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1. Introduction

The theory of motivic cohomology for smooth schemes over a base field is a
well established one. It is a powerful computational tool with ramifications
for many branches of algebra, algebraic and arithmetic geometry: quadratic
forms, algebraic K-theory, special values of L-functions, to name a few. The
success of this theory is best exemplified by its fundamental role in Voevodsky’s
resolution of Milnor’s conjecture on Galois cohomology [Voe03].
The purpose of this article is to generalize Suslin and Voevodsky’s construc-
tion of motivic cohomology [VSF00], especially Voevodsky’s machinery of
presheaves with transfers [Voe00], to the equivariant setting of smooth schemes
over a field k equipped with an action of a finite group G (and |G| coprime to
char(k)).
Using Totaro’s construction [Tot99] of an algebro-geometric version of the clas-
sifying space of an algebraic group, Edidin-Graham [EG98] have constructed
an equivariant version of Bloch’s higher Chow groups. This theory has proved
to be interesting, amongst other reasons, for its connection to equivariant al-
gebraic K-theory and the equivariant Riemann-Roch theorem [EG00, EG08].
These equivariant higher Chow groups are an algebro-geometric version of topo-
logical Borel cohomology. Our construction follows a different route altogether
and results in a more refined Bredon style cohomology theory. These Bredon
motivic cohomology groups form a new set of invariants for smooth schemes
with G-action. As a first indication that the Bredon motivic cohomology the-
ory we construct is a refinement of equivariant higher Chow groups, we note
that the former is equipped with a grading by the representations of G while
the latter is graded by integers. In fact in Section 5.3 we construct a compari-
son map from our Bredon motivic cohomology to the equivariant higher Chow
groups.
Topological Bredon cohomology has recently experienced a surge of interest
in part because of its appearence in the work of Hill-Hopkins-Ravenel [HHR],
specifically through the equivariant slice spectral sequence for certain spectra.
The Z/2-equivariant case of this spectral sequence was first constructed by
Dugger in [Dug05] where he constructed a spectral sequence relating Bredon
cohomology groups (with coefficients in the constant Mackey functor Z) and
Atiyah’s KR-theory. The motivic analog of Atiyah’s KR-theory is Hermit-
ian K-theory, constructed as a Z/2-equivariant motivic spectrum KRalg by
Hu-Kriz-Ormsby [HKO11]. Our construction of Bredon motivic cohomology is
motivated in part by a program to construct and use a Z/2-equivariant mo-
tivic generalization of Dugger’s spectral sequence as a tool for studying these
Hermitian K-theory groups.
We define our theory via hypercohomology in the equivariant Nisnevich topol-
ogy, introduced in [Del09] and [HKO11]. A surjective, equivariant étale map
f : Y → X is an equivariant Nisnevich cover if for each point x ∈ X there
is a point y ∈ Y such that f induces an isomorphism k(x) ∼= k(y) on residue
fields and an isomorphism Gy ∼= Gx on set-theoretic stabilizers. A different
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Equivariant Cancellation 271

generalization of the Nisnevich topology was introduced in [Her13], the fixed
point Nisnevich topology. A cover in this topology is as above but with the
requirement that f induce an isomorphism Iy ∼= Ix on scheme-theoretic sta-
bilizers rather than the set-theoretic ones. (An equivalent formulation is that
for each subgroup H , the map on fixed points fH : Y H → XH is a Nisnevich
cover.) We focus on the equivariant Nisnevich topology in the present work for
two reasons. One is that equivariant algebraic K-theory fulfills descent in the
equivariant Nisnevich topology but not in the fixed point Nisnevich topology.
The second is that the fixed point Nisnevich topology does not behave well
with respect to transfers, see Example 4.11.
A presheaf with equivariant transfers is a presheaf F of abelian groups on
smooth G-schemes which are equipped with functorial maps Z∗ : F (Y ) →
F (X) for finite equivariant correspondences Z from X to Y . The presheaf
with equivariant transfers freely generated by X is denoted by Ztr,G(X). We
define the equivariant motivic complexes ZG(n) by forming the A1-singular
chain complex on Ztr,G(P(k[G]

⊕n ⊕ 1))/Ztr,G(P(k[G]
⊕n), where k[G] is the

regular representation. Bredon motivic cohomology is defined as equivariant
Nisnevich hypercohomology with coefficients in the complex ZG(n). In light
of the equivariant Dold-Thom theorem [dS03], our construction is analogous
to the topological Bredon cohomology with coefficients in the constant Mackey
functor Z. Our setup is however flexible enough to allow for more sophisticated
coefficient systems. The benefit of allowing Mackey functor coefficients is well
understood in topology. As explained in Section 5.2, we have an embedding of
cohomological Mackey functors into our category.
Over the complex numbers there is a topological realization functor which re-
lates our Bredon motivic cohomology groups and topological Bredon cohomol-
ogy groups. This comparison map is the subject of an equivariant Beilinson-
Lichtenbaum type conjecture, predicting that a range of these groups should
be isomorphic with torsion coefficients. The ordinary Beilinson-Lichtenbaum
conjecture, relating motivic cohomology and étale cohomology (or singular co-
homology), is equivalent to the Milnor and Bloch-Kato conjectures which have
been proved in work of Voevodsky and Rost. In a sequel paper [HVØ] we show
that this equivariant conjecture is true for G = Z/2 and any torsion coefficients.
The key new ingredient in that work is a (Z/2)n-equivariant generalization of
Voevodsky’s Cancellation Theorem, which is the main result of this present
paper. The Cancellation Theorem is an algebro-geometric version of the fa-
miliar suspension isomorphism in singular cohomology of topological spaces.
It asserts that in motivic cohomology, we can cancel suspension factors of the
algebro-geometric sphere Gm. Besides the usual Gm, our equivariant version
also allows for Gm equipped with an action by (Z/2)n. Write ǫi for the gen-
erator of the ith factor of (Z/2)n. For a subset I ⊆ {1, . . . , n}, write GσI

m for
the (Z/2)n-scheme which is Gm equipped with the action specified by letting
ǫi ∈ (Z/2)n act by x 7→ 1/x if i ∈ I and by the identity otherwise.
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272 J. Heller, M. Voineagu, P. A. Østvær

Theorem 1.1 (Equivariant Cancellation). Let X be a smooth (Z/2)n-scheme
over a perfect field k, char(k) 6= 2. Then

Hn
GNis(X,C∗Ztr,G(Y )) = Hn

GNis(X ∧G
σI
m , C∗Ztr,G(Y ∧G

σI
m ))

for all I ⊆ {1, . . . n}.

We establish the equivariant Cancellation Theorem as Theorem 9.7 below. Its
proof uses equivariant modifications of Voevodsky’s arguments in [Voe10a] and
relies on equivariant versions of the main results of Voevodsky’s techniques for
analyzing the cohomological behaviour of presheaves with transfers. Most of
the paper is focused on the generalization of this machinery.
As mentioned, our motivation is to study Z/2-equivariant phenomena, but
where possible we establish our results in a greater generality. Everything works
best under the assumption that the irreducible representations of G (which are
defined over the base field) are all one-dimensional. Any group which satisfies
this condition is necessarily abelian. An abelian group G over a field k will
satisfy this condition if k contains a primitive dth roots of unity, where d is
the least common multiple of the orders of elements of G. In particular over
an algebraically closed field every finite abelian group satisfies this condition.
However, abelian groups over fields without enough roots of unity can fail this
condition, e.g., G = Z/3 has an irreducible two dimensional representation over
k = R. See the beginning of Section 5 for more details. A main source of this
condition on the group G arises from the question of existence of equivariant
triples. We refer to Section 7 for a precise definition of an equivariant triple,
but point out here that it is in particular a smooth equivariant relative curve
X → S between smooth G-schemes. A typical step in several key arguments
used in the course of establishing the main homotopy invariance result (see
Theorem 8.12) is that in order to establish an isomorphism of sheaves with
equivariant transfers, it suffices to show the isomorphism on the generic points
of smooth G-schemes. To establish this reduction step we need a good supply
of equivariant triples. More precisely, if x ∈ X is a point, there should exist an
invariant open neighborhood U ⊆ X of x and a smooth G-scheme S such that
U → S is a smooth equivariant curve. As a simple illustrative example, consider
a representation V viewed as a smooth G-scheme. Suppose there is a smooth
equivariant curve f : U → C, where U is an invariant neighborhood of the
origin in V . Then there is an equivariant surjection df : V ∼= T0U → Tf(0)C.
This surjection splits (as |G| and char(k) are coprime) and so V contains a
one-dimensional summand. It could however happen that V admits no one-
dimensional summand and thus there is no neighborhood of the origin in V
fitting into a smooth equivariant curve. We establish the existence of triples
around an arbitrary point of a smooth quasi-projective G-schemes under the
assumption that all irreducible representations of G are one-dimensional.
Other main results are as follows. Theorem 7.18 provides a Mayer-Vietoris
exact sequence for certain special equivariant Nisnevich covers. This has im-
portant consequences. It in particular allows for the computation of the equi-
variant Nisnevich cohomology of open invariant subsets of G-line bundles over
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Equivariant Cancellation 273

smooth zero dimensional G-schemes, see Theorem 7.18, which is the precursor
to the homotopy invariance theorem.
In Theorem 8.12 we establish our homotopy invariance result.

Theorem 1.2. Suppose that all irreducible k[G]-modules are one-dimensional.
Let F be a homotopy invariant presheaf with equivariant transfers on GSm/k.
Then Hn

GNis(−, FGNis) is also a homotopy invariant presheaf with equivariant
transfers.

Lastly we mention that several other constructions of equivariant cohomology
theories related to algebraic cycles exist. There is for example work of Lawson,
Lima-Filho, and Michelson [LLFM96], Joshua [Jos07], and Levine-Serpe [LS08].
It would be interesting to see how these different constructions relate to the
one carried out here.
An outline of this paper is as follows. In Section 2 we record results about G-
schemes, equivariant divisors, bundles, and cohomology that we need in later
sections. In Section 3 we recall the equivariant Nisnevich topology and establish
some of its basic properties not already appearing in the literature. In Section
4 we introduce equivariant finite correspondences and presheaves with equi-
variant transfers. We formally define Bredon motivic cohomology in Section
5 and using the machinery developed in later sections we establish properties
and some computations. We relate equivariant transfers and equivariant divi-
sors in Section 6, in particular in Theorem 6.12 we compute the equivariant
Suslin homology of equivariant affine curves. In Section 7 we study equivariant
triples and establish a Mayer-Vietoris sequence in Theorem 7.18. The homo-
topy invariance of cohomology is established in Section 8. Finally in Section
9 we establish a Z/2-equivariant generalization of Voevodsky’s Cancellation
Theorem.
Notations and conventions. Throughout k is a field, which is assumed
to be perfect starting in Section 7 and G is a finite group whose order is
coprime to char(k). The finite group G is viewed as a group scheme over k via
Gk :=

∐
G Spec(k). Usually we simply write again G for this group scheme.

Write GSch/k (resp. GSm/k) for the category whose objects are seperated
schemes of finite type (resp. smooth schemes) over k equipped with a left action
by G and morphisms are equivariant morphisms.
We write A(V ) = Spec(Sym(V ∨)) for the affine scheme associated to a vector
space over k and P(V ) = Proj(Sym(V ∨)) for the associated projective scheme.
Sometimes we write V for both the vector space as well as its associated scheme
A(V ).
It is important to distinguish between two types of stabilizer groups of x ∈ X ,

(1) the set-theoretic stabilizer Gx of x is Gx = {g ∈ G | gx = x}
(2) the inertia group of x is Ix = ker(Gx → Aut(k(x)/k)).

Given a subset Z ⊆ X we write G·Z or GZ for the orbit ∪g∈GgZ of Z. For a
nonclosed point x ∈ X , G·x is given a scheme structure viaG·x = (G×{x})/Gx.

Documenta Mathematica 20 (2015) 269–332



274 J. Heller, M. Voineagu, P. A. Østvær

If F is a presheaf on GSm/k and S = limi Si is an inverse limit of smooth
G-schemes over k, with equivariant transition maps, then we set F (S) =
colimi F (Si).

2. Schemes with G-action

In this section we collect several useful facts used throughout this paper about
schemes with an action of a finite group.

2.1. Quotients by group actions. We first recall some basic facts about
quotients of schemes by finite groups, for full details see e.g., [SGA03] or
[MFK94]. By a quotient π : X → X/G we simply mean a categorical quo-
tient. In particular quotients are unique when they exist. If X = Spec(A)
then X/G = Spec(AG). More generally if X is quasi-projective then a quotient
π : X → X/G exists. The categorical quotient of a scheme by a finite group
satisfies the following additional properties:

(1) π is finite and surjective,
(2) The fibers of π are the G-orbits of the G-action on X ,
(3) OX/G = π∗(OX)G,
(4) if Y → X/G is flat, then X ×X/G Y → Y is a quotient, and
(5) if |G| and char(k) are coprime and W ⊆ X is a closed and invariant,

then W → π(W ) is a quotient.

Definition 2.1. Say that X is equivariantly irreducible or G-irreducible pro-
vided there is an irreducible component X0 of X such that G·X0 = X .

Let H ⊆ G be a subgroup and X an H-scheme. The scheme G ×X becomes
an H-scheme under the action h(g, x) = (gh−1, hx) and we define

G×H X = (G×X)/H.

The scheme G ×H X has a left G-action through the action of G on itself.
Concretely G ×H X has the following description. Let gi be a complete set
of left coset representatives. Then G ×H X =

∐
gi
Xi, each Xi is a copy of

X and g ∈ G acts as k : Xi → Xj where k ∈ H satisfies ggi = gjk. The
functor G ×H − : HSch/k → GSch/k is left adjoint to the restriction functor
GSch/k → HSch/k.
The H-action on G × X is free and so π : G × X → G ×H X is a principle
H-bundle. In particular, π is étale and surjective. It follows that if X is
smooth, then so is G ×H X . This defines a left adjoint to the restriction
functor GSm/k → HSm/k,

G×H − : HSm/k→ GSm/k.

2.2. G-sheaves and cohomology. LetX be aG-scheme. Write σ : G×X →
X for the action map and pr2 : G×X → X for the projection. We write τ for
any one of the Zariski, Nisnevich, or étale Grothendieck topologies on X .

Definition 2.2. Let F be a sheaf of abelian groups on X .
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(1) A G-linearization of F is an isomorphism φ : σ∗F → pr∗2F of sheaves
on G×X which satisfies the cocyle condition

[pr∗23(φ)] ◦ [(1× σ)
∗(φ)] = (m× 1)∗(φ)

on G × G × X . Here m : G × G → G is multiplication and pr23 :
G×G×X → G×X is the projection to second and third factors.

(2) A G-sheaf (in the τ -topology) on X is a pair (F , φ) consisting of a
sheaf F on X and a G-linearization φ of F .

(3) A G-module on X is a G-sheaf (M, φ) whereM is an OX -module and
the G-linearization φ : σ∗M ∼= pr∗2M is an isomorphism of OG×X -
modules. Similarly a G-vector bundle on X consists of a G-module
(V , φ) such that V is a locally free OX -module on X .

We usually write F rather than (F , φ) for a G-sheaf or module, leaving the
G-linearization implicit.

Remark 2.3. The previous definition works for any algebraic group G. Our
groups are always finite, in which case a G-linearization of F is equivalent to

the data of isomorphisms φg : F
∼=
−→ g∗F for each g ∈ G which are subject to

the conditions that φe = id and φgh = h∗(φg) ◦ φh for all g, h ∈ G.

An equivariant morphism f : (E , φE )→ (F , φF ) of G-sheaves is a morphism f
of sheaves which is compatible with the G-linearizations in the sense that φF ◦
σ∗f = pr∗2f◦φE . Write Abτ (G,X) for the category whose objects areG-sheaves
onX and morphisms are the equivariant morphisms. The category ofG-sheaves
on X has enough injectives. We have similarly the category ModG(X) of G-
modules on X and VecG(X) of G-vector bundles on X .

Remark 2.4. Recall that if G acts on the ring R, the skew-group ring R#[G]
is defined as follows. As a (left) R-module it is free with basis {[g] | g ∈ G}.
Multiplication is defined by setting (rg[g])(rh[h]) = rg(g·rh)[gh] and extending
linearly. If G acts trivially on R, then R#[G] is the usual group ring R[G].
If X = Spec(R), then the category of G-modules on X is equivalent to the
category of modules over the skew-group ring R#[G].

Given a G-sheafM, the group G acts on the global sections Γ(X,M). Define
the invariant global sections functor ΓGX : Abτ (G,X) → Ab by ΓGX(M) =
Γ(X,M)G. The τ -G-cohomology groups Hp

τ (G;X,M) are defined as the right
derived functors

Hp
τ (G;X,M) := RpΓGX(M).

The functor ΓGX can be expressed as a composition ΓGX = (−)G ◦ Γ(X,−).
The functor Γ(X,−) sends injective G-sheaves to injective G-modules and so
the Grothendieck spectral sequence for this composition yields the convergent
spectral sequence

(2.5) Ep,q2 = Hp(G,Hq
τ (X,M))⇒ Hp+q

τ (G;X,M),

where H∗(G,−) is group cohomology.
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Definition 2.6 ([MFK94]). The equivariant Picard group PicG(X) is the
group of G-line bundles on X , with group operation given by tensor product.

The equivariant Picard group has the following well known cohomological in-
terpretation.

Theorem 2.7 (Equivariant Hilbert 90). Let X be a G-scheme.

(1) There is a natural isomorphism

PicG(X)
∼=
−→ H1

et(G;X,O
∗
X).

(2) There are natural isomorphisms

H1
Zar(G;X,O

∗
X) ∼= H1

Nis(G;X,O
∗
X) ∼= H1

et(G;X,O
∗
X).

Proof. The second item follows from the first together with the spectral se-
quence (2.5). We sketch a proof of the first item. Consider the quotient
stack [X/G]. The map X → [X/G] is an étale cover and X ×[X/G] X
is represented by G × X , see e.g.,[LMB00, Exemple 4.6.1]. We consider
the ringed topos ([X/G]et,O[X/G]). A G-linearization of a sheaf F on Xet

is exactly the descent data necessary to descend F to a sheaf on [X/G].
In particular the categories Abet([X/G]) and Abet(G,X) are equivalent and
the category of line bundles on ([X/G]et,O[X/G]) is equivalent to the cate-

gory of G-line bundles on X . Additionally, Γ([X/G],F) = Γ(X,F)G. We
thus have H1

et(G;X,O
∗
X) = H1

et([X/G],O
∗
[X/G]). Now by [Gir71, Proposition

III.2.4.5, Remarque III.3.5.4], H1
et([X/G],O

∗) is the group of O∗
[X/G]-torsors

over [X/G]et. By [Gir71, Corollaire III.2.5.2] this is isomorphic to the group
of isomorphism classes of line bundles on ([X/G]et,O[X/G]), which in turn is

isomorphic to PicG(X).
�

Theorem 2.7 and the spectral sequence (2.5) yield the exact sequence
(2.8)

0→ H1(G,H0(X,O∗
X))→ PicG(X)→ (Pic(X))G → H2(G,H0(X,O∗

X)).

Lemma 2.9. If X is a reduced G-scheme then p∗ : PicG(X) → PicG(X × A1)
is injective, where p : X ×A1 → X is the projection. If X is normal then p∗ is
an isomorphism.

Proof. If X is reduced then H0(X,O∗
X) = H0(X×A1,O∗

X×A1) and PicG(X)→

PicG(X×A1) is injective. If X is normal then it is an isomorphism. The lemma
then follows from (2.8) together with the five lemma. �

2.3. Divisors on G-schemes. The notion of Cartier divisor and rational
equivalence of Cartier divisors admits a straightforward equivariant general-
ization.

Definition 2.10. (1) An equivariant Cartier divisor on X is an element

of Γ(X,K∗
X/O

∗
X)G. Write DivG(X) for this group with the group law

written additively.

Documenta Mathematica 20 (2015) 269–332



Equivariant Cancellation 277

(2) A principal equivariant Cartier divisor is defined to be an invariant
rational function on X ; that is, an element in the image of Γ(X,K∗)G.

(3) Two equivariant Cartier divisors are equivariantly rationally equivalent,

written D ∼ D′, if D−D′ is principal. Write DivGrat(X) for the group
of equivariant Cartier divisors modulo rational equivalence.

A global section of Γ(X,K∗
X/O

∗
X) is specified by giving an open covering Ui

and fi ∈ Γ(Ui,K∗) such that fi/fj ∈ Γ(Ui ∩Uj ,O∗
X) for all i, j. This section is

G-invariant if {(Ui, fi)} and {(gUi, gfi)} determine the same global section for
all g ∈ G, where gfi is the rational function gfi(x) = fi(g

−1x)). This means
that {(Ui, fi)} is G-invariant if and only if gfi/fj ∈ Γ(gUi ∩Uj ,O∗

X) for all i, j
and g ∈ G.
Write Z1(X) for the group of codimension one cycles on X . The homomor-
phism cyc : Div(X) → Z1(X) is defined by cyc(D) =

∑
Z∈X(1) ordZ(D)Z

where X(1) is the set of closed integral codimension one subschemes.

