼ ν. Since the indices in β
correspond to pairs of indices {ki, kj} with {i, j} included either in [1, . . . , n]
or in [n+ 1, . . . , 2n], we can rewrite the sum (11.9) as

F (ν) =
∑

α

∑
β′,β′′

αα,β′⊗̇bα,β′′ .

Then
S(ν) =

∑
α
xα⊗̇yα

with xα =
∑
β′ aα,β′ and yα =

∑
β′′ bα,β′′ . By (8.2) we find

‖ϕ̂(S(ν))‖ ≤
∥∥∥ϕ̂
(∑

α
xα⊗̇x∗α

)∥∥∥
1/2 ∥∥∥ϕ̂

(∑
α
y∗α⊗̇yα

)∥∥∥
1/2

.

But now
∑
α xα ⊗ x∗α is a sum of the kind S(ν′) for some ν′ but for which we

know (by our initial choice relative to the pair {n, j}) that the pair {n, n+ 1}
appears in ν′. If we then iterate the argument in the style of [6] we end up
with a number 0 < θ < 1 such that we have either

‖ϕ̂(S(ν))‖ ≤ (C′)θC1−θ

or
‖ϕ̂(S(ν))‖ ≤ (C′′)θC1−θ

where C′ = ‖ϕ̂(S(ν′0))‖ and C′′ = ‖ϕ̂(S(ν′′0 ))‖. Thus we conclude that

C ≤ (max(C′, C′′))θC1−θ

and hence C ≤ max(C′, C′′). Since S(ν′0) = (
∑
fk⊗̇f∗

k )
⊗̇n and S(ν′′0 ) =

(
∑
f∗
k ⊗̇fk)⊗̇n, this completes the proof.

By a spin system we mean a system of anticommuting self-adjoint unitaries
assumed realized over a non-commutative probability space (M, τ). In the q-
Gaussian case with q = −1, Theorem 11.2 describes the closed span of a spin
system in Λp, and exactly for the same reason as in [7] we obtain optimal
constants for those.

Corollary 11.12. If (xk) is a spin system, then (11.4) holds with the same op-
timal constant Cψ,p as in the Gaussian case. In particular, this constant grows
like
√
p when p → ∞. Moreover, the same result holds for the (Rademacher)

sequence (εk), and again the Gaussian constant is optimal.
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Proof. Let ψ(q) denote the function ψ for a q-Gaussian system. By Bożejko and
Speicher’s results (see [7]) we have ψ(q)(ν) = qi(ν) where i(ν) is the crossing
number of the the partition ν. This implies |ψ(q)(ν)| = ψ(|q|)(ν) and hence
also Cψ(q),p = Cψ(|q|),p. In particular, any spin system (xk) satisfies (11.4)
with the constant Cψ(1),p, i.e. the same constant as in the Gaussian case.
We now address the Rademacher case. Just as in [7] we use the fact that
the sequences (xk ⊗ xk) and (εk) have the same distribution. We then apply
(11.7) to

∑
fk ⊗ xk with fk = bk ⊗ xk. Recalling that the xk’s are unitary, we

find
∑
f∗
k ⊗̇fk =

∑
b̄k ⊗ bk ⊗ 1 and

∑
fk⊗̇f∗

k =
∑
bk ⊗ b̄k ⊗ 1. This gives us

‖∑ bk⊗εk‖(p) ≤ C‖
∑
bk⊗ b̄k‖1/2 where C = Cψ(1),p is the Gaussian constant.

By the central limit theorem, the latter is optimal.

In the rest of this section we turn to the span of an i.i.d. sequence of Gaussian
random matrices of size N ×N in Λp. We will use ideas from [12] and [6]. We
analyze the dependence in N using a concentration of measure argument. Let
{gij | i, j ≥ 1} be a doubly indexed family of complex valued Gaussian random
variables such that Egij = 0 and E|gij |2 = 1. Let Y (N) be the random N ×N
matrix defined by

Y (N)(i, j) = N−1/2gij .

Let Y
(N)
1 , Y

(N)
2 , . . . be an i.i.d. sequence of copies of Y (N) on some probability

space (Ω,A,P). We will view (Y
(N)
j )j≥1 as a sequence in Lp(P× τN) where τN

denotes the normalized trace on MN .
By the Appendix §15, we know that, for any even p ≥ 2, (Y

(N)
j )j≥1 has p-th

moments defined by pairings via the function

Y (N)(ν) = EτN (Y (N)ν)

where Y (N)ν = Y
(N)
k1

Y
(N)∗

k2
. . . Y

(N)
kp−1

Y
(N)∗

kp
for k = (kj) such that ki = kj if and

only if (i, j) belong to the same block of ν. It is easy to see that the distribution
of Y (N)ν does not depend on the choice of such a k. Moreover, ψ(N)(ν) ≥ 0 for
any ν since ψ(N)(ν) is a sum of terms of the form

E

(
Y

(N)
k1

(i1, j1)Y
(N)
k2

(i2, j2) . . . Y
(N)
kp

(ip, jp)
)

and, when k ∼ ν, these are either = 0 or = N−p/2(E|g11|2)p/2 = N−p/2.
Therefore we again have

∑
|ψ(N)(ν)| =

∑
ψ(N)(ν) = EτN (|Y (N)|p).

By (11.4) we have:

Corollary 11.13. Let p = 2n and let (bk) be any finite sequence in B = B(H).

