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Abstract. We study the operational bivariant theory associated
to the covariant theory of Grothendieck groups of coherent sheaves,
and prove that it has many geometric properties analogous to those
of operational Chow theory. This operational K-theory agrees with
Grothendieck groups of vector bundles on smooth varieties, admits
a natural map from the Grothendieck group of perfect complexes
on general varieties, satisfies descent for Chow envelopes, and is A1-
homotopy invariant.

Furthermore, we show that the operational K-theory of a complete
linear variety is dual to the Grothendieck group of coherent sheaves.
As an application, we show that the K-theory of perfect complexes
on any complete toric threefold surjects onto this group. Finally we
identify the equivariant operational K-theory of an arbitrary toric
variety with the ring of integral piecewise exponential functions on
the associated fan.
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14M25, 14L30

1 Introduction

The Grothendieck groups of vector bundles K◦(X) and of coherent sheaves
K◦(X) are important invariants of a quasi-projective scheme X , and each
plays a central role in one of the classical formulations of Riemann-Roch the-
orems. The functor K◦ is covariant for proper maps, and K◦ is contravari-
ant for arbitrary maps.1 The two are related by a natural homomorphism
K◦(X) → K◦(X), which is an isomorphism whenever X is smooth.

1We adopt the convention, standard in intersection theory but not in K-theory, of using
superscripts for naturally contravariant functors, and subscripts for covariant functors.
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As part of a program to unify and strengthen several variants of the Riemann-
Roch theorem, Fulton and MacPherson introduced the notion of a bivariant
theory, which associates a group to each morphism of quasiprojective schemes
X → Y , and is equipped various natural operations [FM]. Their bivariant
group

K◦(X
f
−→ Y )

is the Grothendieck group of f -perfect complexes on X .2 These groups encom-
pass both the covariant functor

K◦(X) = K◦(X → pt)

and the contravariant functor

K◦(X) = K◦(X
id
−→ X),

but possess a great deal more structure, allowing for simplified proofs of the
Riemann-Roch theorems. The corresponding Riemann-Roch theorems were
later extended to remove the quasi-projective hypothesis in [FG].

As a bivariant algebraic K-theory, however, Grothendieck groups of f -perfect
complexes are somewhat less than one should hope for.3 The independent
squares in this theory—those commuting squares for which one can define a
pullbackK◦(X → Y ) → K◦(X ′ → Y ′)—are only the Tor-independent squares,
because there is no obvious pullback of an f -perfect complex through an arbi-
trary fiber square [FM, Section 10.8]. Furthermore, the contravariant groups
K◦(X) are difficult to compute on singular spaces. Even on spaces with mild
singularities, such as simplicial projective toric varieties, Grothendieck rings
of vector bundles (or perfect complexes) can be uncountable [Gu], and are
not A1-homotopy invariant [CHWW]. Further complications arise on singular
spaces that are not Q-factorial or quasi-projective, where coherent sheaves are
not known to have resolutions by vector bundles. On such spaces, it is not
known whether Grothendieck rings of vector bundles and perfect complexes
agree [To2]. For instance, there are complete, singular, nonprojective toric
threefolds, such as [Pa2, Example 4.13], that have uncountable Grothendieck
rings of perfect complexes [GK], but are not known to have any nontrivial
vector bundles at all.

2For a morphism f of quasiprojective schemes, an f -perfect complex is a complex of
coherent sheaves P• with the property that, when f is factored as

X
ι
−→ M

p
−→ Y,

with ι a closed embedding and p a smooth morphism, ι∗P• can be resolved by a finite
complex of vector bundles on M .

3A “bivariant algebraic K-theory” was also defined by Kassel [K] (see also [Cu], [CT],
and [We2, Ex. II.2.14]). This is distinct from the bivariant theory studied by Fulton and
MacPherson, as it depends on a pair of algebras, but does not involve a map between them.
However, it does include product operations, as well as K◦ and K◦ as special cases.
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In this paper, we study basic geometric properties of the operational bivariant
K-theory associated to the covariant theory of Grothendieck groups of coherent
sheaves. Given any covariant homology-like theory, such as K◦, there is a
general construction outlined in [FM, §8] of an operational bivariant theory.4

Roughly speaking, an element of opK◦(X → Y ) is a collection of operators
K◦(Y

′) → K◦(X
′), indexed by fiber squares

X ′ ✲ Y ′

X
❄ f✲ Y,

❄

that commute with proper pushforward, flat pullback, and Gysin maps for
regular embeddings. A precise definition is given in Section 4. An f -perfect
complex P• determines a natural collection of operators, given by

[F ] 7→
∑

i

(−1)i[TorYi (P•,F )],

for a coherent sheaf F on Y ′. See, for instance, [Fu2, Ex. 18.3.16] or [SGA6,
IV, 2.12]. As explained in Section 3, at least in the case when f is a closed
embedding, these operators commute with proper pushforward, flat pullback,
and Gysin maps for regular embeddings, giving a natural map from K◦(X →
Y ) to opK◦(X → Y ).

Advantages of passing to the operational theory include the ability to work with
arbitrary fiber squares as independent squares, and computability on relatively
simple spaces, such as toric varieties. In future work, we intend to address
Grothendieck transformations and Riemann-Roch theorems in this operational
framework.

Our general results are given in the setting of separated schemes of finite type
over a fixed field. To describe them more precisely, let opK◦(X) denote the
contravariant part of operational K-theory, which is the associative ring of

operators opK◦(X
id
−→ X) corresponding to the identity map on X . Although

opK◦(X) has no obvious presentation in terms of generators and relations, we
show that it has desirable geometric properties and is computable in many
cases of interest. Furthermore, since the identity is a closed embedding, the
construction discussed above gives a natural map from the Grothendieck ring
K◦(X) of perfect complexes on X to opK◦(X).

Theorem 1.1. For any scheme X, the natural pull back map from opK◦(X)
to opK◦(X × A1) is an isomorphism.

4The relation between the covariant and contravariant parts of this operational theory are
loosely analogous to the relationship between (contravariant) differential forms and (covari-
ant) currents in differential geometry.
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Theorem 1.2. For a smooth scheme X, the natural maps from K◦(X) to
opK◦(X) and from opK◦(X) to K◦(X) are isomorphisms.

Theorem 1.3. For any complete linear variety X, the natural map from
opK◦(X) to Hom(K◦(X),Z), induced by push forward to a point, is an iso-
morphism.

Here, the class of linear varieties is the one studied by Totaro in [To1]. It
contains affine spaces of each dimension, the complement of any linear variety
embedded in an affine space, and any variety stratified by linear varieties. For
example, any toric variety or Schubert variety is a linear variety. One conse-
quence of Theorem 1.3 is that opK◦(X) is finitely generated for any complete
linear variety.

The A1-homotopy invariance of operational K-theory suggests the potential
for interesting connections to Weibel’s homotopy K-theory KH∗(X), another
variation on the K-theory of perfect complexes with good geometric properties
on singular spaces, which is A1-homotopy invariant by construction. See the
original paper [We1], as well as [We2, §IV.12] and [Ha] for details. In Section 5,
we make one first step toward exploring the relations between these theories.
Let K◦

naive(X) denote the Grothendieck group of vector bundles on X . In
Corollary 5.9 we show that if X has a smooth birational envelope then there is
a natural map from the degree zero part of KH∗(X) to opK◦(X), which forms
one step in a natural sequence of maps5

K◦
naive(X) → K◦(X) → KH◦(X) → opK◦(X) → K◦(X),

factoring the forgetful map K◦
naive(X) → K◦(X). In particular, such a map

exists for arbitrary varieties over a field of characteristic zero, and for toric
varieties over an arbitrary field. Examples 5.12, 5.13, and 7.5 show that
KH◦(X) → opK◦(X) is not always injective, even for normal projective toric
varieties.

For a toric variety X , the natural map K◦(X) → KH◦(X) is split surjective
[CHWW, Proposition 5.6]. If the map KH◦(X) → opK◦(X) is also surjective,
then we have a surjection K◦(X) → opK◦(X). (If, in addition, every coherent
sheaf on X is a quotient of a vector bundle, as is the case when X is smooth or
quasi-projective, then every class in opK◦(X) comes from a difference of vector
bundles.) In Theorem 7.1, we prove that for a three-dimensional toric variety,
the map KH◦(X) → opK◦(X) is indeed surjective. As mentioned earlier, it is
not known whether such a variety carries a nontrivial vector bundle. However,
the preceding observations, combined with Theorem 1.3, show that it does have
nontrivial perfect complexes:

Theorem 1.4. For any complete three-dimensional toric variety X over an
algebraically closed field, the map K◦(X) → Hom(K◦(X),Z) is surjective. In
particular, K◦(X) is nontrivial.

5If X is smooth, then each of these maps is an isomorphism.
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Theorem 1.4 can be understood as complementary to results of Gharib and
Karu [GK]. We find a finitely generated subgroup of nontrivial classes in
K◦(X), for an arbitrary complete toric threefold by lifting from KH◦(X); they
find a nontrivial k-vector space in the kernel of the map K◦(X) → KH◦(X),
for many interesting examples of complete toric threefolds.

In the body of the paper, we work equivariantly, with respect to an action of
a split torus T . Theorems 1.2 and 1.3 are the special cases of Theorems 5.7
and 6.1, respectively, where the torus is trivial. Theorem 1.1 is the special case
of Theorem 4.6 where both the torus and the affine bundle are trivial. The
last of our main results addresses the special case that initially motivated this
project, the equivariant K-theory of a singular toric variety.

Equivariant K-theory of toric varieties

Throughout this paper, by a toric variety we mean a normal rational variety,
together with a split torus acting with a free open orbit; such a variety corre-
sponds to a fan ∆ as described in [Fu1]. Let X be a toric variety with dense
torus T . The restriction of an equivariant vector bundle to a T -fixed point is a
representation of T , and these representations satisfy a compatibility condition:
whenever two fixed points are connected by an invariant curve, the correspond-
ing representations agree on its stabilizer. If X is smooth and complete, then
the induced localization map into a product of copies of the representation ring
of the torus,

K◦
T (X) →

∏

x∈XT

R(T ),

is an isomorphism onto the subring consisting of consisting of tuples of virtual
representations that satisfy this compatibility condition. Furthermore, the or-
dinary Grothendieck ring of vector bundles K◦(X) is the quotient of K◦

T (X) by
the ideal generated by differences of characters, giving a K-theoretic analogue
of the Stanley-Reisner presentation for the cohomology ring of X [VV]. These
results may be seen as K-theory versions of Goresky-Kottwitz-MacPherson
(GKM) localization for toric varieties [GKM, KR]. (All such localization the-
orems build on earlier work of many authors, including the seminal results of
Atiyah and Segal [AS].) These subrings of products of representation rings
appearing in the equivariant K-theory of smooth toric varieties have the fol-
lowing pleasant interpretation in terms of piecewise exponential functions on
the corresponding fan [BV, Section 2.4].

