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Abstract. This paper is a further study of finite Rokhlin dimension
for actions of finite groups and the integers on C∗-algebras, intro-
duced by the first author, Winter, and Zacharias. We extend the
definition of finite Rokhlin dimension to the nonunital case. This def-
inition behaves well with respect to extensions, and is sufficient to
establish permanence of finite nuclear dimension and Z-absorption.
We establish K-theoretic obstructions to the existence of actions of
finite groups with finite Rokhlin dimension (in the commuting tower
version). In particular, we show that there are no actions of any non-
trivial finite group on the Jiang-Su algebra or on the Cuntz algebra
O∞ with finite Rokhlin dimension in this sense.
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1

The study of group actions on C∗-algebras, and their associated crossed prod-
ucts, has always been a central research theme in operator algebras. One would
like to identify properties of group actions which on the one hand occur com-
monly and naturally enough to be of interest, and on the other hand are strong
enough to be used to derive interesting properties of the action or of the crossed
product. Examples of important properties for a group action meeting these
criteria are the various forms of the Rokhlin property, which arose early on in
the theory. See, for instance, [Izu01] and references therein for actions of Z and
[Izu04a, Izu04b, Phi09, OP12] for the finite group case. The Rokhlin property
for the single automorphism case is quite prevalent, and generic in some cases,
forming a dense Gδ set in the automorphism group (see [HWZ15]). However, it
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requires the existence of projections, and thus will not occur in cases of inter-
est which have few projections, such as automorphisms of the Jiang-Su algebra
Z or automorphisms arising from topological dynamical systems on connected
spaces.
Rokhlin dimension was introduced in [HWZ15] as a generalization of the
Rokhlin property, motivated by the definition of covering dimension for topo-
logical spaces. In this formulation, the Rokhlin property becomes Rokhlin di-
mension 0. In the definition of higher Rokhlin dimension, the projections from
the Rokhlin property are replaced by positive elements with controlled over-
laps. This generalizations covers many more cases. It is shown in [HWZ15] that
for separable unital Z-absorbing C∗-algebras, the property of having Rokhlin
dimension at most 1 is generic. In the commutative setting, it was shown that
if X is a compact metrizable space of finite covering dimension, h : X → X is
a minimal homeomorphism, and α ∈ Aut(C(X)) is given by α(f) = f ◦ h−1,
then α has finite Rokhlin dimension. The result concerning homeomorphisms
was generalized recently in [Sza15] to the case of free actions of Zm on finite
dimensional spaces.
Actions of finite groups with the Rokhlin property are much less common. As
in the case of a single automorphism, it requires projections, thereby ruling out
actions on Z with the Rokhlin property. Even when there are many projections,
there are simple K-theoretic obstructions to the existence of actions with the
Rokhlin property. For instance, since any automorphism of O∞ acts trivially
on K0, if α is an action of a finite group G on O∞ with the Rokhlin property,
and (eg)g∈G is a family of Rokhlin projections, then [eg] = [eh] in K0(O∞) for
all g, h ∈ G. Thus, [1] is divisible by the order of the group, #G. This cannot
happen if G has more than one element. Likewise, one can see that there are
no actions of Zp = Z/pZ on the UHF algebra Mq∞ with the Rokhlin property
if p does not divide some power of q. For more, we refer the reader to [Phi09,
Example 3.12] and the discussion after it.
This paper is devoted to a further study of Rokhlin dimension, mainly for
the finite group case. In Sections 2 and 3 we generalize Rokhlin dimension
to the nonunital case. Our definition is sufficient for generalizing the results
concerning permanence of finite nuclear dimension and decomposition rank
([KW04, WZ10]) and Z-absorption, and behaves well with respect to exten-
sions. In Section 4 we study K-theoretic obstructions to finite Rokhlin di-
mension. The K-theoretic obstructions here are more subtle than the ones
described above, and involve the structure of equivariant K-theory viewed as a
module over the representation ring. As a consequence we show, for instance,
that there are no actions of (nontrivial) finite groups on Z or O∞ with the com-
muting tower version of finite Rokhlin dimension. There are, however, natural
examples of actions of finite group actions on C∗-algebras which do not have
the Rokhlin property but do have finite Rokhlin dimension; see for instance Ex-
ample 1.12. The distinction between the commuting tower and noncommuting
tower versions of Rokhlin dimension initially appeared to be a minor technical-
ity. However, it was recently shown in [BEM+14, Theorem 2.3] that any outer
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action of Z2 on O∞ has Rokhlin dimension 1 in the noncommuting tower sense.
This sharply contrasts with the results we present in Section 4. Likewise, the
action of Sn by permutation on the tensor factors of Z ∼= Z⊗n (see [HW08])
does not have finite Rokhlin dimension with commuting towers, but recently
it has been shown ([SWZ14, Proposition 6.10]) that this action has Rokhlin
dimension 1 without commuting towers. Our results furthermore show that
for finite group actions, there is indeed a genuine difference between the com-
muting tower version of finite Rokhlin dimension and the various projectionless
versions of the tracial Rokhlin property ([Sat10, HO13]).
We use the following notational conventions throughout. We write #G for
the number of elements in a group G. We write Zp = Z/pZ, since the p-
adic numbers make no appearance in the paper. Order zero maps are always
assumed to be completely positive (although not necessarily contractive).

1. Preliminaries

We recall the definition of Rokhlin dimension from [HWZ15].

Definition 1.1. Let G be a finite group, let A be a unital C∗-algebra and let
α : G→ Aut(A) be an action of G on A. We say that α has Rokhlin dimension
d with commuting towers, and write dimc

Rok(α) = d, if d is the least integer
such that the following holds. For any ε > 0 and every finite subset F ⊂ A

there is a family
(
f
(l)
g

)
l=0,1,...,d ;g∈G

of positive contractions in A such that:

(1) f
(l)
g f

(l)
h = 0 for l = 0, 1, . . . , d and g, h ∈ G with g 6= h.

(2)

∥∥∥∥∥∥

d∑

l=0

∑

g∈G

f (l)
g − 1

∥∥∥∥∥∥
< ε.

(3)
∥∥∥
[
f
(l)
g , a

]∥∥∥ < ε for all l ∈ {0, 1, . . . , d}, g ∈ G, and a ∈ F .

(4)
∥∥∥αh

(
f
(l)
g

)
− f

(l)
hg

∥∥∥ < ε for all l ∈ {0, 1, . . . , d} and g ∈ G.

(5)
∥∥∥
[
f
(l)
g , f

(k)
h

]∥∥∥ < ε for any k, l ∈ {0, 1, . . . , d} and for any g, h ∈ G.

The definition is equivalent if we replace the orthogonality condition (1) above

by the formally weaker condition:
∥∥∥f (l)

g f
(l)
h

∥∥∥ < ε. If we weaken this condition

in this way, then we can strengthen the group translation condition (4) to be

exact: αh

(
f
(l)
g

)
= f

(l)
hg .

The following equivalent formulation is a straightforward exercise, and the proof
will be omitted. We define A∞ = l∞(N, A)/c0(N, A), with A identified with the
subalgebra of constant sequences in A∞. We denote by α the induced actions
of G on A∞ and on A∞ ∩A

′. (We caution the reader that there are conflicting
conventions concerning notation for sequence algebras in the literature; some
authors use A∞ for what we call A∞, and A∞ for what we call A∞ ∩A

′.)

Lemma 1.2. Let G be a finite group, let A be a unital separable C∗-algebra,
and let α : G → Aut(A) be an action of G on A. Then dimc

Rok(α) = d if and
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only if d is the least integer such that the following holds: there is a family(
f
(l)
g

)
l=0,1,...,d ;g∈G

of positive contractions in A∞ ∩ A
′ such that

(1) f
(l)
g f

(l)
h = 0, for l ∈ {0, 1, . . . , d} and g, h ∈ G with g 6= h.

(2)

d∑

l=0

∑

g∈G

f (l)
g = 1.

(3) αh

(
f
(l)
g

)
= f

(l)
hg for all l ∈ {0, 1, . . . , d} and g ∈ G.

(4)
[
f
(l)
g , f

(k)
h

]
= 0 for any k, l ∈ {0, 1, . . . , d} and for any g, h ∈ G.

Definition 1.3. Let G be a compact group, let A andD be unital C∗-algebras,
and let α : G→ Aut(A) and γ : G→ Aut(D) be actions of G on A and D. Let
F0 ⊆ D and F ⊆ A be finite sets, and let ε > 0. A unital completely positive
map Q : D → A is said to be an (F0, F, ε)-equivariant central multiplicative
map if:

(1) ‖Q(xy)−Q(x)Q(y)‖ < ε for all x, y ∈ F0.
(2) ‖Q(x)a− aQ(x)‖ < ε for all x ∈ F0 and all a ∈ F.
(3) supg∈G ‖Q(γg(x)) − αg(Q(x))‖ < ε for all x ∈ F0.

If for any such F0, F, ε there is an (F0, F, ε)-equivariant central multiplicative
map from D to A then we say that A admits an approximate equivariant central
unital homomorphism from D.

Remark 1.4. One can replace condition (3) in Definition 1.3 with the require-
ment that the map Q be equivariant. To see that, we first notice that we can
require instead that F and F0 be compact and get an equivalent definition. Fix
F0, F , and ε as in Definition 1.3. Assume without loss of generality that all
elements of F and F0 have norm at most 1. Fix a map Q as in Definition 1.3,
where F and F0 are replaced by their orbits under G, and ε is replaced by ε/2.
Define

Q̃(x) =

∫

G

αg−1(Q(γg(x)))dg .

It is easy to see that Q̃ is a G-equivariant map that satisfies the conditions of
Definition 1.3.

We can reformulate this property in terms of the central sequence algebra as
well, under some stricter assumptions.

Lemma 1.5. Let G be a finite group, let A and D be unital separable C∗-
algebras, with D nuclear, and let α : G → Aut(A) and γ : G → Aut(D) be
actions of G on A and D. Then A admits an approximate equivariant cen-
tral unital homomorphism from D if and only if there is an equivariant unital
homomorphism Ψ: D → A∞ ∩ A

′.

Proof. Suppose A admits an approximate equivariant central unital homomor-
phism from D. Since A and D are separable, we can choose increasing se-
quences of finite sets F0(n) ⊆ D and F (n) ⊆ A such that

⋃
n F0(n) is dense in
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D and
⋃
n F (n) is dense in A. We now choose a sequence of (F0(n), F (n), 2

−n)-
equivariant central multiplicative maps Qn : D → A. We define Ψ to be the
composition of the map (Q1, Q2, . . .) : D → l∞(A) with the quotient onto A∞.
Conversely, if Ψ: D → A∞ ∩ A

′ is a homomorphism as in the statement, we
find a unital completely positive lifting Q = (Q1, Q2, . . .) : D → l∞(A) using
the Choi-Effros lifting theorem. It is readily verified that for any finite subsets
F0 ⊆ D and F ⊆ A and for any ε > 0, Qn will be an (F0, F, ε)-equivariant
central multiplicative map for all sufficiently large n. �

We now introduce the following further generalization of Rokhlin dimension.

Definition 1.6. Let G be a compact group, let A be a unital C∗-algebra,
and let α : G → Aut(A) be an action of G on A. Let X be a compact free G-
space. We say that α has the X-Rokhlin property if A admits an approximate
equivariant central unital homomorphism from C(X).

The following lemma shows that this is indeed a generalization of finite Rokhlin
dimension.

Lemma 1.7. For every finite group G and every nonnegative integer d there is
a compact metrizable free G-space X such that an action α : G → Aut(A) on
a unital C∗-algebra A has dimc

Rok(α) ≤ d if and only if α has the X-Rokhlin
property.

Proof. Consider the universal C∗-algebra D generated by a family(
f
(k)
g

)
g∈G,k=0,1,...,d

of commuting positive contractions satisfying
∑

g,k

f (k)
g = 1

and f
(k)
g f

(k)
h = 0 whenever g 6= h. It admits an action γ of G, determined by

γg
(
f
(k)
h

)
= f

(k)
gh . We now takeX to be the Gelfand spectrum of this C∗-algebra,

which can be identified with a compact subset of the cube [0, 1]#G·(d+1). (In
fact one can check that it is a finite cell complex, but we make no use of
this fact in this paper.) We claim that the action of G on X , which we also

call γ, must be free. To see that, we view the elements f
(k)
g as functions on

X . Let x ∈ X . Pick g, k ∈ G such that f
(k)
g (x) > 0. But if h ∈ G r {1}

then f
(k)
g (γh(x)) = f

(k)
h−1g(x) = 0 since f

(k)
g f

(k)
h−1g = 0. The claim is proved.

The statement of the lemma now follows immediately from Lemmas 1.2 and
1.5. �

Remark 1.8. The space X can be computed explicitly, although we do not
use it in this paper. For example, if G = Z2, one can show that X ∼= Sd, with
the action given by multiplication by −1. We omit the details.

Lemma 1.9. Let A be a unital separable C∗-algebra, let G be a finite group, and
let α : G→ Aut(A) be an action. Let X be a compact free G-space with covering
dimension at most d. If α has the X-Rokhlin property then dimc

Rok(α) ≤ d.

