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Introduction

Let S be a Shimura variety of PEL type, defined over its reflex field E [8, 9].
The variety S parametrizes Abelian varieties with additional PEL structures
(Polarization, Endomorphisms, Level structures) [17, §5]. In this article we
compute for certain simple S the ℓ-adic cohomology of the basic stratum, also
called supersingular locus, at a prime of good reduction. Let us make this more
precise.
Let p be a prime of E where S has good reduction; this means in particular that
the PEL type moduli problem extends over the ring of integers OEp

of Ep, and
that this extended problem is representable by a smooth and quasi-projective
scheme S over OEp

[17, §5]. Let Fq be the residue field of E at p. Write Sp :=

S ⊗ Fq, and write for each x ∈ Sp(Fq), Ax/Fq for the corresponding Abelian
variety with additional PEL structures. The Newton strata of Sp are defined as

follows: Two points x, y ∈ Sp(Fq) lie in the same Newton stratum if and only
if the p-divisible group Ax[p

∞] with its additional PE-structures is isogenous
to Ay[p

∞]. Thus the Newton strata of Sp are the loci in Sp where the isogeny
class of Ax[p

∞] is constant. The Newton strata of Sp are varieties defined
over Fq, and stable under the Hecke correspondences. Thus their cohomology
carries an action of the Hecke algebra and the Frobenius operator. For various
arithmetic applications, one is interested in computing this cohomology. There
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is one Newton stratum which is particularly important. This stratum is called
the basic stratum, or supersingular locus. The cohomology of the other strata
is expected to be induced from Levi subgroups of lower rank. Thus, in this
article we focus on the basic stratum, although one could extend the methods
of this article to also derive results for the non-basic strata [21].
Before we continue, we give the definition of the basic Newton stratum. For
each point x ∈ Sp(Fq), the isogeny class of the corresponding p-divisible group
with PE structure Ax[p

∞] is determined by its rational Dieudonné module
D(Ax[p

∞])Q. This Dieudonné module is an “isocrystal with additional struc-
ture” and, as such, it is determined by its slope morphism ν [14]. If the central-
izer of the slope morphism ν is G, then the isocrystal is called basic. Among
(the isomorphism classes of) the isocrystals D(Ax[p

∞])Q for x ∈ S(Fq) there is
one unique basic isocrystal, and the locus in Sp corresponding to this isocrystal
is the basic stratum B ⊂ Sp. For example consider the modular curve Y1(N)
(we take N ≥ 4), let p be prime number not dividing N and consider the super-
singular locus B of Y1(N)Fp . Then B(Fp) is the set of pairs (E, η) ∈ Y1(N)(Fp)
of elliptic curves E equipped with a point η of order N where E is supersin-
gular. A famous result of Deligne-Rapoport [10] is a geometric description of
the basic stratum B, as follows. Consider the modular curve Y associated
to the congruence subgroup Γ1(N) ∩ Γ0(p) ⊂ GL2(Z) (for notation, see [11]).
Deligne and Rapoport construct a model for the curve Y over Zp (they in-
troduce Y as a moduli space), and in particular they may reduce Y modulo
p. When reduced modulo p, the curve Y is isomorphic to the union of two
copies of Y1(N)Fp , fibered over the supersingular locus. Since the curve Y
has semistable reduction, one may compare its cohomology over the generic
fibre with the cohomology of the special fibre. This yields a description of the
Hecke/Galois module H0

et(BFp
,Qℓ) in terms of weight 2 modular forms. This

description of H0
et(BFp

,Qℓ) can also be deduced from the Langlands/Kottwitz

method and application of the trace formula, as we explain in an introductory
chapter to our thesis [19, Chap. 1].
For higher dimensional Shimura varieties it is difficult to describe the basic
stratum geometrically. Several complications occur because usually the basic
stratum B is a non-finite, non-smooth variety1. There are geometric descrip-
tions on the structure of the basic stratum, but only under very restricted
conditions. For example Vollaard and Wedhorn [32] obtained a geomteric de-
scription of the basic stratum, if GR is the group GU(n− 1, 1), and the prime
p of (good) reduction is non-split. These restricted classes of Shimura vari-
eties are still very interesting as they are certain arithmetic quotients of the
n-dimensional complex unit ball. However, one would like to know what the
basic stratum looks like in general. Since general geometric results seem cur-
rently out of reach, it is therefore interesting to see that it is possible to describe

1On a positive side, the basic stratum B should always be a projective variety. However,
the author must admit that he is unaware of a proof nor a reference of this fact for general
non-projective Shimura varieties.
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the cohomology of the basic stratum for general classes of Shimura varieties.
In this article we answer the question for the simple, unitary Shimura varieties
of Kottwitz at split primes of good reduction.
This article is a sequel to the article [20]. In [20] we have already studied the
above problem, but under strong simplifying conditions on the signatures. The
varieties are associated to certain division algebras over Q with involution of
the second kind; we call such varieties Kottwitz varieties. In [20] we assumed
that the signatures of the unitary group U ⊂ G are coprime with n. This
hypothesis greatly simplifies the geometry and cohomology of B; completely
new phenomena occur when the hypothesis is dropped. In this article we solve
all the resulting problems when one removes the hypothesis from the theorem
in case the prime p of reduction is split in the center of the division algebra
defining the Kottwitz variety. A consequence of our final result is an automor-
phic expression for the ℓ-adic cohomology of the basic stratum of Kottwitz’s
varieties at split primes of good reduction. The expressions are in terms of:
(1) Automorphic forms on the group G of the Shimura datum, (2) The factor
at p of their associated Galois representations, and (3) Polynomials in qα of
combinatorial nature, associated to certain non-crossing lattice paths in the
plane Q2. In particular we describe the zeta function of the basic stratum in
terms of the objects (1), (2) and (3) above.
The first part of the proof is the same as the one we carried out in [20], and
we will be only very brief on that part of the argument. This first part roughly
consists of 3 steps:

• Truncate the formula of Kottwitz for Shimura varieties of PEL-type [17]
to count the number of points in the basic stratum.

• Pseudo-stabilize the expression using the arguments from [16] (cf. [15]).
• Compare the resulting stable expression with the geometric side of the
trace formula.

Carrying out this program, we obtained in [20] the formula

(0.1)

∞∑

i=0

(−1)iTr (f∞p × Φα
p ,H

i
et(BFq

,Qℓ)) = |Ker1(Q, G)| · Tr (f,A(G)).

In this formula we have

• A(G) = L2(G(Q)\G(A), ω) is the space of automorphic forms on G
with respect to inverse ω of the central character of ξ;

• Φp is the geometric Frobenius of Fq over Fq;

• (one fixes the choice of an isomorphism Qℓ
∼= C to compare the left

hand side with the right hand side);
• The function f is a tensor product f∞⊗ f∞p⊗ fp, of a function f∞ on
G(R), a function f∞p on G(Ap

f ), and a function fp on G(Qp), where
– f∞p is an arbitrary Kp-bi-invariant, locally constant compactly

supported complex valued function on G(Ap
f ).
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– The function f∞ on G(R) is up to scalar the Euler-Poincaré func-
tion corresponding to the representation ξ (for the value of the
scalar, see [16, Lem. 3.2]).

– The component fp is a the pointwise product χG
c fα, where

∗ the function χG
c is the characteristic function on G(Qp) of

the set of compact elements in G(Qp);
∗ the function fα is the function of Kottwitz. It arises by base
change from G(Ep,α) to G(Qp) of a spherical function φα on
G(Ep,α); the function φα is the characteristic function of the
subsetG(OEp,α)µ(p

−1)G(OEp,α) ⊂ G(Ep,α), with respect to
the choice (any choice) of reductive model of G over Zp.

• Ker1(Q, G) is the set of classes σ ∈ H1(Q, G) such that for all rational
places v of Q the restricted class σv ∈ H1(Qv, G) is trivial.

Once Equation (0.1) is established, the second step is to compute Tr (χG
c f, π)

for each automorphic representation π occurring in A(G), and it is this second
step that we carried out only partially in [20]. The problem is local at p: One
needs a satisfactory expression for the traces Tr (χG

c fα, πp) against the local
representations πp of G(Qp). We will not solve this local problem completely in
this article: We only solve the problem in sufficient generality for global appli-
cations. More precisely, we only compute the compact trace Tr (χG

c fα, πp) for
the class of rigid representations of G(Qp). All representations πp that occur
as a factor at p of an automorphic representation π of G are rigid. The rigid
representations form a very restricted subclass of all smooth representations of
G(Qp). Using base change, Jacquet-Langlands and the Moeglin-Waldspurger
description of the discrete spectrum of GLn, we describe the rigid representa-
tions precisely. Then, we compute the compact traces of fα against all rigid
representations.
Let us explain this last computation in more detail. Since our group G(Qp)
is isomorphic to a product of general linear groups, the computation quickly
reduces to a computation with general linear groups. Furthermore, it is quite
easy to see that Tr (χG

c fα, πp) vanishes unless πp has an invariant vector for
the action of the Iwahori subgroup (the representation πp is semistable). Thus
cuspidal representations πp do not appear in the description. A semistable
representation π of GLn(Qp) is called standard if it is isomorphic to a product
(see §2) of essentially square integrable representations. The computation of
the compact trace Tr (χG

c fα, π) on a square-integrable representation is easy,
and using van Dijk’s formula adapted for compact traces [20, Prop. 3], we
easily deduce formulas for compact traces on the standard representations.
Inside the Grothendieck group of smoothG(Qp)-representations of finite length,
any semistable irreducible representation π may be2 (uniquely) written as a
sum π =

∑
I cI · I where I ranges over the standard representations, and

the coefficients cI ∈ C are 0 for all but finitely many I. Consequently the

2Zelevinsky proved in [33] that the standard representations form a basis of the
Grothendieck group of the category of smooth GLn(Qp)-representations of finite length.
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compact trace Tr (χG
c f, π) equals

