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Abstract. We generalize in positive characteristics some results of
Bien and Brion on log homogeneous compactifications of a homoge-
neous space under the action of a connected reductive group. We also
construct an explicit smooth log homogeneous compactification of the
general linear group by successive blow-ups starting from a grassman-
nian. By taking fixed points of certain involutions on this compacti-
fication, we obtain smooth log homogeneous compactifications of the
special orthogonal and the symplectic groups.
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Introduction

Let k be an algebraically closed field and G a connected reductive group defined
over k. Given a homogeneous space Ω under the action of the group G it
is natural to consider equivariant compactifications or partial equivariant
compactifications of it. Embeddings are normal irreducible varieties equipped
with an action of G and containing Ω as a dense orbit, and compactifications
are complete embeddings. Compactifications have shown to be powerful tools
to produce interesting representations of the group G or to solve enumerative
problems. In the influent paper [21], Luna and Vust developed a classification
theory of embeddings of the homogeneous space Ω assuming that the field k
is of characteristic zero. Their theory can be made very explicit and extended
to all characteristics, see for instance [15], in the spherical case, that is,
when a Borel subgroup of G possesses a dense orbit in the homogeneous space
Ω. In this case, the embeddings of Ω are classified by combinatorial objects
called colored fans. If the homogeneous space is a torus acting on itself by

Documenta Mathematica 20 (2015) 1–35



2 Mathieu Huruguen

multiplication then one recovers the classification of torus embeddings or toric
varieties in terms of fans, see for instance [14].

In the first part of the paper we focus on a certain category of “good” compact-
ifications of the homogeneous space Ω. For example, these compactifications
are smooth and the boundaries are strict normal crossing divisors. There are
several notions of “good” compactifications in the literature. Some of them are
defined by geometric conditions, as for example the toroidal compactifica-
tions of Mumford [14], the regular compactifications of Bifet De Concini and
Procesi [3], the log homogeneous compactifications of Brion [5] and some of
them are defined by conditions from the embedding theory of Luna and Vust,
as for example the colorless compactifications. As it was shown by Bien
and Brion [5], if the base field k is of characteristic zero then the homogeneous
space Ω admits a log homogeneous compactification if and only if it is spherical,
and in that case the four different notions of “good” compactifications men-
tioned above coincide. We generalize their results in positive characteristics
in Section 1. We prove that a homogeneous space admitting a log homoge-
neous compactification is necessarily separably spherical in the sense of
Proposition-Definition 1.7. In that case, we relate the log homogeneous com-
pactifications to the regular and the colorless one, see Theorem 1.8 for a precise
statement. We do not know whether the condition of being separably spherical
is sufficient for a homogeneous space to have a log homogeneous compactifica-
tion. Along the way we prove Theorem 1.4, which is of independent interest,
on the local structure of colorless compactifications of spherical homogeneous
spaces, generalizing a result of Brion, Luna and Vust, see [7].

In Section 2, we focus on the explicit construction of equivariant compactifica-
tions of a connected reductive group. That is, the homogeneous space Ω is a
connected reductive groupG acted upon by G×G by left and right translations.
The construction of “good” compactifications of a reductive group is a very old
problem, with roots in the 19th century in the work of Chasles, Schubert, who
were motivated by questions from enumerative geometry. When the group G is
semi-simple there is a particular compactification G called canonical which
possesses interesting properties, making it particularly convenient to work with.
For example, the boundary is a divisor whose irreducible component intersect
properly and the closure of the G×G-orbits are exactly the partial intersections
of these prime divisors. Also, there is a unique closed orbit of G × G in the
canonical compactification of G. Moreover, every toroidal compactification of
G has a dominant equivariant morphism to G. If the canonical compactification
G is smooth, then it is wonderful in sense of Luna [20]. When the group G
is of adjoint type, its canonical compactification is smooth, and there are many
known constructions of this wonderful compactification, see for example [29],
[17], [18], [19], [30], [27], [26] for the case of the projective linear group PGL(n)
and [8], [24], [4] for the general case. In general the canonical compactification
is not smooth, as it can be seen for example when G is the special orthogonal
group SO(2n).
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Log Homogeneous Compactifications 3

One way to construct a compactification of G is by considering a linear repre-
sentation V of G and taking the closure of G in the projective space P(End(V )).
The compactifications arising in this way are called linear. It was shown by De
Concini and Procesi [8] that the linear compactifications of a semi-simple group
of adjoint type are of particular interest. Recently, Timashev [28], Gandini and
Ruzzi [11], found combinatorial criterions for certain linear compactifications
to be normal, or smooth. In [10], Gandini classifies the linear compactifications
of the odd special orthogonal group having one closed orbit. By a very new
and elegant approach, Martens and Thaddeus [22] recently discovered a general
construction of the toroidal compactifications of a connected reductive group
G as the coarse moduli spaces of certain algebraic stacks parametrizing objects
called “framed principal G-bundles over chain of lines”.

Our approach is much more classical. In Section 2, we construct a log homo-
geneous compactification Gn of the general linear group GL(n) by successive
blow-ups, starting from a grassmannian. The compactification Gn is defined
over an arbitrary base scheme. We then identify the compactifications of the
special orthogonal group or the symplectic group obtained by taking the fixed
points of certain involutions on the compactification Gn. This provides a new
construction of the wonderful compactification of the odd orthogonal group
SO(2n + 1), which is of adjoint type, of the symplectic group Sp(2n), which
is not of adjoint type, and of a toroidal desingularization of the canonical
compactification of the even orthogonal group SO(2n) having only two closed
orbits. This is the minimal number of closed orbits on a smooth log homo-
geneous compactification, as the canonical compactification of SO(2n) is not
smooth.

Our procedure is similar to that used by Vainsencher, see [30], to construct
the wonderful compactification of the projective linear group PGL(n) or that
of Kausz, see [13], to construct his compactification of the general linear group
GL(n). However, unlike Kausz, we are not able to describe the functor of
points of our compactification Gn. In that direction, we obtained a partial
result in [12], where we describe the set Gn(K) for every field K. We decided
not to include this description in the present paper, as it is long and technical.
The functor of points of the wonderful compactification of the projective linear
group is described in [27] and that of the symplectic group is described in [1].
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1 Log homogeneous compactifications

First we fix some notations. Let k be an algebraically closed field of arbitrary
characteristic p. By a variety over k we mean a separated integral k-scheme of
finite type. If X is a variety over k and x is a point of X , we denote by TX,x

the tangent space of X at x. If Y is a subvariety of X containing x, we denote
by NY/X,x the normal space to Y in X at x.

For an algebraic group G,H, P . . . we denote by the corresponding gothic letter
g, h, p . . . its Lie algebra. Let G be a connected reductive group defined over k.
A G-variety is a variety equipped with an action of G. Let X be a G-variety.
For each point x ∈ X we denote by Gx the isotropy group scheme of x. We
also denote by orbx the morphism

orbx : G→ X, g 7→ g · x.

The orbit of x under the action of G is called separable if the morphism orbx
is, that is, if its differential is surjective, or, equivalently, if the group scheme
Gx is reduced.

We fix a homogeneous space Ω under the action of G. Let X be a smooth
compactification of Ω, that is, a complete smooth G-variety containing Ω as
an open dense orbit. We suppose that the complement D of Ω in X is a strict
normal crossing divisor.

In [3], Bifet, De Concini and Procesi introduce and study the regular compact-
ifications of a homogeneous space over an algebraically closed field of charac-
teristic zero. We generalize their definition in two different ways :

Definition 1.1. The compactification X is regular (resp.
strongly regular) if the orbits of G in X are separable, the partial
intersections of the irreducible components of D are precisely the closures of
the G-orbits in X and, for each point x ∈ X, the isotropy group Gx possesses
an open (resp. open and separable) orbit in the normal space NGx/X,x to the
orbit Gx in X at the point x.

If the characteristic of the base field k is zero, then the notion of regular and
strongly regular coincide with the original notion of [3]. This is no longer true
in positive characteristic, as we shall see at the end of Section 1.2.

In [5], Brion defines the log homogeneous compactifications over an alge-
braically closed field - throughout his paper the base field is also of charac-
teristic zero, but the definition makes sense in arbitrary characteristic. Recall
that the logarithmic tangent bundle TX(− logD) is the vector bundle over X
whose sheaf of section is the subsheaf of the tangent sheaf of X consisting of
the derivations that preserve the ideal sheaf OX(−D) of D. As G acts on X
and D is stable under the action of G, it is easily seen that the infinitesimal
action of the Lie algebra g on X gives rise to a natural vector bundle morphism:

X × g → TX(− logD).
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We refer the reader to [5] for further details.

Definition 1.2. The compactification X is called log homogeneous if the
morphism of vector bundles on X:

X × g → TX(− logD)

is surjective.

Assuming that the characteristic of the base field is zero, Bien and Brion prove
in [2] that the homogeneous space Ω possesses a log homogeneous compacti-
fication if and only if it is spherical. In this case, they also prove that it is
equivalent for a smooth compactification X of Ω to be log homogeneous, reg-
ular or to have no color - as an embedding of a spherical homogeneous space,
see [15]. Their proof relies heavily on a local structure theorem for spherical
varieties in characteristic zero established by Brion, Luna and Vust in [7].