Let M be the character lattice of T , so the representation ring R(T ) is canon-
ically identified with the group ring Z[M ]. Each u ∈ M may be seen as an
integral linear function on the dual space NR = Hom(M,R), and the expo-
nentials of these linear functions are linearly independent. Therefore, R(T )
and Z[M ] are naturally identified with Exp(NR), the ring generated by the
exponential functions eu for u ∈ M . Elements of Exp(NR) can be expressed
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essentially uniquely as finite sums

a1e
u1 + · · ·+ are

ur ,

with ai ∈ Z and ui ∈ M . Similarly, when N ′
R
is a rational linear subspace of

NR, we write Exp(N
′
R
) for the ring generated by exponentials of linear functions

in M ′ = M/(N ′⊥
R

∩M).

Definition 1.5. Let ∆ be a fan in NR. The ring of integral piecewise

exponential functions on ∆ is

PExp(∆) =

{
continuous f : |∆| → R f |σ ∈ Exp(span(σ)) for each σ ∈ ∆

}
.

The identifications above give a canonical isomorphism from PExp(∆) to a
subring of a product of representation rings satisfying a natural compatibility
condition

PExp(∆) ∼= {(ρσ) ∈ Πσ∈∆R(Tσ) | ρσ|Tτ
= ρτ whenever τ � σ}.

Here, Tσ is the pointwise stabilizer of the orbit Oσ corresponding to a cone
σ ∈ ∆; if τ � σ then Tτ is a subgroup of Tσ. If E is an equivariant vector bundle
on X(∆), then the induced representations of pointwise stabilizers of orbits
satisfy the compatibility condition, and hence give an element of PExp(∆). In
the terminology of [Pa2], this piecewise exponential function is the trace of the
exponential of the piecewise linear function on a branched cover of ∆ associated
to E . Roughly speaking, this means that it is expressed locally as a sum of
exponentials of Chern roots.

The orbits Oσ are smooth, so opK◦
T (Oσ) is naturally isomorphic to

K◦
T (Oσ) = R(Tσ).

In Section 7, we show that the virtual representations associated to an opera-
tional K-theory class satisfy the compatibility condition, giving a natural map
from opK◦

T (X(∆)) to PExp(∆).

Theorem 1.6. Let X be the toric variety with dense torus T corresponding to
a fan ∆. Then the natural map from opK◦

T (X) to PExp(∆) is an isomorphism.

In other words, operational K-theory satisfies GKM localization with integer
coefficients on arbitrary toric varieties.

The construction of piecewise exponential functions associated to equivariant
vector bundles, described above, induces a natural localization homomorphism
from K◦

T (X) to PExp(∆) for arbitrary toric varieties ∆. This map factors
through the map from opK◦

T (X), and is an isomorphism when X is smooth,
but the kernel and image are not known in general, when X is singular.
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Our main theorems are closely analogous to well-known results in operational
Chow theory. Notably, Theorems 1.6 and 6.1 are K-theoretic versions of [Pa1,
Theorem 1] and [To1, Theorem 2], respectively. However, the proofs of the
foundational results that make such computations possible in operational K-
theory are substantially different from those in Chow theory. See the discussion
at the beginning of Section 5 for details.

To conclude this introduction, we give some examples illustrating the main
theorems.

Example 1.7. Fix N = Z2, with basis {e1, e2}, and let {u1, u2} be the dual
basis for M . The fan for the weighted projective space X = P(1, 1, 2) has
rays through the lattice points e1, e2, and −e1 − 2e2. A sketch of this fan ∆,
together with a piecewise exponential function ξ, are shown below.

Let σ be the maximal cone spanned by e1 and−e1−2e2, let τ be the ray spanned
by −e1−2e2, and take D = V (τ) and p = V (σ) to be the corresponding divisor
and fixed point, respectively. Since X r D and D r p are T -invariant affine
spaces, the classes [OX ], [OD], [Op] form an R(T )-module basis for KT

◦ (X).
Taken together, Theorems 1.6 and 6.1 say that the duals [OX ]∨, [OD]∨, [Op]

∨

form a basis for PExp(∆) = opK◦
T (X) = HomR(T )(K

T
◦ (X), R(T )). Piecewise

exponential functions corresponding to this basis are as follows:

This makes it easy to compute. For example,

ξ = (1 + eu1−u2)[Op]
∨ + [OD]∨.

Remark 1.8. The K-theory of complete singular toric varieties is already in-
teresting in the special case of weighted projective spaces, generalizing the
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above example. In the non-equivariant setting, the K-theory of weighted pro-
jective space was studied by Al-Amrani. He shows that both the K-theory of
coherent sheaves and the topological complex K-theory are free Z-modules of
rank one more than the dimension [A1, A2]. In the topological setting, recent
work of Harada, Holm, Ray, and Williams identifies the equivariant topological
K-theory of weighted projective space with the ring of integral piecewise expo-
nential functions, under some divisibility conditions on the weights [HHRW].

Example 1.9. Consider the cuspidal cubic curve X = {y3 − x2z = 0} ⊆ P2,
with T = k∗ acting by t · [x, y, z] = [t3x, t2y, z]. Since this is a T -linear variety,
stratified by the singular point p = [0, 0, 1] and its complement, Theorem 6.1
applies. In fact, KT

◦ (X) is freely generated over R(T ) by [OX ] and [Op], so
opK◦

T (X) has the duals of these classes as a basis.

Of course, the same holds non-equivariantly, taking T to be the trivial torus.
This stands in contrast to K◦(X), which has the ground field k as a direct
summand; see Example 2.1.
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2 Background on equivariant K-theory

We begin with a review of basic facts about equivariant K-theory. The founda-
tional details are due to Thomason [Th2, Th3], and an introductory reference

Documenta Mathematica 20 (2015) 357–399



Operational K-Theory 365

for this material is [CG, §5]. Throughout, we work in the category of separated
schemes of finite type over a field k, equipped with an action of a split torus T ,
which may be trivial. All morphisms are equivariant with respect to the torus
action.

2.1 Grothendieck groups

The Grothendieck group of equivariant coherent sheaves KT
◦ (X) is generated

by classes [F ] for each equivariant coherent sheaf F on X , subject to the
relation [F ] = [F ′] + [F ′′] for each exact sequence

0 → F
′ → F → F

′′ → 0.

The functor taking X to KT
◦ (X) is covariant for equivariant proper maps, with

the pushforward defined by f∗[F ] =
∑

(−1)i[Rif∗F ].

The Grothendieck group of equivariant perfect complexes K◦
T (X) is contravari-

ant for arbitrary equivariant maps, via derived pullback. Derived tensor prod-
uct makes K◦

T (X) into a ring, and KT
◦ (X) into a K◦

T (X)-module. When X is
quasi-projective, or embeddable in a smooth scheme, or more generally, divi-
sorial, the Grothendieck groups of equivariant vector bundles and equivariant
perfect complexes are canonically identified, because in this setting all coherent
sheaves admit resolutions by vector bundles [SGA6, Exp. III, 2.2.9]. In such
cases, since vector bundles are flat, the derived pullback is just the ordinary
pullback and the derived tensor product is just the ordinary tensor product.
A priori, perfect complexes define a K-theory that is better-behaved than the
Grothendieck group of vector bundles; for instance, one has localization and
Mayer-Vietoris sequences [TT].6

The ring K◦
T (pt) is isomorphic to the representation ring R(T ), so projection to

a point makes K◦
T (X) into an algebra over R(T ). Letting M = Hom(T, k∗) be

the character group, we have a natural isomorphism R(T ) ∼= Z[M ], and given
a character u ∈ M , we write eu ∈ R(T ) for the corresponding representation
class.

2.2 Change of groups

Both KT
◦ and K◦

T are functorial for change-of-groups homomorphisms: given

T ′ → T , there are natural maps KT
◦ (X) → KT ′

◦ (X) and K◦
T (X) → K◦

T ′(X),
induced by letting T ′ act on sheaves through its map to T .

6It is an open problem whether coherent sheaves admit resolutions by vector bundles on
arbitrary separated schemes of finite type over a field. On non-separated schemes, such as
the bug-eyed plane, they do not. See [To2].
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2.3 A forgetful map.

Regarding a vector bundle as a coherent sheaf defines a canonical map

K◦
T (X) → KT

◦ (X) (1)

of R(T )-modules. In general, this map is neither injective nor surjective, but
when X is smooth, it is an isomorphism [Th2, Corollary 5.8].

2.4 A1-homotopy invariance

For any T -equivariant affine bundle π : E → X , flat pullback gives a natural
isomorphism

KT
◦ (X) ∼= KT

◦ (E).

(See [Th2, Theorem 4.1], or [CG, §5.4].) In particular, for any linear T -action
on A1, there is a natural isomorphism

KT
◦ (X) ∼= KT

◦ (X × A1),

so Grothendieck groups of equivariant coherent sheaves are A1-homotopy in-
variant.

On the other hand, Grothendieck groups of equivariant perfect complexes are
A1-homotopy invariant for smooth varieties, but not in general.

Example 2.1. For the cuspidal plane curve X = Spec k[x, y]/(y2 − x3), we
have K◦(X) = Z ⊕ k. On the other hand, a Mayer-Vietoris calculation shows
that K◦(X×A1) contains Z⊕k[z]. This an instance of the general fact that for
one-dimensional schemes, K◦(X) = K◦(X×A1) if and only if X is seminormal
[We2, I.3.11, II.2.9.1].

Now let X = Projk[x, y, z]/(y2z − x3) be the corresponding projective curve.
A similar calculation shows that K◦(X) = Z2 ⊕ k (use [We2, Ex. II.8.1b or
Ex. II.8.2]). In the case k = C, we see that K◦(X) is uncountable. (Compare
this with Example 1.9, which shows that opK◦(X) ∼= Z2.)

2.5 Dévissage

When X = SpecA is affine, a torus action is the same as an M -grading on
A, and an equivariant coherent sheaf corresponds to an M -graded A-module
[SGA3, I.4.7.3]. Given such a module F and a character u ∈ M , let F (u) be
the same module with shifted grading: F (u)v = Fv−u. In particular, for each
u ∈ M , one obtains an equivariant line bundle corresponding to A(u). In a
common abuse of notation, we denote this line bundle eu, since it is isomorphic
to the pullback of the corresponding representation. Note that [F (u)] = eu · [F ]
in KT

◦ (X).
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Lemma 2.2. Let X be a scheme with an action of T . The classes [OV ], for
V ⊆ X a T -invariant subvariety, generate KT

◦ (X) as a module over K◦
T (pt) =

R(T ).

Proof. First consider the case where X = SpecA is affine, so A is an M -graded
ring, and an equivariant coherent sheaf corresponds to an M -graded A-module
F . One can find a chain

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F

of M -graded submodules such that Fi/Fi−1
∼= (A/pi)(ui), for some M -graded

prime ideals pi ⊂ A and elements ui ∈ M . (Cf. [Bo, Ch. IV, §1, Théorème 1]
for the ungraded case.) It follows that [F ] = eu1 [OV1 ] + · · ·+ eun [OVn

], where
Vi = Spec(A/pi).