Lemma 2.11. Let X be a smooth G-scheme. Then

cyc : Div(X)→ Z1(X)

is an equivariant isomorphism.

Proof. Note that if D ∈ Div(X) then ordZ(gD) = ordg−1Z(D). It follows that
cyc is equivariant. Since X is smooth, cyc is an isomorphism. �

Given an equivariant Cartier divisor the usual construction yields a G-line
bundle. Recall that if D = {(Ui, fi)} is a Cartier divisor, then the associated
line bundle O(D) is defined by O(D)|Ui

= OUi
f−1
i . It is straightforward to

check that when D is an equivariant Cartier divisor then the associated line
bundle O(D) has a canonical G-linearization. We write again O(D) for the
G-line bundle defined by this choice of linearization.

Proposition 2.12. Let X be a regular G-scheme.

(1) The association D 7→ O(D) induces an injective homomorphism

DivGrat(X) →֒ PicG(X),

whose image consists of G-line bundles L which admit an equivariant
injection L →֒ KX .

(2) If G acts faithfully on X then every G-line bundle admits such an

injection into KX . In particular DivGrat(X) = PicG(X).

Proof. The first part is straightforward from the definitions. When X has faith-
ful action, then H1

Zar(G;X,K
∗
X) = 0 which implies that DivG(X)→ PicG(X)

is surjective. �

When the action isn’t faithful, DivGrat(X) ⊆ PicG(X) can be a proper subgroup.

For example, PicG(k) is isomorphic to the character group of G over k while

DivGrat(k) = 0.

Proposition 2.13. If X is regular then DivGrat(X × A1) = DivGrat(X).
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Proof. Let K = ker(G → Aut(X)). Then G/K acts faithfully on X and

DivGrat(X) = Div
G/K
rat (X). Since PicG/K(X×A1) = PicG/K(X) the proposition

follows from Proposition 2.12. �

3. Equivariant Nisnevich topology

In this section we introduce the equivariant Nisnevich topology and list some
of its properties. The equivariant Nisnevich topology on quasiprojective G-
schemes was defined by Voevodsky [Del09] in order to extend the functor of
taking quotients by group actions to motivic spaces. More recently, versions of
the equivariant Nisnevich topology (on not necessarily quasiprojective smooth
G-schemes) have been considered by Hu-Kriz-Ormsby [HKO11] and Krishna-
Østvær [KØ12] (for Deligne-Mumford stacks). A related topology, the fixed
point Nisnevich topology, was defined and studied by Herrmann in [Her13]. The
fixed point Nisnevich topology has pleasant homotopical properties but unfor-
tunately does not seem well suited for our constructions involving presheaves
with equivariant transfers.

3.1. Basic properties. A cd-structure on a category C is a collection P of
commutative squares of the form

B //

��

Y

p

��
A

e // X

which are closed under isomorphism. The Grothendieck topology associated to
P is the Grothendieck topology generated by declaring all pairs (A→ X,Y →
X) to be coverings.

Definition 3.1. (1) A Cartesian square in GSch/k

B //

��

Y

p

��
A

e // X

is said to be an equivariant distinguished square if p is étale, e : A ⊆ X
is an invariant open embedding and p induces an isomorphism (Y −

B)red
∼=
−→ (X −A)red.

(2) The equivariant Nisnevich topology on GSm/k (resp. GSch/k) is
the Grothendieck topology associated to the cd-structure defined by
the equivariant distinguished squares and we write (GSm/k)GNis
(resp. (GSch/k)GNis) for the associated site.

Lemma 3.2. A presheaf of sets F is a sheaf in the equivariant Nisnevich topol-
ogy if and only if F (∅) = ∗ and for any distinguished square Q as above the
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square

F (X) //

��

F (Y )

��
F (A) // F (B)

is a pullback square.

Proof. This follows from [Voe10b, Lemma 2.9]. �

Example 3.3. Let V be a representation. Consider the equivariant open cov-
ering of P(V ⊕ 1) given by P(V ⊕ 1) − P(V ) = A(V ) and P(V ⊕ 1) − P(1).
The intersection of these opens is identified with A(V ) − 0. We thus have an
equivariant distinguished square

A(V )− 0 //

��

A(V )

��
P(V ⊕ 1)− P(1) // P(V ⊕ 1).

The standard characterizations of a Nisnevich cover in the nonequivariant set-
ting admit an equivariant generalization.

Definition 3.4. Let f : Y → X be an equivariant morphism. An equivariant
splitting sequence for f : Y → X is a sequence of invariant closed subvarieties

∅ = Zm+1 ⊆ Zm ⊆ · · · ⊆ Z1 ⊆ Z0 = X

such that f |Zi−Zi+1 : f−1(Zi − Zi+1)→ Zi − Zi+1 has an equivariant section.
The integer m is called the length of this splitting sequence.

Proposition 3.5. Let f : Y → X be an equivariant étale map between G-
schemes. The following are equivalent.

(1) The map f is an equivariant Nisnevich cover.
(2) The map f has an equivariant splitting sequence.
(3) For every point x ∈ X, there is a point y ∈ Y such that f induces an

isomorphism k(x)∼=k(y) of residue fields and an isomorphism Gy∼=Gx
of set-theoretic stabilizers.

Proof. The proof follows along the lines of the nonequivariant arguments in
[MV99, Lemma 3.1.5] and [Voe10c, Proposition 2.17].

(1)⇔(2) Suppose that {Vi → X} is an equivariant Nisnevich cover. Note that
there is a dense invariant open subscheme U ⊆ X on which f :

∐
Vi →

X has a splitting. Indeed, this is true by definition for covers coming
from distinguished squares and this property is preserved by pullbacks
and by compositions. Restricting to the complement of this open and
repeating the argument we construct an equivariant splitting sequence,
which must stop at a finite stage because X is Noetherian.
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For the converse, we proceed by induction on the length of a splitting
sequence. The case m = 0 is immediate. Suppose that we have an
equivariant splitting sequence of length m. The restriction of f to
Zm ×X Y → Zm has an equivariant section s. Since s is equivariant
and étale, s(Zm) ⊆ Zm×X Y is an invariant open. Let D be its closed
complement, equipped with the induced reduced structure. Consider

the map Ỹ := Y − D → X . Then {Ỹ → X, X − Zm} forms an
equivariant distinguished covering of X . The pullback of f : Y → X
along X −Zm has an equivariant splitting sequence of length less than
m and so by induction is an equivariant Nisnevich cover. Similarly the

pullback of f along Ỹ → X equivariantly splits and is thus also an
equivariant Nisnevich cover. It follows that f itself is an equivariant
Nisnevich covering.

(2)⇔(3) Suppose that f has an equivariant splitting sequence. Then x ∈ Uk =
Zk−Zk+1 for some k. Let s be a section of f over Uk and let y = s(x).
Then one immediately verifies that f induces an isomorphism k(x) ∼=
k(y) and Gy ∼= Gx.

For the other direction, by Noetherian induction it suffices to show
that if for each generic point η ∈ X there is η′ ∈ Y so that f induces
k(η) ∼= k(η′) and Gη ∼= Gη′ then there is an equivariant dense open
U ⊂ X such that Y ×X U → U has an equivariant splitting. To show
this it suffices to assume that X is equivariantly irreducible. Let η ∈ X
be a generic point. Then there is an η′ ∈ Y such that f : η′ ∼= η and
Gη′ ∼= Gη. This implies thatG·η′ → G·η is an equivariant isomorphism.
We have that G·η′ = ∩W ′ (resp. G·ηi) is the intersection over all
invariant opens W ′ in Y containing η′ (resp. all invariant opens in X)
and so there is some invariant open W ′ ⊆ Y such that W ′ → f(W ′)
is an equivariant isomorphism. Setting U = f(W ′) we obtain our
equivariant splitting.

�

Changing the condition above on stabilizers leads to the variant of the equi-
variant Nisnevich topology defined in [Her13].

Definition 3.6. An equivariant étale map f : Y → X is a fixed point Nisnevich
cover if for each point point x ∈ X , there is a point y ∈ Y such that f induces an
isomorphism k(x)∼=k(y) of residue fields and an isomorphism Iy∼=Ix of inertia
groups.

By [Her13, Lemma 2.12], a map Y → X is a fixed point Nisnevich cover if and
only if for every subgroup H ⊆ G, the map on fixed points fH : Y H → XH

is a Nisnevich cover. The following simple example illustrates an important
difference between these two topologies.

Example 3.7. Let X be a smooth G-scheme with free action. Consider the
action map G ×Xtriv → X , where Xtriv is the G-scheme X considered with
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trivial action. This is a fixed point Nisnevich cover. However, it is not equiv-
ariantly locally split and so is not an equivariant Nisnevich cover.

We refer to [Voe10b] for the definition of a complete, regular, and bounded
cd-structure.

Theorem 3.8. The equivariant Nisnevich cd-structure on GSm/k is complete,
regular and bounded.

Proof. The argument is similar to that of [Voe10c, Theorem 2.2] for the usual
Nisnevich topology. We provide a brief sketch of the details. First, since the
equivariant distinguished squares are closed under pullback, it follows from
[Voe10b, Lemma 2.4] that the equivariant Nisnevich cd-structure is complete.
For regularity, one needs to see that for an equivariant distinguished square the
square

B //

��

Y

��
B ×A B // Y ×X Y

is also distinguished, where the horizontal arrows are the diagonal. Because an
equivariant distinguished square is a square whose maps are equivariant and
which is nonequivariantly a distinguished square, this follows immediately from
the nonequivariant case which is verified in [Voe10c, Lemma 2.14].
It remains to see that the cd-structure is bounded. For this we use the equivari-
ant analogue of the standard density structure. That is for a smooth G-scheme
X , let Dq(X) be the set of open, invariant embeddings U → X whose com-
plement has codimension at least q. The arguments of [Voe10c, Proposition
2.10] carry over to the equivariant case to show that equivariant cd-structure
is bounded by this density structure. �

Corollary 3.9. Let F be a sheaf of abelian groups on GSm/k in the equivari-
ant Nisnevich topology and let X be a smooth G-scheme over k. Then

Hi
GNis(X,F) = 0

for i > dim(X).

3.2. Points. Let A be a commutative ring and I ⊆ A an ideal contained in
the Jacobson radical of A. Recall that (A, I) is said to be a Henselian pair
if for every étale ring map f : A → B and any p : B → A/I such that the
composition pf : A→ A/I equals the quotient map, there is a lifting of
p to an A-homomorphism p : B → A. We say that the pair (A, I) has a G-
action, if A has a G-action and the ideal I is invariant. There is a functorial
Henselization of the pair (A, I), consisting of a ring map A → Ah such that
(Ah, IAh) is a Hensel pair and A/I ∼= Ah/IAh, see e.g., [Ray70]. If (A, I) has
G-action then G acts on (Ah, IAh) as well because (−)h is functorial.

Definition 3.10. Say that S is a semilocal Henselian affine G-scheme over k
if S = Spec(Ah), where Ah is the Henselization of a pair (A, I) where A is a
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semilocal ring with G-action which is essentially of finite type over k, and I is
the Jacobson radical. We say that S is smooth over k if A is essentially smooth
over k.

Remark 3.11. Let S be a semilocal Henselian affine G-scheme over k. Let
Z ⊆ S be the set of closed points and suppose that f : Y → S is an equivariant
étale map which admits an equivariant splitting over Z. Then f admits an
equivariant splitting. Indeed, since S is Henselian there exists a splitting s :
S → Y extending the one over Z. Then s is both an open and closed immersion.
Thus s is an isomorphism of S onto its image and determines a decomposition
Y = s(S)

∐
Y ′. Note that s(S) is invariant, otherwise gz ∈ Y ′ for some g ∈ G

and z ∈ Z but s is equivariant on Z. It follows that s(S) ⊆ Y is invariant and
so s is equivariant, being the inverse of the equivariant isomorphism f |s(S).
In particular if S is a semilocal Henselian affine G-scheme with a single closed
orbit and Y → S is an equivariant Nisnevich cover, then it can be refined by
the trivial covering.

Suppose that X is a G-scheme over k and x ∈ X has an invariant open affine
neighborhood. Then OX,Gx is a semilocal ring with G-action and Spec(OhX,Gx)
is a semilocal Henselian affine G-scheme over k with a single closed orbit. Any
semilocal Henselian affine G-scheme over k with a single orbit is equivariantly
isomorphic to Spec(OhA,Gx), for some affine G-scheme A and x ∈ A.
In general, a point x ∈ X might not be contained in any G-invariant affine
neighborhood. We can however still consider G×Gx Spec(OhX,x). Additionally,

it is always the case that Gx = G ×Gx {x} ⊆ G ×Gx X has a G-invariant
affine neighborhood. The canonical map π : G ×Gx OhX,x → O

h
X,x is étale and

G×Gx {x} → G·x is an isomorphism, so π is equivariantly split over G·x.
For x ∈ X write N(Gx) for the filtering category whose objects are pairs
(p : U → X, s) where p is étale and s : Gx→ U is a section of p over Gx, and U
is the union of its connected components which contain an element of s(Gx). A
morphism (U → X, s) to (V → X, s′) is a map f : U → V making the evident
triangles commute. Write NG(Gx) for the filtering category whose objects are
pairs (p : U → X, s) where U is an equivariantly irreducible G-scheme, p is
an equivariant étale map, and s : Gx → U is an equivariant section of p over
Gx. A morphism (U → X, s) to (V → X, s′) in NG(Gx) is a map f : U → V
making the evident triangles commute. We sometimes write N(X ;Gx) and
NG(X ;Gx) for these indexing categories if we need to be explicit about the
ambient G-scheme containing Gx.

Remark 3.12. Let U be a Gx-invariant affine neighborhood of x ∈ X . The
transition maps of NG(G×Gx U,Gx) are affine, so limV ∈NG(G×GxU,Gx) V exists

in the category of k-schemes. The map G ×Gx U → X is an equivariant étale
neighborhood of Gx. In particular the map NG(G ×Gx U,Gx) → NG(X ;Gx)
is initial and so limNG(X;Gx) V exists as well (and equals limNG(G×GxU,Gx) V ).

Documenta Mathematica 20 (2015) 269–332



Equivariant Cancellation 283

Proposition 3.13. The forgetful functor φ : NG(Gx) → N(Gx) is initial. In
particular

lim
U∈NG(Gx)

U ∼= Spec(OhG×GxX,x)
∼= G×Gx Spec(OhX,x).

If x ∈ X has a G-invariant affine neighborhood then additionally we have a

canonical G-isomorphism G×Gx Spec(OhX,x)
∼=−→ Spec(OhX,Gx).

Proof. We need to show that the comma category (φ/(p, s)) is nonempty and
connected for any (p : U → X, s) ∈ N(Gx). It suffices to check that it is
nonempy since if φ(q1, s1) → (p, s) and φ(q2, s2) → (p, s) are two arrows in
(φ/(p, s)), there is (q3 : V3 → X, s3) in NG(Gx) which maps to (q1, s1) and
(q2, s2). The two maps (q3, s3) → (p, s) obtained from composition agree on
each point of s(Gx) and induce the same map on the residue fields of these
points. Each connected component of V3 contains a point of s(Gx) and so both
maps (q3, s3)→ (p, s) are equal.
Let (p : U → X, s) ∈ N(Gx). For g ∈ G, define pg : g∗U → X to be the étale
X-scheme given by g∗U = U and pg := gp. The identity U = U can be viewed
as a map g∗U → (hg)∗U over h : X → X .
Label the elements of G by e = g0, g1, . . . gn. Define W to be the (n + 1)-fold
fiber product

W = U ×X (g1)∗U ×X · · · ×X (gn)∗U.

Write πgi :W → (gi)∗U for the projection and consider W as an X-scheme via
the composite pπe :W → U → X . Note that hpπh = pπe.
NowW has aG-action given by permuting the factors. In other words we define
h : W → W to be the map determined by the formula πgih = πh−1gi . This
determines a map since pgiπh−1gi = pgjπh−1gj . Moreover pgiπh−1gi = hpπe and
thus pπe :W → X is an equivariant étale map.
Define now s′ : Gx → W to be the map determined in the gith coordinate
by sg−1

i : Gx → (gi)∗U . This defines an equivariant section of pπe : W → X
over Gx ⊆ X . and so (W → X, s′) ∈ NG(Gx). Now πe determines a map
(W → X, s′) → (U → X, s) in N(Gx) and so (φ/(p, s)) is nonempty, which
completes the proof. �

For a G-scheme X and x ∈ X write p∗xF = F (OhG×GxX,Gx) =

colimU∈NG(Gx) F (U). This defines a fiber functor from the category of
sheaves to sets, i.e., it commutes with colimits and finite products and so
determines a point of the equivariant Nisnevich topos. Every affine semilocal
G-scheme with a single closed orbit determines such a point. By the previous
paragraphs, any such S is of the form G×Gx Spec(OhX,x) = Spec(OhG×GxX,Gx)

for an appropriate G-scheme X . We now verify that these points form a
conservative set of points.

Theorem 3.14. A map φ : F1 → F2 of sheaves of sets on GSch/k
(resp. GSm/k) is an isomorphism if and only if F1(S) → F2(S) is an iso-
morphism for all (resp. all smooth) semilocal affine G-schemes S over k with
a single closed orbit.
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Proof. Let S be a semilocal affine G-scheme over k with a single closed orbit. If
φ is an isomorphism of sheaves then it induces an isomorphism F1(S) ∼= F2(S)
as SGNis is trivial.
Suppose that φ induces isomorphisms F1(S) ∼= F2(S) for all S. We first show
that φ is a monomorphism. Suppose that φ(α) = φ(β) for some α, β ∈ F1(X).
Then [α] = [β] ∈ F1(OhG×GxX,Gx) for all x ∈ X . Thus for each x ∈ X , there is

some equivariant étale map Vx → X which admits an equivariant section over
Gx→ V and α|V = β|V . Let ηi ∈ X be generic points. Then Vηi → X has an
equivariant section over an invariant open U1 ⊆ X . Consider Vαi

corresponding
to generic points of Z1 = X − U1 and let Z2 ⊆ Z1 the complement of the set
where

∐
Vαi

has a section. Proceeding in this way we obtain a finite number
of equivariant étale maps Vxi

→ X such that V =
∐
Vxi
→ X is a Nisnevich

cover. Moreover V has the property that α|V = β|V and because F1 is a sheaf
this means that α = β in F1(X).
Now we show that φ is a surjection. Let α ∈ F2(X). For any x ∈ X there
is [β] ∈ F1(OhG×GxX,Gx) such that φ([β]) = [α] ∈ F2(OhG×GxX,Gx). Thus for

each x ∈ X there is an equivariant étale map fx : Vx → X , which admits an
equivariant section Gx → Vx, and βx ∈ F1(Vx) such that φ(βx) = α|Vx

. As in
the previous paragraph we can find a finite number of points x1, . . . , xn such
that V =

∐
Vxi
→ X is an equivariant Nisnevich cover. The elements βxi

determine the element β ∈ F1(V ) with the property that φ(β) = α|V and thus
φ is surjective as well. �

Remark 3.15. By [Her13], the points of the fixed point Nisnevich topology are
the semilocal affine G-schemes of the form G/H × Spec(OhX,x) where H ⊆ G
is a subgroup, and x is a point of a smooth scheme X equipped with trivial
action.

Since (GSm/k)GNis has enough points we can form the Godement resolution
of a presheaf.

Definition 3.16. Let F (−) be a presheaf of chain complexes of abelian groups
on GSm/k. Let

G0F (U) =
∏

u∈U

F (OhG×GuU,u).

Define GnF = G0 ◦ · · · ◦G0F to be the (n+1)-fold composition of G0. The in-
clusions and projections of the various factors give n 7→ GnF (U) a cosimplicial
structure. The Godement resolution F (−)→ GF (−) is defined by

GF (U) := TotG•F (U).

Then F → GF is a flasque resolution of F on (GSm/k)GNis. Consequently
GF (U) computes the hypercohomology with coefficients in F :

HkGF (U) = Hk
GNis(U, F ).
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3.3. Change of groups. Let H ⊆ G be a subgroup. We have an adjoint pair
of functors ǫ : HSch/k ⇄ GSch/k : ρ where ǫ(X) = G ×H X and ρ(W ) = W .
These restrict to an adjoint pair

(3.17) ǫ : HSm/k ⇄ GSm/k : ρ.

Both functors commute with fiber products and send covering families to cov-
ering families for the equivariant Nisnevich topologies. We thus have adjoint
functors

ǫ∗ : ShvHNis(HSm/k) ⇄ ShvGNis(GSm/k) : ǫ∗

and
ρ∗ : ShvGNis(GSm/k) ⇄ ShvHNis(HSm/k) : ρ∗,

where ǫ∗F (X) = F (G ×H X) and ρ∗K(W ) = K(W ), and similarly for the
categories of sheaves on GSch/k and HSch/k. Additionally we have that ρ∗ =
ǫ∗. It follows that ǫ∗ is exact and so we have the following.

Lemma 3.18. Let X be an H-scheme. Then

Hi
GNis(G×

H X,F ) = Hi
HNis(X, ǫ∗F ).