A generalization of the local structure theorem was obtained by Knop in [16];
essentially, one has to replace in the statement of that theorem an isomorphism
by a finite surjective morphism. In Section 1.1 we shall prove that under a sep-
arability assumption, the finite surjective morphism in Knop’s theorem is an
isomorphism. Then, in Section 1.2 we prove that the smooth compactifica-
tion X of Ω is regular if and only if the homogeneous space Ω is spherical,
the embedding X has no color and each closed orbit of G in X is separable
(Theorem 1.5). We also prove that the smooth compactification X of Ω is
strongly regular if and only if it is log homogeneous (Theorem 1.6). Finally, we
exhibit a class of spherical homogeneous spaces for which the notion of regular
and strongly regular compactifications coincide. In Section 1.3 we show that
log homogeneity is preserved under taking fixed points by an automorphism of
finite order prime to the characteristic of the base field k. In Section 1.4 we
recall the classification of Luna and Vust in the setting of compactification of
reductive groups, as this will be useful in Section 2.

1.1 A local structure theorem

Let X be a smooth G-variety. We assume that there is a unique closed orbit
ω of G in X and that this orbit is complete and separable. We fix a point x
on ω. The isotropy group Gx is a parabolic subgroup of G. We fix a Borel
subgroup B of G such that BGx is open in G. We fix a maximal torus T of G
contained in Gx and B and we denote by P the opposite parabolic subgroup
to Gx containing B. We also denote by L the Levi subgroup of P containing
T and by Ru(P ) the unipotent radical of P . With these notations we have the
following proposition, which relies on a result of Knop [16, Theorem 1.2].

Proposition 1.3. There exists an affine open subvariety Xs of X which is
stable under the action of P and a closed subvariety Z of Xs stable under the
action of T , containing x such that:
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(1) The variety Z is smooth at x and the vector space TZ,x endowed with the
action of T is isomorphic to the vector space Nω/X,x endowed with the
action of T .

(2) The morphism:

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z

is finite, surjective, étale at (e, x), and the fiber µ−1(x) is reduced to the
single point {(e, x)}.

Proof. As the smooth G-variety X has a unique closed orbit, it is quasi-
projective by a famous result of Sumihiro, see [25]. We fix a very ample line
bundle L on X . We fix a G-linearization of this line bundle. By [16, Theorem
2.10], there exists an integer N and a global section s of LN such that the
nonzero locus Xs of s is an affine open subvariety containing the point x and
the stabilizer of the line spanned by s in the vector space H0(X,LN ) is P . The
open subvariety Xs is therefore affine, contains the point x and is stable under
the action of the parabolic subgroup P . Using the line bundle LN , we embed
X into a projective space P(V ) on which G acts linearly. We choose a T -stable
complement S to Tω,x in the tangent space TP(V ),x, such that S is the direct
sum of a T -stable complement of Tω,x in TX,x and a T -stable complement of
TX,x in TP(V ),x. This is possible because T is a linearly reductive group.

We consider now the linear subspace S′ of P(V ) containing x and whose tangent
space at x is S. It is a T -stable subvariety of P(V ). By [16, Theorem 1.2],
there is an irreducible component Z of Xs ∩ S

′ containing x and such that the
morphisms

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z

ν : Z → Xs/Ru(P ), z 7→ zRu(P )

are finite and surjective. Moreover, the fiber µ−1(x) is reduced to the single
point (e, x). We observe now that S′ intersects Xs transversally at x. This im-
plies that the subvariety Z is smooth at x. It is also T -stable, as an irreducible
component of Xs ∩ S

′. By definition, the parabolic subgroup P contains the
Borel subgroup B, therefore the orbit Px = Ru(P )x is open in ω. Moreover,
we have the direct sum decomposition g = gx ⊕ pu, where pu is the Lie algebra
of the unipotent radical Ru(P ) of P . The morphism

deorbx : g → Tω,x

is surjective and identically zero on gx. This proves that the restriction of this
morphism to pu is an isomorphism. The morphism

µ : Ru(P )× Z → Xs, (p, z) 7→ p · z

is therefore étale at (e, x). Indeed, its differential at this point is:

pu × TZ,x → TX,x, (h, k) 7→ deorbx(h) + k.
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Log Homogeneous Compactifications 7

We also see that the spaces TZ,x and Nω/X,x endowed with their action of the
torus T are isomorphic, completing the proof of the proposition.

We now suppose further that X is an embedding of the homogeneous space Ω.
With this additional assumption we have:

Theorem 1.4. The following three properties are equivalent:

(1) The homogeneous space Ω is spherical and the embedding X has no color.

(2) The torus T possesses an open orbit in the normal space Nω/X,x. Moreo-
ever, the complement D of Ω in X is a strict normal crossing divisor and
the partial intersections of the irreducible components of D are the closure
of the G-orbits in X.

(3) The set X0 = {y ∈ X, x ∈ By} is an affine open subvariety of X which
is stable by P . Moreover, there exists a closed subvariety Z of X0 which is
smooth, stable by L, on which the derived subgroup [L,L] acts trivially and
containing an open orbit of the torus L/[L,L], such that the morphism:

Ru(P )× Z → X0, (p, z) 7→ p · z

is an isomorphism. Finally, each orbit of G in X intersects Z along a
unique orbit of T .

Proof. (3) ⇒ (1) As T possesses an open orbit in Z, we see that the Borel
subgroup B has an open orbit in X , and the homogeneous space Ω is spherical.
Moreover, let D be a B-stable prime divisor on X containing ω. Using the
isomorphism in (3) we can write

D ∩X0 = Ru(P )× (D ∩ Z).

As D ∩ Z is a closed irreducible T -stable subvariety of Z, it is the closure of
a T -orbit in Z. As the T -orbits in Z correponds bijectively to the G-orbits in
X , we see that D is the closure of a G-orbit in X and is therefore stable under
the action of G. This proves that the embedding X of Ω has no color.

(3) ⇒ (2) The isomorphism in (3) proves that the spaces TZ,x and Nω/X,x

endowed with their actions of the torus T are isomorphic. As T possesses an
open dense orbit in the first one, it also has an open dense orbit in the latter.
As Z is smooth toric variety, we see that the complement of the open orbit of T
in Z is a strict normal crossing divisor whose associated strata are the T -orbits
in Z. Using the isomorphism given by (3), we see that the complement of the
open orbit of the parabolic subgroup P in X0 is a strict normal crossing divisor
whose associated strata are the products Ru(P ) × Ω′, where Ω′ runs over the
set of T -orbits in Z. To complete the proof that property (2) is satisfied, we
translate the open subvariety X0 by elements of G and we use the fact that
each G-orbit in X intersects Z along a unique T -orbit.
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(1) ⇒ (3) We use the notations of Proposition 1.3. By [15, Lemma 6.5] the
fact that the embedding X has no color implies that the parabolic subgroup P
is the stabilizer of the open B-orbit Ω in X . Using this fact and [16, Theorem
2.8] we obtain that the derived subgroup of P , and therefore the derived group
of L, acts trivially on Xs/Ru(P ). Moreover, as the homogeneous space Ω is
spherical, the Levi subgroup L has an open orbit inXs/Ru(P ). The torus T has
therefore an open orbit in Xs/Ru(P ), as the derived group of L acts trivially.
Using the finite surjective morphism ν appearing in the proof of Proposition
1.3, we see that T has an open orbit in Z. Z is therefore a smooth affine toric
variety with a fixed point under the action of a quotient of T . Moreover, as the
subvariety Z is left stable under the action of T and the derived group [L,L]
acts trivially on Z, we see that the Levi subgroup L leaves the subvariety Z
invariant.

We observe now that the locus of points of Ru(P )× Z where µ is not étale is
closed and stable under the actions of Ru(P ) and T . The unique closed orbit
of Ru(P ) ⋊ T in Ru(P ) × Z is Ru(P )x and µ is étale at (e, x), therefore we
obtain that µ is an étale morphism. As the morphism µ is also finite of degree
1 (the fiber of {x} being reduced to a single point), it is an isomorphism.

We prove now that each G-orbit in X intersects Z along a unique T -orbit.
First, we observe that, as ω is the unique closed orbit of G in X , the open
subvariety Xs intersects every G-orbit. We shall prove that the closures of the
G-orbits in X corresponds bijectively to the closures of the T -orbits in Z. Let
X ′ be the closure of a G-orbit in X . As X ′ is the closure of X ′ ∩Xs, it is also
equal, using the isomorphism µ, to the closure of Ru(P )(X

′ ∩ Z). The closed
subvariety X ′∩Z of Z is therefore a closed irreducible T -stable subvariety. We
can conclude that it is the closure of a T -orbit in Z. Conversely let Z ′ be the
closure of a T -orbit in Z. As Z is a smooth toric variety, we can write

Z ′ = D′
1 ∩D

′
2 ∩ ... ∩D

′
r,

where the D′
is are T -stable prime divisors on Z. We observe that the prime

divisors
Ru(P )D′

1, ..., Ru(P )D′
r

on X are stable under the action of P . Indeed, the orbits of P in Xs are
exactly the orbits of Ru(P )⋊ T in Xs. As X has no color, the fact that these
divisors contain the closed orbit ω proves that they are stable under the action
of G. Their intersection Ru(P )Z is also G-stable. As it is irreducible, we can
conclude that it is the closure of a G-orbit in X .

In order to complete the proof that (1) ⇒ (3), it remains to show that

Xs = {y ∈ X, x ∈ By}.

Let y be a point on X such that x belongs to By. The intersection Xs∩By is a
non empty open subset of By which is stable under the action of B. Therefore
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it contains y, that is, y belongs to Xs. Now let y be a point on Xs. The closed
subvariety By contains a closed B-orbit in Xs. As the unique closed orbit of B
in Xs is the orbit of x, we see that x belongs to By, completing the argument.