∑
I cITr (χ

G
c f, I). There are two steps to

compute Tr (χG
c f, π): (Prob1) Know the coefficients cI and (Prob2) Make the

sum
∑

I cITr (χ
G
c f, I). The first problem (Prob1) is related to the Kazhdan-

Lusztig conjecture3. The “Kazhdan-Lusztig theorem”of Beilinson-Bernstein [3]
(and [13]) interprets the multiplicity of any given irreducible representation π
in the representation I, as the dimension of certain intersection cohomology
spaces, and also as the value at q = 1 of certain Kazhdan-Lusztig polynomials.
Combining all these theorems gives expressions for the sum

∑
I cITr (χ

G
c f, I);

however they are far from satisfactory. The coefficients cI , even though they are
known, depend on dimensions of complicated cohomology spaces. Furthermore,
the coefficients cI can be negative, and the sum

∑
I cITr (χ

G
c f, I) has in general

a lot of redundancy. Thus Problem 2 seems (to the author) very non-trivial.
To compute the sum

∑
I cITr (χ

G
c f, I) we restrict our attention to the rigid rep-

resentations only. Any rigid representation is a product of unramified twists of
Speh representations, and therefore we reduce to the class of Speh representa-
tions. A deep theorem of Tadic completely resolves the first problem (Prob1)
for the Speh representations. The coefficients cI turn out to be −1, 0 or 1
for these representations (precise statement in Theorem 2.3). Still the sum∑

I cITr (χ
G
c f, I) remains very redundant; in fact most of the terms cancel

out against each other. To evaluate the sum, we give an interpretation of the
traces Tr (χG

c f, I) as certain lattice paths in Q2. Using a variation on a classical
lemma in combinatorics [30, Thm. 7.2.1], we see that only the non-intersecting
paths remain in the sum, all other terms cancel out.
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1. Notation

In Sections 1–13 we will work (almost) exclusively with the group GLn over a
non-Archimedean local field. Let us set up the principal notation.

• p is a prime number.
• F is a non-Archimedean local field with residue characteristic equal to
p.

• F is a fixed algebraic closure of F .

3This conjecture is a theorem, see [5, Thm. 8.6.23].
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242 Arno Kret

• OF is the ring of integers of F .
• ̟F ∈ OF is a prime element of F .
• q = #(OF /̟F ) is the cardinality of the residue field of F .
• n is a positive integer.
• Gn = GLn(F ) (often we write simply G = Gn when n is understood).
• K = GLn(OF ).
• H(G) for the Hecke algebra of complex valued, locally compact con-
stantly supported functions on G. The product f ∗ h of two func-
tions f, h ∈ H(G) is defined by the convolution integral (f ∗ h)(g) =∫
G f(x)h(x−1g)dx with measure dx normalized so that the group
K ⊂ G has volume 1. The algebra H(G) is associative, but it does
not have a unit element.

• H0(G) is the K-spherical Hecke algebra of G, i.e. the algebra of f ∈
H(G) such that f is invariant under left and right K-translations.

• We write 1K for the characteristic function of the subset K ⊂ G. Then
1K is the unit element of the algebra H0(G).

• The group P0 ⊂ G is the standard upper triangular Borel subgroup of
G with P = TN0, where T is the diagonal torus of G, and N0 is the
group of upper triangular unipotent matrices in G.

• a parabolic subgroup P of G standard if it is upper triangular, and we
write P = MN for its standard Levi decomposition.

A partition of n is a finite, non-ordered list of non-negative numbers whose sum
is equal to n. A composition of n is a finite, ordered list of positive numbers
whose sum is equal to n. To each a composition (na) of n we attach the
standard parabolic subgroup

P(na)
def
=

{(
g1 ∗

. . .
0 gk

)
∈ Gn

∣∣∣∣∣ ga ∈ Gna

}
⊂ Gn.

We write M(na) = Gn1 × Gn2 × · · · × Gnk
for the standard Levi-subgroup of

P(na).
Finally, to each parabolic subgroup P ⊂ G we attach the sign εP :=
(−1)dimAP /AG , where AG (resp. AP ) is the center of G (resp. P ). For
P = P(na) we have εP = (−1)n−k.

2. Tadic’s determinantal formula

We recall an important character formula of Tadic for the Speh representations.
This formula is a crucial ingredient for our computations.
Let m,m′ ∈ Z≥1. If π (resp. π′) is a smooth admissible representation of Gm

(resp. Gm′), then we write π × π′ for the Gm+m′ -representation parabolically
induced (unitary induction) from the representation π⊗π′ of the standard Levi
subgroup consisting of two blocks, one of size m, and the other one of size m′.
The tensor product π ⊗ π′ in the above formula is taken along the blocks of
this Levi subgroup. We write R for the direct sum

⊕
n∈Z≥0

Groth(Gn) with

the convention that G0 is the trivial group. The group G0 has one unique
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irreducible representation σ0 (the space C, with trivial action). The operation
“direct sum of representations” together with the product “×” turns the vector
space R into a commutative C-algebra with σ0 as unit element. We call it the
ring of Zelevinsky.
We write ν for the absolute value morphism from GL1(F ) = F× to C×. By a
segment S = 〈x, y〉 we mean a set of numbers {x, x+ 1, . . . , y} where x, y ∈ Q,
y − x ∈ Z, and where we need to explain the conventions in case y ≤ x. In
case y is strictly smaller than x − 1, then 〈x, y〉 = ∅; in case x is equal to y,
the segment 〈x, y〉 = {x} has one element. We have one unusual convention:
For y = x − 1 we define the segment 〈x, y〉 to be the set {⋆} of one element
containing a distinguishing symbol“⋆”. The length ℓ(S) of a segment S = 〈x, y〉
is defined to be y−x+1. Thus the segment {⋆} has length 0, the segment {x}
has length 1, the segment {x, x+ 1} has length 2, etc.
For any segment 〈x, y〉 with y ≥ x we write ∆〈x, y〉 for the unique irreducible
quotient of the induced representation νx × νx+1 × · · · × νy. We define ∆{⋆}
to be σ0 (the one-dimensional representation of the trivial group GL0(F )), and
we define ∆〈x, y〉 to be 0 in case y < x− 1. For any segment S of non-negative
length the object ∆S is a representation of the group GLn(F ), where n is the
length of S.
For the standard properties of segments we refer to Zelevinsky’s work [33]
(cf. [28]), but note that our conventions are slightly different, because we allow
rational numbers in the segments and we have the segment {⋆}.
For any finite ordered list of segments S1, S2, . . . , St we have the product rep-
resentation π := (∆S1) × (∆S2) × · · · × (∆St). Observe that, due to our
conventions, in case Sa = {⋆} for some a, then ∆Sa is the unit in R, and

π =
∏t

b=1,b6=a ∆Sb ∈ R. In case Sa = ∅ for some index a, then we have π = 0
in R.

Definition 2.1. We write StG for the Steinberg representation of the group
G. This representation is by definition the (unique) irreducible quotient of
the space of locally constant compactly supported complex valued functions on
P0\G, on which G acts by right translations.

Definition 2.2. Let t, h be positive integers such that n = th. We de-
fine Speh(h, t) to be the (unique) irreducible quotient of the representation

StGh
ν
t−1
2 ×· · ·×StGh

ν
1−t
2 . This representation has t segments, Sa = 〈xa, ya〉,

a = 1, . . . , t, where xa = t−h
2 − (a − 1), ya = t+h

2 − a. Observe that, for
each index a, we have ℓSa = h. Furthermore, for each index a < t, we have
xa+1 = xa − 1 and ya+1 = ya − 1.

Let S1 = 〈x1, y1〉, S2 = 〈x2, y2〉, . . . , St = 〈xt, yt〉 be an ordered list of segments
defining a representation of the group G = GLn(F ). Let St be the symmetric
group on {1, 2, . . . , t}. For any w ∈ St we define the number nw

a to be ya −

xw(a) + 1. One checks easily that
∑k

a=1 n
w
a = n. The numbers nw

a need not
be positive. We define S′

t ⊂ St to be subset consisting of those permutations
w ∈ St such that the numbers nw

a are positive or 0. If the permutation w lies

Documenta Mathematica 20 (2015) 237–267



244 Arno Kret

in the subset S′
t ⊂ St, then (nw

a ) is a composition of n. Assuming that w ∈ S′
t

we will write Pw = MwNw for the parabolic subgroup of G corresponding to
the composition (nw

a ).
Let w ∈ S′

t. We define the segments Sw
1 := 〈xw(1), y1〉, S

w
2 := 〈xw(2), y2〉, . . .,

Sw
t := 〈xw(t), yt〉. We have ℓ(Sw

a ) = nw
a . We let ∆w be the representation

of Mw defined by (∆Sw
1 ) ⊗ · · · ⊗ (∆Sw

t ), where the tensor product is taken
along the blocks of Mw. The representation Iw is defined to be the product
∆Sw

1 ×∆Sw
2 × · · · ×∆Sw

t , i.e. it is the (unitary) parabolic induction IndGPw
∆w

of ∆w to G. In case w ∈ St\S
′
t we define both ∆w and Iw to be 0.

Remark. It is possible that Sw
a = {⋆} for some permutation w. In that case

the representation ∆Sw
a is the unit element σ0 of R, and thus can be left out

of the product that defined Iw.

In this notation we have the following theorem:

Theorem 2.3 (Tadic). Let π be a Speh representation of G and let S1 =
〈x1, y1〉, S2 = 〈x2, y2〉, . . . St = 〈xt, yt〉 be its segments. The representation π
satisfies Tadic’s determinantal formula

(2.1) π =
∑

w∈St

sign(w)Iw ∈ R.

Proof. This theorem was first proved by Tadic in [31] for Speh representations
with a difficult argument. Chenevier and Renard give a simpler proof of The-
orem 2.3 in [4]. Also Badulescu gives a simpler proof in the note [2] using the
Moeglin-Waldspurger algorithm [25]. Recently Lapid and Minguez [23, Thm. 1]
extended the formula to the larger class of ladder representations. �

Remark. By the definition of the subset S′
t ⊂ St we have for all w ∈ St that

Iw 6= 0 if and only if w ∈ S′
t, and thus we may as well index over the elements

w ∈ S′
t in the sum in the above theorem. In the cases where the inclusion

S′
t ⊂ St is strict, the subset S′

t is practically never a subgroup of St, it will
neither be closed under composition nor contain inverses of elements.