In order to prove the lemma, we recall the characterization of covering dimen-
sion in terms of decomposable covers.
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Definition 1.10. Let X be a set. A family of subsets (Uj)j∈I is said to be

d-decomposable if there is a decomposition I =
∐d
k=0 Ik such that for any

k = 0, 1, . . . , d and any j, j′ ∈ Ik, if j 6= j′ then Uj ∩ Uj′ = ∅.

Proposition 1.11. [KW04, Proposition 1.5] Let X be a normal topological
space. The space X has covering dimension at most d if and only if every
finite open cover of X has a d-decomposable finite open refinement.

Proof of Lemma 1.9. The quotient map π : X → X/G is a local homeomor-
phism. Since the space X/G is the image of X under a local homeomorphism,
it also has covering dimension at most d. (The space X/G can be written as
a union of finitely closed subsets, each of which is homeomorphic to a closed
subspace of X , and thus its dimension is bounded above by the dimension of
X by [Mun00, Corollary 50.3].) Pick a finite open cover (Uj)j=1,2,...,n of X/G
such that for any j, π−1(Uj) is homeomorphic to #G disjoint copies of Uj , that
is, for any j there is an open subset Wj ⊆ X such that π|Wj : Wj → Uj is a

homeomorphism and π−1(Uj) =
∐
g∈GWj · g.

By passing to an open refinement, we may assume without loss of general-
ity that the cover (Uj)j=1,2,...,n is d-decomposable. Pick a partition of unity
(hj)j=1,...,n of X/G such that supp(hj) ⊆ Uj for all j.
Since the cover (Uj)j=1,2,...,n is d-decomposable, we can partition {1, 2, . . . , n}
into d+ 1 subsets I0, I1, . . . , Id such that for any k and any j, j′ ∈ Ik, if j 6= j′

then Uj ∩ Uj′ = ∅. In particular, for any k and any j, j′ ∈ Ik, if j 6= j′ then
hjhj′ = 0.

For j = 1, 2, . . . , n define h̃j ∈ C(X) by

h̃j(x) =

{
hj(π(x)) | x ∈ Wj

0 | otherwise .

(It is easy to check that h̃j is indeed continuous.)

Clearly, for any k and any j, j′ ∈ Ik, if j 6= j′ then h̃j h̃j′ = 0. Define f
(k)
1 =∑

j∈Ik
h̃j . Denoting by γ the action of G on C(X), we now define f

(k)
g =

γg(f
(k)
1 ). By our construction, f

(k)
g f

(k)
h = 0 if g 6= h and these functions form

a partition of unity of X .
Let Ψ: C(X) → A∞ ∩ A

′ be an equivariant unital homomorphism. The ele-

ments Ψ(f
(k)
g ) satisfy the conditions of Lemma 1.2. Thus, dimc

Rok(α) ≤ d as
required. �

Example 1.12. Let θ ∈ (0, 1) be an irrational number, and let Aθ be the
irrational rotation algebra. Let u and v be the canonical unitary generators of
Aθ, satisfying uv = e2πiθvu. Let α be the order 2 automorphism of Aθ given
by α(v) = v and α(u) = −u, and think of α as defining an action of Z2 on Aθ.
We claim that dimc

Rok(α) = 1.
To see that, let (nk)k∈N be a sequence of odd integers satisfying
lim
k→∞

dist(nkθ,Z) = 0. Since vunk = e2πinkθuv, one sees that for any a ∈ Aθ

we have lim
k→∞

‖[a, unk ]‖ = 0. Since nk is odd, α(unk) = −unk . Identifying the
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unitaries unk with equivariant unital homomorphisms from C(T) to Aθ (where
the action on T is rotation by π), we see that dimc

Rok(α) ≤ 1 by Lemma 1.9.
However, α does not have the Rokhlin property (that is, dimc

Rok(α) 6= 0). In
fact, no action of any nontrivial finite group on Aθ has the Rokhlin property.
To see that, observe that any automorphism induces that identity map on K0.
Thus, if α : G → Aut(Aθ) had the Rokhlin property, then there would be a
family of projections (pg)g∈G in Aθ, all of which have the same K0 class, such
that

∑
g∈G pg = 1. Therefore, [1] would be divisible by #G, which is false.

(For a more elaborate discussion of obstructions to the Rokhlin property, see
[Phi09, Proposition 3.13] and the surrounding discussion.)
A similar argument shows that the action of Zp on Aθ which fixes v and sends

u to e2πi/pu has Rokhlin dimension 1 with commuting towers. (An argument
of a similar nature is used to show that certain actions of R on Aθ have the
Rokhlin property. See [Kis96, Proposition 2.5].)

We record the following straightforward lemma, without proof, for further use.

Lemma 1.13. Let G be a compact group, let A, B, and D be unital C∗-algebras,
and let α : G → Aut(A), β : G → Aut(B), and γ : G → Aut(D) be actions of
G on A, B, and D. Suppose that A admits an approximate equivariant central
unital homomorphism from D. Then, for any C∗-tensor product for which the
diagonal action g 7→ αg ⊗ βg of G on A ⊗ B is defined, A ⊗ B admits an
approximate equivariant central unital homomorphism from D.

We now extend the definition of finite Rokhlin dimension for actions of finite
groups and of a single automorphism to the nonunital case. This definition
will be sufficient for extending the permanence properties from [HWZ15] to
the nonunital setting. We begin with the finite group case.

Definition 1.14. Let G be a finite group, let A a C∗-algebra and let α : G→
Aut(A) an action of G on A. We say that α has Rokhlin dimension d with
commuting towers, and write dimc

Rok(α) = d, if d is the least integer such that
the following holds: for any ε > 0 and every finite subset F ⊂ A there is a

family
(
f
(l)
g

)
l=0,1,...,d ;g∈G

of positive contractions in A such that:

(1)
∥∥∥f (l)
g f

(l)
h a
∥∥∥ < ε for l = 0, 1, . . . , d, any a ∈ A, and any g, h in G with

g 6= h.

(2)

∥∥∥∥∥∥




d∑

l=0

∑

g∈G

f (l)
g


 a− a

∥∥∥∥∥∥
< ε for a ∈ F .

(3)
∥∥∥
[
f
(l)
g , a

]∥∥∥ < ε for l ∈ {0, 1, . . . , d}, g ∈ G, and a ∈ F .

(4)
∥∥∥
(
αh

(
f
(l)
g

)
− f

(l)
hg

)
a
∥∥∥ < ε for l ∈ {0, 1, . . . , d}, a ∈ F , and g, h ∈ G.

(5)
∥∥∥
[
f
(l)
g , f

(k)
h

]
a
∥∥∥ < ε for k, l ∈ {0, 1, . . . , d}, a ∈ F , and g, h ∈ G.

Definition 1.15. In the notation of Definition 1.14, given F ⊆ A finite and

ε > 0, we call a family
(
f
(l)
g

)
l=0,1,...,d ;g∈G

of positive elements satisfying the
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conditions of Definition 1.14 with respect to the given F and ε a (d, F, ε)-Rokhlin
system.

As in the unital case, we have the following equivalent reformulation using the
central sequence algebra.

Lemma 1.16. Let G be a finite group, let A be a separable C∗-algebra, and
let α : G → Aut(A) be an action of G on A. Then dimc

Rok(α) = d if and
only if d is the least integer such that the following holds: there is a family(
f
(l)
g

)
l=0,1,...,d ;g∈G

of positive contractions in A∞ ∩ A
′ such that

(1) f
(l)
g f

(l)
h a = 0 for l = 0, 1, . . . , d, any a ∈ A, and any g, h ∈ G with

g 6= h.

(2)




d∑

l=0

∑

g∈G

f (l)
g


 a = a for all a ∈ A.

(3) αh

(
f
(l)
g

)
a = f

(l)
hg a for all l ∈ {0, 1, . . . , d}, a ∈ A, and g ∈ G.

(4)
[
f
(l)
g , f

(k)
h

]
a = 0 for any k, l ∈ {0, 1, . . . , d}, any a ∈ A, and any

g, h ∈ G.

Remark 1.17. With the notation of Lemma 1.16 above, if dimc
Rok(α) = d and

B ⊆ A∞ is any separable subset, then the family
(
f
(l)
g

)
l=0,1,...,d ;g∈G

can in

addition be chosen to satisfy

f (l)
g b = bf (l)

g

for all b ∈ B, for l = 0, 1, . . . , d, and for all g ∈ G.
This is shown using a standard diagonalization method.

Remark 1.18. Condition (1) in Lemma 1.16 can be strengthened to require

that f
(l)
g f

(l)
h = 0, rather than obtaining 0 only after multiplying by an element

of A. To see this, let
(
f
(l)
g

)
l=0,1,...,d ;g∈G

be a system in A∞ ∩ A
′ as in the

lemma. The annihilator Ann(A) is an ideal in A∞ ∩ A
′. Let π : A∞ ∩ A

′ →
A∞ ∩ A

′/Ann(A) be the quotient map. Any system of contractive lifts of(
π(f

(l)
g )
)
l=0,1,...,d ;g∈G

to A∞ ∩A
′ will satisfy the conditions of Lemma 1.16 as

well. Since orthogonal contractions can be lifted to orthogonal contractions (the
cone over Cn is projective), we can choose Rokhlin elements with this added
orthogonality condition. Likewise, one shows that strengthening condition (1)

in Definition 1.14 to require that f
(l)
g f

(l)
h = 0 gives an equivalent definition.

We record the following simple observation. The proof is immediate.

Lemma 1.19. Let G be a finite group, let A be a C∗-algebra, and let α : G →
Aut(A) be an action with dimc

Rok(α) ≤ d. For any subgroup H < G we have
dimc

Rok(α|H) ≤ d.
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Lemma 1.20. Let G be a finite group, let A be a C∗-algebra, and let α : G →
Aut(A) be an action with dimc

Rok(α) < ∞. Then the action α is pointwise
outer.

Proof. Suppose not. Let h be a nontrivial element of G, and suppose that
there is a unitary u ∈ M(A) such that αh(a) = uau∗ for all a ∈ A. Let a be a
nonzero G-invariant positive element in A of norm 1. Let d = dimc

Rok(α). Fix
ε > 0 such that (

1− ε

(d+ 1) ·#G

)2

> 5ε .

Let (f
(l)
g )l=0,1,...,d ;g∈G be a Rokhlin system for the finite set

{a1/2, u∗a1/2, a1/2u} and ε. Since
∥∥∥∥∥∥



∑

g∈G

d∑

l=0

f (l)
g


 a− a

∥∥∥∥∥∥
< ε ,

there exist g ∈ G and l ∈ {0, 1, . . . d} such that ‖af
(l)
g ‖ >

1−ε
(d+1)·#G . We have

∥∥∥a1/2uf (l)
g u∗a1/2 − af (l)

g

∥∥∥ < 2ε and
∥∥∥a1/2uf (l)

g u∗a1/2 − af
(l)
hg

∥∥∥ < 2ε .

Thus
(

1− ε

(d+ 1) ·#G

)2

<
∥∥∥(af (l)

g )(af (l)
g )∗

∥∥∥ ≤
∥∥∥af (l)

g f
(l)
hg a
∥∥∥+ 4ε ≤ 5ε ,

which is a contradiction. �

Now we consider the case of a single automorphism.

Definition 1.21. Let A be a C∗-algebra and d ∈ N. An automorphism α of
A is said to have Rokhlin dimension d with commuting towers if d is the least
integer such that the following holds: for any finite set F ⊂ A, any p > 0, and
any ε > 0, there are positive elements

f
(l)
0,0 , f

(l)
0,1 , . . . , f

(l)
0, p−1 and f

(l)
1,0 , f

(l)
1,1 , . . . , f

(l)
1, p

for l = 0, 1, . . . , d such that:

(1) ‖f
(l)
q,kf

(l)
r,ja‖ < ε for any a ∈ F , l = 0, 1, . . . , d, for q, r = 0, 1, for

k = 0, 1, . . . , p− 1 + q and j = 0, 1, . . . , p− 1 + r with (q, k) 6= (r, j).

(2)

∥∥∥∥∥∥




d∑

l=0



p−1∑

j=0

f
(l)
0,j +

p∑

j=0

f
(l)
1,j




 a− a

∥∥∥∥∥∥
< ε for all a ∈ F .

(3)
∥∥∥[f (l)

r,j , a]
∥∥∥ < ε for l = 0, 1, . . . , d, for r = 0, 1, j = 0, 1, . . . , p− 1+ r and

for a ∈ F .

(4)
∥∥∥
(
α(f

(l)
r,j)− f

(l)
r,j+1

)
a
∥∥∥ < ε for l = 0, 1, . . . , d, for r = 0, 1, for j =

0, 1, . . . , p− 2 + r and for all a ∈ F .

(5)
∥∥∥
(
α(f

(l)
0,p−1 + f

(l)
1,p)− (f l0,0 + f l1,0)

)
a
∥∥∥ < ε for l = 0, 1, . . . , d and for all

a ∈ F .
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(6) ‖[f
(l)
q,k, f

(m)
r,j ]a‖ < ε for all a ∈ F , for l,m = 0, 1, . . . , d, for q, r = 0, 1,

for k = 0, 1, . . . , p− 1 + q and for j = 0, 1, . . . , p− 1 + r.

We write in this case dimc
Rok(α) = d.