(2 ⇒ 3) We use the notations introduced in Proposition 1.3. By assumption,
the torus T possesses an open orbit in the normal space Nω/X,x. Moreover, by
Proposition 1.3, the spaces TZ,x and Nω/X,x endowed with their actions of T
are isomorphic. Therefore, the torus T possesses an open dense orbit in TZ,x.
It is then an easy exercise left to the reader to prove that the variety Z is a
smooth toric variety for a quotient of T . The same arguments as above prove
that the morphism µ is an isomorphism.

We prove now that each G-orbit in X intersects Z along a unique orbit of T .
Let D be the complement of Ω in X . By assumption, it is a strict normal
crossing divisor whose associated strata are the G-orbits in X . We denote by
D1, . . . , Dr the irreducible component of D. As there is a unique closed orbit
of G on X each partial intersection

⋂

i∈I Di is non empty and irreducible or,
in other words, it is a stratum of D. The integer r is the codimension of the
closed orbit ω in X , and there are exactly 2r G-orbits in X . As the variety Z
is a smooth affine toric variety of dimension r with a fixed point, we see that
there are exactly 2r orbits of T on Z. As each orbit of G in X intersect Z we
see that the intersection of a G-orbit with Z is a single T -orbit.

Finally, we prove that the open subvariety Xs is equal to X0 by the same
argument as in the proof of (1) ⇒ (3), completing the proof of the theorem.

1.2 Regular, strongly regular and log homogeneous compactifi-

cations

In this section we use the following notation. Let X be a G-variety with a finite
number of orbits (for example, a spherical variety). Let ω be an orbit of G in
X . We denote by

Xω,G = {y ∈ X,ω ⊆ Gy}.

It is an open G-stable subvariety of X in which ω is the unique closed orbit.

Theorem 1.5. Let X be a smooth compactification of the homogeneous space
Ω. The following two properties are equivalent:

(1) X is regular.

(2) The homogeneous space Ω is spherical, the embedding X has no color and
the orbits of G in X are separable.

Proof. Suppose that X is regular. Let D be the complement of Ω in X . It is
a strict normal crossing divisor. Let ω be a closed, and therefore complete and
separable, orbit of G in X . We use the notations introduced at the beginning
of Section 1.4 with Xω,G in place of X . The normal space Nω/X,x is the normal
space to a stratum of the divisor D and therefore possesses a natural direct
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sum decomposition into a sum of lines, each of them being stable under the
action of Gx (which is connected, as it is a parabolic subgroup of G). Therefore
the representation of Gx in Nω/X,x factors through the action of a torus.This
proves that the derived group of L acts trivially in this space, proving that the
torus T has a dense orbit in Nω/X,x. By Theorem 1.4 (applied to Xω,G) the
homogeneous space Ω is spherical and the embedding Xω,G has no color. As
this is true for each closed orbit ω of G in X , we see that the embedding X
has no color.

We assume now that Ω is spherical, X has no color and that each orbit of G in
X is separable. By applying Theorem 1.4 to each open subvariety Xω,G, where
ω runs over the set of closed orbits of X , we see that the complement D of Ω
in X is a strict normal crossing divisor and that, for each point x in X , the
isotropy group Gx has an open orbit in the normal space NGx/X,x. Moreover,
by assumption, the G-orbits in X are separable. To complete the proof of the
theorem, it remains to show that the partial intersections of the irreducible
components of D are irreducible. But this is true on every colorless embedding
of a spherical homogeneous space, due to the combinatorial description of these
embeddings, see [15, Section 3].

Theorem 1.6. Let X be a smooth compactification of Ω. The following two
properties are equivalent:

(1) X is a log homogeneous compactification.

(2) X is strongly regular.

Proof. We suppose first that the compactification X is log homogeneous. We
denote by D the complement of Ω in X . It is a strict normal crossing divisor.
Following the argument given in [5, Proposition 2.1.2] we prove that each stra-
tum of the strict normal crossing divisor D is a single orbit under the action
of G which is separable and that for each point x ∈ X , the isotropy group Gx

possesses an open and separable orbit in the normal space NGx/X,x. In order
to conclude, it remains to prove that the partial intersection of the irreducible
components of D are irreducible. But the same argument as in the proof of
Theorem 1.5 prove that Ω is spherical and X has no color, which is sufficient
to complete the proof.

Conversely, if X is supposed to be strongly regular, the proof of [5, Propo-
sition 2.1.2] adapts without change and shows that X is a log homogeneous
compactification of Ω.

Proposition-Definition 1.7. If the homogeneous space Ω possesses a log
homogeneous compactification, then it satisfies the following equivalent condi-
tions:

(1) The homogeneous space Ω is spherical and there exists a Borel subgroup of
G whose open orbit in Ω is separable.
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Log Homogeneous Compactifications 11

(2) The homogeneous space Ω is spherical and the open orbit of each Borel
subgroup of G in Ω is separable.

(3) The homogeneous space Ω is separable under the action of G, and there
exists a point x in X and a Borel subgroup B of G such that : b+ gx = g.

A homogeneous space satisfying one of these properties is said to be separably

spherical.

Proof. We suppose first that the homogeneous space Ω possesses a log homo-
geneous compactification X and we prove that it satisfies the first condition.
By Theorem 1.6 and 1.5, the homogeneous space Ω is spherical. Let ω be a
closed, and therefore complete and separable, orbit of G in X . We apply The-
orem 1.4 to the open subvariety Xω,G. We use the notations introduced for
this theorem. As X is strongly regular, the maximal torus T has an open and
separable orbit in TZ,x = Nω/X,x. As this space endowed with its action of T
is isomorphic to Z endowed with its action of T , because Z is an affine smooth
toric variety with fixed point for a quotient of T , we see that the open orbit of
T in Z is separable. Consequently, the open orbit of Ru(P )⋊ T in Ru(P )×Z
is separable, and the open orbit of B in Ω is separable.

We prove now that the three conditions in the statement of the proposition-
definition are equivalent. As the Borel subgroups ofG are conjugated, condition
(1) and (2) are equivalent. Suppose now that condition (1) is satisfied. Let B
be a Borel subgroup of G and x a point in the open and separable orbit of B
in Ω. The linear map deorbx : b → TBx,x is surjective. As the orbit Bx is open
in Ω we see that the homogeneous space Ω is separable under the action of G
and that

b+ gx = g.

Conversely, we suppose that condition (3) is satisfied. As the homogeneous
space Ω is separable, the linear map

deorbx : g → g/gx

is the natural projection. As we have b+ gx = g, we see that the linear map

deorbx : b → g/gx

is surjective. This means precisely that the orbit Bx is open in Ω and separable.

Here are some example of separably spherical homogeneous spaces: separable
quotients of tori, partial flag varieties, symmetric spaces in characteristic not 2
(Vust proves in [31] that symmetric spaces in characteristic zero are spherical;
his proof extends to characteristic not 2 to show that symmetric spaces are
separably spherical).
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Theorem 1.8. We assume that the homogeneous space Ω is separably spher-
ical. Let X be a smooth compactification of Ω. The following conditions are
equivalent:

(1) X has no color and the closed orbits of G in X are separable.

(2) X is regular.

(3) X is strongly regular.

(4) X is log homogeneous under the action of G.

Proof. In view of Theorem 1.5 and 1.6 it suffices to show that (1) ⇒ (3).
We assume that condition (1) is satisfied. Let ω be a closed, and therefore
separable orbit of G in X . We apply Theorem 1.4 to the open subvariety Xω,G

of X introduced in the proof of Theorem 1.5. We use the notations introduced
for Theorem 1.4. As the open orbit of B in Ω is separable, we see that the
quotient of T acting on Z is separable. As Z is a smooth affine toric variety
with fixed point under this quotient, we see that the orbits of T in Z are all
separable and that for each point z ∈ Z, the stabilizer Tz has an open and
separable orbit in the normal space NTz/Z,z . From this we get readily that
the embedding Xω,G of Ω satisfies the conditions defining a strongly regular
embedding. As this is true for each closed orbit ω, we see that X is a strongly
regular compactification of Ω.

We end this section with an example of a regular compactification of a homo-
geneous space which is not strongly regular. We suppose that the base field k
has characteristic 2. Let G be the group SL(2) acting on X := P1 × P1. There
are two orbits: the open orbit Ω of pairs of distinct points and the closed orbit
ω, the diagonal, which has codimension one in X . These orbits are separable
under the action of G. Moreover, the complement of the open orbit, that is, the
closed orbit ω, is a strict normal crossing divisor and the partial intersections of
its irreducible components are the closure of G-orbits in X . A quick computa-
tion shows that for each point on the closed orbit ω, the isotropy group has an
open non separable orbit in the normal space to the closed orbit at that point.
Therefore the compactification X of Ω is regular and not strongly regular. By
Theorem 1.8 the homogeneous space cannot be separably spherical. This can
be seen directly as follows. The homogeneous space Ω is the quotient of G by a
maximal torus T . A Borel subgroup B of G has an open orbit in Ω if and only
if it does not contain T . But in that case the intersection B ∩ T is the center
of G, which is not reduced because the characteristic of the base field is 2.

1.3 Log homogeneous compactifications and fixed points

Let X be a smooth variety over the field k and σ an automorphism of X which
has finite order r prime to the characteristic p of k. Fogarty proves in [9] that
the fixed point subscheme Xσ is smooth and that, for each fixed point x of σ
in X , the tangent space to Xσ at x is T σ

X,x.
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We suppose now that X is a smooth log homogeneous compactification of the
homogeneous space Ω. We also assume that the automorphism σ leaves Ω
stable and is G-equivariant, in the sense that there exists an automorphism σ
of the group G satisfying

∀g ∈ G, ∀x ∈ X, σ(gx) = σ(g)σ(x).

By [23, Proposition 10.1.5], the neutral component G′ of the group Gσ is a
reductive group. Moreover, each connected component of the variety Ωσ is a
homogeneous space under the action of G′. We let Ω′ be such a component
and X ′ be the connected component of Xσ containing Ω′.