Let f ∈∑ bk ⊗ Y (N)
k ∈ B ⊗ Lp(P× τN ). We have

‖f‖(p) ≤ (EτN (|Y (N)|p))1/p
∥∥∥
∑

bk ⊗ b̄k
∥∥∥
1/2

and this constant is optimal.
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12 Non-commutative martingale inequalities

In this section, we assume given a filtration M0 ⊂ M1 ⊂ · · · of von Neu-
mann subalgebras ofM. We assume for simplicity thatM coincides with the
von Neumann algebra generated by ∪Mn. We will denote again by En the con-
ditional expectation with respect toMn. Then to any f in Lp(τ) (1 ≤ p <∞)
we can associate a martingale (fn) (defined by fn = En(f)) that converges in
Lp(τ) to f . We will continue to denote d0 = f0 and dn = fn − fn−1.
It is natural to expect that Theorems 4.1 and 5.5 will extend to the non-
commutative case. However, at the time of this writing, we have completed
this task only for p = 4. We also proved below (see Theorem 13.1) a one sided
version of (4.1) using the notion of p-orthogonal sums.
Let H1, H2 be two Hilbert spaces. To lighten the notation in the rest of this
section we set B1 = B(H1) and B2 = B(H2). It is useful to observe that for
any f1 ∈ B1 ⊗ L4(τ) and f2 ∈ B2 ⊗ L4(τ) we have

τ̂ (f∗
1 ⊗̇f1⊗̇f∗

2 ⊗̇f2) ≈ τ̂ (f1⊗̇f∗
2 ⊗̇f2⊗̇f∗

1 ) ≻ 0. (12.1)

Indeed, the first sign ≈ is by the trace property while sign ≻ 0 holds because
f1⊗̇f∗

2 ⊗̇f2⊗̇f∗
1 ≈ F ⊗̇F ∗ with F = f1⊗̇f∗

2 ∈ B1 ⊗ B2 ⊗ L2(τ). In the next
lemma, we extend this observation to τ̂ (f∗

1 ⊗̇f1⊗̇T (f∗
2 ⊗̇f2)) where T : L2(τ)→

L2(τ) is a completely positive map (e.g. a conditional expectation). The reader
can convince himself easily that the simplest case of maps of the form T (x) =∑
a∗kxak (ak ∈ M), follows immediately from (12.1).

Lemma 12.1. With the preceding notation, let B = B1 ⊗ B2 = B(H1 ⊗2 H2).
For any completely positive map T : L2(τ) → L2(τ), we have for any f1 ∈
B1 ⊗ L4(τ) and f2 ∈ B2 ⊗ L4(τ)

τ̂ (f∗
1 ⊗̇f1⊗̇T (f∗

2 ⊗̇f2)) ≻ 0

where the latter element is identified with an element of B ⊗ B, via the per-
mutation

(
1 2 3 4

)
→
(
2 3 1 4

)
of the tensorial factors that takes

B1 ⊗B1 ⊗B2 ⊗B2 to B ⊗ B.
Remark 12.2. Let E = L4(τ)⊗L4(τ). Let T : L2(τ)→ L2(τ) be a completely
positive map, so that for any finite sequence a1, . . . , an in L4(τ) the matrix
[T (a∗i aj)] is in L2(Mn(M))+. Let Φ: E ⊗E → C be the bilinear form defined
by

Φ(a1 ⊗ b̄1 ⊗ a2 ⊗ b̄2) = τ(a∗2a1T (b
∗
1b2)).

We claim that Φ is positive definite on E ⊗E, i.e. Φ(e⊗ ē) ≥ 0 for any e in E.
Indeed, if e =

∑
ai ⊗ b̄i ∈ E we have

Φ(e ⊗ ē) =
∑

ij
τ(a∗jaiT (b

∗
i bj)),

so that, if τn denote the trace on Mn(M), we have Φ(e ⊗ ē) = τn(αβ) =
τn(a

1/2βα1/2) ≥ 0 where βij = T (b∗i bj) αij = a∗i aj and of course α ≥ 0 and
β ≥ 0. This proves our claim.
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Proof of Lemma 12.1. Let Lp = Lp(τ). Consider f1⊗ f̄2 ∈ B1⊗L4⊗B2⊗ L̄4.
Let g ∈ B ⊗ E be the element obtained by the natural permutation of factors
from f1 ⊗ f̄2. Then an easy verification shows that

τ̂ (f∗
1 ⊗̇f1⊗̇T (f∗

2 ⊗̇f2)) ≈ (I ⊗ Φ)(g ⊗ ḡ)

or more precisely with the notation indicated in Lemma 8.5

τ̂ (f∗
1 ⊗̇f1⊗̇T (f∗

2 ⊗̇f2)) ≈ (Φ)24(g ⊗ ḡ)

so that Lemma 12.1 follows from Lemma 8.5 and the preceding Remark.

Proposition 12.3. Let (fn)n≥0 be a martingale in B ⊗ L4(τ). Assume for
simplicity f = fN for some N ≥ 0. Let g = f∗⊗̇f −∑ d∗n⊗̇dn. We have then

‖g‖(2) ≤ ‖f‖(4)(‖σr‖1/2(2) + ‖σc‖1/2(2) ). (12.2)

where
σr =

∑
En−1(dn⊗̇d∗n) and σc =

∑
En−1(d

∗
n⊗̇dn).

Proof. As usual we start by g = x + y with x =
∑
d∗n⊗̇fn−1 and y =∑

f∗
n−1⊗̇dn, so that ‖g‖(2) ≤ ‖x‖(2) + ‖y‖(2). Then

‖x‖2(2) = ‖τ̂(x⊗̇x∗)‖ =
∥∥∥τ̂
(∑

d∗n⊗̇fn−1⊗̇f∗
n−1⊗̇dn

)∥∥∥ .

Let δn = f − fn−1. Note that since En−1(δn) = 0

En−1(f⊗̇f∗) = fn−1⊗̇f∗
n−1 + En−1(δn⊗̇δ∗n)

and hence

τ̂
(∑

d∗n⊗̇fn−1⊗̇f∗
n−1⊗̇dn

)
=

= τ̂
(∑

d∗n⊗̇En−1(f⊗̇f∗)⊗̇dn
)
− τ̂

(∑
d∗n⊗̇En−1(δn⊗̇δ∗n)⊗̇dn

)
,

By the trace property and by Lemma 12.1, these last three terms can all be
viewed as ≻ 0 in a suitable permutation of the factors. This shows by (2.6)

∥∥∥τ̂
(∑

d∗n⊗̇fn−1⊗̇f∗
n−1⊗̇dn

)∥∥∥ ≤
∥∥∥τ̂
(∑

d∗n⊗̇En−1(f⊗̇f∗)⊗̇dn
)∥∥∥ .

