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Abstract. Let p and q be two distinct prime ideals of Fq[T ]. We
use the Eisenstein ideal of the Hecke algebra of the Drinfeld modular
curveX0(pq) to compare the rational torsion subgroup of the Jacobian
J0(pq) with its subgroup generated by the cuspidal divisors, and to
produce explicit examples of Jacquet-Langlands isogenies. Our results
are stronger than what is currently known about the analogues of
these problems over Q.

2010 Mathematics Subject Classification: 11G09, 11G18, 11F12
Keywords and Phrases: Drinfeld modular curves; Cuspidal divi-
sor group; Shimura subgroup; Eisenstein ideal; Jacquet-Langlands
isogeny

1

Contents

1. Introduction 552
1.1. Motivation 552
1.2. Main results 554
1.3. Notation 557
2. Harmonic cochains and Hecke operators 558
2.1. Harmonic cochains 558
2.2. Hecke operators and Atkin-Lehner involutions 564
2.3. Fourier expansion 566
2.4. Atkin-Lehner method 570
3. Eisenstein harmonic cochains 572
3.1. Eisenstein series 572
3.2. Cuspidal Eisenstein harmonic cochains 575

1The first author was supported in part by the Simons Foundation. The second author was

partially supported by National Science Council and Max Planck Institute for Mathematics.

Documenta Mathematica 20 (2015) 551–629



552 Mihran Papikian, Fu-Tsun Wei

3.3. Special case 579
4. Drinfeld modules and modular curves 583
5. Component groups 585
6. Cuspidal divisor group 590
7. Rational torsion subgroup 596
7.1. Main theorem 596
7.2. Special case 597
8. Kernel of the Eisenstein ideal 601
8.1. Shimura subgroup 601
8.2. Special case 606
9. Jacquet-Langlands isogeny 611
9.1. Modular curves of D-elliptic sheaves 611
9.2. Rigid-analytic uniformization 612
9.3. Explicit Jacquet-Langlands isogeny conjecture 613
9.4. Special case 616
10. Computing the action of Hecke operators 619
10.1. Action on H 619
10.2. Action on H′ 620
10.3. Computation of Brandt matrices 624
Acknowledgements 626
References 627

1. Introduction

1.1. Motivation. Let Fq be a finite field with q elements, where q is a power of
a prime number p. Let A = Fq[T ] be the ring of polynomials in indeterminate
T with coefficients in Fq, and F = Fq(T ) the field of fractions of A. The
degree map deg : F → Z ∪ {−∞}, which associates to a non-zero polynomial
its degree in T and deg(0) = −∞, defines a norm on F by |a| := qdeg(a). The
corresponding place of F is usually called the place at infinity, and is denoted
by ∞. We also define a norm and degree on the ideals of A by |n| := #(A/n)
and deg(n) := logq |n|. Let F∞ denote the completion of F at ∞, and C∞

denote the completion of an algebraic closure of F∞. Let Ω := C∞ − F∞ be
the Drinfeld half-plane.
Let n✁A be a non-zero ideal. The level-n Hecke congruence subgroup of GL2(A)

Γ0(n) :=

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod n

}

plays a central role in this paper. This group acts on Ω via linear fractional
transformations. Drinfeld proved in [6] that the quotient Γ0(n) \Ω is the space
of C∞-points of an affine curve Y0(n) defined over F , which is a moduli space of
rank-2 Drinfeld modules (we give a more formal discussion of Drinfeld modules
and their moduli schemes in Section 4). The unique smooth projective curve
over F containing Y0(n) as an open subvariety is denoted by X0(n). The
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cusps of X0(n) are the finitely many points of the complement of Y0(n) in
X0(n); the cusps generate a finite subgroup C(n) of the Jacobian variety J0(n)
of X0(n), called the cuspidal divisor group. By the Lang-Néron theorem, the
group of F -rational points of J0(n) is finitely generated, in particular, its torsion
subgroup T (n) := J0(n)(F )tor is finite. It is known that when n is square-free
C(n) ⊆ T (n).
For a square-free ideal n✁ A divisible by an even number of primes, let D be
the division quaternion algebra over F with discriminant n. The group of units
Γn of a maximal A-order in D acts on Ω, and the quotient Γn \ Ω is the space
of C∞-points of a smooth projective curve Xn defined over F ; this curve is a
moduli space of D-elliptic sheaves introduced in [28]. Let Jn be the Jacobian
variety of Xn.
The analogy between X0(n) and the classical modular curves X0(N) over Q
classifying elliptic curves with Γ0(N)-structures is well-known and has been
extensively studied over the last 35 years. Similarly, the modular curves Xn

are the function field analogues of Shimura curves XN parametrizing abelian
surfaces equipped with an action of the indefinite quaternion algebra over Q
with discriminant N .
Let T(n) be the Z-algebra generated by the Hecke operators Tm, m ✁ A, act-
ing on the group H0(T ,Z)Γ0(n) of Z-valued Γ0(n)-invariant cuspidal harmonic
cochains on the Bruhat-Tits tree T of PGL2(F∞). The Eisentein ideal E(n) of
T(n) is the ideal generated by the elements Tp−|p|−1, where p ∤ n is prime. In
this paper we study the Eisenstein ideal in the case when n = pq is a product
of two distinct primes, with the goal of applying this theory to two important
arithmetic problem: 1) comparing T (n) with C(n), and 2) constructing explicit
homomorphisms J0(n)→ Jn. Our proofs use the rigid-analytic uniformizations
of J0(n) and J

n over F∞. It seems that the existence of actual geometric fibres
at ∞ allows one to prove stronger results than what is currently known about
either of these problems in the classical setting; this is specific to function fields
since the analogue of ∞ for Q is the archimedean place.
Our initial motivation for studying E(pq) came from an attempt to prove a
function field analogue of Ogg’s conjecture [37] about the so-called Jacquet-
Langlands isogenies. We briefly recall what this is about. A geometric conse-
quence of the Jacquet-Langlands correspondence [25] is the existence of Hecke-
equivariant Q-rational isogenies between the new quotient J0(N)new of J0(N)
and the Jacobian JN of XN ; see [45]. (Here N is a square-free integer with an
even number of prime factors.) The proof of the existence of aforementioned
isogenies relies on Faltings’ isogeny theorem, so provides no information about
them beyond the existence. It is a major open problem in this area to make
the isogenies more canonical (cf. [24]). In [37], Ogg made several predictions
about the kernel of an isogeny J0(N)new → JN when N = pp′ is a product
of two distinct primes and p = 2, 3, 5, 7, 13. As far as the authors are aware,
Ogg’s conjecture remains open except for the special cases when JN has dimen-
sion 1 (N = 14, 15, 21, 33, 34) or dimension 2 (N = 26, 38, 58). In these cases,
JN and J0(N)new are either elliptic curves or, up to isogeny, decompose into
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a product of two elliptic curves given by explicit Weierstrass equations. One
can then find an isogeny J0(N)new → JN by studying the isogenies between
these elliptic curves; see the proof of Theorem 3.1 in [21]. This argument does
not generalize to JN of dimension ≥ 3 because they contain absolutely simple
abelian varieties of dimension ≥ 2, and one’s hold on such abelian varieties is
decidedly more fleeting.
Now returning to the setting of function fields, let n✁A be a square-free ideal
with an even number of prime factors. The global Jacquet-Langlands corre-
spondence over F , combined with the main results in [6] and [28], and Zarhin’s
isogeny theorem, implies the existence of a Hecke-equivariantF -rational isogeny
J0(n)

new → Jn. In Section 9, by studying the groups of connected components
of the Néron models of J0(n) and Jn, we propose a function field analogue
of Ogg’s conjecture (see Conjecture 9.3). This conjecture predicts that, when
n = pq is a product of two distinct primes with deg(p) ≤ 2, there is a Jacquet-
Langlands isogeny whose kernel comes from cuspidal divisors and is isomorphic
to a specific abelian group. Our approach to proving this conjecture starts with
the observation that C(n) is annihilated by the Eisenstein ideal E(n) acting on
J0(n), so we first try to show that there is a Jacquet-Langlands isogeny whose
kernel is annihilated by E(n), and then try to describe the kernel of the Eisen-
stein ideal J [E(n)] in J0(n) explicitly enough to pin down the kernel of the
isogeny. This naturally leads to the study of J [E(n)] for composite n. On the
other hand, J [E(n)] also plays an important role in the analysis of T (n), as was
first demonstrated by Mazur in his seminal paper [33] in the case of classical
modular Jacobian J0(p) of prime level. These two applications of the theory
of the Eisenstein ideal constitute the main theme of this paper.

1.2. Main results. The Shimura subgroup S(n) of J0(n) is the kernel of the
homomorphism J0(n) → J1(n) induced by the natural morphism X1(n) →
X0(n) of modular curves (see Section 8.1).

Assume p ✁ A is prime. Define N(p) = |p|−1
q−1 if deg(p) is odd, and define

N(p) = |p|−1
q2−1 , otherwise. In [38], Pál developed a theory of the Eisenstein ideal

E(p) in parallel with Mazur’s paper [33]. In particular, he showed that J [E(p)]
is everywhere unramified of order N(p)2, and is essentially generated by C(p)
and S(p), both of which are cyclic of order N(p). Moreover, C(p) = T (p) and
S(p) is the largest µ-type subgroup scheme of J0(p). These results are the
analogues of some of the deepest results from [33], whose proof first establishes
that the completion of the Hecke algebra T(p) at any maximal ideal in the
support of E(p) is Gorenstein.
As we will see in Section 8, even in the simplest composite level case the kernel
of the Eisenstein ideal J [E(n)] has properties quite different from its prime level
counterpart. For example, J [E(n)] can be ramified, generally S(n) has smaller
order than C(n), neither of these groups is cyclic, and S(n) is not the largest
µ-type subgroup scheme of J0(n).
First, we discuss our results about C(n), S(n), and T (n):
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Theorem 1.1.

(1) We give a complete description of C(pq) as an abelian group; see The-
orem 6.11.

(2) For an arbitrary square-free n we show that the group scheme S(n) is
µ-type, and therefore annihilated by E(n), and we give a complete de-
scription of S(n) as an abelian group; see Proposition 8.5 and Theorem
8.6.

(3) If ℓ 6= p is a prime number which does not divide

(q − 1) · gcd(|p|+ 1, |q|+ 1),

then the ℓ-primary subgroups of C(pq) and T (pq) are equal; see Theorem
7.3.

Usually, many of the primes dividing the order of C(pq) satisfy the condition
in (3), so, aside from a relatively small explicit set of primes, we can determine
the ℓ-primary subgroup T (pq)ℓ of T (pq). For example, (1) and (3) imply that
if ℓ does not divide (|p|2−1)(|q|2−1), then T (pq)ℓ = 0. The most advantageous
case for applying (3) is when deg(q) = deg(p)+1, since then gcd(|p|+1, |q|+1)
divides q− 1. In particular, if q = 2 and deg(q) = deg(p)+ 1, then we conclude
that the odd part of T (pq) coincides with C(pq). These results are qualitatively
stronger than what is currently known about the rational torsion subgroup
J0(N)(Q)tor of classical modular Jacobians of composite square-free levels (cf.
[4]).

Outline of the Proof of Theorem 1.1. Although it was known that C(n) is finite
for any n (see Theorem 6.1), there were no general results about its structure,
besides the prime level case n = p. The curve X0(p) has two cusps, so C(p) is
cyclic; its order was computed by Gekeler in [10]. The first obvious difference
between the prime level and the composite level n = pq is that X0(pq) has 4
cusps, so C(pq) is usually not cyclic and is generated by 3 elements. To prove
the result mentioned in (1), i.e., to compute the group structure of C(pq), we
follow the strategy in [10], but the calculations become much more complicated.
The idea is to use Drinfeld discriminant function to obtain upper bounds on
the orders of cuspidal divisors, and then use canonical specializations of C(pq)
into the component groups of J0(pq) at p and q to obtain lower bounds on these
orders.
To deduce the group structure of S(n) mentioned in (2) we use the rigid-analytic
uniformizations of J0(n) and J1(n) over F∞, and the “changing levels” result
from [18], to reduce the problem to a calculation with finite groups.
The proof of (3) is similar to the proof of Theorem 7.19 in [38], although
there are some important differences, too. Suppose ℓ is a prime that does not
divide q(q − 1). Since J0(pq) has split toric reduction at ∞, the ℓ-primary
subgroup T (pq)ℓ maps injectively into the component group Φ∞ of J0(pq) at
∞. Using the Eichler-Shimura relations, one shows that the image of T (pq)ℓ in
Φ∞ can be identified with a subspace of H0(T ,Z)Γ0(pq) ⊗ Z/ℓnZ annihilated
by the Eisenstein ideal E(pq) for any sufficiently large n ∈ N. Denote by
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E00(pq,Z/ℓnZ) the subspace of H0(T ,Z)Γ0(pq) ⊗ Z/ℓnZ annihilated by E(pq).
Then we have the inclusions

C(pq)ℓ →֒ T (pq)ℓ →֒ E00(pq,Z/ℓnZ).
The space E00(pq,Z/ℓnZ) contains the reductions modulo ℓn of certain Eisen-
stein series. We prove that if ℓ does not divide q(q − 1)gcd(|p| + 1, |q| + 1),
then the whole E00(pq,Z/ℓnZ) is generated by the reductions of these Eisen-
stein series (see Theorem 3.9 and Lemma 3.10). This allows us to compute
E00(pq,Z/ℓnZ). It turns out that E00(pq,Z/ℓnZ) ∼= C(pq)ℓ, and consequently
C(pq)ℓ = T (pq)ℓ. To prove Theorem 3.9, we first prove a version of the key
Theorem 1 in the famous paper by Atkin and Lehner [1] for Z/ℓnZ-valued har-
monic cochains (see Theorem 2.26). The fact that we need to work with Z/ℓnZ
rather than C leads to technical difficulties, which results in the restriction
ℓ ∤ q(q − 1)gcd(|p| + 1, |q| + 1). Note that in our definition the Hecke algebra
T(pq) includes the operators Up and Uq. This is important since we need to
deal systematically with “old” forms of level p and q. The smaller algebra
T(pq)0 generated by the Hecke operators Tm with m coprime to pq used by Pál
in [38] and [39] is not sufficient for getting a handle on E00(pq,Z/ℓnZ). �

Now we concentrate on the case where we investigate the Jacquet-Langlands
isogenies. We fix two primes x and y of A of degree 1 and 2, respectively. This
differs from our usual Fraktur notation for ideals of A. This is done primarily
to make it easy for the reader to distinguish the theorems which assume that
the level is xy. Several sections in the paper are titled “Special case” and deal
exclusively with the case pq = xy. Note that X0(pq) has genus 0 if p and q are
distinct primes with deg(pq) ≤ 2. The genus of X0(xy) is q, so this curve is the
simplest example of a Drinfeld modular curve of composite level and positive
genus. Also, by a theorem of Schweizer [49], X0(pq) is hyperelliptic if and only
if p = x and q = y, so one can think of this case as the hyperelliptic case.
The cusps of X0(xy) can be naturally labelled [x], [y], [1], [∞]; see Lemma 2.14.
Let cx and cy denote the classes of divisors [x] − [∞] and [y]− [∞] in J0(xy).
First, we show that (see Theorem 7.13)

T (xy) = C(xy) = 〈cx〉 ⊕ 〈cy〉 ∼= Z/(q + 1)Z⊕ Z/(q2 + 1)Z.

The reason we can prove this stronger result compared to (3) of Theorem
1.1 is that we can compute E00(xy,Z/ℓnZ) without any restrictions on ℓ, and
we can deal with the 2-primary torsion T (xy)2 using the fact that X0(xy) is
hyperelliptic.
To simplify the notation, for the rest of this section denote T = T(xy), E =
E(xy), H := H0(T ,Z)Γ0(xy), H′ := H(T ,Z)Γ

xy

, where this last group is the
group of Z-valued Γxy-invariant harmonic cochains on T . We show that (see
Corollary 3.18)

T/E ∼= Z/(q2 + 1)(q + 1)Z,

so the residue characteristic of any maximal ideal of T containing E divides
(q2 + 1)(q + 1). The Jacquet-Langlands correspondence over F implies that
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there is an isomorphism H⊗Q ∼= H′ ⊗Q which is compatible with the action
of T.

Theorem 1.2 (See Theorems 9.5 and 9.6).

(1) If H ∼= H′ as T-modules, then there is an isogeny J0(xy)→ Jxy defined
over F whose kernel is cyclic of order q2 + 1 and is annihilated by E.

(2) If H ∼= H′ as T-modules and for every prime ℓ|(q2+1) the completion of
T⊗Zℓ at M = (E, ℓ) is Gorenstein, then there is an isogeny J0(xy)→
Jxy whose kernel is 〈cy〉 ∼= Z/(q2 + 1)Z.

Remark 1.3. An isogeny J0(xy) → Jxy with kernel 〈cy〉 does not respect the
canonical principal polarizations on the Jacobians since 〈cy〉 is not a maximal
isotropic subgroup of J0(xy) with respect to the Weil pairing.

Outline of the Proof of Theorem 1.2. Both J0(xy) and J
xy have rigid-analytic

uniformization over F∞. The assumption that H and H′ are isomorphic T-
modules allows us to identify the uniformizing tori of both Jacobians with
T ⊗ C×

∞. Next, we show that the groups of connected components of the
Néron models of J0(xy) and J

xy at ∞ are annihilated by E. This allows us to
identify the uniformizing lattices of the Jacobians with ideals in T. These two
observations, combined with a theorem of Gerritzen, imply (1). If in addition
we assume that TM is Gorenstein, then we get an explicit description of the
kernel of the Eisenstein ideal from which (2) follows. �

Proving that the assumptions in Theorem 1.2 hold seems difficult. First, even
though H⊗Q and H′⊗Q are isomorphic T-modules, the integral isomorphism
is much more subtle. It is related to a classical problem about the conjugacy
classes of matrices in Matn(Z); cf. [27]. Second, when ℓ|(q2 + 1) the kernel of
M in J0(xy) is ramified, and Mazur’s Eisenstein descent arguments for proving
TM is Gorenstein do not work in this ramified situation. (Both versions of
Mazur’s descent discussed in [38, §§10,11] rely on subtle arithmetic properties
of J0(p) which are valid only for prime level.)
Nevertheless, both assumptions in Theorem 1.2 can be verified computation-
ally; Section 10 is devoted to these calculations. We were able to check the
assumptions for several cases for each prime q ≤ 7. In particular, we were able
to go beyond dimension 2, which is currently the only dimension where the
Ogg’s conjecture is known to be true over Q. Section 10 is also of independent
interest since it provides an algorithm for computing the action of Hecke op-
erators on H′; this should be useful in other arithmetic problems dealing with
Xxy. (An algorithm for computing the Hecke action on H was already known
from the work of Gekeler; see Remark 10.2.)

1.3. Notation. Aside from ∞, the places of F are in bijection with non-zero
prime ideals of A. Given a place v of F , we denote by Fv the completion of F
at v, by Ov the ring of integers of Fv, and by Fv the residue field of Ov. The
valuation ordv : Fv → Z is assumed to be normalized by ordv(πv) = 1, where
πv is a uniformizer of Ov. The normalized absolute value on F∞ is denoted by
| · |.
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Given a fieldK, we denote by K̄ an algebraic closure ofK andKsep a separable
closure in K̄. The absolute Galois group Gal(Ksep/K) is denoted by GK .
Moreover, F nr

v and Onr
v will denote the maximal unramified extension of Fv

and its ring of integers, respectively.
Let R be a commutative ring with identity. We denote by R× the group of
multiplicative units of R. Let Matn(R) be the ring of n × n matrices over R,
GLn(R) the group of matrices whose determinant is in R×, and Z(R) ∼= R×

the subgroup of GLn(R) consisting of scalar matrices.
If X is a scheme over a base S and S′ → S any base change, XS′ denotes
the pullback of X to S′. If S′ = Spec(R) is affine, we may also denote this
scheme by XR. By X(S′) we mean the S′-rational points of the S-scheme X ,
and again, if S′ = Spec(R), we may also denote this set by X(R).
Given a commutative finite flat group schemeG over a base S (or just an abelian
group G, or a ring G) and an integer n, G[n] is the kernel of multiplication by
n in G, and Gℓ is the maximal ℓ-primary subgroup of G. The Cartier dual of
G is denoted by G∗.
Given an ideal n ✁ A, by abuse of notation, we denote by the same symbol
the unique monic polynomial in A generating n. It will always be clear from
the context in which capacity n is used; for example, if n appears in a matrix,
column vector, or a polynomial equation, then the monic polynomial is implied.
The prime ideals p✁A are always assumed to be non-zero.

2. Harmonic cochains and Hecke operators

2.1. Harmonic cochains. Let G be an oriented connected graph in the sense
of Definition 1 of §2.1 in [50]. We denote by V (G) and E(G) its set of vertices
and edges, respectively. For an edge e ∈ E(G), let o(e), t(e) ∈ V (G) and
ē ∈ E(G) be its origin, terminus and inversely oriented edge, respectively. In
particular, t(ē) = o(e) and o(ē) = t(e). We will assume that for any v ∈ V (G)
the number of edges with t(e) = v is finite, and t(e) 6= o(e) for any e ∈ E(G)
(i.e., G has no loops). A path in G is a sequence of edges {ei}i∈I indexed
by the set I where I = Z, I = N or I = {1, . . . ,m} for some m ∈ N such
that t(ei) = o(ei+1) for every i, i + 1 ∈ I. We say that the path is without
backtracking if ei 6= ēi+1 for every i, i + 1 ∈ I. We say that the path without
backtracking {ei}i∈N is a half-line if for every vertex v of G there is at most
one index n ∈ N such that v = o(en).
Let Γ be a group acting on a graph G, i.e., Γ acts via automorphisms. We say
that Γ acts with inversion if there is γ ∈ Γ and e ∈ E(G) such that γe = ē.
If Γ acts without inversion, then we have a natural quotient graph Γ \G such
that V (Γ \G) = Γ \ V (G) and E(Γ \G) = Γ \ E(G), cf. [50, p. 25].

Definition 2.1. Fix a commutative ring R with identity. An R-valued har-
monic cochain on G is a function f : E(G)→ R that satisfies

(i)

f(e) + f(ē) = 0 for all e ∈ E(G),
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(ii) ∑

e∈E(G)
t(e)=v

f(e) = 0 for all v ∈ V (G).

Denote by H(G,R) the group of R-valued harmonic cochains on G.

The most important graphs in this paper are the Bruhat-Tits tree T of
PGL2(F∞), and the quotients of T . We recall the definition and introduce
some notation for later use. Fix a uniformizer π∞ of F∞. The sets of ver-
tices V (T ) and edges E(T ) are the cosets GL2(F∞)/Z(F∞)GL2(O∞) and
GL2(F∞)/Z(F∞)I∞, respectively, where I∞ is the Iwahori group:

I∞ =

{(
a b
c d

)
∈ GL2(O∞)

∣∣∣∣ c ∈ π∞O∞

}
.

The matrix

(
0 1
π∞ 0

)
normalizes I∞, so the multiplication from the right by

this matrix on GL2(F∞) induces an involution on E(T ); this involution is
e 7→ ē. The matrices

(2.1) E(T )+ =

{(
πk
∞ u
0 1

) ∣∣∣∣
k ∈ Z

u ∈ F∞, u mod πk
∞O∞

}

are in distinct left cosets of I∞Z(F∞), and there is a disjoint decomposition
(cf. [12, (1.6)])

E(T ) = E(T )+
⊔
E(T )+

(
0 1
π∞ 0

)
.

We call the edges in E(T )+ positively oriented.
The group GL2(F∞) naturally acts on E(T ) by left multiplication. This in-
duces an action on the group of R-valued functions on E(T ): for a func-
tion f on E(T ) and γ ∈ GL2(F∞) we define the function f |γ on E(T ) by
(f |γ)(e) = f(γe). It is clear from the definition that f |γ is harmonic if f is
harmonic, and for any γ, σ ∈ GL2(F∞) we have (f |γ)|σ = f |(γσ).
Let Γ be a subgroup of GL2(F∞) which acts on T without inversions. Denote
by H(T , R)Γ the subgroup of Γ-invariant harmonic cochains, i.e., f |γ = f for
all γ ∈ Γ. It is clear that f ∈ H(T , R)Γ defines a function f ′ on the quotient
graph Γ \ T , and f itself can be uniquely recovered from this function: If
e ∈ E(T ) maps to ẽ ∈ E(Γ \ T ) under the quotient map, then f(e) = f ′(ẽ).
The conditions of harmonicity (i) and (ii) can be formulated in terms of f ′ as
follows. Since Γ acts without inversion, (i) is equivalent to

(i′)

f ′(ẽ) + f ′(¯̃e) = 0 for all ẽ ∈ E(Γ \T ).

Let v ∈ V (T ) and ṽ ∈ V (Γ \T ) be its image. The stabilizer group

Γv = {γ ∈ Γ | γv = v}
acts on the set {e ∈ E(T ) | t(e) = v}, and the orbits correspond to

{ẽ ∈ E(Γ \T ) | t(ẽ) = ṽ}.
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Let Γe := {γ ∈ Γ | γe = e}; clearly Γe is a subgroup of Γt(e). The weight of e

w(e) := [Γt(e) : Γe]

is the length of the orbit corresponding to e. Since w(e) depends only on its
image ẽ in Γ \T , we can define w(ẽ) := w(e). Note that

∑
t(ẽ)=ṽ w(ẽ) = q+1.

We stress that, in general, w(e) depends on the orientation, i.e., w(e) 6= w(ē).
With this notation, condition (ii) is equivalent to

(ii′) ∑

ẽ∈E(Γ\T )
t(ẽ)=ṽ

w(ẽ)f ′(ẽ) = 0 for all ṽ ∈ V (Γ \T ),

cf. [18, (3.1)].

Definition 2.2. The group of R-valued cuspidal harmonic cochains for Γ,
denoted H0(T , R)Γ, is the subgroup of H(T , R)Γ consisting of functions which
have compact support as functions on Γ \ T , i.e., functions which have value
0 on all but finitely many edges of Γ \ T . Let H00(T , R)Γ denote the image
of H0(T ,Z)Γ ⊗R in H0(T , R)Γ.

Definition 2.3. It is known that the quotient graph Γ0(n) \ T is the edge
disjoint union

Γ0(n) \T = (Γ0(n) \T )0 ∪
⋃

s∈Γ0(n)\P1(F )

hs

of a finite graph (Γ0(n)\T )0 with a finite number of half-lines hs, called cusps ;
cf. Theorem 2 on page 106 of [50]. The cusps are in bijection with the orbits
of the natural action of Γ0(n) on P1(F ); cf. Remark 2 on page 110 of [50].

To simplify the notation, we put

H(n, R) := H(T , R)Γ0(n)

H0(n, R) := H0(T , R)Γ0(n)

H00(n, R) the image of H0(n,Z)⊗R in H0(n, R).