For an arbitrary X , let U ⊆ X be a nonempty T -invariant affine open, and let
Y = XrU . (Such a U exists, e.g., by applying [Su, Corollary 2] to the normal
locus of Xred.) There is an exact sequence

KT
◦ (Y ) → KT

◦ (X) → KT
◦ (U) → 0.

We know KT
◦ (U) is generated by classes of structure sheaves of subvarieties,

by the affine case, and we may assume the lemma for KT
◦ (Y ) by induction on

dimension and the number of irreducible components. It follows that KT
◦ (X)

is also generated by structure sheaves of subvarieties.

2.6 When a subtorus acts trivially

In order to compute effectively in Sections 5 and 7, we will need to handle the
case where a subtorus acts trivially on X , as is the case for the action of the
dense torus on a proper closed T -invariant subvariety of a toric variety.

Lemma 2.3. Suppose T = T1 × T2 acts on X such that the action of T1 is
trivial. Then there is a canonical isomorphism KT

◦ (X) = R(T1)⊗KT2
◦ (X).

The statement seems to be known, but we include an easy proof. (The argu-
ment also shows the same is true for KT

i (X) with i > 0.)

Proof. When X is affine, we have KT
i (X) = R(T1) ⊗KT2

i (X) for all i ≥ 0 by
[Th3, Lemma 5.6]. In general, let U = SpecA be a nonempty T -invariant affine
open in X , and let Y = X r U . We have a diagram

KT
1 (U) ✲ KT

◦
(Y ) ✲ KT

◦
(X) ✲ KT

◦
(U) ✲ 0

R(T1)⊗K
T2
1 (U)

✻

✲ R(T1) ⊗K
T2
◦

(Y )

✻

✲ R(T1)⊗K
T2
◦

(X)

✻

✲ R(T1) ⊗K
T2
◦

(U)

✻

✲ 0

in which the rows are exact, the first and fourth vertical arrows are isomor-
phisms by the affine case, and the second vertical arrow is an isomorphism by
induction on dimension and number of irreducible components. An application
of the five lemma completes the proof.
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2.7 Gillet’s exact sequence for envelopes

We will make essential use of the following equivariant analogue of a result
of Gillet. An equivariant envelope is a proper equivariant map f : X ′ →
X such that for every T -invariant subvariety V ⊆ X , there is an invariant
subvariety V ′ ⊆ X ′ mapping birationally onto V .

Proposition 2.4. Suppose f : X ′ → X is an equivariant envelope. Then the
sequence

KT
◦ (X

′ ×X X ′)
p1∗−p2∗
−−−−−→ KT

◦ (X
′)

f∗
−→ KT

◦ (X) → 0

is exact, where p1, p2 : X
′ ×X X ′ → X ′ are the projections.

The non-equivariant version can be found in [FG, p. 300] and [Gi, Corollary 4.4].
While surjectivity of f∗ follows easily from Lemma 2.2, exactness in the middle
seems to a require a more complicated argument. The main ingredients of the
proof are a descent theorem and a spectral sequence for equivariant K-theory
of simplicial schemes; we will give a more detailed discussion in the appendix.
Exactness of the corresponding sequence for equivariant Chow groups is more
elementary (see [Ki, Theorem 1.8] and [Pa1, §2]).

3 Refined Gysin maps

Consider a fiber square

X ′ f ′
✲ Y ′

X

g′

❄ f✲ Y.

g
❄

(2)

As mentioned in the introduction, an f -perfect complex P• determines an
operator fP• : K◦(Y

′) → K◦(X
′), given by

[F ] 7→
∑

i

(−1)i
[
TorYi (P•,F )

]
.

When f has finite Tor-dimension, which means that OX itself is f -perfect, we
write f ! for fOX , and call this the refined Gysin map for f . These are closely
analogous to the refined Gysin maps for local complete intersection morphisms
in Chow theory [Fu2, §6.2]. Here we review the necessary basic facts about
Tor sheaves and refined Gysin maps in K-theory, following [SGA6, Exp. III],
[EGA, III.6], [FL, VI.6], and especially [KS, §2.2].
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3.1 Tor sheaves

Recall that, given a sheaf E on X and a sheaf F on Y ′, one has Tor sheaves
TorYi (E ,F ) supported on X ′. In the affine case, writing X = SpecA, Y =
SpecB, and Y ′ = SpecB′, with E an A-module and F a B′-module, these are
the sheaves defined by the A⊗B B′-modules TorBi (E,F ). In the general case,
one covers X ′ by affines of the form Spec(A ⊗B B′), and takes the associated
sheaves. The map f has finite Tor-dimension if, for every sheaf F of OY -
modules, all but finitely many of the Tor sheaves TorYi (OX ,F ) are zero.

3.2 Equivariant Tor

When E and F have an equivariant structure, the sheaves TorYi (E ,F ) inherit
a canonical equivariant structure. To see this, first observe that the formation
of Tor sheaves commutes with flat base change: suppose

W ′ ✲ Z ′

W
❄

✲ Z,
❄

is a fiber square, with flat maps u : Z → Y , u′ : Z ′ → Y ′, v : W → X , v′ : W ′ →
X ′ such that each face of the cube, with top and bottom faces formed from this
diagram and (2) above, is a fiber square. Then there is a natural isomorphism

TorZi (v
∗
E , u′∗

F ) ∼= v′∗TorYi (E ,F ). (3)

Take Z = T × Y , W = T × X , etc., let p, a : T × Y → Y be the projection
and action maps, respectively, and define q, b : T ×X → X similarly, as well as
p′, a′, q′, b′. Then naturality of the isomorphism (3) means the isomorphism

TorT×Y
i (q∗E , p′∗F ) ∼= TorT×Y

i (b∗E , a′∗F )

coming from the equivariant structures of E and F induces an isomorphism

q′∗TorYi (E ,F ) ∼= b′∗TorYi (E ,F ),

giving the equivariant structure of the Tor sheaf.

3.3 Relatively perfect complexes

Given a morphism f : X → Y , a bounded complex P• of coherentOX -modules
is f -perfect if, for all sheaves F of OY -modules, the Tor sheaves TorYi (P•,F )
are zero for all but finitely many i. When f is equivariant, an equivariant
f -perfect complex is simply an equivariant complex that is also f -perfect.

There are several equivalent characterizations. A useful fact is that when f
factors as a closed embedding ι : X →֒ M followed by a smooth projection
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p : M → Y , a complex P• is f -perfect if and only if ι∗P• is perfect on M ,
in the absolute sense defined in §2.1 above [SGA6, Exp. III, 4.4]. Such a
factorization exists whenever X is quasi-projective.

3.4 Equivariant refined Gysin maps

Because Tor sheaves carry a canonical equivariant structure, the usual construc-
tion of refined Gysin maps in K-theory works equivariantly. With notation as
in (2), for an equivariant map f : X → Y and an equivariant f -perfect complex
P• on X , there is a pullback map fP• : KT

◦ (Y
′) → KT

◦ (X
′), given by

fP• [F ] =
∑

i

(−1)i[TorYi (P•,F )]. (4)

See [KS, §2.2] for the non-equivariant case. As before, we write f ! for fOX ,
when f has finite Tor-dimension.

In fact, the pullback fP• only depends on the K-class of P•: given a short
exact sequence

0 → P
′
• → P• → P

′′
• → 0

of equivariant f -perfect complexes, and an equivariant coherent sheaf F on
Y ′, we have

fP• [F ] = fP
′

• [F ] + fP
′′

• [F ]

in KT
◦ (X

′). (This follows from the long exact sequence for Tor.)

3.5 Commutativity properties of Gysin maps

The main facts we will need say that the equivariant Gysin maps associated to
flat morphisms and regular embeddings commute with proper push forward and
each other. These are the analogues of the corresponding statements for Chow
groups [Fu2, Proposition 6.3, Theorem 6.4]. In fact, we will show something
slightly more general. First consider a diagram of fiber squares

X ′′ ✲ Y ′′

X ′

h′

❄ f ′
✲ Y ′

h
❄

X

g′

❄ f✲ Y.

g
❄

(5)

Lemma 3.1. In the diagram of fiber squares (5), suppose h is proper and f is
either flat or a closed embedding. Let P• be an equivariant f -perfect complex
on X. Then fP•h∗ = h′

∗f
P•.
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Here, the equality is an identity of maps from KT
◦ (Y

′′) to KT
◦ (X

′). When f
is a closed embedding and P• = OX , the hypothesis says that f is a regular
embedding.

Proof. The proof is similar to a reduction argument given in the proof of [KS,
Proposition 2.2.2]. The case where f is flat is easy, and left to the reader. We
assume that f is a closed embedding. Recall that the class of a complex [F•]
of equivariant sheaves on X is defined to be the alternating sum

∑
(−1)i[Fi].

Now let F be an equivariant coherent sheaf on Y ′′. By [KS, Lemma 1.5.3], we
have a natural isomorphism

TorYp (P•, Rh∗F )
∼
−→ R−ph∗(P• ⊗

L
OY

F ) (6)

of OX′-modules, and E2 spectral sequences

TorYp (P•, R
−qh∗F ) ⇒ TorYp+q(P•, Rh∗F )

and

R−ph∗Tor
Y
q (P•,F ) ⇒ R−p−qh∗(P• ⊗

L
OY

F ),

also of OX′-modules. The isomorphism (6) says that the two spectral sequences
converge to the same thing, and so

fP•h∗[F ] =
∑

p,q

(−1)p+q[TorYq (P•, R
ph∗F )]

=
∑

p,q

(−1)p+q[Rph′
∗Tor

Y
q (P•,F )]

= h′
∗f

P• [F ],

using the fact that X ′ →֒ Y ′ is a closed embedding to replace Rph∗ with Rph′
∗

in the second line.

Next, consider the following diagram of fiber squares:

X ′′ ✲ Y ′′ ✲ Z ′′

X ′
❄

✲ Y ′
❄

✲ Z ′

h
❄

X
❄ f✲ Y.

❄

(7)

Lemma 3.2. In the diagram of fiber squares (7), suppose each of the maps f
and h is either flat or a closed embedding. Let P• be an equivariant f -perfect
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complex on X, and let Q• be an equivariant h-perfect complex on Z ′′. Then,
for any class ξ in KT

◦ (Y
′),

fP•hQ•(ξ) = hQ•fP•(ξ)

in KT
◦ (X

′′).

In other words, fP•hQ• = hQ•fP• as maps from KT
◦ (Y

′) to KT
◦ (X

′′). When
P• = OX and Q• = OZ′′ , the lemma says the refined Gysin maps commute,
i.e., f !h! = h!f !.

Proof. For an equivariant coherent sheaf F on Y ′, we need to show

∑

p

(−1)p
∑

q

(−1)q[TorZ
′

q (Q•, Tor
Y
p (P•,F ))]

=
∑

q

(−1)q
∑

p

(−1)p[TorYp (P•, Tor
Z′

q (Q•,F ))].
(8)

This is similar to Lemma 3.1. It is easy when either f or h is flat, so we assume
they are both closed embeddings. In this case, it follows from the natural
isomorphism

TorYq (P•,Q• ⊗
L
Z′ F )

∼
−→ TorZ

′

q (Q•,P• ⊗
L
Y F )

and the spectral sequences

′E
2
pq = TorYp (P•, Tor

Z′

q (Q•,F )) ⇒ TorYp+q(P•,Q• ⊗
L
Z′ F )

and

′′E
2
pq = TorZ

′

p (Q•, Tor
Y
q (P•,F )) ⇒ TorZ

′

p+q(Q•,P• ⊗
L
Y F )

of OX′′ -modules [KS, Lemma 1.5.2].