Since

τ̂
(∑

d∗n⊗̇En−1(f⊗̇f∗)⊗̇dn
)
≈ τ̂

(
En−1(f⊗̇f∗)⊗̇

∑
dn⊗̇d∗n

)
,

and since En−1 is self-adjoint, we have

∥∥∥τ̂
(∑

d∗n⊗̇En−1(f⊗̇f∗)⊗̇dn
)∥∥∥ =

∥∥∥τ̂
(
f⊗̇f∗⊗̇

∑
En−1(dn⊗̇d∗n)

)∥∥∥ ,
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thus we find

‖x‖2(2) ≤ ‖τ̂(f⊗̇f∗⊗̇σr)‖ ≤ ‖f‖2(4)‖σr‖(2).
A similar reasoning leads to

‖y‖2(2) ≤ ‖f‖2(4)‖σc‖(2),

so we conclude

‖g‖(2) ≤ ‖f‖(4)(‖σr‖1/2(2) + ‖σc‖1/2(2) ).

To complete the case p = 4, we need to check the non-commutative extension
of Lemma 4.2 as follows:

Lemma 12.4. Let θn be any finite sequence in B ⊗ L4(τ), let βn = θ∗n⊗̇θn and
αn = En(βn). Then ∥∥∥

∑
αn

∥∥∥
(2)
≤ 2

∥∥∥
∑

βn

∥∥∥
(2)
.

Proof. The proof is essentially the same as for Lemma 4.2. We just need to
observe that if n ≤ k we have

τ̂(αn⊗̇αk) = τ̂ (αn⊗̇βk),

but also by Lemma 12.1 (and the trace property)

τ̂(αn⊗̇βk) ≈ τ̂ (βk⊗̇αn) ≻ 0, ∀n, k

so that again we have

∥∥∥
∑

n≤k
τ̂(αn⊗̇βk)

∥∥∥ ≤
∥∥∥
∑

n,k
τ̂ (αn⊗̇βk)

∥∥∥ = ‖τ̂(α⊗̇β)‖ ≤ ‖α‖(2)‖β‖(2)

and similarly for ‖∑n>k ‖.

Let Sr =
∑
dj⊗̇d∗j abd Sc =

∑
d∗j ⊗̇dj . Applying this Lemma to Proposi-

tion 12.3, we find

‖g‖(2) ≤ 2
√
2‖f‖(4)max{‖Sr‖1/2(2) , ‖Sc‖

1/2
(2) }.

We then obtain by the same reasoning as for the commutative case:

Corollary 12.5. There is a constant C such that for any finite martingale
f0, . . . , fN in L4(τ) we have

C−1 max

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(2)

}
≤ ‖f‖(4) ≤

≤ Cmax

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(2)

}
.
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Remark 12.6. We leave as an open problem whether the extension of the left
hand side of Corollary 12.5 is valid for any even integer p > 4. Note however
that the right hand side is proved below as a consequence of Theorem 13.1.

We will now extend Theorem 5.5 to the non-commutative case for p = 4.
Given f ∈ B ⊗ L4(τ) let us denote

‖f‖[4] = max{‖τ̂(
∑

dn⊗̇d∗n⊗̇dn⊗̇d∗n)‖1/4, ‖σr‖1/2(2) , ‖σc‖
1/2
(2) }.

Corollary 12.7. For any finite martingale f0, . . . , fN in L4(τ) we have

2C−1‖f‖[4] ≤ ‖f‖(4) ≤ 2C‖f‖[4], (12.3)

where C is as in the preceding statement.

Proof. By the preceding Corollary and by Lemma 12.4 we have

max{‖σr‖1/2(2) , ‖σc‖
1/2
(2) } ≤ 2C‖f‖(4). Moreover, by (12.1) we have

τ̂ (
∑
dn⊗̇d∗n⊗̇dn⊗̇d∗n) ≺ τ̂ (

∑
dn⊗̇d∗n)⊗̇(

∑
dj⊗̇d∗j )∗), and hence

‖τ̂(∑ dn⊗̇d∗n⊗̇dn⊗̇d∗n)‖1/4 ≤
∥∥∑ dj⊗̇d∗j

∥∥1/2
(2)

. Therefore, the left hand side of

(12.3) follows.
To prove the right hand side, we will use the preceding Corollary.
Let xn = d∗n⊗̇dn and yn = dn⊗̇d∗n. We have

∑
xn = σc +

∑
δn

where δn = xn − En−1xn. Then, by the triangle inequality ‖∑xn‖(2) ≤
‖σc‖(2)+‖

∑
δn‖(2) and by the orthogonality of the martingale differences (δn)

we have ‖∑ δn‖2(2) = ‖
∑
τ̂ (δ∗n⊗̇δn)‖. But by Remark 8.9 we have τ̂ (δ∗n⊗̇δn) ≺

τ̂ (x∗n⊗̇xn) and hence also
∑
τ̂ (δ∗n⊗̇δn) ≺

∑
τ̂ (x∗n⊗̇xn) from which follows by

Lemma 2.3 that ‖∑ τ̂ (δ∗n⊗̇δn)‖ ≤ ‖
∑
τ̂ (x∗n⊗̇xn)‖.

Recapitulating, we find ‖∑xn‖(2) ≤ ‖σc‖(2)+‖
∑
τ̂ (x∗n⊗̇xn)‖1/2, and a fortiori

‖
∑

xn‖1/2(2) ≤ ‖σc‖
1/2
(2) + ‖

∑
τ̂ (x∗n⊗̇xn)‖1/4 ≤ 2‖f‖[4].

Since a similar argument applies to majorize ‖∑ yn‖(2), by Corollary 12.5 we
obtain

C−1‖f‖(4) ≤ max{‖
∑

xn‖1/2(2) , ‖
∑

yn‖1/2(2) } ≤ 2‖f‖[4].