One can show that H0(n,Z) and H(n,Z) are finitely generated free Z-modules
of rank g(n) and g(n)+ c(n)− 1, respectively, where g(n) is the genus of X0(n)
and c(n) is the number of cusps.
From the above description it is clear that f is in H0(n, R) if and only if it
eventually vanishes on each hs. It is also clear that if R is flat over Z, then
H0(n, R) = H00(n, R). On the other hand, it is easy to construct examples
where this equality does not hold.

Example 2.4. The quotient graph GL2(A) \ T is a half-line; see Figure 1.
Denote the edge with origin vi and terminus vi+1 by ei. The stabilizers of
vertices and edges of GL2(A) \ T are well-known, cf. [17, p. 691]. From this
one computes w(ei) = q for all i, w(ē0) = q + 1, and w(ēi) = 1 for i ≥ 1.
Therefore, if ϕ ∈ H(1, R), then ϕ(ei) = qiα (i ≥ 0) for some fixed α ∈ R[q+1].
Now it is clear that H(1, R) = R[q + 1] and H0(1, R) = H00(1, R) = 0.
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v0 v1 v2 v3

Figure 1. GL2(A) \T

v0 v1 v2 v3

v−1 v−2 v−3

Figure 2. Γ0(x) \T

v0 v1 v2 v3

v−1 v−2 v−3u

Figure 3. Γ0(y) \T

Example 2.5. The graph of Γ0(x)\T is given in Figure 2, where the vertex vi

(i ∈ Z) is the image of

(
T i 0
0 1

)
∈ V (T ); the positive orientation is induced

from E(T )+. Denote by ei the edge with origin vi−1 and terminus vi. Since(
0 1
1 0

)
v−i = vi and the stabilizers of vi (i ≥ 0) in GL2(A) are well-known (cf.

[17, p. 691]), one easily computes

w(ei) =

{
q if i ≥ 0

1 if i ≤ −1 w(ēi) =

{
1 if i ≥ −1
q if i ≤ −2

Suppose ϕ ∈ H(x,R) and denote α = ϕ(e−1). Since w(ei)ϕ(ei) =
w(ēi+1)ϕ(ei+1), we get

ϕ(ei) =





αqi+1 if i ≥ −1
α if i = −2
αq−i−3 if i ≤ −3.

We conclude that H(x,R) = R, H0(x,R) = Rp, and H00(x,R) = 0. (Recall
that Rp denotes the p-primary subgroup of R.)

Example 2.6. The graph Γ0(y)\T is given in Figure 3, where vi is the image

of

(
T i 0
0 1

)
∈ V (T ) and u is the image of

(
T−2 T−1

0 1

)
. We denote the edge
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with origin vi−1 and terminus vi by ei, and the edge with terminus u by eu.
One computes

w(ei) =

{
q if i ≥ 0

1 if i ≤ −1 w(ēi) =

{
1 if i ≥ 0

q if i ≤ −1

w(eu) = q + 1, w(ēu) = q − 1.

Let ϕ ∈ H(y,R). Denote ϕ(e0) = α and ϕ(eu) = β. Then (q + 1)β = 0 and

ϕ(ei) =

{
αqi if i ≥ 0

q−i−1(α+ (q − 1)β) if i ≤ −1.
This implies that H(y,R) ∼= R⊕ R[q + 1]. For ϕ to be cuspidal we must have
qnα = 0 and qn(q− 1)β = 0 for some n ≥ 1. Thus, α ∈ Rp and β ∈ R[2] (resp.
β = 0) if p is odd (resp. 2). We get an isomorphism H0(y,R) ∼= Rp ⊕R[2] if p
is odd and H0(y,R) ∼= R2 if p = 2. Note that H00(y,R) = 0.

Lemma 2.7. The following holds:

(1) If n ✁ A has a prime divisor of odd degree, assume q(q − 1) ∈ R×.
Otherwise, assume q(q2 − 1) ∈ R×. Then H0(n, R) = H00(n, R).

(2) If n = p is prime and q(q − 1) ∈ R×, then H0(n, R) = H00(n, R).

Proof. Our proof relies on the results in [17], and is partly motivated by the
proof of Theorem 3.3 in [17]. Let Γ := Γ0(n). By 1.11 and 2.10 in [17], the
stabilizer Γv for any v ∈ V (T ) is finite, contains the scalar matrices Z(Fq),
and n(v) := #Γv/F

×
q either divides (q − 1)qm for some m ≥ 0, or is equal to

q + 1. Moreover, n(v) = q + 1 is possible only if all prime divisors of n have
even degrees. Overall, we see that our assumptions in (1) imply that n(v) is
invertible in R for any v ∈ V (T ). Since the stabilizer Γe of any e ∈ V (T )
is a subgroup of Γt(e) containing Z(Fq), we also have n(e) := #Γe/F

×
q ∈ R×.

Note that n(e) does not depend on the orientation of e and depends only on
its image ẽ in Γ \T , so we can define n(ẽ) = n(e).
Let H0(Γ \ T , R) be the subgroup of H(Γ \ T , R) consisting of compactly
supported harmonic cochains on Γ \T . There is an injective homomorphism

H0(Γ \T , R)→ H0(n, R)(2.2)

ϕ 7→ ϕ†

defined by ϕ†(ẽ) = n(ẽ)ϕ(ẽ). Indeed, since n(ẽ) does not depend on the orien-
tation of e, ϕ† clearly satisfies (i′). As for (ii′), we have

∑

ẽ∈E(Γ\T )
t(ẽ)=ṽ

w(ẽ)ϕ†(ẽ) =
∑

ẽ∈E(Γ\T )
t(ẽ)=ṽ

n(ṽ)

n(ẽ)
n(ẽ)ϕ(ẽ) = n(ṽ)

∑

ẽ∈E(Γ\T )
t(ẽ)=ṽ

ϕ(ẽ) = 0.

The map (2.2) is also defined over Z, and by [17, Thm. 3.3] gives an isomor-

phism H0(Γ \T ,Z)
∼−→ H0(n,Z). Next, there is an isomorphism

H0(Γ \T , R) ∼= H0(Γ \T ,Z)⊗Z R,
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which follows, for example, by observing that H1(Γ \ T , R) ∼= H0(Γ \ T , R)
and applying the universal coefficient theorem for simplicial homology. Hence

H0(Γ \T , R) ∼= H0(Γ \T ,Z)⊗Z R ∼= H0(n,Z)⊗Z R.

Let g = rankZH0(Γ \ T ,Z). Thinking of the elements of H0(Γ \ T ,Z) as 1-
cycles, it is easy to show by induction on g that one can choose e1, . . . , eg ∈
E(Γ\T ) and a Z-basis ϕ1, . . . , ϕg of H0(Γ\T ,Z) such that Γ\T −{e1, . . . , eg}
is a tree, and ϕi(ej) = δij =(Kronecker’s delta), 1 ≤ i, j ≤ g. By slight abuse

of notation, denote the image of ϕ†
i in H00(n, R) by the same symbol. Let

ψ ∈ H0(n, R). Then

ψ′ := ψ −
g∑

i=1

ψ(ei)

n(ei)
ϕ†
i

is supported on a finite subtree S of Γ\T . Let v ∈ V (S) be a vertex such that
there is a unique e ∈ E(S) with t(e) = v. Note that w(e) ∈ R×. Condition
(ii′) gives w(e)ψ′(e) = 0, so ψ′(e) = 0. This process can be iterated to show
that ψ′ = 0. This implies that the natural map H0(n,Z) ⊗Z R → H0(n, R) is
surjective, which is part (1).
To prove part (2), we can assume that deg(p) is even. A consequence of 2.7
and 2.8 in [17] is that there is a unique v0 ∈ V (Γ\T ) with n(v0) = q+1 and a
unique e0 ∈ E(Γ\T ) with o(e0) = v0. For any other v ∈ V (Γ\T ), n(v) divides
(q − 1)qm. Since the stabilizer of any edge e ∈ E(Γ \ T ) is a subgroup of the
stabilizers of both t(e) and o(e), we have n(e) ∈ R×. After this observation, we
can repeat the argument used to prove (1) to reduces the problem to showing
that ψ ∈ H0(p, R) supported on a finite tree S is identically 0. We can always
choose v ∈ V (S) to be a vertex different from v0 but such that there is a unique
e ∈ E(S) with t(e) = v. Since w(e) is a unit in R, we can also finish as in part
(1). �

The conclusion in Example 2.6 that H0(y,R) 6= H00(y,R) if R[2] 6= 0 is a
special case of a general fact:

Lemma 2.8. Assume p is odd and invertible in R. Let p✁A be prime of even
degree. If R[2] 6= 0, then H0(p, R) 6= H00(p, R).

Proof. Let Γ := Γ0(p). As in Lemma 2.7, let v0 be the unique vertex of Γ \T

with n(v0) = q+ 1, and let e0 ∈ E(Γ \T ) be the unique edge with o(e0) = v0.
Note that w(ē0) = q + 1. As we already mentioned in the proof of Lemma
2.7, for any other vertex v in Γ \ T , n(v) divides (q − 1)qm. Moreover, it
is easy to see, for example by case (a) of Lemma 2.7 in [17], that there is at
least one vertex v such that n(v) is divisible by q − 1. Consider all the paths
without backtracking connecting v0 to such a vertex, and fix a path of shortest
length {e0, e1, . . . , em}. Then w(ēi) (1 ≤ i ≤ m) is invertible in R, but w(em)
is divisible by q − 1. For a fixed non-zero α ∈ R[2], define f on E(Γ \ T ) by

f(e0) = α, f(ei) = w(ei−1)
w(ēi)

f(ei−1) (1 ≤ i ≤ m), f(ēj) = f(ej) (0 ≤ j ≤ m),

and f(e) = 0 for all other edges. It is easy to see that f ∈ H0(p, R). On the
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other hand, any function ϕ ∈ H0(p,Z) must be zero on e0, since condition (ii′)
for v0 gives (q + 1)ϕ(ē0) = 0. Therefore, f 6∈ H00(p, R). �

Remark 2.9. The fact stated in Lemma 2.8 is deduced in [38] by different
(algebro-geometric) methods. Our combinatorial proof seems to answer the
question in Remark 11.9 in [38].

2.2. Hecke operators and Atkin-Lehner involutions. Assume n✁A is
fixed. Given a non-zero ideal m ✁ A, define an R-linear transformation of the
space of R-valued functions on E(T ) by

f |Tm =
∑

f |
(
a b
0 d

)
,

where f |γ for γ ∈ GL2(F∞) is defined in Section 2.1, and the above sum
is over a, b, d ∈ A such that a, d are monic, (ad) = m, (a) + n = A, and
deg(b) < deg(d). This transformation is the m-th Hecke operator. Following a
common convention, for a prime divisor p of n we often write Up instead of Tp.

Proposition 2.10. The Hecke operators preserve the spaces H(n, R) and
H0(n, R), and satisfy the recursive formulas:

Tmm′ = TmTm′ if m+m′ = A,

Tpi = Tpi−1Tp − |p|Tpi−2 if p ∤ n,

Tpi = T i
p if p|n.

Proof. The group-theoretic proofs of the analogous statement for the Hecke
operators acting on classical modular forms work also in this setting; cf. [34,
§4.5]. �

Definition 2.11. Let T(n) be the commutative subalgebra of EndZ(H0(n,Z))
with the same unity element generated by all Hecke operators. Let T(n)0 to be
the subalgebra of T(n) generated by the Hecke operators Tm with m coprime
to n.

For every ideal m dividing n with gcd(m, n/m) = 1, let Wm be any matrix in
Mat2(A) of the form

(2.3)

(
am b
cn dm

)

such that a, b, c, d,∈ A and the ideal generated by det(Wm) in A is m. It is not
hard to check that for f ∈ H(n, R), f |Wm does not depend on the choice of the
matrix for Wm and f |Wm ∈ H(n, R). Moreover, as R-linear endomorphisms of
H(n, R), Wm’s satisfy

(2.4) Wm1Wm2 =Wm3 , where m3 =
m1m2

gcd(m1,m2)2
.

Therefore, the matrices Wm acting on the R-module H(n, R) generate an
abelian group W ∼= (Z/2Z)s, called the group of Atkin-Lehner involutions,
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where s is the number of prime divisors of n. The following proposition, whose
proof we omit, follows from calculations similar to those in [1, §2].
Proposition 2.12. Let

Bm =

(
m 0
0 1

)
.

(1) If n is coprime to m and f ∈ H(n, R), then
(f |Bm)|Wm = f,

where Wm is the Atkin-Lehner involution acting on H(nm, R). (Note
that by Lemma 2.25, f |Bm ∈ H(nm, R).)

(2) Let m|n with gcd(m, n/m) = 1, and b be coprime to m. If f ∈ H(n, R),
then

(f |Bb)|Wm = (f |Wm)|Bb,

where on the left hand-side Wm denotes the Atkin-Lehner involution
acting on H(nb, R) and on the right hand-side Wm denotes the involu-
tion acting on H(n, R).

(3) Let f ∈ H(n, R). If q is a prime ideal which divides n but does not
divide n/q, then f |(Uq +Wq) ∈ H(n/q, R).

The vector spaceH0(n,Q) is equipped with a natural (Petersson) inner product

〈f, g〉 =
∑

e∈E(Γ0(n)\T )

n(e)−1f(e)g(e),

where n(e) is defined in the proof of Lemma 2.7. The Hecke operator Tm is
self-adjoint with respect to this inner product if m is coprime to n; one can
prove this by an argument similar to the proof of Lemma 13 in [1].

Definition 2.13. Let m be a divisor of n and d be a divisor of n/m. By Lemma
2.25, the map ϕ 7→ ϕ|Bd gives an injective homomorphism

id,m : H0(m,Q)→ H0(n,Q).

We denote the subspace generated by the images of all id,m (m 6= n) by
H0(n,Q)old. The orthogonal complement of H0(n,Q)old with respect to the
Petersson product is the new subspace of H0(n,Q), and will be denoted by
H0(n,Q)new. The new subspace of H0(n,Q) is invariant under the action T(n)
(this again can be proven as in [1]). We denote by T(n)new the quotient of T(n)
through which T(n) acts on H0(n,Q)new.

As we mentioned, the cusps of Γ0(n) are in bijection with the orbits of the
action of Γ0(n) on

P1(F ) = P1(A) =

{(
a
b

) ∣∣ a, b ∈ A, gcd(a, b) = 1, a is monic

}
,

where Γ0(n) acts on P1(F ) from the left as on column vectors. We leave the
proof of the following lemma to the reader.

Lemma 2.14. Assume n is square-free.
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(1) For m|n let [m] be the orbit of

(
1
m

)
under the action of Γ0(n). Then

[m] 6= [m′] if m 6= m′, and the set {[m] | m|n} is the set of cusps of
Γ0(n). In particular, there are 2s cusps, where s is the number of
prime divisors of n.

(2) Since Wm normalizes Γ0(n), it acts on the set of cusps of Γ0(n). There
is the formula

Wm[n] = [n/m].

The cusp [n] is usually called the cusp at infinity. We will denote it by [∞].

2.3. Fourier expansion. An important observation in [38] is that the theory
of Fourier expansions of automorphic forms over function fields developed in [57]
works over more general rings than C. Here we follow Gekeler’s reinterpretation
[12] of Weil’s adelic approach as analysis on the Bruhat-Tits tree, but we will
extend [12] to the setting of these more general rings.

Definition 2.15. Following [38] we say that R is a coefficient ring if p ∈ R×

and R is a quotient of a discrete valuation ring R̃ which contains p-th roots of
unity. Note that the image of the p-th roots of unity of R̃ in R is exactly the
set of p-th roots of unity of R. For example, any algebraically closed field of
characteristic different from p is a coefficient ring.

Let

η : F∞ → R×

∑
aiπ

i
∞ 7→ η0

(
TraceFq/Fp

(a1)
)

where η0 : Fp → R× is a non-trivial additive character fixed once and for all.
Let f be an R-valued function on E(T ), which is invariant under the action of

Γ∞ :=

{(
a b
0 d

)
∈ GL2(A)

}
,

and is alternating (i.e., satisfies f(e) = −f(ē) for all e ∈ E(T )). The constant
Fourier coefficient of f is the R-valued function f0 on πZ

∞ defined by

f0(πk
∞) =





q1−k
∑

u∈(π∞)/(πk
∞) f

((
πk
∞ u

0 1

))
if k ≥ 1

f

((
πk
∞ 0

0 1

))
if k ≤ 1.

For a divisor m on F , the m-th Fourier coefficient f∗(m) of f is

f∗(m) = q−1−deg(m)
∑

u∈(π∞)/(π
2+deg(m)
∞ )

f

((
π
2+deg(m)
∞ u

0 1

))
η(−mu),

if m is non-negative, and f∗(m) = 0, otherwise; here m ∈ A is the monic
polynomial such that m = div(m) · ∞deg(m).
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Theorem 2.16. Let f be an R-valued function on E(T ), which is Γ∞-invariant
and alternating. Then

f

((
πk
∞ y
0 1

))
= f0(πk

∞) +
∑

06=m∈A
deg(m)≤k−2

f∗(div(m) · ∞k−2) · η(my).

In particular, f is uniquely determined by the functions f0 and f∗.

Proof. This follows from [38, §2] and [12, §2]. �

Lemma 2.17. Assume f is alternating and Γ∞-invariant. Then f is a harmonic
cochain if and only if

(i) f0(πk
∞) = f0(1)q−k for any k ∈ Z;

(ii) f∗(m∞k) = f∗(m)q−k for any non-negative divisor m and k ∈ Z≥0.

Proof. See Lemma 2.13 in [12]. �

Lemma 2.18. For an ideal m✁A and f ∈ H(n,Z) we have

(f |Tm)∗(r) =
∑

a monic
a| gcd(m,r)
(a)+n=A

|m|
|a| f

∗
( rm
a2

)
.

In particular,

(f |Tm)∗(1) = |m|f∗(m).

Proof. See Lemma 3.2 in [38]. �

Lemma 2.19. Assume n is square-free. A harmonic cochain f ∈ H(n, R) is
cuspidal if and only if (f |W )0(1) = 0 for all W ∈W.

Proof. By definition, f is cuspidal if and only if it vanishes on all but finitely
many edges of each cusp [m]. The positively oriented edges of the cusp [∞] are

given by the matrices

(
πk
∞ 0
0 1

)
, k ≤ 1. By definition of f0 and Lemma 2.17,

f

((
πk
∞ 0
0 1

))
= f0(πk

∞) = q−kf0(1).

Since q is invertible in R, we see that f eventually vanishes on [∞] if and only
if f0(1) = 0. Next, by Lemma 2.14, f vanishes on [n/m] if and only if f |Wm

vanishes on [∞], which is equivalent to (f |Wm)
0(1) = 0. �

Theorem 2.20. If R is a coefficient ring, then the bilinear T(n)⊗R-equivariant
pairing

(T(n)⊗R)×H00(n, R)→ R

T, f 7→ (f |T )∗(1)
is perfect.
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[x]

[∞]

[y]

[1]

... bu

c3

a2 = b0

a1

c1

c4

a3

a4

a5

a6

c2

Figure 4. Γ0(xy) \T

Proof. Theorem 3.17 in [11] says that the pairing

T(n)×H0(n,Z)→ Z(2.5)

T, f 7→ (f |T )∗(1)
is non-degenerate and becomes a perfect pairing after tensoring with Z[p−1].
Since p is invertible in R by assumption, the claim follows. �

It is not known if in general the pairing (2.5) is perfect. This is in contrast to
the situation over Q where the analogous pairing between the Hecke algebra
and the space of weight-2 cusp forms on Γ0(N) with integral Fourier expan-
sions is perfect (cf. [46, Thm. 2.2]). This dichotomy comes from the formula
(f |Tm)∗(1) = |m|f∗(m); in the classical situation the first Fourier coefficient of
f |Tm is just the mth Fourier coefficient of f .

Proposition 2.21. In the special case n = xy, the pairing (2.5)

T(xy) ×H0(xy,Z)→ Z

is perfect. Moreover, as Z-modules,

T(xy)0 = T(xy) ∼= Z⊕
⊕

deg(p)=1
p 6=x

ZTp.

Proof. Take αx, βx ∈ Fq such that y = x2+αxx+βx. Let ̟x := x−1, which is
also a uniformizer at ∞. The quotient graph Γ0(xy)\T is depicted in Figure
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4 with positively oriented edges

c1 =

(
̟x 0
0 1

)
, c2 =

(
̟3

x 0
0 1

)
, c3 =

(
̟4

x ̟x

0 1

)
, c4 =

(
̟5

x y−1

0 1

)
;

a1 =

(
̟2

x ̟x

0 1

)
, a2 =

(
̟3

x ̟x

0 1

)
, a3 =

(
̟4

x y−1

0 1

)
, a4 =

(
̟3

x ̟2
x

0 1

)
;

a5 =

(
̟2

x 0
0 1

)
, a6 =

(
̟4

x ̟x − βx̟3
x

0 1

)
;

bu =

(
̟3

x ̟x + u̟2
x

0 1

)
, u ∈ Fq.

Note that in this notation a2 = b0. A small calculation shows that

w(a1) = w(ā2) = w(ā3) = w(a4) = q − 1,

and the weights of all other edges in (Γ0(xy) \T )0 are 1.
It is easy to see that the map

H0(xy,Z)→
⊕

u∈Fq

Z

f 7→ (f(bu))u∈Fq

is an isomorphism, so the harmonic cochains fv ∈ H0(xy,Z), v ∈ Fq, defined
by fv(bu) = δv,u=(Kronecker’s delta) form a Z-basis. Let f ∈ H0(xy,Z) and
κ ∈ Fq. By Lemma 2.18

q(f |Tx−κ)
∗(1) = q2f∗(x − κ) =

∑

w∈̟xO∞/̟3
xO∞

f

((
̟3

x w
0 1

))
η (−(x− κ)w)

=f

((
̟3

x 0
0 1

))
+
∑

β∈F
×
q

f

((
̟3

x β̟2
x

0 1

))
η
(
−(̟−1

x − κ)β̟2
x

)

+
∑

u∈Fq

∑

β∈F
×
q

f

((
̟3

x β(̟x + u̟2
x)

0 1

))
η
(
−(̟−1

x − κ)β(̟x + u̟2
x)
)
.

Since the double class of

(
̟3

x w
0 1

)
does not change if w is replaced by βw

(β ∈ F×
q ), f

((
̟3

x 0
0 1

))
= f(c2) = 0, and

∑
β∈F

×
q
η(β̟x) = −1, the above

sum reduces to

−f(a4) +
∑

u∈Fq

f(bu)(qδu,κ − 1).

Using (ii′),

(q − 1)f(a1) + f(a5) = 0, (q − 1)f(a4) + f(ā5) = 0, f(a1) =
∑

u∈Fq

f(bu).
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Therefore, f(a4) = −
∑

u∈Fq
f(bu) and we get

(f |Tx−κ)
∗(1) = f(bκ).

In particular, (fv|Tx−κ)
∗(1) = δκ,v. This implies that the homomorphism

(2.6) T(xy)→ Hom(H0(xy,Z),Z)

induced by the pairing (2.5) is surjective. Comparing the ranks of both sides,
we conclude that this map is in fact an isomorphism, which is equivalent to
the pairing being perfect. Let M be the Z-submodule of T(xy) generated
by {Tx−κ | κ ∈ Fq}. The composition of M →֒ T(xy) with (2.6) gives a
surjection M → Hom(H0(xy,Z),Z). This implies that M = T(xy) and M ∼=⊕

κ∈Fq
ZTx−κ.

An easy consequence of the definitions is that f∗(1) = −f(a1), cf. [11, (3.16)].
If we denote S =

∑
κ∈Fq

Tx−κ, then

(2.7) (f |S)∗(1) =
∑

κ∈Fq

f(bκ) = f(a1) = −f∗(1).

The non-degeneracy of the pairing implies that S = −1. Therefore
T(xy) = Z⊕

⊕

κ∈F
×
q

ZTx−κ ⊆ T(xy)0,

which implies T(xy) = T(xy)0. �

Remark 2.22. In [44], we have extended the statement of Proposition 2.21 to
arbitrary n ✁ A of degree 3. More precisely, we proved that the pairing (2.5)
is perfect if deg(n) = 3. Moreover, if n has degree 3 but is not a product of
three distinct primes of degree 1, then T(n) = T(n)0. Finally, if n is a product
of three distinct primes of degree 1, then T(n)/T(n)0 is finite but non-zero.

2.4. Atkin-Lehner method. For b ∈ A, let Sb =

(
1 b
0 1

)
. Define a linear

operator Up on the space of R-valued functions on E(T ) by

f |Up =
∑

b∈A
deg(b)<deg(p)

f |B−1
p Sb.

Note that the action of B−1
m on functions on E(T ) is the same as the action of

the matrix

(
1 0
0 m

)
(since the diagonal matrices act trivially), so this operator

agrees with the Hecke operator Up when restricted toH(n, R) for any n divisible
by p.

Lemma 2.23. Let p and q be two distinct prime ideals of A. If f ∈ H(T , R)Γ∞,
then

(f |Bp)|Up = |p| · f,
(f |Bp)|Uq = (f |Uq)|Bp.
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Proof. We have

(f |Bp)|Up =
∑

b∈A
deg(b)<deg(p)

(f |Bp)|B−1
p Sb =

∑

b∈A
deg(b)<deg(p)

f |Sb.

Since Sb ∈ Γ∞, we have f |Sb = f for all b, so the last sum is equal to |p|f .
Next, for b ∈ A representing a residue modulo q we have

BpB
−1
q Sb =

(
p bp
0 q

)
.

By the division algorithm there is a ∈ A and b′ ∈ A with deg(b′) < deg(q) such
that bp = aq+ b′. Now

(
1 a
0 1

)(
p bp
0 q

)
=

(
p b′

0 q

)
= B−1

q Sb′Bp.

As b runs over the residues modulo q, b′ runs over the same set since p 6= q.
Thus, using Γ∞-invariance of f , we get (f |Bp)|Uq = (f |Uq)|Bp. �

Lemma 2.24. For any non-zero ideal m✁A and f ∈ H(T , R)Γ∞

(f |Bm)
0(πk

∞) = f0(πk−deg(m)
∞ ), (f |Bm)

∗(n) = f∗(n/m).

Proof. See Proposition 2.10 in [12]. �

Given ideals n,m✁A, denote

Γ0(n,m) =

{(
a b
c d

)
∈ GL2(A)

∣∣ c ∈ n, b ∈ m

}
.

Lemma 2.25. If f ∈ H(n, R), then f |Bm is Γ0(nm)-invariant and f |B−1
m is

Γ0(n/ gcd(n,m),m)-invariant.

Proof. This follows from a straightforward manipulation with matrices. �

Theorem 2.26. Let p and q be two distinct primes such that pq divides n, and
pq is coprime to n/pq. Let ϕ ∈ H(n, R). Assume ϕ∗(m) = 0 unless p or q

divides m. Then there exist ψ1 ∈ H(n/p, R) and ψ2 ∈ H(n/q, R) such that

sp,q · ϕ = ψ1|Bp + ψ2|Bq,

where sp,q = gcd(|p|+ 1, |q|+ 1).