Proposition 1.9. X ′ is a log homogeneous compactification of Ω′ under the
action of G′.

Proof. Let D be the complement of Ω in X . Let x be a point in X ′. Let
D1, . . . , Ds be the irreducible components of D containing x. First we prove
that the intersection D′ := D∩X ′ is a strict normal crossing divisor. For each
index i, the intersection D′

i := Di ∩ X
′ is a divisor on X ′. Indeed, X ′ is not

contained in Di as it contains Ω
′. As x is fixed by the automorphism σ, we can

assume that the components Dis are ordered in such a way that

σ(D2) = D1 . . . σ(Di1) = Di1−1, σ(D1) = Di1

. . .

σ(Dit−1+2) = Dit−1+1 . . . σ(Dit) = σ(Ds) = Dit−1, σ(Dit−1+1) = Dit .

By convention we define i0 = 0. For each integer j from 1 to t, and each
integer i from ij−1+1 to ij we have D

′
i = D′

ij
. Therefore we see that D′

ij
is the

connected component of the smooth variety (Dij−1+1 ∩ · · · ∩Dij )
σ containing

x. Consequently, it is smooth. For the moment, we have proved that D′ is a
divisor on X ′ whose irreducible components are smooth.

We prove now that the divisor D′
i1
, . . . , D′

it
intersect transversally at the point

x. Let Ux be an open neighborhood of x in X which is stable by the
automorphism σ and on which the equation of D is u1 . . . us = 0, where
u1 . . . us ∈ OX(Ux) are part of a regular local parameter system at x and
satisfy:

σ(u2) = u1 . . . σ(ui1) = ui1−1

. . .

σ(uit−1+2) = uit−1+1 . . . σ(uit) = uit−1.

We aim to prove that the images of the differential dxuij by the natural pro-
jection

(TX,x)
∗ → (TX′,x)

∗

are linearly independent, where j run from 1 to t. As the point x is fixed by
σ, σ acts by the differential on the tangent space TX,x and by the dual action
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14 Mathieu Huruguen

on (TX,x)
∗. As the order of the automorphism σ is prime to the characteristic

p, we have a direct sum decomposition:

(TX,x)
∗ = ((TX,x)

∗)σ ⊕Ker(id+ σ + · · ·+ σr−1)

where the projection on the first factor is given by

l 7→
1

r
(l + σ(l) + · · ·+ σr−1(l)).

Moreover, as TX′,x is equal to (TX,x)
σ, the second factor in this decomposition

is easily seen to be (TX′,x)
⊥, so that the natural projection

(TX,x)
∗ → (TX′,x)

∗

gives an isomorphism
((TX,x)

∗)σ → (TX′,x)
∗.

Finally, the images of the differential dxuij in (TX′,x)
∗ are linearly independent,

because the differentials dxui are linearly independent in (TX,x)
∗.

We have proved that the divisor D′ is a strict normal crossing divisor. We
leave it as an exercise to the reader to prove that there exists a natural exact
sequence of vector bundle on X ′

0 → TX′(− logD′) → TX(− logD)|X′ → NX′/X → 0,

and that the space TX′(− logD′)x is the subspace of fixed point by σ in the
space TX(− logD)x. Now, the compactification X is log homogeneous, there-
fore the linear map

g → TX(− logD)x

is surjective. As r and p are relatively prime, this linear map is still surjective
at the level of fixed points. That is, the linear map

gσ → TX(− logD)σx = TX′(− logD′)x

is surjective. This complete the proof of the proposition.

1.4 The example of reductive groups

In this section the homogeneous space Ω is a connected reductive groupG acted
upon by the group G×G by the following formula:

∀(g, h) ∈ G×G, ∀x ∈ G, (g, h) · x = gxh−1

We would like to explain here the classification of smooth log homogeneous
compactifications of G. Observe that the homogeneous space G under the
action of G × G is actually separably spherical. By Theorem 1.8, its smooth
log homogeneous compactifications are the smooth colorless compactifications

Documenta Mathematica 20 (2015) 1–35



Log Homogeneous Compactifications 15

with separable closed orbits. The last condition is actually superfluous : by
[6, Chapter 6], the closed orbits of G ×G in a colorless compactification of G
are isomorphic to G/B × G/B, where B is a Borel subgroup of G. The log
homogeneous compactifications of G are therefore the smooth colorless one.

We now recall the combinatorial description of the smooth colorless compact-
ifications of G. Let T be a maximal torus of G and B a Borel subgroup of
G containing T . We denote by V the Q-vector space spanned by the one-
parameter subgroups of T and by W the Weyl chamber corresponding to B.
Let X be a smooth colorless embedding of G. We let the torus T act “on the
left” on X . For this action, the closure of T in X is a smooth complete toric va-
riety. We associate to X the fan consisting of those cones in the fan of the toric
variety T which are included in −W . This sets a map from the set of smooth
colorless compactifications of G to the set of fans in V with support −W and
which are smooth with respect to the lattice of one parameter subgroups in V .
This map is actually a bijection, see for instance [6, Chapter 6].

2 Explicit compactifications of classical groups

We construct a log homogeneous compactification Gn of the general linear group
GL(n) by successive blow-ups, starting from a grassmannian. The precise pro-
cedure is explained in Section 2.1. The compactification Gn is defined over an
arbitrary base scheme. In Section 2.2 we study the local structure of the action
of GL(n) ×GL(n) on Gn, still over an arbitrary base scheme. This enables us
to compute the colored fan of Gn over an algebraically closed field in Section
2.4. Using this computation, we are able to identify the compactifications of
the special orthogonal group or the symplectic group obtained by taking the
fixed points of certain involutions on the compactification Gn. In the odd or-
thogonal and symplectic case we obtain the wonderful compactification. In the
even orthogonal case we obtain a log homogeneous compactification with two
closed orbits. This is the minimal number of closed orbits on a smooth log
homogeneous compactification, as the canonical compactification of SO(2n) is
not smooth.

2.1 The compactifications Gm

As we mentioned above our construction works over an arbitrary base scheme:
until the end of Section 2.3 we work over a base scheme S. Let V1 and V2 be
two free modules of constant finite rank n on S. We denote by V the direct
sum of V1 and V2. We denote by p1 and p2 the projections respectively on
the first and the second factor of this direct sum. We denote by G the group
scheme GL(V1)×GL(V2) which is a subgroup scheme of GL(V).

Definition 2.1. We denote by Ω := Iso(V2,V1) the scheme over S parametriz-
ing the isomorphisms from V2 to V1.
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16 Mathieu Huruguen

There is a natural action of the group schemeG on Ω, via the following formulas

∀(g1, g2) ∈ G, ∀x ∈ Ω, (g1, g2) · x = g1xg
−1
2

For this action, Ω is a homogeneous space under the action of G.

Definition 2.2. We denote by G the grassmannian

π : GrS(n,V) → S

parametrizing the submodules of V which are locally direct summands of rank
n. We denote by T the tautological module on G.

The module T is a submodule of π∗V which is locally a direct summand of
finite constant rank n. There is a natural action of the group scheme GL(V),
and therefore of the group scheme G, on the grassmannian G. Moreover, Ω is
contained in G as a G-stable open subscheme via the graph

Ω → G, x 7→ Graph(x).

Definition 2.3. We denote by p the following morphism of modules on the
grassmannian G :

p = π∗p1 ⊕ π∗p2 : T ⊕2 → π∗V .

Definition 2.4. For d ∈ [[0, n]], we denote by Hd the locally free module

Hom(
n+d
∧

(T ⊕2),
n+d
∧

(π∗V)).

on the grassmannian G.

Definition 2.5. For d ∈ [[0, n]], the exterior power ∧n+dp is a global section
of Hd. We denote by Zd the zero locus of ∧n+dp on the grassmannian G.

We define in this way a sequence of G-stable closed subschemes on the grass-
mannian G

Z0 ⊂ Z1 ⊂ · · · ⊂ Zn ⊂ G.

Observe that the closed subscheme Z0 is actually empty. Moreover, it is easy
to prove that the open subscheme Ω is the complement of Zn in G.

We will now define a sequence of blow-ups

Gn Gn−1 . . . G1 G0
bn b1

and, for each integer m between 0 and n, a family of closed subschemes Zm,d

of Gm, where d runs from m to n.

Definition 2.6. Let m ∈ [[0, n]] and d ∈ [[m,n]]. The definition is by induction:
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Log Homogeneous Compactifications 17

• For m = 0, we set G0 := G and Z0,d := Zd.

• Assuming that the scheme Gm−1 and its subschemes Zm−1,d are defined,
we define

bm : Gm → Gm−1

to be the blow-up centered at Zm−1,m and, for each integer d from m to n,
we define Zm,d to be the strict transform of Zm−1,d that is, the schematic
closure of

b−1
m (Zm−1,d \ Zm−1,m)

in Gm.

Moreover, we denote by Im,d the ideal sheaf on Gm defining Zm,d.

The group scheme G acts on the schemes Gm and leaves the subschemes Zm,d

globally invariant. Modulo Proposition 2.17 below, we prove now:

Theorem 2.7. For each integer m from 0 to n − 1, the S-scheme Gm is a
smooth projective compactification of Ω.

Proof. By Proposition 2.17 the scheme Gm is covered by a collection of open
subschemes isomorphic to affine spaces over S. In particular, the S-scheme
Gm is smooth. It is a classical fact that the grassmannian G is projective over
S. As the blow-up of a projective scheme over S along a closed subscheme
is projective over S, we see that Gm is projective over S. Finally, observe
that the open subscheme Ω of G is disjoint from the closed subscheme Zn and
therefore from each of the closed subscheme Zd. As a consequence, Ω is an
open subscheme of each of the Gm.