13 p-orthogonal sums

Let Lp(τ) be as before the “non-commutative” Lp-space associated to a von
Neumann algebra equipped with a standard (= faithful, normal) semi-finite
trace. (Of course, if M is commutative, we recover the classical Lp associated
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to a measure space.) Let p ≥ 2 be an even integer. A family d = (di)i∈I is
called p-orthogonal if, for any injective function g : [1, 2, . . . , p]→ I we have

τ(d∗g(1)dg(2)d
∗
g(3)dg(4) . . . d

∗
g(p−1)dg(p)) = 0.

Clearly, any martingale difference sequence is p-orthogonal, but the class of
p-orthogonal sums is more general. In the commutative case, i.e. for classical
random variables, this notion is very close to that of “multiplicative sequence”
already considered in the literature, see the references in [24], on which this
section is modeled.

By a natural extension, we will say that a sequence (dj)j∈I in B ⊗ Lp(τ) is
p-orthogonal if for any injective function g : [1, 2, . . . , p]→ I as before we have

τ̂ (d∗g(1)⊗̇dg(2)⊗̇ . . . ⊗̇d∗g(p−1)⊗̇dg(p)) = 0.

The method used in [24], that is based on a combinatorial formula involving
the “Möbius function”, is particularly easy to adapt to our setting where Λp
takes the place of Lp.

We will use crucially some well known ideas from the combinatorial theory of
partitions, which can be found, for instance, in the book [1]. We denote by
Pn the lattice of all partitions of [1, . . . , n], equipped with the following order:
we write σ ≤ π (or equivalently π ≥ σ) when every “block” of the partition σ
is contained in some block of π. Let 0̇ and 1̇ be respectively the minimal and
maximal elements in Pn, so that 0̇ is the partition into n singletons and 1̇ the
partition formed of the single set {1, . . . , n}. We denote by ν(π) the number of
blocks of π (so that ν(0̇) = n and ν(1̇) = 1).

For any π in Pn and any i = 1, 2, . . . , n, we denote by ri(π) the number of blocks
(possibly = 0) of π of cardinality i. In particular, we have

∑n
1 iri(π) = n and∑n

1 ri(π) = ν(π).

Given two partitions σ, π in Pn with σ ≤ π we denote by µ(σ, π) the Möbius
function, which has the following fundamental property:

Let V be a vector space. Consider two functions Φ: Pn → V and Ψ: Pn → V .
If Ψ(σ) =

∑
π≤σ

Φ(π), then Φ(σ) =
∑

π≤σ µ(π, σ)Ψ(π).

Essentially equivalently, if Ψ(σ) =
∑

π≥σ Φ(π), then Φ(σ) =∑
π≥σ µ(σ, π)Ψ(π).

In particular we have:

∀ σ 6= 0̇
∑

0̇≤π≤σ

µ(π, σ) = 0. (13.1)

The last assertion follows from the above fundamental property applied with
Φ equal to the delta function at 0̇ (i.e. Φ(π) = 0 ∀ π 6= 0̇ and Φ(0̇) = 1) and
Ψ ≡ 1.

We also recall Schützenberger’s theorem (see [1]):
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For any π we have

µ(0̇, π) =

n∏

i=1

[(−1)i−1(i− 1)!]ri(π),

and consequently ∑

π∈Pn

|µ(0̇, π)| = n!.

We now apply these results to set the stage for the questions of interest to
us. Let E1, . . . , En, V be vector spaces equipped with a multilinear form (= a
“product”)

ϕ : E1 × · · · × En → V.

Let I be a finite set. For each k = 1, 2, . . . , n and i ∈ I, we give ourselves
elements di(k) ∈ Ek, and we form the sum

Fk =
∑

i∈I

di(k).

Then we are interested in “computing” the quantity ϕ(F1, . . . , Fn). We have
obviously

ϕ(F1, . . . , Fn) =
∑

g

ϕ(dg(1)(1), . . . , dg(n)(n))

where the sum runs over all functions g : [1, 2, . . . , n] → I. Let π(g) be the
partition associated to g, namely the partition obtained from

⋃
i∈I

g−1({i}) after
deletion of all the empty blocks. We can write

ϕ(F1, . . . , Fn) =
∑

σ∈Pn

Φ(σ)

where Φ(σ) =
∑

g : π(g)=σ ϕ(dg(1)(1), . . . , dg(n)(n)). Let Ψ(σ) =
∑
π≥σ

Φ(π).

Using (13.1) (with σ, π exchanged), we have then:

ϕ(F1, . . . , Fn) = Φ(0̇) +
∑

0̇<σ

Φ(σ) = Φ(0̇) +
∑

0̇<σ

∑

π≥σ

µ(σ, π)Ψ(π) (13.2)

= Φ(0̇) +
∑

0̇<π

Ψ(π) ·
∑

0̇<σ≤π

µ(σ, π) = Φ(0̇)−
∑

0̇<π

Ψ(π)µ(0̇, π).

(13.3)

Recapitulating, we found:

ϕ(F1, . . . , Fn) = Φ(0̇)−
∑

0̇<π

Ψ(π)µ(0̇, π) (13.4)
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where
Φ(0̇) =

∑

g injective

ϕ(dg(1)(1), . . . , dg(n)(n))

and
Ψ(π) =

∑

g : π(g)≥π

ϕ(dg(1)(1), . . . , dg(n)(n)).

