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Abstract. Let D = {D1, . . . , Dℓ} be a multi-degree arrangement
with normal crossings on the complex projective space Pn, with de-
grees d1, . . . , dℓ; let Ω

1
Pn(logD) be the logarithmic bundle attached to

it. First we prove a Torelli type theorem when D has a sufficiently
large number of components by recovering them as unstable smooth
irreducible degree-di hypersurfaces of Ω

1
Pn(logD). Then, when n = 2,

by describing the moduli spaces containing Ω1
P2(logD), we show that

arrangements of a line and a conic, or of two lines and a conic, are not
Torelli. Moreover we prove that the logarithmic bundle of three lines
and a conic is related with the one of a cubic. Finally we analyze the
conic-case.
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1. Introduction

In the complex projective space Pn, let D be a union of ℓ distinct smooth irre-
ducible hypersurfaces with degrees d1, . . . , dℓ, i.e. a multi-degree arrangement.
We can map D to Ω1

Pn(logD), the sheaf of differential 1-forms with logarithmic
poles on D. This sheaf was originally introduced by Deligne in [7] for arrange-
ments with normal crossings. In this case, for all x ∈ Pn, the space of sections of
Ω1

Pn(logD) near x is defined as < d log z1, . . . , d log zk, dzk+1, . . . , dzn >OPn,x
,

where z1, . . . , zn are local coordinates such that D = {z1 · . . . · zk = 0}. In par-
ticular, Ω1

Pn(logD) is a locally free sheaf over Pn and it is called logarithmic
bundle.
A natural, interesting question is whether Ω1

Pn(logD) contains information
enough to recover D, which is the so-called Torelli problem for logarithmic
bundles. In particular, if the isomorphism class of Ω1

Pn(logD) determines D,
then D is called a Torelli arrangement.
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In the mathematical literature, the first situation that has been analyzed is
the case of hyperplanes. In [11] Dolgachev, Kapranov proved that, if ℓ ≤ n+2,
then two different arrangements always give the same logarithmic bundle and
in [26] Vallès showed that, if ℓ ≥ n+3, then we can reconstruct the hyperplanes
from the logarithmic bundle (as its unstable hyperplanes, see Definition 2.4)
unless they osculate a rational normal curve Cn of degree n in Pn, in which
case the logarithmic bundle is isomorphic to Eℓ−2(C∨

n ), the Schwarzenberger
bundle ([21], [22]) of degree ℓ− 2 associated to C∨

n . Recently, Dolgachev ([10])
and Faenzi, Matei, Vallès ([13]) solved this problem in the case of hyperplanes
that do not necessarily satisfy the normal crossings property.
Concerning the higher degree case, Ueda and Yoshinaga ([25], [24]) studied
the case ℓ = 1, characterizing generically the Torelli arrangements as the ones
with d1 ≥ 3. In [2] we analyzed hypersurfaces of the same degree d and, by
means of the unstable hypersurfaces of Ω1

Pn(logD) (see Definition 2.4), we

proved a Torelli type theorem when ℓ ≥
(

n+d
d

)

+ 3. Pairs of quadrics are also
investigated in [2].
Very recently Ballico, Huh, Malaspina ([4]) and Dimca, Sernesi ([9]), general-
izing the techniques, respectively, of [2] and [24], answered some Torelli type
questions, respectively, in the case of logarithmic bundles over quadrics or
products of projective spaces and for plane curves with nodes and cusps.
In this paper, after recalling some preliminary tools (§. 2, 3), we consider
multi-degree arrangements with normal crossings on Pn (§. 4), on P2 (§.
5, 6, 7) and conic-arrangements with normal crossings on P2 (§. 8). In
Theorem 4.2, by generalizing the arguments used in [2] for hypersurfaces of
the same degree and by applying a reduction technique, we prove that if the
number ℓi of hypersurfaces of degree di in D satisfies ℓi ≥

(

n+di

di

)

+ 3, then
we can generically recover the components of D. In §. 5, 6, 7 we focus on
some line-conic cases on P2 and we prove that they are not of Torelli type
(Corollaries 5.5, 6.4). In particular, in Theorem 7.1 we show a link between
arrangements of three lines and a conic and arrangements with a cubic in the
projective plane. Finally, §. 8 is devoted to conics. The cases ℓ ∈ {1, 2} were
studied in [2]; here we prove that for ℓ ≥ 4 a Torelli type result holds (Theorem
8.5). ℓ = 3 is still a bit mysterious.

Acknowledgements I am very grateful to Giorgio Ottaviani and Daniele
Faenzi for introducing me to this interesting subject and for their help dur-
ing the preparation of this work. I also thank Jean Vallès for several helpful
comments.

2. Preliminary definitions and notations

Let Pn be the n-dimensional complex projective space with n ≥ 2 and let D =
{D1, . . . , Dℓ} be an arrangement on Pn, i.e. a family of smooth, irreducible,
distinct hypersurfaces of Pn. Let us assume that D has normal crossings,
that is D is locally isomorphic (in the sense of holomorphic local coordinates
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changes) to a union of coordinate hyperplanes of Cn.
For all i ∈ {1, . . . , ℓ}, Di = {fi = 0} with fi ∈ C[x0, . . . , xn]di

for certain di;
thus D = {f = 0}, where f = f1 · . . . · fℓ has degree d = d1 + . . . + dℓ. In
particular, if all di’s are equal to 1 we speak of a hyperplane arrangement, if
they are equal to 2 we deal with an arrangement of quadrics and so on. If
different di’s appear in D, then we call D a multi-degree arrangement.
In order to introduce the notion of sheaf of logarithmic forms on D we refer
to Deligne ([8], [7]). Let U be the complement of D in Pn and let j be the
embedding of U in Pn. We denote by Ω1

U the sheaf of holomorphic differential
1-forms on U and by j∗Ω

1
U its direct image sheaf on Pn. Since D has normal

crossings, then for all x ∈ Pn there exists a Euclidean neighbourhood Ix ⊂ Pn

such that Ix ∩ D = {z1 · · · zk = 0}, where {z1, . . . , zk} is a part of a system of
local coordinates. We have the following:

Definition 2.1. The sheaf of differential 1-forms on Pn with logarithmic poles
on D is the subsheaf Ω1

Pn(logD) of j∗Ω
1
U , such that, for all x ∈ Pn,

Γ(Ix,Ω
1
Pn(logD)) = {s ∈ Γ(Ix, j∗Ω

1
U ) | s =

k
∑

i=1

uid log zi +

n
∑

i=k+1

vidzi}

where ui, vi are locally holomorphic functions and d log zi =
dzi
zi

.

Another way to describe these sheaves, which is useful for more general divi-
sors and is equivalent to the previous one in the normal crossings case, is the
following, ([19], [20]):

Definition 2.2. The sheaf of diff. 1-forms on Pn with log. poles on D is

Ω1
Pn(logD) = T (logD)∨(−1),

where T (logD) is the kernel of the Gauss map On+1
Pn

(∂0f ,...,∂n f )
−−−−−−−−→ OPn(d− 1).

Since D has normal crossings, Ω1
Pn(logD) is a locally free sheaf of rank n, [7].