If we restrict our attention to the category GQP/k of quasiprojective schemes
of finite type over k equipped with left G-action we have an adjoint pair

λ : GQP/k ⇄ QP/k : η,

where λ(X) = X/G is the quotient by the G-action and η(W ) =W triv, where
W triv is the scheme W equipped with the trivial action. The functor η com-
mutes with fiber products and sends covering families to covering families.
By [Del09, Proposition 43] the functor λ induces a continuous map of sites
(QP/k)Nis → (GQP/k)GNis, i.e., the presheaf X 7→ F (X/G) on (GQP )GNis
is a sheaf whenever F is a sheaf on (QP/k)Nis. We thus have adjoint functors

η∗ : ShvNis(QP/k) ⇄ ShvGNis(GQP/k) : η∗

and
λ∗ : ShvGNis(GQP/k) ⇄ ShvNis(QP/k) : λ∗,

where η∗F (W ) = F (W triv) and λ∗K(X) = K(X/G). Additionally we have
that η∗ = λ∗. It follows that λ∗ is exact and so we have the following.

Lemma 3.19. Let X be a quasiprojective G-scheme. Then

Hi
GNis(X,λ∗F ) = Hi

Nis(X/G,F ).

4. Presheaves with equivariant transfers

Let GCork denote the category whose objects are smooth G-varieties and mor-
phisms are equivariant finite correspondences, that is

GCork(X,Y ) := Cork(X,Y )G.

An elementary equivariant correspondence from X to Y is a correspondence
of the form Z = Z + g1Z + · · · + gkZ, where Z ⊆ X × Y is an elementary
correspondence and gi range over a set of coset representatives for Stab(Z) =
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{g ∈ G|g(Z) = Z}. The groupGCork(X,Y ) is the free abelian group generated
by the elementary equivariant correspondences.
There is an embedding of categories GSm/k ⊆ GCork which sends an equi-
variant map f : X → Y to its graph Γf ⊆ X × Y .

Definition 4.1. A presheaf with equivariant transfers on GSm/k is an additive
presheaf F : GCoropk → Ab.

Definition 4.2. (1) An elementary equivariant A1-homotopy between
two maps in GSm/k (resp. in GCork) f0, f1 : X → Y is a map
H : X ×A

1 → Y in GSm/k (resp. in GCork) such that H |X×{i} = fi.

(2) A map f : X → Y is said to be an elementary equivariant A1-homotopy
equivalence if there is a map g : Y → X such that both fg and gf are
elementary equivariant A1-homotopic to the identity.

(3) If F is a presheaf on GSm/k or on GCork, we say that F is homotopy
invariant if the projection p : X × A

1 → X induces an isomorphism

p∗ : F (X)
∼=
−→ F (X × A1).

A simple but useful consequence of homotopy invariance is that all representa-
tions are contractible.

Proposition 4.3. Let F be homotopy invariant presheaf of abelian groups and
V a finite dimensional representation. Then p∗ : F (X × A(V ))→ F (X) is an
isomorphism.

Proof. The map A(V ) × A1 → A(V ), (v, t) 7→ tv is an equivariant homotopy
between the identity on A(V ) and A(V )→ {0} ⊆ A(V ). �

Every smooth G-scheme Y represents a presheaf with equivariant transfers
which we write as

Ztr,G(Y )(−) = GCork(−, Y ).

Note that this is in fact a sheaf in the equivariant Nisnevich topology. If Y is
quasi-projective, the nth symmetric power Symn(Y ) = Y ×n/Σn of Y exists as
a scheme. We write Sym(Y ) =

∐
n Sym

n(Y ). When X is normal, the map

Cork(X,Y ) −→ HomSch/k(X, Sym(Y ))+

becomes an isomorphism after inverting the exponential characteristic, see e.g.,
[SV96, Theorem 6.8] or [BV08, Proposition 2.1.3]. Here (−)+ denotes the group
completion of the displayed monoid and the monoid structure comes from the
one on Sym(Y ).

Example 4.4. The sheaf (O∗)G of invariant invertible functions is a presheaf
with equivariant transfers which can be seen using Lemma 6.13. Alternatively
one may describe the transfer structure as follows. The sheaf O∗ is repre-
sented by the group scheme Gm. We have an induced monoid morphism
ρ : Sym(Gm) → Gm. Let W : X → Sym(Y ) be an effective finite corre-
spondence. Define W∗ : Gm(Y ) → Gm(X) by W∗(φ) = ρSym(φ)W . It is
immediate from this definition that W∗(φ) is equivariant whenever W and φ
are equivariant.
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Lemma 4.5. Let H ⊆ G be a subgroup. There is an adjunction

(4.6) ǫ : H Cork ⇄ GCork : ρ

where ǫ(X) = G×H X and ρ(W ) =W .

Proof. We need to show that if X is a smooth H-scheme and W is a smooth
G-scheme then H Cork(X,W ) ∼= GCork(G ×H X,W ). We have an H-
equivariant map i : X → G ×H X , induced by x 7→ (e, x). This gives
i∗ : GCork(G ×

H X,W ) → H Cork(X,W ). It is straightforward to check
that this is an isomorphism. �

Definition 4.7. A presheaf F with equivariant transfers is said to be an equi-
variant Nisnevich sheaf with transfers provided that the restriction of F to
GSm/k is a sheaf in the equivariant Nisnevich topology.

We finish this section with a discussion of the relation between transfers and
sheafification.

Theorem 4.8. Let X be a smooth G-scheme and p : Y → X an equivariant
Nisnevich cover. Then

· · ·
p0−p1+p2
−−−−−−→ Ztr,G(Y ×X Y )

p0−p1
−−−−→ Ztr,G(Y )

p
−→ Ztr,G(X)→ 0

is exact as a complex of equivariant Nisnevich sheaves.

Proof. The argument is similar to the nonequivariant argument [MVW06,
Proposition 6.12]. It suffices to check that the complex

(4.9) · · · → Ztr,G(Y ×X Y )(S)→ Ztr,G(Y )(S)→ Ztr,G(X)(S)→ 0

is exact for every semilocal Henselian affine G-scheme S with a single closed
orbit. Let Z ⊆ X × S be an invariant closed subscheme which is quasi-finite
over S. Define L(Z/S) to be the free abelian group generated by the irre-
ducible components of Z which are finite and surjective over S. The assignment
Z 7→ L(Z/S)G is covariantly functorial for equivariant maps of quasi-finite G-
schemes over S. The sequence (4.9) is a filtered colimit of sequences of the
form

(4.10) · · · → L(ZY ×Z ZY /S)
G → L(ZY /S)

G → L(Z/S)G → 0

where the colimit is taken over all invariant closed subschemes Z ⊆ X × S
which are finite and surjective over S. It therefore suffices to show that (4.10)
is exact. Since S is a semilocal Henselian affine G-scheme over k with a single
closed orbit and Z is finite over S it is also Hensel semilocal. The equivariant
Nisnevich covering ZY → Z therefore splits equivariantly (see Remark 3.11).
Let s1 : Z → ZY be a splitting. Set (ZY )

k
Z := ZY ×Z · · · ×Z ZY and let

sk : L((ZY )
k
Z/S)

G → L((ZY )
k+1
Z )G be the map induced by s1×Z id(ZY )k

Z
. This

is a contracting homotopy, which completes the proof. �

The previous statement fails when we replace the equivariant Nisnevich topol-
ogy with the fixed point Nisnevich topology. (The following is also an example

Documenta Mathematica 20 (2015) 269–332



288 J. Heller, M. Voineagu, P. A. Østvær

of a fixed point Nisnevich covering for which equivariant K-theory does not
satisfy descent).

Example 4.11. Consider the Z/2-schemes X = Spec(C) over Spec(R) with
conjugation action and Xtriv the scheme X with trivial action. Let Y =
Z/2×Xtriv. The action map Y → X is then a fixed point Nisnevich cover. In
[Her13] it is shown that the points of the fixed point Nisnevich topology are of
the form G/H ×OhWH ,w. In particular, if

· · · → Ztr,G(Y ×X Y )→ Ztr,G(Y )→ Ztr,G(X)→ 0

were to be exact in the fixed point Nisnevich topology, then its restriction to
Sm/R would be exact in the Nisnevich topology. But its restriction to Sm/R
is

· · · → Ztr(C×R C)→ Ztr(C)→ Ztr(R)→ 0,

which is not exact in the Nisnevich topology. Indeed if it were exact then apply-
ing Z/2(n), the complex computing weight n motivic cohomology with mod-2
coefficients, would imply a quasi-isomorphism Z/2(n)(R) = Z/2(n)(C)hZ/2 and
then we would have

Hi
M(R,Z/2(n)) = Hi

Z/2(n)(R) = Hi
Z/2(n)(C)hZ/2 = Hi

et(R,Z/2)

for all i ≥ 0, which is not true.

Lemma 4.12. Let p : U → Y be an equivariant Nisnevich cover and f : X → Y
an equivariant finite correspondence. Then there is an equivariant Nisnevich
covering p′ : V → X and an equivariant finite correspondence f ′ : V → U
which fit into the following commutative square in GCork,

V

p′

��

f ′

// U

p

��
X

f // Y.

Proof. We may assume that f is an equivariant elementary correspondence.
Write Z = Supp(f) and consider the pullback Z ′ = Z ×Y U ⊆ X × U . Then
Z ′ → Z is an equivariant Nisnevich cover and π : Z → X is finite. We can find
an equivariant Nisnevich cover V → X such that V ×X Z ′ → V ×X Z has a
section.
Let s be such a section. Then s(V ×X Z) ⊆ V × U is finite and equivariant
over V and its associated equivariant correspondence defines the required f ′ :
V → U . �

Theorem 4.13. Let F be a presheaf with equivariant transfers on GSm/k.
Then FGNis has a unique structure of a presheaf with equivariant transfers
such that F → FGNis is a morphism of presheaves with equivariant transfers.

Proof. The proof is parallel to the proof of [MVW06, Theorem 6.17]. We begin
with uniqueness. Let F1 and F2 be two presheaves with transfers with a map
of presheaves with equivariant transfers F → Fi whose underlying map of
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presheaves is the canonical map F → FGNis. Let f : X → Y be a map in
GCork and y ∈ F1(Y ) = F2(Y ) = FGNis(Y ). Choose an equivariant Nisnevich
covering U → Y such that y|U is in the image of u ∈ F (U). Applying Lemma
4.12 we have a commutative square in GCork

V

p′

��

f ′

// U

p

��
X

f // Y

where p′ : V → X is an equivariant Nisnevich cover. It is straightforward
to verify, using this square, that F1(f)(y) = F2(f)(y) and so F1 = F2 as
presheaves with equivariant transfers.
For existence, we first define a map FGNis(Y ) → HomSh(Ztr,G(Y ), FGNis),
natural for maps in GCork and such that the following square commutes

F (Y ) //

��

HomPre(GCork)(Ztr,G(Y ), F )

��
FGNis(Y ) // HomShv(GCork)(Ztr,G(Y ), FGNis).

Given y ∈ FGNis(Y ) there is an equivariant Nisnevich cover U → Y such
that y|U is the image of u ∈ F (U). The element u determines a morphism
Ztr,G(U) → F of presheaves with equivariant transfers. By shrinking U we
may assume that u restricts to the zero map Ztr,G(U ×Y U) → F under the
difference map (p1)∗− (p2)∗ : Ztr,G(U ×Y U)→ Ztr,G(U). This in turn implies
that the induced morphism of sheaves Ztr,G(U)→ FGNis also restricts to zero
under the difference map.
Now Theorem 4.8 implies that that u determines a map [y] : Ztr,G(Y )→ FGNis
and it is straightforward to verify that this is independent of the choice of U
and u. We now define GCork(X,Y ) ⊗ FGNis(Y )→ FGNis(X) as follows. Let
f : X → Y be a finite equivariant correspondence and y ∈ FGNis(Y ). Consider
the composition [y]f : Ztr,G(X)→ Ztr,G(Y )→ FGNis and define the pairing by
sending (f, y) to the image of the identity in Ztr,G(X)(X) in FGNis(X) under
[y]f . �

A presheaf F with equivariant transfers is said to be an equivariant Nisnevich
sheaf with equivariant transfers if the restriction of F to GSm/k is a sheaf in
the equivariant Nisnevich topology. We write Shv(GCork) for the category of
sheaves with equivariant transfers in the equivariant Nisnevich topology.

Corollary 4.14. The category Shv(GCork) is an abelian category with enough
injectives and the inclusion i : Shv(GCork) → Pre(GCork) has a left adjoint
aGNis which is exact and commutes with the forgetful functor to (pre)sheaves
on GSm/k.

Theorem 4.15. Let F be an equivariant Nisnevich sheaf with transfers. Then
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(1) the cohomology presheaves Hn
GNis(−, F ) are presheaves with equivari-

ant transfers,
(2) for any smooth X, F (X) = HomShv(GCork)(Ztr(X), F ), and
(3) for any smooth X,

ExtnShv(GCork)(Ztr,G(X), F ) = Hn
GNis(X,F ).

Proof. Suppose that F is an equivariant Nisnevich sheaf with transfers. Then
the Godement resolution F → GF in Definition 3.16 is a resolution of sheaves
with equivariant transfers by the same reasoning as in [MVW06, Example
6.20]. This implies the first statement. The second statement follows from
the previous corollary together with the Yoneda lemma. For the third item,
note that if F is an injective equivariant Nisnevich sheaf with transfers then
F → G0F is split and so Hn

GNis(X,F ) is a summand of Hn
GNis(X,G

0F ) = 0.
It follows that Hn

GNis(X,F ) = 0 whenever F is an injective and the result
follows. �

5. Bredon motivic cohomology

The rest of the paper is devoted to developing the machinery for presheaves
with equivariant transfers, the proofs of the homotopy invariance theorem, and
equivariant cancellation. Before delving into this rather technical material, we
pause to illustrate the utility of the theory and discuss our main application,
Bredon motivic cohomology. In this section we introduce Bredon motivic coho-
mology, explain how Mackey functors naturally appear in this setting, and give
some examples. In the process we will use material from Sections 6-8 (but not
from Section 9). This is mainly through the use of the homotopy invariance
theorem, Theorem 8.12, which we restate below. Except for the statement
of Condition 5.1, the material from this section is not used or referred to in
Sections 6-8. Some of the material from this section is used in Section 9.
We will often require that G satisfies the following condition.

Condition 5.1. All irreducible k[G]-modules are one dimensional.

Theorem 8.12 (Homotopy Invariance). Assume that Condition 5.1 holds.
Let F be a homotopy invariant presheaf with equivariant transfers on GSm/k.
Then Hn

GNis(−, FGNis) is also a homotopy invariant presheaf with equivariant
transfers.

Groups satisfying Condition 5.1 are necessarily abelian. Indeed, in this case
the regular representation is a sum of one-dimensional representations, each of
which corresponds to a character G → k∗. Therefore, if G satisfies Condition
5.1 we obtain an injective group homomorphism G →֒ k∗ × · · · × k∗ into an
abelian group and so G itself is abelian. The converse does not hold, for
example over the field R, the group Z/3 has an irreducible two dimensional
representation. However, note that if G satisfies Condition 5.1 over k then it
also does so over every field extension of k as do all of its subgroups.
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Lemma 5.2. Let G be a finite abelian group and suppose that k contains a
primitive nth-root of unity where n is the exponent of G (i.e., the least common
multiple of the orders its elements). Then Condition 5.1 is satisfied.

Proof. For an abelian group G, Condition 5.1 is equivalent to the condition
that k is a splitting field for G (i.e.,if W is a simple k[G]-module then WL is a
simple L[G]-module for any field extension L/k). The lemma is thus a special
case of a theorem of Brauer [CR62, Theorem 41.1,Corollary 70.24]. �

5.1. Definition and first properties. If F is a presheaf of abelian groups
on GSm/k, write CnF (X) = F (X ×∆n

k ), where ∆n
k is the standard algebraic

simplex. This gives a presheaf of simplicial abelian groups n 7→ CnF (X) and
thus yields an associated chain complex C∗F . We write C∗F for the associated
cochain complex, C−kF = CkF . If A is a cochain complex then the shifted
complex A[n] is the complex A[n]i = Ai+n.

Definition 5.3. (1) Let V be a finite dimensional representation. Define
ZG(V ) to be the complex of presheaves with equivariant transfers given
by

ZG(V ) := C∗ (Ztr,G(P(V ⊕ 1))/Ztr,G(P(V ))) [−2 dim(V )].

(2) When V = k[G]⊕n we adopt the notation

ZG(n) = ZG(k[G]
⊕n)

By virtue of their definition, the complexes ZG(V ) are acyclic in degrees larger
than 2 dim(V ). In particular ZG(n) is acyclic in degrees larger than 2n|G|.

Definition 5.4. Let X be a smooth G-variety. Define the Bredon motivic
cohomology of X to be

Hn
G(X,Z(m)) = Hn

GNis(X,ZG(m)).

More generally we write

Hn
G(X,Z(V )) = Hn

GNis(X,ZG(V )).

Remark 5.5. By Corollary 3.9 all objects of GSm/k have finite equivariant
Nisnevich cohomological dimension. This implies that the displayed hypercoho-
mology groups (whose coefficients are unbounded complexes) are well defined,
see [Wei94, Corollary 10.5.11].

Lemma 5.6. (1) If F is a presheaf and f0, f1 : X → Y are elementary
equivariant A1-homotopic then the maps f∗

0 , f
∗
1 : C∗F (Y ) → C∗F (X)

are chain homotopic.
(2) The cohomology presheaves X 7→ HiC∗F (X) are homotopy invariant.
(3) If f : X → Y is an elementary A1-homotopy equivalence then the

induced map of complexes f∗ : C∗Ztr,G(X) → C∗Ztr,G(Y ) is a chain
homotopy equivalence.

Proof. The proofs of all these statements are exactly as in the nonequivariant
setting. See e.g., [MVW06, Lecture 2]. �

Documenta Mathematica 20 (2015) 269–332



292 J. Heller, M. Voineagu, P. A. Østvær

Proposition 5.7. (1) Let U
∐
Y → X be an equivariant distinguished

cover. There is a Mayer-Vietoris long exact sequence

· · · → Hn
G(X,Z(m))→Hn

G(U,Z(m))⊕Hn
G(Y,Z(m))→ Hn

G(U ×X Y,Z(m))

→Hn+1
G (X,Z(m))→ · · ·

(and similarly for coefficients in ZG(V )).
(2) If G satisfies Condition 5.1 then

Hn
G(X × A

1,Z(m)) ∼= Hn
G(X,Z(m))

(and similarly for coefficients in ZG(V )).

Proof. The first statement follows immediately from the fact that the Bre-
don motivic cohomology is defined as hypercohomology in the equivariant Nis-
nevich topology. The cohomology presheaves of Z(m) are homotopy invariant
presheaves with transfers and so the second item follows from Theorem 8.12
together with the standard hypercohomology spectral sequence. �

Theorem 5.8. Suppose that G satisfies Condition 5.1 and F is a homotopy
invariant presheaf with equivariant transfers. If FGNis = 0 then (C∗F )GNis ≃
0.

Proof. Using Theorem 8.12, the argument is the same as in [MVW06, Theorem
13.12]. �

Proposition 5.9. Suppose that G satisfies Condition 5.1. Let V be a finite
dimensional representation. There is a quasi-isomorphism

C∗

(
Ztr,G(A(V ))/Ztr,G(A(V )− 0)

) ≃
−→ C∗

(
Ztr,G(P(V ⊕ 1)/Ztr,G(P(V ))

)

of complexes of equivariant Nisnevich sheaves.

Proof. It follows from Example 3.3 that the map

Ztr,G(A(V ))/Ztr,G(A(V )− 0)→ Ztr,G(P(V ⊕ 1)/Ztr,G(P(V ⊕ 1)− P(1))

becomes an isomorphism after equivariant Nisnevich sheafification. The in-
clusion P(V ⊕ 1) − P(1) ⊆ P(V ⊕ 1) is equivariantly A1-homotopic to the
inclusion P(V ) ⊆ P(V ⊕ 1), the requisite deformation being given by ([x0 : · · · :
xn+1], t) 7→ [x0 : · · · : xn : txn+1].
The result now follows from an application of Theorem 5.8 and Lemma 5.6. �

Corollary 5.10. Under the assumptions above, there is a quasi-isomorphism

cone
(
C∗Ztr,G(A(V )− 0)→ Z

)
≃ C∗

(
Ztr,G(P(V ⊕ 1)/Ztr,G(P(V ))

)
.