Theorem 13.1. Let p = 2n be an even integer > 2. Then for any p-orthogonal
finite sequence (dj)j∈I in B ⊗ Lp(τ) we have

∥∥∥
∑

dj

∥∥∥
(p)
≤ (3π/2)pmax

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(p/2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(p/2)

}
. (13.5)

Proof. This proof is modeled on that in [24] so we will be deliberately sketchy.
Let f =

∑
dj . We can write

τ̂ [(f∗⊗̇f)⊗̇n] = −
∑

0̇<π

µ(0̇, π)Ψ(π)

where Φ and Ψ are defined by

Φ(σ) =
∑

g : π(g)=σ

τ̂(d∗g(1)⊗̇dg(2) . . . ⊗̇d∗g(p−1)⊗̇dg(p))

and Ψ =
∑
σ≥π

Φ(σ), or equivalently,

Ψ(π) =
∑

g∼σ
τ̂(d∗g(1)⊗̇ · · · ⊗̇dg(p))

where (as in §11) g ∼ σ means that g(i) = g(j) whenever i, j are in the same
block of σ. Here the functions Φ and Ψ take values in B ⊗ B ⊗ · · · ⊗ B ⊗ B
where B ⊗B is repeated n-times .
Let α = 3π/4 as in [24]. Arguing as in [24, p. 912] we see that it suffices to
prove that

‖Ψ(π)‖ ≤ (α∆)p−r1(π)‖f‖r1(π)(p) (13.6)

where ∆ = max
{∥∥∑ dj⊗̇d∗j

∥∥1/2
(p/2)

,
∥∥∑ d∗j ⊗̇dj

∥∥1/2
(p/2)

}
, and we recall that r1(π)

is the number of singletons in π. Let FI be the free group with generators
(gj)j∈I , and let ϕ be the normalized trace on the von Neumann algebra of FI .
Let fk =

∑
i∈I di(k) be a finite sum in B ⊗ Lp(τ), k = 1, . . . , p. We denote by

f̃k =
∑

i∈I
λ(gi)⊗ di(k)

the corresponding sum in Lp(ϕ× τ) ⊗B. Note that by (11.8) we know that

‖f̃k‖(p) ≤ (3π/4)max

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(p/2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(p/2)

}
. (13.7)
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Let π be a partition of [1, . . . , p]. Let B1 be the union of all the singletons in
π and let B2 be the complement of B1 in [1, . . . , p]. By the construction in the
proof of [24, Sublemma 3.3] for a suitable discrete group G there are F1, . . . , Fp
in Lp(τG×τ)⊗B such that ‖Fk‖(p) = ‖f̃k‖(p) for all k in B2, ‖Fk‖(p) = ‖fk‖(p)
for all k in B1, and also

τ̂


 ∑

π(g)≥π

dg(1)(1)⊗̇ · · · ⊗̇dg(p)(p)


 = ̂(τG × τ)[F1⊗̇ · · · ⊗̇Fp].

Then if we apply this to dj(k) = d∗j if k is odd and dj(k) = dj if k is even we
find by (8.4)

‖Ψ(π)‖ = ‖ ̂(τG × τ)(F1⊗̇ · · · ⊗̇Fp)‖

≤
p∏

k=1

‖Fk‖(p)

≤ ‖f‖|B1|
(p) ·

∏

k∈B2

‖f̃k‖(p)

and by (13.7) we obtain (13.6).

Corollary 13.2. Let p be an even integer. Assume τ(1) = 1. Let (fj) be a
p-orthogonal sequence in Lp(τ) that is orthonormal in L2(τ). Consider a finite
sequence (bj) with bj ∈ B. We have then

‖
∑

bj ⊗ b̄j‖1/2 ≤
∥∥∥
∑

bj ⊗ fj
∥∥∥
(p)
≤ (3π/2)p‖

∑
bj ⊗ b̄j‖1/2.

Let Ep denote the closed span of (fj) in Λp(τ). Then Ep is completely isomor-
phic to OH, and moreover, the orthogonal projection P from L2(τ) onto the
span of (fj) is c.b. on Λp with c.b. norm at most (3π/2)p.

Proof. The right hand side of the inequality follows from (13.5) since (dj) =
(bj ⊗ fj) is clearly p-orthogonal. By Corollary 8.4, the inclusion Λp(τ) →
Λ2(τ) = L2(τ) has c.b norm 1. Using this the left hand side follows. This
shows that Ep ≃ OH . The projection P can then be factorized as Λp → Λ2 →
E2 → Ep, which implies ‖P : Λp → Ep‖cb ≤ (3π/2)p, since the first two arrows
are completely contractive.

14 Lacunary Fourier series in Λp

In this section, we review the results of [13] and [24] with Λp in place of Lp,
and again we find the space OH appearing in place of Rp ∩Cp. To save space,
it will be convenient to adopt the general viewpoint in [24, §4], although this
may seem obscure to a reader unfamiliar with [13].
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Notation: Let 1 =
∑

k∈J Pk be an orthogonal decomposition of the identity
of L2(τ) on a semi-finite “non-commutative” measure space (M, τ). Let p = 2n
be an even integer > 2. Let (dj)j∈I be a finite family in B ⊗ Lp(τ). We set
xω = x∗ if n is odd and xω = x in n is even.

Theorem 14.1. Let F be the set of all injective functions g : [1, 2, . . . , n]→ I.
For any g in F , we let xg = d∗g(1)⊗̇dg(2)⊗̇d∗g(3) . . . dωg(n). We define

N(d) = sup
k∈J

card{g ∈ F | (Pk ⊗ I)(xg) 6= 0}.

Then
∥∥∥∥
∑

j∈I

dj

∥∥∥∥
(p)

≤
[
(4N(d))1/p + p

9π

8

]
max

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(p/2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(p/2)

}
.

Proof. Since we follow closely the ideas in [13] and [24] we will merely sketch
the proofs. We have

‖f‖n(p) = ‖f∗⊗̇f · · · ⊗̇fω‖(2).
Arguing as in [24, p. 919] we find

f∗⊗̇f · · · ⊗̇fω = Φ(0̇)−
∑

0̇<π∈Pn

µ(0̇, π)Ψ(π)

with Φ(σ) =
∑

π(g)=σ xg and

Ψ(π) =
∑

σ≤π
Φ(σ).