It is called the logarithmic bundle attached to D.
Definition 2.1 can be used, more generally, to introduce the logarithmic bundle
of an arrangement with normal crossings D on a smooth algebraic variety X
(see also [2]).
Our investigations are mainly based on the following:

Theorem 2.3. Ω1
Pn(logD) admits the short exact sequences

(1) 0 −→ Ω1
Pn −→ Ω1

Pn(logD)
res
−→

ℓ
⊕

i=1

ODi
−→ 0,

where res denotes the Poincaré residue morphism ([11]) and

(2) 0 −→ Ω1
Pn(logD)∨ −→ OPn(1)n+1 ⊕Oℓ−1

Pn

N
−→

ℓ
⊕

i=1

OPn(di) −→ 0,
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where N is a ℓ×(n+ℓ) matrix depending on the fj’s and their partial derivatives
([2]).

Our aim is to study the injectivity of the correspondence

(3) D 7−→ Ω1
Pn(logD)

where D is a multi-degree arrangement with normal crossings with fixed degrees
d1, . . . , dℓ, that is the Torelli problem for logarithmic bundles. In the case of
1 : 1 correspondence we call D an arrangement of Torelli type or, simply, a
Torelli arrangement.
In the next section we recall the main results concerning this problem in the
case of hyperplanes ([11], [26], [1]), of one smooth hypersurface ([25], [24], [2]),
of many smooth hypersurfaces of degree d ≥ 2 and of two smooth quadrics
([2]). In some of them, the components of D are recovered by looking at the
set of unstable objects of Ω1

Pn(logD) of a given degree; to that end we make
the following:

Definition 2.4. Let D ⊂ Pn be a hypersurface. We call D unstable for
Ω1

Pn(logD) if the following condition holds:

(4) H0(D,Ω1
Pn(logD)

∨

|D
) 6= {0}.

Remark 2.5. Let us suppose that D has ℓ = ℓ1 + . . . + ℓm components such
that ℓi have degree di, i ∈ {1, . . . ,m}. We are interested in Definition 2.4 when

h0(Pn,Ω1
Pn(logD)

∨
) = {0}, that is, by using the same arguments of Remark

5.3 of [2], when

(5)

m
∑

i=1

(ℓi · di) > n+ 1.

Remark 2.6. In Lemma 5.4 of [2], by means of (1) we prove that each com-
ponent Di of D is an unstable hypersurface of degree di for Ω1

Pn(logD).
As in Definition 2.4, we can introduce the notion of unstable hypersurface for
Ω1

X(logD) when X is a smooth algebraic variety and D is an arrangement with
normal crossings on it. In a similar way we can prove that each element of D
is unstable for Ω1

X(logD).

3. Some known Torelli type results

Let H = {H1, . . . , Hℓ} be a hyperplane arrangement with normal crossings on
Pn. If ℓ ≤ n + 2, then H isn’t of Torelli type ([11]); otherwise we have the
following result ([26], Theorem 3.1):

Theorem 3.1. If ℓ ≥ n + 3 then H is the set of unstable hyperplanes of
Ω1

Pn(logH), unless H1, . . . , Hℓ osculate a rational normal curve Cn ⊂ Pn of
degree n, in which case all the hyperplanes lying on C∨

n ⊂ (Pn)∨ are unsta-
ble and Ω1

Pn(logH) ∼= Eℓ−2(C
∨
n ), the Schwarzenberger bundle of degree ℓ − 2

associated to C∨
n .
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If D = {D1}, where D1 ⊂ Pn is a general hypersurface of degree d1, then D is
of Torelli type if and only if d1 ≥ 3 ([24], Theorem 1; [2], Proposition 6.1).
Now, let D = {D1, . . . , Dℓ} be an arrangement with normal crossings on Pn,
with ℓ ≥ 2 and di = d ≥ 2 for all i ∈ {1, . . . , ℓ}. By associating to D a

hyperplane arrangementH in P(n+d
d )−1 through the d-uple Veronese embedding

and by applying Theorem 3.1, we get the following result ([2], Theorem 5.5):

Theorem 3.2. If ℓ ≥
(

n+d
d

)

+ 3 and H is a hyperplane arrangement with
normal crossings whose components don’t osculate a rational normal curve of

degree
(

n+d
d

)

− 1 in P(n+d
d )−1, then D is the set of smooth, irreducible, degree-d

hypersurfaces of Pn unstable for Ω1
Pn(logD).

In ([2], Theorem 7.5) we prove also that if ℓ = d = 2 then D is not a Torelli
arrangement. Indeed, by using the simultaneous diagonalization of the ma-
trices of the smooth quadrics and a duality argument, we get that two such
arrangements have isomorphic logarithmic bundles if and only if they have the
same tangent hyperplanes.
In the next sections we present some recent results concerning multi-degree ar-
rangements (§. 4, 5, 6, 7) and an almost complete description of the conic-case
(§. 8).

4. Many multi-degree hypersurfaces

Let D = {Dd1
1 , . . . , Dd1

ℓ1
, Dd2

1 , . . . , Dd2

ℓ2
, . . . . . . , Ddm

1 , . . . , Ddm

ℓm
} be a multi-

degree arrangement with normal crossings in Pn such that the components
Ddi

1 , . . . , Ddi

ℓi
have degree di, with i ∈ {1, . . . ,m} and dm > dm−1 > · · · > d1;

let us denote by Ω1
Pn(logD) the corresponding logarithmic bundle.

When the number of components in D is sufficiently large, the Torelli problem
can be solved by generalizing the method used in [2] and by applying a reduction
technique inspired by the one adopted in [26]. So, let Hdi

be the arrangement

with ℓi hyperplanes on PNi , with i ∈ {1, . . . ,m} and Ni =
(

n+di

di

)

− 1, as-

sociated to {Ddi

1 , . . . , Ddi

ℓi
} by means of the di-uple Veronese embedding, i.e.

νdi
: Pn −→ PNi and νdi

([x0, . . . , xn]) = [. . . xI . . .], where xI ranges over all
monomials of degree di in x0, . . . , xn. Let us assume that each Hdi

has normal
crossings on PNi and let Ω1

P
Ni
(logHdi

) be the associated logarithmic bundle.
With the previous notation, let us consider the diagonal embedding:

ν : Pn −→ P =

m
∏

i=1

PNi

ν([x0, . . . , xn]) = [νd1([x0, . . . , xn]), . . . , νdm
([x0, . . . , xn])].

Let pi : P −→ PNi be the i-th projection and let hi = c1(p
∗
i (OP

Ni (1))). By
means of ν, we can associate to the multi-degree arrangement D an arrange-
ment A = A1 ∪ . . .∪Am on P such that Ai is an irreducible divisor of class hi

which is the pull-back via pi of Hdi
.
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Let us assume that A has normal crossings and let Ω1
P
(logA) be its logarith-

mic bundle (see also [4] for some results concerning logarithmic bundles over
products of projective spaces).

Remark 4.1. The following property holds:

(6) Ω1
P
(logA) ∼=

m
⊕

i=1

p∗i (Ω
1
P

Ni
(logHdi

)).

Moreover, if ℓi ≥ Ni + 2, Hdi
having normal crossings, Ω1

PNi
(logHdi

) is a

Steiner bundle over PNi , [11]. So, because of (6), Ω1
P
(logA) admits the short

exact sequence

(7) 0 −→
m
⊕

i=1

OP(−hi)
ℓi−Ni−1 −→

m
⊕

i=1

Oℓi−1
P

−→ Ω1
P
(logA) −→ 0.

Now we can state and prove the main result concerning the Torelli problem for
multi-degree arrangements with many components.