We refer to each sequence f
(l)
r,0, f

(l)
r,1, f

(l)
r,2, . . . or to

(
f
(l)
r,j

)
j=0,1,...,p−1+r

as a tower,

to the length of the sequence as the height of the tower, and to the pair of towers
for r = 0, 1 as a double tower. If the double tower satisfies the conditions with
respect to a given (d, F, ε), we refer to those elements as a (d, F, ε)-double tower
of height p.

Example 1.22. Rokhlin dimension zero for automorphisms of nonunital C∗-
algebras coincides with the definition of the Rokhlin property for nonunital C∗-
algebras from [BH13, Definition 1.2]). (Formally, the definition of the Rokhlin
property in [BH13] is slightly stronger: it is reformulated as in Lemma 1.23,
except that instead of item (1), the elements in question are required to be
orthogonal even without multiplying by an element from A; however, those
definitions are equivalent — see Remark 1.25 below.)
Such automorphisms can arise from endomorphisms which satisfy the Rokhlin
property. To give a concrete example, we review the representation of On
as a corner in a crossed product, from [Cun77, Section 2]. Consider Mn∞

∼=
Mn⊗Mn⊗· · · . Let e ∈Mn be a fixed minimal projection. Let α : Mn∞ →Mn∞

be the nonunital endomorphism given by α(a1 ⊗ a2 ⊗ · · · ) = e⊗ a1 ⊗ a2 ⊗ · · · .
Let α̃ be the induced automorphism on the stationary inductive limit K ⊗
Mn∞

∼= lim
−→

(Mn∞ , α). One can check that α̃ has Rokhlin dimension 0 (see

[BH13, Proposition 2.2]). It follows then from Theorem 3.1 below that the
crossed product, which is isomorphic to On ⊗K, has finite nuclear dimension.
The bound for nuclear dimension given in the statement of the theorem is 3.
However when n is even, one can obtain single Rokhlin towers of height 2k (see
[BSKR93, Proposition 4.1 and Remark 4.3]), and therefore the proof of the
theorem can in fact be used to yield nuclear dimension 1. Since finite nuclear
dimension passes to hereditary subalgebras, the same holds for On as well.
That On has finite nuclear dimension was shown in [WZ10, Theorem 7.4] using
a different argument not involving the Rokhlin property, from which it follows
([WZ10, Theorem 7.5]) that the same holds for general Kirchberg algebras
satisfying the UCT. (The bound on the nuclear dimension for such algebras
was improved recently; see [End14, RSS14].) The construction of Kirchberg
algebras as corners of crossed products of AF algebras by automorphisms with
Rokhlin dimension 0 can be carried out in greater generality. It was shown in
[Rør95, Theorem 3.1 and Corollary 4.6] that for any pair of abelian groups G0

and G1 with G1 torsion free and any g0 ∈ G0 one can obtain in this way a
Kirchberg algebra A with (K0(A), [1],K1(A)) ∼= (G0, g0, G1).

As in the case of a finite group action, we can reformulate Rokhlin dimension
for a single automorphism in terms of the central sequence algebra.

Lemma 1.23. Let A a separable C∗-algebra and let α ∈ Aut(A). Then
dimc

Rok(α) = d if and only if d is the least integer such that the following
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holds: for any integer p > 0 there are positive contractions

f
(l)
0,0, f

(l)
0,1, . . . , f

(l)
0,p−1, f

(l)
1,0, f

(l)
1,1, . . . , f

(l)
1,p

for l = 0, 1, . . . , d in A∞ ∩ A
′ such that:

(1) f
(l)
q,kf

(l)
r,ja = 0 for any a ∈ A, for l = 0, 1, . . . , d, for q, r = 0, 1, for

k = 0, 1, . . . , p− 1 + q and j = 0, 1, . . . , p− 1 + r with (q, k) 6= (r, j).

(2)




d∑

l=0



p−1∑

j=0

f
(l)
0,j +

p∑

j=0

f
(l)
1,j




 a = a for all a ∈ A.

(3)
(
α(f

(l)
r,j)− f

(l)
r,j+1

)
a = 0 for l = 0, 1, . . . , d, for r = 0, 1, for j =

0, 1, . . . , p− 2 + r, and for all a ∈ A.

(4)
(
α(f

(l)
0,p−1 + f

(l)
1,p)− (f l0,0 + f l1,0)

)
a = 0 for l = 0, 1, . . . , d and for all

a ∈ A.
(5) [f

(l)
q,k, f

(m)
r,j ]a = 0 for a ∈ A, for l,m = 0, 1, . . . , d, for q, r = 0, 1, for

k = 0, 1, . . . , p− 1 + q, and for j = 0, 1, . . . , p− 1 + r.

Remark 1.24. As in the case of finite group actions, with the notation of
Lemma 1.23 above, if dimc

Rok(α) = d and B ⊆ A∞ is any separable subset, then

the Rokhlin elements f
(l)
0,0, f

(l)
0,1, . . . , f

(l)
0,p−1, f

(l)
1,0, f

(l)
1,1, . . . , f

(l)
1,p can in addition be

chosen to satisfy

f
(l)
r,jb = bf

(l)
r,j

for all b ∈ B, for all l = 0, 1, . . . , d, for r = 0, 1, and for j = 0, 1, . . . , p− 1 + r.

Remark 1.25. Condition (1) in Lemma 1.23 can be strengthened to require

that f
(l)
q,kf

(l)
r,j = 0, for the same indices that appear there. The proof of this

is the same as in Remark 1.18. Likewise, one can strengthen condition (1) in

Definition 1.21 to require that f
(l)
q,kf

(l)
r,j = 0.

The paper [Kir06] is devoted to a study of the C∗-algebra (Aω ∩ A
′)/Ann(A),

where ω is a free ultrafilter, as a suitable substitute for Aω ∩ A
′ when A is

nonunital. We do not use this formalism explicitly here. However it is worth
noting that Lemma 1.23 takes a rather natural form if one considers the image
of the Rokhlin elements in the quotient (A∞ ∩ A

′)/Ann(A).

2. Actions of finite groups: permanence properties

In this section we consider permanence properties for crossed products by ac-
tions with finite Rokhlin dimension, and study the behavior of such actions
under extensions.
We begin by extending the permanence properties from [HWZ15] to the nonuni-
tal setting, which we state as Theorems 2.1 and 2.2.

Theorem 2.1. Let G be a finite group, let A be a C∗-algebra with finite de-
composition rank and let α : G → Aut(A) be an action with dimc

Rok(α) = d.
Then the crossed product A⋊α G has finite decomposition rank. In fact,

dr(A⋊α G) ≤ (dr(A) + 1)(d+ 1)− 1 .
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The same statement is true for nuclear dimension in place of decomposition
rank.

Theorem 2.2. Let G be a finite group, let A be a separable Z-absorbing C∗-
algebra, and let α : G → Aut(A) be an action with dimc

Rok(α) < ∞. Then
A⋊α G is Z-absorbing.

Theorem 2.1 is a generalization of [HWZ15, Theorem 1.3] to the nonunital set-
ting. The modification required to obtain this generalization is straightforward
and will be omitted. For Theorem 2.1, it is not necessary to assume that the
different Rokhlin towers approximately commute (condition (5) in Definition
1.14).
Theorem 2.2 requires more argument. We will omit proofs when they are
straightforward modifications or corollaries of results that have appeared else-
where.

Lemma 2.3. Let X = {(x0, x1) ∈ [0, 1]2 | 0 < x0 + x1 ≤ 1}. The universal
C∗-algebra generated by two commuting positive contractions a0, a1 satisfying
a0+a1 ≤ 1 is isomorphic to C0(X), in such a way that for j = 0, 1, the element
aj becomes the function aj(x0, x1) = xj.

The proof is straightforward and will be omitted. In the above picture, let
p0, p1 be the support projections of a0, a1 in C0(X)∗∗, and let p be the support
projection of a0 + a1. It is easy to construct two positive contractions g0, g1 ∈
M(C0(X)) such that the support projection of g0 is p0, the support projection
of g1 is p1 and g0 + g1 = p. For example, for r ∈ (0, 1] and θ ∈ [0, π/2] for
which (r cos(θ), r sin(θ)) ∈ X , set g1(r cos(θ), r sin(θ)) = 2θ/π and g0 = 1− g1.
We refer the reader to [WZ09, Theorem 3.3] for the structure of order zero maps,
which we use below. If A,B are C∗-algebras with A unital and ϕ : A → B is
a completely positive order zero map, then there is a homomorphism π : A →
M(C∗(ϕ(A))) ∩ ϕ(1)′ ⊆ B∗∗ such that for all a ∈ A we have ϕ(a) = π(a)ϕ(1).
We call π the support homomorphism of ϕ. We write

Zn,n+1 = {f ∈ C([0, 1],Mn ⊗Mn+1) | f(0) ∈Mn ⊗ 1 and f(1) ∈ 1⊗Mn+1}.

One can define order zero contractions θ0 : Mn → Zn,n+1 and θ1 : Mn+1 →
Zn,n+1 by θ0(a)(t) = (1− t) · a⊗ 1Mn+1 and θ1(a)(t) = t · 1Mn ⊗ a. One checks
that θ0(1) + θ1(1) = 1, and the images of these two maps generate Zn,n+1.

Lemma 2.4. Let A be a C∗-algebra. Suppose ϕ0 : Mn → A and ϕ1 : Mn+1 → A
are two contractive order zero maps with commuting images such that ϕ0(1) +
ϕ1(1) ≤ 1. Then there is an order zero map Φ: Zn,n+1 → A with Φ(1) =
ϕ0(1) + ϕ1(1).

Proof. Write fj = ϕj(1) for j = 0, 1. Let π0 and π1 be the support homo-
morphisms of ϕ0 and ϕ1, so that ϕj(a) = πj(a)fj . Define f = f1 + f2. Let
X be the space defined in Lemma 2.3, and let a0, a1 be the two positive el-
ements from that lemma. Then there is a homomorphism ψ : C0(X) → A
such that ψ(a0) = f0 and ψ(a1) = f1. We extend ψ to a homomorphism
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ψ∗∗ : C0(X)∗∗ → A∗∗. Let g0, g1, and p be as in the discussion after Lemma 2.3.
Set g̃0 = ψ∗∗(g0), g̃1 = ψ∗∗(g1), and p̃ = ψ∗∗(p). Define ϕ̃j : Mn+j → p̃A∗∗p̃ for
j = 0, 1 by ϕ̃j(a) = πj(a)gj . Then ϕ̃0 and ϕ̃1 are order zero maps from
Mn and Mn+1, respectively, to p̃A∗∗p̃ such that ϕ0(1) + ϕ1(1) = p̃. By
[RW10, Proposition 2.5], they therefore give rise to a unital homomorphism
ϕ̃ : Zn,n+1 → p̃A∗∗p̃. Now define Φ: Zn,n+1 → A∗∗ by Φ(a) = ϕ̃(a)f for
a ∈ Zn,n+1. Then Φ is an order zero map with Φ(1) = f , and since Zn,n+1

is generated by the images of the homomorphisms used in [RW10, Proposition
2.5], it is straightforward to verify that its image is in A. �

Corollary 2.5. Let A be a C∗-algebra. Suppose ϕ
(k)
0 : Mn → A, and

ϕ
(k)
1 : Mn+1 → A, for k = 0, 1, . . . d, are contractive order zero maps with

commuting images such that

d∑

k=0

[
ϕ
(k)
0 (1) + ϕ

(k)
1 (1)

]
≤ 1.

Then there is an order zero map Φ: Zn,n+1 → A with Φ(1) =
d∑

k=0

[
ϕ
(k)
0 (1) + ϕ

(k)
1 (1)

]
.

Suppose furthermore G is a discrete group acting on A, and F ⊂ Zn,n+1 is a
given finite subset. For any finite subset G0 ⊆ G and any δ > 0 there exists

an ε > 0 such that the following holds. If
∥∥∥αg(ϕ(k)

j (x)) − ϕ
(k)
j (x)

∥∥∥ < ε‖x‖ for

j = 0, 1, for all x ∈ Mn+j, and for all g ∈ G0, then there exists an order
zero map Φ as above which furthermore satisfies ‖αg(Φ(x))−Φ(x)‖ < δ for all
x ∈ F and all g ∈ G0.

Proof. Let D
(m)
n be the kernel of the canonical map (CM+

n )⊗m → C. It fol-

lows by induction from [HWZ15, Lemma 5.2] that D
(m)
n satisfies the following

universal property with respect to m commuting order zero contractions from
Mn. Let η : Mn → CMn = C0((0, 1],Mn) be the order zero map given by

η(a)(t) = ta. For j = 1, 2, . . . ,m, we define ηj : Mn → D
(m)
n to be the j’th

coordinate map

ηj(a) = 1⊗ 1⊗ · · · ⊗ 1⊗ η(a)⊗ 1⊗ · · · ⊗ 1.

Then if A is any C∗-algebra and σ1, σ2, . . . , σm : Mn → A are contractive order
zero maps with commuting images, there exists a (unique) homomorphism

π : D
(m)
n → A such that σj = π ◦ ηj for j = 1, 2, . . . ,m.