Note that Φ(0̇) =
∑

g∈F xg. Using a suitable adaptation of [24, Sublemma 3.3]
and replacing [24, (3.5)] by Corollary 11.9 above, we find:

‖Ψ(π)‖(2) ≤ ‖f‖r1(π)(p) (α∆)n−r1(π)

where

∆ = max

{∥∥∥
∑

dj⊗̇d∗j
∥∥∥
1/2

(p/2)
,
∥∥∥
∑

d∗j ⊗̇dj
∥∥∥
1/2

(p/2)

}
.

Let Fk = {g ∈ F | (id⊗ Pk)xg 6= 0} and Φk = (id⊗ Pk)Φ(0̇), so that

Φ(0̇) =
∑

Φk and Φk =
∑

g∈Fk

xg(k)

where xg(k) = (id⊗ Pk)(xg). By (2.3) we have by “orthogonality” of Φk

‖Φ(0̇)‖2(2) =
∥∥∥τ̂
(∑

Φk⊗̇Φ∗
k

)∥∥∥ .
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Since card(Fk) ≤ N(d), by (2.8) and Lemma 8.6 we have

τ̂
(∑

Φk⊗̇Φ∗
k

)
≺ N(d)τ̂

(∑
k

∑
g∈Fk

xg(k)⊗̇xg(k)∗
)
=

= N(d)τ̂
(∑

g∈F
xg⊗̇x∗g

)
.

Therefore, we find

1

N(d)
‖Φ(0̇)‖2(2) ≤

∥∥∥τ̂
(∑

g∈F
xg⊗̇x∗g

)∥∥∥ ≤

≤

∥∥∥∥∥∥
τ̂


 ∑

g(1),...,g(n)

d∗g(1)⊗̇ · · · ⊗̇dωg(n)⊗̇dω∗g(n) . . . ⊗̇dg(1)



∥∥∥∥∥∥

and hence

‖Φ(0̇)‖2(2) ≤ N(d)

∥∥∥∥τ̂
((∑

dj⊗̇d∗j
)⊗̇n)∥∥∥∥ = N(d)

∥∥∥
∑

dj⊗̇d∗j
∥∥∥
p/2

(p/2)
.

Thus we may conclude by the same reasoning as in [24, p. 920].

We can now reformulate the main result of [13] with Λp in place of Lp:

Corollary 14.2. Fix an even integer p = 2n > 2. Let E ⊂ Γ be a subset of a
discrete group Γ with unit e. For any γ in Γ let Zp(γ,E) be the cardinality of
the set of injective functions g : [1, . . . , n]→ E such that

γ = g(1)g(2)−1g(3) . . . g(n)w

where gw = g−1 if n is even and gw = g if n is odd. We set

Z(E) = sup{Zp(γ,E) | γ ∈ Γ}.

Then for any finitely supported family (b(t))t∈E in B = B(H) we have

∥∥∥
∑

t∈E
λ(t)⊗ b(t)

∥∥∥
(p)
≤ ((4Z(E))1/p + (9π/8)p)

∥∥∥
∑

b(t)⊗ b(t)
∥∥∥
1/2

. (14.1)

Proof. Here L2(τ) is the L2-space associated to the usual trace on the von Neu-
mann algebra associated to Γ. Any element in L2(τ) has an orthonormal ex-
pansion in a “Fourier series” x =

∑
t∈Γ x(t)λ(t), so we can apply Theorem 14.1

to this orthogonal decomposition (with J = Γ). Note that if (tj) are distinct
elements in E and if dj = λ(tj)⊗ b(tj) we have N(d) ≤ Z(E). Lastly, we note
that in the present situation, since Lp(ϕ) = C, the term previously denoted by
∆ coincides with ∥∥∥

∑
b(t)⊗ b(t)

∥∥∥
1/2

.

We have also a (one sided) version of the Littlewood–Paley inequality for Λp:
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Corollary 14.3. Consider a Fourier series of the form

f =
∑

n>0
f̂(n)eint

where n→ f̂(n) is a finitely supported B(H)-valued function. Let

∆n =
∑

2n≤k<2n+1
f̂(k)eikt

and let

S(f) =
∑

∆n⊗̇∆n.

There is an absolute constant C such that for any even integer p ≥ 2

‖f‖(p) ≤ Cp‖S(f)‖1/2(p/2).

Proof. It suffices to prove the inequality separately for the cases f =
∑

m∆2m

and f =
∑

m∆2m+1. But then each of these cases follows from Theorem 14.1
and elementary arithmetic involving lacunary sequences.

It may be worthwhile to point out that in the commutative case, the following
variant of Theorem 14.1 holds:

Theorem 14.4. Consider the same situation as in Theorem 14.1 but with
M commutative so that L2(τ) can be identified with L2(Ω, µ). Let yg =
dg(1)⊗̇dg(2)⊗̇ · · · ⊗̇dg(n) and let

N+(d) = sup
k∈J

card{g ∈ F | (Pk ⊗ I)(yg) 6= 0}.

Then
∥∥∥
∑

dj

∥∥∥
(p)
≤ [(4N+(d))

1/p + 9π/8]
∥∥∥
∑

dj⊗̇d̄j
∥∥∥
1/2

(p/2)
.

Proof. We argue exactly as for Theorem 14.1 except that we start instead from

‖f‖n(p) = ‖f⊗̇ · · · ⊗̇f‖(2).