Theorem 4.2. Let D be a multi-degree arrangement with normal crossings on
Pn and let Hd1 , . . . ,Hdm

, A be the corresponding arrangements, respectively,
on PN1 , . . . ,PNm and P, in the sense of Veronese maps.
Assume that, for all i ∈ {1, . . . ,m}:
1. ℓi ≥ Ni + 4
2. A has normal crossings on P

3. Hdi
has normal crossings on PNi and its hyperplanes don’t osculate a rational

normal curve of degree Ni in PNi .
Then D = {D ⊂ Pn smooth irred. hypers. of degree di, ∃ i |Dsatisfies (4)}.

Proof. We perform a double inclusion argument between the two sets in the
last line of the statement of Theorem 4.2. We observe that the inclusion ⊂
follows from Remark 2.6.
Thus, let us assume that D ⊂ Pn is a smooth irreducible hypersurface of degree
di which is unstable for Ω1

Pn(logD), we want to prove that D ∈ D.
First let us suppose that the degree of D is the highest one, i.e. dm.
Our aim is to show that, denoting by Hdm

⊂ PNm the hyperplane associated
to D by means of νdm

, then H = p∗m(Hdm
) ⊂ P satisfies

(8) H0(H,Ω1
P
(logA)∨|H ) 6= {0}.

Indeed, if this is the case, Hdm
is an unstable hyperplane for Ω1

PNm
(logHdm

)
and so hypothesis 1. and 3. allow us to apply Theorem 3.1, which implies
that Hdm

∈ Hdm
. In particular, we get that D = Ddm

j ∈ D for certain j ∈
{1, . . . , ℓm}.
Let us denote by V the image of the map ν; since V is a non singular subvariety
of P which intersects transversally A, from Proposition 2.11 of [10] we get the
following exact sequence

(9) 0 −→ N∨
V,P −→ Ω1

P
(logA)|V −→ Ω1

V (logA ∩ V ) −→ 0
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where N∨
V,P denotes the conormal sheaf of V in P.

We remark that V ∼= Pn and D = A ∩ V , so if we restrict (9) to D, we apply
Hom(·, OD) and then we pass to cohomology we get

0 −→ H0(D,Ω1
Pn(logD)

∨

|D
) −→ H0(D,Ω1

P
(logA)

∨

|D
).

Since D is unstable for Ω1
Pn(logD), necessarily it has to be

(10) H0(D,Ω1
P
(logA)

∨

|D
) 6= {0}.

Now, let us tensor the ideal sheaf sequence of V in P with Ω1
P
(logA)

∨

|H
; we

have the exact sequence

0 −→ IV ∩H,H ⊗ Ω1
P
(logA)

∨

|H
−→ Ω1

P
(logA)

∨

|H
−→ Ω1

P
(logA)

∨

|D
−→ 0.

Passing to cohomology we get

0 −→ H0(H, IV ∩H,H ⊗ Ω1
P
(logA)

∨

|H
) −→ H0(H,Ω1

P
(logA)

∨

|H
) −→

−→ H0(D,Ω1
P
(logA)

∨

|D
) −→ H1(H, IV ∩H,H ⊗ Ω1

P
(logA)

∨

|H
).

We remark that to conclude the proof it suffices to show that

(11) H1(H, IV ∩H,H ⊗ Ω1
P
(logA)

∨

|H
) = {0}.

Since hypothesis 1. and 3. hold, we are allowed to use (7), which, by applying
Hom(·, P) turns out to be

0 −→ Ω1
P
(logA)∨ −→

m
⊕

i=1

Oℓi−1
P

−→
m
⊕

i=1

OP(hi)
ℓi−Ni−1 −→ 0.

If we tensor with IV,P |H and then we pass to cohomology, the previous sequence
becomes

(12) · · · −→
m
⊕

i=1

H0(H, IV ∩H,H ⊗ OP(hi)
ℓi−Ni−1
|H

) −→

−→ H1(H, IV ∩H,H ⊗ Ω1
P
(logA)∨|H

) −→
m
⊕

i=1

H1(H, IV ∩H,H ⊗ Oℓi−1
P |H

).

In order to prove (11) it suffices to show that

(13) H1−k(H, IV ∩H,H(khi)) = {0}

for k = {0, 1} and for all i ∈ {1, . . . ,m}. V ∩ H being connected, from the
induced cohomology sequence of the ideal sheaf sequence of V in P, restricted
to H , we immediately get (13) for k = 0.
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So, let us consider the exact commutative diagram:

0 0 0
↓ ↓ ↓

0 → IV,P(hi − hm) → OP(hi − hm) → OPn(di − dm) → 0
↓ ↓ ↓

0 → IV,P(hi) → OP(hi) → OPn(di) → 0
↓ ↓ ↓

0 → IV ∩H,H(hi) → OH(hi) → OV ∩H(di) → 0
↓ ↓ ↓
0 0 0

Since H0(P,OP(hi)) → H0(Pn,OPn(di)) is an isomorphism, we always get

(14) H0(P, IV,P(hi)) = H1(P, IV,P(hi)) = {0}.

Moreover, looking at the first row of the diagram, we obtain, for all i,

(15) H1(P, IV,P(hi − hm)) = {0}

By using (14) and (15), the first column of the diagram implies (13) for k = 1,
as desired.
Now, let us suppose that D has degree di with i ∈ {m − 1,m − 2, . . . , 1}. In
order to prove that D ∈ D, we apply a reduction technique to Ω1

Pn(logD) and

to the hypersurfaces of D of highest degree dm. Let’s start with Ddm

ℓm
: since for

this hypersurface (4) holds, there exists a non-zero surjective homomorphism

Ω1
Pn(logD)|

D
dm
ℓm

−→ O
D

dm
ℓm

,

which induces a surjective composed homomorphism gℓm

Ω1
Pn(logD) −→ Ω1

Pn(logD)|
D

dm
ℓm

−→ O
D

dm
ℓm

.

Its kernel, denoted by Kdm

ℓm
, turns out to be a rank-n vector bundle over Pn.

If we apply the snake lemma to the commutative diagram

0 −→
m
⊕

i=1

OPn(−di)
ℓi −→ OPn(−1)n+1 ⊕ O

(
∑

m
i=1 ℓi)−1

Pn −→ Ω1
Pn(logD) −→ 0

↓ ↓ ↓ gℓm

0 −→ OPn(−dm) −→ OPn −→ O
D

dm
ℓm

−→ 0

we get that Kdm

ℓm
admits the short exact sequence

0 −→
m−1
⊕

i=1

OPn(−di)
ℓi ⊕ OPn(−dm)ℓm−1 Mℓm−→

Mℓm−→ OPn(−1)n+1 ⊕ O
(
∑m−1

i=1 ℓi)+(ℓm−1)−1

Pn −→ Kdm

ℓm
−→ 0
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where Mℓm is the
[

n+
(

∑m−1
i=1 ℓi

)

+ (ℓm − 1)
]

×
[(

∑m−1
i=1 ℓi

)

+ (ℓm − 1)
]

ma-

trix obtained from the transpose of the matrix in (2) by removing the last
column and row. So we have that

Kdm

ℓm
∼= Ω1

Pn(log{Dd1
1 , . . . , Dd1

ℓ1
, Dd2

1 , . . . , Dd2

ℓ2
, . . . . . . , Ddm

1 , . . . , Ddm

ℓm−1}),

i.e. Kdm

ℓm
is the logarithmic bundle associated to D − {Ddm

ℓm
}. In particular, D

satisfies the condition

(16) H0(D,Kdm

ℓm

∨

|D
) 6= {0},

that is D is unstable for Kdm

ℓm
. Indeed, if we apply Hom(·,OPn) to the short

exact sequence

0 −→ Kdm

ℓm
−→ Ω1

Pn(logD)
gℓm−−→ O

D
dm
ℓm

−→ 0

we get

(17) 0 −→ Ω1
Pn(logD)∨ −→ Kdm

ℓm

∨
−→ O

D
dm
ℓm

(dm) −→ 0.