2.2 An atlas of affine charts for Gm

Let V be the set [[1, n]]× {1, 2}. We denote by V1 the subset [[1, n]] × {1} and
by V2 the subset [[1, n]]×{2}. We shall refer to elements of V1 as elements of V
of type 1 and elements of V2 as elements of type 2. We fix a basis vi, i ∈ V , of
the free module V . We suppose that vi, i ∈ V1 is a basis for V1 and vi, i ∈ V2
is a basis for V2. Moreover, for each subset I of V , we denote by VI the free
submodule of V spanned by the (vi)i∈I . For every integer m from 1 to n, we
denote by V >m the set [[m+ 1, n]]×{1, 2}. We define the sets V >m, V <m and
V 6m similarly. We also have, with obvious notations, the sets V >m

1 , V >m
2 ,

V >m
1 , V >m

2 . . . If I is a subset of V we denote by I1 the set I ∩ V1 and by I2
the set I ∩ V2.

One word on terminology. If X is an S-scheme, by a point x of X we mean
an S-scheme S′ and a point x of the set X(S′). However, as it is usually
unnecessary, we do not mention the S-scheme S′ and simply write: let x be a
point of X .
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18 Mathieu Huruguen

Definition 2.8. We denote by R the set of permutations f of V such that,
for each integer m from 1 to n, the elements f(m, 1) and f(m, 2) of V have
different types.

Definition 2.9. Let f ∈ R. We denote by Uf the affine space

Spec(OS [xi,j , (i, j) ∈ f(V1)× f(V2)])

over S. It is equipped with a structural morphism πf to S. Denote by Ff the
closed subscheme

Spec(OS [xi,j , (i, j) ∈ (f(V1)1 × f(V2)2) ⊔ (f(V1)2 × f(V2)1)])

We think of a point x of Uf as a matrix indexed by the set f(V1)× f(V2). For
a subset I1 of f(V1) and I2 of f(V2), we denote by xI1,I2 the submatrix of x
indexed by I1 × I2. For example, the closed subscheme Ff is defined by the
vanishing of the two matrices xf(V1)1×f(V2)1 and xf(V1)2×f(V2)2 .

Proposition-Definition 2.10. Let f ∈ R. There exists a unique morphism

ιf : Uf → G

such that Tf := ι∗fT is the submodule of π∗
fV spanned by

π∗
fvj +

∑

i∈f(V1)

xi,jπ
∗
fvi

where j runs over the set f(V2). The morphism ιf is an open immersion. We
denote by Gf the image of the open immersion ιf . The open subschemes Gf

cover the grassmannian G as f runs over the set R.

Proof. This is classical. The open subscheme Gf of the grassmannian
parametrizes the complementary submodules of Vf(V1) in V .

Definition 2.11. Let f ∈ R. We denote by Pf,0 the subgroup scheme

StabG(Vf(V1))

of G. It is a parabolic subgroup. We also denote by Lf,0 its Levi subgroup

Lf,0 := StabG(Vf(V1),Vf(V2)) =
∏

i,j∈{1,2}

GL(Vf(Vi)j )

In the next proposition we describe the local structure of the action of the
group scheme G on G. This is analogous to Proposition 1.3.

Proposition 2.12. Let f ∈ R. The open subscheme Gf of G is left stable
under the action of Pf,0. For the corresponding action of Pf,0 on Uf through
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the isomorphism ιf , the closed subscheme Ff is left stable under the action of
Lf,0 and we have the following formulas

∀g ∈ Lf,0, ∀x ∈ Ff ,

x′ = g · x where

{

x′f(V1)1,f(V2)2
= gf(V1)1xf(V1)1,f(V2)2g

−1
f(V2)2

x′f(V1)2,f(V2)1
= gf(V1)2xf(V1)2,f(V2)1g

−1
f(V2)1

Finally, the natural morphism

mf,0 : Ru(Pf,0)×Ff → Uf , (r, x) 7→ r · x

is an isomorphism.

Proof. The open subscheme Gf of the grassmannian parametrizes the comple-
mentary submodules of Vf(V1) in V . It follows that it is stable under the action
of the stabilizer P of Vf(V1) in GL(V) and therefore under the action of its
subgroup Pf,0.

Let x be a point of Uf and g a point of P . By definition, the point ιf (x) is the
graph of x. Therefore, the point g · ιf (x) is the module consisting of elements
of type

g(v + xv) = gf(V2)v + (gf(V1),f(V2) + gf(V1)x)v, v ∈ Vf(V2).

It is thus equal to the point

ιf ((gf(V1),f(V2) + gf(V1)x)g
−1
f(V2)

).

In other words, the action of P on Uf is given by

P × Uf → Uf , (g, x) 7→ (gf(V1),f(V2) + gf(V1)x)g
−1
f(V2)

.

By specializing this action to the subgroup Pf,0 of P , we immediately see that
Ff is left stable under the action of Lf,0 we obtain the formulas in the statement
of the proposition.

Moreover, still using the description of the action of P on Uf found above, we
see that if g is a point of Ru(Pf,0) and x a point of Ff , then the point x′ = g ·x
of Uf is given by :























x′f(V1)1,f(V2)1
= gf(V1)1,f(V2)1

x′f(V1)1,f(V2)2
= xf(V1)1,f(V2)2

x′f(V1)2,f(V2)1
= xf(V1)2,f(V2)1

x′f(V1)2,f(V2)2
= gf(V1)2,f(V2)2 .

This proves that the natural Pf,0-equivariant morphism :

mf,0 : Ru(Pf,0)×Ff → Uf

is indeed an isomorphism.
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Definition 2.13. Let f ∈ R and d ∈ [[0, n]]. We denote by If,0,d the ideal
sheaf on Ff spanned by the minors of size d of the matrix

(

0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

We denote by Zf,0,d the closed subscheme of Ff defined by the ideal sheaf If,0,d.

Proposition 2.14. Let f ∈ R and d ∈ [[0, n− 1]]. Through the isomorphism

mf,0 : Ru(Pf,0)×Ff → Uf

of Proposition 2.12 the closed subscheme ι−1
f (Z0,d) is equal to Ru(Pf,0)×Zf,0,d.

Proof. Due to the formula in the proof of Proposition 2.12, it suffices to show
that the defining ideal of ι−1

f (Z0,d) on Uf is spanned by the minors of size d of
the matrix

(

0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

To prove this, we express the matrix of the homomorphism

ι∗fp : T
⊕2
f → π∗

fV

in appropriate basis. We choose the basis of Tf described in Proposition-
Definition 2.10. This basis is indexed by the set f(V2), which is the disjoint
union of f(V2)1 and f(V2)2. We also choose the basis

π∗
f (vi), i ∈ f(V1)1, π∗

f (vj) +
∑

i∈f(V1)1

xi,jπ
∗
f (vi), j ∈ f(V2)1

for π∗
fV1 and

π∗
f (vi), i ∈ f(V1)2, π∗

f (vj) +
∑

i∈f(V1)2

xi,jπ
∗
f (vi), j ∈ f(V2)2

for π∗
fV2. The matrix of ι∗fp in these basis can be expressed in blocks as follows:









0 xf(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 xf(V1)2,f(V2)1 0
0 0 0 Id









.

By definition, the defining ideal of ι−1
f (Z0,d) is generated by the minors of size

n + d of this matrix. By reordering the vector in the basis, we get the block
diagonal square matrix with blocks In and

(

0 xf(V1)1,f(V2)2

xf(V1)2,f(V2)1 0

)

.

We see therefore that the defining ideal of ι−1
f (Z0,d) is generated by the minors

of size d of the last matrix, as we wanted.
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Definition 2.15. Let f ∈ R, m ∈ [[0, n]] and d ∈ [[m,n]].

• We define a parabolic subgroup scheme Pf,m of G by induction m. For
m equals 0, we have already defined Pf,0. Then, assuming that Pf,m−1

has been defined, we set

Pf,m =



















StabPf,m−1
(Vf(V >m

1
)∩V1

,V{f(m,2)})

if f(m, 1) ∈ V1 and f(m, 2) ∈ V2

StabPf,m−1
(Vf(V >m

1
)∩V2

,V{f(m,2)})

if f(m, 1) ∈ V2 and f(m, 2) ∈ V1.

• We denote by Lf,m the following Levi subgroup of Pf,m:

m
∏

i=1

(GL(Vf(i,1))×GL(Vf(i,2)))×
∏

i,j∈{1,2}

GL(Vf(V >m
i

)∩Vj
)

• We denote by Ff,m the affine space over S on the indeterminates xi,j
where (i, j) runs over the union of the sets

{(f(1, 1), f(1, 2)), . . . , (f(m, 1), f(m, 2))}

and

((f(V >m
1 )1)× (f(V >m

2 )2)) ∪ ((f(V >m
1 )2)× (f(V >m

2 )1)).

• We let the group scheme Lf,m act on Ff,m by the following formulas



















x′

f(1,1),f(1,2) = gf(1,1)g
−1
f(1,2)

xf(1,1),f(1,2)

x′

f(i,1),f(i,2) = gf(i,1)gf(i−1,2)g
−1
f(i−1,1)g

−1
f(i,2)xf(i,1),f(i,2) for i ∈ [[2, m]]

x′

f(V >m
1

)1,f(V
>m
2

)2
= g−1

f(m,1)gf(m,2)gf(V >m
1

)1
xf(V >m

1
)1,f(V

>m
2

)2
g−1

f(V >m
2

)2

x′

f(V >m
1

)2,f(V
>m
2

)1
= g−1

f(m,1)
gf(m,2)gf(V >m

1
)2
xf(V >m

1
)2,f(V

>m
2

)1
g−1

f(V >m
2

)1

where g is a point of Lf,m, x a point of Ff,m and x′ := g · x.