By [HWZ15, Lemma 5.3], if h is any positive element in the center Z(D
(m)
n ),

then there exists an order zero map θ : Mn → D
(m)
n with θ(1) = h (and with

‖θ‖ = ‖h‖). In particular, it follows that if ϕ
(0)
0 , ϕ

(1)
0 , . . . , ϕ

(d)
0 : Mn → A are

order zero maps as in the statement, then there exists an order zero map

ϕ0 : Mn → A with ϕ0(1) =
∑d

k=0 ϕ
(k)
0 (1). Similarly, there is an order zero map

ϕ1 : Mn+1 → A ∩ ϕ0(Mn)
′ such that ϕ1(1) =

∑d
k=0 ϕ

(k)
1 (1). Therefore, the
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existence of the map Φ as in the statement of the corollary follows from the
previous lemma.
The refined statement involving the discrete group action is a modification of
the above argument. The added assumption says that ‖αg(π(x)) − π(x)‖ < ε

for all x in a generating set of D
(m)
n and for all g ∈ G0. Therefore, if ε is chosen

to be sufficiently small, we have ‖αg(π(θ(x))) − π(θ(x))‖ < δ for all x in the
unit ball of Mn. We omit the details. �

We require the following simple adaptation of [HWZ15, Lemma 5.4] to the
nonunital setting, that in turn is based on [HW07, Lemma 2.4]. It uses the
characterization of D-stability from [HRW07, Proposition 4.1]. We recall the
notation α from after Definition 1.1.

Lemma 2.6. Let A and B be separable C∗-algebras, with B unital. Let G
be a discrete countable group with an action α : G → Aut(A). Suppose that
(Bn)n=1,2,3,... is a sequence of nuclear subalgebras of B with dense union such
that 1B ∈ Bn for all n. Suppose that for any n ∈ N, any finite subset F ⊆ Bn,
any ε > 0, and any finite set G0 ⊆ G there is a completely positive contraction
γ : Bn → A∞ ∩ A

′ such that:

(1) ‖(αg(γ(x))− γ(x))a‖ < ε for all x ∈ F , all g ∈ G0, and all a ∈ A with
norm at most 1.

(2) aγ(1) = a for all a ∈ A.
(3) a(γ(xy)− γ(x)γ(y)) = 0 for all a ∈ A and x, y ∈ Bn.

Then there is a completely positive contraction Γ: B → A∞ ∩ A
′ satisfying:

(1 ′) aαg(Γ(x)) = aΓ(x) for all a ∈ A, x ∈ B, and g ∈ G.
(2 ′) aΓ(1) = a for all a ∈ A.
(3 ′) a(Γ(xy)− Γ(x)Γ(y)) = 0 for all a ∈ A and x, y ∈ B.

If B is furthermore strongly self absorbing then the full crossed product A⋊αG
absorbs B tensorially.

Proof. We first claim that the maps γ in the hypothesis can be assumed to
be defined on all of B. To see that, since Bn is nuclear, we can choose a
sequence of completely positive maps θ1, θ2, . . . from Bn to A∞ ∩ A

′ which
admit a factorization via completely positive maps ψj and ϕj as in the following
diagram:

Bn
ψj

//

θj

44

Mk

ϕj
// A∞ ∩A

′ ,

and such that lim
j→∞

θj(x) = γ(x) for all x ∈ Bn. Using the Arveson extension

theorem, for each j = 1, 2, . . . we can extend ψj to all of B. We write θj for

the composition of ϕj with the chosen extension of ψj to all of B. Lift θj to a
completely positive map

(θj(1), θj(2), . . .) : B → l∞(N, A)

Documenta Mathematica 20 (2015) 199–236



Rokhlin Dimension: Obstructions and . . . 213

One checks that for a suitable increasing sequence (nj)j=1,2,..., the composition

of the map (θ1(n1), θ2(n2), . . .) : B → l∞(A) with the quotient map onto A∞

yields a completely positive map γ′ : B → A∞∩A
′ which satisfies the first three

conditions of the lemma.
Pick finite sets Fn ⊆ Bn whose union is dense in B and pick increasing finite
subsets Gn ⊆ G whose union is all of G. Choose maps ϕn : B → A∞ ∩ A

′ as
in the statement, for ε = 1/n, extended to B as discussed above. For each
such map we choose a completely positive contractive lifting to a map γ̃n =
(γn(1), γn(2), . . .) : B → l∞(N, A). A standard diagonalization argument now
yields an increasing sequence (mn)n∈N such that the map (γ1(m1), γ2(m2), . . .),
composed with the quotient map, yields a map B → A∞ ∩A

′ as required.
Assume now that B is strongly self absorbing.
The canonical inclusion A →֒ A⋊α G induces an inclusion A∞ →֒ (A⋊α G)∞.
Pick a completely positive contraction γ as in the statement. Composing with
the canonical inclusion (and retaining the same notation), we can view γ as a
completely positive contraction from B to (A ⋊α G)∞ ∩ A

′. Let g ∈ G, a ∈ A
and x ∈ B. Let ug ∈M(A⋊α G) be the canonical unitary corresponding to g.
Then

augγ(x) = aαg(γ(x))ug = aγ(x)ug = γ(x)aug.

Since the elements of the form aug for a ∈ A and g ∈ G span A ⋊α G, we
find that γ is a map into (A ⋊α G)∞ ∩ (A ⋊α G)

′, and that the conditions of
[HRW07, Proposition 4.1] are satisfied. Thus, A⋊α G is B-absorbing. �

Corollary 2.7. Let A be a separable C∗-algebra. Let G be a discrete countable
group with an action α : G→ Aut(A). Let d be a fixed natural number. Suppose
that for any n, any ε > 0, and any finite set G0 ⊆ G, there are contractive

order zero maps ϕ
(k)
j : Mn+j → A∞ ∩ A

′ for j = 0, 1 and k = 0, 1, . . . , d, with

commuting images, such that
∥∥∥αg(ϕ(k)

j (x)) − ϕ
(k)
j (x)

∥∥∥ < ε‖x‖ for all x ∈Mn+j

and all g ∈ G0 and such that

f =

d∑

k=0

[
ϕ
(k)
0 (1) + ϕ

(k)
1 (1)

]

satisfies f ≤ 1 and af = a for all a ∈ A. Then the full crossed product A⋊αG
is Z-absorbing.

Proof. Using the notation of Corollary 2.5, for n ∈ N we obtain an order zero
map Φn : Zn,n+1 → A∞ ∩ A

′ satisfying the first two conditions of Lemma 2.6.
Since Φn is an order zero map, we have Φn(1)Φn(xy) = Φn(x)Φn(y) for all
x, y ∈ Zn,n+1. So, for all a ∈ A, since aΦn(1) = a, we have

a(Φn(xy) − Φn(x)Φn(y)) = a(Φn(1)Φn(xy)− Φn(x)Φn(y)) = 0

as required. Now write Z as an inductive limit of C∗-algebras of the form
Znk,nk+1 for an increasing sequence (nk)k∈N. Apply Lemma 2.6 to get the
conclusion. �
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Proof of Theorem 2.2. We show that the conditions of Corollary 2.7 hold.
Let r be a given positive integer. Fix two order zero maps θ0 : Mr → Z and
θ1 : Mr+1 → Z with commuting ranges such that θ0(1) + θ1(1) = 1.
We claim that there are completely positive contractions ι0, ι1, . . . , ιd : Z →
A∞ ∩ A

′ satisfying:

(1) aιk(1) = a for all a ∈ A.
(2) a(ιk(xy)− ιk(x)ιk(y)) = 0 for all a ∈ A and all x, y ∈ Z.
(3) [αg(ιk(x)), ιl(y)] = 0 for all k, l ∈ {1, 2, . . . , d} with k < l, for all g ∈ G,

and for all x, y ∈ Z.

First, use [HRW07, Proposition 4.1(d)] to choose ι0 : Z → A∞ ∩ A
′ satisfying

conditions (1) and (2) above. To get ι1, lift ι0 to a completely positive contrac-
tion (ψ1, ψ2, . . .) : Z → l∞(N, A). Choose an increasing sequence F1 ⊆ F2 ⊆ . . .
of finite subsets of Z with dense union. Choose an increasing sequence (nj)j∈N

such that

‖[αg(ψj(x)), ψnj (y)]‖ < 1/j

for all x, y ∈ Fj and all g ∈ G. Define ι1 to be composition of the map
(ψn1 , ψn2 , . . .) with the quotient map to A∞. One readily checks that ι1 satisfies
the required conditions. Proceeding inductively, we construct ι2, ι3, . . . , ιd in a
similar way.

Let
(
f
(l)
g

)
l=0,1,...,d ;g∈G

be a family of Rokhlin elements in A∞∩A
′, as in Lemma

1.16, which is furthermore chosen to commute with αg(ιk(Z)) for all g ∈ G and
all k = 0, 1, . . . , d (using Remark 1.17).)
For j = 0, 1 and x ∈Mr+j define

θ
(k)
j (x) =

∑

g∈G

f (k)
g αg(ιk ◦ θj(x)).

The images of these maps are clearly fixed by the action of G on A∞ ∩A
′, and

have commuting images. Set

f =
d∑

k=0

[
θ
(k)
0 (1) + θ

(k)
1 (1)

]
.

If a ∈ A then for k = 0, 1, . . . , d we have

ιk(θ0(1) + θ1(1))a = a

and thus for all g ∈ G we have

αg
(
ιk(θ0(1) + θ1(1))

)
a = a

as well. Therefore, for k = 0, 1, . . . , d,
(
θ
(k)
0 (1) + θ

(k)
1 (1)

)
a =

∑

g∈G

f (k)
g αg

(
ιk(θ0(1) + θ1(1))

)
a =

∑

g∈G

f (k)
g a ,

so

fa =

d∑

k=0

∑

g∈G

f (k)
g a = a.
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One similarly checks that f ≤ 1. Thus the family of maps (θ
(k)
j )j=0,1;k=0,1,...,d

satisfies the conditions of Corollary 2.7. �

We now consider the behavior of finite Rokhlin dimension under extensions.

Lemma 2.8. Let α : G→ Aut(A) be an action of a compact Hausdorff group G
on a C∗-algebra A. Let J⊳A be an invariant ideal. Then there is a quasicentral
approximate identity for J in A which is contained in the fixed point algebra
JG.

Proof. Choose a quasicentral approximate identity for J in A and average it
over the group. �

Proposition 2.9. Let α : G→ Aut(A) be an action with dimc
Rok(α) = d.

(1) Suppose B ⊆ A is a G-invariant hereditary subalgebra. Let β be the
restriction of α to B. Then dimc

Rok(β) ≤ dimc
Rok(α).

(2) Suppose J ⊳ A is an α-invariant ideal. Then the restriction of α to
J and the induced action on A/J both have Rokhlin dimension with
commuting towers at most d.

Proof. Let F ⊂ B be a finite subset, and let ε > 0. We may assume without loss
of generality that ‖b‖ ≤ 1 for all b ∈ F . The C∗-algebra B has an approximate
identity in the fixed point subalgebra BG (using Lemma 2.8 with B thought
of as an ideal in itself). By picking an element sufficiently far out in such an
approximate identity, we can choose a positive contraction e ∈ BG such that
‖eb − b‖ ≤ ε/5 and ‖be − b‖ < ε/5 for all b ∈ F . Choose a (d, F ∪ {e}, ε/5)-

Rokhlin system
(
f
(k)
g

)
k=0,1,...,d ;g∈G

in A. For k = 0, 1, . . . , d and for all g ∈ G

let

x(k)g = ef (k)
g e ∈ B .

It is straightforward to verify that the family
(
x
(k)
g

)
k=0,1,...,d ;g∈G

forms a

(d, F, ε)-Rokhlin system for the action β.
For the second part, the case of the quotient action on A/J is immediate, and
restricting to an ideal is a special case of restricting to a hereditary subalgebra.

�

Theorem 2.10. Let α : G→ Aut(A) be an action of a finite group G on a C∗-
algebra A. Suppose J ⊳A is an α-invariant ideal. Suppose the restriction of α
to J and the induced action on A/J have Rokhlin dimensions with commuting
towers dJ and dA/J . Then dimc

Rok(α) ≤ dJ + dA/J + 1.

Proof. We denote by π : A → A/J the quotient map, and by α the quotient
action on A/J . Let F ⊆ A be a finite subset and let ε > 0. We assume without
loss of generality that ‖a‖ ≤ 1 for all a ∈ F . Pick a (dA/J , π(F ), ε/7)-Rokhlin

system
(
b
(k)
g

)
k=0,1,...,dA/J ;g∈G

in A/J . Using Remark 1.18, we may assume

without loss of generality that b
(k)
h b

(k)
g = 0 for k = 0, 1, . . . , d and all g, h ∈ G
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with g 6= h. Since the cone over Cn is projective, there are x
(k)
g ∈ A, for g ∈ G

and k = 0, 1, . . . , d, such that 0 ≤ x
(k)
g ≤ 1 and π(x

(k)
g ) = b

(k)
g , and moreover

x
(k)
g x

(k)
h = 0 whenever g 6= h.

For any a ∈ F , for any g ∈ G, and for k = 0, 1, . . . , d we have

dist
(
[x

(k)
g , a], J

)
< ε/7. So if (eλ)λ∈Λ is an approximate identity for J then

limλ

∥∥∥[x(k)g , a](1− eλ)
∥∥∥ < ε/7. Also, we have

lim
λ

∥∥∥∥∥∥


1−

dA/J∑

k=0

∑

g∈G

x(k)g


 a(1− eλ)

∥∥∥∥∥∥
= 0 and lim

λ

∥∥∥[x(k)g , x
(l)
h ]a(1 − eλ)

∥∥∥ = 0 .