Proof. Take φ2 := |q|−1 · ϕ|Uq ∈ H(n, R). We have

(φ2)
0(πk

∞) = ϕ0(πk+deg(q)
∞ ), φ∗2(m) = ϕ∗(mq).

Let ϕ1 := ϕ− φ2|Bq ∈ H(nq, R). Then by Lemma 2.24,

(ϕ1)
0(πk

∞) = 0, ϕ∗
1(m) = ϕ∗(m) if q ∤ m, ϕ∗

1(m) = 0 if q|m.
Let φ1 := ϕ1|B−1

p , which is Γ0(nq/p, p)-invariant by Lemma 2.25. In particular,
ϕ∗
1(m) = 0 unless p|m, which implies that φ1 is Γ∞-invariant. Since Γ∞ and

Γ0(nq/p, p) generates Γ0(nq/p), we get φ1 ∈ H(nq/p, R) with
(φ1)

0(πk
∞) = 0, φ∗1(m) = ϕ∗(mp) if q ∤ m, φ∗1(m) = 0 if q|m,
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and

ϕ = φ1|Bp + φ2|Bq.

By Proposition 2.12, ψ1 := ϕ|(Up +Wp) ∈ H(n/p, R). Using Proposition 2.12
and Lemma 2.23,

(φ1|Bp)|(Up +Wp) = φ1|Bp|Up + φ1|Bp|Wp = |p|φ1 + φ1 = (|p|+ 1)φ1.

On the other hand, using the fact that φ2 ∈ H(n, R), we have

(φ2|Bq)|(Up +Wp) = φ2|(Up +Wp)|Bq.

If we denote ψ := φ2|(Up +Wp), then we proved that

ψ1 = (|p|+ 1)φ1 + ψ|Bq ∈ H(n/p, R).
Therefore,

(|p|+ 1)ϕ = (|p|+ 1)φ1|Bp + (|p|+ 1)φ2|Bq

= ((|p|+ 1)φ1 + ψ|Bq)|Bp + ((|p|+ 1)φ2 − ψ|Bp)|Bq = ψ1|Bp + ψ2|Bq,

where ψ2 := (|p| + 1)φ2 − ψ|Bp. We already proved that ψ1 ∈ H(n/p, R).
Obviously ψ2|Bq ∈ H(n, R). By Lemma 2.25, ψ2 is Γ0(n/q, q)-invariant. Since
it is also Γ∞-invariant, we conclude ψ2 ∈ H(n/q, R).
Finally, interchanging the roles of p and q we obtain

(|q|+ 1)ϕ = ψ′
1|Bp + ψ′

2|Bq

with ψ′
1 ∈ H(n/p, R) and ψ′

2 ∈ H(n/q, R). This implies the claim of the
theorem. �

3. Eisenstein harmonic cochains

3.1. Eisenstein series. In this section R always denotes a coefficient ring, in
particular, p is invertible in R. We say that a harmonic cochain ϕ ∈ H(n, R) is
Eisenstein if ϕ|Tp = (|p|+1)ϕ for every prime ideal p✁A not dividing n. It is
clear that the Eisenstein harmonic cochains form an R-submodule of H(n, R)
which we denote by E(n, R).
The Drinfeld half-plane

Ω = P1(C∞)− P1(F∞) = C∞ − F∞

has a natural structure of a smooth connected rigid-analytic space over F∞;
see [18, §1]. The group Γ0(n) acts on Ω via linear fractional transformations:

(
a b
c d

)
z =

az + b

cz + d
.

This action is discrete, so the quotient

(3.1) Y0(n)(C∞) = Γ0(n) \ Ω
has a natural structure of a rigid-analytic curve over F∞, which is in fact an
affine algebraic curve; cf. [6, Prop. 6.6]. If we denote Ω = Ω ∪ P1(F ), then

X0(n)(C∞) = Γ0(n) \ Ω
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is the projective closure of Y0(n). The points X0(n)(C∞) − Y0(n)(C∞) are
called the cusps of X0(n), and they are in natural bijection with the cusps of
Γ0(n) \T in Definition 2.3.
The Hecke operator Tp induces a correspondence on X0(n)(C∞)

(3.2) Tp : z 7→
∑

b∈A
deg(b)<deg(p)

z + b

p
+ pz mod Γ0(n);

Up(z) is given by the same sum but without the last summand.
Let O(Ω)× be the group of nowhere vanishing holomorphic functions on Ω. The
group GL2(F∞) act on O(Ω)× via (f |γ)(z) = f(γz). To each f ∈ O(Ω)× van
der Put associated a harmonic cochain r(f) ∈ H(T ,Z) so that the sequence

(3.3) 0→ C×
∞ → O(Ω)×

r−→ H(T ,Z)→ 0

is exact and GL2(F∞)-equivariant. As is explained in [18], the map r plays the
role of a logarithmic derivation.

Lemma 3.1. Assume n is square-free and f ∈ O(Ω)× is Γ0(n)-invariant. Then
r(f) is Eisenstein.

Proof. Put

en(z) = z
∏

06=a∈n

(
1− z

a

)
and Γu

∞ =

{(
1 a
0 1

) ∣∣a ∈ n

}
.

For z ∈ Ω, let |z|i = inf{|z − s| | s ∈ F∞} be its “imaginary” absolute value.
The subspace Ωd = {z ∈ Ω | |z|i ≥ d} of Ω is stable under Γu

∞, and for
d≫ 0, the function t(z) = eA(z)

−1 identifies Γu
∞ \ Ωd with a small punctured

disc D0
ε = {t ∈ C∞ | 0 < |t| ≤ ε}. The function f is Γu

∞-invariant, so can
be considered as a holomorphic non-vanishing function on D0

ε . By the non-
archimedean analogue of Picard’s Big Theorem [55, (1.3)], f has at worst a
pole at t = 0, or equivalently, at the cusp [∞]. Now let [c] be any other cusp
of Γ0(n) and γ ∈ GL2(A) be such that γ[∞] = [c]. The function f |γ ∈ O(Ω)×
is invariant under Γ′ = γ−1Γ0(n)γ. The stabilizer of [∞] in Γ′ contains Γu

∞,
so the previous argument shows that f |γ is meromorphic at [∞]. Thus, f is
meromorphic at [c]. We conclude that f descends to a rational function on
X0(n) whose divisor is supported at the cusps.
Now we use an idea from the proof of Lemma 6.2 in [38]. The Hecke corre-
spondence Tp defines a map from the group of divisors on X0(n) supported at
the cusps to itself (cf. (3.2)):

Tp[d] =

(
p 0
0 1

)(
1
d

)
+

∑

b6=0
deg(b)<deg(p)

(
1 b
0 p

)(
1
d

)
=

(
p

d

)
+

∑

b6=0
deg(b)<deg(p)

(
1 + bd
pd

)
.

The orbit of the cusp [d] consists exactly of those

(
α
β

)
∈ P1(A) such that β

is divisible by d and is coprime to n/d, so Tp[d] = (1 + |p|)[d]. Thus, f |Tp and
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f |p|+1, as rational functions on X0(n), have the same divisor. This implies that
(f |Tp)/f |p|+1 is a constant function. Applying r, we get

r(f |Tp) = (|p|+ 1)r(f).

Since r is GL2(F∞)-equivariant, r(f |Tp) = r(f)|Tp, which finishes the proof.
�

Lemma 3.1 gives a natural source of Z-valued Eisenstein harmonic cochains.
Let ∆(z) be the Drinfeld discriminant function on Ω defined on page 183 of
[14]. This is a Drinfeld modular form of weight (q2−1) and type 0 for GL2(A),
which vanishes nowhere on Ω. Let ∆n := ∆|Bn = ∆(nz). By page 194 of
[14], ∆/∆n is a Γ0(n)-invariant function in O(Ω)×. Hence r(∆/∆n) ∈ E(n,Z).
Define

ν(n) =

{
1, if deg(n) is even

q + 1, if deg(n) is odd

and

(3.4) En =
ν(n)

(q − 1)(q2 − 1)
r(∆/∆n).

By [14, (3.18)], En is Z-valued and primitive (i.e., En is not a scalar multiple
of another harmonic cochain in H(n,Z) except for ±En). We call En ∈ E(n,Z)
the Eisenstein series. The Fourier expansion of En can be deduced from [14]:

En

((
πk
∞ y
0 1

))
= ν(n) · q−k+1 ·


1− |n|
1− q2 +

∑

06=m∈A,
deg(m)≤k−2

σn(m)η(my)


 ,

where σn(m) := σ(m)− |n| · σ(m/n), and σ is the divisor function

σ(m) :=





∑
monic m′∈A,

m′|m

|m′|, if m ∈ A,

0, otherwise.

Remark 3.2. Note that for each prime p✁A and m ∈ A,
σ(mp) = σ(p)σ(m) − |p|σ(m/p).

Therefore the Fourier expansion of En|Tp for each prime p not dividing n also
tells us that En ∈ E(n,Z).
Example 3.3. Let E0 be the R-valued function on E(T ) defined by

E0

((
πk
∞ u
0 1

))
= −E0

((
πk
∞ u
0 1

)(
0 1
π∞ 0

))
= q−k.

This function is alternating and Γ∞-invariant. For γ =

(
a b
c d

)
∈ GL2(A), let

ω := ord∞(cu+ d). By the calculations in [12, p. 379]

(E0|γ)
((

πk u
0 1

))
=

{
−qk−2 deg(c)−1 if ω ≥ k − deg(c)

q2ω−k if ω < k − deg(c).
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Now it is easy to see that if α ∈ R[q + 1], then αE0 is the function in H(1, R)
discussed in Example 2.4. The Hecke operator Tp acts on αE0 by

(αE0|Tp)
((

πk u
0 1

))
=αE0

((
πkp up
0 1

))

+
∑

deg(b)<deg(p)

αE0

((
πk/p (u+ b)/p
0 1

))

= α(−1)k−deg(p) + qdeg(p)α(−1)k+deg(p) = (1 + |p|)αE0

((
πk u
0 1

))
.

Therefore, αE0 is Eisenstein and H(1, R) = E(1, R) ∼= R[q + 1].

Example 3.4. Let ϕ ∈ H0(x,R). As we saw in Example 2.5, ϕ is uniquely
determined by ϕ(e0) = α. Note that ϕ0(1) = ϕ(e1) = qα. On the other hand,
E0

x(1) = q, so H(x,R) = E(x,R) ∼= R is generated by Ex.

Example 3.5. Finally, we return to the setting of Example 2.6. The Eisenstein
series Ey, as a function on Γ0(y) \T , can be explicitly described by Ey(ei) =
Ey(e−i−1) = qi for i ≥ 0, and Ey(eu) = 0. Next, the function αE0, for any
α ∈ R[q+1], can be considered as a function on Γ0(y)\T , and as such it is given
by αE0(eu) = −α and αE0(ei) = α(−1)i+1 (∀i ∈ Z). Since any f ∈ H(y,R) is
uniquely determined by its values on eu and e0, we see that

H(y,R) = E(y,R) = REy ⊕ {αE0 | α ∈ R[q + 1]} ∼= R⊕R[q + 1].

3.2. Cuspidal Eisenstein harmonic cochains. We set

E0(n, R) := E(n, R) ∩H0(n, R), E00(n, R) := E(n, R) ∩H00(n, R).

Let p ✁ A be a prime. Theorem 6.6 in [38] states that E0(p, R) ∼= R
[
|p|−1
q−1

]
,

if deg(p) is odd, and E0(p, R) ∼= R
[
2 |p|−1
q2−1

]
, if deg(p) is even. Note that Ex-

amples 2.6 and 3.5 imply that E0(y,R) ∼= R[2], which is a special case of this
theorem. The main result of this section is a similar description of E0(pq, R)
and E00(pq, R) under certain assumptions. Note that as a consequence of the
Ramanujan-Petersson conjecture over function fields E0(n,C) = 0 for any n.
Therefore, E0(n, R) can be non-trivial only if R has non-trivial additive tor-
sion.

Definition 3.6. The Eisenstein ideal E(n) of T(n) is the ideal generated by
the elements {Tp − |p| − 1 | p is prime, p ∤ n}. We say that a maximal ideal
M✁ T(n) is Eisenstein if E(n) ⊂M.

Lemma 3.7. Let p✁A be a prime, and S be a set of prime ideals of A of density
one that does not contain p. A cochain f ∈ H00(p, R) is Eisenstein if and only
if

f |Tq = (|q|+ 1)f, ∀q ∈ S.
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Proof. Let I(p) be the ideal of T(p) generated by the elements Tq − |q| − 1,
where q ∈ S. It is enough to show that E(p) ⊗ R = I(p) ⊗ R in T(p) ⊗ R.
The proof of the analogous statement over Q can be found in [4, Lem. 4]. We
briefly sketch the argument over F .
Let M ✁ T(p) be a maximal ideal such that the characteristic ℓ of T(p)/M is
different from p. There is a unique semi-simple representation

ρ
M

: GF → GL2(T(p)/M),

which is unramified away from p and ∞, and such that for all primes q ✁ A,
q 6= p, the following relations hold:

Trρ
M
(Frobq) = Tq mod M, det ρ

M
(Frobq) = |q| mod M.

The existence of such residual representations for GQ is well-known. The cor-
responding statement over F can be proved along the same lines (cf. [40, Prop.
2.6]); this relies on Drinfeld’s fundamental results in [6]. If M ⊃ I(p), then
Tq ≡ (1 + |q|) (mod M) for all q ∈ S. In view of the Chebotarev density and
the Brauer-Nesbitt theorems, we conclude that ρ

M
is the direct sum 1⊕χℓ of the

trivial and cyclotomic characters. But this means that Tq ≡ (1+ |q|) (mod M)
for all q 6= p, and therefore M is Eisenstein. Now it suffices to show that
I(p) ⊗ R ⊆ E(p) ⊗ R is an equality in the completion (T(p) ⊗ R)M at any
maximal Eisenstein M of residue characteristic 6= p. (Recall that p is invertible
in R.)
A consequence of the proof of Theorem 2.20 in [11], the argument in the proof
of Theorem 2.26, and the fact that H0(1, R) = 0 is that T(p)0⊗R = T(p)⊗R.
On the other hand, by Theorem 5.13 in [39], the ideal E(p)M in T(p)0M is
principal, generated by Tq − |q| − 1 for any “good” prime q. Since the density
of these good primes is positive (see [38, p. 186]), there is a good prime in S.
Therefore (I(p)⊗R)M contains a generator of (E(p)⊗R)M and must be equal
to it. �

Fix two distinct primes p and q. Set

ν(p, q) =

{
1, if deg(p) or deg(q) is even,

q + 1, otherwise.

Let E(p,q) ∈ E(pq,Z) be the Eisenstein series defined by

E(p,q)

((
πk
∞ u
0 1

))
= ν(p, q)·q−k+1·


 (1− |p|)(1 − |q|)

1− q2 +
∑

06=m∈A,
deg(m)≤k−2

σ′
pq(m)η(mu)


 ,

where
σ′
n(m) :=

∑

monic m′∈A, (m′,n)=1,

and m′|m

|m′|.

It is clear that E(p,q) = E(q,p), and comparing the Fourier expansions we get

ν(p)

ν(p, q)
· E(p,q) =

(
Ep − Ep|Bq

)
.(3.5)
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Lemma 3.8.

(1) Viewing Ep as a harmonic cochain in H(pq,Z), we get

Ep|Up = Ep = −Ep|Wp and Ep|Wq = Ep|Bq.

(2)

E(p,q) = E(p,q)|Up = E(p,q)|Uq = E(p,q)|Wpq = −E(p,q)|Wp = −E(p,q)|Wq.

Proof. The proof is straightforward. �

Let E ′(pq, R) be the R-submodule of E(pq, R) spanned by Ep, Eq and E(p,q),
i.e., E ′(pq, R) = REp +REq +RE(p,q). Denote

E ′0(pq, R) = E ′(pq, R) ∩H0(pq, R) and E ′00(pq, R) = E ′(pq, R) ∩H00(pq, R).

Theorem 3.9. The following holds:

(1) If ν(p, q) is invertible in R, then E ′(pq, R) is a free R-module of rank
3.

(2) If q − 1 and sp,q = gcd(|p|+ 1, |q|+ 1) are both invertible in R, then

E00(pq, R) = E ′00(pq, R).
Proof. By (3.5), Ep|Bq and Eq|Bp are both in E ′(pq, R), and

E ′(pq, R) = R(Ep|Bq) +R(Eq|Bp) +RE(p,q).

Suppose f = aEp|Bq + bEq|Bp + cE(p,q) = 0. Then f∗(1) = cE∗
(p,q)(1) =

c · ν(p, q) = 0. Since ν(p, q) is invertible in R under our assumption, we get c
= 0. Without loss of generality we can assume that either deg(p) is even, or
deg(p) and deg(q) are both odd. Now E∗

p(1) = (Ep|Bq)
∗(q) = ν(p) is invertible

in R. Therefore from f∗(q) = a · ν(p) = 0 we get a = 0. From the fact that Ep

is primitive, we have b = 0. The proof of Part (1) is complete.
To prove Part (2), it suffices to show that E00(pq, R) is contained in E ′(pq, R).
Given an Eisenstein harmonic cochain f ∈ E00(pq, R), let

f1 := f − f∗(1)ν(p, q)−1E(p,q) ∈ E(pq, R).
Then for every ideal m✁A, f∗

1 (m) = 0 unless p or q divides m. By the method
of Section 2, (|p|+1)f1 = ψ1|Bp+ψ2|Bq, where ψ1 ∈ H(q, R) and ψ2 ∈ H(p, R).
Moreover, by the proof of Theorem 2.26, we can take

ψ1 = f1|(Up +Wp) and ψ2 = |q|−1
[
(|p|+ 1)f1|Uq − f1|Uq(Up +Wp)Bp

]
.

Since Lemma 3.8 (2) implies that E(p,q)|(Up +Wp) = 0, we get ψ1 = f |(Up +
Wp) ∈ H00(q, R) and

ψ2 = |q|−1
[
(|p|+ 1)f |Uq − f |Uq(Up +Wp)Bp

]

−|q|−1(|p|+ 1)f∗(1)ν(p, q)−1E(p,q) ∈ H(q, R).
The constant term ψ0

2(1) is equal to

−|q|−1(|p|+ 1)f∗(1) · (1− |p|)(1− |q|)
q(1− q2) = −|q|−1(|p|+ 1)f∗(1) · 1− |q|

ν(p)
E0

p(1)
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and (ψ2|Wp)
0(1) = −ψ0

2(1). Let

ψ′
2 := ψ2 + |q|−1(|p|+ 1)f∗(1) · 1− |q|

ν(p)
Ep ∈ H(p, R).

Since q − 1 is invertible in R by assumption, Lemma 2.7 and 2.19 show that

ψ′
2 ∈ H0(p, R) = H00(p, R).

Note that for every prime p′ ✁A different from p and q, we have

ψ1|Tp′ = (|p′|+ 1)ψ1 and ψ′
2|Tp′ = (|p′|+ 1)ψ′

2.

Lemma 3.7 implies that ψ1 ∈ E00(q, R) and ψ′
2 ∈ E00(p, R). By Theorem 6.6

in [38], we can find a1, a2 ∈ R such that ψ1 = a1Eq and ψ′
2 = a2Ep (as 2 is

invertible in R by our assumption). We conclude that

(|p|+ 1)f = ψ1|Bp + ψ2|Bq + f∗(1)ν(p, q)−1E(p,q)

= a2Eq|Bp +
(
a2 − |q|−1(|p|+ 1)f∗(1) · 1− |q|

ν(p)

)
Ep|Bq

+ f∗(1)ν(p, q)−1E(p,q)

is in E ′(pq, R). Similarly, we also get (|q|+ 1)f ∈ E ′(pq, R) by interchanging p

and q. Since sp,q is invertible in R, f must be in E ′(pq, R), which completes
the proof of Part (2). �

Lemma 3.10. The following holds:

(1) Suppose ν(p, q) is invertible in R. The R-module E ′0(pq, R) is torsion
and isomorphic to the submodule of R3 consisting of elements (a, b, c)
with

(|p| − 1)(|q|+ 1)

q2 − 1
ν(p)a = 0,

(|p|+ 1)(|q| − 1)

q2 − 1
ν(q)b = 0,

1− |p|
1− q2 ν(p)a+

1− |q|
1− q2 ν(q)b +

(1 − |p|)(1− |q|)
1− q2 ν(p, q)c = 0.

(2) Suppose further that 2 is also invertible in R. Then E ′0(pq, R) is iso-
morphic to

R

[
(|p| − 1)(|q|+ 1)

q2 − 1
ν(p)

]
⊕R

[
(|p|+ 1)(|q| − 1)

q2 − 1
ν(q)

]
⊕R

[
(|p| − 1)(|q| − 1)

q2 − 1

]
.

Proof. Let f = aEp + bEq + cE(p,q) with a, b, c ∈ R. By Lemma 2.19,
f ∈ E ′0(pq, R) if and only if

f0(1) = (f |Wp)
0(1) = (f |Wq)

0(1) = (f |Wpq)
0(1) = 0.
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This gives us the following equations:

1− |p|
1− q2 ν(p)a+

1− |q|
1− q2 ν(q)b+

(1− |p|)(1 − |q|)
1− q2 ν(p, q)c = 0,(3.6)

−1− |p|
1− q2 ν(p)a+ |p|

1− |q|
1− q2 ν(q)b−

(1− |p|)(1 − |q|)
1− q2 ν(p, q)c = 0,(3.7)

|q|1− |p|
1− q2 ν(p)a−

1− |q|
1− q2 ν(q)b−

(1− |p|)(1 − |q|)
1− q2 ν(p, q)c = 0,(3.8)

−|q|1− |p|
1− q2 ν(p)a− |p|

1− |q|
1− q2 ν(q)b+

(1− |p|)(1 − |q|)
1− q2 ν(p, q)c = 0.(3.9)

We remark that

Equation (3.9) = −
(
Equation (3.6) + (3.7) + (3.8)

)
.

Considering the equation (3.6)+(3.7), (3.6)+(3.8), and (3.6)+(3.9), we get

(|p|+ 1)(|q| − 1)

q2 − 1
ν(q)b = 0,(3.10)

(|p| − 1)(|q|+ 1)

q2 − 1
ν(p)a = 0,(3.11)

(|p| − 1)(|q| − 1)

q2 − 1

(
ν(p)a+ ν(q)b+ 2ν(p, q)c

)
= 0.(3.12)

Since the conditions of (a, b, c) described by Equation (3.6)∼(3.9) is equivalent
to those described by Equation (3.6), (3.10), and (3.11) combined, the proof of
Part (1) is complete.
To prove Part (2), note that 2ν(p, q) is invertible in R by assumption. Therefore
the conditions of (a, b, c) described by Equation (3.6)∼(3.9) is equivalent to
those described by Equation (3.10)∼(3.12). Let E′ := ν(p)Ep + ν(q)Eq +
2ν(p, q)E(p,q). By Theorem 3.9 (1), we also have E ′(pq, R) = REp⊕REq⊕RE′.
Therefore Equation (3.10)∼(3.12) assures the result. �

In fact, when q − 1 and sp,q are invertible in the coefficient ring R, one can
show that E00(pq, R) = E ′0(pq, R); see Remark 7.4.

3.3. Special case. In this subsection we give a concrete description of
E0(xy,R) and E00(xy,R) for an arbitrary coefficient ring R. Recall that E0

is the function on E(T ) satisfying

E0

((
πk
∞ u
0 1

))
= −E0

((
πk
∞ u
0 1

)(
0 1
π∞ 0

))
= q−k.

Lemma 3.11. Given a ∈ R[q+1], we have aE0 = −aEn ∈ H(1, R) if deg(n) is
odd. Moreover, aE0|Bm = (−1)deg(m)aE0.

Proof. The proof is straightforward. �

According to Examples 3.4 and 3.5 we have:

Lemma 3.12. H(x,R) = REx and H(y,R) = REy ⊕R[q + 1]E0.
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Note that ν(x, y) = ν(y) = 1 and ν(x) = q + 1. Given f ∈ E(xy,R), let
f ′ := f − f∗(1)E(x,y). Then f ′∗(m) = 0 unless x or y divides m. By Theorem
2.26 and Lemma 3.12, there exists a, b ∈ R and b′ ∈ R[q + 1] such that

2f ′ = (bEy + b′E0)|Bx + aEx|By.

When q is even, 2 is invertible in R and we have f ∈ E ′(xy,R). Suppose q is
odd. Note that b′E0|Bx = b′Ex by Lemma 3.11. Hence

2f = (a+ b′)Ex|By + bEy|Bx + 2f∗(1)E(x,y) ∈ E ′(xy,R).
In fact, there exists a′′, b′′ ∈ R such that a+ b′ = 2a′′ and b = 2b′′. Indeed, by
Lemma 2.24 we have

2f∗(x) = b+2f∗(1) and 2f0(π∞) = 2q−1f0(1) = |y|(a+b′)+|x|b+2f∗(1)(q−1).
Set f ′′ := f −

(
a′′Ex|By + b′′Ey|Bx + f∗(1)E(x,y)

)
∈ E(xy,R). Then the above

discussion shows that 2f ′′ = 0. Take f ′′′ := f ′′ − (f ′′)0(1)E0. Then

f ′′′ ∈ E(xy,R)[2] and (f ′′′)∗(1) = (f ′′′)0(1) = 0.

The following lemma shows that f ′′′ ∈ E ′(xy,R), which also implies that f ∈
E ′(xy,R).
Lemma 3.13. Suppose q is odd. Given ϕ ∈ E(xy,R)[2] with ϕ∗(1) = ϕ0(1) = 0,
there exists α ∈ R[2] such that

ϕ = α(Ex + Ey|Bx).

Proof. We use the notation in the proof of Proposition 2.21. Given ϕ ∈
E(xy,R)[2] with ϕ0(1) = 0, we have that for each prime p with p ∤ xy,

ϕ|Tp = (|p|+ 1)ϕ = 0.

Therefore for every prime p with p ∤ xy and a non-zero ideal m✁A,

|p|ϕ∗(pm) + ϕ∗(m/p) = (ϕ|Tp)∗(m) = 0.(3.13)

By Equation (3.13) and the Fourier expansion of ϕ, we get

ϕ

((
̟k

x 0
0 1

))
= 0, ∀k ∈ Z,

ϕ(a1) = ϕ(a2) = 0,

ϕ(bu) = ϕ(a4) = ϕ∗(x), ∀u ∈ F×
q ,

ϕ(c3) = ϕ∗(y), ϕ(a3) = ϕ∗(x) + ϕ∗(x2), ϕ(a6) = ϕ∗(x2).

The harmonicity of ϕ gives us that

0 = ϕ(a4) +
∑

u∈F
×
q

ϕ(bu)− ϕ(a3) = ϕ∗(x2),

0 = ϕ(a6) + ϕ(c3) + (1 − q)ϕ(a2) = ϕ∗(x2) + ϕ∗(y).

0 = ϕ(a6) + (q − 1)ϕ(a3)− ϕ(c4) = ϕ∗(x2) + ϕ(c4).