The reason we call the formula of Theorem 2.3 the determinantal formula of
Tadic, is the observation of Chenevier and Renard [4], who recognized that
Equation (2.1) can be written as a determinant of a t× t-matrix over the ring
R:

π = det




∆〈x1, y1〉 ∆〈x1, y2〉 · · · ∆〈x1, yt〉
∆〈x2, y1〉 ∆〈x2, y2〉 · · · ∆〈x2, yt〉

...
...

...
∆〈xt, y1〉 ∆〈xt, y2〉 · · · ∆〈xt, yt〉


 ∈ R.

3. The Satake transform

Let P = MN ⊂ G be a standard parabolic subgroup of G, and let f ∈ H(G)
be a locally constant function on G. Then we define the constant term f (P ) ∈
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H(M) by the formula

f (P )(m) = δ
1/2
P (m) ·

∫

N

f(mn)dn,

for all m ∈ M , and where

• δP is the modulus character of P , i.e. δP (m) = | det(m,Lie(N))|;
• the integral is taken with respect to the left Haar measure of N giving
the group K ∩N measure 1.

In case f isK-spherical, then f (P ) isKM = M(OF )-spherical, and the constant
term f 7→ f (P ) defines a morphism of algebras H0(G) → H0(M). In case

T = M we have the obvious isomorphism H0(T )
∼
→ C[X±1

1 , . . . , X±1
n ], under

which the characteristic function of the subset q−e1O×
F×q−e2O×

F×· · · q−enO×
F ⊂

(F×)n = T , corresponds to the monomial Xe1Xe2 · · ·Xen in C[X±1
1 , . . . , X±1

n ]
for all (ei) ∈ Zn. The composition of the constant term H0(G) → H0(T ) with
the isomorphismH0(T ) ∼= C[X±1

1 , . . . , X±1
n ] is called the Satake morphism, and

is denoted SG or simply S if G is understood. Satake proved [29] that the map
is injective, and has image equal to the algebra A = C[X±1

1 , . . . , X±1
n ]Sn where

Sn is the Weyl group of T in G; it is the symmetric group on the set {1, . . . , n}
acting on X1, . . . , Xn through its natural permutation action.
If P = MN ⊂ G is a standard parabolic subgroup corresponding to the com-
position (na), then we have a commutative diagram

f
❴

��

H0(G)

��

SG
// C[X±1

1 , . . . , X±1
n ]Sn

� _

��

f (P ) H0(M)
SM

// C[X±1
1 , . . . , X±1

n ]Sn1×Sn2×···×Snk

The conceptual way to think about the algebra C[X±1
1 , . . . , X±1

n ] is as the
symmetric algebra C[X∗(T )] on the lattice of cocharacters of T . Similarly A

is the algebra of Weyl group invariant elements in C[X∗(T )]. Write Ĝ, T̂ , M̂
for the complex dual groups of G, T,M . Then C[X∗(T )] is the algebra of

regular algebraic functions on T̂ , A is the algebra of algebraic functions on

T̂ /Sn, and the Hecke algebra of M is the space of regular algebraic functions

on T̂ /Sn1 ×Sn2 × · · · ×Snk
.

If π is an unramified representation of G, then the space of K-invariants πK

is one-dimensional, and induces a surjection H0(G) → End(πK) = C. We get

an element ϕG,π ∈ SpecMax(H0(G)) = T̂ /Sn which may be identified with a

semisimple element ϕG,π ∈ Ĝ, well-defined up to conjugacy. This element is
called the Hecke matrix of π. For example, if π is the trivial representation
of G, then an element f ∈ H0(G) acts on π by multiplication with the degree
deg(f) =

∫
G f(g)dg. By the Iwasawa decomposition G = KP0 we have

∫

G

f(g)dg =

∫

P0

∫

K

f(kp)dpdk =

∫

P0

f(p)dp =

∫

T0

δ
−1/2
P0

(t) · f (P0)(t)dt
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= 〈S(f), ρG〉,

where ρG =
(
n−1
2 , n−1

2 , . . . , 1−n
2

)
∈ X∗(T )⊗ Z[1/2] is the half sum of the pos-

itive roots of G. Equivalently, 〈S(f), ρG〉 is the evaluation of S(f) ∈ C[T̂ /Sn]
at the point

(3.1) ϕG,Triv =

(
q
n−1
2 , . . . , q

1−n
2

)
∈ T̂ ,

(the Hecke matrix of the trivial representation).

4. Weyl chambers and truncation of Hecke functions

Let P ⊂ G be a parabolic subgroup corresponding to the composition (na) of n.
Let k be the length of na. Write aP for the space X∗(AP )⊗R, where AP ⊂ P is
the center of P . We write a0 = aP0 . Let aP ⊂ a0 be the set of (xi) ∈ Rn so that
x1 = . . . = xn1 , . . ., xn1+...+nk−1+1 = . . . = xn. The acute Weyl chamber a+P in

aP is the set of (xa) ∈
∏k

a=1 R
na = Rn such that for all indices a = 1, . . . , k− 1

we have xa ∈ Rna , and 1
na

∑na

i=1 xa,i > 1
na+1

∑na+1

i=1 xa+1,i. The obtuse Weyl

chamber +aP in aP is the set of (xi) ∈ Rn so that for all a we have

x1 + . . .+ xna >
n1 + n2 + . . .+ na

n
(x1 + x2 + . . .+ xn).

Let X = Xe1
1 · · ·Xen

n ∈ C[X±1
1 , . . . , X±1

n ] = C[X∗(T )] = A be a monomial.
We may view X∗(T ) as a lattice inside the space a0. Let πP : a0 → aP be
the canonical projection. Let f 7→ χNf be the endomorphism of A sending
X ∈ X∗(T ) toX if πP (X) ∈ a+P and to 0 if πP (X) /∈ a+P . Similarly, let f 7→ χ̂Nf
be the endomorphism of A sending X ∈ X∗(T ) to X if πP (X) ∈ +aP , and to
0 if πP (X) /∈ +aP ). Via the Satake isomorphism H0(T ) ∼= A we transport the
endomorphisms f 7→ χNf , f 7→ χ̂Nf to endomorphisms of H0(T ).

5. Functions of Kottwitz

We introduce the functions of Kottwitz fnαs that will be used later in the paper:

Definition 5.1. Let n and α be positive integers, and let s be a non-negative
integer with s ≤ n. We call the number s the signature, and we call the number
α the degree. The function fnαs ∈ H0(G) is the spherical function whose Satake
transform is

qαs(n−s)/2
∑

ν∈Sn·µs

[ν]α = qαs(n−s)/2
∑

I⊂{1,...,n},#I=s

∏

i∈I

Xα
i ∈ A.(5.1)

We put fnαs = 0 when n, α, s ∈ Z≥0 are such that n < s. We will call fnαs a
simple Kottwitz function.
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6. Compact traces

We introduce the notion of compact trace for the group G (cf. [6], [20, §2.2], [20,
p. 509]). An element g ∈ G is compact if the roots αi ∈ F of its characteristic
polynomial charpol(g) = det(1−Xg) ∈ F [X ] all have the same absolute value.
We write χG

c for the characteristic function of the set of compact elements
in G. If g lies inside a standard Levi subgroup M of G, then there are two
inequivalent notions of compactness: (1) g ∈ M can be M -compact, (2) g ∈ G
can be G-compact. Write M =

∏
iGna , then the element g ∈ M is M -compact

if ga ∈ Gna is compact for all a. We write χM
c for the characteristic function

on M of the set of M -compact elements.
There is a notion of compactness and compact traces for general unramified
reductive groups G′: A semisimple element γ ∈ G′ is compact if for some (any)
maximal torus T ′ in G′ containing γ the absolute value |α(γ)| equals 1 for
all roots α of T ′ in Lie(G′). A non-semisimple element of G′ is compact if
its semisimple part is compact. Let π be a smooth G-representation of finite
length and f a locally constant, compactly supported function on G. Harish-
Chandra proved that there is a locally integrable function θπ on G such that
for all f ∈ H(G) the trace Tr (f, π) is given by the integral

∫
Grs

f(g)θπ(g)dg
where Grs ⊂ G is the subset of regular semisimple elements. In this paper we
are interested in the compact trace, Tr c(f, π), which is defined by taking the
integral over the set Gc compact, regular semisimple elements,

∫
Gc

f(g)θπ(g)dg

(cf. [6]). Equivalently, write χG
c f for the pointwise product of f with χG

c ; then
Tr c(f, π) = Tr (χG

c f, π).

7. Lattice paths and the Steinberg representation

Fix an integer s with 0 ≤ s ≤ n, and α ∈ Z≥1. We express the compact trace
of the functions fnαs on the Steinberg representation in terms of certain lattice
paths in Q2.
Let A+ be the polynomial ring C[qa|a ∈ Q] of rational, formal powers of the
variable q. Equivalently, A+ is the complex group ring C[Q+] of the additive
group Q+ underlying Q.

Definition 7.1. A path L in Q2 is a sequence of points ~v0, ~v1, ~v2, . . . , ~vr such
that ~vi+1 − ~vi = (1, 0) (east), or ~vi+1 − ~vi = (1, 1) (north-east). The starting
point of L is ~v0 and the end point is ~vr; the number r is the length. An eastward
step (1, 0) has weight 1 and a north-eastward step (a, b) → (a + 1, b + 1) has
weight q−α·a ∈ A+. The weight of the path L is defined to be the product in
A+ of the weights of its steps.

Remark. We allow paths of length zero; such a path consists of one point ~v0
and no steps. The weight of a path of length 0 is equal to 1. The paths of
length 0 correspond to compact traces on the special segments {⋆} introduced
earlier.

Definition 7.2. Let L be a path in Q2. Connect the starting point ~v0 of L
with its end point ~vr via a straight line ℓ. Then L is called a Dyck path if all

Documenta Mathematica 20 (2015) 237–267



248 Arno Kret

of its points ~va lie on or below the line ℓ in the plane Q2. The Dyck path is
called strict if none of its points ~va other than the initial and end point, lies on
the line ℓ. Let ~x, ~y be two points in Q2. Then we write Dycks(~x, ~y) ∈ A+ for
the sum of the weights of all the strict Dyck paths that go from the point ~x to
the point ~y. We call the polynomial Dycks(~x, ~y) the strict Dyck polynomial.