By taking an element far enough out in a G-invariant quasicentral approximate
identity for J in A (see Lemma 2.8), we can find a positive contraction q ∈ J
which satisfies the following conditions:

(1) ‖qa− aq‖ <
ε

21 ·#G · (dA/J + 1)
for all

a ∈ F ∪

{
αh(x

(k)
g ), αh

(√
x
(k)
g

)
| g, h ∈ G, k = 0, 1, . . . , dA/J

}

(2)
∥∥∥[x(k)g , a](1− q)

∥∥∥ < ε/7 for all a ∈ F .

(3) αg(q) = q for all g ∈ G.

(4)

∥∥∥∥∥∥


1−

dA/J∑

k=0

∑

g∈G

x(k)g


 a(1− q)

∥∥∥∥∥∥
< ε/7 for all a ∈ F .

(5)
∥∥∥
(
αh(x

(k)
g )− x

(k)
hg

)
a(1− q)

∥∥∥ < ε/7 for all h, g ∈ G, for all a ∈ F , and

for k = 0, 1, . . . , dA/J .

(6)
∥∥∥
[
x
(k)
g , x

(l)
h

]
a(1− q)

∥∥∥ < ε/7 for all g, h ∈ G, for all a ∈ F , and for

k, l = 0, 1, . . . , dA/J .

Now, fix a finite set F̃ ⊆ J such that for all a ∈ F , all g ∈ G, and k =

0, 1, . . . , dA/J we have dist([x
(k)
g , a], F̃ ) < ε/7. Let

FJ = F̃ ∪ {qa | a ∈ F} ∪ {q} ∪ {qx(k)g | g ∈ G, k = 0, 1, . . . , dA/J} .

Set M = max{‖f‖ | f ∈ FJ}. Choose δ ∈ (0, ε/42) such that whenever B is a
C∗-algebra and b, c ∈ B satisfy 0 ≤ b ≤ 1, ‖c‖ ≤M , and ‖bc− cb‖ < δ, then

‖b1/2c− cb1/2‖ <
ε

21 ·#G · (dJ + 1)
.

(That δ exists follows by approximating b1/2 with polynomials in b.)

Choose a (dJ , FJ , δ)-Rokhlin system
(
y
(k)
g

)
k=0,1,...,dJ ;g∈G

in J . We assume

again that y
(k)
g y

(k)
h = 0 for g 6= h. For g ∈ G and k = 0, 1, . . . , dJ , we then have

(2.1)

∥∥∥∥
[√

y
(k)
g , f

]∥∥∥∥ <
ε

21 ·#G · (dJ + 1)
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for all f ∈ FJ . Set

(2.2) z(k)g =

√
y
(k)
g q

√
y
(k)
g .

Notice that

(2.3)
∥∥∥z(k)g − y

(k)
g q

∥∥∥ < ε

21 ·#G · (dJ + 1)
.

It follows now that for all g, h ∈ G, and k = 0, 1, . . . , d we have, using (2.3) in
the first step and δ < ε/42 in the last step,

‖αg(z
(k)
h )− z

(k)
gh ‖ < ‖αg(y

(k)
h q)− y

(k)
gh q‖+

2ε

21(dJ + 1)

(2.4)

= ‖(αg(y
(k)
h )− y

(k)
gh )q‖+

2ε

21(dJ + 1)
< δ +

2ε

21(dJ + 1)
<
ε

7
.

We write x ≈ε y to mean ‖x− y‖ < ε. For any a ∈ F , we have, using (2.3) at
the first step,

z(k)g a− az(k)g ≈ε/7 y(k)g qa− qay(k)g(2.5)

≈ε/7 y(k)g qa− y(k)g qa = 0 ,

and, by using (2.3),

(2.6)
∑

g∈G

dJ∑

k=0

z(k)g ≈ε/7
∑

g∈G

dJ∑

k=0

y(k)g q ≈ε/7 q .

Furthermore, for any g, h ∈ G and k, l = 0, 1, . . . , dJ we have

∥

∥

∥
z
(k)
g z

(l)
h − z

(l)
h z

(k)
g

∥

∥

∥
≤

∥

∥

∥
z
(k)
g − qy

(k)
g

∥

∥

∥
+

∥

∥

∥
z
(l)
h − y

(l)
h q

∥

∥

∥

(2.7)

+
∥

∥

∥
z
(l)
h − qy

(l)
h

∥

∥

∥
+

∥

∥

∥
z
(k)
g − y

(k)
g q

∥

∥

∥
+

∥

∥

∥
qy

(k)
g y

(l)
h q − qy

(l)
h y

(k)
g q

∥

∥

∥
.

By (2.3) and selfadjointness, each of the first four terms is less than ε/21. The

last term is at most
∥∥∥q
[
y
(k)
g , y

(l)
h

]
q
∥∥∥ < δ. Therefore

(2.8)
∥∥∥
[
z(k)g , z

(l)
h

]∥∥∥ ≤ 4ε

21
+ δ <

5ε

21
.

Set x̃
(k)
g =

√
x
(k)
g (1− q)

√
x
(k)
g . For g, h ∈ G with g 6= h and k = 0, 1, . . . , dA/J ,

we have

(2.9) x̃(k)g x̃
(k)
h = 0 .

Now, by condition (1) from the list of conditions the element q was chosen to
satisfy,

(2.10) ‖x̃(k)g − x
(k)
g (1− q)‖ <

ε

21 ·#G · (dA/J + 1)
,
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so for all a ∈ F , for all g, h ∈ G, and for k = 0, 1, . . . , dA/J we have

‖(αh(x̃
(k)
g )− x̃

(k)
hg )a‖ < ‖(αh(x

(k)
g )− x

(k)
hg )(1 − q)a‖+

2ε

21
(2.11)

< ‖(αh(x
(k)
g )− x

(k)
hg )a(1 − q)‖+

2ε

21

+
ε

21(dA/J + 1)

<
2ε

7
.

Similarly, at the second step using (2.10) and conditions (1) and (2) from the
list of conditions q was chosen to satisfy,

∥∥∥
[
x̃(k)g , a

]∥∥∥ ≤2
∥∥∥x̃(k)g − x(k)g (1 − q)

∥∥∥(2.12)

+ ‖(1− q)a− a(1− q)‖+
∥∥∥(x(k)g a− ax(k)g )(1 − q)

∥∥∥

<
2ε

21 ·#G · (dA/J + 1)
+
ε

7
+
ε

7
< ε ,

and
∥∥∥∥∥∥



dA/J∑

k=0

∑

g∈G

x̃(k)g


 a− a(1− q)

∥∥∥∥∥∥
(2.13)

≤

dA/J∑

k=0

∑

g∈G

∥∥∥x̃(k)g − x(k)g (1− q)
∥∥∥

+

∥∥∥∥∥∥

dA/J∑

k=0

∑

g∈G

x(k)g

∥∥∥∥∥∥
· ‖(1− q)a− a(1− q)‖

+

∥∥∥∥∥∥

dA/J∑

k=0

∑

g∈G

x(k)g a(1− q)

∥∥∥∥∥∥

≤ (1 + dA/J) ·#G ·
ε

21 ·#G · (dA/J + 1)

+ (1 + dA/J) ·#G ·
ε

21 ·#G · (dA/J + 1)
+
ε

7

<
2ε

7

for all a ∈ F . For the approximate commutation condition, for all a ∈ F we
have, using an argument similar to (2.7) at the first step, ‖1 − q‖ ≤ 1 at the

second step, and
∥∥∥
[
x
(k)
g , x

(l)
h

]∥∥∥ ≤ 2 and condition (5) from the list of conditions
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for the choice of q at the third step,

∥∥∥
[
x̃(k)g , x̃

(l)
h

]
a
∥∥∥ ≤

∥∥∥(1− q)
[
x(k)g , x

(l)
h

]
(1 − q)a

∥∥∥+ 4ε

21
(2.14)

≤
∥∥∥
[
x(k)g , x

(l)
h

] (
(1− q)a− a(1− q)

)∥∥∥

+
∥∥∥
[
x(k)g , x

(l)
h

]
a(1− q)

∥∥∥+ 4ε

21

< 2 ·
ε

21 ·#G · (dA/J + 1)
+
ε

7
+

4ε

21
<

3ε

7
.

Now, for all a ∈ F , for g, h ∈ G, for k = 0, 1, . . . , dA/J , and for l = 0, 1, . . . , dJ
we have, by commuting the term (1− q) all the way to the right in the second
step, and by commuting the term q to the left three terms in the first sum-
mand and one term to the right in the second summand, and using the bounds
from condition (1) from the list of conditions q was chosen to satisfy and from
inequality (2.1):

(
x̃(k)g z

(l)
h − z

(l)
h x̃(k)g

)
a

=

(√
x
(k)
g (1− q)

√
x
(k)
g ·

√
y
(l)
h q

√
y
(l)
h

−

√
y
(l)
h q

√
y
(l)
h ·

√
x
(k)
g (1− q)

√
x
(k)
g

)
a

≈2ε/21+2δ

(√
x
(k)
g ·

√
x
(k)
g ·

√
y
(l)
h q

√
y
(l)
h

−

√
y
(l)
h q

√
y
(l)
h ·

√
x
(k)
g ·

√
x
(k)
g

)
(1− q)a

≈2ε/21+2δ

(
(qx(k)g )y

(l)
h − y

(l)
h (qx(k)g )

)
(1− q)a

and

∥∥∥
[
qx(k)g , y

(l)
h

]∥∥∥ · ‖(1− q)a‖ < δ .

Therefore,

(2.15)
∥∥∥
[
x̃(k)g , z

(l)
h

]
a
∥∥∥ < 4ε

21
+ 5δ < ε .
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Finally, for any a ∈ F ,

∥∥∥∥∥∥



dA/J∑

k=0

∑

g∈G

x̃(k)g +

dJ∑

k=0

∑

g∈G

z(k)g


 a− a

∥∥∥∥∥∥

(2.16)

≤

∥∥∥∥∥∥



dA/J∑

k=0

∑

g∈G

x̃(k)g


 a− a(1− q)

∥∥∥∥∥∥
+

∥∥∥∥∥∥




dJ∑

k=0

∑

g∈G

z(k)g


− q

∥∥∥∥∥∥
+ ‖qa− aq‖

<
2ε

7
+

2ε

7
+

ε

21 ·#G · (dA/J + 1)
< ε .

For g ∈ G and k = 0, 1, . . . , dA/J + dJ + 1, set

f (k)
g =

{
x̃
(k)
g | k = 0, 1, . . . , dA/J

z
(k−dA/J−1)
g | k = dA/J + 1, dA/J + 2, . . . , dA/J + dJ + 1 .

One checks now that
(
f
(k)
g

)
k=0,1,...,dA/J+dJ+1

is a (dA/J +dJ+1, F, ε)-Rokhlin

system, as follows.

• Condition (1) in Definition 1.14 follows from (2.9) and the fact that

z
(k)
g z

(k)
h = 0 for k = 0, 1, . . . , dJ and all g, h ∈ G with g 6= h.

• Condition (2) follows from (2.16).
• Condition (3) follows from (2.12) and (2.5).
• Condition (4) follows from (2.11) and (2.4).
• Condition (5) follows from (2.14), (2.8), and (2.15).

This completes the proof that dimc
Rok(α) ≤ dA/J + dJ + 1, as required. �

We conclude this section by applying the results above concerning equivariant
extensions to the case of actions on type I C∗-algebras. We first need the
following proposition.

Proposition 2.11. Let A be a separable C∗-algebra with Hausdorff primitive
ideal space X. Suppose G is a finite group, and α : G→ A is an action. Suppose
α induces a free action on X, and suppose X has covering dimension d. Then
dimc

Rok(α) ≤ d.

Proof. By the Dauns-Hoffman theorem, we can identify Cb(X) with the center
of M(A). By slight abuse of notation, we denote by α the extension of the
action of α to Cb(X) and to C0(X). Let X1 ⊆ X2 ⊆ · · · ⊆ X be an increasing
sequence of G-invariant compact subsets such that

⋃
nXn = X . Each Xn

has covering dimension at most d. We can view G as acting on C(Xn) as
well, and by Lemma 1.9, those actions have Rokhlin dimension at most d with
commuting towers.
Let F ⊆ A be a finite subset, and let ε > 0. By perturbing F , we may assume
without loss of generality that there is an N such that C0(X rXN )a = 0 for

all a ∈ F . Let (f
(l)
g )l=0,1,...,d ;g∈G be a family of Rokhlin elements in C(XN ) as
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in Definition 1.1. Extend each of them to positive a contraction in C0(X). We
retain the same notation for the extensions of those elements. Let e ∈ A be a G-
invariant positive contraction in A which satisfies ‖ea−a‖ < ε/2 and ‖ae−a‖ <

ε/2 for all a ∈ F . One readily verifies that the family (f
(l)
g e)l=0,1,...,d ;g∈G

satisfies the conditions of Definition 1.14. �

Corollary 2.12. Let A be a separable type I C∗-algebra with finite composition
series A = In ⊲ In−1 ⊲ · · · ⊲ I1 ⊲ I0 = 0, in which Ik+1/Ik has Hausdorff
primitive ideal space. Suppose the primitive ideal space of Ik/Ik−1 has finite
covering dimension for k = 1, 2, . . . , n. Let G be a finite group, and let α : G→
Aut(A) be an action. If G acts freely on the primitive ideal space of A then
dimc

Rok(α) <∞.