Hence
ϕ(e) = 0 for e = c1, c2, c3, c4, a1, a2, a5, a6, and
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ϕ(a3) = ϕ(a4) = ϕ(bu) = ϕ∗(x) ∈ R[2], for u ∈ F×
q .

On the other hand, for α ∈ R[2],
α(Ex + Ey|Bx)(e) = 0 for e = c1, c2, c3, c4, a1, a2, a5, a6, and

α(Ex+Ey|Bx)(a3) = α(Ex+Ey|Bx)(a4) = α(Ex+Ey|Bx)(bu) = α, for u ∈ F×
q .

Therefore ϕ = ϕ(a3) · (Ex + Ey |Bx) and the proof is complete. �

From the above discussion, we conclude that

Corollary 3.14. E(xy,R) = E ′(xy,R) for every coefficient ring R. In other
words, every Eisenstein harmonic cochain of level xy can be generated by Eisen-
stein series.

By Lemma 3.10 and Corollary 3.14, we immediately get

Corollary 3.15. The space E0(xy,R) is isomorphic to the torsion R-module

{(a, b, c) ∈ R3 | (q2 + 1)a = (q + 1)b = a+ b+ (1− q)c = 0}.
In particular,

E0(xy,R) ∼= R
[(q − 1)

2
(q2 + 1)(q + 1)

]
⊕R[2].

From the graph in Figure 4, an alternating R-valued function f on
E(Γ0(xy)\T ) is in H0(xy,R) if and only if f vanishes on the cusps c1, c2, c3, c4
and

(q − 1)f(a1) + f(a5) = 0, (q − 1)f(a2)− f(a6) = 0,

(q − 1)f(a3) + f(a6) = 0, (q − 1)f(a4)− f(a5) = 0,

f(a2) +
∑

u∈F
×
q

f(bu) = f(a1), f(a3)−
∑

u∈F
×
q

f(bu) = f(a4).

Moreover, f is in H00(xy,R) if and only if f satisfies an extra equation:

f(a1) + f(a4) = 0.

In particular, every harmonic cochain f ∈ H00(xy,R) is determined uniquely
by the values

f(a1), f(bu) for u ∈ F×
q .

Let f = aEx + bEy + cE(x,y) ∈ E0(xy,R). By Corollary 3.15 we have

(q2 + 1)a = (q + 1)b = a+ b+ (1− q)c = 0.

It is observed that

Ex(a1) = −1, Ex(a4) = −q,
Ey(a1) = 0, Ey(a4) = −1,
E(x,y)(a1) = −1, E(x,y)(a4) = −1.

We then get

f(a1) + f(a4) = −
(
(q + 1)a+ b+ 2c

)
.
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Hence f ∈ E00(xy,R) if and only if

c ∈ R[(q2 + 1)(q + 1)], a = −q−1(q + 1)c, b = q−1(q2 + 1)c.

We conclude that

Proposition 3.16. The module E00(xy,R) is isomorphic to R[(q2+1)(q+1)].
More precisely, every harmonic cochain in E00(xy,R) must be of the form

c ·
(
− (q + 1)Ex + (q2 + 1)Ey + qE(x,y)

)

where c ∈ R[(q2 + 1)(q + 1)].

Corollary 3.17. For every natural number n relatively prime to p the module
E00(xy,Z/nZ) is isomorphic to Z/nZ[(q2 + 1)(q + 1)].

Proof. The difference between this claim and Proposition 3.16 is that Z/nZ is
not a coefficient ring in general. Still, one can deduce this from Proposition
3.16 by arguing as in the proof of Corollary 6.9 in [38]. First, one easily reduces
to the case when n is a power of some prime ℓ 6= p, and applies Proposition
3.16 with R = Zℓ[ζp]/nZℓ[ζp], where ζp is the primitive pth root of unity. The
claim follows by observing that R is a free Z/nZ-module. �

Corollary 3.18. T(xy)/E(xy) ∼= Z/(q2 + 1)(q + 1)Z.

Proof. Let (T(n)0)new be the quotient of T(n)0 with which it acts on
H0(n,Q)new; cf. Definition 2.13. By Lemma 4.2 and Theorem 4.5 in [39], for
any square-free n✁A the quotient ring (T(n)0)new/E(n) is a finite cyclic group of
order coprime to p; here with abuse of notation E(n) denotes the ideal generated
by the images of Tp − |p| − 1 in (T(n)0)new. Since H0(xy,Q) = H0(xy,Q)new,
we have T(xy)0 = (T(xy)0)new. On the other hand, by Proposition 2.21,
T(xy)0 = T(xy). Hence T(xy)/E(xy) ∼= Z/nZ for some n coprime to p.
The perfectness of the pairing (2.5) implies

HomZ/nZ(T(xy) ⊗Z Z/nZ,Z/nZ) ∼= H00(xy,Z/nZ).

Hence

E00(xy,Z/nZ) ∼= HomZ/nZ(T(xy) ⊗Z Z/nZ,Z/nZ)[E(xy)]

∼= HomZ/nZ((T(xy)/E(xy)) ⊗Z Z/nZ,Z/nZ)

∼= HomZ/nZ(Z/nZ⊗Z Z/nZ,Z/nZ) ∼= Z/nZ.

Applying Corollary 3.17, we conclude that n must divide (q+1)(q2+1). Later
in this paper we will prove that the component group Φ∞

∼= Z/(q2+1)(q+1)Z
of J0(xy) is annihilated by E(xy) (see Lemma 8.16). This implies that n is
divisible by (q2 + 1)(q + 1). Therefore, n = (q2 + 1)(q + 1). �

Remark 3.19. In [44], we extended our calculation of T(n)/E(n) to arbitrary
n of degree 3. Up to an affine transformation T 7→ aT + b with a ∈ F×

q and
b ∈ Fq, there are 5 different cases, namely

(1) If n = T 3, then T(n)/E(n) ∼= Z/q2Z;
(2) If n = T 2(T − 1), then T(n)/E(n) ∼= Z/q(q2 − 1)Z;
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(3) If n is irreducible, then T(n)/E(n) ∼= Z/(q2 + q + 1)Z;
(4) If n = xy, then T(n)/E(n) ∼= Z/(q2 + 1)(q + 1)Z;
(5) If n = T (T − 1)(T − c), where c ∈ Fq, c 6= 0, 1 (here we must have

q > 2), then

T(n)/E(n) ∼= Z/(q + 1)Z× Z/(q + 1)Z× Z/(q − 1)2(q + 1)Z.

4. Drinfeld modules and modular curves

In this section we collect some facts about Drinfeld modules and their moduli
schemes that will be used later in the paper.
Let S be an A-scheme and L a line bundle over S. Let L{τ} be the noncom-

mutative ring ⊕i≥0L⊗(1−qi)(S)τ i, where τ stands for the qth power Frobe-
nius mapping. The multiplication in this ring is given by αiτ

i · αjτ
j =

(αi ⊗ α⊗qj

j )τ i+j . A Drinfeld A-module of rank r (in standard form) over
S is given by a line bundle L over S together with a ring homomorphism

φL : A → EndFq
(L) = L{τ}, a 7→ φLa , such that φLa =

∑m(a)
i=0 αi(a)τ

i, where

m(a) = −r · ord∞(a), αm(a)(a) is a nowhere vanishing section of L⊗(1−m(a)),

and α0 coincides with the map ∂ : A → H0(S,OS) giving the structure of an
A-scheme to S; cf. [6, p. 575]. The kernel of ∂ is called the A-characteristic
of S. A Drinfeld A-module over S is clearly an A-module scheme over S, and
a homomorphism of Drinfeld modules is a homomorphism of these A-module
schemes. A homomorphism of Drinfeld modules over a connected scheme is ei-
ther the zero homomorphism, or it has finite kernel, in which case it is usually
called an isogeny. When S is the spectrum of a field K, we will omit mention
of L and write φ : A→ K{τ}.
Let n ✁ A be a non-zero ideal. A cyclic subgroup of order n of φL is an A-
submodule scheme Cn of L which is finite and flat over S, and such that there
is a homomorphism of A-modules ι : A/n→ L(S) giving an equality of relative

effective Cartier divisors
∑

a∈A/n ι(a) = Cn. Denote φL[n] = ker(L φL
n−−→ L),

where n is a generator of the ideal n. It is clear that the A-submodule scheme
φL[n] of L does not depend on the choice of n, and Cn ⊂ φL[n]. To each Cn ⊂ φ
one can associate a unique, up to isomorphism, Drinfeld module φ′ := φ/Cn

such that there is an isogeny φ→ φ′ whose kernel is Cn.
Now assume S = Spec(K), where K is a field. Explicitly, a homomorphism of
Drinfeld modules u : φ → ψ is u ∈ K{τ} such that φau = uψa for all a ∈ A,
and u is an isomorphism if u ∈ K×. Let End(φ) denote the centralizer of φ(A)
in K̄{τ}, i.e., the ring of all homomorphisms φ→ φ over K̄. The automorphism
group Aut(φ) is the group of units End(φ)×. It is known that End(φ) is a free
A-module of rank ≤ r2; cf. [6]. From now on we also assume that r = 2. Note
that φ is uniquely determined by the image of T :

φT = ∂(T ) + gτ +∆τ2,

where g ∈ K and ∆ ∈ K×. The j-invariant of φ is j(φ) = gq+1/∆. It is easy
to check that if K is algebraically closed, then φ ∼= ψ if and only if j(φ) = j(ψ).
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It is also easy to check that

(4.1) Aut(φ) =

{
F×
q if j(φ) 6= 0;

F×
q2 if j(φ) = 0.

If n is coprime to the A-characteristic of K, then φ[n](K̄) ∼= (A/n)2. On the
other hand, if p = ker(∂) 6= 0, then φ[p](K̄) ∼= (A/p) or 0; when φ[p](K̄) = 0,
φ is called supersingular. The following is Theorem 5.9 in [8]:

Theorem 4.1. Let p✁A be a prime ideal. The number of isomorphism classes
of supersingular rank-2 Drinfeld A-modules over Fp is

{
|p|−1
q2−1 if deg(p) is even;
|p|−q
q2−1 + 1 if deg(p) is odd.

The Drinfeld module with j(φ) = 0 is supersingular if and only if deg(p) is odd.

The functor from the category of A-schemes to the category of sets, which
associates to an A-scheme S the set of isomorphism classes of pairs (φL, Cn),
where φL is a Drinfeld module of rank 2 and Cn is a cyclic subgroup of order
n has a coarse moduli scheme Y0(n). The scheme Y0(n) is affine, finite type,
of relative dimension 1 over Spec(A), and smooth over Spec(A[n−1]). This
is well-known and can be deduced from the results in [6]. The rigid-analytic
uniformization of Y0(n) over F∞ is given by (3.1). The scheme Y0(n) has a
canonical compactification over Spec(A):

Theorem 4.2. There is a proper normal geometrically irreducible scheme
X0(n) of pure relative dimension 1 over Spec(A) which contains Y0(n) as an
open dense subscheme. The complement X0(n) − Y0(n) is a disjoint union of
irreducible schemes. Finally, X0(n) is smooth over Spec(A[n−1]).

Proof. See [6, §9] and [29, Prop. V.3.5]. �

Denote the Jacobian variety of X0(n)F by J0(n). Let p✁A be prime. There are
two natural degeneracy morphisms α, β : Y0(np)→ Y0(n) with moduli-theoretic
interpretation:

α : (φ,Cnp) 7→ (φ,Cn), β : (φ,Cnp) 7→ (φ/Cp, Cnp/Cp),

where Cn and Cp are the subgroups of Cnp of order n and p, respectively.
These morphisms are proper, and hence uniquely extend to morphisms α, β :
X0(np)→ X0(n). By Picard functoriality, α and β induce two homomorphisms
α∗, β∗ : J0(n) → J0(pn). The Hecke endomorphism of J0(n) is Tp := α∗ ◦ β∗ ,
where α∗ : J0(pn) → J0(n) is the dual of α∗. The Z-subalgebra of End(J0(n))
generated by all Hecke endomorphisms is canonically isomorphic to T(n). This
is a consequence of Drinfeld’s reciprocity law [6, Thm. 2].
The Jacobian J0(n) has a rigid-analytic uniformization over F∞ as a quotient
of a multiplicative torus by a discrete lattice. To simplify the notation denote
Γ := Γ0(n) and let Γ be the maximal torsion-free abelian quotient of Γ. In
[18] and [13], Gekeler and Reversat associate a meromorphic theta function
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θ(ω, η, ·) on Ω with each pair ω, η ∈ Ω := Ω ∪ P1(F ). The theta function
θ(ω, η, ·) satisfies a functional equation

θ(ω, η, γz) = c(ω, η, γ)θ(ω, η, z), ∀γ ∈ Γ,

where c(ω, η, ·) : Γ → C×
∞ is a homomorphism that factors through Γ. The

divisor of θ(ω, η, ·) is Γ-invariant and, as a divisor onX0(n)(C∞), equals [ω]−[η],
where [ω] is the class of ω ∈ Ω in Γ \ Ω = X0(n)(C∞).
For a fixed α ∈ Γ, the function uα(z) = θ(ω, αω, z) is holomorphic and invert-
ible on Ω. Moreover, uα is independent of the choice of ω ∈ Ω, and depends
only on the class ᾱ of α in Γ. Let cα(·) = c(ω, αω, ·) be the multiplier of uα. It
induces a pairing

Γ× Γ→ F×
∞

(α, β) 7→ cα(β)

which is bilinear, symmetric, and

〈·, ·〉 : Γ× Γ→ Z(4.2)

〈α, β〉 = ord∞(cα(β))

is positive definite. One of the main result of [18] is that there is an exact
sequence

(4.3) 0→ Γ
α7→cα(·)−−−−−→ Hom(Γ,C×

∞)→ J0(n)(C∞)→ 0.

One can define Hecke operators Tp as endomorphisms of Γ in purely group-
theoretical terms as some sort of Verlagerung (see [18, (9.3)]). These operators
then also act on the torus Hom(Γ,C×

∞) through their action on the first argu-
ment Γ. By [18, (3.3.3)] and [17], there is a canonical isomorphism

(4.4) j : Γ
∼−→ H0(n,Z)

which is compatible with the action of Hecke operators. Through this con-
struction, the Hecke algebra T(n) in Definition 2.11 acts faithfully on Γ and
Hom(Γ,C×

∞). The sequence (4.3) is compatible with the action of T(n)0 on its
three terms; see [18, (9.4)].
Assume n is square-free. The matrix (2.3) representing the Atkin-Lehner in-
volution Wm for m|n is in the normalizer of Γ in GL2(F∞), and the induced
involution of X0(n)F∞ does not depend on the choice of this matrix. In terms
on the moduli problem, the involution Wm on X0(n) is given by

Wm : (φ,Cn) 7→ (φ/Cm, (φ[m] + Cn/m)/Cm),

where Cm and Cn/m are the subgroups of Cn of order m and n/m, respectively.

5. Component groups

Let n✁A be a non-zero ideal. Let J := J0(n) and J denote the Néron model
of J over P1

Fq
. Let J 0 denote the relative connected component of the identity

of J , that is, the largest open subscheme of J containing the identity section
which has connected fibres. The group of connected components (or component
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group) of J at a place v of F is Φv := JFv
/J 0

Fv
. This is a finite abelian group

equipped with an action of the absolute Galois group GFv
. The homomorphism

℘v : J(F nr
v )→ Φv obtained from the composition

℘v : J(F nr
v ) = J (Onr

v )→ JFv
(Fv)→ Φv

will be called the canonical specialization map.
Assume p✁A is a prime not dividing m. Then the curveX0(m)Fp

is smooth. We

call a point P ∈ X0(m)(Fp) supersingular if it corresponds to the isomorphism

class of a pair (φ,Cm) with φ supersingular over Fp. For a Drinfeld A-module

φ over Fp given by φT = ∂(T )+gτ+∆τ2, let φ(p) : A→ Fp{τ} be the Drinfeld

module given by φ
(p)
T = ∂(T ) + g|p|τ + ∆|p|τ2. Since ∂(A) ⊆ Fp, we see that

τ |p|φa = φ
(p)
a τ |p| for all a ∈ A, so τ |p| is an isogeny φ → φ(p). Denote the

image of Cm in φ(p) under τ |p| by C
(p)
m . The map from X0(m)(Fp) to itself

given by (φ,Cm) 7→ (φ(p), C
(p)
m ) restricts to an involution on the finite set of

supersingular points; cf. [8, Thm. 5.3].

Theorem 5.1. Assume n = pm, with p prime not dividing m. The curve
X0(n)Fp

is smooth and extends to a proper flat scheme X0(n)Op
over Op such

that the special fibre X0(n)Fp
is geometrically reduced and consists of two ir-

reducible components, both isomorphic to X0(m)Fp
, intersecting transversally

at the supersingular points. More precisely, a supersingular point (φ,Cm) on

the first copy of X0(m)Fp
is glued to (φ(p), C

(p)
m ) on the second copy. The

curve X0(n)Fp
is smooth outside of the locus of supersingular points. De-

note by Aut(φ,Cm) the subgroup of automorphisms of φ which map Cm to
itself. For a supersingular point P ∈ X0(m)Fp

corresponding to (φ,Cm), let

m(P ) := 1
q−1#Aut(φ,Cm). Then, locally at P for the étale topology, X0(n)Op

is given by the equation XY = pm(P ).

Proof. This is proven in [10, §5] for n = p, but the proof easily extends to this
more general case. �

We will compute the component group Φp using a classical theorem of Raynaud,
but first we need to determine the number of singular points on X0(n)Fp

, and
the integers m(P ) ≥ 1 defined in Theorem 5.1. We call m(P ) the thickness of
P .
Let m =

∏
1≤i≤s p

ri
i be the prime decomposition of m. Define

R(m) =

{
1 if deg(pi) is even for all 1 ≤ i ≤ s
0 otherwise

L(m) = #P1(A/m) =
∏

1≤i≤s

|pi|ri−1(|pi|+ 1).

If m = A, we put s = 0 and L(m) = R(m) = 1.
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Lemma 5.2. The number of supersingular points on X0(m)Fp
is

S(p,m) =

{
|p|−1
q2−1L(m) if deg(p) is even;
|p|−q
q2−1L(m) + L(m)+q2sR(m)

q+1 if deg(p) is odd.

The thickness of a supersingular point on X0(m)Fp
is either 1 or q + 1. Su-

persingular points with thickness q+1 can exist only if deg(p) is odd and their
number is 2sR(m).

Proof. Let φ be a fixed Drinfeld module of rank 2 over Fp. Since m is assumed
to be coprime to p, the number of distinct cyclic subgroups Cm ⊂ φ[m] is L(m).
If Aut(φ) = F×

q , then all pairs (φ,Cm) are non-isomorphic, since F×
q fixes each

of them. Therefore, all these pairs correspond to distinct points on X0(m)Fp
.

We know from (4.1) that Aut(φ) 6= F×
q if and only if j(φ) = 0. Since Theorem

4.1 gives the number of isomorphism classes of supersingular Drinfeld modules,
the claim of the lemma follows if we exclude the case with j(φ) = 0.
Now assume j(φ) = 0. Then Aut(φ) ∼= F×

q2 . We can identify the set of cyclic

subgroups of φ of order m with P1(A/m). From this perspective, the action of
Aut(φ) on this set is induced from an embedding

F×
q2 →֒ GL2(A/m) ∼= Aut(φ[m]),

with GL2(A/m) acting on P1(A/m) in the usual manner. We can decompose

P1(A/m) ∼=
∏

1≤i≤s

P1(A/prii )

with GL2(A/m) acting on P1(A/prii ) via its quotient GL2(A/p
ri
i ). The image

of F×
q2 in GL2(A/m) is a maximal non-split torus in GL2(Fq). If the stabilizer

Stab
F
×

q2
(P ) of P ∈ P1(A/prii ) is strictly larger than F×

q , then it is easy to

see that in fact Stab
F
×

q2
(P ) = F×

q2 . Moreover, this is possible if and only if

Fq2 →֒ A/prii , in which case there are exactly 2 fixed points in P1(A/prii ) under
the action of Fq2 ; cf. [17, p. 695]. Note that the existence of an embedding

Fq2 →֒ A/prii is equivalent to deg(pi) being even. We conclude that F×
q2 acting

on the set of L(m) pairs (φ,Cm) has 2sR(m) fixed elements, and the orbit of
any other element has length q + 1. This implies that there are

L(m)− 2sR(m)

q + 1
+ 2sR(m) =

L(m) + q2sR(m)

q + 1

points on X0(m)Fp
corresponding to φ with j(φ) = 0. Finally, by Theorem

4.1, the Drinfeld module with j(φ) = 0 is supersingular if and only if deg(p) is
odd. �

Theorem 5.3. Assume n = pm, with p prime not dividing m. If deg(p) is odd
and m = A, then

Φp
∼= Z/ ((q + 1)(S(p, A)− 1) + 1)Z.
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If deg(p) is even or m has a prime divisor of odd degree, then

Φp
∼= Z/S(p,m)Z.

Finally, if deg(p) is odd, m 6= A, and all prime divisors of m have even degrees,
then

Φp
∼= Z/

(
(q + 1)2S(p,m)− q(q + 1)2s

)
Z

⊕

1≤i≤2s−2

Z/(q + 1)Z.

(The isomorphisms above are meant only as isomorphisms of groups, not group
schemes, so Φp can have non-trivial GFp

-action.)

Proof. This follows from Corollary 11 on page 285 in [3], combined with Lemma
5.2 and Theorem 5.1. This result for n = p is also in [10]. �

Proposition 5.4. Assume n = pq is a product of two distinct primes. Denote

n(p, q) =
(|p| − 1)(|q|+ 1)

q2 − 1
.

Let Φp(Fp) be the subgroup of Φp fixed by GFp
. If deg(p) is odd and deg(q) is

even, then

Φp
∼= Z/(q + 1)2n(p, q)Z, Φp(Fp) ∼= Z/(q + 1)n(p, q)Z.

Otherwise,

Φp(Fp) = Φp
∼= Z/n(p, q)Z.

Proof. To simplify the notation, denote X = X0(pq)Op
and k = Fp. Let

X̃ → X be the minimal resolution of X . We know that Xk consists of two
irreducible components, both isomorphic to X0(q)k. If deg(p) is even or deg(q)

is odd, then X = X̃. On the other hand, if deg(p) is odd and deg(q) is
even, then there are two points P and Q of thickness q + 1. To obtain the
minimal regular model one performs a sequence of q blows-ups at P and Q.
With the notation of [41, §4.2], let E1, . . . , Eq and G1, . . . , Gq be the chain of
projective lines resulting from these blow-ups at P and Q, respectively. Let
Z and Z ′ denote the two copies of X0(q)k, with the convention that E1 and

G1 intersect Z. Let B(X̃k) be the free abelian group generated by the set

of geometrically irreducible components of X̃k. Let B0(X̃k) be the subgroup

of degree-0 elements in B(X̃k). The theorem of Raynaud that we mentioned

earlier gives an explicit description of Φp as a quotient of B0(X̃k); cf. [41, §4.2].
Let Frobp : α → α|p| be the usual topological generator of Gk. The Frobenius

Frobp naturally acts on the geometrically irreducible components of X̃k, and

therefore on B0(X̃k). Since X0(q)k is defined over k, the action of Frobp fixes

z := Z − Z ′ ∈ B0(X̃k). If deg(p) is even or deg(q) is odd, then z generates

B0(X̃k), so Gk acts trivially on Φp, which by Theorem 5.3 is isomorphic to
Z/n(p, q)Z.
From now on we assume deg(p) is odd and deg(q) is even. The claim Φp

∼=
Z/(q + 1)2n(p, q)Z follows from Theorem 5.3. Let φ be given by φT = T + τ2.
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Note that j(φ) = 0 and φ is defined over k, so Frobp acts on the set of cyclic
subgroups Cq ⊂ φ. Denote A′ = Fq2 [T ]. It is easy to see that A′ ⊆ End(φ).
Since q = q1q2 splits in A′ into a product of two irreducible polynomials of the
same degree, we have

φ[q] ∼= A′/q ∼= A′/q1 ⊕A′/q2 ∼= A/q⊕A/q ∼= φ[q1]⊕ φ[q2].
The above decomposition is preserves under the action of Fq2 . In particu-

lar, Aut(φ, φ[qi]) ∼= F×
q2 . On the other hand, since p has odd degree, this

decomposition is not defined over k and Frobp(φ[q1]) = φ[q2]. We conclude
that P = (φ, φ[q1]), Q = (φ, φ[q2]) and Frobp(P ) = Q. Since the action of

Frobp preserves the incidence relations of the irreducible components of X̃k,
we have Frobp(Ei) = Gi, 1 ≤ i ≤ q. Following the notation of Theorem 4.1
in [41], let eq = Eq − Z ′ and gq = Gq − Z ′. According to that theorem,
the image of eq in Φp generates Φp, and in the component group we have
gq = − ((q + 1)(S(p, q)− 2) + 1) eq. Thus, the action of Frobp on Φp in terms
of the generator eq is given by Frobp(eq) = − ((q + 1)(S(p, q)− 2) + 1) eq. This
implies that aeq ∈ Φp(Fp) if and only if

aeq = Frobp(aeq) = −a ((q + 1)(S(p, q)− 2) + 1) eq,

which is equivalent to a ((q + 1)S(p, q)− 2q) eq = 0. Hence amust be a multiple
of q + 1, and

Φp(Fp) = 〈(q + 1)〉 ∼= Z/(q + 1)n(p, q)Z.

�

The existence of rigid-analytic uniformization (4.3) of J implies that J has
totally degenerate reduction at ∞, i.e., J 0

F∞
is a split algebraic torus over F∞.

The problem of explicitly describing Φ∞ is closely related to the problem of
describing Γ0(n) \ T together with the stabilizers of its edges; cf. [41, §5.2].
Since the graph Γ0(n) \ T becomes very complicated as |n| grows, no explicit
description of Φ∞ is known in general. On the other hand, Φ∞ has a description
in terms of the uniformization of J . Let 〈·, ·〉 : Γ × Γ → Z be the pairing
(4.2). This pairing is bilinear, symmetric, and positive-definite, so it induces
an injection ι : Γ → Hom(Γ,Z), γ 7→ 〈γ, ·〉. Identifying Γ with H0(n,Z) via
(4.4), we get an injection ι : H0(n,Z)→ Hom(H0(n,Z),Z). The Hecke algebra
T(n) acts on Hom(H0(n,Z),Z) through its action on the first argument. The
action of T(n) on J , by the Néron mapping property, canonically extends to an
action on J . Thus, T(n) functorially acts on Φ∞.

Theorem 5.5. The absolute Galois group GF∞ acts trivially on Φ∞, and there
is a T(n)0-equivariant exact sequence

0→ H0(n,Z)
ι−→ Hom(H0(n,Z),Z)→ Φ∞ → 0.

