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1. Introduction

Let Fq be the field of q elements of characteristic p. For a separated scheme X
which is essentially of finite type over SpecFq, we define the Borel-Moore mo-
tivic homology group HBM

i (X,Z(j)) as the homology group Hi−2j(zj(X, •)) =
CHj(X, i− 2j) of Bloch’s cycle complex zj(X, •) ([Bl, Introduction, p. 267] see
also [Ge-Le2, 2.5, p. 60] to remove the condition that X is quasi-projective;
see [Le1] for the labeling using dimension and not codimension). If j > i or
j > dim X , then HBM

i (X,Z(j)) = 0 for trivial reason. When X is essen-
tially smooth over SpecFq, it coincides with the motivic cohomology group
defined in [Le1, Part I, Chapter I, 2.2.7, p. 21] or [Vo-Su-Fr] (cf. [Le2, Theo-
rem 1.2, p. 300], [Vo, Corollary 2, p. 351]). For an abelian group M , we set
HBM
i (X,M(j)) = Hi−2j(zj(X, •)⊗Z M).

For a scheme X , we let O(X) = H0(X,OX). The aim of this paper is to prove
the following theorem.
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Theorem 1.1. Let X be a connected scheme which is separated and of finite
type over SpecFq. Then for j = −1,−2, the pushforward map

αX : HBM
−1 (X,Z(j))→ HBM

−1 (SpecO(X),Z(j))

is an isomorphism if X is proper, and the group HBM
−1 (X,Z(j)) is zero if X is

not proper.

Theorem 1.1 is a generalization of a theorem of Akhtar [Ak, Theorem 3.1,
p. 285] where the claim is proved for j = −1 and X smooth projective over
SpecFq. Our proof of Theorem 1.1 is independent of [Ak], and we do not
require a Bertini-type theorem.
If we assume Parshin’s conjecture, then the statement in the theorem holds for
any j ≤ −1. Moreover we also obtain HBM

i (X,Z(j)) = 0 for any i ≤ −2 and
j ≤ −1. The method is explained in Section 4
We define the étale Borel-Moore (not motivic) homology with Zℓ-coefficients,
where ℓ is a prime different from p, in Remark 4.3. Then we compute it

explicitly, and deduce that HBM
i (X,Z(j)) ⊗Z Zℓ ∼= HBM,et

i (X,Zℓ(j)) in the
range i ≤ −1 and j ≤ −1 (using Parshin’s conjecture where it is needed for the
computation of the Borel-Moore motivic homology groups).
The original version of this paper was written without using the Bloch-Kato-
Milnor conjecture. We use it as a theorem of Rost and Voevodsky. It is used
via theorems of Geisser and Levine (e.g., [Ge-Le2, Corollary 1.2, p.56]).
Acknowledgment The first author thanks Shuji Saito and Thomas Geisser
for valuable comments in the course of revision. The second author would like
to thank Akio Tamagawa for helpful suggestions on the proof of a lemma in the
earlier version which no longer exists. The authors thank Thomas Geisser and
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mier Research Center Initiative (WPI Initiative), MEXT, Japan. The second
author was partially supported by JSPS Grant-in-Aid for Scientific Research
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2. Higher Chow groups of smooth curves over a finite field

A curve will mean a scheme of pure dimension one, separated and of finite type
over a field. The aim of this section is to compute the higher Chow groups
CHi(X, j) for a smooth curve X over a finite field in the range i, j ≥ 0.

Lemma 2.1. Let X be a connected smooth curve over a finite field. Then

CHi(X, 0) ∼=







Z, i = 0,
Pic(X), i = 1,
0, i ≥ 2.
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Proof. These are the classical Chow groups and the computation is known.
For i ≥ 2, it vanishes by dimension reason. See also [Bl, THEOREM (6.1),
p.287]. �

Lemma 2.2. Let j ≥ 2. Let X be a smooth curve over a finite field Fq of

characteristic p. Then we have CHi(X, j) = 0 for i > j, and for i ≤ j, the
cycle map in [Ge-Le2, (1.2), p.56] gives an isomorphism

CHi(X, j) ∼=
⊕

ℓ 6=p

H2i−j−1
et (X,Qℓ/Zℓ(i)).

The right hand side is zero unless 2i− j = 1, 2, 3. If moreover X is affine, the
right hand side is zero for 2i− j = 3.

Proof. We first note that CHi(X, j) = 0 if i > j + 1 by dimension reason.
Henceforth we consider the case i ≤ j + 1.
Recall Bloch’s formula ([Bl, THEOREM(9.1), p.296]):

(2.1) Kj(X)⊗Z Q ∼=
⊕

i≥0

CHi(X, j)⊗Z Q

where Kj is the j-th algebraic K-group. Recall also Harder’s result (the result
[Hard, 3.2.5 Korollar, p.175] is not correctly stated; we refer to [Gr, THEOREM
0.5, p.70] and the remark there for the explanation and the corrected statement)

which implies that Kj(X)⊗Z Q = 0 for j ≥ 2. Hence CHi(X, j) is torsion for
j ≥ 2.
We recall the definition of motivic cohomology given in [Ge-Le2, Section 2.5,
p.60]. For a smooth scheme X over a field, define the cohomological cycle
complex by Zj(X, i) = zj(X, 2j − i) where z∗(−, ∗) is Bloch’s cycle com-
plex ([Bl, INTRODUCTION, p.267], see also [Ge-Le2, 2.2, p.58]). Then, for

an abelian group A, define Hj
M(X,A(i)) = Hi(Zj(X, ∗) ⊗Z A). We have

H2i−j
M (X,Z(i)) = CHi(X, j).