3.6 Functoriality

If f : X → Y and g : Y → Z are morphisms of finite Tor-dimension, then
h = g ◦ f : X → Z also has finite Tor-dimension. In general, however, it is not
clear that h! = f ! ◦ g!. In a special case, however, this functoriality is easy to
see.

Lemma 3.3. Suppose f : X → Y factors as a closed embedding ι : X →֒ M
followed by a smooth projection p : M → Y . Let P• be an equivariant f -perfect
complex on X. Then fP• = ιP• ◦ p! as maps KT

◦ (Y
′) → KT

◦ (X
′), for any

Y ′ → Y .

Documenta Mathematica 20 (2015) 357–399



Operational K-Theory 373

Proof. Given Y ′ → Y , let X ′ →֒ M ′ p′

−→ Y ′ be the corresponding factorization
of the map f ′ : X ′ → Y ′. Given an equivariant coherent sheaf F on Y ′, we
need to prove

∑

j

(−1)j[TorYj (P•,F )] =
∑

j

(−1)j[TorMj (P•, p
′∗

F )],

since the left-hand side is fP• [F ] and the right-hand side is ιP•(p![F ]).
This follows from the isomorphism TorMj (P•, p

′∗F )
∼
−→ TorYj (P•,F ) of OX -

modules [KS, Lemma 1.5.1].

4 Operational bivariant K-theory

Following the general construction of Fulton and MacPherson, which associates
an operational bivariant theory to a covariant theory with a distinguished class
of commuting Gysin maps, we define operational equivariant K-theory and
prove some of its basic properties. Our distinguished Gysin maps are those
associated to flat morphisms and regular embeddings. The independent squares
in this bivariant theory are arbitrary fiber squares.

Let f : X → Y be a morphism.

Notation. For any morphism Y ′ → Y , we write X ′ for the fiber product
X ×Y Y ′.

Definition 4.1. The operational equivariant K-theory is the bivariant
group opK◦

T (f : X → Y ) whose elements are collections of operators

cg : K
T
◦ (Y

′) → KT
◦ (X

′),

indexed by morphisms g : Y ′ → Y , that satisfy the following bivariant axioms.

(A1) In the diagram of fiber squares

X ′′ f ′′
✲ Y ′′

X ′

h′

❄ f ′
✲ Y ′

h
❄

X

g′

❄ f✲ Y,

g
❄

if h is proper then cg ◦ h∗ = h′
∗cgh.
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(A2) In the diagram of fiber squares

X ′′ ✲ Y ′′ ✲ Z ′′

X ′
❄

✲ Y ′

h′

❄
✲ Z ′

h
❄

X
❄ f✲ Y,

❄

if h is either flat or a regular embedding then cgh′ ◦ h! = h! ◦ cg.

Roughly speaking, axioms (A1) and (A2) are commutativity with proper push
forward and refined Gysin maps, respectively. Commutativity with flat pull-
back is the special case of (A2) where h is flat, Y ′ = Z ′, and Y ′ → Z ′ is
the identity. The group law on opK◦

T (f : X → Y ) is given by addition of
homomorphisms.

Notation. When no confusion seems possible, we omit the name of the mor-
phism f and write simply opK◦

T (X → Y ).

We write opK◦
T (X) for the operational K-group of the identity morphism on

X . This is an associative ring with unit, by composition of endomorphisms,
and it is contravariantly functorial in X .

4.1 Operations

We now describe several natural operations on operational K-groups. The first
is a pullback that makes opK◦

T into a contravariant functor on the category of
morphisms, in which arrows are given by fiber squares. Let g : Y ′ → Y be a
morphism, and consider the diagram of fiber squares above.

(O1) The pullback

g∗ : opK◦
T (X → Y ) → opK◦

T (X
′ → Y ′)

is given by the collection of operators (g∗c)h = cgh.

The next two operations are defined in terms of the following diagram of fiber
squares

X ′ f ′
✲ Y ′ g′✲ Z ′

X
❄ f✲ Y

h′

❄ g✲ Z.

h
❄

First we describe the product operation.
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(O2) The product

· : opK◦
T (X → Y )⊗ opK◦

T (Y → Z) → opK◦
T (X → Z)

is given by composition of homomorphisms, so (c′ · c)h = c′h′ ◦ ch.

Next, we describe the push forward operation for proper morphisms.

(O3) If f is proper then the pushforward

f∗ : opK
◦
T (X → Z) → opK◦

T (Y → Z)

is given by f∗(c)h = f ′
∗ ◦ ch.

4.2 Basic properties

These operations satisfy a number of basic compatibility properties that follow
from associativity of composition of operators, standard properties of proper
pushforward, and the axioms above. These are similar to standard properties of
operational Chow cohomology [Fu2, Section 17.2]. Taken together, these prop-
erties verify that opK◦

T satisfies the axioms for a bivariant theory, as defined
in [FM, §2 and §8].

(P1) Associativity of products. If c ∈ opK◦
T (X → Y ), d ∈ opK◦

T (Y → Z), and
e ∈ opK◦

T (Z → W ), then

(c · d) · e = c · (d · e).

(P2) Functoriality of push forward. If f : X → Y and g : Y → Z are proper,
with Z → W arbitrary, and c ∈ opK◦

T (X → W ), then

(gf)∗(c) = g∗(f∗(c)).

(P3) Functoriality of pull back. If g : Y ′ → Y and h : Y ′′ → Y ′, are arbitrary,
X ′′ = X ×Y Y ′′, and c ∈ opK◦

T (X → Y ) then

(gh)∗(c) = g∗(h∗(c)).

(P4) Product and push forward commute. If f : X → Y is proper, Y → Z and
Z → W are arbitrary, c ∈ opK◦

T (X → Z), and d ∈ opK◦
T (Z → W ) then

f∗(c) · d = f∗(c · d).

(P5) Product and pull back commute. If c ∈ opK◦
T (X → Y ), d ∈ opK◦

T (Y →
Z), and h : Z ′ → Z, with

X ′ ✲ Y ′ ✲ Z ′

X
❄

✲ Y

h′

❄
✲ Z

h
❄
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the resulting diagram of fiber squares, then

h∗(c · d) = h′∗(c) · h∗(d).

(P6) Push forward and pull back commute. If f : X → Y is proper, Y → Z
and h : Z ′ → Z are arbitrary, and c ∈ opK◦

T (X → Z), with

X ′ f ′
✲ Y ′ ✲ Z ′

X
❄ f✲ Y

h′

❄
✲ Z

h
❄

the resulting diagram of fiber squares, then

h∗(f∗(c)) = f ′
∗(h

∗(c)).

(P7) Projection formula. If X → Y and Y → Z are arbitrary, and h′ : Y ′ → Y
is proper, then defining notation by the diagram

X ′ ✲ Y ′

X

h′′

❄
✲ Y

h′

❄
✲ Z,

for c ∈ opK◦
T (X → Y ) and d ∈ opK◦

T (Y → Z) we have

c · h′
∗(d) = h′′

∗(h
′∗(c) · d).

These properties all follow from the commutativity lemmas of Section 3.
A further property, particular to the equivariant case, is that each group
opK◦

T (X → Y ) is an R(T )-module. (Since R(T ) = K◦
T (pt), this follows from

commutativity with flat pullback (Lemma 3.2).)

4.3 Orientations

By Lemmas 3.1 and 3.2, the refined Gysin maps associated to flat morphisms
and regular embeddings are compatible with proper push forward and commute
with each other. Therefore, if h : X → Y is such a morphism, the refined pull-
back h! defines an element of opK◦

T (X → Y ), called the canonical orientation
of h, which we denote by [h].

Given morphismsX
f
−→ Y

g
−→ Z, with h = g◦f , it is not clear that h! = f !g! even

when these pullbacks are defined, so in general we do not know if [h] = [f ] · [g].
However, in one important special case this property is easy to check.
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Lemma 4.2. Let g : Y → Z be a smooth morphism, let f : X → Y be a regular
embedding, and let h = g ◦ f : X → Z. Then given any Z ′ → Z, we have
f !g! = h! as homomorphisms KT

◦ (Z
′) → KT

◦ (X
′). Therefore

[f ] · [g] = [h]

in opK◦
T (X → Z).

The proof is immediate from Lemma 3.3. As a particular case, when Z = X
and f is a section of g, so h = id, we see that [f ] · [g] = 1 in opK◦

T (X).

4.4 Geometric properties

These operational K-groups also have geometric properties that are similar to
those of operational Chow cohomology, but are not immediate formal conse-
quences of the axioms. The most important of these, for our purposes, is the
following proposition, whose proof is similar to that of [Fu2, Proposition 17.4.2].

Proposition 4.3. Let X → Y be an arbitrary morphism, and let g : Y → Z
be smooth. Then

·[g] : opK◦
T (X → Y ) → opK◦

T (X → Z)

is an isomorphism.

Proof. Let f be the morphism from X to Y . Form the diagram of fiber squares

X
f ✲ Y

X ×Z Y

γ
❄ f ′

✲ Y ×Z Y

δ
❄ q✲ Y

X

p′

❄ f ✲ Y

p
❄ g✲ Z,

g
❄

where γ is the graph of f , p and q are first and second projections, respectively,
and δ is the diagonal, which is a regular embedding because Y is smooth over
Z.

Define L : opK◦
T (X → Z) → opK◦

T (X → Y ) by

L(c) = [γ] · g∗(c).

We claim that L is a two-sided inverse for ·[g]. To prove the claim, we first
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compute, for c ∈ opK◦
T (X → Y ),

L(c · [g]) = [γ] · g∗(c · [g])

= [γ] · p∗c · g∗[g] (P5), product and pullback commute

= [γ] · p∗c · [q] (A2), for flat pullbacks

= δ∗p∗c · [δ] · [q] (A2), for regular embeddings

= c · [q ◦ δ] Lemma 4.2

= c.

Next, we compute, for c ∈ opK◦
T (X → Z),

L(c) · [g] = [γ] · g∗c · [g] (P1), associativity

= [γ] · [p′] · c (A2), flat pullbacks

= [p′ ◦ γ] · c Lemma 4.2

= c.

The next proposition says that Grothendieck groups of coherent sheaves appear
as operational K-groups for projection to a point.

Proposition 4.4. The map opK◦
T (X → pt) → KT

◦ (X) taking c to cid([Opt])
is an isomorphism.

Proof. Similar to the proof of [Fu2, Proposition 17.3.1]. In the notation of that
proof, the reduction to α = [V ] is replaced by a reduction to α = [OV ], for V
and equivariant subvariety; this is justified by Lemma 2.2.