Proof. The exact sequence is the statement of Corollary 2.11 in [11]. The T(n)0-
equivariance of this sequence follows from the T(n)0-equivariance of (4.3). The
fact that GF∞ acts trivially on Φ∞ is a consequence of J 0

F∞
being a split

torus. �
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6. Cuspidal divisor group

The cuspidal divisor group C(n) of J := J0(n) is the subgroup of J generated
by the classes of divisors [c] − [c′], where c, c′ run through the set of cusps of
X0(n)F .

Theorem 6.1. C(n) is finite and if n is square-free then C(n) ⊂ J(F )tor.
Proof. This theorem is due to Gekeler [15], where the finiteness of C(n) is
proven for general congruence subgroups over general function fields. Since
the proof is fairly short, for the sake of completeness, we give a sketch. The
space H0(n,C) has an interpretation as a space of automorphic cusp forms (cf.
[18]), so the Ramanujan-Petersson conjecture over function fields (proved by
Drinfeld) implies that the eigenvalues of Tp are algebraic integers of absolute

value ≤ 2
√
|p| for any prime p ∤ n. This implies that the operator ηp =

Tp − |p| − 1 is invertible on H0(n,C). Hence ηp : H0(n,Z) → H0(n,Z) is
injective with finite cokernel. Now using the Tp equivariance of (4.3) and (4.4),
we see that ηp : J → J is an isogeny. Assume for simplicity that n is square-
free. In the proof of Lemma 3.1 we showed that ηp([c] − [c′]) = 0. Hence
C(n) ⊆ ker(ηp), which is finite. Finally, when n is square-free, all the cusps of
X0(n)F are rational over F , so the cuspidal divisor group is in J(F ); see [16,
Prop. 6.7]. �

Proposition 6.2. With notation of §3.1, let µ(n) be the largest integer ℓ such
that there exists an ℓ-th root of ∆/∆n in O(Ω)×. Then µ(n) = (q− 1)2 if deg n
is odd and µ(n) = (q − 1)(q2 − 1) if deg n is even. Let Dn be a µ(n)-th root of
∆/∆n. There exists a character ωn : Γ0(n)→ F×

q such that for each γ ∈ Γ0(n),

Dn(γz) = ωn(γ)Dn(z).

Proof. See Corollary 3.5 and 3.21 in [14]. �

If n =
∏

i p
ri
i ✁ A is the prime decomposition of n, define a character χn :

Γ0(n)→ F×
q by the following: for γ =

(
a b
c d

)
∈ Γ0(n),

χn(γ) :=
∏

i

Ni(d mod pi)
−ri ,

where Ni : (A/piA)
× → F×

q is the norm map. Then ωn = χn · detdeg(n)/2 if

deg(n) is even and ωn = χ2
n · detdeg(n) if deg(n) is odd. In particular, the order

of ωn is q − 1 when n is square-free (cf. [14] Proposition 3.22). By Proposition
6.2, we immediately get:

Corollary 6.3.

(1) D′
n := Dq−1

n is a meromorphic function on the Drinfeld modular curve
X0(n) satisfying

(D′
n)

µ(n)
q−1 =

∆

∆n

.
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(2) Given two ideals m and n of A, we set Dn,m(z) := Dn(z)/Dn(mz),
∀z ∈ Ω. Then

(Dn,m)
µ(n) =

∆∆mn

∆n∆m

= (Dm,n)
µ(m)

and for every γ ∈ Γ0(mn), we have

Dn,m(γz) = Dn,m(z).

In other words, Dn,m and Dm,n can be viewed as meromorphic functions
on X0(mn).

Remark 6.4. Take two coprime ideals m and n of A. By Corollary 6.3 (1),
the (q − 1)-th roots of (∆∆m)/(∆n∆mn) always exist in the function field of
X0(mn)C∞ . In fact, we can find a (q2 − 1)-th root of (∆∆m)/(∆n∆mn) when
deg n or degmn is even. Indeed, we notice that

∆(z)∆m(z)

∆n(z)∆mn(z)
=

∆(z)

∆n(z)
· ∆(z′)

∆n(z′)
=

∆(z)

∆mn(z)
· ∆(z′′)

∆mn(z′′)
·m−(q2−1).

Here

z′ = mz, z′′ =
mz + 1

bmnz + am
=

(
m 1
bmn am

)
· z,

and a, b ∈ A such that am− bn = 1. In particular, when q is odd,

D′′
n(z) := (Dn(z) ·Dn(mz))

q−1
2

is a 2(q2 − 1)-th (resp. 2(q − 1)-th) root of (∆∆m)/(∆n∆mn) in the function
field of X0(mn)C∞ when deg n is even (resp. odd).

The following lemma is immediate from the definitions.

Lemma 6.5. Let r be the van der Put derivative (3.3) and En ∈ H(n,Z) the
Eisenstein series (3.4). Then r(Dn) = En, and for any two distinct prime
ideals p and q,

r(Dp,q) =

{
(q + 1) ·E(p,q), if deg p is odd and deg q is even,

E(p,q), otherwise.

Take two distinct prime ideals p and q, let ℓ be the largest number such that
there exists an ℓ-th root ξ of (∆∆pq)/(∆p∆q) in the function field of X0(pq)C∞ .

Comparing the first Fourier coefficient r(ξ)∗(1) with r
(
(∆∆pq)/(∆p∆q)

)∗
(1),

we must have ℓ|(q − 1)(q2 − 1). By Corollary 3.17 in [14], for every non-zero
ideal n of A

∆

∆n

= const.
G

(q−1)(q2−1)
n

∆(qdeg n−1)
,

where Gn is a Drinfeld modular form on Ω such that for any γ =

(
a b
c d

)
∈

Γ0(n)

Gn(γz) = χn(γ)(cz + d)(|n|−1)/(q−1)Gn(z).
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Then

ξℓ =
∆(z)∆pq(z)

∆p(z)∆q(z)
= const.

(
Gp(z)

Gp(qz)

)(q−1)(q2−1)

·
(
∆q(z)

∆(z)

)|p|−1

= const.

(
Gp(z)

Gp(qz)

)(q−1)(q2−1)

·Dq(z)
−µ(q)(|p|−1).

Since Gp(z)/Gp(qz) is a meromorphic function on X0(pq)C∞ ,

Dq(z)
µ(q)(|p|−1)

ℓ = const.

(
Gp(z)

Gp(qz)

) (q−1)(q2−1)
ℓ

· ξ−1

is also in the function field of X0(pq)C∞ . Note that the character ωq has order
q − 1. Set

µ(p, q) :=

{
(q − 1)(q2 − 1), if deg(p) or deg(q) is even,

(q − 1)2, otherwise.

We then have:

Lemma 6.6. The largest number ℓ such that there exists an ℓ-th roots of
∆∆pq

∆p∆q

in the function field of X0(pq)C∞ is µ(p, q).

From now on we assume that n = pq is a product of two distinct primes.
In this case, X0(n)F has 4 cusps, which in the notation of Lemma 2.14 are
[∞], [1], [p], [q]. Let c1, cp, cq ∈ J(F ) be the classes of divisors [1] − [∞],
[p]−[∞], and [q]−[∞], respectively. To simplify the notation, we put C := C(pq).
The cuspidal divisor group C is generated by c1, cp, and cq.

Proposition 6.7. The order of c1 and cq is divisible by
{

(|p|−1)(|q|+1)
q−1 if deg(p) is odd and deg(q) is even,

(|p|−1)(|q|+1)
q2−1 otherwise.

Proof. We use the notation in the proof of Proposition 5.4. Let ℘p : J(Fp) →
Φp be the canonical specialization map. This map can be explicitly described
as follows. Let D =

∑
i niPi be a degree-0 divisor, where all Pi ∈ X(Fp).

Denote by D also the linear equivalence class of D in J(Fp). Since X and X̃

are proper, X(Fp) = X(Op) = X̃(Op). Since X̃ is regular, each Pi specializes

to a unique irreducible component c(Pi) of X̃k. Then ℘p(D) is the image

of
∑

i nic(Pi) ∈ B0(X̃k) in Φp. By Theorem 4.2, the cusps reduce to distinct
points in the smooth locus ofXk. The Atkin-Lehner involutionWp interchanges
the two irreducible components Z and Z ′ of Xk. Since Wp([∞]) = [q], the
reductions of [∞] and [q] lie on distinct components. On the other hand,
Wq acts on Xk by acting on each component Z and Z ′ separately, without
interchanging them. Since Wq([∞]) = [p], the reductions of [∞] and [p] lie on
the same component of Xk. Let Z ′ be the component containing [∞] and [p].
Let z be the image of Z−Z ′ in Φp. Then ℘p(c1) = ℘p(cq) = z and ℘p(cp) = 0.
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By Theorem 4.1 in [41], Φp/〈z〉 ∼= Z/(q + 1)Z. Now the claim follows from
Theorem 5.3. �

Remark 6.8. Suppose n = pm, with p prime not dividing m. Let C(n)(F ) denote
the F -rational cuspidal subgroup of J0(n). Generalizing the argument in the
proof of Proposition 6.7 and using Theorem 5.3, it is not hard to show that the
exponent of the group Φp/℘p(C(n)(F )) divides (q + 1). In particular, the map

℘p : C(n)(F )ℓ → (Φp)ℓ

is surjective for ℓ ∤ (q + 1).

The orders of ∆ at the cusps are known (cf. [14, (3.10)]):

ord[∞]∆ = 1, ord[1]∆ = |p||q|, ord[p]∆ = |p|, ord[q]∆ = |q|.

Using the action of the Aktin-Lehner involutions on the cusps (Lemma 2.14)
and on the functions ∆, ∆p, and ∆pq, one obtains the divisors of the following
functions on X0(n)C∞ (cf. [41]):

div(∆/∆p) = (|p| − 1)
(
|q|([1]− [∞])− |q|([p]− [∞]) + ([q]− [∞])

)
,

div(∆/∆q) = (|q| − 1)
(
|p|([1]− [∞]) + ([p]− [∞])− |p|([q]− [∞])

)
,

div(∆/∆pq) = (|pq| − 1)([1]− [∞]) + (|q| − |p|)([p]− [∞])+

+ (|p| − |q|)([q]− [∞]).

Hence

div

(
∆∆pq

∆p∆q

)
= (|p| − 1)(|q| − 1)

(
[∞] + [1]− [p]− [q]

)
,(6.1)

div

(
∆∆q

∆p∆pq

)
= (|p| − 1)(|q|+ 1)

(
[∞] + [1]− [p] + [q]

)
,(6.2)

div

(
∆∆p

∆q∆pq

)
= (|p|+ 1)(|q| − 1)

(
[∞] + [1] + [p]− [q]

)
.(6.3)

From these equations we get:

Lemma 6.9.

0 = (|p|2 − 1)(|q|2 − 1)c1 = (|p|2 − 1)(|q| − 1)cp = (|p| − 1)(|q|2 − 1)cq.

In particular, the order of C is not divisible by p.

Let

c(−,−) := c1 − cp − cq, c(−,+) := c1 − cp + cq, c(+,−) := c1 + cp − cq.
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The subgroup C′ of C generated by c(−,−), c(−,+), and c(+,−) has index 1, 2, or
4. Set

ǫ(p, q) :=





q − 1, if q is even, deg p is odd and deg q is even,

2(q − 1), if q is odd, deg p is odd, and deg q is even,

q2 − 1, if (i) deg p and deg q are both odd or

(ii) q is even and deg p is even,

2(q2 − 1), otherwise,

and

N(−,−) :=
(|p| − 1)(|q| − 1)

µ(p, q)
,

N(−,+) :=
(|p| − 1)(|q|+ 1)

ǫ(p, q)
, N(+,−) :=

(|p|+ 1)(|q| − 1)

ǫ(q, p)
.

Proposition 6.10. The orders of c(−,−), c(−,+), and c(+,−) are N(−,−),
N(−,+), and N(+,−), respectively. The group C′ is isomorphic to

Z

N(−,−)Z
× Z

N(−,+)Z
× Z

N(+,−)Z
.

Proof. Lemma 6.6 and Equation (6.1) tell us immediately that the order of

c(−,−) is N(−,−). In Remark 6.4, we have constructed ǫ(p, q)-th root of
∆∆q

∆p∆pq

in the function field of X0(pq)C∞ . Therefore Equation (6.2) and (6.3) imply
that

N(−,+)c(−,+) = N(+,−)c(+,−) = 0.

Recall from the proof of Proposition 6.7 that ℘p(c1) = ℘p(cq) = z and
℘p(cp) = 0, where ℘p : J(Fp)→ Φp is the canonical specialization map. Then
℘p(c(−,+)) = 2z, and the order of c(−,+) must be divisible by N(−,+). There-
fore the order of c(−,+) is N(−,+), which is also the order of ℘p(c(−,+)). By
interchanging p and q we obtain that the order of c(+,−) is N(+,−). This proves
the first claim.
Now, suppose c = α1c(−,−)+α2c(−,+)+α3c(+,−) = 0 for α1, α2, α3 ∈ Z. Then
℘p(c) = α2℘p(c(−,+)) = 0, which implies that N(−,+) | α2. Similarly, we have
N(+,−) | α3. Hence c = α1c(−,−) = 0, and N(−,−) | α1. This implies the second
claim. �

When q is even, Lemma 6.9 implies that C = C′. Suppose q is odd. Note that
the quotient group C/C′ is generated by cp and cq, where 2cp ≡ 2cq ≡ 0 mod C′.
When deg(p) and deg(q) are both odd, we can find meromorphic functions ϕp

and ϕq on X0(pq)C∞ such that

div(ϕp) =
(|p|2 − 1)(|q| − 1)

(q − 1)(q2 − 1)
([p]− [∞]),

div(ϕq) =
(|p| − 1)(|q|2 − 1)

(q − 1)(q2 − 1)
([q]− [∞]).
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Indeed, let

ϕp(z) :=
Dq(z)

|p|−q

q2−1 ·Dq(pz)
|p|q−1

q2−1

(
Dpq(z) ·Dpq(Wpz)

) |p|−1
q−1

, ϕq(z) :=
Dp(z)

|q|−q

q2−1 ·Dp(qz)
|q|q−1

q2−1

(
Dpq(z) ·Dpq(Wqz)

) |q|−1
q−1

(Proposition 6.2 implies that ϕp and ϕq are Γ0(pq)-invariant.) We conclude
that the orders of cp and cq are odd, and therefore C = C′.
Suppose q is odd and deg(p) ·deg(q) is even. Then Proposition 6.7 tells us that
the order of cp and cq are both even. Thus from the canonical specialization
maps ℘p and ℘q, we have the following exact sequence:

0 −→ C′ −→ C −→ Z

2Z
× Z

2Z
−→ 0.

Since 2cp = c(+,−) − c(−,−) and 2cq = c(−,+) − c(−,−), the order of cp is 2 ·
lcm(N(−,−), N(+,−)), and the order of cq is 2 · lcm(N(−,−), N(−,+)). From the
above discussion, we finally conclude that:

Theorem 6.11.

(1) The order of cp is (|p|2−1)(|q|−1)
(q−1)(q2−1) and the order of cq is (|p|−1)(|q|2−1)

(q−1)(q2−1) .

(2) The odd part of C is isomorphic to

Z

Nodd
(−,−)Z

× Z

Nodd
(−,+)Z

× Z

Nodd
(+,−)Z

,

where Nodd is the odd part of a positive integer N .
(3) When q is even or q · deg(p) · deg(q) is odd, we have C = C′.
(4) Suppose q is odd and deg(p) · deg(q) is even. Let C2 (resp. C′2) be the

2-primary part of C (resp. C′). Let r1, r2, r3 ∈ Z≥0 with r1 ≥ r2 ≥ r3
such that

C′2 ∼= Z/2r1Z× Z/2r2Z× Z/2r3Z.

Then

C2 ∼= Z/2r1+1Z× Z/2r2+1Z× Z/2r3Z.

Example 6.12. If q is even, then C′(xy) = C(xy) ∼= Z/(q+ 1)Z×Z/(q2 + 1)Z.
If q is odd, then C′(xy) ∼= Z

q+1
2 Z
× Z

q2+1
2 Z

and C(xy) ∼= Z/(q+1)Z×Z/(q2+1)Z.

Example 6.13. Assume deg(p) = deg(q) = 2. If q is even, then

C′(pq) = C(pq) ∼= Z

(q2 + 1)Z
× Z

(q + 1)(q2 + 1)Z
.

If q is odd,

C′(pq) ∼= Z

(q + 1)Z
× Z

q2+1
2 Z

× Z
q2+1
2 Z

,

C(pq) ∼= Z

(q2 + 1)Z
× Z

(q + 1)(q2 + 1)Z
.
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7. Rational torsion subgroup

7.1. Main theorem. Let n✁A be a non-zero ideal. To simplify the notation
in this section we denote J = J0(n). Let J denote the Néron model of J over
P1
Fq
. Let T (n) the torsion subgroup of J(F ).

Lemma 7.1. Let ℓ be a prime not equal to p. Then T (n)ℓ is annihilated by
the Eisenstein ideal E(n), i.e., (Tp − |p| − 1)P = 0 for every prime ideal p not
dividing n and P ∈ T (n)ℓ.
Proof. It follows from Theorem 4.2 that J has good reduction at p ∤ n. By
the Néron mapping property, T (n)ℓ extends to an étale subgroup scheme of
J . This implies that there is a canonical injective homomorphism T (n)ℓ →֒
JFp

(Fp). The action of T(n) on J canonically extends to an action on J .
Since the reduction map commutes with the action of T(n), it is enough to
show that (Tp− |p|− 1) annihilates T (n)ℓ over Fp. Let Frobp be the Frobenius
endomorphism of JFp

. The Hecke operator Tp satisfies the Eichler-Shimura
relation:

Frob2p − Tp · Frobp + |p| = 0.

Since Frobp acts trivially on T (n)ℓ, the claim follows. �

Lemma 7.2. Suppose ℓ is a prime not dividing q(q − 1). There is a natural
injective homomorphism T (n)ℓ →֒ E00(n,Z/ℓrZ) for any r ∈ Z≥0 with ℓr ≥
#(Φ∞,ℓ).

Proof. Since J has split toric reduction at ∞, J 0
F∞

(F∞) ∼=
∏g

i=1 F
×
q , where

g = dim(J). Under the assumption that ℓ does not divide q(q − 1), we see
that T (n)ℓ has trivial intersection with J 0

F∞
, so the canonical specialization

T (n)ℓ → (Φ∞)ℓ is injective. Since this map is T(n)-equivariant, by Lemma 7.1
we get an injection T (n)ℓ → (Φ∞)ℓ[E]. Fix some r ∈ Z≥0 with ℓr · (Φ∞)ℓ =
0. Multiplying the sequence in Theorem 5.5 by ℓr and applying the snake
lemma, we get an injection (Φ∞)ℓ →֒ H00(n,Z/ℓ

rZ). Since this map is again
T(n)-equivariant, restricting to the kernels of E(n), we get (Φ∞)ℓ[E(n)] →֒
E00(n,Z/ℓrZ). Therefore, T (n)ℓ →֒ E00(n,Z/ℓrZ) as was required to show. �

Theorem 7.3. Suppose n = pq is a product of two distinct primes p and q. Let
sp,q = gcd(|p|+1, |q|+1). If ℓ does not divide q(q−1)sp,q, then C(n)ℓ = T (n)ℓ.
Proof. First of all, since n is square-free, C(n) is rational over F , so C(n)ℓ ⊆
T (n)ℓ; see Theorem 6.1. Next, note that ℓ is odd by our assumption, so by
Proposition 6.10

C(n)ℓ = C(n)oddℓ
∼= Z/ℓr(−,−)Z× Z/ℓr(−,+)Z× Z/ℓr(+,−)Z,

where r(±,±) := ordℓ(N(±,±)). Since ℓ is coprime to q(q − 1)sp,q, Theorem 3.9
and Lemma 3.10 give the inclusion

E00(n,Z/ℓrZ) = E ′00(n,Z/ℓrZ)
⊆ E ′0(n,Z/ℓrZ) ∼= Z/ℓr(−,−)Z× Z/ℓr(−,+)Z× Z/ℓr(+,−)Z.
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Finally, by Lemma 7.2 we have an injection C(n)ℓ →֒ T (n)ℓ →֒ E00(n,Z/ℓrZ).
Comparing the orders of these groups, we conclude that

C(n)ℓ = T (n)ℓ = E00(n,Z/ℓrZ) = E ′0(n,Z/ℓrZ).
�

Remark 7.4. The previous proof shows that E00(pq,Z/ℓrZ) = E ′0(pq,Z/ℓrZ).
A generalization of this argument gives the equality E00(pq, R) = E ′0(pq, R) for
any coefficient ring in which q − 1 and sp,q are invertible.

Corollary 7.5. If ℓ does not divide q(|p|2 − 1)(|q|2 − 1), then T (pq)ℓ = 0.

Lemma 7.6. Assume n = mp is square-free, p is prime, and deg(m) ≤ 2. Then
T (n)p = 0.

Proof. If deg(m) ≤ 2, then X0(m)Fp
∼= P1

Fp
. It follows from Theorem 5.1 and

[3, p. 246] that J 0
Fp

is a torus. Since J has toric reduction at p, the p-primary

torsion subgroup T (n)p injects into Φp; see Lemma 7.13 in [38]. Finally, as is
easy to see from Theorem 5.3, if n is square-free, the order of Φp is coprime to
p. Thus, T (n)p = 0. �

7.2. Special case. Here we focus on the case n = xy and prove that C(n) =
T (n). To simplify the notation, let C := C(n) and T := T (n). By Theorem 7.3
and Lemma 7.6, we know that Cℓ = Tℓ for any ℓ ∤ (q − 1). Let

N = (q + 1)(q2 + 1).

By Corollary 3.18, T(xy)/E(xy) ∼= Z/NZ, so N ∈ E(xy). On the other hand,
E(xy) annihilates Tℓ for ℓ 6= p. Therefore, the exponent of Tℓ divides N . Since
gcd(q− 1, N) divides 4, Tℓ = 0 when ℓ | (q− 1) is an odd prime. Therefore, we
are reduced to showing that C2 = T2 in the case when q is odd. To prove this
we will use the fact that X0(xy)F is hyperelliptic.
Let C be a hyperelliptic curve of genus g over a field F of characteristic not equal
to 2. Let B ⊂ C(F̄ ) be the set of fixed points of the hyperelliptic involution of
C. The cardinality of B is 2g + 2. Let J be the Jacobian variety of C. Let G
be the set of subsets of even cardinality of B modulo the equivalence relation
defined by S1 ∼ S2 if S1 = S2 or S1 = B − S2 (= the complement of S2).
Denote the equivalence class of S ⊂ B by [S]. Define a binary operation on G
by

[S1] ◦ [S2] = [(S1 ∪ S2)− (S1 ∩ S2)].

Then G is an abelian group isomorphic to (Z/2Z)2g (the identity is [∅]). There
is an obvious action of the absolute Galois group GF on G, induced from the
action on B.

Theorem 7.7. There is a canonical isomorphism J [2] ∼= G of Galois modules.

Proof. Follows from Lemma 2.4 in [36], page 3.32. �
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Now let F = Fq(T ) with q odd. Let f(T ) be a monic square-free polynomial
of degree 3. Let n be the ideal in A generated by f(T ). The Drinfeld modular
curve X0(n)F is hyperelliptic with the Atkin-Lehner involution Wn being the
hyperelliptic involution; see [49]. Let e ∈ F×

q be a non-square. Denote K1 =

F (
√
f(T )), K2 = F (

√
ef(T )), O1 = A[

√
f(T )], O2 = A[

√
ef(T )]. Note that

since ∞ does not split in Ki/F , Oi is a maximal order in Ki (i = 1, 2).

Theorem 7.8. The fixed points of Wn on X0(n)F correspond to the isomor-
phism classes of Drinfeld modules with complex multiplication by O1 or O2.

Proof. See (3.5) in [10]. �

Theorem 7.9. Let K be an imaginary quadratic extension of F , i.e., ∞ does
not split in K/F . Let O be the integral closure of A in K. Let H be the Hilbert
class field of K, i.e., the maximal abelian unramified extension of K in which
∞ splits completely.

(1) Gal(H/K) ∼= Pic(O).
(2) There is a unique irreducible monic polynomial HK(z) ∈ A[z] whose

roots are the j-invariants of various non-isomorphic rank-2 Drinfeld
A-modules over C∞ with CM by O.

(3) The degree of HK(z) is the class number of O, and H is its splitting
field.

(4) The field F ′ = F [z]/HK(z) is linearly disjoint from K, and H is the
composition of F ′ and K.

Proof. Follows from Corollary 2.5 in [8]. �

Denote Hi(z) = HKi
(z), Fi = F [z]/Hi(z), hi = #Pic(Oi), and Hi the Hilbert

class field of Ki (i = 1, 2). Let B be the set of fixed points of Wn on X0(n).
Since the action of GF on X0(n)(F̄ ) commutes with the action ofWn, the set B
is stable under the action of GF . The previous two theorems imply that B can
be identified with the set of roots of the polynomial H1(z)H2(z) compatibly
with the action of GF . Let J := J0(n).

Lemma 7.10. If f(T ) is irreducible, then J(F )[2] = 0.

Proof. Let X be the smooth, projective curve over Fq with function field K1.
It is well-known that there is an exact sequence

0→ JacX(Fq)→ Pic(O1)→ Z/d∞Z→ 0,

where d∞ is the degree of ∞ on X . Since f(T ) has degree 3, ∞ ramifies in
K1/F , so d∞ = 1 and X is isomorphic to the elliptic curve E1 defined by the
equation Y 2 = f(T ). Thus, Pic(O1) ∼= E1(Fq). Similarly, Pic(O2) ∼= E2(Fq),
where E2 is defined by Y 2 = ef(T ). In particular,

h1 + h2 = #E1(Fq) + #E2(Fq) = 2q + 2.

The last equality follows from the observation that for any α ∈ Fq either
f(α) = 0, in which case we get one Fq-rational point on both E1 and E2,
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or exactly one of f(α), ef(α) is a square in F×
q , in which case we get two

Fq-rational on one of the elliptic curves and no points on the other.
Now suppose f(T ) is irreducible. Then f(T ) has no Fq-rational roots, and
therefore E1(Fq)[2] = O. This implies that h1 and h2 are both odd. Denote
the set of roots of H1 (resp. H2) by B1 (resp. B2), so that B = B1 ∪B2. Note
that B1 and B2 are stable under the action of GF , but have no non-trivial GF

stable subsets. Since #B1 and #B2 are odd, by Mumford’s theorem the only
possibility for having an F -rational 2-torsion on J is to have a subset S ⊂ B
of order q + 1 such that σS = S or σS = B − S for any σ ∈ GF . Denote
S1 = S ∩ B1. Without loss of generality we can assume that S1 6= ∅, B1.
We must have σS1 = S1 or σS1 = B1 − S1 for any σ ∈ GF . But #S1 and
#(B1 − S1) have different parity, and therefore σS1 = S1 for any σ ∈ GF ,
which is a contradiction. �

Remark 7.11. Lemma 7.10 also follows from Theorem 1.2 in [38]. Indeed, if
f(T ) is irreducible, then according to [38], J(F )tor ∼= Z/(q2 + q + 1)Z, so
J(F )[2] = 0.