So, if we restrict (17) to D and then consider the induced cohomology sequence,
we obtain an injective map

H0(D,Ω1
Pn(logD)∨|D ) −→ H0(D,Kdm

ℓm

∨

|D
),

which implies (16).

Now, starting from Kdm

ℓm
, we iterate this technique for Ddm

ℓm−1, D
dm

ℓm−2, . . . , D
dm

1

and we get a sequence of rank-n vector bundles Kdm

ℓm−1,K
dm

ℓm−2, . . . ,K
dm

1 over

Pn such that, for all s ∈ {1, . . . , ℓm − 1},

0 −→ Kdm

ℓm−s −→ Kdm

ℓm−(s−1)

gℓm−s

−−−−→ O
D

dm
ℓm−s

−→ 0

is a short exact sequence and

Kdm

ℓm−s
∼= Ω1

Pn(log{Dd1
1 , . . . , Dd1

ℓ1
, . . . . . . , Ddm

1 , . . . , Ddm

ℓm−(s+1)}).

In particular

Kdm

1
∼= Ω1

Pn(log{Dd1
1 , . . . , Dd1

ℓ1
, . . . . . . , D

dm−1

1 , . . . , D
dm−1

ℓm−1
})

and the smooth irreducible hypersurface D of degree di is unstable for Kdm

1 .
If i = m − 1, then D is a hypersurface of highest degree in the arrangement
D−{Ddm

1 , . . . , Ddm

ℓm
} and so, by repeating the computations of the first case of

this proof, we get that there exists j ∈ {1, . . . , ℓm−1} such that D = D
dm−1

j .

If i = m−2, we apply the reduction technique to Kdm

1 and to the hypersurfaces

{D
dm−1

ℓm−1
, . . . , D

dm−1

1 } and so on.

If i = 1, with this method D turns out to be unstable for the logarithmic bundle
Ω1

Pn(log{D
d1
1 , . . . , Dd1

ℓ1
}) and so, from Theorem 3.2 it follows that there exists

j ∈ {1, . . . , ℓ1} such that D = Dd1

j , which concludes the proof. �

We have the following:
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Corollary 4.3. If ℓi ≥
(

n+di

di

)

+ 3, for all i ∈ {1, . . . ,m}, then the map

D = {Dd1
1 , . . . , Dd1

ℓ1
, . . . . . . , Ddm

1 , . . . , Ddm

ℓm
} −→ Ω1

Pn(logD)

is generically injective.

Remark 4.4. Hypothesis 1. of Theorem 4.2 implies (5).

Remark 4.5. We don’t know if we can state a Torelli type theorem like 4.2
without assuming 2. and 3.

In the case of arrangements with lines and conics in the projective plane, that
is d1 = 1 and d2 = n = 2, hypothesis 1. of Theorem 4.2 translates to ℓ1 ≥ 6
and ℓ2 ≥ 9. In the next three sections we describe this kind of arrangements
when ℓ1 ∈ {1, 2, 3} and ℓ2 = 1.

5. A conic and a line

Let D = {L,C} be an arrangement with normal crossings in P2 consisting of a
line L and a conic C. Without loss of generality, we can assume L = {f1 = 0}

and C = {f2 = 0}, with f1 = x0 and f2 =
∑2

i,j=0 aijxixj , (aij)0≤i,j≤2 ∈

GL(2,C), so that, by applying Gaussian elimination to the matrix of (2), we
can get the minimal resolution for Ω1

P2(logD)

(18) 0 −→ OP2(−2)
M
−→ OP2(−1)2 ⊕OP2 −→ Ω1

P2(logD) −→ 0

with

M =





2 ∂1f2
2 ∂2f2

−2 x0 ∂0f2



 .

As a consequence we get that c1(Ω
1
P2(logD)) = 0, c2(Ω

1
P2(logD)) = 1

and, according to the Bohnhorst-Spindler criterion ([5]), that Ω1
P2(logD) is

a semistable vector bundle over P2.

Theorem 5.1. Let Mss
P2(0, 1) be the family of semistable rank 2 vector bundles

E over P2 with minimal resolution

0 −→ OP2(−2)
t
(

ℓ1 ℓ2 q
)

−−−−−−−−−−→ OP2(−1)2 ⊕OP2 −→ E −→ 0

where ℓ1, ℓ2 ∈ H0(P2,OP2(1)) and q ∈ H0(P2,OPn(2)). Then the map

Mss
P2(0, 1)

π2−→ P2

E 7−→ {ℓ1 = 0} ∩ {ℓ2 = 0}

is an isomorphism.

Proof. Let E and E′ be two elements of Mss
P2(0, 1), defined, respectively, by

ℓ1, ℓ2, q and ℓ′1, ℓ
′
2, q

′, as in the statement of Theorem 5.1. We have to prove
that the intersection point of ℓ1 and ℓ2 coincides with the one of ℓ′1 and ℓ′2
if and only if E ∼= E′. If the intersection point is the same, without loss of
generality we can assume that ℓ1 = ℓ′1 = x0 and ℓ2 = ℓ′2 = x1. We remark that,
for all x ∈ P2, Ex and E′

x are the cokernels of two rank 1 maps, in particular
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if x = [0, 0, 1] then q and q′ have to contain the term x2
2. Thus, E

∼= E′ if and
only if there exist g1, g2 ∈ H0(P2,OP2(1)) such that the following diagram
commutes

OP2(−2)
t
(

x0 x1 q
)

−−−−−−−−−−→ OP2(−1)2 ⊕OP2

(

1
)





y





y





1 0 0
0 1 0
g1 g2 1





OP2(−2)
t
(

x0 x1 q′
)

−−−−−−−−−−−→ OP2(−1)2 ⊕OP2

which is equivalent to say that

(19) q′ − q = g1x0 + g2x1.

Assume that

q = b00x
2
0 + b01x0x1 + b02x0x2 + b11x

2
1 + b12x1x2 + x2

2

q′ = b′00x
2
0 + b′01x0x1 + b′02x0x2 + b′11x

2
1 + b′12x1x2 + x2

2.

By using the identity principle for polynomials, we immediately get that

g1 = (b′00 − b00)x0 + (b′01 − b01 − 1)x1 + (b′02 − b02)x2

g2 = x0 + (b′11 − b11 − 1)x1 + (b′12 − b12)x2

solve (19), which concludes the proof. �

Remark 5.2. Each E ∈ Mss
P2(0, 1) is logarithmic for a line and a conic.

Remark 5.3. Theorem 5.1 asserts that Ω1
P2(logD) lives in 2-dimensional

space, while the number of parameters associated to a line and a conic with
normal crossings is 7. So we can immediately conclude that arrangements like
these are not of Torelli type.