Multiplication defines a canonical map from opK◦
T (X) = opK◦

T (X
id
−→ X) to

opK◦
T (X → pt), and composing with the homomorphism of Proposition 4.4,

we get a canonical map opK◦
T (X) → KT

◦ (X).

Corollary 4.5. Suppose X is smooth. Then the canonical map

opK◦
T (X) → KT

◦ (X),

taking c to cidX
([OX ]), is an isomorphism.

Proof. Take f to be idX and g : X → pt in Proposition 4.3. Then apply
Proposition 4.4 and the fact that g∗([Opt]) = [OX ].

Finally, we prove an A1-homotopy invariance property for operational K-
theory.
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Theorem 4.6. Let π : E → Y be an equivariant affine bundle. Then the
pullback map

opK◦
T (X → Y ) → opK◦

T (X ×Y E → E)

is an isomorphism. In particular, there is a natural isomorphism

opK◦
T (X → Y ) → opK◦

T (X × A1 → Y × A1).

Proof. The inverse map α : opK◦
T (X ×Y E → E) → opK◦

T (X → Y ) is defined
as follows. Given g : Y ′ → Y , let g̃ : Y ′ ×Y E → E be the projection. For c ∈
opK◦

T (X×Y E → E), define α(c) by α(c)g = cg̃, using the natural isomorphisms
KT

◦ (Y
′) = KT

◦ (Y
′ ×Y E) and KT

◦ (X
′) = KT

◦ (X
′ ×Y E).

Corollary 4.7. For any X, the pullback map gives a natural isomorphism
opK◦

T (X) ∼= opK◦
T (X × A1).

Remark 4.8. Most of the constructions presented here work in equivariant
K-theory for an arbitrary reductive group G. However, the proof of Proposi-
tion 4.4 uses the fact that KT

◦ (X) is generated by classes of structure sheaves
of invariant subschemes, which depends on T being a torus.

Remark 4.9. It would be interesting to construct a graded operational bivari-
ant theory opK∗(X → Y ), using the (higher) algebraic K-theory of coherent
sheavesK∗(X) as the covariant component. Operators in opKi(X → Y ) should
be homomorphisms Kj(Y

′) → Kj+i(X
′), for the usual fiber squares, subject to

some compatibility with pullbacks by flat maps and regular embeddings. A ba-
sic question is whether one recovers the operational K-theory we have defined
above as the 0th component of such a graded operational theory.

5 Computing operational K-theory

The remainder of this paper is concerned with the contravariant part of bivari-
ant operational K-theory, the R(T )-algebras

opK◦
T (X) = opK◦

T (X
id
−→ X).

These rings do not come with any natural presentation in terms of generators
and relations. Here, we develop tools for computing them inductively from the
K-theory rings of smooth varieties using resolution of singularities, equivariant
envelopes, and Corollary 4.5. The results in this section are closely analogous
to those proved by Kimura for operational Chow theory in [Ki], and extended
to the equivariant setting in [EG1, Pa1], but the proofs for operational K-
theory are substantially different. Notably, the proof of the exact sequence in
Proposition 5.3 requires the “dual” exact sequence for KT

◦ (Proposition 2.4),
which is a descent theorem whose proof uses higher equivariant K-theory and
simplicial schemes.
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Remark 5.1. By taking care with completions with respect to the augmenta-
tion ideal of R(T ), one can deduce similar results with rational coefficients from
Kimura’s results, using the associated graded algebra of the natural filtration of
KT

◦ (X) by dimension of support and the Riemann-Roch theorem for singular
spaces. Conversely, the rational coefficient versions of Kimura’s results follow
from ours, using the Riemann-Roch theorem.

The following are analogues of Kimura’s theorems for Chow cohomology [Ki,
Lemma 2.1, Theorem 2.3, and Theorem 3.1]. As in the Chow case, these
statements are proved by using formal properties of bivariant theories together
with Proposition 2.4. In fact, granting Proposition 2.4, the proofs of Lemma 5.2
and Propositions 5.3 and 5.4 are analogous to the corresponding proofs in [Ki].

Lemma 5.2. If f : X ′ → X is an equivariant envelope, then f∗ : opK◦
T (X) →

opK◦
T (X

′) is injective.

Proof. Let g : Y → X be any equivariant map, and form the fiber square

Y ′ f ′
✲ Y

X ′

g′
❄ f✲ X.

g
❄

Then f ′ : Y ′ → Y is an equivariant envelope, so f ′
∗ is surjective by Proposi-

tion 2.4. Injectivity of f∗ now follows from Axiom (A1).

Proposition 5.3. Let f : X ′ → X be an equivariant envelope, and let p1, p2
be the projections X ′ ×X X ′ → X ′. The sequence

0 → opK◦
T (X)

f∗

−→ opK◦
T (X

′)
p∗

1−p∗

2−−−−→ opK◦
T (X

′ ×X X ′)

is exact.

Proof. We have already seen that f∗ is injective (Lemma 5.2), and p∗1f
∗ = p∗2f

∗

by functoriality. Given c′ ∈ opK◦
T (X

′) such that p∗1c
′ = p∗2c

′, it remains to find
c ∈ opK◦

T (X) such that c′ = f∗c.

Let g : Y → X be an equivariant map, and let Y ′ = Y ×X X ′, so f ′ : Y ′ → Y
is also an envelope. By Proposition 2.4, given α ∈ KT

◦ (Y ) we can find α′ ∈
KT

◦ (Y
′) with α = f ′

∗α
′. Now define c by

cg(α) = f ′
∗(c

′
g′(α′)).

To see that this is independent of the choice of α′, it suffices to show that
f ′
∗(β

′) = 0 implies f ′
∗(c

′
g′(β′)) = 0. By Proposition 2.4, find β′′ ∈ KT

◦ (Y
′×Y Y ′)
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such that β′ = p′1∗β
′′ − p′2∗β

′′, where p′i : Y
′ ×Y Y ′ → Y are the projections.

Note that p∗1c
′ = p∗2c

′ implies (p′1)
∗(g′)∗c′ = (p′1)

∗(g′)∗c′. Now compute:

f ′
∗(c

′
g′(β′)) = f ′

∗(c
′
g′(p′1∗β

′′ − p′2∗β
′′))

= f ′
∗(p

′
1∗c

′
g′◦p′

1
(β′′)− p′2∗c

′
g′◦p′

1
(β′′))

= (f ′ ◦ p1)∗((p
′
1)

∗(g′)∗c′(β′′)− (p′2)
∗(g′)∗c′(β′′))

= 0.

Finally, c′ = f∗c, essentially by definition.

Proposition 5.4. Suppose f : X ′ → X is a birational equivariant envelope,
restricting to an isomorphism over an invariant open U ⊆ X. Let Si be the
irreducible components of X r U , and write fi : Ei = f−1Si → Si. A class
c′ ∈ opK◦

T (X
′) lies in the image of f∗ if and only if the restriction c′|Ei

lies in
the image of f∗

i for all i.

Proof. The “only if” direction is obvious. For the other direction, assume
c′ ∈ opK◦

T (X
′) satisfies the restriction hypothesis, so c′|Ei

lies in the image
of f∗

i for all i. By Proposition 5.3, it will suffice to show that p∗1c
′ = p∗2c

′ in
opK◦

T (X
′ ×X X ′).

For any equivariant map g : Y → X ′ ×X X ′ and any element ξ ∈ KT
◦ (Y ), we

must show
(p∗1c

′)g(ξ) = (p∗2c
′)g(ξ). (9)

It suffices to do this for ξ = [OV ], for V ⊆ Y an invariant subvariety, because
these classes generate KT

◦ (Y ) as an R(T )-module. In fact, to check (9) for
ξ = [OV ], we may replace Y with V , using Axiom (A1).

If the image of V in X is contained in some Si, we have

(p∗1c
′)g(ξ) = ((p1|Ei×XEi

)∗(c′|Ei
))g(ξ)

= ((p1|Ei×XEi
)∗(f∗

i ci)g(ξ)

= (fi ◦ (p1|Ei×XEi
))∗ci)g(ξ).

Noting that fi ◦ (p1|Ei×XEi
) = fi ◦ (p2|Ei×XEi

), we obtain (p∗1c
′)g(ξ) =

(p∗2c
′)g(ξ).

If the image of V in X is not contained in any Si, then V factors through the
diagonal in X ′ ×X X ′. Now (p∗1c

′)g(ξ) = c′p1◦g(ξ) = c′p2◦g(ξ) = (p∗2c
′)g(ξ).

Remark 5.5. The proposition can be rephrased as saying the sequence

0 → opK◦
T (X) → opK◦

T (X
′)⊕

⊕

i

opK◦
T (Si) →

⊕

i

opK◦
T (Ei) (10)

is exact. It follows that the sequence

0 → opK◦
T (X) → opK◦

T (X
′)⊕ opK◦

T (S) → opK◦
T (E) (11)
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is also exact, where S = X r U and E = f−1S. (By Lemma 5.2, the maps
opK◦

TS →
⊕

opK◦
TSi and opK◦

TE →
⊕

opK◦
TEi are injective.) Since the fiber

square

E ⊂ ✲ X ′

S
❄

⊂ ✲ X.

f
❄

is an abstract blowup diagram, (11) says that opK◦
T is a sheaf in the cdh

topology. This formulation is useful for comparing with other theories satisfying
cdh-descent, such as KH-theory. (See [Fr] for an introduction to this topology.)
In fact, in categories where smooth envelopes exist—for example, when the
base field has characteristic zero—Theorem 5.8 will imply that opK◦

T is the
cdh-sheafification of K◦

T .

Corollary 5.6. Suppose T = T1 ×T2 acts on X such that the action of T1 is
trivial. Assume there exists an equivariant envelope f : X ′ → X, where X ′ is
smooth and f is an isomorphism over a dense open set in X. Then there is a
canonical isomorphism opK◦

T (X) = R(T1)⊗ opK◦
T2
(X).

The proof is similar to that of [EG1, Theorem 2], which implies the correspond-
ing result for equivariant Chow cohomology.

Proof. If X is smooth, this follows from Lemma 2.3 and Corollary 4.5. For
the general case, we may assume T1 acts trivially on X ′, so opK◦

T (X
′) =

R(T1)⊗ opK◦
T2
(X ′). Indeed, given any X ′ → X as in the hypothesis, consider

this a T2-equivariant map by restricting the action, and define a new T -action
on X ′ by letting T1 act trivially.

Now let U ⊆ X be an invariant open such that f−1U → U is an isomorphism,
and let S = X r U be the complement. By noetherian induction, we assume
opK◦

T (S) = R(T1) ⊗ opK◦
T2
(S) and opK◦

T (E) = R(T1) ⊗ opK◦
T2
(E), where

E = f−1S. Using Proposition 5.4, the same conditions characterize the images
of opK◦

T (X) and R(T1)⊗ opK◦
T2
(X) in opK◦

T (X
′). In other words, the kernels

of the horizontal arrows in the diagram

opK◦
T (X

′)⊕ opK◦
T (S) ✲ opK◦

T (E)

‖ ‖
(
R(T1)⊗ opK◦

T2
(X ′)

)
⊕
(
R(T1)⊗ opK◦

T2
(S)

) ✲ R(T1)⊗ opK◦
T2
(E)

are isomorphic, and these kernels are opK◦
T (X) and R(T1) ⊗ opK◦

T2
(X), re-

spectively.