There are also non-strict Dyck polynomials Dyck(x, y) but we are not concerned
with those in this section; they will become important later, when we compute
the compact traces on the trivial representation.
Using obtuse and acute Weyl chambers we will define truncations of the Satake
transforms of elements in H0(G). Those truncations will be best understood
graphically. We first extend the notion of a path slightly to the concept of a
graph.

Definition 7.3. A graph in Q2 is a sequence of points ~v0, ~v1, . . . , ~vr with ~vi+1−
~vi = (1, ei), where ei is an integer.

Let ℓs,n ⊂ Q2 be the line of slope s
n going through the origin. We will often

abuse notation, and write simply ℓ = ℓs,n. If x ∈ Q, then we write ℓ(x) for the
point (x, s

nx) on the line ℓ.

Definition 7.4. To a monomial X = Xe1
1 Xe2

2 · · ·Xen
n ∈

C[X±1
1 , X±1

2 , . . . , X±1
n ], with ei ∈ Z and

∑n
i=1 ei = s we associate the

graph GX with points ~v0 := ℓ(1−n
2 ), and for i = 1, . . . , n, the point ~vi is defined

by
~v0 +

(
i, en + en−1 + . . .+ en−(i+1)

)
∈ Q2.

Definition 7.5. We define the weight of a step (a, b) → (a + 1, b + e) to be
q−α·e·a ∈ A+, and the weight of a graph is the product of the weights of its
steps.

Lemma 7.6. Let X = Xe1
1 Xe2

2 · · ·Xen
n ∈ C[X±1

1 , X±1
2 , . . . , X±1

n ] be a monomial
of degree

∑n
i=1 ei = s. Let G = GX be the graph of X. Then

• the end point of the graph is ℓ(n−1
2 + 1) ∈ Q2;

• the evaluation of X at the point ϕG,Triv ∈ T̂ is equal the weight of the
graph GX .

Furthermore, the following 3 statements are equivalent:

(i) χ̂N0X = X;
(ii) e1 + e2 + . . .+ ei >

s
n i, for all indices i < n;

(iii) the graph GX lies strictly below the line ℓ.

Proof. The fact stated in the first bullet point is trivial. The second point
follows from Equation (3.1). The equivalence of (i)-(iii) is also formal (details
can be found in the proof of [20, Prop. 5]). �

Lemma 7.7. Consider the representation π = 1T (δ
1/2
P0

) of the group T .
Let f be a function in the spherical Hecke algebra of T . Then the trace
of f against π is equal to the evaluation of S(f) ∈ A at the point

(q(1−n)/2, q(3−n)/2, . . . , q(n−1)/2) ∈ T̂ .
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Proof. The character δ
1/2
P0

on T maps an element (t1, t2, . . . , tn) to the complex

number |t1|(n−1)/2|t2|(n−3)/2 · · · |tn|(n−1)/2. To any (rational) cocharacter ν ∈

X∗(T ) we may associate the composition (δ
1/2
P0

◦ ν) : F× → T → C×. We

evaluate this composition at the prime element ̟F ∈ F×. Thus we have

an element of the set Hom(X∗(T ),C
×) = T̂ (C) where the last isomorphism

is given by X∗(T̂ ) ⊗Z C× ∋ ν ⊗ z 7→ ν(z) ∈ T̂ (C). We have T = (F×)n

and thus we have the standard basis ei on X∗(T ). This corresponds to the

standard basis ei on X∗(T̂ ). If we take ν = ei in (δ
1/2
P0

◦ ν)(̟F ) then we

get (δ
1/2
P0

◦ ei)(̟F ) = |̟F |(n−1)/2−i+1 = q(1−n)/2+i−1. This completes the
verification. �

Lemma 7.8. The compact trace Tr (χG
c fnαs, StG) on the Steinberg representa-

tion is equal to the polynomial (−1)n−1qs(n−s)α/2 · Dycks(ℓ((1 − n)/2), ℓ((n −
1)/2 + 1)) ∈ A+.

Proof. This lemma is a translation of [20, Prop. 7] using Lemma 7.6. �

Compact traces are compatible with twists:

Lemma 7.9. Let χ be an unramified character of F×, π a smooth irreducible
G representation. Then Tr (χG

c fnαs, π ⊗ χ) = χ(̟αs
F ) · Tr (χG

c fnαs, π).

Proof. [20, Lem. 2]. �

Lemma 7.10. Assume that π is an essentially square integrable representation
of the form ∆S, where S = 〈x, y〉 is a segment of length n. The compact trace
Tr (χG

c fnαs,∆〈x, y〉) equals (−1)n−1 · qs(n−s)α/2 ·Dycks(ℓ(x), ℓ(y + 1)).

Proof. The representation (∆S)⊗ ν−x+(1−n)/2 is the Steinberg representation,
and so Lemma 7.8 applies to it. The result then follows from Lemma 7.9. �

8. Lattice t-paths and standard representations

We describe the compact traces on the standard representations of G using
‘t-paths’.

Definition 8.1. Let t be a positive integer. Let ~x = (~xa) and ~y = (~ya) be
two ordered lists of points in Q2, both of length t. A t-path from ~x to ~y is the
datum consisting of, for each index a ∈ {1, 2, . . . , t}, a path La from the point
~xa to the point ~ya.

A t-path (La) is called a Dyck t-path if all the paths La are Dyck paths. The
Dyck path (La) is called strict if, for each index a, no point ~vi of La other than
~v0 and ~vr lies on the line ℓ. The weight weight(La) of a t-path (La) is the prod-
uct of the weights of the paths La, where a ranges over the set {1, 2, . . . , t}. We
extend the definition of the strict Dyck polynomial Dycks(~x, ~y) ∈ A+ also to t-
paths: The polynomial Dycks(~x, ~y) ∈ A+ is by definition the sum of the weights
of the strict Dyck t-paths from the points (~xa) to the points (~ya). The Dyck

polynomial Dycks(~x, ~y) decomposes into the product
∏t

a=1 Dycks(~xa, ~ya) ∈ A+.
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Lemma 8.2. Let S1 = 〈x1, y1〉, S2 = 〈x2, y2〉, . . . , St = 〈xt, yt〉 be a list of
segments and let I be the representation (∆S1) × (∆S2) × · · · × (∆St). The
compact trace Tr (χG

c fnαs, I) is equal to (−1)n−tqs(n−s)α/2Dycks(~x, ~y), where
for the indices a = 1, . . . , t we have ~xa := ℓ(xa) and ~ya := ℓ(ya + 1).

Proof. Let P be the parabolic subgroup of G corresponding to the composition
n =

∑t
a=1 ℓ(Sa) of n. Let χG

M be the characteristic function on M of the

subset of elements m = (ma) ∈
∏t

a=1 Gℓ(Sa) = M such that
∏b

a=1 | det(ma)| =

| det(m)|
1
n

∑b
a=1 na for all b ≤ t. Then χG

c = χG
MχM

c holds on M . By the
integration formula of van Dijk for compact traces [20, Prop. 3] we have

Tr (χG
c f, I) = Tr

(
χG
c f

(P )
nαs, (∆S1)× (∆S2)× · · · × (∆St)

)

= Tr
(
χM
c χG

Mf (P )
nαs, (∆S1)× (∆S2)× · · · × (∆St)

)
.(8.1)

By [20, Prop. 4] the constant term χG
c f

(P )
nαs is equal to qαC(~n,~s)fnαs1 ⊗ fnαs2 ⊗

· · · ⊗ fnαst where ~n := (na)
t
a=1, ~s := (sa)

t
a=1, sa := nas/n, and C(~n,~s) :=

1
2s(n− s) − 1

2

∑t
a=1 sa(na − sa). The constant term χG

c f
(P )
nαs vanishes in case

one of the numbers sa is non-integral. We have (χG
c f

(P )
nαs)(P0∩M) = χG

MχM
c f

(P0)
nαs .

Consequently, one may rewrite the trace in Equation (8.1) to the product

qαC(~n,~s)
∏t

a=1 Tr (χ
Gna
c fnaαsa ,∆Sa). By Lemma 7.10 we obtain

qαC(~n,~s)
t∏

a=1

(−1)na−1qsa(na−sa)α/2Dycks(ℓ(xa), ℓ(ya + 1)).

Note that the vertical distance between the point ~ya and the point ~xa has to be
integral before paths can exist. Therefore the expression in this last Equation
simplifies to the one stated in the lemma and the proof is complete. �

9. Non-crossing paths

We express the compact traces on Speh representations in terms of non-crossing
lattice paths.
We call a t-path (La) crossing if there exists a couple of indices a, b with a 6= b
such that the path La has a point ~v ∈ Q2 in common with the path Lb. There
is an important condition:

• The point ~v of crossing must appear in the list of points ~va,i that define
La and it must also occur in the list of points ~vb,i that define Lb

(Because we work with rational coordinates, the point of intersection could a
priori be a point lying halfway a step of a path (for example). We are ruling
out such possibilities.)
We write Dyck+s (~x, ~y) for the sum of the weights of the non-crossing strict Dyck
t-paths. Let π be the Speh representation of G associated to the Zelevinsky
segments 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xt, yt〉 with x1 > x2 > . . . > xt and y1 > y2 >
. . . > yt. We define the points ~xa := ℓ(xa) ∈ Q2 and ~ya := ℓ(ya + 1) ∈ Q2,
for a = 1, 2, . . . , t. The group St acts on the free Q2-module Q2t = (Q2)t by
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Figure 1. An example of a 3-path corresponding to the repre-
sentation π of GL54(F ) defined by the segments 〈3, 20〉, 〈2, 19〉
and 〈1, 18〉. We take s = 27 and we take the permutation
w = (13) ∈ S′

3. The 3 dots on the lower left hand corner are
the points ~x1, ~x2 and ~x3 in Q2 respectively; the points ~y1, ~y2
and ~y3 are in the upper right corner. Observe that this 3-path
is non-strict.

sending the a-th standard basis vector ea ∈ (Q2)t to the basis vector ew(a) ∈
(Q2)t. Thus if we have the vector ~x ∈ Q2t, then we get the new vector ~xw

whose a-th coordinate ~xw
a ∈ Q2t is equal to w(a)-th coordinate of the vector ~x.