Proof. The map A(V ) → Spec(k) is an equivariant A1-homotopy equivalence.
The result thus follows from the previous proposition together with Theorem
5.8 and Lemma 5.6. �
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5.2. Coefficient systems. Let OG denote the category of finite left G-sets
together with equivariant maps. A Bredon coefficient system is an additive
functor M : OopG → Ab. In algebraic topology, Bredon’s original construction
[Bre67] allowed the coefficients to be an arbitrary Bredon coefficient system and
was only integer graded. Later it was shown by Lewis-May-McClure [LMM81]
that this theory is representable in the stable equivariant homotopy category
(and hence has a grading by representations) exactly when the coefficient sys-
tem is a Mackey functor. There are multiple descriptions of a Mackey functor.
One definition is as follows. The Burnside category BG of G, has the same
objects as OG and HomBG

(A,B) is the group of maps between A+ and B+

in the stable equivariant homotopy category. Concretely it is the group com-
pletion of the monoid of isomorphism classes of diagrams of equivariant maps
of finite G-sets of the form A ← X → B (the monoid structure is given by
disjoint union). The composition of A ← X → B and B ← X ′ → C is
given by A ← X ×B X ′ → C. A Mackey functor is then defined to be an
additive functor M : BopG → Ab. A related construction is the Hecke cat-
egory HG which has the same objects as OG and morphisms are given by
HomHG

(S, T ) = HomZ[G](Z[S],Z[T ]). A cohomological Mackey functor (also
called a Hecke functor) is an additive functor M : HopG → Ab. There is a

Hurewicz functor H : BG → HG given by sending the map S
f
←− X

g
−→ T to the

map Z[S] → Z[T ] given by s 7→
∑
x∈f−1(s) g(x). Via the Hurewicz functor, a

cohomological Mackey functor is viewed as a Mackey functor. By a theorem
of Yoshida [Yos83], the cohomological Mackey functors are exactly the Mackey
functors with the property that for a subgroup K ⊆ H , the composition f∗f

∗

is multiplication by [H : K], where f : (G/K)+ → (G/H)+.
A key reason that Mackey functors play a central role in defining equivariant
generalizations of singular cohomology in algebraic topology is that Mackey
functors are the heart of a t-structure on the stable equivariant homotopy cat-
egory. A corresponding theory of motivic Mackey functors is not yet developed
and is beyond the scope of this paper. Nonetheless we view our construc-
tion as having coefficients in the “constant motivic Mackey functor Z”. This
is justified by analogy with a topological construction for Bredon cohomology
with coefficients in the constant Mackey functor Z, arising from the equivariant
Dold-Thom theorem [dS03]. Additionally, over C, the topological realization
functor takes the theory we have constructed to the usual topological Bredon
cohomology with coefficients in Z. The classical cohomological Mackey func-
tors fit into our setting as follows. We have an embedding OG ⊆ GSm/k given
by S 7→

∐
S Spec(k). The composition OG ⊆ GSm/k ⊆ GCork factors through

a faithful embedding HG ⊆ GCork. We thus have an embedding of the cat-
egory of cohomological Mackey functors into the category of presheaves with
equivariant transfers. The category of (pre)sheaves with transfers has a tensor
structure and by tensoring the complexes ZG(n) with a cohomological Mackey
functor M , we obtain Bredon motivic cohomology theory with coefficients in
M .
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Example 5.11. In Section 9 we use certain complexes of presheaves with equi-
variant transfers that are associated to topological representation spheres for
G = (Z/2)n.

(1) For simplicity, we first consider G = Z/2. The topological sign repre-
sentation sphere Sσ is the one-point compactification of the sign repre-
sentation σ. It fits into a homotopy cofiber sequence (Z/2)+ → S0 →
Sσ of based G-spaces. We define Ztop(σ) by

Ztop(σ) := cone(Ztr,G(Z/2)→ Z).

(2) Now consider G = (Z/2)n. Write ǫi for the generator of the ith factor
of Z/2 in G. For a subset I ⊆ {1, . . . n} write σI for the (Z/2)n-
representation specified by letting ǫi act by −1 on k if i ∈ I and by
the identity otherwise. We define Ztop(σ) as follows. Write ZI for Z/2
considered as a (Z/2)n-scheme with action specified by letting ǫi act
nontrivially if i ∈ I and as the identity otherwise. We set

Ztop(σI) := cone(Ztr,G(ZI)→ Z).

When G = Z/2, we write simply Ztop(σ) = Ztop(σ{1}) (which agrees
with the previous definition).

As in [MVW06, Section 8], there is a tensor product ⊗tr on D−(GCork) which
is induced by Ztr,G(X)⊗trZtr,G(Y ) = Ztr(X×Y ). The following will be useful
in Section 9.

Lemma 5.12. The complex Ztop(σI) is invertible in (D−(GCork),⊗tr).

Proof. Write qi : ZI × ZI → ZI for the projection to the ith factor and write
p : ZI → ∗ for the projection to a point. The complex Ztop(σI) is the complex

0 → Ztr,G(ZI)
p
−→ Z → 0 (with Z = Ztr,G(∗) in degree zero). We claim that

the inverse Ztop(−σI) is given by 0 → Z
pt

−→ Ztr,G(ZI) → 0 (again with Z in
degree zero, and (−)t denotes the transpose). The tensor product Ztop(σI)⊗L

tr

Ztop(−σI) is the complex

0→ Ztr,G(ZI)
(p,−qt1)−−−−−→ Z⊕ Ztr,G(ZI ×ZI)

pt⊕q2
−−−−→ Ztr,G(ZI)→ 0.

Write E∗ for this complex. We have a chain homotopy s : E∗ → E∗+1 between
the identity on E∗ and the composite E∗ → Z→ E∗ (where Z is concentrated
in degree zero) given by s0 = −∆, s−1 = ∆ and si = 0 for i 6= 0,−1, where
∆ : ZI → ZI ×ZI is the diagonal. �

5.3. Examples. We record a few simple examples. The first one is straight-
forward.

Lemma 5.13. Suppose that G satisfies Condition 5.1. Then there is a quasi-
isomorphism ZG(0) ≃ Z of complexes of equivariant Nisnevich sheaves, where
Z is the complex consisting of the constant sheaf Z in degree zero.
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Proposition 5.14. Let V be a one dimensional representation. Then we have
an isomorphism

C∗Ztr,G(A(V )− 0) ≃ (O∗)G ⊕ Z,

in the derived category of equivariant Nisnevich sheaves on GSm/k, where
(O∗)G is the sheaf of invariant invertible functions viewed as a complex con-
centrated in degree zero.

Remark 5.15. This is not a decomposition of complexes of sheaves with equi-
variant transfers except in the case when V is the trivial representation.

Proof. The homology of C∗Ztr,G(A(V ) − 0)(X) is identified with equivariant
Suslin homology defined in §6, i.e.,

Hi(C∗Ztr,G(A(V )− 0)(X)) = HSus
i (G;X × (A(V )− 0)/X).

By Theorem 6.12 we thus have

Hi(C∗Ztr,G(A(V )− 0)(X)) =

{
DivGrat(X × P(V ⊕ 1), X × {0,∞}) i = 0

0 i 6= 0.

Write K for the kernel of the action of G on X × P(V ⊕ 1). Then G/K acts
faithfully on X × P(V ⊕ 1),

DivGrat(X × P(V ⊕ 1), X × {0,∞}) = Div
G/K
rat (X × P(V ⊕ 1), X × {0,∞}),

and by Proposition 6.8,

Div
G/K
rat (X × P(V ⊕ 1), X × {0,∞}) = PicG/K(X × P(V ⊕ 1), X × {0,∞}).

Using the exact sequence (6.6) for the relative equivariant Picard group and

that for X smooth PicG(X × P(V ⊕ 1)) = PicG(X)× Z, we have

PicG/K(X × P(V ⊕ 1), X × {0,∞}) = O∗(X)G/K ⊕ Z = O∗(X)G ⊕ Z,

from which the result follows. �

Proposition 5.16. Let X be a smooth, quasi-projective G-scheme. Then

Hi
GNis(X, (O

∗
X)G) =

{
Γ(X,O∗)G i = 0

Pic(X/G) i = 1

Proof. Since (O∗
X)G) is the sheaf on XGNis given by U 7→ O∗

U/G, the proposi-

tion follows from Lemma 3.19. �

Corollary 5.17. Suppose that G satisfies Condition 5.1 and V is a one di-
mensional representation. Then ZG(V ) ≃ (O∗)G[−1]. In particular if X is a
smooth, quasi-projective G-scheme then

Hi
G(X,Z(V )) =

{
Γ(X,O∗)G i = 1

Pic(X/G) i = 2

Proof. By Proposition 5.14 and Corollary 5.10 we have that ZG(V ) ≃
(O∗)G[−1]. The second statement follows immediately from the previous
proposition. �
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For one dimensional representations V , V ′, the chain complexes ZG(V ) and
ZG(V

′) are quasi-isomorphic as complexes of sheaves in the equivariant Nis-
nevich topology. The following example makes explicit that for higher di-
mensional representations, distinct representations give rise to distinct chain
complexes. For a representation V , we write Ztr,G(T

V ) := Ztr,G(P(V ⊕
1))/Ztr,G(P(V )).

Example 5.18. Let p be a prime and G = Z/p and k a field which admits
resolution of singularities. For any representation V , we have that

Hi
G(k,Z(V )) = Hi−2pn(C∗Ztr,G(T

V )(k)) = Hi−2pn(zequi(A(V ), 0)(∆•
k)
G),

where zequi(X, 0) is the presheaf of equidimensional cycles of relative dimension
zero. We compare the complexes ZG(V )[2 dim(V )] = C∗Ztr,G(T

V ) for V =

nk[G] and 1np. We have thatHi(C∗Ztr,G(1
np)(k)) = Hi+2np

M (k,Z(np)). On the

other hand, C∗zequi(A(nk[G]), 0)
G = ⊕np−1

j=n Z/p(j)[2j]⊕Z(np)[2np] in DM(k)

by [Nie08, Theorem 5.4]. Therefore we have that

HiC∗Ztr,G(1
np)(k) = Hi+2np

M (k,Z(np)).

while

HiC∗Ztr,G(T
nk[G])(k) = Hi+2np

M (k,Z(np))⊕ (⊕np−1
j=n Hi+2j

M (k,Z/p(j))).

We see that C∗Ztr,G(1
np) and C∗Ztr,G(T

nk[G]) are not quasi-isomorphic in gen-

eral because there are values of i so that the group ⊕np−1
j=n Hi+2j

M (k,Z/p(j)) is

nonzero (e.g.,H0
M(k,Z/p(n)) = Z/p and so the above group is nonzero when-

ever i+ 2j = 0).

We finish this section by relating our construction to Edidin-Graham’s equivari-
ant higher Chow groups [EG98]. Recall that these are constructed as follows.
Consider a pair (V, U) where V is a faithful representation and U ⊆ A(V )
is an open subscheme on which G acts freely. Then U/G exists as a scheme
and it is an algebro-geometric approximation to BG. Such pairs always exist,
moreover one can arrange that dimV and codimA(V )(A(V )−U) are arbitrarily
large. The equivariant higher Chow group of a quasi-projective G-scheme X
in bidegree (n,m) is defined to be CHn

G(X,m) = CHn(X ×G U,m) for a pair
(V, U) with A(V )−U of sufficiently large codimension. We refer to loc. cit. for
full details.

Theorem 5.19. Let X be a smooth quasi-projective G-scheme. There is a
natural map

Hi
G(X,Z(1

q))→ CHq
G(X, 2q − i).

Proof. We have a natural isomorphism Hn
M(X,Z(q)) ∼= CHk(X, 2q − n). The

complex Z(q) on Sm/k is C∗(Ztr(P
q)/Ztr(P

q−1))[−2n]. If Y has trivial action
then GCork(X,Y ) = Cork(X/G, Y ) for a G-scheme X . Therefore we have
the natural identification ZG(1

q)(X) = Z(q)(X/G). Using this identification,
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Lemma 3.19, and the projection X×U → X we thus have the comparison map

Hi
G(X,Z(1

q))→ Hi
G(X × U,Z(1

q)))

= Hi
M(X ×G U,Z(q)) = CHk(X ×G U, 2q − i).

Taking (V, U) such that A(V )−U has sufficiently large codimension yields the
result.

�

Remark 5.20. The map of the previous theorem can be seen to be an isomor-
phism when X has free action. It is not an isomorphism in general. For exam-
ple, if X has trivial action then Hi

G(X,Z(1
q)) is isomorphic to ordinary motivic

cohomology groups, which in turn is isomorphic to Bloch’s higher Chow groups.
Under these isomorphisms, the comparison map just constructed is identified in
this case with the comparison map CHq(X, 2q− i)→ CHq

G(X, 2q− i) between
ordinary higher Chow groups and equivariant higher Chow groups, which is
not an isomorphism.

6. Relative equivariant Cartier divisors

In this section we introduce an equivariant version of Suslin homology and
relate it to the group of relative equivariant Cartier divisors.
Let f : X → S be smooth. Recall that C0(X/S) denotes the group of cycles
on X which are finite and surjective over a component of S. If f : X → S
is equivariant then we have an equivariant inclusion C0(X/S) ⊆ Cork(S,X),
induced by 〈f, idX〉 : X →֒ S ×X . Let F : GCoropk → Ab be a presheaf with
equivariant transfers. Define the pairing

(6.1) Tr : C0(X/S)
G ⊗ F (X)→ F (S)

to be the composite

C0(X/S)
G ⊗ F (X)

Tr //
� _

��

F (S)

GCork(S,X)⊗ F (X).

evaluate

66♠♠♠♠♠♠♠♠♠♠♠♠♠

Define
Cn(X/S) = C0(X ×∆n/S ×∆n).

The assignment n 7→ Cn(X/S)
G is a simplicial abelian group and hence gives

rise to an associated chain complex.

Definition 6.2. The nth equivariant Suslin homology of X/S is defined to be

HSus
n (G;X/S) = HnC•(X/S)

G.

Lemma 6.3. Let F be a homotopy invariant presheaf with equivariant transfers.
The map (6.1) factors through the zeroth Suslin homology group to yield the
pairing

Tr : HSus
0 (G;X/S)⊗ F (X)→ F (S).
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Proof. Because F (X × A1) = F (X) we have the commutative diagram

C0(X × A1/S × A1)G ⊗ F (X)
Tr //

∂0−∂1
��

F (S × A1)

i0−i1

��
C0(X/S)

G ⊗ F (X)
Tr // F (S),

which implies the lemma. �

Our next goal is to compute the equivariant Suslin homology of equivariant
relative curves. Recall that an equivariant Cartier divisor on X is an element
of Γ(X,K∗

X/O
∗
X)G, see Section 2.3 for a recollection.

Definition 6.4. (1) Let X be a G-scheme and Y ⊆ X an invariant
closed subscheme. A relative equivariant Cartier divisor on X is
an equivariant Cartier divisor on X (see Definition 2.10) such that

Supp(D)∩Y = ∅. Write DivG(X,Y ) for the group of relative equivari-
ant Cartier divisors, where the group operation is induced by that on
DivG(X).

(2) A principal relative equivariant Cartier divisor is an invariant rational
function f ∈ Γ(X,K∗)G on X such that f is defined and equal to 1 on
Y .

(3) Write DivGrat(X,Y ) for the group of relative equivariant Cartier divisors
modulo the principal relative equivariant Cartier divisors.

Let i : Y →֒ X be an equivariant closed embedding of G-schemes. Define an
étale sheaf on X by

GX,Y = ker(O∗
X → i∗O

∗
Y ).

Since O∗
X and O∗

Y are étale G-sheaves, so is GX,Y . See Section 2.2 for a
recollection on G-sheaves and their cohomology.

Definition 6.5. Define the relative equivariant Picard group by

PicG(X,Y ) = H1
et(G;X,GX,Y ).

From the definition of GX,Y we have a natural exact sequence

(6.6) Γ(X,O∗
X)G → Γ(Y,O∗

Y )
G → PicG(X,Y )→ PicG(X)→ PicG(Y ).

Theorem 2.7 and the above exact sequence imply that PicG(X,Y ) =
H1
Zar(G;X,GX,Y ). The following lemma is straightforward to verify.

Lemma 6.7. The group PicG(X,Y ) is isomorphic to the group consisting of
isomorphism classes of pairs (L, φ) where L is a G-line bundle on X and φ is
an equivariant isomorphism φ : L|Y ∼= OY of G-line bundles on Y and group
operation induced by tensor product of G-line bundles.

Proposition 6.8. There is a natural injection ι : DivGrat(X,Y ) →֒ PicG(X,Y ).
If in addition X has faithful action and Y has an invariant affine open neigh-
borhood, then ι is an isomorphism.
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Proof. Let D ∈ DivG(X,Y ). Since Y ∩ Supp(D) = ∅, there is a canonical
equivariant trivialization sD : OX(D)|Y ∼= OY . In particular we have a natural

homomorphism DivG(X,Y ) → PicG(X,Y ). If (OX(D), sD) = (OX , id) then
there is an equivariant isomorphism ψ : OX ∼= OX(D) such that ψ|Y = (sD)

−1.
We have an induced isomorphism ψ : Γ(X,OX)G ∼= Γ(X,OX(D))G and letting
f = ψ(1) ∈ Γ(X,OX(D))G ⊆ Γ(X,KX)G we have that D = div(f−1) and
D|Y = 1 which implies that ι is injective.
The image of ι consists of pairs (L, φ) such that L admits an equivariant in-
jection into KX and φ extends to an equivariant trivialization on an invariant
open neighborhood of Y . When the action on X is faithful, every G-line bundle
on X admits an equivariant injection into KX by Proposition 2.12. When Y
has an invariant open affine neighborhood, every equivariant trivialization φ
extends to an invariant open neighborhood of Y . �

Lemma 6.9. If X is normal and Y is reduced then

PicG(X × A
1, Y × A

1) ∼= PicG(X,Y ).

If additionally, Y has an invariant affine open neighborhood then

DivGrat(X × A
1, Y × A

1) ∼= DivGrat(X,Y ).

Proof. The first statement follows from the exact sequence (6.6), Lemma 2.9,
and the five lemma. For the second statement, observe that if K = ker(G →

Aut(X)), then G/K acts faithfully on X and DivGrat(X,Y ) = Div
G/K
rat (X,Y ).

The result then follows from the first part together with Proposition 6.8. �

Definition 6.10. Let X → S be a smooth relative curve in GSm/k (i.e.,an
equivariant smooth map of relative dimension one). An equivariant good com-
pactification of X over S is an equivariant open embedding X ⊆ X of G-
schemes over S where X → S is a proper normal (not necessarily smooth)
curve with G-action and X∞ = (X −X)red has an invariant open affine neigh-
borhood in X.

If X → S is an equivariant smooth relative curve with equivariant good com-
pactification then we have an isomorphism cyc : Div(X,X∞) ∼= C0(X/S).
Indeed, if D ∈ Div(X,X∞) then cyc(D) is supported on X and the assump-
tions above guarantee that it is finite and surjective over a component of S.
It is straightforward to check this is an equivariant isomorphism (see Lemma
2.11) and so we immediately conclude the following.

Lemma 6.11. Let X → S be an equivariant smooth curve with good equivariant
compactification X → S. Then cyc induces a natural isomorphism

cyc : DivG(X,X∞)
∼=
−→ C0(X/S)

G.

With these definitions, Suslin-Voevodsky’s fundamental computation of the
Suslin homology of relative curves extends to the equivariant setting.
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Theorem 6.12. Let p : X → S be an equivariant smooth quasi-affine curve
with equivariant good compactification X → S. Then

HSus
n (G;X/S) ∼=

{
DivGrat(X,X∞) n = 0

0 n > 0.

Proof. The argument is similar to [SV96, Theorem 3.1]. Define

Mn(X/S) = {f ∈ Γ(X ×∆n,K∗) | f is defined and equal to 1 on S ×∆n}.

As shown in [SV96, proof of Theorem 3.1], the natural map Mn(X/S) →
Cn(X/S) is an injection. We thus have an exact sequence of complexes

0→M•(X/S)
G → C•(X/S)

G → DivGrat(X ×∆•, Y ×∆•)→ 0.

By Lemma 6.9 the result follows once we show thatM•(X/S)
G is acyclic. We

work with the normalized chain complex. Let f ∈Mn(X/S)
G and suppose that

∂i(f) = 1 for i = 0, . . . , n. We need to show that there is g ∈ Mn+1(X/S)
G

such that ∂i(g) = 1 for i = 0, . . . , n and ∂n+1(g) = f . Following [SV96,
Theorem 3.1], we consider

gi = (ti+1 + · · ·+ tn+1) + (t0 + · · ·+ ti)si(f).

Since f is equivariant it follows that gi is equivariant. The function

g = gng
−1
n−1 · · · g

(−1)n

0

is then equivariant and by loc. cit. it has the required properties.
�

We finish with a discussion of the compatibility of the isomorphism in the
previous theorem with respect to push-forwards along finite morphisms.

Lemma 6.13. Let W → X be an equivariant finite surjection between normal
G-schemes over k. Then the norm map N : K∗(W )→ K∗(X) is equivariant.

Proof. If g : Y ′ → Y is an isomorphism then the norm N : K∗(Y ′) → K∗(Y )
is just the inverse of the induced isomorphism g̃ : K∗(Y )→ K∗(Y ′). Thus the
lemma follows from functoriality of the norm map. �

Suppose that f : X → Y is a finite surjective equivariant map between normal
G-schemes which restricts to a finite surjective equivariant map X∞ → Y∞,
where X∞ ⊆ X, Y∞ ⊆ Y are invariant closed, reduced subschemes. The
norm map induces a map DivG(X,X∞)→ DivG(Y , Y∞) which factors through
rational equivalence to give

f∗ : DivGrat(X,X∞)→ DivGrat(Y , Y∞).