Now we discuss more directly the relationship between operational K-theory,
the usual K-theory of perfect complexes, and Weibel’s homotopy K-theory.
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Theorem 5.7. For any X, there is a canonical homomorphism K◦
T (X) →

opK◦
T (X) of R(T )-algebras, sending a class α to the operator [α] which acts by

[α]g = g∗α · ξ, for any g : Y → X and ξ ∈ KT
◦ (Y ). Together with the canon-

ical map opK◦
T (X) → KT

◦ (X) of Proposition 4.4, this factors the canonical
homomorphism K◦

T (X) → KT
◦ (X).

If X is smooth, the homomorphisms K◦
T (X) → opK◦

T (X) → KT
◦ (X) are all

isomorphisms of R(T )-modules.

Proof. To see that the homomorphism K◦
T (X) → opK◦

T (X) is well defined, we
must check that for any α ∈ K◦

T (X) the operator [α] satisfies Axioms (A1) and
(A2); that is, it commutes with pushforward for proper maps and pullback for
flat maps and regular embeddings. These all follow from the Lemmas 3.1 and
3.2, with X = Y and f = id, since the identity is a closed embedding.

That the canonical mapK◦
T (X) → KT

◦ (X) factors as claimed is easily seen from
the definitions. When X is smooth, the homomorphisms K◦

T (X) → KT
◦ (X)

and opK◦
T (X) → KT

◦ (X) are isomorphisms (using Corollary 4.5 for the latter),
so it follows that K◦

T (X) → opK◦
T (X) is an isomorphism, as well.

Theorem 5.8. Assume the base field has characteristic zero. Let L◦
T be any

contravariant functor from T -schemes to groups that admits a natural transfor-
mation η to K◦

T when restricted to smooth schemes. Then η extends uniquely
to a natural transformation from L◦

T to opK◦
T .

Characteristic zero is used only to guarantee the existence of a suitable smooth
envelope, and the proof goes through whenever such envelopes exist. In par-
ticular, the theorem holds for toric varieties over an arbitrary base field.

Proof. When dimX is zero, then X is smooth and hence the natural map
exists by hypothesis. Proceed by induction on dimension. Use resolution of
singularities to construct a birational equivariant envelope X ′ → X , with X ′

smooth, and with the exceptional locus a simple normal crossings divisor. Let
E and S be as in the sequence (11). In the diagram

0 ✲ opK◦
T (X) ✲ opK◦

T (X
′)⊕ opK◦

T (S)
✲ opK◦

T (E)

L◦
T (X)

✻

✲ L◦
T (X

′)⊕ L◦
T (S)

✻

✲ L◦
T (E),

✻

the top row is exact, the rightmost vertical arrow exists by the induction hy-
pothesis, and the middle vertical arrow exists by induction (for the S fac-
tor) and the smooth case (for the X ′ factor). Since the composition of the
two horizontal arrows in the bottom row is zero, the image of L◦

T (X) in
opK◦

T (X
′) ⊕ opK◦

T (S) lies in the kernel of the map to opK◦
T (E), which is

opK◦
T (X). This procedure constructs a natural and functorial map L◦

T (X) →
opK◦

T (X), for arbitrary X , as required.
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Corollary 5.9. Assume the base field has characteristic zero. Then there is
a natural map θ : KH◦(X) → opK◦(X).

As in Theorem 5.8, the characteristic zero hypothesis can be replaced by an
assumption that birational smooth envelopes exist, so in particular the same
statement holds for toric varieties over a base field of arbitrary characteristic.

Proof. For smooth schemes X , the natural map from K◦(X) to KH◦(X) is an
isomorphism, and its inverse provides the natural transformation required to
apply Theorem 5.8.

Remark 5.10. It would be interesting to develop an equivariant version of
homotopy K-theory, with formal properties similar to those of KH∗; to our
knowledge, this has not been explored. One application would be an equivariant
version of Corollary 5.9.

Remark 5.11. In more abstract language, Theorem 5.8 may be phrased simply
as follows: the functor opK◦

T from the category of (separated and finite-type
over k) T -schemes to groups is naturally isomorphic to the Kan extension of the
functor K◦

T from smooth T -schemes to groups, along the inclusion of the full
category of smooth T -schemes inside all (separated and finite-type) T -schemes.
This is a fundamental characterization of operational K-theory.

A similar statement holds for any operational theory whenever one has an
analogue of Kimura’s exact sequence (Proposition 5.4) and resolution of sin-
gularities. For example, (equivariant) operational Chow cohomology is also a
Kan extension, at least in characteristic zero.

We now give two examples showing that the natural mapKH◦(X) → opK◦(X)
is not an isomorphism in general. A third will be given in §7.

Example 5.12. Let X be a nodal cubic curve in the affine plane A2. Then
X is seminormal, so its Picard group is A1-homotopy invariant [Tr]. By [We1,
Theorem 3.3], it follows that

KH◦(X) = Z⊕ k∗.

Now, consider the natural diagram

opK◦(X) ✲ opK◦(X̃)

KH◦(X)

✻

✲ KH◦(X̃),

✻

where X̃ ∼= A1 is the normalization of X . Both opK◦(X̃) and KH◦(X̃) are
canonically identified with Z, and the arrow between them is an isomorphism.
Furthermore, it follows from Proposition 5.3 that the top horizontal arrow is an
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isomorphism, and hence the left vertical arrow is the canonical projection from
Z⊕k∗ to Z. In particular, when k = C, KH◦(X) → opK◦(X) has uncountable
kernel.

Example 5.13. Let X be a variety of dimension d over C that is smooth
away from an isolated singularity. Let π : X̃ → X be a log resolution, so the
exceptional locus E is a divisor with simple normal crossings. Let ∆(E) be
the dual complex of E, i.e. the ∆-complex with one vertex for each irreducible
component of E, one edge for each component of a pairwise intersection, and
so on, as described in [Pa3, §2]. Recall that KH can be nonzero in negative
degrees. Haesemeyer’s computations for negativeKH [Ha, Theorem 7.10] show
that

KH−d(X) ∼= Hd−1(∆(E)).

By Bass’s fundamental theorem for KH [We1, Theorem 6.11], this gives
Hd−1(∆(E)) as a direct summand of KH◦(X × Gd

m) that is contained in the

kernel of the pullback map to KH◦(X̃×Gd
m). In the resulting natural diagram,

opK◦(X ×Gd
m) ✲ opK◦(X̃ ×Gd

m)

KH◦(X ×Gd
m)

✻

✲ KH◦(X̃ ×Gd
m),

✻

the top horizontal arrow is an injection, by Proposition 5.3. It follows that the
summand Hd−1(∆(E)) ⊂ KH◦(X×Gd

m) is contained in the kernel of the map
to opK◦(X ×Gd

m).

This general construction produces many nontrivial examples. For instance,
X could be a deformation of a cone over a degenerate elliptic curve, with E
a loop of P1’s, and ∆(E) a circle. Or X could be a 3-fold with ∆(E) being a
copy of S2 or RP2, as in [Pa3, Example 8.1].

Remark 5.14. The map KH◦(X) → opK◦(X) factors the natural map
K◦(X) → opK◦(X). Properties of the other factor, K◦(X) → KH◦(X), there-
fore give information about the map from the K-theory of perfect complexes
to operational K-theory.

For example, let X be a toric variety with fan ∆. By [CHWW, Proposition 5.6],
the map K∗(X) → KH∗(X) is a split surjection. The proof shows that the
Mayer-Vietoris sequence computing KH∗(X) can be described quite explicitly
as follows. Let σ1, . . . , σr be the maximal cones of ∆, write τ(I) = σi0 ∩· · ·∩σip

for each subset I ⊂ {1, . . . , r}, and let Oτ be the minimal orbit in the invariant
affine open set Uτ . Then there are spectral sequences

E1
p,q =

⊕

I={i0,...,ip}

Kq(Oτ(I)) ⇒ KHq−p(X) (12)
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and

E1
p,q =

⊕

I={i0,...,ip}

Kq(Uτ(I)) ⇒ Kq−p(X), (13)

together with natural split surjections Kq(Uτ(I)) → Kq(Oτ(I)). Since each
Oτ(I) is isomorphic to a split torus, say of dimension d(I), the term Kq(Oτ(I))

is isomorphic to
⊕d(I)

i=0 Kq−i(k)⊕(
d(I)
i ), where k is the base field. The differential

d1 can be computed easily from the projections T → Oτ(I); it is similar to the
differential of the Mayer-Vietoris spectral sequence for singular cohomology,
with respect to the same open cover. (We thank Burt Totaro for suggesting
this description of [CHWW, Proposition 5.6].)

When X has a sufficiently nice stratification by torus orbits, there are similar
spectral sequences computing K∗(X) and KH∗(X). For example, one can take
X to be any T -invariant closed subset of a toric variety Y . If Y is covered by
invariant affines Vσ, then one has the Mayer-Vietoris sequence for the cover of
X by Uσ = Vσ ∩ X . The same reasoning shows that in this case KH∗(X) is
computed in terms of the K-theory of the ground field, and that there is a split
surjection K∗(X) → KH∗(X).

Remark 5.15. The Mayer-Vietoris sequence (12) gives a straightforward com-
putation of the homotopy K-theory for a complete toric surface over an ar-
bitrary field k, since it collapses at the E2 page. Let X be such a surface,
corresponding to a complete fan with rays spanned by primitive integer vectors
(a1, b1), . . . , (ar, br). Let µ be the index of the sublattice of Z2 spanned by
these vectors. Then one computes

KHi(X) = Ki(k)⊕r ⊕Ki+1(k)/µ ·Ki+1(k),

where “µ·” denotes the operation of scaling an abelian group by µ. In partic-
ular, KH◦(X) = Z⊕r ⊕ k∗/(k∗)µ, and KH−1(X) = Z/µZ. (For algebraically
closed fields k, we have k∗ = (k∗)µ, so in this case KH◦(X) depends only on
the number of rays.)

6 Kronecker duality for T -linear varieties

Now we state and prove an equivariant version of Theorem 1.3. Let the class
of T -linear varieties be the smallest class of varieties such that any affine
space with a T -action is a T -linear variety, the complement of a T -linear variety
equivariantly embedded in affine space is T -linear, and any variety stratified
into a finite disjoint union of T -linear varieties is T -linear. The notion of strati-
fication we use here is as follows: stratifying X by locally closed subvarieties S◦

i

means X is written as X =
∐

S◦
i , with Si = S◦

i denoting the closure of a stra-
tum, such that the complement Si r S◦

i is contained in the union of the strata
of dimension less than dimSi (see [To1]). A T -linear variety is also T ′-linear
for any subtorus T ′ ⊆ T .
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Theorem 6.1. For a complete T -linear variety X, the natural map from
opK◦

T (X) to HomR(T )(K
T
◦ (X), R(T )), induced by pushforward to a point, is

an isomorphism.