Proof. The proof of [Phi87, Corollary 8.1.2] shows that the composition series
above can be chosen to beG-invariant. By Proposition 2.11, the induced actions
of G on the algebras Ik+1/Ik have finite Rokhlin dimension with commuting
towers. The statement now follows by repeated application of Theorem 2.10.

�

Corollary 2.12 is a partial converse to the following.

Proposition 2.13. Let A be a separable type I C∗-algebra. Let G be a finite
group, and let α : G → Aut(A) be an action. If dimc

Rok(α) < ∞ then the
induced action of α on the primitive ideal space of A is free.

Proof. Suppose not. Then there is a finite cyclic subgroup H of G of prime
order such that the restriction of the action to H is not free either. By Lemma
1.19, we have dimc

Rok(α|H) < ∞ as well. By [Phi87, Lemma 8.2.1], there
exist H-invariant ideals I ⊲ J such that I/J is isomorphic to the C∗-algebra
of compact operators on some Hilbert space. Thus, H acts on I/J via inner
automorphisms, but also has finite Rokhlin dimension. By Lemma 1.20, this
cannot happen. �

3. Actions of a single automorphism: permanence properties

In this section we discuss the analogs of the results from Section 2 for actions
of Z. We follow the same organization as the previous section, and begin by
extending the permanence properties from [HWZ15] to the nonunital setting.
We state these as Theorems 3.1 and 3.2.

Theorem 3.1. Let A be a C∗-algebra with finite nuclear dimension and α ∈
Aut(A) be an automorphism with dimc

Rok(α) = d. Then the crossed product
A⋊α Z has finite nuclear dimension as well — in fact,

dimnuc(A⋊α Z) ≤ 4(dimnuc(A) + 1)(d+ 1)− 1 .

Theorem 3.2. Let A be a separable Z-absorbing C∗-algebra and α ∈ Aut(A)
be an automorphism with dimc

Rok(α) < ∞. Then A ⋊α Z is Z-absorbing as
well.
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Theorem 3.1 is a generalization of [HWZ15, Theorem 4.1] to the nonunital set-
ting. The modification required to obtain this generalization is straightforward
and will be omitted. For Theorem 3.1, it is not necessary to assume that the
different Rokhlin towers approximately commute.
For the proof of Theorem 3.2 we need modifications similar to those we used
in the case of finite group actions. We skip details in those parts of the proof
which closely mirror those which appear in the proof of Theorem 2.2.

Proof of Theorem 3.2. We show that the conditions of Corollary 2.7 hold.
Let r be a given positive integer. Fix two order zero maps θj : Mr+j → Z,
for j = 0, 1, with commuting ranges, such that θ0(1) + θ1(1) = 1. Let
K be the union of the images of the unit balls of Mr and Mr+1 un-
der these maps. We claim that there are completely positive contractions
ι0, ι1, . . . , ιd, µ0, µ1, . . . , µd : Z → A∞ ∩ A

′ satisfying:

(1) aιk(1) = a and aµk(1) = a for all a ∈ A.
(2) a(ιk(xy)−ιk(x)ιk(y)) = 0 and a(µk(xy)−µk(x)µk(y)) = 0 for all a ∈ A

and all x, y ∈ Z.
(3) The image of each of those maps commutes with all the iterates of the

image of any of the other maps under α.

The proof of this claim is very similar to the analogous one in the proof of The-
orem 2.2, and we omit it. Notice that if ι : Z → A∞ ∩ A

′ is a homomorphism,
then

⋃
n∈Z

αn(Z) is a separable set, and therefore replacing the finite group G
from Theorem 2.2 by the group of integers causes no difficulties.
Since the tensor flip in Z ⊗Z is approximately inner, there is w in the unitary
group U(Z ⊗ Z) such that

‖w(x⊗ 1)w∗ − 1⊗ x‖ <
ε

4

for all x ∈ K. The unitary group of the Jiang-Su algebra is connected. Thus,
w can be connected to 1 via a rectifiable path. Let L be the length of such a
path. Choose n ∈ N such that L‖x‖/n < ε/8 for all x ∈ F .
Recall ([BO08, Exercise 3.5.1]) that if B1, B2, and D are C∗-algebras,
and T1 : B1 → D and T2 : B2 → D are completely positive contractions
with commuting ranges, then there exists a completely positive contraction
T : B1 ⊗max B2 → D such that T (b1 ⊗ b2) = T1(b1)T2(b2) for all b1 ∈ B1 and
b2 ∈ B2. Therefore, the commutation properties of the maps ιk and µk for
k = 0, 1, . . . , d imply that there are completely positive contractions

ρk, ρ
′

k : Z ⊗ Z → A∞ ∩A
′

such that for all x, y ∈ Z,

ρk(x⊗ y) = ιk(x)µk(y) and ρ′k(x⊗ y) = αn(ιk(x))µk(y) .

We claim that ρ(1)a = a and (ρ(xy) − ρ(x)ρ(y))a = 0 for all a ∈ A and
x, y ∈ Z ⊗Z, and the same for ρ′. This evidently holds for elementary tensors
in Z ⊗ Z, and by linearity and continuity holds for all x, y ∈ Z ⊗ Z, proving
the claim.
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Pick unitaries 1 = w0, w1, . . . , wn = w in the identity component U0(Z ⊗ Z)
of U(Z ⊗ Z) such that ‖wj − wj+1‖ ≤ L/n for j = 0, 1, . . . , n − 1. Now, for
k = 0, 1, . . . , d, let

x
(k)
j = ρk(wj)

∗ρ′k(wj) .

The elements x
(k)
j behave like unitaries when multiplied by elements from A,

that is, we have

x
(k)
j

(
x
(k)
j

)∗
a =

(
x
(k)
j

)∗
x
(k)
j a = a

for all a ∈ A. Furthermore, x
(k)
0 a = a for all a ∈ A and k = 0, 1, . . . , d. Note

also that ∥∥∥x(k)j − x
(k)
j+1

∥∥∥ ≤ 2L

n
for j = 0, 1, . . . , n− 1, and that

∥∥∥
(
x(k)n αn(ιk(y))

(
x(k)n

)∗
− ιk(y)

)
a
∥∥∥

= ‖(ρk(w)
∗ρ′k(w)α

n(ιk(y))ρ
′

k(w)
∗ρk(w) − ιk(y)) a‖

< ‖(ρk(w)
∗µk(y)ρk(w)− ιk(y)) a‖+

ε

4
<
ε

2

for all y ∈ K and all a ∈ A with norm at most 1.
Likewise, pick unitaries 1 = w′

0, w
′
1, . . . , w

′
n+1 = w′ ∈ U0(Z ⊗ Z) such that

‖wj − wj+1‖ ≤ L/(n+ 1) for j = 0, 1, . . . , n, and for k = 0, 1, . . . , d, let

y
(k)
j = ρk(w

′

j)
∗ρ′k(w

′

j) .

The elements y
(k)
j satisfy the analogous properties to those of the elements x

(k)
j ,

with n+ 1 in place of n.

Let f
(l)
0,0, . . . , f

(l)
0,n−1, f

(l)
1,0, . . . , f

(l)
1,n ∈ A∞ ∩A

′ , for l = 0, 1, . . . , d, be commuting

Rokhlin elements in A∞ ∩ A
′ as in Lemma 1.23 which are furthermore chosen

to commute with αj(ιk(Z)) and α
j(µk(Z)) for k = 0, 1, . . . , d and for all j ∈ Z

(see Remark 1.24).
Now, for i = 0, 1, set

θ
(k)
i (x) =

n−1∑

j=0

f
(k)
0,j α

j−n(x
(k)
j )αj(ιk ◦ θi(x))α

j−n
((
x
(k)
j

)∗)

+

n∑

j=0

f
(k)
1,j α

j−n(y
(k)
j )αj(ιk ◦ θi(x))α

j−n
((
y
(k)
j

)∗)
.

We can check that ∥∥∥
(
α(θ

(k)
i (x)) − θ

(k)
i (x)

)
a
∥∥∥ < ε

for all a in the unit ball of A and for all x in the unit balls of Mr, Mr+1,
respectively. Furthermore, for all a ∈ A,

(
θ
(k)
0 (1) + θ

(k)
1 (1)

)
a =



n−1∑

j=0

f
(k)
0,j +

n∑

j=0

f
(k)
1,j


 a
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and thus, if we denote

f =

d∑

k=0

1∑

i=0

θ
(k)
i

we get that fa = a for all a ∈ A. Therefore those maps satisfy the conditions
of Corollary 2.7. �

We now consider the analogs of Proposition 2.9 and Theorem 2.10 concerning
equivariant extensions for the case of a single automorphism. The idea of
the proof is similar. The main difference is that we cannot expect to have
quasicentral approximate identities that are fixed under the automorphism.
However we can have ones that are approximately fixed. Although the proofs
are otherwise quite similar, we provide most of the details for the reader’s
convenience.

Lemma 3.3. Let α : G → Aut(A) be an action of a discrete amenable group
G on a C∗-algebra A. Let J ⊳ A be an invariant ideal. For any finite set of
elements G0 ⊆ G and any ε > 0 there exists a quasicentral approximate identity
(eλ)λ∈Λ for J in A such that ‖αg(eλ)− eλ‖ < ε for all g ∈ G0 and all λ ∈ Λ.

Proof. Choose a quasicentral approximate identity for J in A and average it
over a sufficiently large Følner set. �

Proposition 3.4. Let α ∈ Aut(A) be an automorphism with dimc
Rok(α) = d.

(1) Suppose B ⊆ A is a α-invariant hereditary subalgebra. Let β be the
restriction of α to B. Then dimc

Rok(β) ≤ dimc
Rok(α).

(2) Suppose J ⊳ A is an α-invariant ideal. Then the restriction of α to J
and the induced automorphism on A/J both have Rokhlin dimension
with commuting towers at most d.

Outline of proof. The proof is very similar to that of Proposition 2.9. The main
change required is that the element h ∈ B cannot be chosen to be fixed under
α, and instead it needs to be chosen so that ‖α(h)−h‖ is sufficiently small (as
in Lemma 3.3). We omit the details. �

Theorem 3.5. Let A be a C∗-algebra and let α ∈ Aut(A). Suppose J ⊳ A
is an α-invariant ideal. Suppose the restriction of α to J and the induced
action on A/J both have Rokhlin dimensions with commuting towers dJ , dA/J ,
respectively. Then dimc

Rok(α) ≤ dJ + dA/J + 1.

Proof. To simplify notation, whenever we refer in this proof to a double tower

of height p of the form
(
a
(k)
r,j

)
, it is to be understood that r = 0, 1 and

j = 0, 1, . . . , p − 1 + r and k has suitable range (which may be 0, 1, . . . , dJ
or 0, 1, . . . , dA/J , depending on the context). Parts of the proof mirror closely
that of Theorem 2.10, and those are mostly omitted here.
We denote by π : A → A/J the quotient map, and by α the quotient action
on A/J . Let F ⊆ A be a finite subset, let ε > 0 and let p be a fixed positive
integer. We assume without loss of generality that ‖a‖ ≤ 1 for all a ∈ F . Pick
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a (dA/J , π(F ), ε/7)-double tower (b
(k)
r,i ) in A/J of height p. Using Remark 1.25,

we assume without loss of generality that b
(k)
r,i b

(k)
s,j = 0 for all k = 0, 1, . . . , d and

all (r, i) 6= (s, j). Since the cone over Cn is projective, there are x
(k)
r,i ∈ A for

the corresponding indices r, i and k such that 0 ≤ x
(k)
r,i ≤ 1 and π(x

(k)
r,i ) = b

(k)
r,i ,

and moreover x
(k)
r,i x

(k)
s,j = 0 whenever (r, i) 6= (s, j).

If (eλ)λ∈Λ is an approximate identity for J then, for any a ∈ F ,

lim
λ
‖[x

(k)
r,i , a](1− eλ)‖ < ε/7 .

Use Lemma 3.3 to choose a quasicentral approximate identity (eλ)λ∈Λ for J
such that ‖α(eλ) − eλ‖ < ε/7 for all λ ∈ Λ. By taking an element far enough
out in this approximate identity, we can find a positive contraction q ∈ J which
satisfies the following conditions.

(1) ‖qa− aq‖ <
ε

21(2p+ 1)(dA/J + 1)
for all a in

F ∪

{
α
(
x
(k)
r,i

)
, α

(√
x
(k)
r,i

)
| (r, i) as above and k = 0, 1, . . . , dA/J

}
.

(2)
∥∥∥[x(k)r,i , a](1− q)

∥∥∥ < ε/7 for all a ∈ F .

(3) ‖α(q)− q‖ < ε/7.

(4)

∥∥∥∥∥∥


1−

dA/J∑

k=0

(
p−1∑

i=0

x
(k)
0,i +

p∑

i=0

x
(k)
1,i

)
 a(1− q)

∥∥∥∥∥∥
< ε/7 for all a ∈ F .

(5)
∥∥∥
(
α(x

(k)
r,i )− x

(k)
r,i+1

)
a(1− q)

∥∥∥ < ε for r = 0, 1, for i = 0, 1, . . . , p−2+r,

for k = 0, 1, . . . , dA/J , and for all a ∈ F .