If X∞ ⊆ X has an invariant affine neighborhood, every invertible invariant
regular function α on X∞ extends to an invariant rational function α̃ on X .
The difference of two different extensions is a principal relative equivariant
divisor and so we have a well-defined homomorphism

O∗(X∞)G → DivGrat(X,X∞).
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Additionally we can define f∗ : O∗(X∞)G → O∗(Y∞)G by extending α to α̃ as
above and then define f∗(α) = N(α̃)|Y∞ . It is easily checked that N(α̃)|Y∞ lies
in O∗(Y∞) and that this value does not depend on the choice of extension.

Lemma 6.14. Let (Y , Y∞) and (X,X∞) be good equivariant compactifications
of Y and X. Let f : Y → X be a finite map which restricts to a map f : Y → X.
Then the following diagram commutes

O∗(X∞)G //

f∗

��

DivGrat(X,X∞)

f∗
��

∼= // HSus
0 (G;X/S)

f∗

��
O∗(Y∞)G // DivGrat(Y , Y∞)

∼= // HSus
0 (G;Y/S),

where the left hand and middle vertical maps are induced by the norm map and
the right hand vertical map is push forward of cycles.

Proof. The commutativity of the left hand square is immediate from the defi-
nitions. If D is a Cartier divisor on X then f∗cyc(D) = cyc(f∗D) by [Gro67,
Proposition 21.10.17]. This implies that the right hand square commutes. �

7. Equivariant triples

In this section we introduce and study an equivariant generalization of Vo-
evodsky’s standard triples and establish equivariant analogues of their basic
properties. From now on k is assumed to be perfect. Additionally we will usu-
ally assume that G satisfies Condition 5.1, i.e., all irreducible representations
are assumed to be one dimensional.

Definition 7.1. An equivariant standard triple (X
p
−→ S,X∞, Z) consists of

a proper equivariant map p of relative dimension one between G-schemes and
closed invariant subschemes Z, X∞ of X such that

(1) S is smooth and X is normal
(2) X = X −X∞ is quasi-affine and smooth over S
(3) Z ∩X∞ = ∅
(4) X∞ ∪ Z has an invariant affine neighborhood in X.

Note that X is an equivariant good compactification of both X and X − Z.

Remark 7.2. By [MVW06, Remark 11.6], these conditions imply that S is
affine and that Z and X∞ are finite over S.

Nonequivariantly any smooth quasi-projective scheme fits into a triple, locally
around any finite set of points. Equivariantly this is more delicate. If f : X → S
is an equivariant curve which is smooth at a point x ∈ X then the induced map
Ω1
S/k,f(x)⊗OS,f(x)

k(x)→ Ω1
X/k,x⊗OX,x

k(x) is an injection of Ix-representations

over k(x). However it could happen that Ω1
X/k,x ⊗ k(x) has no codimension 1

summand, in which case there can be no such equivariant curveX → S which is
smooth at x. Under the assumption of Condition 5.1 we can construct enough
equivariant triples around an orbit in order to establish Theorem 7.13 below.
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Write TxX := Homk(x)(Ω
1
X/k,x ⊗ k(x), k(x)) for the tangent space at x ∈ X .

Proposition 7.3. Let V be a finite dimensional representation, Y ⊆ X ⊆
A(V ) equivariant closed embeddings of smooth G-schemes, and x ∈ Y a closed
point. Suppose that there are G-representations W2 ⊆ W1 such that there is
an Ix-equivariant isomorphism f : TxX ∼= (W1)k(x) which restricts to an Ix-
equivariant isomorphism TxY ∼= (W2)k(x). Fix an equivariant splitting W1 →
W2 of the inclusion W2 ⊆W1. Then there is a G-equivariant linear projection
V → W1 such that the composition X ⊆ A(V ) → A(W1) is étale and the
induced map Y → A(W2) is also étale.

Proof. Equivariant linear projections V → W1, which satisfy the above condi-
tions, are parameterized by an open subset U ⊆ A(Homk[G](V,W1)) of the
affine space associated to the k-vector space of G-equivariant linear maps.
More precisely, a point p ∈ U corresponds to an equivariant k(p)-linear map
A(V )k(p) → A(W1)k(p) such that the induced maps Xk(p) → A(W1)k(p) and
Y → A(W2)k(p) are étale at any point x′ ∈ Yk(p) which lies over x ∈ Y . We
need to check that U is nonempty, which implies the result as any nonempty
open subset of an affine space has a rational point.
We first treat the case when x is a rational point. Consider the diagram

W2 W1
oo

TxY

f ′

OO

� � //

vv♠♠♠
♠♠
♠♠
♠♠

TxX

f

OO

� � //
i

ww♦♦♦
♦♦
♦♦
♦

V,

ρoo

✉
♣

❧
❤❡❛Ind(TxY ) //

88

Ind(TxX)

99

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

where the inclusion TxX ⊆ V (resp. TxY ⊆ V ) is the one induced byX ⊆ A(V )
(resp. Y ⊆ A(Y )) and Ind(M) := k[G]⊗k[Ix]M is the G-representation which is
induced by the Ix-representationM . The G-equivariant maps Ind(TxX)→W1

and Ind(TxY ) → W2 are induced respectively by the Ix-equivariant maps f :
TxX →W1 and f ′ : TxY →W2. Similarly the Ix-equivariant inclusion TxX ⊆
V induced by X ⊆ A(V ) induces the G-equivariant linear map Ind(TxX)→ V .
Choose a G-equivariant linear map ρ : V → Ind(TxX) so that the composition

TxX → V
ρ
−→ Ind(TxX) agrees with the canonical Ix-equivariant linear map i.

Then the composition V → Ind(TxX) → W1 has the required properties and
thus U is nonempty in this case.
Now suppose that x ∈ Y is a nonrational closed point. Consider the
G-equivariant embeddings Yk(x) ⊆ Xk(x) ⊆ A(V )k(x) and the points
yi ∈ Yk(x) which lie over x ∈ Y . Consider the open subset U ′ ⊆
A(Homk(x)[G](Vk(x), (W1)k(x))) consisting of p′ such that the corresponding
equivariant linear projections Vk(p′) → (W1)k(p′) induces maps Xk(p′) →
A(W1)k(p′) and Yk(p′) → A(W2)k(p′) which are étale at any point y′ ∈ Yk(p′)
lying over a yi ∈ Yk(x). Note that Iyi = Ix, Tyi(Xk(x)) = TxX , and
Tyi(Yk(x)) = TxY and so the hypothesis of the proposition apply to yi ∈ Yk(x).
Since these are rational points, the previous paragraph shows that U ′ is
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nonempty. Consider the image p ∈ A(Homk[G](V,W1)) of a p′ ∈ U ′. The
squares

Xk(p′)
p′ //

��

A(W1)k(p′)

��
Xk(p)

p // A(W1)k(p)

and Yk(p′)
p′ //

��

A(W2)k(p′)

��
Yk(p)

p // A(W2)k(p)

are cartesian and so by faithfully flat descent we conclude that the lower
horizontal arrows are étale at any point x′ ∈ Yk(p) lying over x ∈ Y . In
other words U ′ maps to U under the projection A(Homk[G](V,W1))k(x) →
A(Homk[G](V,W1)) and so U is nonempty as well. �

Theorem 7.4. Assume that G satisfies Condition 5.1. Let X be a smooth
quasi-projective G-scheme over k of pure dimension d. Let Y ⊆ X be a smooth
invariant closed subscheme containing no component of X and x ∈ Y a closed
point. Then there exists an invariant open affine neighborhood U in Y of y
and an equivariant standard triple (U → S,U∞, Z) such that (U,U ∩ Y ) ∼=
(U − U∞, Z).

Proof. First we claim that there are G-representations W2 ⊆ W1 defined over
k, such that there is an isomorphism (W1)k(x) ∼= TxX of Ix-representations
over k(x), which restricts to an Ix-equivariant isomorphism TxY ∼= (W2)k(x).
Indeed, if G satisfies Condition 5.1 then so does Ix. From the fact that
k(x)[Ix] = k[Ix] ⊗k k(x) is the sum of the irreducible representations (over
k(x)), which are one-dimensional, we see that for any representation M ′ of
Ix defined over k(x) there is a representation M defined over k such that
M ′ = Mk(x). Similarly, Condition 5.1 implies that for every Ix-representation
N there is a G-representation N ′ such that N ′ = N as Ix-representations.
These observations easily imply the claim.
Since X is quasi-projective, there is an open invariant affine neighborhood
of x and so we may shrink X equivariantly around x and assume that it is
affine. Embed X in some representation A(V ). Fixing a choice of equivariant
projection W1 → W2 and applying Proposition 7.3 we obtain an equivari-
ant linear projection V → W1 inducing maps X → A(W1) and Y → A(W2)
which are étale at x (and hence at all points of G·x). Let W ⊆ W1 be a
codimension-one G-representation containing W2 and choose an equivariant
projections W1 → W and W → W2 factoring W1 → W2. The induced equi-
variant map p : X → A(W ) is smooth at every point of G·x. Shrinking X
equivariantly around G·x, we may assume that p : X → A(W ) is smooth and
Y → A(W2) is étale. The map Y → A(W ) is then quasi-finite.
Let V ′ ⊆ V be a complementary representation to W so that V = V ′ ⊕W .
Let X ⊆ P(V ′ ⊕ 1) × A(W ) be the closure of X and write p : X → A(W ) for
the induced equivariant map. The fiber of X → A(W ) over any point of its
image is one-dimensional. It follows that X − X is finite over A(W ). Write
Σ ⊆ X for the set of singular points of p : X → A(W ). Then Σ ⊆ X is closed,
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invariant and is finite over each point of p(y), for any y ∈ X . Therefore there
is an invariant affine open neighborhood S of p(G·x) in A(W ) over which Σ
is finite and over which Y has finite fibers. Note that Σ and Y are disjoint.
Define U to be p−1(S) ∩ (X − Σ). By construction p : U → S is smooth and
equivariant. Define U ⊆ X to be the preimage of S and set U∞ = U − U .
It remains to see that we may arrange that U∞

∐
(U∩Y ) has an invariant affine

neighborhood in U . Since U is projective over S there is a global section of
some very ample line bundle L whose divisor D misses the finite set of points
of U∞ and U ∩ Y over G·y. As S is affine and L is very ample, U − D is
affine. Intersecting all of the translates of this affine neighborhood, we obtain
an invariant open affine neighborhood of all of the points of U∞ and U ∩Y over
G·x. Replacing S by a smaller invariant open affine neighborhood of p(G·x) we
may assume that D misses all of U∞ and U ∩ Y . We thus obtain an invariant
affine neighborhood of U∞ and U ∩ Y .

�

Let (X → S,X∞, Z) be an equivariant triple. Write ∆X for the equivariant
Cartier divisor associated to the diagonal X ⊆ X ×S X .

Definition 7.5. An equivariant standard triple is equivariantly split over an
invariant open U ⊆ X if ∆X |U×SZ is an equivariant principal divisor.

The proof of the following is straightforward.

Lemma 7.6. Let f : S′ → S be an equivariant map between smooth affine G-
schemes over k and T = (X → S,X∞, Z) an equivariant triple over S. Then
f∗T = (X ×S S′ → S′, X∞ ×S S′, Z ×S S′) is an equivariant triple over S′. If
T is equivariantly split over U then f∗T is equivariantly split over U ×S S′.

In the equivariant case, the question of a triple being locally split is more del-
icate than its nonequivariant analog. Nonequivariantly, all divisors on X ×X
are locally principal when X is smooth. The nonequivariant argument requires
more work as an equivariant Weil divisor (equivalently by Lemma 2.11, an
equivariant Cartier divisor) on a smooth G-scheme might not be locally equiv-
ariantly principal. This can be seen for example from Proposition 2.12 together
with the fact that PicG(S) can be nonzero for local rings S.
If π : A → A/G is a quotient and B ⊆ A is an invariant closed subscheme
then since |G| is coprime to char(k) the canonical map B/G → π(B) is an
isomorphism. In particular we have a Cartesian square

X � � ∆ //

��

X ×S X

π

��
X/G

� � // (X ×S X)/G,

whenever the right hand vertical quotient exists.
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Proposition 7.7. Let J be a smooth G-scheme which is finite over k and let
C → J be a smooth equivariant curve. Then the Weyl divisor (∆C)/G →֒
(C ×J C)/G is locally principal.

Proof. Consider the coherent sheaf O(∆C/G) on (C ×J C)/G associated to
the Weyl divisor (∆C)/G. The condition that the divisor (∆C)/G is locally
principal is equivalent to the condition that the coherent sheaf O(∆C/G) is
locally free. Let k be an algebraic closure of k. The sheaf O(∆C/G) is locally
free if it is so after base change to k. The base change of O(∆C/G) to k is
the sheaf associated to (∆C/G)k. Since (∆C/G)k = (∆Ck)/G it is enough to
consider the case when k is algebraically closed. We may also assume that J
is equivariantly irreducible. Since k is algebraically closed, J = G/H for some
subgroup H and so C = G ×H C′ for some smooth H-curve C′ → Spec(k).
Since (C ×J C)/G = (C′ × C′)/H we may replace C by C′ and G by H . In
other words, we may assume that J = Spec(k) and it suffices to show that
for a smooth G-curve over the algebraically closed field k, the coherent sheaf
associated to ∆C/G →֒ (C × C)/G is locally free.
Let c ∈ C be a closed point. Write O(∆C/G)[c] for the restriction of O(∆C/G)
to (C ×Gc)/G. The sheaf O(∆C/G)[c] is the coherent sheaf associated to the
divisor (∆(G·c))/G →֒ (C×Gc)/G. We have thatG·c ∼= G/Ic and so the divisor
(∆Gc)/G →֒ (C × Gc)/G is identified with [c] →֒ C/Ic under the equivariant
isomorphisms (C × G·c)/G ∼= (C × G/Ic)/G ∼= (C ×Ic G)/G ∼= C/Ic, the
second isomorphism arising from (c, [g]) 7→ (g−1c, g). Normality is preserved
under taking quotients and so C/Ic is a normal curve and therefore it is also
smooth and so O(∆C/G)[c] is locally free of rank one. Every closed point
of (C × C)/G is in some (C × G·c)/G and so rankx[O(∆C/G)] = 1 (where
rankx F = dimk(x) Fx ⊗ k(x)) for every closed point x ∈ (C × C)/G. But
the collection of points where the rank of a coherent sheaf takes on a fixed
value is constructible and so rankx[O(∆C/G)] = 1 for every x ∈ (C × C)/G.
A coherent sheaf F on a reduced scheme X is locally free exactly when the
function x 7→ rankx F on X is locally constant. We conclude that O(∆C/G)
is locally free of rank one. �

Corollary 7.8. Let X → S be a smooth equivariant curve, with X and S
quasi-projective G-schemes. Then the equivariant Cartier divisor ∆X →֒ X×S
X is equivariantly locally principal.

Proof. We also write ∆X for the associated equivariantWeyl divisor onX×SX .
We have the Cartesian square of normal schemes

∆X //

��

X ×S X

π

��
∆X/G // (X ×S X)/G.

The equivariant Weyl divisor ∆X →֒ X ×S X is equivariantly locally prin-
cipal if the Weyl divisor (∆X)/G →֒ (X ×S X)/G is locally principal. This
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Weyl divisor is locally principal exactly when the associated coherent sheaf
O((∆X)/G) is locally free. Consider the map p : (X ×S X)/G → S/G. The
fibers over a point [s] ∈ S/G are p−1([s]) = (XGs ×Gs XGs)/G. The restric-
tion O((∆X)/G)[s] of O((∆X)/G) to the fiber p−1([s]) is the coherent sheaf
associated to (∆XGs)/G →֒ (XGs ×Gs XGs)/G. By the previous proposition
O((∆X)/G)[s] is locally free of rank one for all closed points [s] ∈ S/G. Every
closed point of Supp(∆X/G) is in some p−1([s]). The sheaf O((∆X)/G) is
isomorphic to the trivial line bundle at all points not in Supp(∆X/G). We
conclude that the coherent sheaf O((∆X)/G) has rank one at all closed points
and hence has rank one at all points. It follows that it is locally free of rank
one. �

The following is an important example.

Lemma 7.9. Let J be an equivariantly irreducible, smooth zero-dimensional G-
scheme over k and W a G-representation and L := J ×A(W ). Let X∞ and Z
be disjoint, invariant nonempty finite subsets of P(L⊕ 1). Then

T := (P(L⊕ 1)→ J,X∞, Z)

is an equivariant standard triple which is equivariantly split over any invariant
open U ⊆ L.

Proof. That T is an equivariant standard triple is clear.
Let x ∈ J be a point. Then J = G×Gx {x}, P(L⊕1) ∼= G×Gx ({x}×P(W⊕1)),
U = G ×Gx ({x} × U ′) for a Gx-invariant open U ′ ⊆ A(W ), and X∞ =
G×Gx ({x}×X ′

∞) and Z = G×Gx ({x}×Z ′) for Gx-invariant disjoint subsets
X ′

∞ and Z of P(W ⊕ 1). It is thus enough to show that the Gx-equivariant
triple (P(W ⊕ 1), X ′

∞, Z
′) is split over any Gx-invariant open U

′ ⊆ A(W ).
We show that ∆A(W ) is equivariantly principal on A(W )×A(W ). To show this
it suffices to show that O(∆A(W )) is the trivial Gx-line bundle. By Corollary
7.8 the equivariant Cartier divisor ∆A(W ) ⊆ A(W ) × A(W ) is equivariantly
locally principal which implies in turn that ∆A(W )/Gx ⊆ (A(W ) × A(W )) is
locally prinicipal. Therefore O(∆A(W )/Gx), the coherent sheaf on (A(W ) ×
A(W ))/Gx associated to the Weil divisor (∆A(W ))/Gx, is a line bundle. By
[Kan79, Theorem 2.4], Pic((A(W )×A(W ))/Gx) = 0 and so the Gx-line bundle
O(∆A(W )) = π∗O(∆A(W )/Gx) is trivial as needed. �

Theorem 7.10. Let (X → S,X∞, Z) be an equivariant standard triple. Then
any finite set of points in X has an invariant open neighborhood U over which
this triple splits.

Proof. Let P ⊆ X be a finite set of points in X . Replacing P by G·P we
may assume that P is invariant. The equivariant map π : X ×S Z → X
is finite and so π−1P ⊆ X ×S Z is also an invariant finite set of points. It
follows from Corollary 7.8 that D/G is locally principal on (X ×S Z)/G. Let
W ⊆ (X ×S Z/G) be a neighborhood of P/G on which D/G is principal and
let V ⊆ X ×S Z be its preimage. There is some equivariant neighborhood U
of P such that U ×S Z ⊆ V . The equivariant triple is split over this U . �
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Two equivariant finite correspondences λ0, λ1 ∈ GCork(X,Y ) are said to be
equivariantly A1-homotopic provided there is an H ∈ GCork(X × A1, Y ) such
that H |X×{i} = λi, i = 0, 1.

Proposition 7.11. Let (X
p
−→ S,X∞, Z) be an equivariant standard triple

which is split over an open affine U ⊆ X. Then there is an equivariant finite
correspondence

λ : U → X − Z

such that λ composed with j : X −Z ⊆ X is equivariantly A1-homotopic to the
inclusion i : U ⊆ X. In particular for any homotopy invariant presheaf with
equivariant transfers F , we have the commutative diagram

F (X)
j∗ //

i∗

��

F (X − Z)

λ∗

yysss
ss
ss
ss
s

F (U).

Proof. We write XU = U ×S X. Pulling back to U gives the equivariant
triple (p′ : XU → U, (X∞)U , ZU ). The diagonal ∆ : U → XU is an equi-
variant section of p′, so is an element of C0(XU/U)G. By Theorem 6.12 it

thus determines the class ∆U ∈ DivGrat(XU , (X∞)U ). By assumption, ∆U
restricted to ZU is equivariantly principal, say ∆U |ZU

= div(rU ), where rU
is an invariant regular function. Since ZU

∐
(X∞)U has an invariant affine

neighborhood in XU , we can use the Chinese remainder theorem to find an
invariant rational function φ on XU which is defined in an invariant neigh-
borhood of ZU

∐
(X∞)U and is equal to 1 on (X∞)U and equal to rU on ZU .

Note that div(φ) is zero in DivGrat(XU , (X∞)U ). We lift the class ∆U to a class

[λ′] ∈ DivGrat(XU , (X∞)U
∐
ZU ) by setting [λ′] = ∆U − div(φ).

Let F be any homotopy invariant presheaf with transfers. The diagram

F (XU ) //

Tr([∆])

��

F ((X − Z)U )

Tr([λ])xx♣♣♣
♣♣
♣♣
♣♣
♣♣

F (U)

is commutative, where the vertical and diagonal maps are those obtained from
Lemma 6.3. Let λ′ ∈ C0((X − Z)U/U)G ⊆ GCork(U, (X − Z)U ) be any
representative of [λ′] and λ : U → X − Z be the composition of λ′ together
with the projection to X−Z. It is easily verified that jλ and i are equivariantly
A1-homotopic. �

Corollary 7.12. Assume that G satisfies Condition 5.1. Let F be a homotopy
invariant presheaf with equivariant transfers, Z ⊆ X a closed embedding of
smooth quasi-projective G-schemes over k, and x ∈ X a closed point. Then
there exists an open invariant neighborhood U of x, and a map φ : F (X−Z)→
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F (U) such that the following triangle commutes,

F (X)

�� %%❑❑
❑❑

❑❑
❑❑

❑❑

F (X − Z)
φ // F (U).