The proof has the same structure as that of the corresponding result for Chow
cohomology ([FMSS], [To1]), the main difference being the use of K-theory
spectra, rather than higher Chow groups, to establish the Künneth isomor-
phism in Proposition 6.4, below.

Before proving the theorem, we observe that finite generation of the operational
K groups is a consequence, by the following lemma.

Lemma 6.2. If X is a T -linear variety, then KT
◦ (X) is a finitely-generated

R(T )-module.

Proof. We use induction on dimension and the number of irreducible compo-
nents. First suppose X is irreducible of dimension d, and write

X = S◦ ∪
∐

dimSi<d

S◦
i

Observe that the top stratum S◦ in an irreducible T -linear variety must be
the complement of a (lower-dimensional) T -linear variety in an affine space,
by the inductive definition. Such varieties clearly have finitely generated KT

◦ .
Also, Z =

∐
dimSi<d S

◦
i is a closed T -linear subvariety of smaller dimension, so

KT
◦ (Z) is finitely generated. By the exact sequence

KT
◦ (Z) → KT

◦ (X) → KT
◦ (S

◦) → 0,

it follows that KT
◦ (X) is finitely generated.

If X is reducible, one can find a top-dimensional stratum S◦ such that X ′ =
XrS◦ is a closed T -linear variety with fewer components, and apply the exact
sequence again.

As in Totaro’s analogous result for Chow cohomology [To1], Theorem 6.1 is
an immediate consequence of two facts. The first is an analogue of [FMSS,
Proposition 3].

Proposition 6.3. Suppose X is a complete T -variety with the property that
for all T -varieties Y , the map

KT
◦ (X)⊗R(T ) K

T
◦ (Y ) → KT

◦ (X × Y )

is an isomorphism. Then the duality map

opK◦
T (X) → HomR(T )(K

T
◦ (X), R(T ))

is an isomorphism.
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As in [FMSS], the proof is formal.

Sketch of proof. To define the inverse to the duality map, given a homomor-
phism ϕ : KT

◦ (X) → R(T ), we construct an element cϕ of opK◦
T (X) as follows.

For a map g : Y → X , the corresponding map (cϕ)g : K
T
◦ (Y ) → KT

◦ (Y ) is the
composition of the proper pushforward along the graph of g,

KT
◦ (Y ) → KT

◦ (X × Y ) = KT
◦ (X)⊗R(T ) K

T
◦ (Y )

followed by

KT
◦ (X)⊗R(T ) K

T
◦ (Y )

ϕ⊗1
−−−→ R(T )⊗R(T ) K

T
◦ (Y ) = KT

◦ (Y ).

The verification that cϕ satisfies the compatibility axioms is the same as in
[FMSS], as is the proof that this map is inverse to the duality map.

The second fact we need is an analogue of [To1, Proposition 1].

Proposition 6.4. Let X be a T -linear variety, and let Y be an arbitrary T -
variety. Then the map

KT
◦ (X)⊗R(T ) K

T
◦ (Y ) → KT

◦ (X × Y )

is an isomophism.

Proof. The proof follows Totaro’s inductive argument, with Chow groups re-
placed by equivariant K-theory and the groups CH∗,∗(−,−, 1) replaced by

K̃T
1 (−,−), which are defined as follows. Let X and Y be arbitrary T -varieties.

Let K′(T,X) and K′(T, Y ) be the equivariant K-theory spectra correspond-
ing to categories of T -equivariant coherent sheaves (cf. [Th2]), and write
R = K′(T, pt) for the equivariant K-theory spectrum of the point Spec k.
Then R is a ring spectrum, and the other spectra are modules over R. Define

K̃T (X,Y ) = K′(T,X) ∧R K′(T, Y ),

and set K̃T
q (X,Y ) = πq(K̃

T (X,Y )). By [EKMM, Theorem IV.6.4], we have

K̃T
◦ (X,Y ) = KT

◦ (X)⊗R(T ) K
T
◦ (Y ).

Let Z ⊆ X be a closed subvariety and let U = X rZ. We replace the two four
column diagrams of Chow groups on [To1, p. 11] with

KT
◦ (Z) ⊗

R(T )
KT

◦ (Y ) ✲ KT
◦ (X) ⊗

R(T )
KT

◦ (Y ) ✲ KT
◦ (U) ⊗

R(T )
KT

◦ (Y ) ✲ 0

KT
◦ (Z × Y )

❄
✲ KT

◦ (X × Y )

❄
✲ KT

◦ (U × Y )

❄
✲ 0,

and its continuation to the left, which is
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K̃T
1 (Z, Y ) ✲ K̃T

1 (X, Y ) ✲ K̃T
1 (U, Y ) ✲ KT

◦
(Z) ⊗

R(T )
KT

◦
(Y ) ✲ KT

◦
(X) ⊗

R(T )
KT

◦
(Y )

KT
1 (Z × Y )

❄
✲ KT

1 (X × Y )

❄
✲ KT

1 (U × Y )

❄
✲ KT

◦
(Z × Y )

❄
✲ KT

◦
(X × Y ).

❄

The bottom rows are just the long exact localization sequence. The smash
product preserves fibrations, so we have a fibration

K̃T (Z, Y ) → K̃T (X,Y ) → K̃T (U, Y ),

and the top rows of the above diagrams are the corresponding long ex-
act homotopy sequence. The outer tensor product defines a canonical map
K̃T (X,Y ) → K′(T,X × Y ), inducing the vertical arrows.

The remainder of the proof follows Totaro’s argument essentially verbatim. We
consider two properties for a T -variety X , namely

(1) The natural map KT
◦ (X)⊗R(T )K

T
◦ (Y ) → KT

◦ (X×Y ) is an isomorphism
for all T -varieties Y , and

(2) The natural map K̃T
1 (X,Y ) → KT

1 (X×Y ) is surjective for all T -varieties
Y .

An induction on dimension shows simultaneously that both (1) and (2) hold
for the complement of any T -linear variety embedded in affine space, and that
(1) holds for arbitrary T -linear varieties, the latter being the statement that is
to be proved. The base case of the induction is that both properties hold for
affine space. Then one simple diagram chase shows that if (1) and (2) hold for
X and (1) holds for Z then both (1) and (2) hold for U , and another diagram
chase shows that if (1) and (2) hold for U and (1) holds for Z, then (1) holds
for X .

7 Operational K-theory of toric varieties

We now prove Theorem 1.6 by resolution of singularities and induction on
dimension. The argument is similar to the proof of [Pa1, Theorem 1], using
the K-theoretic results from Section 5 in place of Kimura’s analogous results
for Chow cohomology.

Proof of Theorem 1.6. As mentioned in the introduction, the theorem is known
if X is smooth. If X is singular, then there is a sequence

Xr → Xr−1 → · · · → X1
π
→ X0 = X

where Xr is smooth, each Xi is a toric variety, and the map Xi+1 → Xi is the
blowup along a smooth T -invariant subvariety of Xi. We proceed by induction
on r and the dimension of X .
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Let X ′ = X(∆′) = X1, and let ισ′ denote the inclusion of the torus orbit Oσ′

in X ′. By induction on r, we may assume that
⊕

σ′∈∆′ ι∗σ′ maps opK◦
T (X

′)
isomorphically onto PExp(∆′). Since π maps Oσ′ isomorphically onto O(σ)
if σ′ is a maximal cone in the subdivision of σ induced by ∆′, it follows that⊕

σ∈∆ ι∗σ maps opK◦
T (X) injectively into PExp(∆). It remains to show that

every integral piecewise exponential function on ∆ is in the image of opK◦
T (X).

Say π is the blowup along V (τ) ⊂ X , and V (ρ) = π−1(V (τ)). Let Star τ be
the set of cones in ∆ containing τ , and let ∆τ be the fan whose cones are the
projections of cones in Star τ to (N/Nτ )R, where Nτ is the sublattice generated
by τ ∩N . Then V (τ) is the toric variety associated to ∆τ [Fu1, Section 3.1].
By induction on dimension, we may assume opK◦

Tτ
(V (τ)) ∼= PExp(∆τ ), where

Tτ is the dense torus in V (τ). Choosing a splitting T ∼= T ′ × Tτ , we have

opK◦
T (V (τ)) ∼= R(T ′)⊗ opKTτ

(V (τ)) ∼= PExp(Star τ),

using Corollary 5.6 for the first isomorphism. Similarly, the operational equiv-
ariant K ring of the exceptional divisor is opK◦

T (V (ρ)) ∼= PExp(Star ρ).

Note that Star ρ is a subdivision of Star τ , and ∆ and ∆′ coincide away from
Star τ and Star ρ, and the blowup π is an envelope [Pa1, Lemma 1]. Then,
by Proposition 5.4, a class in opK◦

T (X
′) is in the image of opK◦

T (X) if and
only if its restriction to V (ρ) is in the image of opK◦

T (V (τ)). Therefore, a
piecewise exponential function on ∆′ is in the image of opK◦

T (X) if and only
if its restriction to Star ρ is the pullback of a piecewise exponential function on
Star τ . In particular, the pullback of any piecewise exponential on ∆ is in the
image of opK◦

T (X), as required.

Finally, we prove Theorem 1.4. As remarked in the introduction, it suffices to
establish the following:

Theorem 7.1. For a three-dimensional toric variety X over an algebraically
closed field, the map KH◦(X) → opK◦(X) is surjective.

The proof requires some facts about homotopy K-theory. By [Ha, Theo-
rem 3.5], there is a cdh-descent sequence

→ KHi+1(E) → KHi(X) → KHi(X ′)⊕KHi(S) → KHi(E) → (14)

associated to any abstract blowup square

E ⊂ ✲ X ′

S
❄

⊂ ✲ X.

π
❄

That is, π : X ′ → X is a proper map, with E = π−1S, inducing an isomorphism
X ′ r E → X r S. In particular, we have a sequence (14) associated to any
toric resolution of singularities.
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To compare homotopy K-theory and operational K-theory, our main tool is
the following commutative diagram with exact rows coming from the Kimura
exact sequence (11) and the cdh-descent sequence (14):

0 ✲ opK◦(X) ✲ opK◦(X ′)⊕ opK◦(S) ✲ opK◦(E)

KH1(E)

✻

✲ KH◦(X)

✻

✲ KH◦(X ′)⊕KH◦(S)

✻

✲ KH◦(E) .

✻
(15)

The vertical arrows in this diagram come from the natural transformation θ :
KH◦ → opK◦ given by Corollary 5.9.

We apply the diagram to study the natural map θ : KH◦(X) → opK◦(X) first
for a chain of rational curves, then for a toric surface, and finally for a toric
threefold.

A chain of n rational curves is the reducible nodal variety

X1 ∪ · · · ∪Xn,

whose irreducible components Xi are smooth rational curves, constructed in-
ductively by gluing Xn to a chain of n − 1 rational curves at a smooth point
in Xn−1.

Lemma 7.2. Let X be a chain of n rational curves. Then the natural map
θ : KH◦(X) → opK◦(X) is an isomorphism.