Lemma 7.12. If f(T ) decomposes into a product f1(T )f2(T ), where f2(T ) is
irreducible of degree 2, then J(F )[2] ∼= Z/2Z⊕ Z/2Z.

Proof. We retain the notation of the proof of Lemma 7.10. The first part of
the proof of that lemma implies that Pic(Oi)[2] ∼= Z/2Z, since both elliptic
curves E1 and E2 have exactly one non-trivial Fq-rational 2-torsion point cor-
responding to (α, 0), where f1(α) = 0. In particular, h1 and h2 are even, and
Hi/Ki has a unique quadratic subextension. We conclude that [B1] = [B2] is
F -rational.
The other F -rational 2-torsion points on J are in bijection with the disjoint
decompositions B1 = R1 ∪ R2 and B2 = R′

1 ∪ R′
2 such that #R1 = #R2,

#R′
1 = #R′

2, and for any σ ∈ GF either

σR1 = R1 and σR′
1 = R′

1

or
σR1 = R2 and σR′

1 = R′
2.

In that case, P = [R1 ∪ R′
1] = [R2 ∪ R′

2] and Q = [R1 ∪ R′
2] = [R2 ∪ R′

1] give
two distinct non-trivial 2-torsion points on J which are rational over F . Note
that the subgroup generated by P,Q and [B1] is isomorphic to Z/2Z⊕ Z/2Z.
On the other hand, such disjoint decompositions are in bijection with the qua-
dratic extensions L of F which simultaneously embed into both F1 and F2.
Note that over a quadratic subextension L of F1/F the polynomial H1 decom-
poses into a product G1(z)G2(z) of two irreducible polynomials in L[z] of the
same degree. In that case, R1 and R2 are the sets of roots of G1 and G2,
respectively. Now if there are two distinct quadratic subextensions L and L′

of F1, then H1 = F1K1 also contains two distinct quadratic subextensions. As
we indicated above, this is not the case, hence there is at most one L.
Consider L = F (

√
f2). Since f2 is monic of degree 2, ∞ splits in L/F . Since

the only place that ramifies in L/F is the place corresponding to f2, which
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also ramifies in K/F with the same ramification index, LK is a quadratic
subextension of H1/K. Hence the composition LF1 is a subfield of H1, and if
L and F1 are linearly disjoint over F , then by comparing the degrees we see
that LF1 = H1. Since H1(z) has even degree, F1 embeds into the completion
F∞. The same is true for L. Thus, if LF1 = H1, then H1 embeds into F∞,
which is not the case as K/F is imaginary quadratic. We conclude that L
and F1 cannot be linearly disjoint, and therefore L embeds into F1. The same
argument works also with F2, and this finishes the proof of the lemma. �

Theorem 7.13. C = T ∼= Z/(q + 1)Z× Z/(q2 + 1)Z.

Proof. As we already discussed, it is enough to show that C2 = T2 when q is
odd. By Example 6.12,

C = 〈cx〉 ⊕ 〈cy〉 ∼= Z/(q + 1)Z⊕ Z/(q2 + 1)Z,

and c1 = cx + cy. The component group Φ∞ (for the case n = xy) and the
canonical specialization map ℘∞ : C → Φ∞ are computed in [41, Thm. 5.5]:

Φ∞ = Φ∞(F∞) ∼= Z/NZ, ℘∞(cx) = q2 + 1, ℘∞(cy) = −q(q + 1).

In particular, if we denote C0 = ker(℘∞ : C → Φ∞), then C0 ∼= Z/2Z when
q is odd. On the other hand, by Lemma 7.12, T [2] ∼= Z/2Z × Z/2Z. Hence
C[2] = T [2].
Let T 0 := ker(℘∞ : T → Φ∞). As we discussed at the beginning of this section,
T 0 is a subgroup of (Z/(q − 1)Z)⊕q annihilated by N . We have

gcd((q − 1), N) =

{
2 if q ≡ 3 mod 4

4 if q ≡ 1 mod 4.

Assume q ≡ 3 mod 4. Then T 0 ⊂ T [2] = C[2]. This implies T 0 = C0 ∼= Z/2Z,
and is generated by

c :=
(q + 1)

2
cx +

(q2 + 1)

2
cy.

In this case ℘∞ is injective on 〈c1〉, and ℘∞(c1) generates ℘∞(C). If T2 6= C2,
then there is an element t ∈ T such that 2℘∞(t) = ℘∞(c1). Thus, 2t = c1 + c
or 2t = c1. We know from the proof of Proposition 6.7 that ℘y(cy) = 0, and
℘y(cx) generates Φy(Fy) ∼= Φy

∼= Z/(q + 1)Z. If 2t = c1, then 2℘y(t) generates
Φy. Since 2 divides q + 1, the multiplication by 2 map is not surjective on Φy,

so we get a contradiction. If 2t = c1 + c, then 2℘y(t) = ℘y(cx) +
(q+1)

2 ℘y(cx),
which is still a generator of Φy, and we again arrive at a contradiction.
Now assume q ≡ 1 mod 4. In this case

C2 ∼= (Z/(q + 1)Z)2 × (Z/(q2 + 1)Z)2 = Z/2Z× Z/2Z ∼= C[2]
is generated by q+1

2 cx and q2+1
2 cy. If T 6= C, then there is t ∈ T of order 4

such that 2t ∈ C[2]. If 2t = c or 2t = q+1
2 cx, then applying ℘y we see that

2℘y(t) 6= 0. On the other hand, ℘y(t) ∈ (Φy)2 ∼= Z/2Z, so 2℘y(t) = 0, which is

a contradiction. Finally, suppose 2t = q2+1
2 cy, which implies 2℘x(t) 6= 0. Since

t is a rational point, ℘x(t) ∈ Φx(Fx)2. On the other hand, by Proposition 5.4,
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Φx(Fx)2 ∼= (Z/(q2+1)Z)2 ∼= Z/2Z, which again leads to a contradiction. (Note
that Φx

∼= Z/(q+1)(q2+1)Z, so here we cannot just rely on Theorem 5.3.) �

Corollary 7.14. J(F ) ∼= Z/(q + 1)Z × Z/(q2 + 1)Z. For any ℓ 6= p, the
ℓ-primary part of the Tate-Shafarevich group X(J) is trivial.

Proof. Denote by L(J, s) the L-function of J ; see [26] for the definition. Let
f ∈ H0(n,C) be an eigenform for T(n), normalized by f∗(1) = 1. The L-
function of f is the sum

L(f, s) =
∑

m pos. div.

f∗(m)q−s·deg(m)

over all positive divisors on P1
Fq
; here s ∈ C. Drinfeld’s fundamental result

[6, Thm. 2] implies that L(J, s) =
∏

f L(f, s), where the product is over nor-

malized T(xy)-eigenforms in H0(xy,C). It is known that L(f, s) is a poly-
nomial in q−s of degree deg(n) − 3; cf. [54, p. 227]. Thus, L(J, s) = 1.
From the main theorem in [26] we conclude that J(F ) = T , X(J) is a finite
group, and the Birch and Swinnerton-Dyer conjecture holds for J . The claim
J(F ) ∼= Z/(q + 1)Z × Z/(q2 + 1)Z follows from Theorem 7.13. The ℓ-primary
part of the Birch and Swinnerton-Dyer formula becomes the equality

1 =
(#X(J)ℓ)(#Φx(Fx)ℓ)(#Φy(Fy)ℓ)(#Φ∞(F∞)ℓ)

(#Tℓ)2
.

We know all entries of this formula from Theorem 7.13 and its proof, except
#X(J)ℓ. This implies that X(J)ℓ = 1. �

8. Kernel of the Eisenstein ideal

8.1. Shimura subgroup. Let n ✁ A be a non-zero ideal. Consider the sub-
group Γ1(n) of GL2(A) consisting of matrices

Γ1(n) =

{(
a b
c d

)
∈ GL2(A)

∣∣∣∣ a ≡ 1 mod n, c ≡ 0 mod n

}
.

The quotient Γ1(n) \Ω is the rigid-analytic space associated to a smooth affine
curve Y1(n)F∞ over F∞; cf. (3.1). This curve is the modular curve of isomor-
phism classes of pairs (φ, P ), where φ is a Drinfeld A-module of rank 2 and
P ∈ φ[n] is an element of exact order n. Let Y1(n)F be the canonical model of
Y1(n)F∞ over F , and X1(n)F be the smooth projective curve containing Y1(n)F
as a Zariski open subvariety. Denote by J1(n) the Jacobian variety of X1(n)F .
To simplify the notation, in this section we denote Γ := Γ0(n) and ∆ :=

Γ1(n). The map w : Γ → (A/n)× given by

(
a b
c d

)
7→ a mod n is a surjective

homomorphism whose kernel is ∆. Hence ∆ is a normal subgroup of Γ and
Γ/∆ ∼= (A/n)×. One deduces from the action of Γ on Ω ∪ P1(F ) an action of
Γ on X1(n)C∞ . The group ∆ and the scalar matrices act trivially on X1(n)C∞ ,
hence we have an action of the group (A/n)×/F×

q onX1(n)C∞ . This implies that
there is a natural morphism X1(n)C∞ → X0(n)C∞ which is a Galois covering
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with Galois group (A/n)×/F×
q . This covering is in fact defined over F , as in

terms of the moduli problems it is induced by (φ, P ) 7→ (φ, 〈P 〉), where 〈P 〉 is
the order-n cyclic subgroup of φ generated by P . By the Picard functoriality
we get a homomorphism π : J0(n) → J1(n) defined over F , whose kernel S(n)
is the Shimura subgroup of J0(n).

Definition 8.1. Let Q be the subgroup of (A/n)× generated by the elements
which satisfy a2 − ta + κ = 0 mod n for some t ∈ Fq and κ ∈ F×

q . Denote

U = (A/n)×/Q.

Theorem 8.2. The Shimura subgroup S(n), as a group scheme over F∞, is
canonically isomorphic to the Cartier dual U∗ of U viewed as a constant group
scheme.

Proof. Denote by Γab the abelianization of Γ and let Γ := Γab/(Γab)tor be the
maximal abelian torsion-free quotient of Γ. The inclusion ∆ →֒ Γ induces a
homomorphism I : ∆→ Γ (which is not necessarily injective). There is also a
homomorphism V : Γ → ∆, the transfer map, such that I ◦ V : Γ → Γ is the
multiplication by [Γ : ∆]/(q − 1); see [18, p. 71].
First, we note that the homomorphism V : Γ→ ∆ is injective with torsion-free
cokernel. Indeed, by [18, p. 72], there is a commutative diagram

Γ
jΓ

//

V

��

H0(T ,Z)Γ

��

∆
j∆

// H0(T ,Z)∆

where the right vertical map is the natural injection. This last homomorphism
obviously has torsion-free cokernel. Since by [17] jΓ and j∆ are isomorphisms,
the claim follows.
Next, by the results in Sections 6 and 7 of [18], there is a commutative diagram

0 // Γ //

V

��

Hom(Γ,C×
∞) //

I∗

��

J0(n) //

π

��

0

0 // ∆ // Hom(∆,C×
∞) // J1(n) // 0,

where the top row is the uniformization in (4.3), the bottom row is a similar
uniformization for J1(n) constructed in [18] for an arbitrary congruence group,
and the middle vertical map I∗ is the dual of I : ∆ → Γ. This diagram gives
an exact sequence of group schemes

0→ (Γ/I∆)∗ → S(n)→ ∆/V Γ.

Since there are no non-trivial maps from an abelian variety to a discrete group,
S(n) is finite. On the other hand, by the previous paragraph, ∆/V Γ is torsion-
free, so

S(n) ∼= (Γ/I∆)∗.
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Denote by Γc the commutator subgroup of Γ. The fact that Γ/∆ is abelian
implies Γc ⊂ ∆. Hence Γ/∆ ∼= Γab/(∆/Γc). It follows from Corollary 1 on
page 55 of [50] that (Γab)tor is generated by the images of finite order elements
of Γ in Γab. Since Γ is the quotient of Γab by the torsion subgroup (Γab)tor, we
conclude that Γ/I∆ is the quotient of Γ/∆ by the subgroup generated by the
images of finite order elements of Γ.
An element γ ∈ GL2(A) has finite order if and only if Tr(γ) ∈ Fq. Therefore,
if γ ∈ Γ has finite order then w(γ) satisfies the equation a2 − ta + κ = 0,
where t = Tr(γ) ∈ Fq and κ = det(γ) ∈ F×

q . Conversely, suppose ā ∈ (A/n)×

satisfies ā2 − tā+ κ = 0 for some t ∈ Fq and κ ∈ F×
q . Fix some a ∈ A reducing

to ā modulo n. Since a(t − a) ≡ κ (mod n), there exists c ∈ A such that

a(t − a) = κ+ cn. The matrix γ =

(
a 1
cn t− a

)
has determinant κ and trace

t. It is clear that γ ∈ Γ is a torsion element, and w(γ) = ā. We conclude that
Γ/I∆ ∼= (A/n)×/Q. �

Remark 8.3. The previous theorem is the function field analogue of Theorem
1 in [30].

Lemma 8.4. Assume n is square-free, so that the order of (A/n)× is not divisible
by p and S(n) is étale over F∞. The Shimura subgroup S(n) extends to a finite
flat subgroup scheme of J 0

O∞
.

Proof. From the proof of Theorem 8.2, S(n) is canonically a subgroup of
Hom(Γ,C×

∞). It is easy to see that S(n) actually lies in Hom(Γ, (Onr
∞)×). On

the other hand, as is implicit in the proof of Corollary 2.11 in [11], there is a
canonical isomorphism J 0(Onr

∞) ∼= Hom(Γ, (Onr
∞)×). �

Proposition 8.5. Assume n is square-free. The Shimura subgroup S(n), as a
group scheme over F , is an étale group scheme whose Cartier dual is canoni-
cally isomorphic to U viewed as a constant group scheme. The endomorphisms
Tp − |p| − 1 and Wn + 1 of J0(n) annihilate S(n); here p✁A is any prime not
dividing n.

Proof. The covering π : X1(n)F → X0(n)F can ramify only at the elliptic
points and the cusps of X0(n)F . (By definition, an elliptic point on X0(n)C∞ is
the image of z ∈ Ω whose stabilizer in GL2(A) is strictly larger than F×

q .) The
proof of Theorem 8.2 shows that U is the Galois group of the maximal abelian
unramified covering XF → X0(n)F through which π factorizes. Now [30, Prop.
6] implies that S(n) as a group scheme over F is isomorphic to Hom(U, F̄×).
The Jacobian J0(n) has good reduction at p. Since S(n) has order coprime
to p and is unramified at p, the reduction map injects S(n) into J0(n)(Fp).
Let Frobp be the Frobenius endomorphism of J0(n)Fp

. The Hecke operator Tp
satisfies the Eichler-Shimura relation:

Frob2p − Tp · Frobp + |p| = 0.

Since S(n)∗ is constant, Frobp acts on S(n) by multiplication by |p|. Therefore,
the endomorphisms |p|(Tp− |p| − 1) annihilates S(n). Since the reduction map
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commutes with the action of Hecke algebra and the multiplication by |p| is an
automorphism of S(n), we conclude that Tp − |p| − 1 annihilates S(n).
Note that for

(
a b
c d

)
∈ Γ we have

(
0 −1
n 0

)(
a b
c d

)(
0 1/n
−1 0

)
=

(
d −c/n
−bn a

)
.

Since d, up to an element of F×
q , is the inverse of a modulo n, this calculation

shows that Wn acts on the group (Γ/∆)/F×
q by u 7→ u−1, so it acts as −1 on

S(n). �

Theorem 8.6. Assume n is square-free, and let n = p1 · · · ps be its prime
decomposition. As an abelian group, S(n) is isomorphic to




∏s
i=1

(
Z
/

|pi|−1
q−1 Z

)
, if some pi has odd degree

∏s
i=1

(
Z
/

|pi|−1
q2−1 Z

)
, if q is even and all pi have even degrees

∏s
i=1

(
Z
/

2(|pi|−1)
q2−1 Z

)
/diag (Z/2Z) , if q is odd and all pi have even degrees

where diag : Z/2Z→∏s
i=1

(
Z
/

2(|pi|−1)
q2−1 Z

)
is the diagonal embedding.

Proof. First, we claim that the image of Q under the isomorphism (A/n)× ∼=∏s
i=1 F

×
pi

given by

a 7→ (a mod p1, · · · , a mod ps)

contains the subgroup
∏s

i=1 F
×
q . Indeed, let α ∈ F×

q be arbitrary, and consider
(1, . . . , α, . . . , 1) with α in the ith position. This element is in the image of Q
since a ∈ (A/n)× mapping to it satisfies the quadratic equation (x−α)(x−1) =
0 modulo n.
Suppose a ∈ Q is a zero of f(x) := x2 − tx + κ. Then a satisfies the same
equation modulo pi. If deg(pi) is odd, then f(x) must be reducible over Fq.
This implies that the image of a in F×

pi
lies in the subfield Fq. On the other hand,

since a mod pj (1 ≤ j ≤ s) satisfies the same reducible quadratic equation, the
image of a in Fpj

also lies in its subfield Fq, and we conclude that Q ∼=
∏s

i=1 F
×
q .

Now suppose all pi’s have even degrees. Let α ∈ F×
q2 be arbitrary. The elements

(α, . . . , α) and (α, . . . , αq, . . . , α), with αq in the ith position (1 ≤ i ≤ s), are
in the image of Q. Indeed, a ∈ (A/n)× which maps to such an element satisfies
(x − α)(x − αq) = 0, and this polynomial has coefficients in Fq. Therefore,
(1, . . . , αq−1, . . . , 1) ∈ Q. Since αq+1 ∈ F×

q , we get that (1, . . . , α2, . . . , 1) ∈ Q.

Thus, diag(F×
q2 ) ·

∏s
i=1(F

×
q2)

2 is a subgroup of Q, where (F×
q2 )

2 = {α2 | α ∈ F×
q2}

and diag : F×
q2 →֒

∏s
i=1 F

×
pi

is the diagonal embedding. If f(x) is reducible, then

a ∈∏s
i=1 F

×
q . If f(x) is irreducible, then a = (αi1 , . . . , αis) with αi1 , . . . , αis ∈

{α, αq}, where α, αq are the roots of f(x). We can write

a = (αi1 , . . . , αi1) ·
(
1,
αi2

αi1

, . . . ,
αis

αi1

)
.
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The first element in this product is in diag(F×
q2) and the second is in∏s

i=1(F
×
q2)

2 since each αij/αi1 is either 1 or α±(q−1). We conclude that

diag(F×
q2) ·

∏s
i=1(F

×
q2)

2 = Q. Since S(n) is isomorphic to (A/n)×/Q, the claim

follows. �

Example 8.7. If p✁A is prime, then S(p) is cyclic of order |p|−1
q−1 (resp. |p|−1

q2−1 )

is deg(p) if odd (resp. even). This is also proved in [38] by a different method.

Example 8.8. S(xy) is cyclic of order q + 1.

Example 8.9. Assume p and q are two distinct primes of degree 2. Then
S(pq) ∼= Z/2Z (resp. 0) if q is odd (resp. even).

Definition 8.10. Let n ✁ A be a non-zero ideal and denote J = J0(n). The
kernel of the Eisenstein ideal J [E(n)] is the intersection of the kernels of all
elements of E(n) acting on J(F̄ ). Given a prime ℓ 6= p, the action of T(n) on
J induces an action on J [ℓn] (n ≥ 1) and the ℓ-divisible group Jℓ := lim

→
J [ℓn],

so one can also define Jℓ[E(n)]. From the proof of Theorem 6.1, we see that
J [E(n)] is a finite group scheme over F , as J [E(n)] ⊆ J [ηp] for any p ∤ n, where
ηp = Tp − |p| − 1. By Lemma 7.1 and Proposition 8.5, if n is square-free then
S(n)ℓ and C(n)ℓ are in Jℓ[E(n)].

Definition 8.11. We say that a group scheme H over the base S is µ-type
if it is finite, flat and its Cartier dual is a constant group scheme over S; H
is pure if it is the direct sum of a constant and µ-type group schemes; H is
admissible if it is finite, étale and has a filtration by groups schemes such that
the successive quotients are pure.

Lemma 8.12. Assume n = pq is a product of two distinct primes. Let sp,q =
gcd(|p|+1, |q|+1). If ℓ does not divide q(q−1)sp,q, then Jℓ[E(n)] is unramified
except possibly at p and q, and there is an exact sequence of group schemes over
F

0→ C(n)ℓ → Jℓ[E(n)]→Mℓ → 0,

where Mℓ is µ-type and contains S(n)ℓ.
Proof. Since C(n)ℓ is fixed by GF and is invariant under the action of T(n),
the quotient Mℓ := Jℓ[E(n)]/C(n)ℓ is naturally a T(n) × GF -module . From
the uniformization sequence (4.3) and the isomorphism (4.4), for any n ≥ 1 we
obtain the exact sequence of T(n)×GF∞ -modules

0→ D[ℓn]→ J [ℓn]→ H00(n,Z/ℓ
nZ)→ 0,

whereD := Hom(Γ,C×
∞). Considering the parts annihilated by E(n), we obtain

the exact sequence

0→ D[ℓn,E(n)]→ J [ℓn,E(n)]→ E00(n,Z/ℓnZ).
From the proof of Theorem 7.3 we know that if ℓ does not divide q(q−1)sp,q and
n is sufficiently large, then C(n)ℓ ⊆ J [ℓn,E(n)] and C(n)ℓ maps isomorphically
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onto E00(n,Z/ℓnZ). Hence for n ≫ 0 the above sequence is exact also on the
right:

0→ D[ℓn,E(n)]→ J [ℓn,E(n)]→ C(n)ℓ → 0.

Since the map of T(n) × GF∞ -modules J [ℓn,E(n)] → C(n)ℓ has a retraction,
we get the splitting Jℓ[E(n)] ∼= Dℓ[E(n)] ⊕ C(n)ℓ over F∞. This shows that
Mℓ

∼= Dℓ[E(n)] is µ-type over F∞, and Jℓ[E(n)] is unramified at ∞. Since
S(n)ℓ ⊆ Dℓ[E(n)] (cf. Lemma 8.4), we see that S(n)ℓ is a subgroup scheme of
Mℓ.
By the Néron-Ogg-Shafarevich criterion Jℓ[E(n)] is unramified at all finite
places except possibly at p and q. Let l ✁ A be any prime not equal to p

or q. Since Tl acts on Jℓ[E(n)] by multiplication by |l|+1, the Eichler-Shimura
congruence relation implies that the action of Frobl on Jℓ[E(n)] satisfies the re-
lation (Frobl−1)(Frobl−|l|) = 0. Now one can use Mazur’s argument [33, Prop.
14.1] to show that Jℓ[E(n)] is admissible over U = P1

Fq
− p− q; cf. the proof of

Proposition 10.8 in [38]. Since the quotient map Jℓ[E(n)]→Mℓ is compatible
with the action of GF and T(n), Mℓ is also admissible over U = P1

Fq
− p − q.

On the other hand, Mℓ is µ-type over F∞, so all Jordan-Hölder components
of Mℓ over U must be isomorphic to µℓ. We say that l1, l2 is a pair of good
primes, if li 6= p, q, |li| − 1 is not divisible by ℓ, and the images of (l1, l1) and
(l2, l2) in (F×

p /(F
×
p )

ℓ × F×
q /(F

×
q )

ℓ)/F×
q generate this group; here (F×

p )
ℓ is the

subgroup of F×
p consisting of ℓth powers, and F×

q is embedded diagonally into

F×
p × F×

q . The Chebotarev density theorem shows that a pair of good primes
exists. The operator (Frobli − |li|)(Frobli − 1) annihilates Mℓ. On the other
hand, since the semi-simplification of Mℓ is isomorphic to (µℓ)

n for some n
and ℓ does not divide |li|−1, the operator Frobli−1 must be invertible onMℓ.
Therefore, Mℓ is annihilated by Frobli − |li|. This implies thatMℓ is µ-type
over Fli . Finally, one can argue as in Proposition 10.7 in [38] to conclude that
Mℓ is µ-type over F . �

Remark 8.13. When n = p is prime and ℓ does not divide q−1, then Jℓ[E(p)] =
C(p)ℓ⊕S(p)ℓ; see [38]. As we will see in the next section, for a composite level,
Mℓ can be larger than S(n)ℓ and the sequence in Lemma 8.12 need not split
over F .

8.2. Special case. Let p✁A be a prime of degree 3. Then

(1) The rational torsion subgroup T (p) of J0(p) is equal to the cuspidal
divisor group C(p) ∼= Z/(q2 + q + 1)Z;

(2) The maximal µ-type étale subgroup scheme of J0(p) is the Shimura
subgroup S(p) ∼= (Z/(q2 + q + 1)Z)∗;

(3) The kernel J [E(p)] is everywhere unramified and has order (q2+q+1)2.

Here (1) and (2) follow from the main results in [38], and (3) follows from [38]
and [40].
We proved that (see Theorem 7.13)

T (xy) = C(xy) ∼= Z/(q + 1)Z× Z/(q2 + 1)Z,

Documenta Mathematica 20 (2015) 551–629



The Eisenstein Ideal and Jacquet-Langlands Isogeny 607

so the analogue of (1) is true for n = xy, although C(xy) is not cyclic if q is odd.
Interestingly, even for small composite levels such as n = xy, the analogues of
(2) and (3) are no longer true. For simplicity, we will omit the level xy from
notation. First of all, Jℓ[E] can be ramified. To see this, let q = 2s with s odd,
x = T + 1, y = T 2 + T + 1. Consider the elliptic curve E over F given by the
Weierstrass equation

E : Y 2 + TXY + Y = X3 +X2 + T.

This curve embeds into J according to [41, Prop. 7.10]. There is an exact
sequence of GF -modules

0→ Z/5Z→ E[5]→ µ5 → 0.

The component group of E at y is trivial, so E[5] is ramified at y and the above
sequence does not split over F . On the other hand, from the Eichler-Shimura
congruence relations we see that E[5] ⊆ J5[E]. Thus, J5[E] is ramified at y.
Next, the Shimura subgroup S ∼= (Z/(q + 1)Z)∗ has smaller order than the
cuspidal divisor group, and S is not the maximal µ-type étale subgroup scheme
of J when q is odd. Indeed, C[2] ∼= Z/2Z× Z/2Z is µ-type but is not cyclic.
In the remainder of this section we will show that even though (2) and (3) fail
for the xy-level, these properties do not fail “too much”.

Proposition 8.14. Assume q is odd. Then S2 + C[2] ∼= S2 × Z/2Z is the
maximal 2-primary µ-type subgroup of J(F̄ ).