With the aid of the description given in Theorem 5.1 and with the same notation
as in the beginning of this section, we get the following result.

Proposition 5.4. The point in P2 corresponding to Ω1
P2(logD) by means of

π2 is the pole of the line L with respect to the conic C.

Proof. By applying Cramer’s rule we get that the point in P
2 satisfying

2
∑

j=0

a1jxj =
2

∑

j=0

a2jxj = 0

is P = [a212−a11a22, a22a01−a02a12, a02a11−a12a01]. The polar line of P with
respect to C is given by

(a212 − a11a22, a22a01 − a02a12, a02a11 − a12a01)





a00 a01 a02
a01 a11 a12
a02 a12 a22









x0

x1

x2



 = 0

which reduces to x0 = 0, that is to L, as desired. �
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We immediately get the following:

Corollary 5.5. Let D = {L,C} and D′ = {L′, C′} be arrangements with
normal crossings in P2 given by a line and a conic. Then

Ω1
P2(logD) ∼= Ω1

P2(logD′)

if and only if the pole of L with respect to C coincides with the pole of L′ with
respect to C′.

Figure 1. L is the polar line of P with respect to C

Remark 5.6. These results can be extended in a natural way to the case of a
multi-degree arrangement D with normal crossings in Pn, n ≥ 3, consisting of
a hyperplane H and a smooth quadric Q. In this setting Ω1

Pn(logD) is no more
semistable over Pn, but its isomorphism class is still described by the pole of
H with respect to Q, [3].

6. A conic and two lines

Let D = {L1, L2, C} be an arrangement with normal crossings in P2, where
Li, for i ∈ {1, 2}, is a line and C is a conic. We can assume that L1 =
{f1 = 0}, L2 = {f2 = 0} and C = {f3 = 0} where f1 = x0, f2 = x1

and f3 =
∑2

i,j=0 aijxixj , (aij)0≤i,j≤2 ∈ GL(2,C), so that, by means of (2),

Ω1
P2(logD) fits in the minimal resolution

(20) 0 −→ OP2(−2)
M
−→ OP2(−1)⊕O2

P2 −→ Ω1
P2(logD) −→ 0

where

M =





2 ∂2f3
−2 x0 ∂0f3
−2 x1 ∂1f3



 .

In particular, (20) implies that the normalized bundle Ω1
P2(logD)(−1) belongs

to MP2(−1, 2), the moduli space of rank 2 stable vector bundles over P2 with
Chern classes c1 = −1 and c2 = 2. In the following result, which is likely to be
known to experts, we give an interesting description of MP2(−1, 2); in order
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to state it, we denote by σ2(ν2(P
2)) the 2-secant variety of the image of the

quadratic Veronese map ν2 : P2 −→ P5.

Theorem 6.1. MP2(−1, 2) is isomorphic to σ2(ν2(P
2))−ν2(P

2), the projective
space of symmetric matrices of order 3 and rank 2.

Proof. A vector bundle E lives in MP2(−1, 2) if and only if it is endowed with
a short exact sequence like

0 −→ OP2(−3)
t
(

ℓ1 q1 q2
)

−−−−−−−−−−−→ OP2(−2)⊕O2
P2(−1) −→ E −→ 0

where ℓ1 ∈ H0(P2,OP2(1)) and q1, q2 ∈ H0(P2,OP2(2)).
We note that E has a unique line L ⊂ P2 such that H0(L,E|L(−1)) 6= {0},
known as jumping line of E, which is {ℓ1 = 0}. On this line, the linear series
given by q1 and q2 has two distinct double points, which we denote by P1 and
P2. Then the map given by

MP2(−1, 2) −→ σ2(ν2(P
2))− ν2(P

2)

E 7−→ {P1, P2}

is an isomorphism, which concludes the proof. �

Remark 6.2. Theorem 6.1 implies that Ω1
P2(logD)(−1) is characterized by 4

parameters, while D needs 9 parameters to be described. So in this case D is
not a Torelli arrangement.

Remark 6.3. The jumping line of Ω1
P2(logD) is {∂2f3 = 0} and it is the polar

line with respect to C of L1 ∩L2 = [0, 0, 1]. Moreover, the linear series on this
line is given by L1 ∪ s2 and L2 ∪ s1, where s2 is the polar line with respect to
C of {∂2f3 = 0} ∩L2 = [a22, 0,−a02] and s1 is the polar line with respect to C
of {∂2f3 = 0} ∩ L1 = [0, a22,−a12], that is s2 = {a22∂0f3 − a02∂2f3 = 0} and
s1 = {a22∂1f3 − a12∂2f3 = 0}. The logarithmic bundle Ω1

P2(logD) corresponds
to the two intersection points {P1, P2} of C and {∂2f3 = 0}.

Corollary 6.4. Let D = {L1, L2, C} and D′ = {L′
1, L

′
2, C

′} be arrange-
ments with normal crossings in P2 consisting of two lines and a conic. Let
{P1, P2}, resp. {P ′

1, P
′
2}, be the points in P2 associated to Ω1

P2(logD), resp. to
Ω1

P2(logD′), in the sense of Remark 6.3. Then

Ω1
P2(logD) ∼= Ω1

P2(logD′) ⇐⇒ {P1, P2} = {P ′
1, P

′
2}.

7. A conic and three lines

Let D = {L1, L2, L3, C} be an arrangement with normal crossings in P2 con-
sisting of three lines and a conic, let us say that L1 = {x0 = 0}, L2 = {x1 = 0},
L3 = {x2 = 0} and C = {f4 = 0} where

(21) f4 =

2
∑

i,j=0

dijxixj , (dij)0≤i,j≤2 ∈ GL(2,C).
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Figure 2. The points {P1, P2} associated to Ω1
P2(logD)

In this case, starting from (2), the minimal resolution for the logarithmic bundle
turns out to be

(22) 0 −→ OP2(−2)
M
−→ O3

P2 −→ Ω1
P2(logD) −→ 0

where

M =





−x0∂0f4
−x1∂1f4
−x2∂2f4



 .

From (22) we get that Ω1
P2(logD) is stable and that its normalized bundle

Ω1
P2(logD)(−1) lives in the moduli space MP2(0, 3), which has dimension 9,

as we can see in [17]. Since the number of parameters associated to three lines
and a conic is 11, also in this case we can’t get a Torelli type theorem.
By using the second part of Theorem 2.3, we note that Ω1

P2(logD)(−1) admits
an exact sequence like the one for the logarithmic bundle of a smooth plane
cubic curve. The link between these two vector bundles is explained in the
following result:

Theorem 7.1. Let D be the multi-degree arrangement with normal crossings
on P2 given by {x0x1x2f4 = 0}, where f4 is as in (21). Then there exists
D′ = {D}, where D ⊂ P2 is a smooth cubic curve, such that

Ω1
P2(logD) ∼= Ω1

P2(logD′)(1).

Proof. Our aim is to find g ∈ H0(P2,OP2(3)) such that, for all i ∈ {0, 1, 2},

(23) ∂ig = ei0(−x0∂0f4) + ei1(−x1∂1f4) + ei2(−x2∂2f4)

for certain eij ∈ C.
By using Schwarz’s theorem, from (23) we get, for all i, h ∈ {0, 1, 2}, i 6= h,

2
∑

j=0

ehj ∂i(xj∂jf4) =

2
∑

j=0

eij∂h(xj∂jf4).
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Let us denote by {ajuv} the coefficients of xj∂jf4 for j ∈ {0, 1, 2}; by using
the identity principle for polynomials we get the following linear system of 9
equations with variables eij : for all i, u, v ∈ {0, 1, 2}, i 6= u,

(24)

2
∑

j=0

ajuve
i
j =

2
∑

j=0

ajive
u
j .