Note that the difference s
n · (ya + 1)− s

n · xa need not be integral, in this case

there do not exist paths from the point ~xw
a ∈ Q2 to ~ya ∈ Q2.

Let π be a Speh representation of type (h, t). The points ~xa ∈ Q2 and ~ya ∈ Q2

lie on the line ℓ ⊂ Q2, and the point ~xa lies on the left of the point ~ya with
horizontal distance ya+1−xa = ℓ(Sa) = h. The two lists of points may overlap:
There could exist couples of indices (a, b) such that ~xa = ~yb. All points ~xa and
~yb are distinct if we have h ≥ t (cf. Figure 1).
Assume h ≥ t. Then, because all the points ~xa, ~yb are distinct, there is no
permutation w ∈ St such that one of the segments Sw

a = 〈xw(a), ya〉 is empty
or equal to {⋆} for some index a. In particular we have S′

t = St.

Definition 9.1. To any point ~v ∈ Q2 we associate the invariant ρ(~v) :=
p2(~v) ∈ Q/Z where p2 : Q

2 → Q is projection on the second coordinate.

Remark. The horizontal distance between the point ~xb and the point ~ya is
integral for all indices. Therefore the invariant of the first coordinate is not of
interest. However, the vertical distance is the number swa = s

nn
w
a ∈ Q, which

certainly need not be integral.

Using this invariant we define a particular permutation w0 ∈ St:

Definition 9.2. Assume h ≥ t and assume that for each invariant ρ ∈ Q/Z
the number of indices a such that the point ~xa has invariant ρ is equal to
the number of indices a such that the point ~ya has invariant ρ. The element
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w0 ∈ St is the unique permutation such that for all indices a, b we have(
a < b and ρ(~xa) = ρ(~xb)

)

=⇒

(
w−1

0 (a) > w−1
0 (b) and ρ(~ya) = ρ(~yb) = ρ(~xa)

)
.

Remark. Observe that the permutation w0 depends on the integer s because
the heights of the points ~xa, ~ya, and therefore also their invariants depend on
s.

Remark. If our assumption on the invariants ρ(~xa) and ρ(~ya) in Definition 9.2
is not satisfied, then the permutation w0 cannot exist because it has to induce
bijections between sets of different cardinality.

One could also define the permutation w0 ∈ St inductively: First the index
w−1

0 (t) ∈ {1, 2, 3, . . . , t} is the minimal index b such that the points ~xt and
~yb have the same invariant. Next, the index w−1

0 (t − 1) ∈ {1, 2, 3, . . . , t} is

the minimal index b, different from w−1
0 (t), such that ~xa and ~yb have the same

invariant. And so on: w−1
0 (t−i) ∈ {1, 2, 3, . . . , t} is the minimal index b different

from the previously chosen indices w−1
0 (t), w−1

0 (t− 1), . . . , w−1
0 (t− i+1), such

that the points ~yb and ~xt−i have the same invariant.

Lemma 9.3. Let π be a Speh representation with parameters h, t with h ≥ t.
Let d be the greatest common divisor of n and s and write m for the quotient
n/d. Define the points ~xa := ℓ(xa) and ~ya := ℓ(ya + 1). The following two
statements are equivalent:

(i) for each invariant ρ ∈ Q/Z the number of indices a such that the point
~xa has invariant ρ is equal to the number of indices a such that the
point ~ya has invariant ρ

(ii) m divides t or m divides h

Proof. We first prove that “m|t ⇒ (i)”. We have

(9.1) ρ(~xa+1) = ρ(~xa)−
s
n ∈ Q/Z

and the same relation for the points ~ya. Therefore, if m divides t, then the
possible classes of the points ~xa are equally distributed over the subset s

nZ/Z ⊂
Q/Z, and every invariant occurs precisely t/m times. The same statement also
holds for the points ~ya, and in particular (i) is true. This proves the claim.
We prove that “m|h ⇒ (i)”. Assume m|h. Then the invariants of ~xa and ~ya
are the same for all indices a. Thus (i) is true.
We prove that “(m 6 | t and m 6 |h) ⇒ ((i) is false)”. Assume m 6 | t and m 6 |h.
We first reduce to the case where t < m. Assume t ≥ m. Consider the
lists of elements ρ(~x1), ρ(~x2), . . ., ρ(~xm), and ρ(~y1), ρ(~y2), . . ., ρ(~ym) of Q/Z.
By Equation (9.1) every possible class in s

nZ/Z occurs precisely once in both
lists. Thus, the truth value of (i) is not affected if we remove the elements
~x1, ~x2, . . . , ~xm and ~y1, ~y2, . . . , ~ym from the respective lists. Renumber the in-
dices and repeat this argument until t < m. Because we assumed that t did
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not divide m there remains a positive number of elements in the list ~xa and ~ya.
We renumber so that the indices range from 1 to t. Then we have reduced to
the case where 1 ≤ t < m. Now look at the two lists ρ(~x1), ρ(~x2), . . . , ρ(~xt) and
ρ(~y1), ρ(~y2), . . . , ρ(~yt). In both lists every class in Q/Z occurs at most once. We
assumed that m does not divide h, and therefore ρ(~x1) 6= ρ(~y1). If there does
not exist an index b such that ρ(~x1) = ρ(~yb), then (i) is false and we are done.
Thus assume ρ(~x1) = ρ(~yb) for some 1 < b ≤ t. By Equation (9.1) we then have
ρ(~yb−1) = ρ(~yb) +

s
n = ρ(~x1) +

s
n . The invariant ξ := ρ(~x1) +

s
n ∈ Q/Z does

not occur in the list ρ(~x1), ρ(~x2), . . . , ρ(~xt). Thus, we have found an invariant,
namely ξ, occurring once in the list of invariants of the elements ~ya and does
not occur in the list of invariants of the elements ~xa. This contradicts (i) and
completes the proof. �

Theorem 9.4. Let π be a Speh representation with parameters h, t with h ≥ t.
Let d be the greatest common divisor of n and s and write m for the quo-
tient n/d. Define the points ~xa := ℓ(xa) and ~ya := ℓ(ya + 1) (for xa, ya, see
Def. 2.2). The compact trace Tr (χG

c fnαs, π) on π is non-zero if and only if m
divides t or m divides h, and if the compact trace is non-zero, then it is equal
to (−1)n−tsign(w0)q

s(n−s)α/2Dyck+s (~x
w0 , ~y), where the permutation w0 ∈ St

depends on s and is defined in Definition 9.2.

Proof. For a technical reason we assume that 0 < s < n in this proof. In case
s = 0 we have fnαs = 1GLn(OF ). All the elements in GLn(OF ) are compact

and therefore χG
c fnα0 = fnα0. The compact trace becomes the usual trace and

the theorem is easy. A similar argument applies in case s = n. Thus we may
indeed assume 0 < s < n.
To ease notation, we write f = fnαs. By Theorem 2.3 the compact trace
Tr (χG

c f, π) is equal to the combinatorial sum
∑

w∈St
sign(w)Tr (χG

c f, Iw) for

any Hecke operator f ∈ H(G). We apply it to the Kottwitz functions f = fnαs.
We have S′

t = St because h ≥ t. Let w ∈ St. Thus we have the formula

(9.2) Tr (χG
c f, π) =

∑

w∈St

sign(w) · Tr (χG
c f

(Pw), Iw)

By Lemma 8.2 we get for f = fnαs,

(9.3) Tr (χG
c f, π) = qs(n−s)α/2

∑

w∈St

sign(w) · εP0∩Mw ·Dycks(~x
w, ~y).

We apply a standard combinatorial argument4 to simplify the right hand side.
Put the lexicographical order “<” on Q2, i.e. for all ~u, ~v ∈ Q2 we have ~u < ~v
if and only if (~u1 < ~v1 or (~u1 = ~v1 and ~u2 < ~v2)). Let (La) be a strict Dyck
t-path from the points ~xw to the points ~y, and assume that (La) has at least one

4The Lindström-Gessel-Viennot lemma. The argument appears in many (almost) equiv-
alent forms in the literature. We learned and essentially copied it from Stanley’s book [30,
Thm 2.7.1]. Note however that, strictly speaking, the Theorem 2.7.1 there does not apply as
stated at this point in our argument. In the paragraph that follows we show that Stanley’s
argument may be adapted so that it does apply to our situation.
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point of crossing. In particular (La) is the datum consisting of, for each index
a, a path from ~xw(a) to ~ya. Let ~v ∈ Q2 be the point chosen among the points

of crossing minimal for the lexicographical order on Q2. Let (a, b) a couple of
different indices, minimal for the lexicographical order on the set of all such
couples, such that ~v lies on the path La and also on the path Lb. We define a
new path L′

a, defined by following the steps of Lb until the point ~v and then
following the steps of the path La. We define L′

b by following La until the point
~v and then continuing the path Lb. For the indices c with c 6= a, b we define
L′
c := Lc. Observe that (L′

a) is a t-path from the points ~x(ab)w to the points
~y. Furthermore, it is a Dyck path (with respect to this new configuration
of points), and we have weight(La) = weight(L′

a) because the weight is the
product of the weights of the steps, and only the order of the steps has changed
in the construction (La) 7→ (L′

a). The construction is self-inverse: If we apply
the construction to the path (L′

a) then we re-obtain (La). Both paths (La)
and (L′

a) occur in the sum of Equation (9.3). The sign εP0∩Mw is equal to
(−1)n−1(−1)t−1(−1)#{c∈{1,2,...,t} | ~xw(c)=~yc}. By the assumption that h ≥ t, the
points in the list ~x are all different to the points in the list ~y, and therefore
the sign εP0∩Mw equals (−1)n−t (and does not depend on the permutation w).
The sign of the permutation w is opposite to the sign of (ab)w. Consequently,
the contributions of the paths (La) and (L′

a) to Equation (9.3) cancel, and only
the non-crossing paths remain in the sum. We find

(9.4) Tr (χG
c f, π) = (−1)n−tqs(n−s)α/2

∑

w∈St

sign(w) ·Dyck+s (~x
w , ~y).