Proof. When n = 1, the isomorphism is clear sinceX is smooth. We proceed by
induction on n. Let S be the point of intersection where Xn meets Xn−1, and
let X ′ = (X1 ∪ · · · ∪Xn−1)⊔Xn be the disconnected curve obtained by pulling
apart this node. By induction we may assume that KH◦(X ′) → opK◦(X ′) is
an isomorphism. Let E = S ⊔ S be the preimage of S under the gluing map
X ′ → X .

The map KHi(X ′)⊕KHi(S) → KHi(E) is surjective for all i, and it follows
from the cdh-descent sequence (14) that the map KH◦(X) → KH◦(X ′) ⊕
KH◦(S) is injective. Therefore, we can replace KH1(E) by 0 in (15), and
still have a commutative diagram with exact rows. The first, third, and fourth
vertical arrows are isomorphisms, so the second vertical arrow is also an iso-
morphism, by the five lemma.

Slightly more generally, ifX is a disconnected union of chains of rational curves,
it is a seminormal 1-dimensional scheme, soKH◦(X) is identified with Pic(X)⊕
H0(X), where H0 denotes the free abelian group on connected components
[We2, IV.12.5.2]. A direct calculation using the Mayer-Vietoris sequence (12)
shows that

KHi(X) =
(
Pic(X)⊗Ki(k)

)
⊕
(
H0(X)⊗Ki(k)

)
(16)
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for all i. The isomorphism class of a line bundle on X is determined by the
degree of its restriction to each irreducible component, so Pic(X) ∼= Z⊕n, where
n is the total number of irreducible components.

Lemma 7.3. Let X be a toric surface over an algebraically closed field, let S
be the singular set of X, and let X ′ → X be a toric resolution of singularities
which is an isomorphism away from S. Then the map KH◦(X) → KH◦(X ′)⊕
KH◦(S) is injective.

Proof. Let E ⊂ X ′ be the exceptional divisor. By the cdh-descent sequence
(14), it suffices to prove KH1(X ′) ⊕ KH1(S) → KH1(E) is surjective. We
have KH1(E) = (Pic(E)⊕H0(E))⊗k∗, since E is a union of chains of rational
curves. Since S consists of finitely many points, one corresponding to each
connected component of E, the map KH1(S) → KH1(E) is an isomorphism
onto H0(E) ⊗ k∗. The map Pic(X ′) ⊗ k∗ → Pic(E) ⊗ k∗ factors through the
map KH1(X ′) → KH1(E). Therefore, since k∗ is divisible, to prove that
KH1(X ′) ⊕ KH1(S) → KH1(E) is surjective, it suffices to prove that the
map Pic(X ′) ⊗ Q → Pic(E) ⊗ Q is surjective. The intersection matrix of E
in the surface X ′ is negative-definite, so the subspace of Pic(X ′)⊗ Q spanned
by the irreducible components of E surjects onto Pic(E) ⊗ Q, and the lemma
follows.

Proposition 7.4. Let X be a toric surface over an algebraically closed field.
Then the natural map θ : KH◦(X) → opK◦(X) is an isomorphism.

Proof. Let S ⊂ X be the singular set, and let X ′ → X be a toric resolution
of singularities which is an isomorphism away from S, with exceptional divi-
sor E. Then each connected component of E is a chain of rational curves, so
KH◦(E) = opK◦(E), by Lemma 7.2.. Furthermore, KH◦(X ′) = opK◦(X ′)
and KH◦(S) = opK◦(S), since these are smooth varieties. From the dia-
gram (15), it follows that KH◦(X) → opK◦(X) is surjective. But applying
Lemma 7.3, we see this map is also injective.

We can now complete the proof of Theorem 7.1 for a toric threefold X over
an algebraically closed field, using induction on the number of blowups along
smooth T -invariant centers required to resolve the singularities of X .

Proof of Theorem 7.1. Let X ′ → X be a blowup along a smooth T -invariant
center S, with exceptional divisor E, forming the first step in a resolution
of singularities as in the proof of Theorem 1.6. Consider the corresponding
diagram (15). By induction, θ : KH◦(X ′) → opK◦(X ′) is surjective, and
KH◦(S) = opK◦(S) since S is smooth, so the middle vertical arrow is surjec-
tive. The rightmost vertical arrow KH◦(E) → opK◦(E) is an isomorphism by
Proposition 7.4, since E is a toric surface. The theorem now follows from the
five-lemma.
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It is easy to construct examples of projective toric threefolds X such that
KH◦(X) contains a factor of k∗. For such varieties, the map KH◦(X) →
opK◦(X) is not injective.

Example 7.5. Let ∆ be the fan over the faces of the triangular prism with ver-
tices (1, 0, 0), (0, 1, 0), (0, 0, 1), (0,−1,−1), (−1, 0,−1), and (−1,−1, 0). The
singular locus S of toric variety X = X(∆) consists of four fixed points, cor-
responding to the maximal cones over the three rectangular faces and the
simplical cone spanned by (0,−1,−1), (−1, 0,−1), and (−1,−1, 0). Let ∆′

be the fan obtained from ∆ by triangulating the three rectangular faces (via
any of the 8 possible choices) and subdividing one the other singular cone by
adding a ray through (−1,−1,−1). The resulting toric variety X ′ = X(∆′) is
smooth, and the exceptional locus E of the map X ′ → X consists of four dis-
joint components, three isomorphic to P1 and one isomorphic to P2. The map
Pic(X ′) → Pic(E) is given by a 4 × 4 matrix of rank 3, so the corresponding
map KH1(X ′)⊕KH1(S) → KH1(E) has a copy of k∗ in its cokernel, mapping
nontrivially to KH◦(X) in the cdh-descent sequence.

A Descent for equivariant K-theory

All schemes in this appendix are separated and of finite type over a fixed
field. Our goal is to establish an equivariant version of a theorem of Gillet [Gi,
Corollary 4.4].

Theorem A.1. Let G be a connected algebraic group. Let X → Y be a proper
morphism of G-schemes, and let Z → X be an equivariant Chow envelope
(relative to Y ), that is, an equivariant envelope such that Z is projective over
Y . Then the sequence

KG
◦ (Z ×X Z) → KG

◦ (Z) → KG
◦ (X) → 0

is exact, where the first map is the difference of the pushforwards by the two
projections.

The proof is almost entirely a repetition of Gillet’s arguments. For the conve-
nience of the reader, we outline it here, with detailed references for the main
points.

We first set up some terminology concerning simplicial schemes, and refer to
[BK] or [Co] for the basic facts. A simplicial scheme is a contravariant functor
from the category ∆ (of finite ordinals with non-decreasing maps) to the cate-
gory of schemes. The category of simplicial schemes is equipped with skeleton
and coskeleton functors; we will not define these here, except to say that the
0th coskeleton of an augmented simplicial scheme Z• → X is the simplicial
scheme coskX0 (Z•) with nth term given by the (n+ 1)-fold fiber product of Z
over X . See [Co] for the general definitions.
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A group G acts on a simplicial scheme Z• in the evident way, by acting on all
Zn equivariantly for the structure maps. An equivariant hyperenvelope

is an equivariant augmented simplicial scheme Z• → X such that Z0 → X is
an equivariant envelope, and for all i ≥ 0, the map

Zi → coskXi (ski−1Z•)

is an equivariant envelope. A projective equivariant hyperenvelope is
an equivariant hyperenvelope for which all maps Zn → X are projective.

To define the equivariant K-theory of a simplicial scheme, following Gillet,
consider the following condition on sheaves of G-equivariant OZn

-modules:

(∗) For all τ : m → n in ∆ and all p > 0, we have Rpτ∗F = 0 as sheaves on
Zm.

Let AG(Zn) be the full exact subcategory of (Coh
G
Zn

) formed by the sheaves
satisfying (∗). Putting these together, we get a simplicial category AG(Z•).
Condition (∗) makes each τ∗ : A

G(Zn) → AG(Zm) an exact functor, so we
obtain another simplicial categoryQAG(Z•) by applying Quillen’s construction
[Qu]. The equivariant K-theory spectrum of Z• is the simplicial spectrum

K′(G,Z•) = Ω|NQAG(Z•)|,

where N and | · | denote the nerve and geometric realization functors, respec-
tively. We define KG

q (Z•) = πq(K
′(G,Z•)).

There is a general spectral sequence for computing with simplicial schemes; see
[Th1, 3.14], [BK, XII.5.7], or [Du, 15.10]. In our context, it takes the following
form:

Lemma A.2. Let Z• be an equivariant simplicial scheme, quasi-projective over a
base Y , with projective face maps. Then there is a convergent spectral sequence

E1
p,q = KG

q (Zp) ⇒ KG
p+q(Z•).

The differential d1 : KG
q (Zp) → KG

q (Zp−1) is the alternating sum of the face
maps.

We also need an equivariant version of one of the main theorems of [Gi].

Theorem A.3. Let p : Z• → X be a projective equivariant hyperenvelope. Then
p∗ : K

G
q (Z•) → KG

q (X) is an isomorphism for all q.

Sketch of proof. The proof follows Gillet’s argument, proceeding in three steps.

First step: Given a projective equivariant envelope Z → X , take Z• =
coskX0 (Z), so Zn is the (n + 1)-fold fiber product of Z over X . Also assume
X = G/H is a homogeneous space defined over a field F , so H ⊆ G is a closed
subgroup defined over F .
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Since p : Z → X = G/H is an equivariant envelope, there is an invariant subva-

riety X̃ ⊆ Z mapping birationally and equivariantly to X . Such a map X̃ → X
is an isomorphism, so there is an equivariant sectionX → Z. This extends to an
equivariant section s : X → Z• (regarding X as a constant simplicial scheme).
Since Z• is a 0-coskeleton, the maps s and p are homotopy-inverses ([Co,
Lemma 5.7]), so the induced map of simplicial groups KG

q (Zn) → KG
q (X) is a

homotopy equivalence. Now it follows from the spectral sequence of Lemma A.2
that KG

q (Z•) → KG
q (X) is an isomorphism.

Second step: Continue to assume Z• = coskX0 (Z) is a 0-coskeleton, but now
allow X to be arbitrary.

The argument for this step proceeds exactly as in [Gi], except that the noethe-
rian induction is taken over G-invariant closed subschemes Y ⊆ X . The base
case is when Y = G/H is an orbit, which is taken care of by the first step.

Third step: The general case stated in the theorem.

Here we follow [Gi] verbatim: Let Z•[i] = coskXi (skiZ•), and use induction
on i, starting from the base case i = 0, which is the situation of the second
step.

Theorem A.1 now follows easily:

Proof of Theorem A.1. Look at the last terms in the spectral sequence of
Lemma A.2. We have

E2
0,0 = KG

◦ (Z0)/im(KG
◦ (Z1) → KG

◦ (Z0)).

Apply this to the hyperenvelope Z• → X , with Z• = coskX0 (Z), so Z0 = Z and
Z1 = Z ×X Z. Together with the isomorphism of Theorem A.3, this gives the
exact sequence of Theorem A.1. (In fact, we only needed the first two steps in
the proof of Theorem A.3.)
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