Since ajuv depend on the coefficients of f4, the matrix of (24) is:

H =





























d01 d01 0 −2d00 0 0 0 0 0
0 2d11 0 −d01 −d01 0 0 0 0
0 d12 d12 −d02 0 −d02 0 0 0
d02 0 d02 0 0 0 −2d00 0 0
0 d12 d12 0 0 0 −d01 −d01 0
0 0 2d22 0 0 0 −d02 0 −d02
0 0 0 d02 0 d02 −d01 −d01 0
0 0 0 0 d12 d12 0 −2d11 0
0 0 0 0 0 2d22 0 −d12 −d12





























.

By using Gaussian elimination, we get that rankH ≤ 8. So, let us assume
that eij is a solution of our system, we need a cubic polynomial g such that
conditions in (23) are satisfied. Let us integrate with respect to x0 the equation
(23) with i = 0, we get

(25) g(x0, x1, x2) = −2e00x
2
0

(x0

3
a000 +

x1

2
a001 +

x2

2
a002

)

+ h(x1, x2)+

−2x0

[

e01

(x0x1

2
a001 + x2

1a
0
11 + x1x2a

0
12

)

+ e02

(x0x2

2
a002 + x1x2a

0
12 + x2

2a
0
22

)]

where h is a function to be determined. If we compute ∂1g from (25), we
substitute it in (23) with i = 1 and we integrate with respect to x1 we get

(26) h(x1, x2) = x0x1

[

e00x0a
0
01 + 2e01

(x0

2
a001 + x1a

0
11 + x2a

0
12

)]

+

+x0x1

[

2e02x2a
0
12 − e10

(

2x0a
0
00 + x1a

0
01 + 2x2a

0
02

)]

+ i(x2)+

−e11x
2
1

(

x0a
0
01 + 2

x1

3
a011 + x2a

0
12

)

− x1x2e
1
2

(

2x0a
0
02 + x1a

0
12 + 2x2a

0
22

)

where we have to determine the function i. Finally, if we compare ∂2g from
(25) with (23) for i = 2, using also (26) and we integrate with respect to x2,
we can find explicitly i, so that the required polynomial is

g(x0, x1, x2) = −
2

3
e00a

0
00x

3
0−2e10a

0
00x

2
0x1−2e01a

0
11x0x

2
1−

2

3
e11a

0
11x

3
1−2e02a22x0x

2
2+

−2e20a
0
00x

2
0x2 − 2(e01 + e02)a

0
12x0x1x2 − 2e21a

0
11x

2
1x2 − 2e12a

0
22x1x

2
2 −

2

3
e22a

0
22x

3
2.

�

Remark 7.2. The proof of Theorem 7.1 implies also Hermite’s Theorem
(1868), which asserts that a net of conics can be regarded as the net of the
polar conics with respect to a given cubic curve (see [12], book III, chapter III,
section 29).
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Remark 7.3. If we require that ∂ig = xi∂if4, for all i ∈ {0, 1, 2}, then

(27) g(x0, x1, x2) =
2

3

(

a000x
3
0 + a011x

3
1 + a022x

3
2

)

,

provided that the conic is given by f4(x0, x1, x2) = d00x
2
0 + d11x

2
1 + d22x

2
2. So,

let D = {x0x1x2f4 = 0} and D′ = {x0x1x2f
′
4 = 0} be two arrangements with

normal crossings in P2 each of which with a conic given by a diagonalized qua-
dratic form. D and D′ correspond to a logarithmic bundle which is isomorphic
to the logarithmic bundle of a smooth cubic like the one of (27). Since in [25]
it is proved that two smooth cubics which are both Fermat yield isomorphic
logarithmic bundles, then Ω1

P2(logD) ∼= Ω1
P2(logD′).

Remark 7.4. Although we know that a multi-degree arrangement with three
lines and a conic, because of parameters computations, isn’t Torelli and that
Theorem 7.1 holds, in this case the problem of determining the fiber of (3) is
still open.

8. Arrangements with few conics

Let D = {C1, . . . , Cℓ} be an arrangement of ℓ ∈ {4, . . . , 8} conics with normal
crossings on P2.
Let F2

5 = {(x, y) ∈ P2 × P5 |x ∈ Cy} be the incidence variety point-conic in
P2 ×P5, where Cy ⊂ P2 denotes the conic defined by the point y ∈ P5 with

the Veronese correspondence and let α, β the restrictions to F2
5 of the usual

projections α and β:

F2
5 ⊂ P2 ×P5

α

ւ
β

ց

P2 P5

Remark 8.1. Let UC(Ω1
P2(logD)) be the set of unstable conics of Ω1

P2(logD),
in the sense of Definition 2.4. UC(Ω1

P2(logD)) coincides with the support of

the first direct image sheaf R1(β∗α
∗Ω1

P2(logD)(−1)): indeed, for all y ∈ P5,

R1(β∗α
∗Ω1

P2(logD)(−1))y = H1(β
−1

(y), α∗Ω1
P2(logD)(−1)|

β−1(y)
) =

= H1(Cy ,Ω
1
P2(logD)(−1)|Cy

) = H0(Cy ,Ω
1
P2(logD)

∨

|Cy
)∨,

where the last inequality follows from Serre’s duality.

So, let tensor with OP2(−1) the exact sequence (2) where n = 2, di = 2 and let
apply the functor β∗α

∗, we get:

(28) 0 → R0β∗α
∗(OP2(−3))ℓ → R0β∗α

∗(OP2(−2)3 ⊕OP2(−1)ℓ−1) →

→ R0β∗α
∗(Ω1

P2(logD)(−1)) → R1β∗α
∗(OP2(−3))ℓ →

→ R1β∗α
∗(OP2(−2)ℓ−1 ⊕OP2(−1)3) → R1β∗α

∗(Ω1
P2(logD)(−1)) → 0.
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In order to determine the terms in (28) we consider

0 −→ OP2×P5
(−2,−1) −→ OP2×P5

−→ OF
2
5
−→ 0,

we do the tensor product with α∗(OP2(t)), where t ∈ {−1,−2,−3} and we
apply the functor β∗. In this way (28) becomes

(29) 0 −→ R0β∗α
∗(Ω1

P2(logD)(−1)) −→ (Ω1
P5

)ℓ
F
−→

F
−→ (OP5(−1)3)3 ⊕OP5(−1)ℓ−1 −→ R1β∗α

∗(Ω1
P2(logD)(−1)) −→ 0.

Remark 8.2. In order to investigate UC(Ω1
P2(logD)), it suffices to study the

cokernel of the map F appearing in (29).

Remark 8.3. More generally, all the previous arguments can be applied to a
vector bundle E fitting in an exact sequence like the one of Ω1

P2(logD).

Now, let us assume that ℓ = 4. In what follows, by using Macaulay2 software
system, we produce D0 = {C0, 1, C0, 2, C0, 3, C0, 4} such that

(30) UC(Ω1
P2(logD0)) = {C0, 1, C0, 2, C0, 3, C0, 4}.