• We denote by Uf,m the product

Ru(Pf,m)×Ff,m

acted upon by the group scheme Pf,m = Ru(Pf,m)⋊Lf,m via the formula

∀(r, l) ∈ Pf,m, ∀(r′, x) ∈ Uf,m, (r, l) · (r′, x) = (rlr′l−1, l · x).

• We denote by If,m,d the ideal sheaf on Ff,m spanned by the minors of
size d−m of the matrix

(

0 xf(V >m
1

)1,f(V
>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

.
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• We denote by Z ′
f,m,d the closed subscheme of Ff,m defined by the ideal

sheaf If,m,d and by Zf,m,d the closed subscheme Ru(Pf,m,d) × Z ′
f,m,d of

Uf,m.

• We denote by Bf,m the blow-up of Uf,m along the closed subscheme
Zf,m,m+1.

Let f ∈ R, m ∈ [[1, n]] and d ∈ [[m,n]]. The blow-up Bf,m−1 is the closed
subscheme of

Uf,m−1×Proj(OS [Xi,j , (i, j) ∈ (f(V >m
1 )1×f(V

>m
2 )2)⊔(f(V

>m
1 )2×f(V

>m
2 )1)])

defined by the equations

∀(i, j), (i′, j′) ∈ (f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

xi,jXi′,j′ −Xi,jxi′,j′ = 0.

Proposition 2.16. With these notations, the open subscheme
{Xf(m,1),f(m,2) 6= 0} of Bf,m−1 is left stable under the action of Pf,m and is
isomorphic, as a Pf,m-scheme, to Uf,m. Moreover, via this isomorphism, the
strict transform of Zf,m−1,d in Uf,m is Zf,m,d.

Proof. We prove analogous statement for the the blow-up B′
f,m−1 of Ff,m−1

along the closed subscheme Z ′
f,m−1,m from which the proposition is easily de-

rived.

The scheme B′
f,m−1 is the closed subscheme of

Ff,m−1×Proj(OS [Xi,j , (i, j) ∈ (f(V >m
1 )1×f(V

>m
2 )2)⊔(f(V

>m
1 )2×f(V

>m
2 )1)])

defined by the equations

∀(i, j), (i′, j′) ∈ (f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

xi,jXi′,j′ −Xi,jxi′,j′ = 0.

Observe that the open subscheme U ′
f,m of B′

f,m−1 defined by Xf(m,1),f(m,2) 6= 0
is isomorphic, as a scheme over Ff,m−1 to

b : Ff,m−1 → Ff,m−1, xi,j 7→



















xf(m,1),f(m,2)xi,j

if (i, j) ∈ f(V >m
1 )× f(V >m

2 )

and i and j have different types

xi,j otherwise.

In the following we shall make use of this remark and use the coordinates xi,j
to describe the points of U ′

f,m.
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Observe that the center of the blow-up B′
f,m−1 → Ff,m−1 is stable under the

action of Lf,m−1 and therefore the group scheme Lf,m−1 acts on B′
f,m−1. This

action can be described as follows.

∀g ∈ Lf,m−1, ∀(x,X) ∈ B′
f,m, (x′, X ′) = g · (x,X) where x′ = g · x and







X ′
f(V >m

1
)1,f(V

>m
2

)2
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)1
X

f(V >m
1

)1,f(V
>m
2

)2
g−1

f(V >m

2
)2

X ′
f(V >m

1
)2,f(V

>m
2

)1
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)2
X

f(V >m
1

)2,f(V
>m
2

)1
g−1

f(V >m
2

)1

where we denote by X the matrix formed by the Xi,j . Observe now that
the open subscheme U ′

f,m is the locus of points (x,X) of B′
f,m−1 such that

Xf(m,1),f(m,2) does not vanish. Therefore, it is left stable under the action of
the parabolic subgroup of Lf,m−1

P =



















StabLf,m−1
(Vf(V >m

1
),Vf(m,2))

if f(m, 1) belongs to V1 and f(m, 2) to V2

StabLf,m−1
(Vf(V >m

2
),Vf(m,2))

if f(m, 1) belongs to V2 and f(m, 2) to V1

The group scheme Lf,m is a Levi subgroup scheme of P . Let g be a point of
Lf,m and x a point of Ff,m. The point x corresponds to the couple (b(x), X)
in B′

f,m−1, where

Xi,j =

{

xi,j if (i, j) 6= (f(m, 1), f(m, 2))

1 if (i, j) = (f(m, 1), f(m, 2)).

Let (x′, X ′) = g · (x,X). By a quick computation we get



































x′f(m,1),f(m,2) = g−1
f(m−1,1)gf(m−1,2)gf(m,1)g

−1
f(m,2)xf(m,1),f(m,2)

X ′
f(m,1),f(m,2) = g−1

f(m−1,1)gf(m−1,2)gf(m,1)g
−1
f(m,2)

X ′
f(V >m

1
)1,f(V

>m
2

)2
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)1Xf(V >m
1

)1,f(V
>m
2

)2g
−1
f(V >m

2
)2

X ′
f(V >m

1
)2,f(V

>m
2

)1
= g−1

f(m−1,1)gf(m−1,2)gf(V >m
1

)2Xf(V >m
1

)2,f(V
>m
2

)1g
−1
f(V >m

2
)1

X ′
i,j = 0 otherwise

Therefore we see that the closed subscheme Ff,m of U ′
f,m is left stable under

the action of the Levi subgroup Lf,m and, moreover, the action of Lf,m on
Ff,m is given by the formulas in Definition 2.15. In a similar way, we prove
that the natural morphism

Ru(P )×Ff,m → U ′
f,m, (g, x) 7→ g · x = x′
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is an isomorphism, given by the following formulas



































x′f(l,1),f(l,2) = xf(l,1),f(l,2) for all l ∈ [[1,m]]

x′
f(V >m

1
)1,f(m,2)

= gf(V >m
1

)1,f(m,1)

x′
f(m,1),f(V >m

2
)2

= −gf(m,2),f(V >m
2

)2

x′
f(V >m

1
)1,f(V

>m
2

)2
= xf(V >m

1
)1,f(V

>m
2

)2 − gf(V >m
1

)1,f(m,1)gf(m,2),f(V >m
2

)2

x′
f(V >m

1
)2,f(V

>m
2

)1
= xf(V >m

1
)2,f(V

>m
2

)1

Now we compute the strict transform of Z ′
f,m,d in U ′

f,m. By definition, the
strict transform of Z ′

f,m,d is the schematic closure of

Z := b−1(Z ′
f,m−1,d ∩ {xf(m,1),f(m,2) 6= 0})

in U ′
f,m. Let x be a point of U ′

f,m. We denote (r, y) its components through
the isomorphism

Ru(P )×Ff,m → U ′
f,m.

By definition, the point x belongs to Z if and only xf(m,1),f(m,2) is invertible
and all the square d−m+ 1 minors extracted from the following matrix

(

0 b(x
f(V >m

1
)1,f(V

>m
2

)2
)

b(x
f(V >m

1
)2,f(V

>m
2

)1
) 0

)

are zero. By definition of the morphism b, each coefficient in this matrix is
a multiple of xf(m,1),f(m,2) and the coefficient in place (f(m, 1), f(m, 2)) is
exactly xf(m,1),f(m,2). As this indeterminate is invertible on the open sub-
scheme {xf(m,1),f(m,2) 6= 0} we see that the point x belongs to Z if and only
xf(m,1),f(m,2) is invertible and all the minors of size d−m+ 1 extracted from
the matrix

(

0 x′
f(V >m

1
)1,f(V

>m
2

)2

x′
f(V >m

1
)2,f(V

>m
2

)1
0

)

are zero, where x′f(m,1),f(m,2) = 1 and x′i,j = xi,j otherwise. By operating
standard row and column operations on this matrix we see now that x belongs
to Z if and only if xf(m,1),f(m,2) is invertible and all the minors of size d −m
extracted from the matrix

(

0 xf(V >m
1

)1,f(V
>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

are zero. This proves that Z is the intersection of Ru(P ) × Z ′
f,m,d with the

open subscheme {xf(m,1),f(m,2) 6= 0}.

In order to complete the proof, we now show that the schematic closure of Z
in U ′

f,m is equal to Ru(P ) × Z ′
f,m,d. We can check this Zariski locally on the
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base S and therefore assume that S is affine. First of all, it is obvious that
the closure of Z is contained in Ru(P )×Z ′

f,m,d. Conversely, let ϕ be a global
function on U ′

f,m which vanishes on Z. This means that there exists an integer

q such that xqf(m,1),f(m,2)ϕ belongs to the ideal spanned by the minors of size

d−m of the following matrix:

(

0 xf(V >m
1

)1,f(V
>m
2

)2

xf(V >m
1

)2,f(V
>m
2

)1 0

)

.

As the indeterminate xf(m,1),f(m,2) does not appear in this matrix, we can
conclude that ϕ itself belongs to this ideal, completing the proof of the propo-
sition.

Proposition 2.17. Let f ∈ R. There exists a unique collection of open im-
mersions ιf,m, for m from 1 to n such that each of the squares below are
commutative :

G0

Uf,0

G1

Uf,1

Gn−1

Uf,n−1

Gn

Uf,n

...

...

ιf,0 ιf,1 ιf,n−1 ιf,n

bf,1

b1

bf,n

bn

The open immersion ιf,m is equivariant for the action of Pf,m. We denote by
Gf,m the image of the open immersion ιf,m. The open subschemes Gf,m cover
Gm as f run over R.