We need a second notion of crossing paths, called topological intersection.
Here we mean that, when the t-path L is drawn in the plane Q2 there is
a point ~x ∈ Q2 lying on two paths La, Lb occurring in L. Because we
allow rational coordinates, topological intersection is not the same as cross-
ing: It is easy to give an example of a 2-path has one topological inter-
section point ~x ∈ Q2 but the point ~x does not occur in the lists of points
~v1,0, ~v1,1, . . . , ~v1,r1 , ~v2,0, ~v2,1, . . . , ~v2,r2 defining the 2-path. Such paths are con-
sidered non-crossing under our definition, even though they may have topolog-
ical intersection points5.
We claim that there is at most one permutation w ∈ St such that the poly-
nomial Dyck+(~xw , ~y) is non-zero, and that this permutation is the one we
defined in Definition 9.2. Let S′′

t be the set of all permutations such that
Dyck+(~xw, ~y) 6= 0, and assume that S′′

t contains an element w ∈ S′′
t . We first

make the following observation:

(Obs) To any point ~v ∈ Q2 we associated the invariant ρ(~v) = p2(~v) ∈ Q/Z.
The horizontal distance between the point ~xw(a) and the point ~ya is
the number nw

a . The vertical distance is the number swa = s
nn

w
a ∈ Q.

Because w ∈ S′′
t there exists a path from the point ~xw(a) to the point

5If one uses the wrong, topological notion of intersection, then the proof breaks at 9 lines
below Equation (9.3): The constructed ‘path’ (L′

a
) is not a path.
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Figure 2. The leftmost point ~xt is connected to the third
point ~yw−1(t), and the second point ~xa is connected to the
last point ~yb. Any 2-path staying below the line ℓ must self-
intersect topologically.

~ya. Consequently swa is integral. This implies that ρ(~xw(a)) = ρ(~ya)
for all indices a and in particular the invariant of the point ~xw(a) is
independent of w ∈ S′′

t .

By assumption Dyck+(~xw , ~y) 6= 0 and thus there exists a non-crossing Dyck
path (La) connecting ~xw with ~y. We show inductively that w is uniquely
determined. We start with showing that the index w−1(t) ∈ {1, 2, . . . , t} is
determined. We claim that w−1(t) ∈ {1, 2, . . . , t} is the minimal index such
that the point ~yw−1(t) has the same invariant as ~xt. To see that this claim is

true, suppose for a contradiction that it is false, i.e. assume the index w−1(t) is
not minimal. There is an index b strictly smaller than w−1(t) such that ~yb has
the same invariant as ~xt. By the observation (Obs) there exists an index a 6= t
such that ~xa has the same invariant as ~xt and such that ~xa is connected to ~yb.
Draw a picture (see Figure 2) to see that the paths La and Lt must intersect
topologically. But, by construction, the invariants of ~xa and ~xt are the same.
Therefore, any topological intersection point of the paths La and Lt is a point
of crossing. The paths La and Lb are crossing and thus (La) is crossing. This
is a contradiction, and therefore the claim is true. Thus the value w−1(t) is
determined.
We now look at the index t − 1. The point ~xt−1 is connected to the point
~yw−1(t−1). We claim that w−1(t − 1) ∈ {1, 2, . . . , t} is the minimal index,

different from w−1(t), such that ~yw−1(t−1) has the same invariant as ~xt−1. The
proof of this claim is the same as the one we explained for the index t. We
may repeat the same argument for the remaining indices t − 2, t − 3, etc.
Consequently w is uniquely determined by its properties, and equal to the
permutation w0 defined in Definition 9.2.
We proved that if the set S′′

t is non-empty, then it contains precisely one
element, and this element is equal to w0. Therefore, if the compact trace does
not vanish, then m must divide t or m divides h by Lemma 9.3. Inversely,
assume that m divides t or m divides h. The permutation w0 ∈ St exists by
Lemma 9.3. We claim that Dyck+s (~x

w0 , ~y) 6= 0, so that w0 ∈ S′′
t . To prove
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Figure 3. An example of a non-crossing 4-path (La) in case
s
n = 1

2 ∈ Q/Z and t = 4. For each a, the path La first takes
nw0
a − sw0

a horizontal steps and then sw0
a vertical steps. Note

that paths with the same invariant do not intersect.

this, it suffices to construct one non-crossing t-path from the points ~xw0 to the
points ~y. This is easy (see Figure 3): Let a be an index, and write nw0

a for the
horizontal distance between ~xw0

a and ~ya and sw0
a for the vertical distance. The

path La from ~xw0
a to ~ya is defined to be the path taking nw0

a − sw0
a eastward

steps, and then sw0
a northeastward steps. Then (La) is a strict non-crossing

t-path and therefore Dyck+s (~x
w0 , ~y) is non-zero. This completes the proof. �

10. A dual formula

We also want to compute the compact trace on the representation Speh(h, t)
in case h ≤ t. The argument for Theorem 9.4 extends to the case where
h ≤ t. This computation is more complicated, because the permutation w ∈ St

that contributes to Equation (9.4) is no longer unique and the sign εP0∩Mw

in Equation (9.3) depends on w. We don’t reproduce the computation here,
because there is a more elegant approach using the duality of Zelevinsky. The
ring of Zelevinsky R has an involution ι, called the Zelevinsky involution which
was first defined by Zelevinsky in [33]. Aubert [1] gave a refined definition
of this involution via a character formula involving Jacquet modules (which,
moreover, makes sense for all reductive groups). Aubert defines the involution

by Xι :=
∑

P=MN εP Ind
G
P (XN (δ

−1/2
P )), for all X ∈ R, where

• XN is the non-normalized Jacquet module, i.e. to a G-representation
X it attaches the space of N -coinvariants XN (which is an M -repre-
sentation). The functor X 7→ XN is additive, and thus extends to all
objects X ∈ R.

• IndGP is unitary induction (sending unitary representations of M to
unitary representation of G)

• εP = (−1)dim(AP /AG), where AP is the split center of P and AG is the
split center of G

(With ‘involution’ we mean that ι is an automorphism of the complex algebra
R and it is of order two: ι2 = IdR. )
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The Zelevinsky dual of a Speh representation with parameters (h, t) is a Speh
representation with the role of the parameters inversed, thus of type (t, h). Fur-
thermore, taking the Zelevinsky dual of the formula of Tadic yields a new char-
acter formula, now in terms of duals of standard representations. Of course, the
Zelevinsky dual of a standard representation is not standard, rather it is an un-
ramified twist of products in R of one dimensional representations. Therefore,
we compute first the compact trace on the one dimensional representations,
then use van Dijk’s theorem [20, Prop. 3] to obtain formulas for products in R
of one dimensional representations, and finally use the dual of Tadic’s formula
to compute the compact traces on Speh representations with h ≤ t (opposite
inequality to Theorem 9.4). We will then have computed the formula for all
Speh representations.

11. The trivial representation

We compute the compact traces of spherical Hecke operators acting on the
trivial representation of G. In Section 12 we will use this result, and the dual
of Tadic’s formula, to compute the compact traces of the Kottwitz functions
against the representations that were exlcuded in Theorem 9.4.
We work with general unramified reductive groups G. In this paper we need
the result only for G = GLn(F ), but the computation is valid in general. We
fix notation, conventions and definitions on roots and convexes for unramified
groups (cf. [24, §1] and [22, Chap. 1]):

• Fix P0 ⊂ G a Borel subgroup with Levi decomposition P0 = TN0.
Standardize the parabolic subgroups of G and their Levi-decomposition
with respect to P0 = TN0.

• Let P be a standard parabolic subgroup of G, then we write
– AP for the split center of P ;
– εP = (−1)dim(AP /AG);
– aP := X∗(AP )⊗ R.

• If P ⊂ P ′ then we have AP ′ ⊂ AP and thus an induced map aP ′ → aP .
• aP

′

P is the quotient of aP by aP ′ .
• a0 = aP0 and aG0 = aGP0

.
• ∆ is the set of simple roots of AP0 occurring in the Lie algebra of N0.
• For each root α in ∆ we have a coroot α∨ in aG0 .
• We write ∆P ⊂ ∆ for the subset of α ∈ ∆ acting non-trivially on AP .
• For α ∈ ∆P ⊂ ∆ we send the coroot α∨ ∈ aG0 to the space aGP via
the canonical surjection aG0 → aGP . The set of these restricted coroots
α∨|aG

P
with α ranging over ∆P form a basis of the vector space aGP . By

definition the set of fundamental weights {̟G
α ∈ aG∗

P | α ∈ ∆P } is the
basis of aG∗

P = Hom(aGP ,R) dual to the basis {α∨
aG
P
} of coroots.

• We have the acute and obtuse Weyl chambers of G.
– The acute chamber aG+

P is the set of x ∈ aGP such that 〈α, x〉 > 0
for all roots α ∈ ∆P .
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– The obtuse chamber +aGP is the set of x ∈ aGP such that we have the
inequality 〈̟G

α , x〉 > 0 for all fundamental weights ̟G
α , associated

to α ∈ ∆P .
– We need another chamber ≤aGP defined to be the set of x ∈ aGP

such that for all α ∈ ∆P the pairing 〈̟G
α , x〉 is non-positive. We

call this chamber the closed opposite obtuse Weyl chamber.
• Let ≤τ̂GP be the characteristic function on aP of the closed opposite
obtuse chamber.

• Let HM : M → aP be the Harish-Chandra mapping, normalized such
that |χ(m)|p = q−〈χ,HM (m)〉 for all rational characters χ of M .

• We define the following characteristic functions on T :
– ξGc = ≤τ̂GP0

◦ (aP0 → aGP0
) ◦HM0 ;

– χN = τGP ◦ (aP → aGP ) ◦HM ;
– χ̂N = τ̂GP ◦ (aP → aGP ) ◦HM .

• If f ∈ H0(G) is a function whose Satake transform is the function
h ∈ A, then we often abuse notation, and write ξGc h for the Satake
transform of the function ξGc f (P0), and similarly for the functions χNf
and χ̂Nf if f ∈ H0(M) (cf. Section 4).