Proof. If x /∈ Z there is nothing to prove. If x ∈ Z then by Theorem 7.4
there is an invariant open neighborhood X ′ of x and an equivariant triple
(X ′, X ′

∞, Z
′) such that (X ′, X ′−Z) = (X ′−X ′

∞, Z
′). By Theorem 7.10 there

is an invariant open neighborhood U of x such that this triple splits over U .
Applying Proposition 7.11 to U yields the corollary. �

Theorem 7.13. Assume that G satisfies Condition 5.1. Let F be a homotopy
invariant presheaf with equivariant transfers, S a smooth semilocal affine G-
scheme over k with a single closed orbit and S0 ⊆ S a dense invariant open
subscheme. Then the restriction map F (S)→ F (S0) is injective.

Proof. Write the G-scheme S as the intersection ∩Xi and S0 = ∩Vi where Xi

are invariant open neighborhoods of a point x of a smooth affine G-scheme X ,
V ⊆ X an invariant open, and Vi = V ∩Xi.
Write Z = (X − V )red. First observe that we may assume that Z is smooth.
Indeed, since k is perfect, there is a filtration ∅ = Z(n + 1) ⊆ Z(n) ⊆ · · · ⊆
Z(1) ⊆ Z(0) = (X − V )red by closed invariant subschemes such that Z(r) −
Z(r − 1) is smooth (take Z(r) ⊆ Z(r + 1) to be the set of singular points).
Write Z(r)i = Xi ∩Z(r). Each Xi−Z(r− 1)i ⊆ Xi−Z(r)i is the complement
of an invariant smooth closed subscheme. If the morphism F (∩(Xi−Z(r)i))→
F (∩(Xi −Z(r− 1)i)) is injective for all r, then F (∩Xi)→ F (∩Vi) is injective.
Thus we may assume that Z is smooth. Consequently Zi := Xi − Vi is also
smooth.
Now the Ui given by Corollary 7.12 is contained in some Xj and so the kernel of
F (Xi)→ F (Vi) vanishes in F (Xj). Thus the map F (S) → F (S0) is injective.

�

Recall that a G-scheme W is called equivariantly irreducible if there is an
irreducible component W0 of W such that G·W0 =W . The underlying scheme
of an essentially smooth, zero dimensional G-scheme J over k is a disjoint union
of the Zariski spectra of finitely generated field extenstions of k.

Corollary 7.14. Assume that G satisfies Condition 5.1. Suppose that F is a
homotopy invariant presheaf with equivariant transfers and that F (J) = 0 for
any essentially smooth, zero dimensional G-scheme J over k. Then FGNis = 0.

Definition 7.15. An equivariant covering morphism f : TY → TX , of two
equivariant standard triples TY = (Y → S, Y∞, ZY ) and TX = (X →
S,X∞, ZX), is an equivariant finite map f : Y → X such that

(1) f(Y ) ⊆ X ,
(2) f |Y : Y → X is étale,
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(3) f induces and isomorphism ZY
∼=
−→ ZX , and ZY = f−1ZX ∩ Y .

Write Q(X,Y,A) for the equivariant distinguished square

B //

��

Y

f

��
A

i // X,

where i is an equivariant open embedding and f : Y → X is an equivariant
étale morphism.

Definition 7.16. Let f : TY → TX be an equivariant covering morphism of
equivariant standard triples as above. The associated equivariant distinguished
square to this morphism is Q = Q(X,Y,X − ZX) and we say that the square
Q comes from this covering morphism.

The following is an important class of examples.

Example 7.17. Suppose that X is affine, has an equivariant good compactifi-
cation X over some smooth S (see Definition 6.10), and X = U ∪ V is an open
cover by invariant open subschemes such that X − (U ∩ V ) has an invariant
open affine neighborhood. Then

U ∩ V //

��

U

��
V // X

comes from the morphism of triples (X,X − U,X − V ) → (X,X∞, X − V )
defined by the identity on X .

The proof of the following theorem (and the lemmas below on which it depends)
are similar to the arguments in the nonequivariant case. We include complete
details for the reader’s convenience.

Theorem 7.18. Let X be a smooth equivariantly irreducible G-scheme over
k. Let Q′ = Q(X ′, Y ′, A′) and Q = Q(X,Y,A) be equivariant distinguished
squares such that Q′ is the restriction of Q along an invariant open subscheme
X ′ ⊆ X. Write j : Q′ →֒ Q for the inclusion. Assume that X ′ and Y ′ are
affine and that Q comes from an equivariant covering map

TY = (Y , Y∞, ZY )→ TX = (X,X∞, ZX)

of equivariant standard triples and that TX splits over X ′.
Let F : GCoropk → Ab be a homotopy invariant presheaf with equivariant trans-
fers. Then the map of complexes

0 // F (X)

jX

��

(i,f) // F (A)⊕ F (Y )
(−f,i) //

(
jA
jY

)

��

F (B) //

jB

��

0

0 // F (X ′)
(i′,f ′) // F (A′)⊕ F (Y ′)

(−f ′,i′)// F (B′) // 0
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is chain homotopic to zero.
In particular if Q′ = Q then the Mayer-Vietoris sequence

0→ F (X)→ F (A)⊕ F (Y )→ F (B)→ 0

is split-exact.

Proof. By Lemmas 7.20 and 7.21 we have maps s1 = (λA, 0) : F (A)⊕F (Y )→
F (X ′) and s2 = (ψ, λB) : F (B) → F (A′) ⊕ F (Y ′). For these maps to form a
chain homotopy from j to zero we need that sd + ds = j. This boils down to
six equations. Three come from the commutativity of the trapezoid in Lemma
7.20. The remaining three which involve ψ are ψi ≃ 0, jA ≃ i′λA − ψf and
jB ≃ i′λB − f ′ψ. These follow from Lemma 7.21. �

Lemma 7.19. Let f : TY → TX be an equivariant covering morphism of equi-
variant standard triples. If TX is equivariantly split over V then TY is equiv-
ariantly split over f−1(V ) ∩ Y .

Proof. By assumption the equivariant Cartier divisor ∆X |V×SZX
is an equi-

variant principal divisor, say ∆X |V×SZX
= div(φ). Then (f × f)∗(∆X) =

∆Y +Q, where the support of Q is disjoint from that of ∆Y . Since ZY ∼= ZX ,
Supp(Q) is also disjoint from Y ×S ZY and therefore Q|Y×SZY

= 0. Since
(∆Y +Q)|(f−1V ∩Y )×SZY

= div(φ◦(f×f)), it follows that ∆Y |(f−1V ∩Y )×SZY
=

div(φ ◦ (f × f)) as well. �

Lemma 7.20. Let j : Q′ →֒ Q be as above. Then there are finite equivariant
correspondences λA : X ′ → A and λB : Y ′ → B such that the following diagram
in GCork is commutative up to equivariant A1-homotopy,

Y ′
Oo

jY

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

λB

��

f ′

// X ′

λA

��

� p

jX

  ❇
❇❇

❇❇
❇❇

❇❇
❇❇

Y B? _
i

oo f // A � � i // X.

Proof. The equivariant triple TX is split over X ′. By Lemma 7.19, TY splits
over Y ′. Proposition 7.11 gives the existence of λA and λB making the triangles
commute up to A1-homotopy. The square is easily seen to commute up to A1-
homotopy by the construction used in the proof of Proposition 7.11. �

Lemma 7.21. Let j : Q′ →֒ Q be as above. There is an equivariant correspon-
dence ψ ∈ GCork(A

′, B) such that the square

B′ λB◦i′−jB //

f ′

��

B

f

��
A′

ψ

>>⑦
⑦

⑦
⑦

⑦
⑦

⑦

λA◦i′−jA

// A
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is homotopy commutative in GCork, where λA ∈ GCork(X
′, A), λB ∈

GCork(Y
′, B) are the equivariant correspondences from Lemma 7.20. More-

over the composite iψ : A′ → Y is equivariantly A1-homotopic to zero.

Proof. First we define the equivariant correspondence ψ ∈ GCork(A
′, B).

Write ∆X ′ for the equivariant Cartier divisor on X ′ ×S X corresponding to
the graph of X ′ →֒ X . Similarly, write ∆Y ′ for the equivariant Cartier divisor
corresponding to the graph of Y ′ →֒ Y . Write M for the pullback of ∆X ′ to
X ′ ×S Y .
The support of ∆X ′ is disjoint from A′ ×S ZX so ∆X ′|A′×SZX

= 0. Similarly
M|A′×SZX

= 0 and ∆Y ′|B′×SZY
= 0.

By assumption the equivariant Cartier divisor ∆X ′|X′×SZX
is equivariantly

principal. By Lemma 7.19, ∆Y ′|Y ′×SZY
is equivariantly principal as well.

Write ∆X ′|X′×SZX
= div(rX), M|X′×SZY

= div(rM ), and ∆Y ′|Y ′×SZY
=

div(rY ), where rX , rM , and rY are invariant regular functions. Furthermore
we have that rX is invertible on A′ ×S ZX . Similarly rM is invertible on
A′×S ZY and rY is invertible on Y ′×S ZY . Under the isomorphism ZY ∼= ZX ,
rX becomes identified with rM .
Let U be an invariant affine neighborhood of Y∞

∐
ZY in Y . ThenX ′×SU is an

invariant affine neighborhood of X ′×S (Y∞
∐
ZY ). Since points of (X

′×SU)/G
are orbits, X ′ ×S Y∞ and X ′ ×S ZY remain disjoint in (X ′ ×S U)/G. Since
char(k) doesn’t divide |G|, we have (X ′×SY∞)/G = π(X ′×SY∞) and similarly
for X ′ ×S ZY where π : X ′ ×S U → (X ′ ×S U)/G is the quotient map. The
invariant regular functions 1 and rM onX ′×SZY andX ′×SY∞ define invariant
regular functions on their quotients. Since (X ′×SU)/G is affine, we may apply
the Chinese remainder theorem, see e.g.,[GW10, Proposition B.1]) to obtain a
regular function h on (X ′ ×S U)/G that equals rM on (X ′ ×S ZY )/G and 1
on (X ′ ×S Y∞)/G. We thus have an invariant regular function h on X ′ ×S U
which equals rM on X ′ ×S ZY and 1 on X ′ ×S Y∞.
View h as an invariant rational function on A′ ×S Y . The support of its
associated divisor div(h) is disjoint from A′ ×S (ZY

∐
Y∞) and so is an el-

ement of DivG(A′ ×S Y ,A′ ×S (ZX
∐
Y∞)) = C0(A

′ ×S B/A′)G. Since
C0(A

′ ×S B/A′)G ⊆ GCork(A
′, B), the divisor −div(h) determines the equi-

variant correspondence ψ : A′ → B. It remains to verify its properties.
First iψ ∈ GCork(A

′, Y ) corresponds to −div(h) in DivG(A′ ×S Y A′ ×S Y∞).
But since h|A′×SY∞ = 1, −div(h) is a principal relative equivariant Cartier
divisor and so represents 0 in HSus

0 (G;A′ ×S Y/A′). Thus iψ is equivariantly
A1-homotopic to zero.
It remains to see that the diagram of the lemma is homotopy commutative.
By the construction of λA and λB the composition λA ◦ i

′ ∈ GCork(A
′, A)

and λB ◦ i′ ∈ GCork(B
′, B) are represented by the classes ∆A′ − div(φX)

and ∆B′ − div(φY ) in DivGrat(A
′ ×S X,A′ ×S (X∞

∐
ZX)) and DivGrat(B

′ ×S
Y ,B′×S (Y∞

∐
ZY )), where φX is an invariant rational function which is 1 on

A′ ×S X∞.

Documenta Mathematica 20 (2015) 269–332



312 J. Heller, M. Voineagu, P. A. Østvær

On the other hand the inclusions jA and jB are represented by the classes
∆A′ and ∆B′. It follows that the differences λA ◦ i′ − jA ∈ GCork(A

′, A)
and λB ◦ i′ − jB ∈ GCork(B

′, B) are represented by the classes div(φX) and
div(φY ) respectively.
The composition ψf ′ ∈ GCork(B

′, B) is represented by the divisor of the
rational function hf ′ which is 1 on B′×S Y∞ and rMf

′ = rY on B′×S ZY . We
thus have ψf ′ = λB ◦ i

′ − jB in DivGrat(B
′ ×S Y , B

′ × (Y∞
∐
ZY )).

Now the composition fψ ∈ GCork(A
′, A) represents the push forward of ψ

along HSus
0 (G;A′ ×S B/A′) → HSus

0 (G;A′ ×S A/A′. By Lemma 6.14 this is
represented by the norm N(h−1). Since h−1 is 1 on f−1(X∞) ⊆ Y∞, N(h) = 1
on A′ ×S X . By the following lemma we have that N(h) = rX on A′ ×S ZX
which yields the desired equality fψ = λA ◦ i′ − jA ∈ GCork(A

′, A). �

Lemma 7.22. Let f : U → V be a finite equivariant map with U and V normal.
Suppose that Z ⊆ V and Z ′ ⊆ U are reduced closed subschemes such that the
induced map Z ′ → Z is an isomorphism and U → V is étale in a neighborhood
of Z ′. If h ∈ O∗(U)G is 1 on f−1(Z)−Z ′ then N(h)|Z and h|Z′ are identified
by Z ′ ∼= Z.

Proof. This follows immediately from the nonequivariant statement [MVW,
Lemma 21.10]. (i.e., forget the G-action then [MVW, Lemma 21.10] tells us
that N(h)|Z and h|Z′ are identified by Z ′ ∼= Z. �

We finish this section with the following useful application of Theorem 7.18.

Theorem 7.23. Let F be a homotopy invariant presheaf, J a smooth equivari-
antly irreducible zero-dimensional G-scheme and W a G-representation. Then
for any open invariant U ⊆ L := J ×W we have

Hi
GNis(U, FGNis) =

{
F (U) i = 0

0 i > 0.

Proof. Corollary 3.9 implies that Hi
GNis(U, F ) = 0 for i > 1. Consider an

equivariant distinguished square Q = Q(U, V,A),

B

��

// V

��
A // U.

There is an equivariant embedding of V into a smooth projective curve V with
G-action which is finite over P(L ⊕ 1). Indeed, ignoring the group action on
V there is an embedding into a smooth projective curve V . Rational maps
between smooth projective curves extend uniquely to morphisms which implies
that V inherits a G-action from V and maps equivariantly and finitely to
P(L⊕ 1).
The square Q comes from the equivariant covering morphism of equivariant
standard triples, (V , V∞, Z) → (P(L ⊕ 1), U∞, Z) where V∞ = V − V , U∞ =
P(L ⊕ 1)− U , and Z = −U − A. The triple (P(L ⊕ 1), U∞, Z) is split over U
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by Lemma 7.9. Applying Theorem 7.18 with Q = Q′ we see that the Mayer-
Vietoris sequence

0→ F (U)→ F (A)⊕ F (V )→ F (B)→ 0

is split exact. This implies that F is a sheaf in the equivariant Nisnevich topol-
ogy on U and that Ȟ1(U/U, F ) = 0 for any cover U coming from a distinguished
Nisnevich square.
We claim that any equivariant Nisnevich cover of U can be refined by one
coming from an equivariant distinguished square, and consequently Ȟ1(U , F ) =
0. This will finish the proof since H1

GNis(U, F ) = Ȟ1(U, F ). First, since F
takes disjoint unions to sums we can replace a cover {Vi → U} by a single
cover f : V ′ → U . Indeed there is a dense invariant open A ⊆ U over which
f has a splitting. The complement Z = U − A is a finite set of closed points
and we choose a splitting Z ⊆ VZ . Let V = V ′ − (VZ − Z) then Q(U, V,A) is
a distinguished square and the associated cover refines f : V ′ → U . �

8. Homotopy invariance of cohomology

In this section we show that under the assumption of Condition 5.1 equivariant
Nisnevich cohomology with coefficients in a homotopy invariant presheaf with
transfers is again a homotopy invariant presheaf with equivariant transfers.
This result is the equivariant analogue of the fundamental technical result in
Voevodsky’s machinery of presheaves with transfers.
Unless specified otherwise, G is assumed to satisfy Condition 5.1 throughout
this section.

Proposition 8.1. Let F be a homotopy invariant presheaf with equivariant
transfers. Then FGNis is also a homotopy invariant presheaf with equivariant
transfers.

Proof. By Theorem 4.13, FGNis is a presheaf with equivariant transfers. To
show homotopy invariance it suffices to show that i∗ : FGNis(X × A1) →
FGNis(X) is injective for any equivariantly irreducibleX , where i : X → X×A1

is the inclusion at 0 ∈ A1. It suffices to do this locally in the equivariant
Nisnevich topology, so we may assume that X is affine semilocal with a single
orbit. Let Z ⊆ X be the set of generic points with induced G-action. We have
a commutative square

FGNis(X × A1) //

��

FGNis(X)

��
FGNis(Z × A1)

∼= // FGNis(Z).

We may view F as a homotopy invariant presheaf with equivariant transfers on
GSm/K, where K = k(X)G. Theorem 7.23 implies that F is an equivariant
Nisnevich sheaf on Z × A1 and therefore the bottom horizontal arrow is an
isomorphism. The vertical arrows are injective by Theorem 7.13 and so i∗ is
injective and thus FGNis is homotopy invariant. �
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8.1. Equivariant contractions. If F is a presheaf with transfers on Sm/k
the contraction F(−1)(X) := F (X ×A1 − {0})/F (X ×A1) plays an important
role in the study of presheaves with transfers. We introduce an equivariant
analogue and establish a few basic results concerning equivariant contractions.

Definition 8.2. Let F be a presheaf on GSm/k and W a representation of G.
Define the presheaf F(−W ) by

F(−W )(X) = coker(F (X × A(W ))→ F (X × A(W )− {0})).

When F is a presheaf with equivariant transfers then so is F(−W ) since it is the
quotient of such presheaves. Similarly if F is homotopy invariant then F(−W )

is as well.
Nonequivariantly the projection X × A1 → X is split by including at 1 ∈ A1,
inducing a decomposition F (X × A1 − 0) = F (X) ⊕ F(−1)(X) whenever F is

homotopy invariant. WhenW is a representation withWG = 0 then there is no
such equivariant splitting. Nonetheless when F is a presheaf with equivariant
transfers we still obtain this decomposition, at least for affine X .

Proposition 8.3. Let F be a homotopy invariant presheaf with equivariant
transfers on GSm/k. Let S be a smooth affine G-scheme over k andW be a one-
dimensional representation. Then there is an equivariant finite correspondence
λ : S × A(W )→ S × A(W )− 0 inducing a decomposition

F (S × A(W )− {0}) = F (S)⊕ F(−W )(S).

Moreover, this decomposition is natural for equivariant maps S′ → S, where S′

is affine.

Proof. We have an equivariant standard triple (S×P(W ⊕ 1)→ S, S×∞, S×
0). By Lemmas 7.9 and 7.6 this equivariant triple is equivariantly split over
X = S ×A(W ). Applying Proposition 7.11 yields the correspondence λ which
induces the splitting F (S × A(W )− 0)→ F (S × A(W )). �

Proposition 8.4. Let F be a homotopy invariant presheaf with equivariant
transfers and W a one-dimensional representation. Then

(FGNis)(−W )(S) = (F(−W ))GNis(S)

for any smooth affine Henselian G-scheme over k with a single closed orbit.

Proof. By Proposition 8.1, FGNis is a homotopy invariant equivariant Nis-
nevich sheaf with transfers. Observe that (F(−W ))GNis → (FGNis)(−W ) is a
morphism of presheaves with equivariant transfers. Applying Corollary 7.14 to
the kernel and cokernel of this map, it suffices to show that (F(−W ))GNis(J) =
(FGNis)(−W )(J) for any essentially smooth zero dimensional G-scheme over k.
The left-hand side is by definition F (J×A(W )−{0})/F (J×A(W )). The right-
hand side is FGNis(J ×A(W )−{0})/FGNis(J ×A(W )). Applying Proposition
8.1 and Theorem 7.23 shows the two sides are equal. �
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Definition 8.5. Let i : Z →֒ Y be an invariant closed embedding with open
complement j : V ⊆ Y and F a presheaf. Define the equivariant Nisnevich
sheaf F(Y,Z) on Z as in the nonequivariant case. That is let K(Y,Z) = K be the
cokernel of F → j∗j

∗F and define F(Y,Z) = (i∗K)GNis.

Since sheafification is exact we have an exact sequence

(8.6) FGNis → (j∗j
∗F )GNis → i∗F(Y,Z) → 0.

Lemma 8.7. For n ≥ 0 we have Hn
GNis(−, F )(Y,Z) = i∗Rnj∗F .