Remark 14.5. In particular, if E ⊂ Γ is a subset of a commutative group, let
Zp+(γ,E) be the cardinality of the set of injective g : [1, . . . , n]→ E such that
γ = g(1)g(2) . . . g(n) and let Z+(E) = sup{Zp+(γ,E) | γ ∈ Γ} <∞. Then for
any finitely supported family (b(t))t∈E in B we have (14.1) with Z+(E) in place
of Z(E). Thus we obtain OH also for the span of certain Λ(p)-sets originally
considered by Rudin [33], which are not Λ(p)cb-sets in the sense of [13].
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15 Appendix

The goal of this appendix is to clarify the relation between “moments defined
by pairings” used in §9 (following [6]) and the well known Wick formula. The
latter (probably going back independently to Ito and Wick) was used by Ito
in connection with multiple Wiener integrals and Wiener chaos. Although we
reformulate them using tensor products, the results below are all well known.
We first consider the Gaussian case in a very general framework. Let B be a
real vector space. Let X be a B-valued Gaussian variable. This means that for
any R-linear form ξ ∈ B∗, the real valued variable ξ(X) is Gaussian with mean
zero and variance equal to Eξ(X)2. If B is a complex space, (e.g. if B = C) we
may view it a fortiori as a real one and the previous notion still makes sense.
Let X = (X1, . . . , Xn) be a Gaussian variable with values in Bn. Then X1 ⊗
· · · ⊗ Xn is a random variable with values in B⊗n. When n is odd its mean
vanishes. Let us assume that X = (X1, . . . , Xn) is defined on (Ω,A,P) and
that n is even.
Let π be a partition of [1, . . . , n] into K blocks. We will define a B⊗n-valued
random variable X⊗π on (Ω,A,P)⊗K as follows: Assume that the blocks of π
have been enumerated as α1, . . . , αK . We define ω̂j for j = 1, . . . , n by setting
ω̂j = ωk if j ∈ αk. We then define

X⊗π(ω1, . . . , ωK) = X1(ω̂1)⊗ · · · ⊗Xn(ω̂n).

Note that the distribution (and hence all the moments) of X⊗π do not depend
on the particular enumeration (α1, α2, . . .) chosen to define it. In particular,
E(X⊗π) depends only on π. We now may state

Proposition 15.1. For any even integer n

E(X1 ⊗ · · · ⊗Xn) =
∑

ν∈P2(n)
E(X⊗ν). (15.1)

Proof. We will use the same trick as in [12, Prop. 1.5]) to deduce the for-
mula from the rotational invariance of Gaussian distribution. Let X(s) =
(X1(s), . . . , Xn(s) be an i.i.d. sequence indexed by s ∈ N of copies of X . By

the invariance of Gaussian distributions, the variable X̂(s) = s−1/2(X(1) +
· · ·+X(s)) has the same distribution as X . Therefore for any s, we have

E(X1 ⊗ · · · ⊗Xn) = E(X̂1(s)⊗ · · · ⊗ X̂n(s))

and hence

E(X1 ⊗ · · · ⊗Xn) = lim
s→∞

E(X̂1(s)⊗ · · · ⊗ X̂n(s)). (15.2)

Let E(s) = E(X̂1(s)⊗ · · · ⊗ X̂n(s)). We have

E(s) = s−n/2
∑

g
E(X1(g(1))⊗ · · · ⊗Xn(g(n))),
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where the sum runs over all functions g : [1, . . . , n]→ [1, . . . , s]. We claim that
after elimination of all the (vanishing) odd terms and all the (asymptotically
vanishing) terms such as

1

s2

∑
t≤s

X1(t)⊗ · · · ⊗X4(t)

we find
lims→∞E(s) =

∑
ν∈P2(n)

E(X⊗ν). (15.3)

Indeed, if we let
t(g) = E(X1(g(1))⊗ · · · ⊗Xn(g(n))

and if we denote by π(g) the partition of [1, . . . , n] defined by
⋃
k≤s g

−1(k) we
have (eliminating vanishing terms)

E(s) = s−n/2
∑

g∈As

t(g)

where As is the set of g : [1, . . . , n]→ [1, . . . , s] such that π(g) is a partition of
[1, . . . , n] into blocks of even cardinality. For any such π, let

Gs(π) = {g ∈ As | π(g) = π}.

Let Bs ⊂ As be the set of all g’s such that π(g) is in P2(n) (i.e. is a partition
into pairs) so that

Bs =
⋃

ν∈P2(n)
Gs(ν).

Note that for any g in Gs(π) we have

t(g) = E(X⊗π).

Let P ′
2(n) denote the set of partitions π of [1, . . . , n] into blocks of even cardi-

nality. We have

E(s) = s−n/2
∑

π∈P ′
2(n)
|Gs(π)|E(X⊗π).

Note that P2(n) ⊂ P ′
2(n). Therefore

E(s) =
∑

ν∈P2(n)
s−n/2|Gs(ν)|E(X⊗ν)+

∑
π∈P ′

2(n)\P2(n)
s−n/2|Gs(π)|E(X⊗π).

(15.4)
But now a simple counting argument shows that |Gs(ν)| = s(s −
1) . . .

(
s− n

2 + 1
)
≃ sn/2 and hence s−n/2|Gs(ν)| → 1, while for any π in

P ′
2(n)\P2(n) we have s−n/2|Gs(π)| → 0. Thus taking the limit when s → ∞

in (15.4) yields our claim (15.3). By (15.2) this completes the proof.

To emphasize the connection with the classical Wick formula of which (15.1)
is but an abstract form, let us state:
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Corollary 15.2. Let X = (Xj) be a Gaussian sequence of real valued random
variables (i.e. all their linear combinations are Gaussian). Then

E(X1 · · ·Xn) =
∑

ν

∏
〈XkjXℓj〉

where the sum runs over all partitions ν of [1, . . . , n] into pairs, the product
runs over all pairs {kj , ℓj} (j = 1 · · ·n/2) of ν, and the scalar products are
meant in L2.

Corollary 15.3. For any even integer p and any N ≥ 1, any sequence
X = (Xj) of i.i.d. Gaussian variables with values in the space MN of N × N
(complex) matrices has its p-th moments defined by pairings. (Here the mo-
ments are meant with respect to the functional x→ E tr(x).)

Proof. Consider the R-linear map ϕ : MN ⊗ · · · ⊗MN → C defined by

ϕ(x1 ⊗ · · · ⊗ xp) = tr(x1x
∗
2 . . . xp−1x

∗
p).