The exact sequence 0→ Z→ Q→ Q/Z→ 0 gives an exact sequence

H2i−j−1
M (X,Q(i))→ H2i−j−1

M (X,Q/Z(i))
(1)
−−→ H2i−j

M (X,Z(i))

→ H2i−j
M (X,Q(i)).

The first and the last terms are zero as was remarked above. The map (1) is
hence an isomorphism.
Since we are in the range i ≤ j+1 (equivalently, 2i−j−1 ≤ i), we apply [Ge-Le2,
Corollary 1.2, p.56] and the computation ([Ge-Le1, Theorem 8.4, p.491]) by
Geisser and Levine of p-torsion motivic cohomology to obtain

H2i−j−1
M (X,Q/Z(i)) ∼=

⊕

ℓ 6=p

H2i−j−1
et (X,Qℓ/Zℓ(i))⊕ lim

−→
r

Hi−j−1(XZar, ν
i
r).

(We refer to [Ge-Le1] for the definition of H∗(XZar, ν
i
r).) One can compute the

right hand side explicitly. The p-part is zero since we are in the range i ≤ j+1
and j ≥ 2.
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Set a = 2i− j− 1. Let us show that Ha
et(X,Qℓ/Zℓ(i)) = 0 if a ≥ 3. If a ≥ 4, it

follows from the fact that the cohomological dimension of a curve over a finite
field is 3 ([SGA4-3, Exposé X, Corollaire 4.3, p.15]). Suppose a = 3. We have
an exact sequence

H3
et(X,Qℓ(i))→ H3

et(X,Qℓ/Zℓ(i))→ H4
et(X,Zℓ(i)).

The third term is zero because of the cohomological dimension reason. The
Hochschild-Serre spectral sequence reads

Ep,q2 = Hp
et(Gal(Fq/Fq), H

q
et(X,Qℓ(i))⇒ Hp+q

et (X,Qℓ(i))

where X = X ×SpecFq
SpecFq. We have E0,3

2 = 0 since H3
et(X,Qℓ(i)) = 0. To

show E1,2
2 = 0, note that the weight of H2

et(X,Qℓ(i)) is 2− 2i. Since j ≥ 2 and

a = 3, the weight 2− 2i is nonzero, hence E1,2
2 = 0. We have E2,1

2 = 0 because

the cohomological dimension of Gal(Fq/Fq) is one. This proves the claim in
this case.
Suppose a = 2 and X is affine. We have an exact sequence

H2
et(X,Qℓ(i))→ H2

et(X,Qℓ/Zℓ(i))→ H3
et(X,Zℓ(i)).

The third term is zero since the cohomological dimension of an affine curve
over a finite field is 2 ([SGA4-3, Exposé XIV, Théorème 3.1, p.15]). We use

the Hochshild-Serre spectral sequence as above. We have E0,2
2 = 0 using the

same cohomological dimension reason. Note that the (possible) weights of
H1

et(X,Qℓ(i)) are 1 − 2i and 2 − 2i. Since neither of them is zero, we have

E1,1
2 = 0. These imply that H2

et(X,Qℓ(i)) = 0 hence the claim in this case.
�

Lemma 2.3. Let X be a smooth curve over a finite field. We have

CHi(X, 1) =







0, i = 0,
O(X)×, i = 1,
0, i ≥ 3.

Proof. The case i = 0 is trivial. The case i = 1 is found in Bloch’s paper
([Bl, THEOREM (6.1), p.287]). For i ≥ 3, the claim follows by dimension
reason. �

Lemma 2.4. Let U be an affine smooth curve over a finite field. Then
CH2(U, 1) = 0.

Proof. The group SK1(U) sits in the following exact sequence:

0→ SK1(U)→ K1(U)→ O(U)× → 0.

We use the result [Gr, THEOREM 0.5, p.70], which says that SK1(U)⊗ZQ = 0
for an affine smooth curve U . Using Lemma 2.3, it follows from counting the
dimension of both sides of Bloch’s formula (2.1) that dimQH

3
M(U,Q(2)) = 0.

For the rest of the proof, one proceeds as in Lemma 2.2. �
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Lemma 2.5. Let Z be a scheme which is finite over SpecFq. Then we have
isomorphisms

HBM
−1 (Z,Z(j))

(1)
∼= HBM

−1 (Zred,Z(j))
(2)
∼= HBM

0 (Zred,Q/Z(j))
(3)
∼=

⊕

ℓ 6=pH
0
et(Zred,Qℓ/Zℓ(−j))

for j ≤ −1, which are functorial with respect to pushforwards. Here Zred

denotes the reduced scheme associated to Z.