Proof. First, we show that the canonical specialization map ℘y : S → Φy is an
isomorphism. Since S and Φy have the same order, it is enough to show that
the induced morphism J0(xy)0Fy

→ J1(xy)0Fy
on the connected components of

the identity of the special fibres of the Néron models of J0(xy) and J1(xy) at
y is injective. Here we argue as in Proposition 11.9 in [33]. Let Gr0 be the
dual graph of X0(xy)Fy

; this graph has two vertices corresponding to the two

irreducible components of X0(xy)Fy
joined by q+1 edges corresponding to the

supersingular points. Let Gr1 be the dual graph of the special fibre of the model
of X1(xy) over Oy constructed in [51]. The underlying reduced subscheme
X1(xy)

red
Fy

has two irreducible components intersecting at the supersingular

points. Since the Jacobian J0(xy) has toric reduction at y, there is a canonical
isomorphism (cf. [3, p. 246])

J0(xy)0Fy

∼= H1(Gr0,Z)⊗Gm,Fy
.

Similarly, the toric part of J1(xy)0Fy
is canonically isomorphic to H1(Gr1,Z)⊗

Gm,Fy
. There is an obvious map Gr1 → Gr0 and our claim reduces to showing

that this map induces a surjection H1(Gr1,Z) → H1(Gr0,Z). This is clear
from the description of the graphs Gr0 and Gr1.
Let M2 be the maximal 2-primary µ-type subgroup of J(F̄ ). It is clear that
S2 + T [2] ⊆ M2 and M2[2] = T [2]. Similar to the notation in the proof
of Theorem 7.13, let M0

2 denote the intersection of M2 with Hom(Γ,C×
∞).
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...

ϕq

ϕ1

ϕ2

ϕq−1

Figure 5. (Γ0(xy) \T )0

Note that S2 ⊆ M0
2. Moreover, we must have S[2] = M0

2[2] since M0
2[2] ⊆

T 0[2] = C0[2] = S[2]. Thus, if S2 6= M0
2, then there exists P ∈ M0

2 such
that 2P generates S2 ∼= (Z/(q + 1)Z)∗2. Since ℘y : S → Φy is an isomorphism,
2℘y(P ) generates Z/(q + 1)Z. On the other hand, 2 divides q + 1, so we get a
contradiction. We conclude that there is an exact sequence

0→ S2 →M2 → Z/2nZ→ 0

for some n ≥ 1, where Z/2nZ is the image ofM2 in Φ∞
∼= Z/(q2 + 1)(q + 1)Z

(see Corollary 8.15). SinceM2[2] = T [2] ∼= Z/2Z× Z/2Z, the above sequence
splits as a sequence of abelian groups. Moreover, since S2 is GF -invariant
and M∗

2 is constant, the sequence splits as a sequence of F -groups schemes:
M2

∼= S2 ⊕ Z/2nZ. If q ≡ 3 (mod 4), then Z/2nZ is µ-type if and only if
n ≤ 1, which impliesM2 = S2+T [2]. If q ≡ 1 (mod 4) and n ≥ 2, then T = C
contains a point of order 4, which is a contradiction. �

The point of the previous proposition is that even though S2 is not the maximal
2-primary µ-type subgroup of J , it is not far from it. Next, we will show that
under a reasonable assumption Sℓ is the maximal ℓ-primary µ-type subgroup
of J for any odd ℓ 6= p, and the order of Jℓ[E] is (#Cℓ)2 for any ℓ 6= p, which is
of course very similar to (2) and (3).
We start by showing that Φ∞ is annihilated by E. This almost follows from
Theorem 5.5 in [41], since according to that theorem the canonical specializa-
tion map ℘∞ : C → Φ∞ is an isomorphism if q is even and has cokernel Z/2Z
if q is odd. On the other hand, ℘∞ is T-equivariant and C is annihilated by E.
Below we give an alternative direct argument which works for any characteristic
and does not use the cuspidal divisor group C.
Choose the cycles ϕ1, ..., ϕq as a basis of H1(Γ0(xy) \ T ,Z) ∼= H0(xy,Z); see
Figure 5. We assume that all these cycles are oriented counterclockwise. Let
ψ1, ..., ψq be the dual basis of Hom(H0(xy,Z),Z). The map ι in Theorem 5.5
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sends ϕ ∈ H0(xy,Z) to
q∑

i=1

(ϕ, ϕi)ψi, where for 1 ≤ j ≤ i ≤ q

(ϕi, ϕj) =





q + 2, if i = j = 1 or q,

2, if 1 < i = j < q,

−1, if j = i− 1,

0, otherwise.

This follows from [11, Thm. 2.8] and a calculation of the stabilizers of edges of
(Γ0(xy) \T )0 (see the proof of Proposition 2.21). Hence the component group
Φ∞ can be explicitly described as follows: It is the quotient of the free abelian
group

⊕q
i=1 Zψi by the relations

(q + 2)ψq − ψq−1 = 0,

−ψi+1 + 2ψi − ψi−1 = 0, for 1 ≤ i ≤ q − 1,

−ψ2 + (q + 2)ψ1 = 0.

From the last q − 1 relations we get

ψi =
(
(i− 1)q + i

)
ψ1, 1 ≤ i ≤ q.

On the other hand, by the first relation, ψq−1 = (q + 2)ψq = q2(q + 2)ψ1.
Therefore q2(q + 2)ψ1 = (q2 − q − 1)ψ1 and

(q2 + 1)(q + 1)ψ1 = 0.

We conclude that

Corollary 8.15. Φ∞
∼= Z/(q2 + 1)(q + 1)Z is generated by the image of ψ1.

Multiplication by N = (q2 + 1)(q + 1) on the exact sequence in Theorem 5.5
and the snake lemma give an embedding δN : Φ∞ →֒ H00(xy,Z/NZ).

Lemma 8.16. Let ψ̄1 be the image of ψ1 in Φ∞. Then δN(ψ̄1) = −(q+1)Ex +
(q2 + 1)Ey + qE(x,y), the generator of E00(xy,Z/NZ). In particular, the com-
ponent group Φ∞ is annihilated by the Eisenstein ideal.

Proof. Note that

Nψ1 =

q∑

i=1

(
(i − 1)q + i

)
ι(ϕi) ∈ Hom(H0(xy,Z),Z).

Hence δN(ψ̄1) =
∑q

i=1

(
(i − 1)q + i

)
ϕi mod N ∈ H00(xy,Z/NZ). Viewing the

cycles ϕ1, ..., ϕq as harmonic cochains in H0(xy,Z), it is observed that

(i)

ϕ1(a1) = 1, ϕ1(a4) = −1, ϕ1(a6) = 1− q, ϕ1(b1) = 1,

ϕ1(a2) = ϕ1(a3) = ϕ1(a5) = ϕ1(bu) = 0, 2 ≤ u ≤ q − 1;

(ii)

ϕq(a1) = ϕq(a4) = ϕq(a6) = ϕq(bu) = 0, 1 ≤ u ≤ q − 2,

ϕq(a2) = 1, ϕq(a3) = −1, ϕq(a5) = q − 1, ϕ1(bq−1) = −1.
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(iii) for 2 ≤ j ≤ q − 1,

ϕj(ai) = ϕj(bu) = 0, 1 ≤ i ≤ 6, u 6= j − 1, j; ϕj(bj) = −ϕj(bj−1) = 1.

Here ai, bu are the oriented edges of the graph (Γ0(xy) \ T )0 in Figure 4.
Therefore δN(ψ̄1)(a1) = 1 and δN (ψ̄1)(bu) = −(q + 1), 1 ≤ u ≤ q − 1.
On the other hand, let f = −(q+1)Ex+(q2+1)Ey+qE(x,y) ∈ E00(xy,Z/NZ).
From the Fourier expansion of Ex, Ey, and E(x,y), we also get

f(a1) = 1 and f(bu) = −(q + 1) for 1 ≤ u ≤ q − 1.

Since every harmonic cochain in H00(xy,Z/NZ) is determined uniquely by its
values at a1 and bu for 1 ≤ u ≤ q − 1, we get δN (ψ̄1) = f and the proof is
complete. �

Definition 8.17. Let n ✁ A be a non-zero ideal and ℓ a prime number. Let
T(n)ℓ := T(n) ⊗Z Zℓ. Given a maximal ideal M ✁ T(n)ℓ, let T(n)M be the
completion of T(n)ℓ at M. We say that T(n)M is a Gorenstein Zℓ-algebra
if T(n)∨M := HomZℓ

(T(n)M,Zℓ) is a free T(n)M module of rank 1. In [38],
following Mazur [33], Pál proved that T(p)M is Gorenstein for the maximal
ideals containing E(p).

Let Eℓ be the ideal generated by E(xy) in Tℓ. We know that Tℓ/Eℓ
∼= Zℓ/NZℓ;

see Corollary 3.18. Thus, N annihilates Jℓ[E].

Proposition 8.18. Assume ℓ | N . The finite group-scheme Jℓ[E] is unramified
at ∞. If TM is Gorenstein for M = (Eℓ, ℓ), then there is an exact sequence of
GF∞-modules

0→ (Zℓ/NZℓ)
∗ → Jℓ[E]→ Zℓ/NZℓ → 0.

Proof. The argument in the proof of Lemma 8.12 and the isomorphism of Hecke
modules (Φ∞)ℓ ∼= E00(xy,Z/ℓnZ) that we just proved (n ≫ 0) give the exact
sequence

0→ Dℓ[E]→ Jℓ[E]→ (Φ∞)ℓ → 0.

Since J [ℓn]I∞ ∼= D[ℓn]× (Φ∞)[ℓn], we see that Jℓ[E] is unramified at ∞. Next,
using Proposition 2.21, (4.3) and (4.4), we have

Dℓ[E] ∼= Hom(H0(xy,Zℓ)/EℓH0(xy,Zℓ),C
×
∞)

∼= Hom(T∨
ℓ /EℓT

∨
ℓ ,C

×
∞) ∼= Hom(T∨

M/EℓT
∨
M,C

×
∞).

If TM is Gorenstein, then

Hom(T∨
M/EℓT

∨
M,C

×
∞) ∼= Hom(TM/Eℓ,C

×
∞) ∼= Hom(Zℓ/NZℓ,C

×
∞).

�

If ℓ is odd and divides q+1 then, under the assumption that TM is Gorenstein,
Proposition 8.18 implies that Sℓ is the maximal µ-type subgroup scheme of
Jℓ and Jℓ[E] ∼= Cℓ ⊕ Sℓ is pure. Indeed, since Φ∞ is constant and gcd(q +
1, q − 1) divides 2, the maximal µ-type subgroup scheme of Jℓ specializes to
the connected component J 0

F∞
of the Néron model, so must be isomorphic to

(Zℓ/(q + 1)Zℓ)
∗. Since Sℓ is µ-type, it must be maximal by comparing the
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orders. The fact that TM is Gorenstein in this case can be proved by Mazur’s
Eisenstein descent discussed in Section 10 of [38]. Since this fact is not central
for our paper, and the proof closely follows the argument in [38], we omit the
details.
Now assume ℓ is odd and divides q2 + 1. Assume TM is Gorenstein. Since
sx,y divides 2, Lemma 8.12 and Proposition 8.18 imply that there is an exact
sequence of GF -modules

(8.1) 0→ Cℓ → Jℓ[E]→Mℓ → 0,

where Mℓ
∼= (Zℓ/(q

2 + 1)Zℓ)
∗. If Jℓ[E]

Iy is strictly larger than Cℓ, then the
Galois representation ρ

M
: GF → Aut(Jℓ[M]) ∼= GL2(Fℓ) is unramified at y.

On the other hand, (Φy)ℓ = 0, so Jℓ[M] is isomorphic to a Tℓ×GFy
-submodule

of the torus J 0
Fy
. Now the same argument that proves Proposition 3.8 in [47]

implies that Froby acts on Jℓ[M] as a scalar ±|y|2. Hence det(ρ
M
) = q4. On

the other hand, the sequence (8.1) shows that the eigenvalues of Froby are 1
and |y| = q2. Thus, det(ρ

M
) = q2. This forces q4 ≡ q2 (mod ℓ), which is

a contradiction since gcd(q2 + 1, q2(q2 − 1)) divides 2. We conclude that if
TM is Gorenstein then the ℓ-primary µ-type subgroup scheme of J is trivial.
This “explains” why S is smaller than C – the missing part corresponds to the
ramified portion of J [E].

9. Jacquet-Langlands isogeny

9.1. Modular curves of D-elliptic sheaves. Let D be a division quater-
nion algebra over F . Assume D is split at∞, i.e., D⊗F F∞

∼= Mat2(F∞); this
is the analogue of “indefinite” over Q. Let n✁A be the discriminant of D. It is
known that n is square-free with an even number of prime factors. Moreover,
any n with this property is a discriminant of some D, and, up to isomorphism,
n determines D; cf. [56].
Let C := P1

Fq
. Fix a locally free sheaf D of OC -algebras with stalk at the

generic point equal to D and such that Dv := D ⊗OC
Ov is a maximal order

in Dv := D⊗F Fv for every place v. Let S be an Fq-scheme. Denote by FrobS
its Frobenius endomorphism, which is the identity on the points and the qth
power map on the functions. Denote by C ×S the fiber product C ×Spec(Fq) S.

Let z : S → Spec(A[n−1]) be a morphism of Fq-schemes. A D-elliptic sheaf
over S, with pole ∞ and zero z, is a sequence E = (Ei, ji, ti)i∈Z, where each Ei
is a locally free sheaf of OC×S-modules of rank 4 equipped with a right action
of D compatible with the OC -action, and where

ji : Ei → Ei+1

ti :
τEi := (IdC × FrobS)

∗Ei → Ei+1

are injective OC×S-linear homomorphisms compatible with the D-action. The
maps ji and ti are sheaf modifications at ∞ and z, respectively, which satisfy
certain conditions, and it is assumed that for each closed point P of S, the
Euler-Poincaré characteristic χ(E0|C×P ) is in the interval [0, 2); we refer to [28,
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§2] for the precise definition. Denote by EℓℓD(S) the set of isomorphism classes
of D-elliptic sheaves over S. The following theorem can be deduced from (4.1),
(5.1) and (6.2) in [28]:

Theorem 9.1. The functor S 7→ EℓℓD(S) has a coarse moduli scheme Xn,
which is proper and smooth of pure relative dimension 1 over Spec(A[n−1]).

For each prime p✁A not in R, there is a Hecke correspondence Tp on Xn; we
refer to [28, §7] for the definition.

9.2. Rigid-analytic uniformization. Let D be a maximal A-order in D.
Let Γn := D× be the group of units of D. By fixing an isomorphismD⊗F F∞

∼=
Mat2(F∞), we get an embedding Γn →֒ GL2(F∞). Hence Γn acts on the
Drinfeld half-plane Ω = C∞ − F∞. We have the following uniformization
theorem

(9.1) Γn \ Ω ∼= (Xn
F∞

)an,

which follows by applying Raynaud’s “generic fibre” functor to Theorem 4.4.11
in [2]. The proof of this theorem is only outlined in [2]. Nevertheless, as is
shown in [52, Prop. 4.28], (9.1) can be deduced from Hausberger’s version [23]
of the Cherednik-Drinfeld theorem for Xn. An alternative proof of (9.1) is
given in [53, Thm. 4.6].
Assume for simplicity that n is divisible by a prime of even degree. In this case,
the normal subgroup Γn

f of Γn generated by torsion elements is just the center

F×
q of Γn, cf. [42, Thm. 5.6]. This implies that the image of Γn in PGL2(F∞) is

a discrete, finitely generated free group, and (9.1) is a Mumford uniformization
[20], [35].
Denote Γ = Γn/F×

q and let Γ be the abelianization of Γ. The group Γ acts
without inversions on the Bruhat-Tits tree T , and the quotient graph Γn\T =
Γ \ T is finite; cf. [42, Lem. 5.1]. Fix a vertex v0 ∈ T . For any γ ∈ Γ
there is a unique path in T without backtracking from v0 to γv0. The map
Γ → H1(Γ \ T ,Z) which sends γ to the homology class of the image of this
path in Γ\T does not depend on the choice of v0, and induces an isomorphism

(9.2) Γ ∼= H1(Γ \T ,Z).

Since Γ is a free group and Γ \T is a finite graph,

H(n,Z)′ := H0(T ,Z)Γ
n

= H0(T ,Z)Γ = H(T ,Z)Γ

∼= H(Γ \T ,Z) ∼= H1(Γ \T ,Z),

cf. Definitions 2.1 and 2.2. The spaceH(n,Z)′ is equipped with a natural action
of Hecke operators Tm (m ✁ A), which generate a commutative Z-algebra; cf.
[34, §5.3].
The map 〈·, ·〉 : E(T )× E(T )→ Z

〈e, f〉 =





1 if f = e
−1 if f = ē
0 otherwise
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induces a Z-valued bilinear symmetric positive-definite pairing on H1(Γ\T ,Z),
which we denote by the same symbol. Using (9.2) we get a pairing

Γ× Γ→ Z(9.3)

γ, δ 7→ 〈γ, δ〉.
Let Jn denote the Jacobian variety of Xn

F , and J n denote the Néron model of
Jn over O∞. Since Xn is a Mumford curve over F∞, (J n)0F∞

is a split algebraic

torus. Let M := Hom((J n)0
F∞
,Gm,F∞

) be the character group of this torus.

By the mapping property of Néron models, each endomorphism of Jn defined
over F∞ canonically extends to J n, hence acts functorially on M . Since Jn

has purely toric reduction, EndF∞(Jn) operates faithfully on M . By [35, p.
132], the graph Γ \ T is the dual graph of the special fibre of the minimal
regular model of Xn over O∞. On the other hand, by [3, p. 246], there is
a canonical isomorphism M ∼= H1(Γ \ T ,Z). The Hecke correspondence Tp
induces an endomorphism of Jn by Picard functoriality, which we denote by
the same symbol. Via the isomorphisms mentioned in this paragraph and (9.2),
we get a canonical action of Tp on Γ. This action agrees with the action of Tp
on H(n,Z)′.
Using rigid-analytic theta functions, one constructs a symmetric bilinear pair-
ing

Γ× Γ→ F×
∞

γ, δ 7→ [γ, δ],

such that ord∞[γ, δ] = 〈γ, δ〉; see [31, Thm. 5]. The main result of [31] gives a
rigid-analytic uniformization of Jn:

(9.4) 0→ Γ
γ 7→[γ,·]−−−−−→ Hom(Γ,C∞)→ Jn(C∞)→ 0.

This sequence is equivariant with respect to the action of Tp (p 6∈ R); this was
proven by Ryan Flynn [7] following the method in [18].
Finally, we have the following quaternionic analogue of Theorem 5.5. Let Φ′

∞

be the component group of Jn at ∞. After identifying Γ with the character
groupM , the pairing (9.3) becomes Grothendieck’s monodromy pairing on M ,
so there is an exact sequence (see [22, §§11-12] and [43])

(9.5) 0→ Γ
γ 7→〈γ,·〉−−−−−→ Hom(Γ,Z)→ Φ′

∞ → 0.

This sequence is equivariant with respect to the action of Tp.

9.3. Explicit Jacquet-Langlands isogeny conjecture. Let n ✁ A be
a product of an even number of distinct primes. The space H0(n,Q) can be
interpreted as a space of automorphic forms on Γ0(n); see [18, §4]. A similar
argument can be used to show that H(n,Q)′ has an interpretation as a space of
automorphic forms on Γn; cf. [43, §8]. The Jacquet-Langlands correspondence
over F implies that there is an isomorphism

JL : H0(n,Q)new ∼= H(n,Q)′
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deg(q) is even deg(q) is odd
deg(p) = 1 Z/(q + 1)M(q)Z Z/M(q)Z
deg(p) = 2 Z/M(q)Z Z/(q + 1)M(q)Z

Table 1. Component group Φ′
q of Jpq

which is compatible with the action of Hecke operators Tp, p ∤ n; cf. [25, Ch.
III].

Remark 9.2. In fact, JL is Up-equivariant also for p | n. The analogous state-
ment over Q follows from the results of Ribet [47, §4] (cf. [24, Thm. 2.3]),
which rely on the geometry of the Jacobians of modular curves. The Néron
models of J0(n) and J

n have the necessary properties for Ribet’s arguments to
apply. Since this fact will not be essential for our purposes, we do not discuss
the details further. The Up-equivariance of JL can also be deduced from [25];
the necessary input is contained in [25, Thm. 4.2] and its proof.

Let J0(n)
old be the abelian subvariety of J0(n) generated by the images of

J0(m) under the maps J0(m) → J0(n) induced by the degeneracy morphisms
X0(n)F → X0(m)F for all m ) n. Let J0(n)

new be the quotient of J0(n) by
J0(n)

old. Combining JL with the main results in [6] and [28], and Zarhin’s
isogeny theorem, one concludes that there is a T(n)0-equivariant isogeny
J0(n)

new → Jn defined over F , which we call a Jacquet-Langlands isogeny;
cf. [41, Cor. 7.2]. (This isogeny is in fact T(n)-equivariant by the previous
remark; see [24, Cor. 2.4] for the corresponding statement over Q.) Zarhin’s
isogeny theorem provides no information about the Jacquet-Langlands isoge-
nies beyond their existence. One possible approach to making these isogenies
more explicit is via the study of component groups. More precisely, since
J0(n)

new and Jn have purely toric reduction at the primes dividing n and at
∞, one can deduce restrictions on possible kernels of isogenies J0(n)

new → Jn

from the component groups of these abelian varieties using [41, Thm. 4.3].
Unfortunately, the explicit structure of these component groups is not known
in general.
From now on we restrict to the case when n = pq is a product of two distinct
primes and deg(p) ≤ 2. In this case, the structure of Xn

Fq
is fairly simple and

can be deduced from [41, Prop. 6.2]. Using this and Raynaud’s theorem, one
computes that the component group Φ′

q of Jn at q is given by Table 1, where

M(q) =

{
|q|+ 1, if deg(q) is even;
|q|+1
q+1 , if deg(q) is odd.

The cuspidal divisor group of J0(q) is generated by [1]− [∞], which has order

N(q) =

{
|q|−1
q2−1 , if deg(q) is even;
|q|−1
q−1 , if deg(q) is odd.
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deg(q) is even deg(q) is odd
deg(p) = 1 Z/(q + 1)Z 0
deg(p) = 2 Z/(q2 + 1)Z Z/(q2 + 1)(q + 1)Z

Table 2. Φ̃q

Let α : X0(pq)F → X0(q)F be the degeneracy morphism discussed in Section
4. The image of C(q) in J0(pq) under the induced map J0(q) → J0(pq) is
generated by

c := α∗([1]− [∞]) = |p|[1] + [p]− |p|[q]− [∞].

By examining the specializations of the cusps in X0(pq)Fq
, we see that

℘q(c) = (|p|+ 1)z,

where z ∈ Φq is the element from the proof of Proposition 5.4. Let Φ̃q :=
Φq/℘q(c). The order of z in Φq is given in [41, Thm. 4.1], and the order of Φq

itself is given in Proposition 5.4. From this one easily computes that Φ̃q is the
group in Table 2.
Since c ∈ J0(n)old, the map of component groups Φq → Φnew

q induced by the

quotient J0(n) → J0(n)
new must factor through Φ̃q (here Φnew

q denotes the
component group of J0(n)

new at q).
Assume deg(p) = 1. Then the cuspidal divisor cq := [q]− [∞] ∈ C(pq) has order
N(q)M(q) (see Theorem 6.11) and specializes to the connected component of
identity J 0

Fq
of the Néron model of J0(n). Theorem 4.3 in [41] describes how

the component groups of abelian varieties with toric reduction over a local
field change under isogenies, depending on the specialization of the kernel of
the isogeny in the closed fibre. After comparing the groups Φ̃q and Φ′

q, and the
orders of c and cq, this theorem suggests that there is an isogeny J0(n)

new → Jn

whose kernel is isomorphic to Z/M(q)Z and is generated by the image of cq in
J0(n)

new.
The case deg(p) = 2 can be analysed similarly. The cuspidal divisor cq has

order (q+1)N(q)M(q). The image of cp in Φ̃q generates its cyclic subgroup of
order q2 + 1. Hence there might be an isogeny J0(n)

new → Jn whose kernel is
isomorphic to Z

M(q)Z × Z
(q2+1)Z .

Conjecture 9.3. Assume n = pq, where p, q are distinct primes and deg(p) ≤
2. There is an isogeny J0(pq)

new → Jpq whose kernel K is generated by cuspidal
divisors and

K ∼=
{

Z
M(q)Z if deg(p) = 1;

Z
M(q)Z × Z

(q2+1)Z if deg(p) = 2.

This conjecture is the function field analogue of Ogg’s conjectures about
Jacquet-Langlands isogenies over Q; see [37, pp. 212-216].
There are only two cases when n is square-free, J0(n) is non-trivial, and
J0(n)

new = J0(n). The first case is n = xy; Conjecture 9.3 then specializes
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v+ ...
v−

eu

Figure 6. Γxy \T

to the conjecture in [41]. We will prove this conjecture in §9.4 under cer-
tain assumptions, and unconditionally for some small q. The second case is
n = pq, where p 6= q are primes of degree 2. In this case the conjecture pre-
dicts that there is a Jacquet-Langlands isogeny whose kernel is isomorphic to
Z/(q2+1)Z×Z/(q2+1)Z; cf. Example 6.13. The method of this paper should
be possible to adapt to this latter case, and prove the conjecture for some small
q.

9.4. Special case. Assume n = xy. To simplify the notation we put

J := J0(xy), J
′ := Jxy, H := H0(xy,Z), H′ := H(xy,Z)′, T := T(xy).

First, we prove the analogue of Lemma 8.16 for J ′.

Lemma 9.4. Let Φ′
∞ be the component group of J ′ at ∞. Let p ✁ A be any

prime not dividing xy. Then Tp − |p| − 1 annihilates Φ′
∞
∼= Z/(q + 1)Z.

Proof. The quotient graph Γxy \T has two vertices joined by q + 1 edges; see
[41, Prop. 6.5]. We label the vertices by v+ and v−, and label the edges by the
elements of P1(Fq); see Figure 6. Let γ ∈ GL2(F∞) be an arbitrary element.
Then γv± ≡ v± mod Γxy if ord∞(det γ) is even, and γv± ≡ v∓ mod Γxy if
ord∞(det γ) is odd. Consider the free Z-module with generators {eu, eu | u ∈
P1(Fq)}, modulo the relations eu = −eu. The action of Tp on this module
satisfies

Tp
∑

u∈P1(Fq)

eu = (|p|+ 1)

{∑
u∈P1(Fq)

eu if deg(p) is even,

−∑u∈P1(Fq)
eu if deg(p) is odd.

H′ is generated by the cycles ϕu = eu − e∞, u ∈ Fq. Let ϕ
∗
u be the dual basis

of Hom(H′,Z). The map in (9.5) sends ϕu to ϕ∗
u +

∑
w∈Fq

ϕ∗
w. It is easy to see

from this that Φ′
∞ is cyclic of order q+1 and is generated by

∑
w∈Fq

ϕ∗
w. Note

that |p|+ 1 ≡ 0 mod (q + 1) if deg(p) is odd. Hence

Tp
∑

w∈Fq

ϕ∗
w = Tp


 ∑

u∈P1(Fq)

e∗u − (q + 1)e∗∞


 = ±(|p|+1)

∑

u∈P1(Fq)

e∗u−(q+1)Tpe
∗
∞

≡ (|p|+ 1)
∑

u∈P1(Fq)

e∗u − (q + 1)(|p|+ 1)e∗∞ = (|p|+ 1)
∑

w∈Fq

ϕ∗
w mod (q + 1).