Proof. The same argument as in [MVW06, Example 2.3.8] works here.
Namely, we have Hn

GNis(−, F )GNis = 0 and therefore i∗H
n(F )(Y,Z)

∼=
(j∗j

∗Hn(F ))GNis = Rnj∗F . Since i
∗i∗ = id the result follows. �

Let i : S →֒ S × A(W ) be the invariant closed embedding determined by
0 ∈ A(W ). Then F(−W )(U) = K(U × A(W )). We obtain by adjunction the
map K(U × A(W )) → i∗i

∗K(U × A(W )) = i∗K(U). Therefore we have the
map of sheaves on S

(F(−W ))GNis → F(S×A(W ),S×0).

Proposition 8.8. Let F be a homotopy invariant presheaf with equivariant
transfers, W a one-dimensional G-representation, and S a smooth G-scheme.
Then we have an isomorphism

(F(−W ))GNis|S
∼=
−→ F(S×A(W ),S×0).

Proof. We use the argument of [MVW06, Proposition 23.10]. We need to
compare F(−W ) and j∗j

∗F/F in an invariant neighborhood of an orbit Gs of
a point s in a smooth affine G-scheme S. The equivariant standard triple
T = (P(W ⊕ 1)S , S × ∞, S × 0) is split over S × A(W ) by Lemma 7.9. Let
U be an affine invariant neighborhood of S × 0 in S × A(W ) and let TU =
(P(W ⊕ 1)S,P(W ⊕ 1)S−U, S× 0). We need to show that by shrinking S there
is an invariant open affine neighborhood of (P(W ⊕ 1)S −U)∪S× 0. It follows
that TU is an equivariant standard triple.
There is an invariant open V ⊆ P(W ⊕ 1) so that Gs × V contains Gs × 0
and the finite invariant set P(W ⊕ 1)Gs − UGs. The complements of U and
S × V intersect in a closed subset, disjoint from the fiber P(W ⊕ 1)Gs. Since
P(W ⊕ 1)S is proper over S we may shrink S around Gs to assume that the
complements are disjoint. Then S×V contains both P(W ⊕ 1)S−U and S× 0
as needed.
The identity on P(W ⊕ 1) is an equivariant covering morphism of triples TU →
T . Let U0 = U − S × 0. Consider the distinguished square Q

U0
//

��

U

��
S × A(W )− 0

j // S ×W.
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Write Q′ for the same square. The identity Q′ = Q comes from the map of
triples TU → T , see Example 7.17. Applying Theorem 7.18 we have a split
exact Mayer-Vietoris sequence

0→ F (S × A(W ))→ F (S ×W − 0)⊕ F (U)→ F (U0)→ 0.

This together with the homotopy invariance of F implies we have a pushout
square

F (S × A(W )) //

��

F (U)

��
F (S × A(W )− 0) // F (U0).

In particular F (U)→ F (U0) is injective and F(−W )(S) = F (U0)/F (U).
Note that j : S × A(W ) − 0 → S × W has j∗j

∗F (U) = F (U0) and thus
j∗j

∗F/F (U) = F (U0)/F (U) and the result follows by passing to the limit over
U and S. �

Lemma 8.9. Let f : Y → X be an equivariant étale morphism and Z ⊆ X an
invariant closed subscheme such that f−1(Z) → Z is an isomorphism. Then
for any presheaf F we have

F(X,Z)

∼=
−→ F(Y,f−1(Z)).

Proof. It is enough to check the isomorphism on stalks. We may thus assume
that Y , X are semilocal Henselian G-schemes, X has a single closed orbit Gx,
and Z is nonempty. Since f−1(Z) ∼= Z and Gx ⊆ Z, it follows that Y also has
a single closed orbit and that Y ∼= X . �

Recall if G acts on the ring R, we write R#[G] for the twisted group ring (see
Remark 2.4). If H acts on the field L and W is a k[H ]-module then WL is a
L#[H ]-module via r[g](w ⊗ x) = gw ⊗ r(gx).

Lemma 8.10. Let Z ⊆ X be an equivariant closed embedding of smooth affine
G-schemes over k and x ∈ Z a closed point. Suppose that there are G-
representations W2 ⊆W1 and isomorphism f : TxX ∼= (W1)k(x) of k(x)#[Gx]-

modules which restricts to a k(x)#[Gx]-module isomorphism TxY ∼= (W2)k(x).
Then there is an invariant open neighborhood U of x and an equivariant Carte-
sian diagram

U ∩ Z //

��

U

��
A(W2) // A(W1)

with étale vertical arrows.

Proof. Let L/k(x) be a finite extension such that the composite L/k is Galois
with Galois group Γ. The schemes XL and ZL will be considered as G × Γ-
schemes over k via the diagonal action. We will construct a G× Γ-equivariant
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maps φ, φ′ which fit into a commutative square

ZL
� � //

φ′

��

XL

φ

��
A(W2)L

� � // A(W1)L

and are equivariant at each point of the G × Γ-orbit of y, where y ∈ XL lies
over x. The set of points at which φ is étale is an open (and invariant) subset
of XL which contains the orbit of y. Further shrinking this set equivariantly
if necessary, we find an invariant open subset Ũ ⊆ XL such φ is étale on
Ũ and φ′ is étale on Ũ ∩ ZL. Now Ũ ×A(W1)L A(W2)L is a disjoint union

Ũ ∩ ZL
∐
C. Replacing Ũ by Ũ − C we may assume that Ũ satisfies Ũ ∩ Z ⊆

Ũ×A(W1)LA(W2)L. Galois descent then yields the desired G-equivariant square
of the lemma.
It remains to construct the desiredG×Γ-equivariant square above. Let y1 ∈ ZL
be a point lying over x and let {y1, y2, . . . , yn} be the G×Γ-orbit of y1. Let R
be the coordinate ring of X and I ⊆ R the defining ideal of Z. Writemi andmi

respectively for the maximal ideals yi in RL = R⊗kL and (R/I)L = R/I⊗kL.
The ideals ∩mi ⊆ RL and ∩mi ⊆ (R/I)L are G × Γ-invariant. Consider the
morphism ∩mi → m1/m

2
1 × · · · × mn/m

2
n, induced by the quotients mi →

mi/m
2
i . Using the Chinese Remainder Theorem, we see that it is surjective.

Let S ⊆ G×Γ be the set-theoretic stabilizer of y1. It is the subgroup S ⊆ Gx×Γ
consisting of pairs (g, γ) such that the two maps k(x) → L given by ιg and
γι are equal (where ι : k(x) ⊆ L is the embedding chosen at the beginning of
the proof). Let α1, . . . , αn be left coset representatives for (G × Γ)/S. For an
element β = (g, γ) of G×Γ write βαi = αj(i)si, for appropriate indices j(i) and

si ∈ S. IfM is an L#[S]-module we obtain an induced L#[G×Γ]-module (here
the action of G×Γ on L is via the projection to Γ). As in the case of an ordinary
group ring, we may describe the induced module Ind(M) := L#[G×Γ]⊗L#[S]M

as the direct sum ⊕([αi]⊗M) of copies ofM with basis {[αi]}. The L#[G×Γ]
module structure on Ind(M) is determined by the equations [β]([αi] ⊗mi) =
([αj(i)]⊗ simi), for β ∈ G× Γ and r([αi]⊗mi) = ([αi]⊗ (α−1

i r)mi) for r ∈ L.
We have an isomorphismm1/m

2
1×· · ·×mn/m

2
n
∼= Ind(m1/m

2
1) given by sending

ri ∈ mi/m
2
i to [αi] ⊗ α

−1
i ri. We thus obtain a surjection ∩mi → Ind(m1/m

2
1)

which is a surjection of L#[G × Γ]-modules. In a similar fashion we obtain a
surjection ∩mi → Ind(m1/m

2
1) of L

#[G× Γ]-modules.
Now the isomorphism TxX ∼= (W1)k(x) of k(x)#[Gx]-modules yields the iso-

morphism Ty1(XL) = Tx(X) ⊗k(x) L ∼= (W1)L of L#[S]-modules, which re-

stricts to an isomorphism Ty1ZL
∼= (W2)L. Since m1/m

2
1
∼= (Ty1XL)

∨ and

Documenta Mathematica 20 (2015) 269–332



318 J. Heller, M. Voineagu, P. A. Østvær

m1/m
2
1
∼= (Ty1ZL)

∨ we obtain a commutative diagram of L#[G× Γ]-modules

RL

����

∩mi

��

// //? _oo Ind(m1/m
2
1)

����

∼= // Ind((W1)
∨
L)

����
(R/I)L ∩mi

// //? _oo Ind(m1/m
2
1)

∼= // Ind((W2)
∨
L).

The kernel of the action of G × Γ on L is equal to G. Since |G| is invertible
in L, the ring L#[G×Γ] is semi-simple, see e.g.,[Kün04, Lemma 1.3]. We may
therefore choose compatible splittings Ind((W1)

∨
L) → ∩mi and Ind((W2)

∨
L) →

∩mi to the horizontal arrows. We have as well a L#[G × Γ]-module map
(W1)

∨
L → Ind((W1)

∨
L) given by ω 7→ ([αi]⊗ α

−1
i ω)i and similarly for (W2)

∨
L →

Ind((W2)
∨
L). We thus obtain a commutative square

(R)L

��

SymL((W1)
∨
L)

oo

��
(R/I)L SymL((W2)

∨
L)

oo

of k-algebras with G × Γ-action. Tracing through the construction of these
maps, we see that the compositions (W1)

∨
L → ∩mi → mi/m

2
i and (W2)

∨
L →

mi/m
2
i are L#[G × Γ]-module isomorphisms. This implies that the horizontal

arrows are étale at the mi and therefore applying Spec(−) to this square we
obtain the desired square of G× Γ-schemes over k.

�

Theorem 8.11. Let X be a smooth affine G-scheme and Z ⊆ X a closed
invariant smooth G-scheme of codimension one. Let x ∈ Z be a closed point.
Let W be a G-representation defined over k such that there is an Ix-equivariant
isomorphism Wk(x)

∼= TxX/TxZ. Then there is an invariant open neighborhood
U ⊆ X of x such that for any smooth G-scheme T we have isomorphisms of
sheaves on (U ∩ Z)× T

F(U×T,(U∩Z)×T )
∼= (F(−W ))GNis.

Proof. We need to see that Condition 5.1 implies that the hypothesis of the
previous lemma are satisfied. It suffices to see that every irreducible k(x)#[Gx]-
module is isomorphic to M ⊗k k(x) for some k[G]-module M . Since k(x)#[Gx]
is semi-simple, we may write it as a direct sum involving all of the irreducible
modules. Recall that if R is semi-simple, then Wedderburn’s theorem says
that R =

∏
EndDi

(Si) where the Si are the distinct irreducible modules and
Di = EndR(Si). Moreover, Di is a skew-field and ni = dimDi

(Si) is the mul-
tiplicity of Si in the module decomposition R = ⊕Sni

i . Condition 5.1 implies
that there are irreducible k[G]-modules M1, . . . ,Md which form a complete set
of irreducible k[Ix]-representations. Each Mi is one-dimensional and d = |Ix|.
Each M ′

i := Mi ⊗k k(x) is an irreducible k(x)#[Gx]-module. Any k(x)#[Gx]-
module isomorphism M ′

i
∼= M ′

j is also a k(x)[Ix]-module isomorphism. Since
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the {M ′
i} form d-distinct irreducible k(x)[Ix]-modules, they are also d-distinct

irreducible k(x)#[Gx]-modules. We claim that this is a complete list of irre-
ducible k(x)#[Gx]-modules. First note that we have Endk(x)#[Gx](M

′
i) = F ,

where F = k(x)Gx is the fixed field. Write n = [k(x) : F ] = |Gx/Ix|. Since
EndF (M

′
i) = (M ′

i)
n, each M ′

i appears with multiplicity n in this decomposi-
tion. Comparing dimensions (as k(x)-vectorspaces) we see that the M ′

i form a
complete list of irreducible k(x)#[Gx]-modules.
Let W1 and W2 be G-representations satisfying the hypothesis of the previous
lemma. Set W = W1/W2. By the previous lemma, after shrinking X around
x, there is an equivariant Cartesian square,

Z //

��

X

��
A(W2) // A(W1)

where the vertical maps are étale. Proceeding as in [MVW06, Theorem 23.12]
yields the result. �

8.2. Proof of homotopy invariance. We remind the reader that G is as-
sumed to satisfy Condition 5.1.

Theorem 8.12 (Homotopy Invariance). Let F be a homotopy invariant
presheaf with equivariant transfers on GSm/k. Then Hn

GNis(−, FGNis) is also
a homotopy invariant presheaf with equivariant transfers.

Proof. By Theorem 4.15, Hn
GNis(−, FGNis) is a presheaf with equivariant trans-

fers and it remains to verify that it is homotopy invariant. The case n = 0
is Proposition 8.1. We may thus assume that F = FGNis and we proceed
by induction on n. Let X be a smooth G-scheme and consider the map
π : X × A

1 → X and the Leray spectral sequence

Hp
GNis(X,R

qπ∗F )⇒ Hp+q
GNis(X × A

1, F ).

We have that π∗F = F since π∗F (U) = F (U × A1) ∼= F (U). By induc-
tion we have that Rqπ∗F = 0 for 0 < q < n. The spectral sequence col-
lapses by Theorem 8.14, yielding the desired isomorphism Hn

GNis(X ;FGNis) =
Hn
GNis(X × A1;FGNis). �

Lemma 8.13. Let X be a smooth G-scheme over k, Z ⊆ X a closed invariant
subset such that codim(Z) ≥ 1, and x a point of X. Then there is an open
invariant neighborhood U ⊆ X of x and a sequence of invariant reduced closed
subschemes ∅ = Y−1 ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Yk in U satisfying the following two
properties.

(1) The G-schemes Yi − Yi−1 are smooth invariant divisors on U − Yi−1.
(2) U ∩ Z ⊆ Yk.

Proof. The argument is similar to [Voe00, Lemma 4.31]. The key point is that
under our assumptions, there is a smooth equivariant curve p : U → V and so
the induction argument of loc. cit. applies here.
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�

Now we are ready to prove the vanishing of Rnπ∗F .

Theorem 8.14. Let X be a smooth G-scheme over k and F a homotopy invari-
ant equivariant Nisnevich sheaf with transfers. Assume that that Rqπ∗F = 0
for 0 < q < n, and that Hp

GNis(−, F ) is homotopy invariant for p < n. Then
Rnπ∗F = 0 as well.

Proof. We may assume that X is equivariantly irreducible. We need to show
that given an α ∈ Hn

GNis(X × A1, F ) it becomes zero on an equivariant Nis-
nevich cover of X . Let J denote the set of generic points of X . By Theorem
7.23, Hn

GNis(J × A1, F ) = 0. This implies that there is an open dense V ⊆ X
such that α|V vanishes. Let Z = X − V with its reduced structure. It now
suffices to show that

Hn
GNis(X × A

1, F )→ Hn
GNis((X − Z)× A

1, F )

is injective locally in the equivariant Nisnevich topology on X . Using Lemma
8.13 we may assume that Z is a smooth invariant divisor. We are thus reduced
to showing that

(8.15) Hn
GNis(X

′ × A
1, F )→ Hn

GNis((X
′ − Z ′)× A

1, F )

is injective where X ′ is a smooth affine Heneselian semilocal G-scheme over k
with a single closed orbit and Z ′ ⊆ X ′ is a smooth invariant divisor.
Write i : Z ′ → X ′ and j : U ′ = X ′ − Z ′ → X ′. The map (8.15) factors as

Hn
GNis(X

′ × A
1, F )

τ
−→ Hn

GNis(X
′ × A

1, j∗j
∗F )

η
−→ Hn

GNis(X
′ − Z ′ × A

1, j∗F )

(where we view F as a sheaf on X ′×A1). We show that each of these maps is
injective.
First we show that η is injective. We begin by showing that Rqj∗F = 0
for 0 < q < n. By the inductive hypothesis we have that Hq

GNis(−, F ) is a
homotopy invariant presheaf with equivariant transfers. Since q > 0 we have
Hq
GNis(−, F )GNis = 0. By Theorem 8.11 there is a G-representation W such

that (Hq(F )(−W ))GNis ∼= Hq(F )(X′×A1,Z′×A1). By Proposition 8.4 we have
that (Hq(F )(−W ))GNis = ((Hq(F )GNis)(−W )))GNis = 0. Finally, by Lemma
8.7, we have

Rqj∗F ∼= i∗H
q(F )(X′×A1,Z′×A1)

∼= i∗(H
q(F )GNis)GNis = 0

and so Rqj∗F = 0 as claimed. Now consider the Leray spectral sequence

Hp
GNis(X

′ × A
1, Rqj∗(j

∗F ))⇒ Hp+q
GNis(X

′ − Z ′, j∗F ).

Since Rqj∗F = 0 for 0 < q < n we obtain an exact sequence

0→ Hn
GNis(X

′×A1, j∗j
∗F )

η
−→ Hn

GNis(U
′×A1, j∗F )→ H0(X ′×A1, Rnj∗j

∗F ).

In particular η is injective as required.
It remains to show that τ is injective as well. By Theorem 7.13 we have an
injection F → j∗j

∗F . Combining this with (8.6) we have an exact sequence

0→ F → j∗j
∗F → i∗F(X′×A1,Z′×A1) → 0.
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As noted in the previous paragraph we have ((F )(−W ))GNis ∼= (F )(X′×A1,Z′×A1)

as sheaves on Z ′×A1. Consider the long exact sequence associated to the above
short exact sequence,

Hn−1(X ′ × A
1, j∗j

∗F )→ Hn−1(Z ′ × A
1, F(−W ))→ Hn(X ′ × A

1, F )

→ Hn(X ′ × A
1, j∗j

∗F )→ Hn(Z ′ × A
1, F(−W )).

It suffices to show that Hn−1(X ′ × A1, j∗j
∗F ) → Hn−1(Z ′ × A1, F(−W )) is

onto. For n > 1 we have that Hn−1(Z ′ × A1, F(−W )) = Hn−1(Z ′, F(−W )) = 0,
by homotopy invariance of F(−W ), the induction hypothesis and that Z ′ is a
semilocal Hensel G-scheme with one orbit. It remains to consider n = 1 and
show that

F (U ′ × A
1) = H0(X ′ × A

1, j∗j
∗F )→ H0(Z ′ × A

1, F(−W ))

is surjective. By homotopy invariance of F and F(−W ) this map is identified
with the map F (U ′) → F(−W )(Z

′). By Theorem 8.11 and (8.6) we have a
surjection

j∗j
∗F → i∗(F(−W ))GNis → 0

which shows that F (U ′) → F(−W )(Z
′) is surjective because X ′ is a Henselian

semilocal G-scheme with a single orbit. We conclude that τ is injective and the
proof of the theorem is complete. �

8.3. Applications of homotopy invariance. As before, we assume that
G satisfies Condition 5.1.

Theorem 8.16. Let F be a homotopy invariant presheaf with equivariant trans-
fers on GSm/k. Let S be a smooth affine semilocal G-scheme over k with a
single closed orbit and W a one-dimensional representation. Then for any
invariant open U ⊆ A(W ) ⊆ P(W ⊕ 1) and any n > 0,

Hn
GNis(S × U, F ) = 0.

In particular, Hn
GNis(S, F ) = 0 for n > 0.

Proof. By Theorem 8.12, Hn
GNis(−, F ) is a homotopy invariant presheaf with

equivariant transfers, in particular the second statement follows from the first.
By Corollary 7.14 it suffices to show that Hn

GNis(J × U, F ) = 0 for any equiv-
ariantly irreducible zero dimensional G-scheme J over k. This follows from
Theorem 7.23.

�

Theorem 8.17. Let F be a homotopy invariant equivariant Nisnevich sheaf
with transfers on GSm/k. Let W be a one-dimensional representation and X
a smooth G-scheme over k. Then

Hn
GNis(X × (A(W )− 0), F ) ∼= Hn

GNis(X,F )⊕H
n
GNis(X,F(−W )).

Proof. Write π : X × (A(W )− 0)→ X for the projection. Consider the Leray

spectral sequence Hp
GNis(X,R

qπ∗F ) ⇒ Hp+q
GNis(X × (A(W ) − 0), F ). We have

by Theorem 8.16 that Hq
GNis(S × (A(W ) − 0), F ) = 0 for any smooth affine

Documenta Mathematica 20 (2015) 269–332



322 J. Heller, M. Voineagu, P. A. Østvær

semilocal G-scheme S with a single closed orbit and any q > 0 and therefore
this spectral sequence collapses. We therefore have that Hn

GNis(X × (A(W )−
0), F ) ∼= Hn

GNis(X, π∗F ). Since F is a sheaf, Proposition 8.3 is seen to imply
that there is a decomposition π∗F = F ⊕ F(−W ) of sheaves on X and we are
done. �

Our final application in this section is to show that the equivariant Nisnevich
and equivariant Zariski cohomology with coefficients in a homotopy invariant
presheaf with transfers agree.

Theorem 8.18. Let F be a homotopy invariant, equivariant Nisnevich sheaf
with transfers on GSm/k. Then for any smooth quasi-projective G-scheme X
we have an isomorphism

Hn
GZar(X,F )

∼= Hn
GNis(X,F ).