Proposition 11.1. Let f be a function in the Hecke algebra H0(G). The

compact trace Tr (χG
c f, 1G) is equal to Tr

(
ξGc f (P0), 1T (δ

−1/2
P0

)
)
.

Proof. For comfort we prove the proposition under the additional assumption
that G is its own derived group. We have

Tr (χG
c f, 1) =

∑

P=MN

εPTr (χ̂Nf (P ), 1(δ
−1/2
P )).

Write ÂP for the complex dual torus of AP . We write ϕM,ρ ∈ ÂP for the Hecke
matrix of a representation ρ of M . The Hecke matrix ϕ

M,δ
−1/2
P

is conjugate in

M̂ to the Hecke matrix ϕ
T,δ

−1/2
P δ

−1/2
P0∩M

= δ
T,δ

−1/2
P0

∈ ÂP0 ⊂ M̂ . The trace on the

trivial representation Tr (χ̂Nf (P ), 1(δ
−1/2
P )) is equal to S(χ̂Nf (P0))(ϕ

T,δ
−1/2
P0

).

Using linearity of the Satake transform we obtain

Tr (χG
c f, 1) = S

( ∑

P=MN

εP χ̂Nf (P0)

)
(ϕ

T,δ
−1/2
P0

).

Thus we have to compute the function
∑

P=MN εP χ̂N on the group T . By
definition, the function χ̂N equals τ̂GP ◦ HM . Let WM be the rational Weyl
group of T in M . Let t ∈ T . Then HM (t) = 1

#WM

∑
w∈WM

wHT (t). Thus

χ̂N (t) = 1 if and only if, for all roots α ∈ ∆P we have
∑

w∈WM
〈̟G

α , wHT (t)〉 >

0. We have for all α ∈ ∆P the inequality 〈̟G
α , HT (t)〉 > 0 if and only if we

have 〈̟G
α , wHT (t)〉 > 0 for all w ∈ WM . Therefore, we have on the group

T that χ̂N = τ̂GP ◦ HT . Thus the alternating sum
∑

P=MN εP χ̂N is equal to(∑
P=MN εP τ̂

G
P

)
◦HT . By inclusion-exclusion we have

∑
P=MN εP τ̂

G
P = ≤τ̂GP .

This proves the proposition in case G = Gder. (For a group G with G 6= Gder,
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one may repeat the above argument, replacing eaching occurance of AP with
AP /AG) �

12. The dual formula

Using the computations from Section 11 we give the dual version of Theo-
rem 9.4.

Lemma 12.1. Let T1 = 〈u1, v1〉, T2 = 〈u2, v2〉, . . . , Th = 〈uh, vh〉 be a list of
segments and consider the representation J := (∆T1)

ι× (∆T2)
ι× · · ·× (∆Th)

ι.
Then Tr (χG

c fnαs, π) is equal to qs(n−s)α/2Dyck(~u,~v), where ~ua = ℓ(ua) and
~va = ℓ(va + 1) for a = 1, 2, . . . , t.

Proof. The proof is the same as the proof for Lemma 7.8 (but now use Propo-
sition 11.1). We repeat the argument for verification purposes. Assume first
that h = 1 and that π is the trivial representation of G. In this case the

trace Tr
(
χG
c fnαs, π

)
is equal to Tr

(
ξGc f

(P0)
nαs , 1T (δ

−1/2
P0

)
)
. To a monomial

X = Xe1
1 Xe2

2 · · ·Xen
n ∈ C[X±1

1 , X±1
2 , . . .X±1

n ] with ei ∈ Z and
∑n

i=1 ei = s we
associate the graph GX with points ~v0 := ℓ((1 − n)/2), and for i = 1, 2, . . . , n,
~vi equals ~v0 + (i, e1 + e2 + . . .+ ei) ∈ Q2. We have ξGc X = X if and only if

(12.1) e1 + e2 + · · ·+ ei ≤
s
n i,

for all indices i < n, and ξGc X = 0 otherwise. The evaluation of X at the point

(12.2)
(
q(n−1)/2, q(n−3)/2, . . . , q(1−n)/2

)

equals the weight of the graph GX . The trace of fnαs against the representation

1T (δ
−1/2
P0

) is equal to the evaluation of fnαs at the point in Equation (12.2)
(use Lemma 7.7 but notice that the signs are different). The monomials X
occurring S(fnαs) yield paths from the point ℓ((1 − n)/2) ∈ Q2 to the point
ℓ((n−1)/2+1). The condition in Equation (12.1) is true if and only if the graph
GX lies (non-strictly) below the line ℓ. Therefore the trace Tr (χG

c fnαs, 1G) is
equal to qs(n−s)/2Dyck(ℓ((1 − n)/2), ℓ((n − 1)/2 + 1)). By twisting with the
character ν−x+(1−n)/2 as we did in Lemma 7.10 the trace Tr

(
χG
c f, (∆〈u, v〉)ι

)

equals qs(n−s)/2Dyck(ℓ(x), ℓ(y + 1)) for all segments 〈u, v〉. Finally use van
Dijk’s induction formula for compact traces to find the compact traces on duals
of standard representations as stated in the lemma (this argument is the same
as the argument in Lemma 8.2). �

Theorem 12.2. Let π be a Speh representation with parameters h, t with h ≤ t.
Let d be the greatest common divisor of n and s and write m for the quotient
n/d. Let Ta = 〈ua, va〉 be the segments of πι. Define the points ~ua := ℓ(ua)
and ~va := ℓ(va + 1). The compact trace Tr (χG

c fnαs, π) is non-zero if and only
if m divides h or m divides t. Assume that the compact trace is non-zero,
then it is equal to (−1)t−1(−1)n−hsign(w0)q

s(n−s)α/2Dyck+(~uw0 , ~v), where the
permutation w0 ∈ Sh is defined in Definition 9.2.
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Proof. Let πι be the dual of the representation π. After dualizing the formula
of Tadic for πι we obtain π =

∑
w∈Sh

sign(w)Iιw ∈ R. The involution ι on R
commutes with products. Therefore, if T1, . . . , Th are the Zelevinsky segments
of the dual representation πι, then Iιw is equal to (∆T1)

ι× (∆T2)
ι×· · · (∆Th)

ι.
By Lemma 12.1 the trace Tr (χG

c fnαs, I
ι
w) equals qs(n−s)α/2Dyck(~uw, ~v). One

may now repeat the proof for Theorem 9.4, but using the dual Tadic formula
instead; one only has to interchange t with h and every occurrence of the word
“strict Dyck t-path” with “Dyck h-path”. �

13. Return to Shimura varieties

At this point most of the original arguments of this paper are completed. In
Sections 13 and 14 we shows how the computations from Sections 1–12 combine
with arguments from our earlier article [20] to give results on the basic stratum
in new cases.
In our article [20] we proved a formula for the basic stratum of certain Shimura
varieties associated to unitary groups, subject to a technical condition on the
Newton polygon of the basic stratum (that it has no non-trivial integral points).
In the previous sections we have completely resolved the combinatorial issues
that arise if you remove this condition in case p is totally split in the center of
the division algebra. We may now essentially repeat the argument from [20] to
obtain the description of the cohomology if there is no condition on the Newton
polygon of the basic stratum. A large part of the argument remains the same,
that part will only be sketched and we refer to [20] for the details. We will
work with a Kottwitz variety (cf. [16]). More precisely, we fix the following list
of notation and assumptions:

The Shimura datum.

(1) Let D be a division algebra over Q; write n ∈ Z≥0 for the positive
integer such that dimF (D) = n2.

(2) F is the center of D; we assume that F is a CM field of the form F =
KF+ ⊂ Q, where F+ is totally real, and K/Q is quadratic imaginary.

(3) ∗ is an anti-involution on D inducing complex conjugation on F .
(4) G is the Q-group with G(R) =

{
x ∈ D×

R |g
∗g ∈ R×

}
for every commu-

tative Q-algebra R.
(5) h is an R-algebra morphism h : C → DR such that h(z)∗ = h(z) for all

z ∈ C.
(6) We assume that the involution x 7→ h(i)−1x∗h(i) on DR is positive.
(7) We write X for the G(R) conjugacy class of the restriction of h to

C× ⊂ C.
(8) µ ∈ X∗(G) is the restriction of h⊗ C : C× × C× → G(C) to the factor

C× of C× × C× indexed by the identity isomorphism C
∼
→ C.

(9) E ⊂ Q is the reflex field of the Shimura datum (G,X, h−1).

The special fibre and the basic stratum.
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(10) p is a prime number where the PEL datum fixed in (1)-(9) is unramified
in the sense of [17, §5]; we assume additionally that p is split in the
extension K/Q. In fact, for most of Sections 13 and 14 we make the
following stronger assumption:

(10b) From Hypothesis 14.4 onwards, we assume that p is split in the
extension F/Q.

(11) K ⊂ G(Af) is a compact open subgroup, small enough that the moduli
problem is representable by a smooth and quasi-projective scheme over
OE ⊗ Zp, and such that K decomposes as KpKp where Kp is a com-
pact open subgroup of G(Ap

f ) and Kp is a hyperspecial compact open
subgroup of G(Qp).

(12) S = SK/OE ⊗ Z(p) is the Shimura variety of level K corresponding to
the PEL moduli problem.

(13) νp : Q → Qp is a fixed embedding, ν∞ : Q → C is another fixed embed-

ding, the fields F, F+, E,K are all embedded into C.
(14) p is the E-prime induced by νp.

(15) Fq is the residue field of E at the prime p and Fq is the residue field

of Q at νp; for every positive integer α, Ep,α ⊂ Qp is the unramified
extension of Ep of degree α; Fqα is the residue field of Ep,α.

(16) ι : B →֒ SK,Fq is the basic stratum [26] (cf. [12, 17, 18, 27]).

Local system.

(17) ξ is an (any) irreducible algebraic representation over Q of G
Q
.

(18) ℓ is a prime number and Qℓ is an algebraic closure of Qℓ together with
an embedding Q ⊂ Qℓ.

(19) L is the ℓ-adic local system on SK/OE ⊗ Z(p) associated to the repre-

sentation ξ ⊗Qℓ of GQℓ
[17, p. 393].

Test functions and harmonic analysis.