Example 1

D0 is made of four smooth random conics with normal crossings:

C0,1 : 42x2
0 − 50x0x1 + 9x2

1 + 39x0x2 − 15x1x2 − 22x2
2 = 0,

C0,2 : 50x2
0 + 45x0x1 − 39x2

1 − 29x0x2 + 30x1x2 + 19x2
2 = 0,

C0,3 : −38x2
0 + 2x0x1 − 36x2

1 − 4x0x2 − 16x1x2 − 6x2
2 = 0,

C0,4 : −32x2
0 + 31x0x1 − 38x2

1 − 32x0x2 + 31x1x2 + 24x2
2 = 0.

By multiplying the four polynomials defining the conics, we get the polynomial
f ∈ k[x0, x1, x2]8 = R8 associated to D0, where k is the field Z101. According
to Definition 2.2, we consider the kernel E of the Gauss map and we construct
the matrix M ∈ M6,4(R) associated to the module defining Ω1

P2(logD0). Then
we determine the elements of UC(Ω1

P2(logD0)): as we can see in Remark 8.1,
UC(Ω1

P2(logD0)) is the zero locus of the order 4 minors of the matrix Z, whose
cokernel is equal to the cokernel of F . In particular, posing T = k[y0, . . . , y5],
Z ∈ M4,12(T ) is the product of C ∈ M4,24(T ) and B ∈ M24,12(T ), where C
is the matrix of variables needed to get Ω1

P5 and B is the syzygy matrix of
A ∈ M12,24(T ) whose entries are the coefficients of the polynomials in M . The
ideal J generated by the 4× 4 minors of Z has dimension 1 and degree 4, from
which (30) follows.
This is the script of our algorithm.

k=ZZ/101

R=k[x_0..x_2]

ran=random(R^{1:0},R^{4:-2})

f=1_R; for t from 0 to rank source ran-1 do f=f*(ran_(0,t))

E=ker map(R^{1:-1+(degree f)_0},R^{3:0},diff(vars R,f))

M=(res dual E).dd_1

T=k[y_0..y_5]

coe=(M,k,i,j)->diff(symmetricPower(k,vars R),transpose(symmetricPower
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(k-2,vars R))*submatrix(M,{i},{j}))

coe2=(M,i,j)->diff(transpose(vars(R))*submatrix(M,{i},{j}),symmetric

Power(2,vars R))

expa=(M,k)->matrix table(rank target M,rank source M,(i,j)->coe(M,k,

i,j))

expa2=(M)->matrix table(rank target M,rank source M,(i,j)->coe2(M,i,

j))

A=sub(matrix(expa(submatrix(M,{0..2},{0..3}),2), expa2(submatrix(M,

{3..5},{0..3}))),T)

B=syz A

C=(id_(T^{4:0}))**(vars T)

Z=C*B

J=minors(4,Z)

dim J

degree J

Remark 8.4. The previous algorithm can be performed for all ℓ. In particular,
if ℓ = 5 then we can get another example such that the unstable conics of the
logarithmic bundle coincide with the conics of the arrangement.

Starting from the previous example, we can prove the following:

Theorem 8.5. If ℓ ≥ 4, then the map

D = {C1, . . . , Cℓ} −→ Ω1
P2(logD)

is generically injective.

Proof. First, let us assume that ℓ = 4. Let us consider the incidence variety
W = {(D, C) ∈ (P5 × P5 × P5 × P5) × P5 |C ∈ UC(Ω1

P2(logD))} and let

a, b be the restrictions to W of the projection morphisms, respectively, from
(P5 ×P5 ×P5 ×P5) and P5.
From the previous example we have that a−1(D0) = D0. So, for all arrange-
ments D ∈ P5 × P5 × P5 × P5, dima−1(D) ≥ 0 and h0(a−1(D),OW ) =
length a−1(D) ≥ 4. To conclude the proof, it suffices to show that there exists
V ⊂ P5 ×P5 ×P5 ×P5 open such that, for all D ∈ V

(31) dima−1(D) = 0,

(32) length a−1(D) = 4.

We remark that the dimension d of the fiber given by the morphism a has
the upper semicontinuity property ([16], chapter 1, section 8, corollary 3),
which implies that {w ∈ W | d(w) ≥ 1} is a closed subset in W . So the set
V1 = a({w ∈ W | d(w) ≤ 0}) = a({w ∈ W | d(w) = 0}) is open in P5×P5×P5×
P5. By using the upper semicontinuity of the length of the fiber given by the
morphism a (this fact is a consequence of theorem 12.8, chapter 3 of [14]; this
theorem holds with the hypothesis of flatness, in our case we have the generic
flatness) we get that the set {D ∈ P5 ×P5 ×P5 ×P5 | length a

−1(D) ≥ 5} is
closed in P5 × P5 × P5 × P5. As above, the set V2 = {D ∈ P5 × P5 ×P5 ×
P5 | length a

−1(D) ≤ 4} = {D ∈ P5 × P5 × P5 × P5 | length a
−1(D) = 4} is
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open in P5 ×P5 ×P5 ×P5. The points of the open set V = V1 ∩V2 satisfy the
required properties (31) and (32).
Now, if ℓ ≥ 5, then we can apply the reduction technique, performed in the
proof of Theorem 4.2, to Ω1

P2(logD) and to the conics of D: at each step we
get a logarithmic bundle of a conic-arrangement with one component less, till
we reduce to the case of four conics, studied above. �

Finally we discuss the case of ℓ = 3.
Let D = {C1, C2, C3} be an arrangement of conics with normal crossings on
P2. Let us start by analyzing UC(Ω1

P2(logD)). In order to do that, let us
consider the exact sequence (29) with ℓ = 3: UC(Ω1

P2(logD)), the support

of R1β∗α
∗(Ω1

P2(logD)(−1)), is the maximal degeneration locus of the mor-

phism (Ω1
P5

)3
F

−→ (OP5(−1)3)3 ⊕OP5(−1)2, i.e. it coincides with the scheme
D10(F ) = {y ∈ P5 | rank(Fy) ≤ 10}, which, according to [18], has expected
codimension 5 in P5 (we note that the computation of the expected codimen-
sion is meaningless when ℓ ≥ 4). If this is the case, the number of points in
D10(F ) is determined by Porteous’ formula:

(33) [D10(F )] = det[c1−i+j((((OP5 (−1)3)3 ⊕OP5(−1)2)− (Ω1
P5

)3)],

where 1 ≤ i, j ≤ 5. The generic entry of the matrix (33) is the coefficient of the
term of degree (1− i+ j) in the formal series in one variable coming from the
quotient of the Chern polynomials of ((OP5(−1)3)3 ⊕OP5(−1)2) and (Ω1

P5
)3.

Thus [D10(F )] = 21. More generally, we get the following:

Proposition 8.6. Let E be a vector bundle over P2 such that

0 −→ OP2(−2)3 −→ OP2(−1)3 ⊕O2
P2 −→ E −→ 0

is exact and let UC(E) be the set of unstable conics of E, in the sense of (4).
UC(E) is expected to be a 0-dimensional scheme of P5 with 21 points.