Proof. Consider the Leray spectral sequence Hp
GZar(X,H

q) ⇒ Hp+q
GNis(X,F )

where Hq is the equivariant Zariski sheafification of the presheaf U 7→
Hq
GNis(U, F ) on XGZar. The result will follow if we see that Hq = 0 for

q > 0. The points of XGZar are the semilocal rings OX,Gx of an orbit Gx ⊆ X .
By Theorem 8.12, the presheaf Hq

GNis(−, F ) is a homotopy invariant presheaf
with equivariant transfers on GSm/k and so the vanishing of Hq follows from
Theorem 8.16. �

8.4. The group (Z/2)n. In this subsection we let G = (Z/2)n and write ǫi
for the generator of the ith factor.

Definition 8.19. Let I ⊆ {1, . . . n}. Define the (Z/2)n-scheme GσI
m to be Gm

equipped with the (Z/2)n-action specified by letting the generator ǫi of the ith
factor act by

ǫi(x) =

{
1/x i ∈ I

x else.

When G = Z/2 we simply write Gσm := G
σ{1}
m .

If I = ∅, then G
σI
m is simply Gm equipped with trivial action. Note that if I 6= ∅

then GσI
m is not an invariant open in any representation and so the consider-

ations in the previous subsections do not immediately apply to GσI
m . These

schemes will be important for the cancellation theorem in the next section. We
first record a few useful analogues of the previous results for these G-scheme.
Define F(−σI ) to be the presheaf given by

F(−σI )(X) := coker(F (X)
π∗

−→ F (X ×G
σI
m ))

where π : GσI
m → Spec(k) is the structure map. Note that inclusion at {1}

yields an equivariant section i1 : Spec(k)→ GσI
m . We thus have

F (X ×G
σI
m ) = F (X)⊕ F(−σI )(X).

In particular if F is a presheaf with equivariant transfers, homotopy invariant,
or a sheaf then so if F .
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Recall that σI is the representation specified by letting ǫi act on k by −1 if
i ∈ I (and by the identity otherwise). The scheme underlying P(σI ⊕ 1) is P1

and ǫi acts by [a : b] 7→ [−a : b] if i ∈ I (and by the identity otherwise) and GσI
m

embeds into P(σI ⊕ 1) as an open invariant subscheme (but is not contained in
A(σI)).

Lemma 8.20. Let X∞ be the complement of GσI
m ⊆ P(σI ⊕ 1) and Z a finite,

invariant set of closed points, disjoint from X∞. The triple (P(σI ⊕ 1), X∞, Z)
is split over any invariant open subscheme U ⊆ GσI

m .

Proof. The argument is a simpler version of the argument given in Lemma 7.9.
The key point is that Pic((GσI

m ×GσI
m )/(Z/2)n) = 0 by [Kan79, Lemma 2.1] or

[Mag80, Corollary 12]. �

Theorem 8.21. Let F be a homotopy invariant presheaf, S a smooth semilocal
G-scheme over k with a single closed orbit, and U ⊆ G

σI an invariant open
subscheme. Then

Hi
GNis(S × U, FGNis) =

{
F (U) i = 0

0 i > 0.

Proof. For each i, Hi
GNis(−, FGNis) is a homotopy invariant presheaf with equi-

variant transfers. It thus suffices by Corollary 7.14 to treat the case when S
is a zero dimensional smooth (Z/2)n-scheme. This case follows exactly as in
the argument for Theorem 7.23, replacing the use of Lemma 7.9 with Lemma
8.20. �

Proposition 8.22. Let F be a homotopy invariant presheaf with equivariant
transfers on GSm/k. Then

(FGNis)(−σI ) = (F(−σI ))GNis

for any smooth semilocal G-scheme S with a single closed orbit.

Proof. The argument is the same as in Proposition 8.4. �

Theorem 8.23. Let F be a homotopy invariant equivariant Nisnevich sheaf
with transfers on GSm/k. Then

Hn(X ×G
σI
m , F )

∼= Hn(X,F )⊕Hn(X,F(−σI )).

Proof. Write π : X × GσI
m → X for the projection. By Theorem 8.21 we have

that Hq(S × GσI
m , F ) = 0 for any smooth semilocal G-scheme S over k and

q > 0. Therefore Rqπ∗F = 0 for q > 0 and so the Leray spectral sequence
degenerates yielding Hn(X ×G

σI
m , F )

∼= Hn(X, π∗F ). Since π∗F = F ⊕F(−σI )

we are done. �
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9. Cancellation Theorem

We apply the machinery developed in the previous sections in order to establish
an equivariant version of Voevodsky’s Cancellation Theorem for (Z/2)n. The
argument given here is an equivariant modification of Voevodsky’s argument
in [Voe10a]. In this section we write G = (Z/2)n and ǫi denotes the generator
of the ith copy of Z/2. Note that G = (Z/2)n satisfies Condition 5.1 over any
field (of characteristic different from two).

Remark 9.1. Voevodsky’s Cancellation Theorem involves Tate spheres and
the equivariant version involves Tate spheres equipped with a group action. If
V is a one-dimensional representation, then the scheme underlying A(V )−{0}
is Gm and so these would be a natural candidate for an equivariant cancellation
theorem. Our arguments do not work for these equivariant Tate spheres. The
argument we give requires that the divisor D(gn) used in [Voe10a] (see below)
is invariant, when equipped with the action coming from that on Gm. This
only happens if Gm is equipped with an action which is compatible with the
group structure on Gm. The action on A(V ) − {0} is not compatible with
the group structure on Gm and so the argument below does not apply to
these equivariant Tate spheres. Since Aut(Gm) = Z/2, the possible actions
on the Tate sphere, which are suitable for the argument below, are limited.
Furthermore, we need that each one dimensional representation corresponds
to an action on Gm, compatible with the group structure of Gm. These two
requirements limit the groups G for which the argument below can work to
G = (Z/2)n. An equivariant cancellation theorem for other groups satisfying
Condition 5.1 would likely involve the equivariant Tate spheres A(V )−{0} and
would have to find a way around the fact that D(gn) is not invariant.

Let Z be a smooth G-scheme and z ∈ Z an invariant rational point. Write e :
Z → Z for the equivariant idempotent defined as the composition Z → z → Z.
Now for G-schemes X , Y define

Cork(X ∧ (Z, z),Y ∧ (Z, z)) :=

{V ∈ Cork(X × Z, Y × Z) | V ◦ (idX × e) = 0 = (idY ◦ e) ◦ V}.

We usually omit the basepoint z ∈ Z from the notation when it is understood
that Z is a pointed scheme and simply write Cork(X ∧Z, Y ∧Z) for this group.
Note that this group inherits a natural G-action from that on Cork(X×Z, Y ×
Z). We write as usual

GCork(X ∧ Z, Y ∧ Z) := Cork(X ∧ Z, Y ∧ Z)
G.

This construction applies in particular to the G-varieties (GσI
m , 1) introduced in

Definition 8.19. Write fi, i = 1, 2 for the projection fi : X×Gm×Y ×Gm → Gm

to the ith copy of Gm. More generally write fσI

i : X×G
σI
m ×Y ×G

σI
m → Gm to

the ith copy of Gm (considered with trivial action). Define rational functions
gσI
n by

gσI
n :=

(fσI

1 )n+1 − 1

(fσI

1 )n+1 − (fσI

2 )
.
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We consider the associated divisors D(gσI
n ). Observe that this is an invariant

divisor. Of course the variousD(gσI
n ) are all exactly the same divisor nonequiv-

ariantly, only the G-actions differ. The underlying divisor is the divisor of the
rational function gn = (fn+1

1 − 1)/(fn+1
1 − f2). This is the divisor considered

in [Voe10a]. We simply write Dn for the divisor D(gσI
n ) when context makes

clear the G-action.

Lemma 9.2 ([Voe10a, Lemma 4.1]). For any Z ∈ Cork(X × GσI
m , Y × GσI

m )
there exists an N such that for all n ≥ N the divisor Dn intersects Z properly
over X.

For Z ∈ Cork(X ×GσI
m , Y ×GσI

m ) the intersection Z·Dn is an equidimensional
relative cycle once n is large enough. Define ρn(Z) ∈ Cork(X,Y ) to be the
projection to X × Y of this intersection. Observe that g·ρn(Z) = ρn(g·Z) for
g ∈ G. Therefore if Z ∈ GCork(X×GσI

m , Y ×G
σI
m ) then ρn(Z) ∈ GCork(X,Y ).

If both ρn(Z) and ρm(Z) are defined, they differ only up to equivariant A1-
homotopy, see [Voe10a].

Lemma 9.3 ([Voe10a, Lemmas 4.3, 4.4, 4.5]).

(1) For W ∈ GCork(X,Y ) and n ≥ 1 we have ρn(W × id
G

σI
m
) =W.

(2) Let e denote the composition G
σI
m → {1} → G

σI
m . Then ρn(idX×e) = 0

for all n ≥ 0 and all g ∈ G.
(3) Let Z ∈ GCork(X×GσI

m , Y ×GσI
m ) such that ρnZ is defined. Consider

an arbitrary W ∈ GCork(X
′, X). Then ρn(Z ◦ (W× id

G
σI
m
)) is defined

and

ρn(Z ◦ (W × id
G

σI
m
)) = ρn(Z) ◦W ,

where ◦ denotes composition of correspondences.
(4) Let Z ∈ GCork(X × GσI

m , Y × GσI
m ) be such that ρnZ is defined and

f : X ′ → Y ′ a morphism of schemes. Then ρn(Z × f) is defined and

ρn(Z × f) = ρn(Z)× f.

Write IσI
∈ GCork(G

σI
m ,G

σI
m ) for the finite correspondence given by IσI

:=
id− e. As usual, when context makes the action clear, we simply write I.

Proposition 9.4. There is an equivariant homotopy

H ∈ GCork(G
σI
m ∧G

σI
m ∧ A

1,GσI
m ∧G

σI
m )

such that H0−H1 = τ − id
G

σI
m ∧G

σI
m
, where τ is the endomorphism of GσI

m ∧G
σI
m

which switches the factors.

Proof. The case of Gm with trivial action (i.e. I = ∅) is [BV08, Proposition
3.2].
There is a canonical map p : GσI

m ×GσI
m → Sym2(GσI

m ) with transpose pt. Then
ptp ∈ Cork(G

σI
m × GσI

m ,G
σI
m × GσI

m ) is equal to id + τ . Write α : GσI
m × GσI

m →
GσI
m ×GσI

m for the map defined by (x, y) 7→ (xy, 1).
Define the G-scheme MI to have underlying scheme MI = Gm × A

1 and the
action is specified by letting ǫi act by (x, y) 7→ (x−1, y/x) if i ∈ I (and the
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identity otherwise). The map GσI
m ×GσI

m →MI , (x, y) 7→ (xy, x+y) is an equi-
variant isomorphism. Therefore we have an equivariant A1-homotopy between
the correspondences p and pα. Explicitly, we have an equivariant homotopy
H : MI × A1 →MI , given by (x, y, t) 7→ (x, t(1 + x) + (1− t)y) which induces
the desired homotopy.
We therefore have that id+τ = ptp ≃ ptpα = α+τα. Now α+τα takes values in
1×GσI

m ∪G
σI
m ×1 and therefore id = τ in GCork(G

σI
m ∧G

σI
m ,G

σI
m ∧G

σI
m )/ ∼A1 �

For W ∈ GCork(X ∧GσI
m , Y ∧GσI

m ) define

W ×(τ) I ∈ GCork(X ∧G
σI
m ∧G

σI
m , Y ∧G

σI
m ∧G

σI
m )

by W ×(τ) I = (idY × τ) ◦ (W × I) ◦ (idX × τ).

Lemma 9.5. Let W ∈ GCork(X ∧ GσI
m , Y ∧ GσI

m ). There is an equivariant
homotopy

φ = φW ∈ GCork(X × A
1 ∧G

σI
m ∧G

σI
m , Y ∧G

σI
m ∧G

σI
m )

such that φ0 − φ1 =W ×(τ) I −W × I.

Proof. Let H ∈ GCork(G
σI
m ×GσI

m ×A1,GσI
m ×GσI

m ) be the homotopy as in the
previous proposition. We proceed as in [Sus03, Lemma 4.70]. Let φ = φW be
defined by

φ = (idY ×H) ◦ [(±(W × I)× idA1 ]+

+(idY × τ) ◦ (W × I) ◦ (idX ×H).

If W is invariant then φ is also invariant. �

Recall that if F is a presheaf we write CnF for the presheaf X 7→ F (X ×∆n
k ).

Theorem 9.6. Let X, Y be smooth (Z/2)n-schemes over k. The homomor-
phism of simplicial abelian groups

GCork(X ×∆•
k, Y )→ GCork(X ×∆•

k ∧G
σI
m , Y ∧G

σI
m )

given by Z 7→ Z × I is a weak equivalence.

Proof. We follow the nonequivariant argument, [Sus03, Theorem 4.7]. We work
with the associated normalized chain complexes to the displayed simplicial
abelian groups.
First we show that this map is injective on homology groups. Suppose that
W ∈ GCork(X × ∆n, Y ) is a cycle such that W × I is a boundary. Then
there is V ∈ GCork((X × ∆n+1) ∧ GσI

m , Y ∧ GσI
m ) and ∂n+1(V) = W × I and

∂i(W) = 0 for 0 ≤ i ≤ n. By Lemma 9.2 there is N such that ρN (V) is defined.
By Lemma 9.3 we have that ρN(∂iW) is defined as well. Moreover by Lemma
9.3 we have

∂i(ρN (V)) = ρN(∂i(V)) = 0, 0 ≤ i ≤ n

∂n+1(ρN (V)) = ρN (∂n+1(V)) = ρN (W × I) =W .

Therefore W is itself a boundary and so the map on homology is an injection.
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Now we show that the map on homology is surjective. Let V ∈ GCork(X ×
∆n ∧ GσI

m , Y ∧ GσI
m ) be a cycle (i.e., V ∈ GCork((X × ∆n) ∧ GσI

m , Y ∧ GσI
m )

satisfies ∂i(V) = 0 for 0 ≤ i ≤ n). Consider the homotopy φ = φV from Lemma
9.5 which satisfies

φ0 − φ1 = V ×(τ) I − V × I.

Applying ρN (with respect to the second factor of GσI
m ) and using Lemma 9.3

we have

ρN (V × I) = V

ρN (V ×(τ) I) = ρN (V)× I.

Let ψN = ρN (φ). We have

(ψN )0 − (ψN )1 = ρN (V)× I − V

and so ∂i(ψN ) = ρN (∂iφV) = 0 (because ∂iφV = φ∂iV = 0). We therefore have
that ψN ∈ GCork(X ×∆•

k ∧GσI
m , Y ∧GσI

m ) is a cycle. The two restrictions

GCork(X × A
1 ×∆•

k ∧G
σI
m , Y ∧G

σI
m )→ GCork(X ×∆•

k ∧G
σI
m , Y ∧G

σI
m )

induced by 0 ∈ A1 and 1 ∈ A1 induce the same map in homology. Therefore
(ψN )0 − (ψN )1 = ρN (V)× I − V is a boundary in GCork(X ×∆•

k ∧GσI
m , Y ∧

GσI
m ). �

We are now ready to prove the equivariant cancellation theorem. Let F be a
homotopy invariant equivariant Nisnevich sheaf with transfers.

Theorem 9.7 (Equivariant Cancellation). Let X be a smooth (Z/2)n-scheme.
Then

Hn
GNis(X,C∗Ztr,G(Y )) = Hn

GNis(X ∧G
σI
m , C∗Ztr,G(Y ∧G

σI
m )).

Proof. The argument is formally the same as in the nonequivariant case given
all of the machinery developed in the previous sections. For convenience we give
some details. Consider the projection π : X ×GσI

m → X . We first consider the
Leray spectral sequence (which is convergent as X has bounded cohomological
dimension)

Ep,q2 = Hp(X,Rqπ∗C∗Ztr,G(Y ∧G
σI
m )) =⇒ Hp+q(X ×G

σI
m , C∗Ztr,G(Y ∧G

σI
m )).

Write Hq for the qth cohomology sheaf of the complex C∗Ztr,G(Y ∧ GσI
m ).

To compute the complex Rπ∗C∗Ztr,G(Y ∧ GσI
m ) we use the hypercohomology

spectral sequence,

Ep,q2 = Rpπ∗H
q =⇒ Hp+q(Rπ∗C∗Ztr,G(Y ∧G

σI
m )).

The stalks of Rpπ∗H
q areHp(S×GσI

m , H
q) where S is a smooth affine semilocal

Henselian G-scheme over k with a single closed orbit. By Theorem 8.21 we have
Rpπ∗H

q = Hp
GNis(S × GσI

m , H
q) = 0 for p > 0. The spectral sequence thus

degenerates and we have

Hq(Rπ∗Ztr,G(Y ∧G
σI
m )) = π∗H

q.
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The stalks of π∗H
q are H0

GNis(S×GσI
m , H

q) which, by Theorem 8.23, split into
the direct sum

H0
GNis(S ×G

σI
m , H

q) = Hq(S)⊕Hq
(−σI )

(S).

By Proposition 8.22 we have that (HqGNis)(−σI ) = (Hq(−σI )
)GNis. Therefore we

have

Hq(Rπ∗C∗Ztr,G(Y ∧G
σI
m )) = Hq(C∗Ztr,G(Y ∧G

σI
m ))⊕Hq(C∗Ztr,G(Y )).

Thus C∗Ztr,G(Y ∧ GσI
m ) ⊕ C∗Ztr,G(Y ) → Rπ∗C∗Ztr,G(Y ∧ GσI

m ) is a quasi-
isomorphism and therefore

H∗(X×GσI
m , C∗Ztr,G(Y ∧G

σI
m ))=H∗(X,C∗Ztr,G(Y ∧G

σI
m ))⊕H∗(X,C∗Ztr,G(Y )),

as required. �

We finish by relating the complexes C∗Ztr,G(G
σI
m ) to the ones introduced in

Section 5. After a change of coordinates P(σI ⊕ 1) can be viewed as P1 where
ǫi acts by [x : y] 7→ [y : x] if i ∈ I (and is the identity otherwise) and GσI

m

becomes identified with P1−{[0 : 1], [1 : 0]}. Write ZI for Z/2 considered with
the action where ǫi acts nontrivially if i ∈ I (and trivially otherwise). Consider
the Cartesian square in GSm/k

GσI
m ×ZI

��

// A1 ×ZI

φ

��
GσI
m

// P1.

The action on A1×ZI = A1
∐

A1 is specified by letting ǫi switching the factors
if i ∈ I (and is the identity otherwise). The map φ sends (x, e) to [x : 1] and
(x, σ) to [1 : x]. Note that φ−1({[0 : 1], [1 : 0]}) ∼= {[0 : 1], [1 : 0]} is an
equivariant isomorphism. In particular, the above square is an equivariant
distinguished square.
Recall that we write SσI for the topological representation sphere associated
to the (Z/2)n-representation σI and Ztop(σI) = cone(Ztr,G(ZI) → Z), see
Example 5.11. Using the square above, we obtain a quasi-isomorphism

(C∗

(
Ztr,G(G

σI
m )/Z)⊗L

tr Ztop(σI)
)
≃ C∗

(
Ztr,G(P(σI ⊕ 1))/Ztr,G(P(σI))

)
.

For a representation V , define the equivariant Nisnevich sheaf with transfers
Ztr,G(T

V ) by

Ztr,G(T
V ) := Ztr,G(P(V ⊕ 1))/Ztr,G(P(V ))

and similarly for expressions such as Ztr,G(X ∧ T V ).
Write iX : Z(X × P(V )) → Z(X × P(V ⊕ 1)) for the inclusion. If F
is a complex of equivariant Nisnevich sheaves, write Hn

GNis(X ∧ T
V , F ) :=

ExtnGNis(cone(iX), F ).
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Theorem 9.8. Let X be a smooth (Z/2)n-scheme and V a finite dimensional
representation. Then

Hn
GNis(X,C∗Ztr,G(Y )) ∼= Hn

GNis(X ∧ T
V , C∗Ztr,G(Y ∧ T

V )).

Proof. It is enough to treat the case of a one dimensional representation. Every
one dimensional representation of (Z/2)n is of the form σI . Using Theorem 4.15
and a standard spectral sequence argument, one sees that the displayed map
of hypercohomology groups can be computed as

Extn(C∗Ztr,G(X), C∗Ztr,G(Y ))

→ Extn(C∗Ztr,G(X)⊗L

tr C∗Ztr,G(T
V ), C∗Ztr,G(Y )⊗L

tr C∗Ztr,G(T
V )),

where Ext is computed in D−(GCork), the derived category of equivariant
Nisnevich sheaves with transfers. If V is a trivial representation (i.e., I = ∅)
then we have C∗Ztr,G(T

V ) ≃ C∗(Ztr,G(Gm)/Z)[1]. More generally if V = σI ,
we have C∗Ztr,G(T

V ) ≃ C∗(Ztr,G(G
σI
m )/Z)⊗L

trZtop(σI). Both shift and Ztop(σI)
are invertible (see Lemma 5.12), and so the theorem follows from Theorem
9.7. �
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Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société
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