This implies that Tp acts by multiplication by |p|+ 1 on Φ′
∞. �
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Theorem 9.5. Assume H ∼= H′ as T-modules. There is an isogeny J → J ′

defined over F whose kernel is cyclic of order q2 + 1 and annihilated by the
Eisenstein ideal.

Proof. By (4.3) and (4.4), the rigid-analytic uniformization of J over F∞ is
given by the T0-equivariant sequence

0→ H→ Hom(H,C×
∞)→ J(C∞)→ 0.

By Proposition 2.21, Hom(H,Z) ∼= T = T0, so we can write this sequence as
the T-equivariant sequence

0→ H→ T⊗ C×
∞ → J(C∞)→ 0.

By Theorem 5.5, the sequence derived from this using the valuation homomor-
phism ord∞ is

0→ H→ T→ Φ∞ → 0,

where Φ∞ is the component group of the Néron model of J at∞. Now we can
consider H as ideal in T. We know from Lemma 8.16 that the Eisenstein ideal
E annihilates Φ∞

∼= Z/(q2 + 1)(q + 1)Z. Hence Φ∞ is a quotient of T/E. On
the other hand, by Corollary 3.18, T/E ∼= Z/(q2 + 1)(q + 1)Z. Comparing the
orders of Φ∞ and T/E, we conclude that Φ∞

∼= T/E and H ∼= E.
From the discussion in §9.2, if we assume H ∼= H′ as T-modules, the rigid-
analytic uniformization of J ′ over F∞ is given by the T-equivariant sequence

0→ H′ → T⊗ C×
∞ → J ′(C∞)→ 0.

The argument in the previous paragraph allows us to identify H′ in the above
sequence with the annihilator E′

✁T of Φ′
∞ in T. On the other hand, by Lemma

9.4, Tp − |p| − 1 ∈ E′ for any p ∤ xy. Therefore, E ⊂ E′ and

T/E′ ∼= Φ′
∞
∼= Z/(q + 1)Z.

Hence E′/E ∼= Z/(q2 + 1)Z.
We have identified the uniformizing tori of J and J ′ with T ⊗ C×

∞, and the
uniformizing lattices H and H′ with E and E′, respectively. Now specializing
a theorem of Gerritzen [19] to this situation, we get a natural bijection

HomT(T⊗ C×
∞,E;T⊗ C×

∞,E
′)

∼−→ HomT(JF∞ , J
′
F∞

),

where on the left hand-side is the group of homomorphisms T⊗C×
∞ → T⊗C×

∞

which map E to E′ and are compatible with the action of T. It is clear that
identity map on T⊗C×

∞ is in this set. The snake lemma applied to the resulting
diagram

0 // E //
� _

��

T⊗ C×
∞

// J(C∞) //

π

��

0

0 // E′ // T⊗ C×
∞

// J ′(C∞) // 0

shows that there is an isogeny π : J → J ′ with ker(π) ∼= E′/E. Moreover, since
HomT(T,T) ∼= T, every T-equivariant homomorphism J → J ′ can be obtained
as a composition of π with an element of T. We know that there is an isogeny
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J → J ′ defined over F . Since the endomorphisms of J induced by the Hecke
operators are also defined over F , we conclude that π is defined over F . �

Theorem 9.6. In addition to the assumption in Theorem 9.5, assume TM

is Gorenstein for all maximal Eisenstein ideals M of residue characteristic
dividing q2 + 1. Then there is an isogeny J → J ′ whose kernel is 〈cy〉.
Proof. By Theorem 9.5, there is an isogeny J → J ′ defined over F whose kernel
H ⊂ J [E] is cyclic of order q2 + 1. Assume TM is Gorenstein for all maximal
Eisenstein ideals M of residue characteristic dividing q2+1. First, by Theorem
7.13 and Proposition 8.18, this implies J [2,E] = C[2]. Next, let ℓ|(q2 + 1) be
an odd prime. From the discussion after Proposition 8.18 we know that the
action of inertia at y on Jℓ[E] is unipotent and the Iy-invariant subgroup of
Jℓ[E] is Cℓ = 〈cy〉ℓ. Since 4 does not divide q2+1, these two observations imply
that there is an isogeny J → J ′ whose kernel is cyclic of order q2 + 1 and is
contained in C[2] + 〈cy〉.
If q is even, then C[2]+〈cy〉 = 〈cy〉, and we are done. If q is odd, then the kernel

is generated by cy, or cy + q+1
2 cx, or 2cy + q+1

2 cx. We know that ℘y(cy) = 0

and ℘y(cx) = 1 (cf. Proposition 6.7). If H is generated by cy + q+1
2 cx or

2cy +
q+1
2 cx, then the specialization map ℘y gives the exact sequence

0→ Z
q2+1
2 Z

→ H
℘y−−→ Z/2Z→ 0.

It is a consequence of the uniformization theorem in [23] that Xn
Fp

is a twisted

Mumford curve for any p|n (here n is arbitrary). This implies that Jn has toric
reduction at p. In particular, J ′ has toric reduction at y. Now we can apply
Theorem 4.3 in [41] to get an exact sequence

0→ Z/2Z→ Φy → Φ′
y →

Z
q2+1
2 Z

→ 0,

where Φ′
y is the component group of J ′ at y. This implies that the order of Φ′

y

is (q+1)(q2+1)/4. But according to [41, Thm. 6.4], Φ′
y
∼= Z/(q2 +1)(q+1)Z,

which leads to a contradiction. �

To be able to verify the assumptions in Theorem 9.6 computationally, it is
crucial to be able to compute the action of T on H and H′. The methods
for doing this will be discussed in Section 10. Our calculations lead to the
following:

Proposition 9.7. The assumptions of Theorem 9.6 hold for q = 2, and for
the 12 cases listed in Table 4. In particular, in these cases there is an isogeny
J → J ′ whose kernel is 〈cy〉.
Remark 9.8. We believe that the assumptions in Theorem 9.6 hold in general.
Our method for verifying that H and H′ are isomorphic T-modules relies on
finding a perfect T-equivariant pairing T × H′ → Z. Unlike the case of H,
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q y disc(T)
2 T 2 + T + 1 4
3 T 2 + 1 80
3 T 2 + T + 2 68
3 T 2 + 2T + 2 68
5 T 2 + T + 1 265216
5 T 2 + T + 2 278800
7 T 2 + 1 7372800000
7 T 2 + T + 4 6567981056

Table 3. Discriminant of T(xy)

there is no natural pairing between these modules, so our method is by trial-
and-error. We essentially construct some T-equivariant pairings, and check if
one of those is perfect (see the discussion after (10.2)). This method is very
inefficient, and our computer calculations terminated in a reasonable time only
in the cases listed in Table 4.

10. Computing the action of Hecke operators

10.1. Action on H. Assume n = xy. To simplify the notation, we denote
H = H0(xy,Z), H′ = H(xy,Z)′, T = T(xy). Assume x = T . Theorem 6.8
in [9] gives a recipe for computing a matrix by which Tx−s acts on H for any
s ∈ F×

q . Since by Proposition 2.21 the operators {1, Tx−s | s ∈ F×
q } form a Z-

basis of T, this essentially gives a complete description of the action of T on H.
This also allows us to compute the discriminant of T, an interesting invariant
measuring the congruences between Hecke eigenforms. (Recall that disc(T) is
the determinant of the q × q matrix

(
Trace(titj)

)
1≤i,j≤q

, where {t1, . . . , tq} is
a Z-basis of T.) Table 3 lists the values of disc(T) in some cases.

Remark 10.1. The algebra T(n)⊗C∞ is isomorphic to the Hecke algebra acting
on doubly cuspidal Drinfeld modular forms of weight 2 and type 1 on Γ0(n);
see [18, (6.5)]. The algebra T(n)⊗C∞ has no nilpotent elements if and only if
p ∤ disc(T). Table 3 indicates that p ∤ disc(T) for q = 3 and arbitrary y, but for
q = 5 or 7, there exist y1 and y2 such that p | disc(T(xy1)) and p ∤ disc(T(xy2)).
It seems like an interesting problem to investigate the frequency with which p
divides disc(T).

Remark 10.2. For the sake of completeness, and also because [9] is in German,
we give Gekeler’s method for computing a matrix G(x− s) ∈ Matq(Z), s ∈ F×

q ,

representing the action of Tx−s on H. Let y = T 2 + aT + b. Label the rows
and columns of G(x − s) by u,w ∈ Fq. Then the (u,w) entry of G(x − s) is
equal to

2−Q(u,w)− (q + 1)δw,s + qδu,0δw,b/s,
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where δ is Kroneker’s delta, and Q(u,w) is the number of solutions β ∈ Fq

(without multiplicities) of the equation

(u − β)(w − β)(s− β) + β(β2 + aβ + b) = 0

plus 1 if u+ w + s+ a = 0.

By comparing the discriminant of the characteristic polynomial of Tx−s with
disc(T), one can deduce that in some cases T is monogenic, i.e., is generated
by a single element as a Z-algebra:

Example 10.3. For q = 2 and y = T 2 + T + 1

T ∼= Z[Tx−1] ∼= Z[X ]/X(X + 2).

For q = 3 and y = T 2 + T + 2

T ∼= Z[Tx−2] ∼= Z[X ]/(X + 1)(X2 −X − 4).

If T is monogenic, then its localization at any maximal ideal is Gorenstein; see
[32, Thm. 23.5]. This is stronger than what we need for Theorem 9.6, but
it is also computationally harder to establish. A simpler test is based on the
following lemma:

Lemma 10.4. Let ℓ be a prime number dividing (q + 1)(q2 + 1). Suppose there
is an element η in E such that

dimFℓ
H00(xy,Fℓ)[η] = 1.

Then TM is Gorenstein, where M = (E, ℓ).

Proof. Note that the dimension ofH00(xy,Fℓ)[η] is at least 1 since E00(xy,Fℓ) ∼=
Fℓ is a subspace. Now consider the ideal I = (ℓ, η)Tℓ. We haveH00(xy,Fℓ)[I] =
H00(xy,Fℓ)[η]. On the other hand,H00(xy,Fℓ)[I] is Fℓ-dual to Tℓ/I, cf. Propo-
sition 2.21. Hence, if dimFℓ

H00(xy,Fℓ)[η] = 1, then Tℓ/I ∼= Fℓ. This implies
Tℓ/M ∼= Tℓ/I. Since I ⊂ M, we get M = (ℓ, η), which implies that TM is
Gorenstein by Proposition 15.3 in [33]. �

Any Z-linear combination η of the operators {Tx−s−(q+1)}s∈F
×
q
is in E. We can

compute the characteristic polynomial of such η acting on H using Gekeler’s
method. Fix ℓ dividing (q + 1)(q2 + 1). If we find η whose characteristic
polynomial modulo ℓ does not have 0 as a multiple root, then we can apply
Lemma 10.4 to conclude that TM is Gorenstein for Eisenstein M of residue
characteristic ℓ. Using this strategy, for each prime q ≤ 7 we found by computer
calculations an appropriate η for any ℓ dividing (q + 1)(q2 + 1).

10.2. Action on H′. Suppose y = T 2 + aT + b. We denote the place x by
∞′. Let T ′ = T−1, A′ = Fq[T

′], and y′ = T ′2 + ab−1T ′ + b−1. We have the
correspondence of places of F :

∞ ←→ T ′

T ←→ ∞′

y ←→ y′
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Let D be the quaternion algebra over F ramified precisely at ∞′ and y′ (i.e.
ramified at x and y). Take an Eichler A′-order D′ in D of level T ′. More
precisely, D′

p′ := D′ ⊗A′ Op′ is a maximal Op′ -order in Dp′ := D ⊗F Fp′ for

each prime p′ of A′ with p′ 6= T ′, and there exists an isomorphism ιT ′ : DT ′ :=
D ⊗F FT ′ ∼= Mat2(FT ′) such that

ιT ′(D′
T ′) =

{(
a b
c d

)
∈Mat2(OT ′)

∣∣∣∣ c ≡ 0 mod T ′

}
.

Let OD∞′ be the maximal O∞′ -order in D∞′ . Consider the double coset spaces

G′xy := D×\D×(AF )/
(
D̂′

× · (O×
D∞′

F×
∞′)
)

and Cl(D′) := D×\D×(A∞′

F )/D̂′
×
,

where:

• AF is the adele ring of F , i.e. AF is the restricted direct product
∏′

v Fv;

• A∞′

F is the finite (with respect to ∞′) adele ring of F , i.e. A∞′

F =∏
v 6=∞′ Fv;

• D×(AF ) (resp. D
×(A∞′

F )) denotes (D ⊗F AF )
× (resp. (D ⊗F A∞′

F )×);

• D̂′ =
∏

p′✁A′ D′
p′ .

Then the strong approximation theorem (with respect to {∞}) shows that
Lemma 10.5. The double coset space G′xy can be identified with the set of the
oriented edges of the quotient graph Γxy\T in Figure 6.

Note that Cl(D′) can be identified with the locally-principal right ideals of D′

in D, and #Cl(D′) = q + 1. Moreover, if we take iu ∈ GL2(FT ′ ), u ∈ P1(Fq),
to be

iu =





(
u 1

1 0

)
, if u ∈ Fq,

(
1 0

0 1

)
, if u =∞,

then, via the natural embedding GL2(FT ′) ∼= D×
T ′ →֒ D×(A∞′

F ), {iu | u ∈
P1(Fq)} is a set of representatives of Cl(D′). Take an element ̟∞′ ∈ D∞′ such
that its reduced norm Nr(̟∞′) = T . From the natural surjection from G′xy to
Cl(D′), one observes that

{
(iu, ̟

c
∞′) ∈ D×(A∞′

F )×D×
∞′ = D×(AF ) | u ∈ P1(Fq), c = 0, 1

}

is a set of representatives of G′xy. We may take eu := [iu, 1] ∈ G′xy. Then there

exists a unique permutation γ : P1(Fq)→ P1(Fq) of order 2 so that

eu :=

[
iu

(
0 1
T ′ 0

)
, 1

]
= [iγ(u), ̟∞′ ].

Moreover,H′ can be viewed as the set of Z-valued functions f on G′x,y satisfying

f(eu) + f(eu) = 0, ∀u ∈ P1(Fq) and
∑

u∈P1(Fq)

f(eu) = 0.
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Let Iu be the right ideal of D′ in D corresponding to iu, i.e.,

Iu := D ∩ iu · D̂′.

Then the reduced norm of Iu is trivial, i.e., the ideal of A′ generated by
the reduced norms of all elements in Iu is A′. For each ideal m′

✁ A′, the
m′-th Brandt matrix B(m′) =

(
Bu,u′(m′)

)
u,u′ ∈Matq+1(Z) is defined by

Bu,u′(m′) :=
#{b ∈ IuI−1

u′ : Nr(b) ·A′ = m′}
q − 1

.

In Section 10.3, we give an explicit recipe of computing Bu,u′(m′) for deg(m′) =
1 when q is odd and the constant term b of y is not a square in F×

q , and also
when q = 2. By an analogue of Hecke’s theory (cf. [5]) we obtain the following
result:

Proposition 10.6.

(1) Viewing γ as a permutation matrix in Matq+1(Z), one has

B(T ′) = 2 · J − γ,
where every entry of J is 1.

(2) Identifying the place x− s and T ′− s−1 of F , one has that for s ∈ F×
q ,

Tx−seu =
∑

u′∈P1(Fq)

Bu,γ(u′)(T
′ − s−1)eu′ .

Proof. By Lemma II.5 in [5], we observe that for every u ∈ Fq,

[iγ(u)] +
∑

u′∈Fq

Bu,u′(T ′)[iu′ ] = 2
∑

u′′∈Fq

[iu′′ ] ∈ Z[Cl(D′)].

This shows (1). To prove (2), notice that for every gv ∈ GL2(Fv) with v 6=∞′

and u ∈ Fq, there exists u′ ∈ Fq such that

[iugv, 1] = [iu′ , ̟c
∞′ ],

where c = ordv(det gv) · deg v. By Proposition II.4 in [5] we have that for
s ∈ F×

q ,

Tx−seu =
∑

u′∈P1(Fq)

Bu,u′(T ′ − s−1)[iu′ , ̟∞′ ]

=
∑

u′∈P1(Fq)

Bu,u′(T ′ − s−1)eγ(u′)

=
∑

u′∈P1(Fq)

Bu,γ(u′)(T
′ − s−1)eu′ .

�

For u ∈ Fq, let fu ∈ H′ such that fu(e
′
u) = δu,u′ for u′ ∈ Fq and fu(e∞) = −1.

We immediately get the following.
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Corollary 10.7. For u, u′ ∈ Fq and s ∈ F×
q , set

B′
u′,u(x− s) := Bu′,γ(∞)(T

′ − s−1)−Bu′,γ(u)(T
′ − s−1).

Then

Tx−sfu =
∑

u′∈Fq

B′
u′,u(x− s)fu′ .

In other words, B′(x − s) :=
(
B′

u′,u(x − s)
)
u′,u
∈ Matq(Z) is a matrix repre-

sentation of Tx−s acting on H′ with respect to the basis {fu | u ∈ Fq}.

Remark 10.8. From (2.7) we know that
∑

s∈Fq
Tx−s = −1, as endomorphisms

ofH. On the other hand, by Remark 9.2, JL : H⊗Q ∼= H′⊗Q is Tx-equivariant.
Hence the previous corollary allows us to obtain also the matrix representation
of Tx acting on H′.

Remark 10.2 and Corollary 10.7 give the matrices by which Tx−s (s ∈ F×
q ) acts

on H and H′. Since Tx−s generate T, the condition that the T-modules H and
H′ are isomorphic in Theorem 9.5 is equivalent to the matrices B′(x− s) being
simultaneously Z-conjugate to Gekeler’s matrices G(x−s), i.e., to the existence
of a single matrix C ∈ GLq(Z) such that

(10.1) C−1 ·B′(x− s) · C = G(x− s) ∀s ∈ F×
q .

Remark 10.9. Due to Jacquet-Langlands correspondence, there does exist a
matrix C ∈ GLq(Q) satisfying (10.1), but the existence of an integral matrix
is more subtle; cf. [27].

Example 10.10. Let q = 2 and y = T 2 + T + 1. By Remark 10.2

G(x − 1) =

(
0 0
1 −2

)
.

On the other hand, with respect to the basis {i∞, i0, i1} of Z[Cl(D′)] we calcu-
late that (see Remark 10.12)

γ =



0 1 0
1 0 0
0 0 1


 and B(T ′ − 1) =



0 2 1
2 0 1
1 1 1


 .

Therefore

B′(x− 1) =

(
−2 −1
0 0

)
.

We can take C =

(
0 −1
1 0

)
.

Note that the matrix

(
0 0
0 −2

)
is conjugate to G(x − 1) over Q, but not over

Z; in fact, there are exactly two conjugacy classes of matrices in Mat2(Z) with
characteristic polynomial X(X + 2).
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q y α
3 T 2 + T + 2 [0, 1, 0]
3 T 2 + 2T + 2 [0, 0, 1]
5 T 2 + T + 2 [−1, 1, 4, 5, 2]
5 T 2 + 2T + 3 [−1,−3,−6,−5,−2]
5 T 2 + 3T + 3 [−1,−6,−3,−2,−5]
5 T 2 + 4T + 2 [−1, 4, 1, 2, 5]
7 T 2 + T + 6 [−8, 0,−6,−5,−8,−7, 5]
7 T 2 + 2T + 3 [−8,−7,−7, 2, 3,−6,−6]
7 T 2 + 3T + 5 [−5,−6,−6,−4, 2, 3,−5]
7 T 2 + 4T + 5 [−8,−8, 0,−7,−6, 5,−5]
7 T 2 + 5T + 3 [−5,−4,−5,−6, 3,−6, 2]
7 T 2 + 6T + 6 [−5,−6, 2,−5,−6,−4, 3]

Table 4. Available choice of α

There exists an algorithm for deciding whether, for two collections of integral
matrices {X1, . . . , Xm} and {Y1, . . . , Ym}, there exists an integral and integrally
invertible matrix C relating them via conjugation, i.e., such that C−1XiC = Yi
for all i; see [48]. Unfortunately, this algorithm is complicated and does not
seem to have been implemented into the standard computational programs,
such as Magma. Instead of trying to find C, we take a different approach to
proving that the T-modules H and H′ are isomorphic. Note that the pairing
in Proposition 2.21 gives an isomorphism H ∼= Hom(T,Z) of T-modules. If one
constructs a perfect T-equivariant pairing

(10.2) H′ × T→ Z,

then the desired isomorphism H′ ∼= Hom(T,Z) ∼= H follows. The absence of
Fourier expansion in the quaternionic setting makes the construction of such a
pairing ad hoc.
Note that Hom(H′,Z) =

⊕
u∈Fq

Ze∗u, where 〈fu, e∗u′〉 := fu(eu′) = δu,u′ . One

way to construct (10.2) is to find a Z-linear combination α =
∑

u aue
∗
u such

that

det (〈fu, Tx−sα〉)u,s∈Fq
= ±1.

We were able to find such α in several cases; see Table 4 where α is given as
[a0, a1, . . . , ap−1].

10.3. Computation of Brandt matrices. Recall that we denote y = T 2 +
aT + b ∈ A and y′ = T ′2+ ab−1T + b−1, where T ′ = 1/T . Assume q is odd and
b is not a square in F×

q . Set y0 := bT ′2 + aT ′ + 1. Let

D := F + Fi+ Fj + Fij

where i2 = T ′, j2 = y0, ij = −ji. Since we have the Hilbert quadratic symbols
(T ′, y0)T = (T ′, y0)y = −1 and (T ′, y0)v = 1 for every places v 6= T or y, the
quaternion algebra D is ramified precisely at T and y.
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Let D′ = A′ +A′i+A′j+A′ij, which is an Eichler A′-order in D of level T ′y′.
We choose the representatives of locally principal right ideal classes of D′ as
follows.

I∞ := D′ = A′ +A′i+A′j +A′ij,

Iu := A′(1− j) +A′(
i+ ij

T ′
+ 2uj) +A′T ′j +A′ij, u ∈ Fq.

Then the reduced norm of Iu is trivial for every u ∈ P1(Fq). Moreover, for

u, u′ ∈ Fq, IuI
−1
u′ is equal to




A′ +A′T ′i+A′(j − 2ui) +A

(
i(1+j)2

T ′ + 4u2i
)
, if u = u′,

A′T ′ +A
(
i− (u′ − u)−1

)
+A

(
j − u′+u

u′−u

)
+A

(
i(1+j)2

T ′ + 4uu′

u′−u

)
, if u 6= u′.

After tedious calculations, we obtain the following:

Lemma 10.11.

(1) For s ∈ Fq,

#{z ∈ I∞ | Nr(z)A′ = (x− s)A′}
q − 1

=





2 if s ∈ (F×
q )

2,

1 if s = 0,

0 otherwise.

(2) For s, u ∈ Fq, set

αy(s, u) := 1 + s(4u2 + a+ sb) and βy(s, u) =
(
(a+ 4u2)2 − 4b

)
s+ 16u2.

Then

#{z ∈ Iu | Nr(z)A′ = (x− s)A′}
q − 1

=





2 if αy(s, u) ∈ (F×
q )

2,

1 if αy(s, u) = 0,

0 otherwise.

#{z ∈ IuI−1
u | Nr(z)A′ = (x− s)A′}

q − 1
=





2 if βy(s, u) ∈ (F×
q )

2,

1 if βy(s, u) = 0,

0 otherwise.

(3) For s, u, u′ ∈ Fq with u 6= u′, set

ξy(s, u, u
′) :=

(
2u2 + 2u′2 + s(u′ − u)a

)2

−
(
1− s(u′ − u)2

)(
16u2u′2 − s(u′ − u)2(a2 − 4b)

)
.

Then

#{z ∈ IuI−1
u′ | Nr(z)A′ = (x− s)A′}

q − 1
=





2 if ξy(s, u) ∈ (F×
q )

2,

1 if ξy(s, u) = 0,

0 otherwise;
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Since the Brandt matrices are symmetric under our settings, the above lemma
gives us the recipe of computing the Brandt matrices B(T ′ − s) for s ∈ Fq. In
particular, we can get

γ(∞) =∞, γ(0) = 0, and γ(u) = −u ∀u ∈ F×
q .

Remark 10.12. In characteristic 2 the presentation of quaternion algebras has
to be modified. Consider the case when q = 2 and y = T 2+T +1. In this case,
we let D = F + Fi+ Fj + Fij, where

i2 + i = T ′, j2 = y0 = T ′2 + T ′ + 1, ji = (i+ 1)j.

Let D′
max = A + Ai + Aj + Aij, which is a maximal A′-order in D. We take

the Eichler A′-order D′ = A′ + A′i + A′T ′j + A′ij and the representatives of
ideal classes of D′ in the following:

I∞ = D′ = A′ +A′i+A′T ′j +A′ij,

I0 = A′T ′ +A′(1 + i) +A′j +A′ij,

I1 = A′T ′ +A′(1 + i) +A′(1 + j) +A′ij.

Then

I0I
−1
0 = A′ +A′i+A′xj +A′(i+ 1)j,

I0I
−1
1 = A′T ′ +A′i+A′(1 + j) +A′(1 + ij),

I1I
−1
1 = A′ +A′T ′i+A′j +A′(i+ ij).

Since

{z ∈ D′
max | Nr(z) = T ′} = {i, 1 + i, 1 + T ′ + j}

and

{z ∈ D′
max | Nr(z) = 1 + T ′} = {T ′ + j, T ′ + i+ j, 1 + T ′ + i+ j},

we can get

B(T ′) =



2 1 2
1 2 2
2 2 1


 and B(T ′ − 1) =



0 2 1
2 0 1
1 1 1


 .
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1972.

[23] T. Hausberger, Uniformisation des variétés de Laumon-Rapoport-Stuhler
et conjecture de Drinfeld-Carayol, Ann. Inst. Fourier (Grenoble) 55 (2005),
1285–1371.

[24] D. Helm, On maps between modular Jacobians and Jacobians of Shimura
curves, Israel J. Math. 160 (2007), 61–117.

[25] H. Jacquet and R. Langlands, Automorphic forms on GL(2), Lecture Notes
in Mathematics, Vol. 114, Springer-Verlag, 1970.

[26] K. Kato and F. Trihan, On the conjectures of Birch and Swinnerton-Dyer
in characteristic p > 0, Invent. Math. 153 (2003), 537–592.

[27] C. Latimer and C. MacDuffee, A correspondence between classes of ideals
and classes of matrices, Ann. of Math. (2) 34 (1933), 313–316.

[28] G. Laumon, M. Rapoport, and U. Stuhler, D-elliptic sheaves and the Lang-
lands correspondence, Invent. Math. 113 (1993), 217–338.

[29] T. Lehmkuhl, Compactification of the Drinfeld modular surfaces, Mem.
Amer. Math. Soc. 197 (2009), xii+94.
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