Remark 8.7. If we apply the algorithm performed in Example 1 of this sec-
tion in the case of ℓ = 3, we can find some arrangements D such that
UC(Ω1

P2(logD)) satisfies the expected properties of Proposition 8.6. Indeed,
according to the notations introduced in such algorithm, the variety in P5 de-
fined by the ideal J has 21 distinct points, which, in terms of the quadratic
Veronese embedding of the projective plane, correspond to smooth conics in
P2. Between these 21 points, 3 correspond to the component of D and the re-
maining 18 belong to a net quadrics in P5, whose base locus is a K3-surface
with 12 singular points, that don’t seem to be related to the 18 conics we are
interested in. The explicit determination of such 18 points or, equivalently, of
a primary decomposition of J saturated with the ideals defining the conics of D
as points in P5, would be interesting to solve the Torelli problem in this case,
but, at the moment, it seems to be hard, also with a computer.

According to Remark 8.7, instead of studying UC(Ω1
P2(logD)), we can focus

on UL(Ω1
P2(logD)), the set of unstable lines of Ω1

P2(logD) in the sense of
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Definition 2.4. Let F2
2 be the incidence variety point-line in P2 ×P2, i.e.

(34) F2
2 = {(x, y) ∈ P2 ×P2 |x ∈ Ly}

where Ly ⊂ P2 is the line defined by y ∈ P2 and let p, q be, respectively, the
restrictions to F2

2 of the projection maps p, q as in the following diagram:

F2
2 ⊂ P2 ×P2

p

ւ
q

ց

P2 P2

We remark that UL(Ω1
P2(logD)), as a subset of P2, is the support of

R1(q∗p
∗Ω1

P2(logD)(−2)). Namely, if y ∈ P2 then we have that

R1(q∗p
∗Ω1

P2(logD)(−2))y = H1(q−1(y), p∗Ω1
P2(logD)(−2)|

q−1(y)
) =

= H1(Ly,Ω
1
P2(logD)(−2)|Ly

) = H0(Ly,Ω
1
P2(logD)

∨

|Ly
)∨,

where the last equality follows from Serre’s duality. In order to study this
support, we apply the functor q∗p

∗ to the exact sequence (2) in the case of
three conics twisted by −2 and we get

(35) 0 −→ R0q∗p
∗(OP2(−4)3) −→ R0q∗p

∗(OP2(−3)3 ⊕OP2(−2)2) −→

−→ R0q∗p
∗(Ω1

P2(logD)(−2)) −→ R1q∗p
∗(OP2(−4)3) −→

−→ R1q∗p
∗(OP2(−3)3 ⊕OP2(−2)2) −→ R1q∗p

∗(Ω1
P2(logD)(−2)) −→ 0.

Our aim is to describe the terms of (35). So we tensor

0 −→ OP2×P2
(−1,−1) −→ OP2×P2

−→ OF
2
2
−→ 0

with p∗O2
P
(t), where t ∈ {−4,−3,−2} and then we apply q∗. By using Serre’s

duality and the Poincaré-Euler sequence, (35) turns out to be

(36) 0 −→ R0q∗p
∗(Ω1

P2(logD)(−2)) −→ R1q∗p
∗(OP2(−4)3)

G
−→

G
−→ (Ω1

P2
)3 ⊕OP2(−1)2 −→ R1q∗p

∗(Ω1
P2(logD)(−2)) −→ 0

where R1q∗p
∗(OP2(−4)) fits in the exact sequence

0 −→ R1q∗p
∗(OP2(−4)) −→ OP2(−1)6 −→ O3

P2
−→ 0,

and it has rank 3 over P2. The support of R1(q∗p
∗Ω1

P2(logD)(−2)) is the
maximal degeneration locus of the morphism G in (36), i.e. it’s the scheme
D7(G) = {y ∈ P2 | rank(Gy) ≤ 7}. According to [18], the expected codimen-
sion overP2 ofD7(G) is 2, that is we expect a finite number of unstable lines for
Ω1

P2(logD). Assuming that D7(G) is 0-dimensional, the number of its points
is given by Porteous’ formula:

[D7(G)] = det[c1−i+j(((Ω
1
P2

)3 ⊕OP2(−1)2)−R1q∗p
∗(OP2(−4)3))],

where 1 ≤ i, j ≤ 2. The generic entry of [D7(G)] is the coefficient of the degree-
(1−i+j) term of the formal series in one variable defined as the quotient of the
Chern polynomial of (Ω1

P2
)3 ⊕ OP2(−1)2 with the one of R1q∗p

∗(OP2(−4)3).
So [D7(G)] = 21. These arguments imply the following:
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Proposition 8.8. Let D = {C1, C2, C3} be a normal crossing arrangement of
conics in P2. UL(Ω1

P2(logD)) is expected to be a 0-dimensional scheme of P2

with 21 points.

Remark 8.9. The previous proposition holds, more generally, for all vector
bundles E over P2 admitting the exact sequence

0 −→ OP2(−2)3 −→ OP2(−1)3 ⊕O2
P2 −→ E −→ 0.

By using Macaulay2 software system, we can find some examples of arrange-
ments that behave as stated in Proposition 8.8.
Example 2

Let us consider the arrangement D0 = {C0,1, C0,2, C0,3} of conics with normal
crossings such that

C0,1 : x2
0 + x2

1 − 16x2
2 = 0,

C0,2 : x2
0 + 9x2

1 − 36x2
2 = 0,

C0,3 : 25x2
0 + 100x0x2 + x2

1 − 2x1x2 + 76x2
2 = 0.

In order to determine UL(Ω1
P2(logD0)), we contruct the 3×5 matrix associated

to Ω1
P2(logD0)

∨ in the sense of (2) and then we restrict it to a generic line
L ⊂ P2 parametrized by x0 = bx1 + cx2. Afterwards we produce the 9 × 8
matrix M of the map

H0(L,OP2(1)3|L ⊕O2
P2 |L

) −→ H0(L,OP2(2)3|L)

with respect to the basis given by {{x1, x2}, {x1, x2}, {x1, x2}, {1}, {1}} and
{{x2

1, x1x2, x
2
2}, {x

2
1, x1x2, x

2
2}, {x

2
1, x1x2, x

2
2}}. Since we are interested in the

kernel of this linear map, we consider, over the ring k[b, c], where for simplicity
k = Q, the ideal J generated by the 8 maximal minors of M : as expected, we
get that J has dimension 0 and degree 21, in particular the algebra k[b, c]/J is
a C-vector space of dimension 21. Therefore, let B a basis of k[b, c]/J and let
compb (resp. compc) be the 21 × 21 matrix associated, with respect to B, to
the linear map (companion)

k[b, c]/J −→ k[b, c]/J

defined by the multiplication by b (resp. by c). According to [6] (chapter
2, section 4), the eigenvalues of compb (resp. compc) coincide with the b-
coordinates (resp. c-coordinates) of the points of the variety associated to J .
By using Stickelberger’s Theorem (see for example [23], chapter 2, section 2.3),
in order to get the pair of parameters (bi, ci) defining an unstable line it suffices
to match the eigenvalue bi of compb corresponding to the same eigenvector (up
to a change of sign) of the eigenvalue ci of compc.
If D0 is as above, then Ω1

P2(logD0) has 21 unstable lines such that 11 are real.

Remark 8.10. As we can see in Figure 3, it seems to be hard but interesting
to understand what these lines represent for the conic-arrangement and how it
is possible to get the conics from them: we observe, for example, that they are
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Figure 3. D0 and the 11 real unstable lines plotted with [15]

not tangent lines and they don’t cross the conics in special points. So we can
say that the three conics case represents still an open problem.
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