(6)
∥∥∥
(
α(x

(k)
0,p−1 + x

(k)
1,p)− (x

(k)
0,0 + x

(k)
1,0)
)
a(1− q)

∥∥∥ < ε/7 for r = 0, 1, for

i = 0, 1, . . . , p− 2 + r, for k = 0, 1, . . . , dA/J , and for all a ∈ F .

(7)
∥∥∥[x(k)r,i , x

(l)
s,j ]a(1− q)

∥∥∥ < ε/7 for all indices (r, i), (s, j) as above and for

k, l = 0, 1, . . . , dA/J .

Now, fix a finite set F̃ ⊆ J such that for all a ∈ F , all indices r, i as above, and

all k = 0, 1, . . . , dA/J , we have dist([x
(k)
r,i , a], F̃ ) < ε/7. Let

FJ = F̃ ∪ {qa | a ∈ F} ∪ {q}

∪{qx
(k)
r,i | r = 0, 1, i = 0, 1, . . . , p− 1 + r, k = 0, 1, . . . , dA/J} .

Set M = max{‖f‖ | f ∈ FJ}. Choose δ ∈ (0, ε/42) such that whenever B is a
C∗-algebra and b, c ∈ B satisfy 0 ≤ b ≤ 1, ‖c‖ ≤M , and ‖bc− cb‖ < δ, then

‖b1/2c− cb1/2‖ <
ε

21(2p+ 1)(dJ + 1)
.

Choose a system
(
y
(k)
r,i

)
r,i,k

of (dJ , FJ , δ)-double towers of height p in J . Using

Remark 1.25, we can assume that y
(k)
r,i y

(k)
s,j = 0 for k = 0, 1, . . . , dJ and all
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distinct pairs of indices (r, i) 6= (s, j) as above. For k = 0, 1, . . . , dA/J and the
indices (r, i) as above, we then have

‖[

√
y
(k)
r,i , a]‖ <

ε

21(2p+ 1)(dJ + 1)

for all a ∈ FJ . Set z
(k)
r,i =

√
y
(k)
r,i q

√
y
(k)
r,i .

Using arguments similar to ones in the proof of Theorem 2.10, one checks that:

(8) ‖
(
α(z

(k)
r,i )− z

(k)
r,i+1

)
a‖ < ε for r = 0, 1, for i = 0, 1, . . . , p − 2 + r, for

k = 0, 1, . . . , dA/J , and for all a ∈ F . (See (2.4) in the proof of Theorem
2.10 and use ‖α(q)− q‖ < ε/7.)

(9) ‖
(
α(z

(k)
0,p−1 + z

(k)
1,p)− (z

(k)
0,0 + z

(k)
1,0 )
)
a‖ < ε for k = 0, 1, . . . , dJ and all

a ∈ F . (This is similar to the previous item.)

(10) ‖[z
(k)
r,i , a]‖ < ε for k = 0, 1, . . . , dJ , for all (r, i) as above, and for all

a ∈ F . (See (2.5) in the proof of Theorem 2.10.)

(11)

∥∥∥∥∥

dJ∑

k=0

(
p−1∑

i=0

z
(k)
0,i +

p∑

i=0

z
(k)
1,i

)
− q

∥∥∥∥∥ < ε. (See (2.6) in the proof of Theorem

2.10.)

(12)
∥∥∥
[
z
(k)
r,i , z

(l)
s,j

]∥∥∥ < ε for all indices r, i, s, j, k, l as above. (See (2.8) in the

proof of Theorem 2.10.)

For k = 0, 1, . . . , dA/J and for all indices (r, i) as above, set

x̃
(k)
r,i =

√
x
(k)
r,i (1− q)

√
x
(k)
r,i .

We have, using (1),

‖x̃
(k)
r,i − x

(k)
r,i (1 − q)‖ <

ε

21(2p+ 1)(dA/J + 1)
,

so by an argument similar to that for (2.11) in the proof of Theorem 2.10, and
using ‖α(q)− q‖ < ε/7, we get

∥∥∥
(
α(x̃

(k)
r,i )− x̃

(k)
r,i+1

)
a
∥∥∥ < ε

for r = 0, 1, for i = 0, 1, . . . , p− 2 + r, for k = 0, 1, . . . , dA/J , and for all a ∈ F .
Likewise, ∥∥∥

(
α(x̃

(k)
0,p−1 + x̃

(k)
1,p))− (x̃

(k)
0,0 + x̃

(k)
1,0)
)
a
∥∥∥ < ε .

An argument similar to that for (2.12) in Theorem 2.10 gives
∥∥∥
[
x̃
(k)
r,i , a

]∥∥∥ < ε

for k = 0, 1, . . . , dA/J , appropriate indices (r, i), and a ∈ F . An argument like
that for (2.13) in the proof of Theorem 2.10 gives

∥∥∥∥∥∥



dA/J∑

k=0

(
p−1∑

i=0

x̃
(k)
0,i +

p∑

i=0

x̃
(k)
1,i

)
 a− a(1− q)

∥∥∥∥∥∥
< ε
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for all a ∈ F . For the approximate commutation condition, we have (see (2.14)
in the proof of Theorem 2.10):

∥∥∥
[
x̃
(k)
r,i , x̃

(l)
s,j

]
a
∥∥∥ ≤

∥∥∥(1− q)
[
x
(k)
r,i , x

(l)
s,j

]
a(1− q)

∥∥∥+ ε

7
+

4ε

21
< ε .

Now, for all applicable indices, we have (see (2.15) in the proof of Theorem
2.10):

∥∥∥
[
x̃
(k)
r,i , z

(l)
s,j

]
a
∥∥∥ ≤

∥∥∥
[
qx

(k)
r,i , y

(l)
s,j

]∥∥∥ · ‖(1− q)a‖+ 4ε

21
+ 4δ < ε .

Finally, for any a ∈ F we have (see (2.16) in the proof of Theorem 2.10):
∥∥∥∥∥∥



dA/J∑

k=0

∑

r,i

x̃
(k)
r,i +

dJ∑

k=0

∑

s,j

z
(k)
s,j


 a− a

∥∥∥∥∥∥
< ε .

For k = 0, 1, . . . , dA/J + dJ + 1, and all indices (r, i) as above, set

f
(k)
(r,i) =

{
x̃
(k)
(r,i) | k = 0, 1, . . . , dA/J

z
(k−dA/J−1)

(r,i) | k = dA/J + 1, dA/J + 2, . . . , dA/J + dJ + 1 .

Then the family
(
f
(k)
r,i

)
for k = 0, 1, . . . , dA/J + dJ + 1 is a Rokhlin system of

(dA/J + dJ + 1, F, ε)-double towers of height p. This completes the proof that
dimc

Rok(α) ≤ dA/J + dJ + 1, as required. �

4. Obstructions to finite Rokhlin dimension

The purpose of this section is to find a K-theoretic obstruction for an action of
a compact Lie group to have the X-Rokhlin property (and in particular, finite
Rokhlin dimension with commuting towers in the finite group case). This
will be stated in Corollary 4.2. This obstruction uses equivariant K-theory,
viewed as a module over the representation ring. Using this obstruction and
the generalization of the Atiyah-Segal completion theorem to C∗-algebras from
[Phi89a], we can show, for instance (Theorem 4.6) that there are no actions of
any nontrivial finite group on the Jiang-Su algebra Z or on the Cuntz algebra
O∞ with finite Rokhlin dimension with commuting towers.
Let G be a compact group, let A be a unital C∗-algebra, and let α : G→ Aut(A)
be an action ofG onA.We letR(G) be its representation ring, the Grothendieck
group made from the unitary equivalence classes of finite dimensional unitary
representations of G with product given by tensor product of representations.
See [Seg68] for an extensive discussion of this ring. If V is a finite dimensional
unitary representation space of G, we denote by [V ] its class in R(G). We
let I(G) be the augmentation ideal of R(G), that is, the kernel of the map
R(G) → Z which sends [V ] to dim(V ) for every finite dimensional unitary
representation space of G.
We take KG

0 (A) to be defined following Definition 2.4.2 and Corollary 2.4.5
of [Phi87], except using projections and invariant partial isometries instead of
idempotents and algebraic invariant Murray-von Neumann equivalence. That
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is, we consider the Grothendieck group made from the semigroup of invariant
Murray-von Neumann equivalence classes of G-invariant projections in algebras
B(V )⊗A, in which V is a finite dimensional unitary representation space of G,
with action by conjugation by the representation. Projections p ∈ B(V ) ⊗ A
and q ∈ B(W )⊗A are invariantly Murray-von Neumann equivalent if there is
a G-invariant element s ∈ B(V,W ) ⊗ A, with its obvious action of G (using
the representations on both V and W ) such that s∗s = p and ss∗ = q. For a
C∗-algebra A, this gives the same group defined there, by [Phi87, Proposition
2.4.11(2)].
We warn that it is not enough to find an equivariant isomorphism ϕ : B(V )→
B(W ) such that (ϕ ⊗ idA)(p) = q. The existence of such an isomorphism ϕ
does not imply that [p] = [q] in KG

0 (A).
The group KG

0 (A) is an R(G)-module in a natural way. See [Phi87, Definition
2.2.2] and the discussion that follows. We recall ([Phi87, Remark 2.4.6]) that if
p ∈ B(V )⊗A is an invariant projection and W is a finite dimensional unitary
representation space of G, then 1⊗ p ∈ B(W )⊗B(V )⊗A represents [W ] · [p].

Proposition 4.1. Let G be a compact group, let A and D be unital C∗-algebras,
and let α : G→ Aut(A) and γ : G→ Aut(D) be actions of G on A and D. Let
σ ∈ R(G). If A admits an approximate equivariant central unital homomor-
phism from D in the sense of Definition 1.3, and σ · [1] = 0 in KG

0 (D), then
σ · η = 0 for every η ∈ KG

∗ (A).

Proof. Applying Lemma 1.13 with B = C(T) with the trivial action, and using
KG

∗ (A) ∼= KG
0 (C(T) ⊗ A), we see that it suffices to consider η ∈ KG

0 (A). We
need only prove the result for η in a generating set for KG

0 (A). Thus, we may
assume that there is a finite dimensional unitary representation space W of G
and a G-invariant projection e ∈ B(W )⊗A such that η = [e].
Choose finite dimensional unitary representation spaces V1 and V2 of G such
that σ = [V1]−[V2]. Then 1⊗1 ∈ B(V1)⊗D and 1⊗1 ∈ B(V2)⊗D have the same
class in KG

0 (D). Therefore there is a finite dimensional unitary representation
space V0 of G such that, with V = V0 ⊕ V1 ⊕ V2 and with p0, p1, p2 ∈ B(V )
being the projections onto V0, V1, and V2, there is a G-invariant partial isometry
s ∈ B(V )⊗D with

(4.1) s∗s = (p0 + p1)⊗ 1 and ss∗ = (p0 + p2)⊗ 1.

Let ϕ : B(V )⊗A→ B(V )⊗B(W )⊗A be the equivariant homomorphism such
that ϕ(d⊗ a) = d⊗ 1⊗ a for all d ∈ B(V ) and a ∈ A. Identify B(V ) with Mm

and B(W ) with Mn, and choose F ⊆ A to consist of all the matrix entries of e
and F0 ⊆ C to consist of all the matrix entries of s. For sufficiently small ε > 0
(described below), choose Q0 as in Definition 1.3. As explained in Remark 1.4,
we may assume that Q0 is G-equivariant. Set Q = idB(V )⊗Q0. Then (ϕ◦Q)(s)
will approximately commute with 1B(W ) ⊗ e. Set t = (ϕ ◦ Q)(s)(1B(W ) ⊗ e).
Then t is G-invariant. We have

(ϕ◦Q)(p0+p1) ·(1B(W )⊗e) = [(p0+p1)⊗1B(V )⊗1
]
(1B(W )⊗e) = (p0+p1)⊗e
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and similarly

(ϕ ◦Q)(p0 + p1) · (1B(W ) ⊗ e) = (p0 + p2)⊗ e.

If ε > 0 is sufficiently small, using (4.1), approximate multiplicativity of Q,
and the fact that

∥∥(ϕ ◦Q)(s)(1B(W ) ⊗ e)− (1B(W ) ⊗ e)(ϕ ◦Q)(s)
∥∥

is small, we will get

‖t∗t− (p0 + p1)⊗ e‖ < 1 and ‖tt∗ − (p0 + p2)⊗ e‖ < 1.

A standard functional calculus argument therefore gives an invariant element
v ∈ B(V )⊗B(W )⊗A such that

v∗v = (p0 + p1)⊗ e and vv∗ = (p0 + p2)⊗ e.

These relations imply that ([V0]+[V1])[e] = ([V0]+[V2])[e] in K
G
0 (A). Therefore

σ[e] = [V1] · [e]− [V2] · [e] = 0. �

We don’t require Lie groups to be connected. In particular, all finite groups
are compact Lie groups.

Corollary 4.2. Let G be a compact Lie group (not necessarily connected),
and let X be a compact free G-space. Then there is n ∈ N such that, for every
unital C∗-algebra A and every action α : G→ Aut(A) which has the X-Rokhlin
property, we have I(G)nKG

∗ (A) = 0.