Proof. The existence and Pf,m-equivariance of the ιf,m follows directly from
Proposition 2.16. The uniqueness comes from the fact that for each index m,
the intersection Ω ∩ Gf,m is dense in Gf,m. The last assertion is proved as
follows. By Proposition 2.10, the open subschemes Gf,0 cover the scheme G0.
Moreover, it follows from Proposition 2.16 that the blow-up Bf,m−1 is covered
by the open subschemes Uf ′,m where f ′ runs over the elements of R having
the same restriction as f to [[1, k]] × {1, 2} and satisfying f(V1) = f ′(V1) and
f(V2) = f ′(V2).

2.3 An alternative construction

In this section we provide an alternative construction for the schemes Gm.
Recall from Section 2.1 that the section ∧n+dp of the locally free module Hd

does not vanish on Ω. Therefore it defines an invertible submodule of Hd on Ω
that is locally a direct summand. In other words, it defines a morphism from
Ω to the projective bundle P(Hd) over Ω.
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Definition 2.18. Let d ∈ [[0, n]]. We denote by ϕd the morphism

ϕd : Ω → P(Hd).

defined by the global section ∧n+dp of Hd.

Proposition 2.19. Let d ∈ [[0, n]] and m ∈ [[d, n]]. The morphism ϕd extends
to Gm in a unique way.

Proof. We first observe that Ω is dense in each of the schemes Gm. If the
morphism ϕd extends to Gm it is therefore in a unique way. Moreover, it
suffices to show that ϕd extends to Gd, because then the composite

Gm
bm−→ Gm−1 −→ . . . −→ Gd

ϕd
−→ P(Hd)

is an extension of ϕd to Gm.

By the same density argument as above it suffices to show that the morphism
ϕd extends from Ω ∩ Gf,d to Gf,d for each element f of the set R. We identify
the scheme Gf,d with Uf,d via the isomorphism ιf,d. Observe that the scheme
P(Hd) is equipped with an action of the group scheme G and the morphism ϕd

is equivariant with respect to this action. By using this remark, we see that it
suffices to extend the morphism ϕd from Ω ∩ Ff,d to Ff,d.

We denote by c the composite bf,1◦· · ·◦bf,d. We use the trivialization of Hd on
Gf,0 as in the proof of Proposition 2.14. For this trivialization, the coordinates
are indexed by the product (V2 ⊔ V2) × V . The morphism ϕd is given over
Ω ∩ Ff,d in this coordinates by the n+ d minors of the matrix









0 c(x)f(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 c(x)f(V1)2,f(V2)1 0
0 0 0 Id









.

It follows from the definition of c that all these minors are multiples of

xdf(1,1),f(1,2)x
d−1
f(1,2),f(2,2) . . . xf(d,1),f(d,2)

and that one of them, namely the one indexed by the product of

f(V1)2 ⊔ f(V
6d
2 )2 ⊔ (f(V 6d

1 )2) ⊔ f(V2)2

and
f(V 6d

1 )1 ⊔ f(V2)1 ⊔ f(V
6d
1 )2 ⊔ f(V2)2

is exactly equal to this product or its opposite. By dividing each coordinate by
this product we therefore extend the morphism ϕd to Ff,d.

Proposition 2.20. Let m ∈ [[0, n]]. The morphism

ψm := ϕ0 × ϕ1 × ...× ϕm : Gm → P(H0)×G P(H1)×G ...×G P(Hm)

is a closed immersion.
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Proof. We prove this by induction on m. For m = 0 the morphism ϕ0 is
defined by the nowhere vanishing section ∧np of H0 and is therefore a closed
immersion. We suppose now that ψm−1 is a closed immersion and prove that
ψm is also a closed immersion. As this morphism is proper, it suffices to check
that it is a monomorphism in order to prove that it is a closed immersion. Let
q1 and q2 be two points of Gm which are mapped to the same point by ψm. We
want to show that they are equal.

First, we suppose that q1 and q2 are points of Gf,m, where f is an element of
R. We identify Gf,m and Uf,m via the isomorphism ιf,m. We use the notations
introduced in the proof of Proposition 2.16. The scheme Uf,m is isomorphic
to the product Ru(Pf,m−1) × U ′

f,m. Using the induction hypothesis, we can
assume that q1 and q2 are actually points of U ′

f,m. Viewed as points of U ′
f,m

(which is isomorphic to Ff,m−1 via the morphism b) we denote the coordinates
of q1 by (xi,j,1) and and the coordinates of q2 by (xi,j,2). Still by the induction
hypothesis, we have xi,j,1 = xi,j,2 for (i, j) in the following set

{(f(1, 1), f(1, 2)), . . . , (f(m, 1), f(m, 2))}

as it follows from the definition of the morphism b. Observe now that the
morphism ϕm is defined over U ′

f,m by exactly the same process as explained in
the proof of Proposition 2.19. By this we mean that the coordinates of ϕd are
obtained by computing the n+ d minors of the matrix









0 c(x)f(V1)1,f(V2)2 0 0
Id 0 0 0
0 0 c(x)f(V1)2,f(V2)1 0
0 0 0 Id









and dividing by the product

xmf(1,1),f(1,2)x
m−1
f(1,2),f(2,2) . . . xf(m,1),f(m,2).

Indeed this process makes sense over U ′
f,m and extend ϕd over Ω∩U ′

f,m. More-
over, such an extension is unique. Let (i, j) be an element of

(f(V >m
1 )1 × f(V >m

2 )2) ⊔ (f(V >m
1 )2 × f(V >m

2 )1)

different from (f(m, 1), f(m, 2)). We suppose that i is of type 1 and j of type
2, the other case being entirely similar. The coordinate of ϕm corresponding
to the minor indexed by the product of

f(V1)2 ⊔ f(V
<d
2 )2 ⊔ {j} ⊔ (f(V 6d

1 )2) ⊔ f(V2)2

and
f(V 6d

1 )1 ⊔ f(V2)1 ⊔ f(V
<d
1 )2 ⊔ {i} ⊔ f(V2)2.

is xi,j or its opposite. We can therefore conclude that xi,j,1 = xi,j,2. Finally
we have proved that q1 = q2.
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We go back to the general case. Let f be an element of R. We prove now that
the open subschemes q−1

1 (Gf,m) and q−1
2 (Gf,m) are equal. This is sufficient to

complete the proof of the proposition. By the induction hypothesis, we already
know that the open subschemes q−1

1 (Gf,m−1) and q
−1
2 (Gf,m−1) are equal. Ob-

serve now that the computations above actually prove the following: through
ϕm, the non zero locus on Bf,m of the coordinate of P(Hm) corresponding to
the minor indexed by the product of

f(V1)2 ⊔ f(V
6m
2 )2 ⊔ (f(V 6m

1 )2) ⊔ f(V2)2

and
f(V 6m

1 )1 ⊔ f(V2)1 ⊔ f(V
6m
1 )2 ⊔ f(V2)2

is Uf,m. This implies the result.

2.4 The colored fan of Gn

In this section we assume that the base scheme S is the spectrum of an al-
gebraically closed field k of arbitrary characteristic. The scheme Gn is an
equivariant compactification of the homogeneous space Iso(V2,V1) under the
action of the group GL(V1)×GL(V2). Through the fixed trivializations of the
free modules V1 and V2 we see that Gn is an equivariant compactification of
the general linear group GL(n) under the action of GL(n)×GL(n). The aim of
this section is to compute the colored fan of this compactification, as explained
in Section 1.4.

But first, we say a word about the blow-up procedure explained in Section
2.1 in this setting. By definition, the set Zd(k) is the set of n-dimensional
subspaces of V(k) such that the sum of the ranks of p1(k) and p2(k) is strictly
less than n + d at every point. Another way to state this is that Zd(k) is the
set

{F ∈ G(k), dim(F ∩ V1(k)) + dim(F ∩ V2(k)) > n− d}.

For example, the set Z1(k) is the set of n-dimensional subspaces of V(k) which
are direct sum of a subspace of V1(k) and a subspace of V2(k). Using this
description, it is not difficult to prove that Z1(k) is the union of the closed
orbits of G(k) in G(k). We leave it as an exercise to the reader to prove that,
for d from 1 to n − 1, an orbit ω of G(k) in G(k) is contained in Zd(k) if and
only if its closure is the union of ω and some orbits contained in Zd−1(k).

We use the notations introduced in Section 1.4. We choose for T the diagonal
torus in GL(n) and for B the Borel subgroup of upper triangular matrices.
The torus T is naturally isomorphic to the torus Gn

m. The vector space V is
therefore naturally isomorphic to Qn. The Weyl chamber W corresponding to
the chosen Borel subgroup B of GL(n) is given by

W = {(a1, . . . , an) ∈ V, a1 > a2 > . . . > an}.
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Proposition-Definition 2.21. We denote by Q the set of permutations g of
[[1, n]] such that

∃m ∈ [[0, n]], g|g−1([[1,m]]) is decreasing and g|g−1([[m,n]]) is increasing.

If such an integer m exists, it is unique. We call it the integer associated to g
and denote it by mg. Also, we denote by εg the function

εg : [[1, n]] → {+1,−1}, x 7→











−1 if g(x) ∈ [[1,mg]]

1 if g(x) ∈ [[mg + 1, n]]

Finally, we denote by Cg the following cone in V :

Cg := {(a1, . . . , an) ∈ V, 0 6 εg(1)ag(1) 6 · · · 6 εg(n)ag(n)}

Proposition 2.22. The compactification Gn of GL(n) is log homogeneous and
its colored fan consists of the cones Cg and their faces, where g runs over the
set Q.