(20) We consider functions of the form f = f∞ ⊗ f∞p ⊗ fp, with f∞ a
function on G(R), f∞p a function on G(Ap

f ), fp a function on G(Qp),
where:

• The function f∞ at infinity has its stable orbital integrals pre-
scribed by the identities of Kottwitz in [15]. The function f∞ can
be taken to be a scalar multiple of an Euler-poincaré function [16]
(cf. [7]). In [16, p. 657, Lem. 3.2]) is explained that the function
has the following property: Let π∞ be an (g,K∞)-module occur-
ring as the component at infinity of an automorphic representation
π of G. The trace of f∞ against π∞ is equal to the Euler-Poincaré
characteristic

∑∞
i=0 N

−1
∞ (−1)i dimHi(g,K∞;π∞ ⊗ ξ), where N∞

is the following constant. Let Π0
∞ be the L-packet of isomorphism

classes of irreducible admissible representations of G(R) having
the same central character and infinitesimal characters as the con-
tragredient of ξ. ThenN∞ is equal to the product of the number of
representations in Π∞

0 and the number of connected components
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(for the real topology) of the group G(R)/Z(R), where Z is the
center of G.

• The function fp ∈ H(G(Qp)) at p is a pointwise product of the
form χG

c fα, where
– χG

c is the characteristic function on G(Qp) of the subset of
compact elements (cf. [6]).

– The function fα is the function of Kottwitz [15] associated
to µ (cf. [20, Prop. 9]). Since the group G is unramified
over Qp we fix a smooth reductive model GZp of G over
Qp. Define φα ∈ H0(G(Ep,α)) to be the characteristic func-
tion of the subset GZp(OEp,α)µ(p

−1)GZp(OEp,α). By defini-
tion, the function fα ∈ H0(G(Qp)) is the function obtained
from φα by the base change morphism from H0(G(Ep,α)) to
H0(G(Qp)).

• f∞p is an arbitrary function in the Hecke algebraH(G(Ap
f )) which

is Kp-biinvariant.

The signatures of the unitary group.

(21) U ⊂ G is the subgroup of elements with trivial factor of similitudes.
(22) For each infinite F+-place v, we have signatures pv, qv such that U(R) ∼=∏

v U(pv, qv). We define sv := min(pv, qv).

(23) The embedding Q ⊂ Qp induces an action of the group Gal(Qp/Qp) on

the set of infinite F+-places. For each Gal(Qp/Qp)-orbit ℘ we define
the number s℘ :=

∑
v∈℘ sv, and we write σ℘ for the partition (sv)v∈℘

of the number s℘.

The space of automorphic forms.

(24) A(G) := L2(G(Q)\G(A), ω), where ω is the inverse of the central char-
acter of ξ.

14. Combining the results

We compute the factors Tr (χG
c fα, πp) occurring in Theorem 14.3 below. We

need to introduce two classes of representations:

Definition 14.1. Consider the general linear group Gn over a non-
Archimedean local field. Then a representation π of Gn is called a
(semistable) rigid representation if it is equal to a product of the form∏k

a=1 Speh(xa, y)(εa) ∈ R, where y is a divisor of n and (xa) is a composition
of n/y, and εa are unramified unitary characters.

Definition 14.2. A representation π of the group G(Qp) = Q×
p ×∏

℘|p GLn(F
+
℘ ) is called a rigid representation if for each F+-place ℘ above

p the component π℘ is a (semistable) rigid representation of GLn(F
+
℘ ) in the

previous sense: π℘ =
∏k

a=1 Speh(x℘,a, y℘)(ε℘,a) ∈ R, where two additional
conditions hold: (1) y℘ = y℘′ for all ℘, ℘′|p, and (2) the factor of similitudes
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Q×
p of G(Qp) acts through an unramified character on the space of π. We write

y := y℘ and call the set of data (x℘,a, ε℘,a, y) the parameters of π.

We recall a theorem from our previous article [20]:

Theorem 14.3. Let α be a positive integer. Let f∞p ∈ H(G(Ap
f )) be a Kp-

biinvariant function. Assume the conditions (1)-(24) from §5.1. Then

∞∑

i=0

(−1)iTr (f∞p × Φα
p ,H

i
et(BFq

, ι∗L)) = |Ker1(Q, G)| ·
∑

π⊂A(G)
πp rigid

Tr (f, π),

(14.1)

the sum ranges over those irreducible subspaces π ⊂ A(G) such that πp is a rigid

representation. In Equation (14.1), the group Ker1(Q, G) the Hasse invariant
of G:

Ker1(Q, G) := Ker

(
H1(Q, G) →

∏

v

H1(Qv, G)

)
,

where the product ranges over all places of Q.

Erratum to [20]. I should mention that, unfortunately, I made a few typos
in [20] regarding the constant |Ker1(Q, G)|. The mistakes are easily corrected
and occur only in body of the text (the statement of the main result [20, Thm. 1]
is correct). Let me explain how to correct [20]. One should know that to the
PEL datum that we fixed in Section 13, one can associate a priori two Shimura
varieties: (1) The Shimura variety S1 that represents the PEL moduli problem,
and (2) The Shimura variety S2 which is the canonical model, as in [9]. Kottwitz
proves in [17, Sect. 5] that S1

∼=
∐

Ker1(Q,G) S2. In some statements I forgot to

multiply the expressions with |Ker1(Q, G)|, thus I was counting points in the
basic locus of S2,p, instead of S1,p. This mistake occurs at the following places
of [20]: p. 490 lines 2 and 14, Prop. 10, Eqn. (19) and the equation above it,
Eqn. (20), Eqn. (21), proof of Thm. 3, and Cor. 2.

Remark. In Theorem 14.3 we fixed the choice of an isomorphism Qℓ
∼= C, to

compare the left and right hand side of Equation (14.1).

Proof. Write T (f∞p, α) for the left hand side of Equation (14.1). We had al-
ready found in [20, Prop. 10] that T (f∞p, α) = |Ker1(Q, G)|Tr (f,A(G)), for
all sufficiently large integers α. Let π ⊂ A(G) be an automorphic representa-
tion of G contributing to the trace Tr (f,A(G)). In [20, p. 20] we explained
that π may be base changed to an automorphic representation BC(π) of the
algebraic group K× ×D×, and that, in turn, BC(π) may be sent to an auto-
morphic representation Π := JL(BC(π)) of the Q-group G+ = K× ×GLn(F ).
The representation Π is a discrete automorphic representation of the group
G+(A), and Π is semistable at p. Using the Moeglin-Waldspurger classification
of the discrete spectrum, a computation now shows that πp is a rigid represen-
tation [20, Thm. 2]. �
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The point of this article is to make the traces Tr (fp, πp) = Tr (χG
c fα, πp)

occurring in Equation (14.1) explicit. We carried out the important arguments
in the previous sections, here we now only have to collect the results.

Hypothesis 14.4. From this point onwards, we work under the condition that
p is split in the center F of the algebra D. (cf. Condition (10b) in the list of
conditions from Section 13.)

Hypothesis 14.4 implies that G(Qp) ∼= Q×
p ×

∏
v∈Hom(F+,Q) GLn(Qp). We have

by [20, Prop. 9] that

(14.2) fα = 1q−αZ
×
p
⊗

⊗

v∈Hom(F+,R)

fGLn(Qp)
nαsv ∈ H0(G(Qp)),

where the numbers sv are the signatures of the unitary group (cf. Section 13).
Let πp be a rigid representation of G(Qp). Write πp =

⊗
v πp,v, where πp,v =⊗k

a=1 Speh(xv,a, y)(εv,a) and where the factor of similitudes of G(Qp) acts
through the unramified character εs on the space of πp. We compute

Tr (χG
c fα, πp) =

= εs(q
−α)

∏

v∈Hom(F+,R)

Tr

(
χGLn(Qp)
c fnαsv , Ind

GLn(Qp)

P (Qp)

r⊗

a=1

Speh(xv, y)(εv,a)

)

= εs(q
−α)


 ∏

v∈Hom(F+,R)

r∏

a=1

εv,a(q
−sv

y·xa

n α)


 ·

·
∏

v∈Hom(F+,R)

Tr

(
χGLn(Qp)
c fnαsv , Ind

GLn(Qp)

P (Qp)

r⊗

a=1

Speh(xv,a, y)

)
.

Write ζαπ ∈ C for the product
∏

v

∏
a εa(q

−sv
y·xa

n α). The polynomial
(14.3)

∏

v∈Hom(F+,R)

Tr

(
χGLn(Qp)
c fnαsv , Ind

GLn(Qp)

P (Qp)

r⊗

a=1

Speh(xv,a, y)

)
∈ C[qα],

is computed in Theorems 9.4 and 12.2 to be a polynomial defined by the weights
of certain non-intersecting lattice paths. In particular the polynomial in Equa-
tion (14.3) vanishes unless, for all indices a, for all v ∈ Hom(F+,R), the number

(14.4) mv,a :=
y · xv,a

gcd
(
y · xv,a,

y·xv,a

n sv
) =

y · xv,a

gcd(n, sv)
,

is an integer, and divides either xv,a or y. Assume that the compact trace
Tr (χG

c fα, πp) is non-zero so that the divisibility relations at Equation (14.4)
are satisfied. The number ζαπ ∈ C is defined by:

(14.5) εs(q
−α) ·

∏

v∈Hom(F+,R)

r∏

a=1

εv,a

(
q−sv

y·xa

n α
)
= ζαπ ,
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(cf. [20, Lem. 9, Eq. (24)]).

Remark. Let us comment on the assumption that p splits completely in F
(Hypothesis 14.4). If p splits only in K, then the group GQp is not split, and
further combinatorial complications arise. The main issue is that the function
of Kottwitz fα in Equation (14.2) is no longer a tensor product of the simple
Kottwitz functions fnαs: The function fα is a tensor product of ‘composite’
Kottwitz functions. (The composite Kottwitz functions fnασ are obtained from
partitions σ of s as follows. Let σ = (σ1, σ2, . . . , σr) be a partition of s. Then
fnασ ∈ H0(G) is the convolution product fnασ1 ∗ fnασ2 ∗ · · · ∗ fnασr ∈ H0(G).)
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