Proof. It follows from [AS69, Proposition 4.3] that there is n ∈ N such that
I(G)nK∗

G(X) = 0. Let A be a unital C∗-algebra, let α : G → Aut(A) be an
action, and suppose that α has the X-Rokhlin property. Then Proposition 4.1
implies that I(G)nKG

∗ (A) = 0. �

We will need σ-C∗-algebras (see [Phi88]) and their representable K-theory RK∗

(see [Phi89b]; there is an easier development in [Phi92, Section 4]). For a
summary, see the end of the introduction to [Phi89a] and the beginning of
Section 2 of [Phi89a]. For a compact Lie group G, we need a suitable model of
the free contractible G-space EG, and we follow Section 2 of [Phi89a] (which
in turn follows Section 2 of [AS69]). In particular, our model for EG will
be countably compactly generated. For any countably compactly generated
space X, we take C(X) to be the algebra of all continuous functions from
X to C, not necessarily bounded, with the topology of uniform convergence
on the sets in the chosen countable compact generating family. This makes
C(X) a σ-C∗-algebra. In particular, C(EG) is a σ-C∗-algebra. If A is a C∗-
algebra with an action α : G→ Aut(A), then also A⊗C(EG) (using a suitable
completed tensor product) and the fixed point algebra [A⊗C(EG)]G are σ-C∗-
algebras. If we have more than one action on A, we will write [A⊗ C(EG)]α,
thus implicitly using the same name for the action on A and the corresponding
action on A⊗ C(EG).
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Notation 4.3. Let G be a compact Lie group, let R(G) be its representation
ring, and let I(G)⊳R(G) be the augmentation ideal. For any R(G)-moduleM,
we denote by M∧ its I(G)-adic completion, that is, M∧ = lim

←−
M/I(G)nM .

(This is the Hausdorff completion.)

We will need the following version of the Atiyah-Segal Completion Theorem
for C∗-algebras, which is a restatement of [Phi89a, Theorem 2.4].

Theorem 4.4. Let G be a compact Lie group, let A be a unital C∗-algebra, and
let α : G → Aut(A) be an action of G on A. Suppose G is abelian, and there

are a finite generating set S ⊆ Ĝ and n ∈ N such that for every τ ∈ S and
every k ≥ n, we have

{
η ∈ KG

∗ (A) : (1− τ)kη = 0
}
=
{
η ∈ KG

∗ (A) : (1 − τ)nη = 0
}
.

Then there is a natural isomorphism

RK∗

(
[A⊗ C(EG)]G

)
∼= KG

∗ (A)∧.

Proposition 4.5. Let G be a topological group, let D be a strongly self absorb-
ing unital C∗-algebra, and let α : G → Aut(D) be an action of G on D. Then
the action g 7→ αg ⊗ id : G→ Aut(D ⊗D) is homotopic to the trivial action.

Proof. By [Win11], any strongly self absorbing C∗-algebra is K1-injective.
Thus, by [DW09, Theorem 2.2], there is a homotopy t 7→ ψt of isomorphisms
ψt : D⊗D → D⊗D, for t ∈ [0, 1], such that ψ0 = idD⊗D and ψ1(a⊗ b) = b⊗a

for all a, b ∈ D. Recall that D ∼=

∞⊗

n=1

D. We now identify D ⊗D with

D ⊗

∞⊗

n=1

D =

∞⊗

n=0

D,

with the action

g 7→ β(0)
g = αg ⊗

∞⊗

n=1

idD.

For N ∈ N, let β(N) be the action

g 7→ β(N)
g =

(
N−1⊗

n=0

idD

)
⊗ αg ⊗

(
∞⊗

n=N+1

idD

)
.

Thus, we have a homotopy

(t, g) 7→ γ(t)g

for t ∈ [0, 1] and g ∈ G, of actions γ(t) of G on

∞⊗

n=0

D, with γ(0) = β(0) and

γ(1) = β(1). For N ∈ N and t ∈ [N,N + 1], define an action γ(t) of G on

∞⊗

n=0

D
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by

γ(t)g =

(
N−1⊗

n=0

idD

)
⊗ γ(t−N)

for g ∈ G. This is a homotopy of actions which are trivial on

N−1⊗

n=0

D⊗

∞⊗

n=N+1

C1.

An ε/3 argument shows that lim
t→∞

(a) = a for all a ∈

∞⊗

n=0

D and g ∈ G. Thus,

β
(0)
g is homotopic to the trivial action. �

For the following theorem we recall that any nontrivial compact Lie group con-
tains a nontrivial finite subgroup. If the group is itself finite, this is tautologi-
cal. Otherwise, the connected component of the identity contains a nontrivial
maximal torus, which evidently has nontrivial finite subgroups.

Theorem 4.6. Let G be a compact Lie group with more than one element, and
let X be a compact free G-space.

(1) There is no action α of G on O∞ or Z which has the X-Rokhlin prop-
erty.

(2) If D is a UHF algebra, p is a prime number that is not a factor in the
supernatural number corresponding to D, and G furthermore has an
element of order p, then there is no action α of G on D or D ⊗ O∞

which has the X-Rokhlin property.

Proof. In this proof, we will need to consider equivariant K-theory for different
actions of the same group on the same C∗-algebra. For an action α : G →

Aut(A) of a compact group, we therefore write KG,α
∗ (A) for KG

∗ (A).
If A,B are separable unital C∗-algebras, and α : G→ Aut(A) is an action with
the X-Rokhlin property, then, by Lemma 1.13, the action α⊗ id on A⊗min B
has the X-Rokhlin property as well. Thus, for part (1), since O∞

∼= Z⊗O∞, it
suffices to show that there are no actions on O∞ with the X-Rokhlin property.
This is purely to simplify notation, since the argument is K-theoretic in nature
— the same argument below works verbatim if we replace all instances of O∞

with Z. Likewise, for part (2) it suffices to consider D ⊗ O∞, and we can
furthermore assume that D is strongly self absorbing, since we may replace
it with

⊗∞

n=0D, and a countable infinite tensor power of a UHF algebra is
strongly self absorbing. We denote O∞ or D ⊗ O∞ by E when considering
both parts simultaneously.
Suppose there is such an action α. Then G has a nontrivial finite cyclic sub-
group H, and X is also a compact free H-space. For part (2), we take H = 〈g〉
where g ∈ G is a given element of order p. Therefore α|H is an action of H
on E which has the X-Rokhlin property. Since we wish to show that no such
actions exist, we may assume without loss of generality that G ∼= Zp (where p
is the given prime in part (2), and p is just some prime number in part (1)).
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The algebra E satisfies the hypotheses of Proposition 4.5. Therefore there is a
homotopy t 7→ β(t)

of actions of G on E⊗E such that β
(0)
h = αh⊗ idE and β

(1)
h = idE⊗E for all h ∈

H. According to [Phi89a, Corollary 4.2], the groups RK∗

(
[E⊗E⊗C(EH)]β

(t))

do not depend on t.
Take t = 0. The action β(0) has the X-Rokhlin property because α does. So
Corollary 4.2 provides an n ∈ N such that

I(H)nKH,β(0)

∗ (E ⊗ E) = 0.

The hypothesis of Theorem 4.4 is satisfied, because Ĝ is finite and for every

τ ∈ Ĝ and every k ≥ n, we have
{
η ∈ KG,β(0)

∗ (E ⊗ E) : (1− τ)kη = 0
}
= KG

∗ (E ⊗ E).

So Theorem 4.4 implies

RK∗

(
[E ⊗ E ⊗ C(EG)]β

(0)) ∼= KG,β(0)

∗ (E ⊗ E)∧.

In the I(G)-adic topology, this group is discrete, since it is annihilated by
I(G)n.
Now take t = 1. We verify the hypothesis of Theorem 4.4.

Let τ be a generator for the dual group Ĝ ∼= Zp. Using the trivial action,

KG
∗ (E) ∼= R(G)⊗Z K0(E) ∼= K0(E)[τ ]/〈1 − τp〉,

which we write as 



p−1∑

j=0

njτ
j : nj ∈ K0(E)



 .

Since K0(E) is a nontrivial subgroup of Q (for all possibilities for the algebra
E), the complexification KG

∗ (E)⊗Z C is given by




p−1∑

j=0

njτ
j : nj ∈ C





and we can view



p−1∑

j=0

njτ
j : nj ∈ K0(E)



 ⊂





p−1∑

j=0

njτ
j : nj ∈ C





by viewing K0(E) ⊆ Q ⊂ C in the usual way. It is now a straightforward
computation to verify that for all n, thinking of 1−τ as a linear transformation
on KG

∗ (E)⊗Z C, we have

ker(1 − τ)n = ker(1 − τ) =





p−1∑

j=0

njτ
j : nj = n0 for all j



 .

From this description it follows that the same holds without complexifying the
module. Thus, the hypothesis of Theorem 4.4 holds.
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We now consider the two parts of the theorem separately.
For part (1), Theorem 4.4 implies

RK∗

(
[O∞ ⊗O∞ ⊗ C(EG)]

β(1)) ∼= KG,β(1)

∗ (O∞ ⊗O∞)∧ ∼= R(G)∧.

This group is not discrete in the I(G)-adic topology. Since

RK∗

(
[O∞ ⊗O∞ ⊗ C(EG)]

β(0)) ∼= RK∗

(
[O∞ ⊗O∞ ⊗ C(EG)]

β(1))
,

we have a contradiction.
For part (2), we also need to show that KG

∗ (D ⊗ O∞)∧ is not discrete. We
first claim that there is a nonzero element σ ∈ Z[τ ]/〈1− τp〉 ∼= R(G) such that
(1 − τ)p = pσ. If p = 2, one checks that (1 − τ)2 = 2(1− τ). If p is odd, since
(−τ)p = −1, we can take

σ =
1

p

p−1∑

k=1

(−1)k
(
p

k

)
τk.

(Since p is prime, the coefficients really are in Z.) This proves the claim.
Since 1− τ generates I(G), it follows that if n ≥ kp then

I(G)nKG
∗ (D ⊗O∞) ⊆ pkKG

0 (D ⊗O∞).

We claim that multiplication by 1−τ is injective on (1−τ)R(G)⊗ZK0(D⊗O∞).
It suffices to prove this with C in place of KG

0 (D ⊗ O∞), thus on C[τ ]/〈1 −
τp〉. Here, multiplication by τ is the cyclic shift with respect to the basis
1, τ, . . . , τp−1, so the claim is straightforward to check.
For all m ∈ N, multiplication by p is not invertible on pmR(G) ⊗Z K0(D ⊗
O∞). So the sequence

(
I(G)nKG

∗ (D ⊗O∞)
)
n∈N

does not stabilize. Therefore

KG
∗ (D ⊗O∞)∧ is not discrete. Thus, no such action α exists. �

Remark 4.7. The argument for part (2) of Theorem 4.6 breaks down if p does
appear as a factor in the supernatural number, since then multiplication by p
is invertible. Indeed, there are actions of Zp on the p∞ UHF algebra with the
Rokhlin property. (For instance, let v ∈Mp be a cyclic permutation matrix of
order p. Then it is easy to check that the action of Zp given by the order p
automorphism

⊗∞

1 Ad(v) of
⊗∞

1 Mp has the Rokhlin property. See [Izu04a,
Example 3.2].)

Corollary 4.8. Let G be a nontrivial finite group.

(1) There is no action of G on Z or O∞ which has finite Rokhlin dimension
with commuting towers.

(2) Let p be a prime number. Let D be a UHF algebra which does not have
p as a factor in its corresponding supernatural number. If G has an
element of order p, then there is no action of G on D or D⊗O∞ which
has finite Rokhlin dimension with commuting towers.

We conclude with an analog of Theorem 4.6 for actions of connected Lie groups.
The key fact we use concerning such groups is that they contain a subgroup
isomorphic to the circle group T. The proof is similar to that of Theorem
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4.6, so we only outline the parts that need to be changed. Recently, Eusebio
Gardella showed with different methods that the statement of Theorem 4.9
holds in greater generality: there are no actions of infinite Lie groups with
finite Rokhlin dimension with commuting towers on C∗-algebras with just one
vanishing K-group. See [Gar14, Corollary 4.18].

Theorem 4.9. Let G be a compact group which contains a closed subgroup
isomorphic to T. Let X be a compact free G-space. Then there is no action of
G on any UHF algebra with the X-Rokhlin property.

Proof. Since theX-Rokhlin property passes to subgroups, we may assume with-
out loss of generality that G = T. Let D be a UHF algebra. We wish to show
that there is no action of G onD with the X-Rokhlin property. We may assume
without loss of generality that D is the universal UHF algebra, since if we have
an action α of G on D with the X-Rokhlin property, we can tensor it by the
identity action of G on the universal UHF algebra, and by Lemma 1.13 the ten-

sor product action has the X-Rokhlin property as well. The dual group Ĝ ∼= Z

is singly generated. We have R(G) ∼= Z[τ, τ−1], so R(G)⊗ZK0(D) ∼= Q[τ, τ−1].
One checks that multiplication by 1 − τ is injective on Q[τ, τ−1] and the sub-
groups (1 − τ)nQ[τ, τ−1] do not stabilize. The rest of the proof is similar to
that of Theorem 4.6. �

Remark 4.10. The conclusion of Theorem 4.9 does not hold if instead of as-
suming that G contains a copy of the circle, we only assume that G is an infinite
compact group. For example, it is easy to construct an action of

∏∞

n=1 Z2 on
the 2∞ UHF algebra with the Rokhlin property.
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