Let k = (k1, . . . , kp) where k1, k2, . . . , kp are positive integers. Let Yk =
(Xk1 , . . . , Xkp). Applying (15.2) to Xk1 ⊗ · · · ⊗Xkp we find

Eϕ(Xk1 ⊗ · · · ⊗Xkp) =
∑

ν∈P2(p)
Eϕ(Y ⊗ν

k ).

Since the variables X1, X2, ... are assumed independent, we have Eϕ(Y ⊗ν
k ) = 0

except possibly when k ∼ ν (indeed, if {i, j} is a block of ν and ki 6= kj then
the entries of the ki factor of Y ⊗ν

k are orthogonal to those of the kj factor
and independent of all the other factors of Y ⊗ν

k ). Moreover, since X1, X2, ...
all have the same distribution, it is easy to check that the distribution of Y ⊗ν

k

depends only on ν and not on k. Thus we obtain

Eϕ(Xk1 ⊗ · · · ⊗Xkp) =
∑

ν∼k
ψ(ν)

with ψ(ν) = Eϕ(Y ⊗ν), with Y = (X1, . . . , Xn).

Remark 15.4. The preceding result is used in [12] for the complex Gaussian

random matrices (Y
(N)
j )j≥1 appearing in Corollary 11.13. In that case, since

Y (N) ⊗ Y (N) has mean zero, there is an extra cancellation: ψ(ν) = 0 for any
partition ν ∈ P2(n) admitting a block with two indices of the same parity.

More generally, the same proof shows

Corollary 15.5. The preceding corollary is valid for any even integer p for
any i.i.d. Gaussian sequence with values in Lp(M, τ) for any non-commutative
measure space (M, τ). (Here the moments are meant with respect to x 7→
Eτ(x).)
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Using exactly the same method but replacing stochastic independence by free-
ness in the sense of [35] and Gaussian by semi-circular (or “free-Gaussian”), it
is easy to extend the preceding Corollary to the free case. More generally, we
can use the q-Fock space (−1 ≤ q ≤ 1) and the associated q-Gaussian variables
described in [3, 4, 2].
Fix q with −1 ≤ q < 1. Given a complex Hilbert space H, we denote by Fq(H)
the q-Fock space associated to H. Let us assume that H is the complexification
of a real Hilbert space H so that H = H + iH . For simplicity we assume H =
ℓ2(R). To any real Hilbert subspace K ⊂ H we can associate (following [2]) a
von Neumann algebra Γq(K), so that we have natural embeddings Γq(K1) ⊂
Γq(K2) when K1 ⊂ K2. Moreover Γq(H) is equipped with a normalized trace
(faithful and normal) denoted by τq, that we may restrict to Γq(K) to view the
latter as a non-commutative probability space.
For any h ∈ H we denote by a∗(h) (resp. a(h)) the q-creation (resp. q-
annihilation) operator on Fq(H) and we let gq(h) = a(h)+a∗(h). By definition,
the von Neumann algebras Γq(K) is generated by {gq(h) | h ∈ K}. We will
say that a family X1, . . . Xn in Γq(H) is q-independent if there are mutually
orthogonal real subspaces Kj ⊂ H such that Xj ∈ Γq(Kj).
Let B = B(ℓ2). More generally, consider x1, . . . , xn in B ⊗ Γq(H). We will
say that x1, . . . , xn are q-independent if there are Kj as above such that xj ∈
B ⊗ Γq(Kj) for all j = 1, . . . , n. The elements of gq(H) = {gq(h) | h ∈ H} will
be called q-Gaussian.
More generally, an element x ∈ B ⊗ Γq(H) will be called q-Gaussian if
x ∈ B ⊗ gq(H). The q-Gaussian elements satisfy an analogue (called “second
quantization”) of the rotational invariance of Gaussian distributions: For any
R-isometry T : K → H the families {gq(t) | t ∈ K} and {gq(T t) | t ∈ K} have
identical distributions. Here “same distribution” means equality of the mo-
ments of all non-commutative monomials. We will denote by T̃ : B⊗ gq(K)→
B ⊗ gq(H) the linear map taking b ⊗ gq(t) to b ⊗ gq(T t) (b ∈ B, t ∈ K). In
particular, if x ∈ gq(K) and if K1 = K2 = · · · = Ks = K we may use the
isometry us : K → K1 ⊕ · · · ⊕Ks ⊂ H defined by us(x) = s−1/2(x ⊕ · · · ⊕ x)
in order to define elements xj in gq(Kj) each with the same distribution as x

such that x
dist
= s−1/2(x1 + · · ·+ xs).

Let x1, . . . , xn be any sequence in B ⊗ gq(H) and let π be a partition. For
any block α of π we give ourselves an isometry uα : H → Hα ⊂ H where Hα

are mutually orthogonal (real) Hilbert subspaces. Then we define a sequence
(y1, . . . , yn) in B ⊗ gq(H) by setting

yj = ũαxj . ∀j ∈ α
It is not hard to check that τ̂(y1⊗̇ · · · ⊗̇yn) depends only on x = (x1, . . . , xn)
and π (and not on the uα’s). Therefore we may set

τ̂ (xπ)
def
= τ̂ (y1⊗̇ · · · ⊗̇yn).

As before, by symmetry τ̂q(x1⊗̇ · · · ⊗̇xn) = 0 for all odd n.
The q-Gaussian analogue of (15.1) is as follows:
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Proposition 15.6. For any even integer n and any n-tuple x1 . . . , xn in B ⊗
gq(H) (−1 ≤ q < 1), we have

τ̂q(x1⊗̇ · · · ⊗̇xn) =
∑

ν∈P2(n)
τ̂q(x

ν).

Proof. With the preceding ingredients, this can be proved exactly as Proposi-
tion 15.1 above.

In particular, replacing B by C, we find

Corollary 15.7. Any q-Gaussian sequence (xj) in the sense of [2, Def. 3.3]
with covariance equal to the identity matrix has p-th moment, defined by parings
for any even integer p.

Acknowledgment. I am extremely grateful to Quanhua Xu for a careful
reading that led to numerous corrections and improvements.
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