Proof. Let us first prove that the compactification Gn is log homogeneous. Let
f be an element ofR. We claim that the complement of Ω in Ff,n is the union of
the coordinate hyperplanes xf(d,1),f(d,2) = 0, where d runs from 1 to n. Indeed,
a point x of Ff,n belongs to Ω if and only if the point x′ = (bf,n ◦ · · · ◦ bf,1)(x)
belongs to Ω. Moreover, we have

{

x′f(d,1),f(d,2) = xf(1,1),f(1,2) . . . xf(d,1),f(d,2) for all d ∈ [[1, n]]

x′i,j = 0 if (i, j) /∈ {(f(1, 1), f(1, 2)), . . . , (f(n, 1), f(n, 2))}.

By Proposition 2.14, the point x′ belongs to Ω if and only if the product

x′f(1,1),f(1,2) . . . x
′
f(n,1),f(n,2) = xnf(1,1),f(1,2)x

n−1
f(2,1),f(2,2) . . . xf(n,1),f(n,2)

does not vanish, that is, if and only if each of the xf(d,1),f(d,2) does not vanish.
This proves the claim. In particular, the complement of Ω in Gn is a strict
normal crossing divisor. By Definition 2.15, the variety Ff,n is a smooth toric
variety for a quotient of the torus T ×T = Lf,n. From this we see that it is log
homogeneous. It is now straightforward to check that the Pf,n-variety Uf,n is
log homogeneous. It readily follows that the G-variety Gn is log homogeneous.

We let T acts on Gn on the left. By Section 1.4, the closure T of T in Gn

is a toric variety under the action of T and we can use the fan of this toric
variety to compute the colored fan of Gn. We shall now identify some of the
cones in the fan of T . Let g be an element of Q. We fix an element f of
R such that, for each integer d from 1 to n, f(d, 1) = (g(d), 1) if εg(d) = 1
and f(d, 2) = (g(d), 1) if εg(d) = −1 The variety Ff,n is an open affine toric
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subvariety of T . It corresponds to a cone in the fan of T , namely the cone
spanned by the one-parameter subgroups having a limit in Ff,n at 0. Let

λ : Gm → T, t→ (ta1 , . . . , tan)

be a one-parameter subgroup of T . By the formulas in Definition 2.15, we see
that the one-parameter subgroup λ has a limit in Ff,n at 0 if and only if

0 6 εg(1)ag(1) 6 . . . 6 εg(n)ag(n)

that is, if and only if λ belongs to Cg. This proves that, for each element g of
Q, the cone Cg belongs to the fan of the toric variety T .

To complete the proof, we show now that the cone −W is equal to the union
of the cones Cg, where g runs over the set Q. Let g be an element of Q and let
(a1, . . . , an) be a point in Cg. Let also i be an integer between 1 and n− 1. If
i < mg, then there are two integers j > j′ such that g(j) = i and g(j′) = i+1.
These integers satisfy ε(j) = −1 and ε(j′) = −1. By definition of the cone Cg,
we have ε(j′)ag(j′) 6 ε(j)ag(j), that is, ai 6 ai+1. The same kind of argument
prove that ai 6 ai+1 for i = mg and for i > mg. This proves that the cone Cg

is contained in the cone −W . We consider now an element (a1, . . . , an) of −W .
By definition it satisfies a1 6 a2 6 . . . 6 an. Let m be an integer such that
am 6 0 and am+1 > 0. The rational numbers −a1, . . . ,−am and am+1, . . . , an
are nonnegative. By ordering them in increasing order, we construct an element
g of Q such that the point (a1, . . . , an) belongs to Cg.

2.5 Fixed points

In this section, the scheme S is the spectrum of an algebraically closed field k
of characteristic not 2. We apply the results obtained in Section 1.3 for some
involutions on the log homogeneous compactification Gn of GL(n). We denote
by Jr the antidiagonal square matrix of size r with all coefficients equal to one
on the antidiagonal.

Let b be a nondegenerate symmetric or antisymmetric bilinear form on kn. Via
the fixed trivializations of V1 and V2 we obtain nondegenerate symmetric or
antisymmetric bilinear forms b1 and b2 on the k-vector spaces V1(k) and V2(k).
We equip the direct sum V(k) of V1(k) and V2(k) with the nondegenerate
symmetric or antisymmetric bilinear form b1 ⊕ b2. We let σ be the involution
of G mapping a n-dimensional k-vector subspace F of V(k) to its orthogonal.
It is an easy exercise to check that

dim(F⊥ ∩ V1(k)) = dim(F ∩ V2(k)) and dim(F⊥ ∩ V2(k)) = dim(F ∩ V1(k)).

By the description of Zd given in Section 2.4, we see that the involution σ
leaves each of the closed subvarieties Zd of G invariant. Therefore it extends to
an involution, still denoted σ, of each of the varieties Gm. To prove that we are
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in the setting of Section 1.3, it remains to observe that there is an involution
σ of GL(n), namely the one associated to b, such that

∀g ∈ GL(n)×GL(n), ∀x ∈ Gm, σ((g1, g2) · x) = σ(g1) · σ(x) · σ(g2)
−1.

As in Section 1.3, we denote by G′ the neutral component of Gσ and by G′
n the

connected component of Gσ
n containing G′.

The odd orthogonal case. We suppose that n = 2r+1 is odd. We let b be
the scalar product with respect to the matrix J2r+1. We have G′ := SO(2r+1).
We let T ′ be the intersection of T with G′ and B′ the intersection of B with
G′. The maximal torus T ′ is naturally isomorphic to the split torus Gr

m via
the following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, 1, t

−1
r , . . . , t−1

1 ).

The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r, 0,−a

′
r, . . . ,−a

′
1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a
′
r) ∈ V, a′1 > a′2 > . . . > a′r > 0}.

Proposition 2.23. The compactification G′
n of G′ is the wonderful compacti-

fication.

Proof. First of all, by Proposition 1.9, the compactification G′
n is log homoge-

neous. As explained in Section 1.4, we use the closure of T ′ in G′
n to compute

the colored fan of G′
n. Observe that T ′ is a subtorus of T and therefore the fan

of the toric variety T ′ is the trace on V ′ of the fan of the toric variety T . By
Proposition 2.22, the cone

{(a1, . . . , a2r+1) ∈ V, 0 6 ar+1 6 −ar 6 ar+2 6 · · · 6 −a1 6 a2r+1}

belongs to the fan of T . The trace of this cone on V ′ is −W ′, proving that
the cone −W ′ belongs to the colored fan of G′

n. But the only fan in V ′ with
support −W ′ containing −W ′ is the fan formed by −W ′ and its faces. This
completes the proof.

The even orthogonal case. We suppose that n = 2r is odd. We let b be
the scalar product with respect to the matrix J2r. We have G′ := SO(2r). We
let T ′ be the intersection of T with G′ and B′ the intersection of B with G′.
The maximal torus T ′ is naturally isomorphic to the split torus Gr

m via the
following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, t

−1
r , . . . , t−1

1 ).
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The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r,−a

′
r, . . . ,−a

′
1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a
′
r) ∈ V, a′1 > a′2 > . . . > a′r−1 > |a′r|}.

Proposition 2.24. The compactification G′
n of G′ is log homogeneous and its

fan consists of the cones

C+ := {(a′1, . . . , a
′
r) ∈ V, a′1 6 a′2 6 . . . 6 a′r−1 6 a′r 6 0}

and
C− := {(a′1, . . . , a

′
r) ∈ V, a′1 6 a′2 6 . . . 6 a′r−1 6 −a′r 6 0}

and their faces.

Proof. The proof is similar to that of Proposition 2.23. With the arguments
given in this proof it suffices to observe that the trace of the following cone in
V :

{(a1, . . . , a2r) ∈ V, 0 6 −ar 6 ar+1 6 · · · 6 −a1 6 a2r}

on V ′ is C+, the trace of

{(a1, . . . , a2r) ∈ V, 0 6 ar 6 −ar+1 6 −ar−1 6 ar+2 6 · · · 6 −a1 6 a2r}

is C− and that −W ′ is the union of C+ and C−.

Observe that the Weyl chamber W ′ is not smooth with respect to the lattice
of one-parameter subgroups of T ′. Therefore the canonical compactification of
G′ is not smooth, and the compactification G′

n is a minimal log homogeneous
compactification, in the sense that it has a minimal number of closed orbits.

The symplectic case. We suppose that n = 2r is even. We let b be the
scalar product with respect to the block antidiagonal matrix

(

0 −Jr
Jr 0

)

.

We have G′ := Sp(2r). We let T ′ be the intersection of T with G′ and B′ the
intersection of B with G′. The maximal torus T ′ is naturally isomorphic to the
split torus Gr

m via the following morphism

Gr
m → T ′, (t1, . . . , tr) 7→ diag(t1, . . . , tr, t

−1
r , . . . , t−1

1 ).

The space V ′ is therefore naturally isomorphic to Qr. It is contained in V via
the following linear map

V ′ → V, (a′1, . . . , a
′
r,−a

′
r, . . . ,−a

′
1).

The Weyl chamber with respect to B′ is given by

W ′ = {(a′1, . . . , a
′
r) ∈ V, a′1 > a′2 > . . . > a′r > 0}.
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Proposition 2.25. The compactification G′
n of G′ is the wonderful compacti-

fication.

Proof. The proof is similar to that of Proposition 2.23. With the arguments
given in this proof it suffices to observe that the trace of the following cone in
V :

{(a1, . . . , a2r) ∈ V, 0 6 −ar 6 ar+1 · · · 6 −a1 6 a2r}

on V ′ is −W ′.
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