Proof. For any scheme W of finite type over Fq and an abelian group A, we
have HBM

i (W,A(j)) ∼= HBM
i (Wred, A(j)) for any i, j, since the cycle complexes

are canonically isomorphic by definition. This gives the isomorphism (1).
For (2), we use the long exact sequence of the universal coefficient theorem for
higher Chow groups:

HBM
0 (Zred,Q(j))→ HBM

0 (Zred,Q/Z(j))
→ HBM

−1 (Zred,Z(j))→ HBM
−1 (Zred,Q(j)).

We know that the higher K-groups of a finite field are torsion from [Qu, THE-
OREM 8, p.583]. Then using a formula of Bloch (2.1), we see that the groups
in the sequence above with Q-coefficient are zero.
Since Fq is perfect, SpecZred is smooth over Fq. The map (3) is the cycle map
in [Ge-Le2] (which is defined for smooth schemes over a field). The fact that
the cycle map is an isomorphism follows from [Ge-Le2, Corollary 1.2, p. 56]
and [Me-Su, (11.5), THEOREM, p. 328], and [Ge-Le1, Theorem 1.1, p406].
It is clear that the isomorphisms (1) and (2) are functorial with respect to
pushforwards. Let Z ′ be another scheme which is finite over SpecFq and let
f : Z ′ → Z be a morphism over SpecFq. We prove that the isomorphisms
(3) for Z and Z ′ are compatible with the pushforward maps with respect to
f . We are easily reduced to the case when both Z and Z ′ are spectra of finite
extensions of Fq. Let Z ′′ = Z ′ ×Z Z

′ and let pr1, pr2 : Z ′′ → Z ′ denote the
projections to the first and the second factor, respectively. Then the diagram

HBM
0 (Z ′,Q/Z(j))

f∗
−−−−→ HBM

0 (Z,Q/Z(j))

pr∗
2





y





y

f∗

HBM
0 (Z ′′,Q/Z(j))

(pr
1
)∗

−−−−→ HBM
0 (Z ′,Q/Z(j))

is commutative, and a similar commutativity holds for the corresponding
étale cohomology groups. Since the pullback map f∗ : H0

et(Z,Qℓ/Zℓ(−j)) →
H0

et(Z
′,Qℓ/Zℓ(−j)) is injective, it suffices to prove that the isomorphisms (3)

for Z ′′ and Z ′ are compatible with the pushforward maps with respect to pr1.
Since Z ′′ is isomorphic to the disjoin union of a finite number of copies of Z ′,
the last claim can be checked easily. The lemma is proved. �

The statement is better understood using étale Borel-Moore homology groups.
See Remark 4.3.
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Remark 2.6. Suppose X is a connected scheme which is proper over SpecFq.
Then Theorem 1.1 says that the group HBM

−1 (X,Z(j)) is isomorphic to

HBM
−1 (SpecO(X),Z(j)). We can then use Lemma 2.5 and compute this group

explicitly. The computation of étale cohomology group shows that this group is
a cyclic group whose order is

|O(Xred)|
−j − 1

for each j = −1,−2.

Lemma 2.7. Let F′
1, F

′
2 be two finite extensions of Fq with F′

1 ⊂ F′
2. Then for

j ≤ −1, the pushforward map HBM
−1 (SpecF′

2,Z(j)) → HBM
−1 (SpecF′

1,Z(j)) is
surjective.

Proof. By Lemma 2.5, the cycle class map gives an isomorphism α :
HBM

−1 (SpecF′
k,Z(j))

∼=
⊕

ℓ 6=pH
0
et(Spec F′

k,Qℓ/Zℓ(−j)) for k = 1, 2. The cycle

class map is compatible with the pushforward by a finite morphism ([Ge-Le2,
Lemma 3.5(2), p.69]). Thus the claim follows from the corresponding state-
ment for the étale cohomology groups. (See [So, Lemme 6 iii), p.269] and [So,
IV.1.7, p.283].) �

3. Proof of Theorem 1.1

Lemma 3.1. Let X be an integral scheme which is of finite type over SpecFq.
Let F be the algebraic closure of Fq in O(X). Then the degree [F : Fq] divides
the degree [κ(x) : Fq] for all closed points x ∈ X0. If moreover X is normal,
we have the equality [F : Fq] = gcdx∈X0

[κ(x) : Fq].

Proof. For each x ∈ X0, the composite F →֒ O(X) → κ(x), where the second
map is induced from the pullback map by the closed immersion, is injective
since F is a field. Hence [F : Fq] divides [κ(x) : Fq].
Suppose that X is normal of dimension d. Then X is geometrically irreducible
as a scheme over SpecF. Let d0 = (gcdx∈X0

[κ(x) : Fq])/[F : Fq]. Let F ⊂ F0

denote an extension of degree d0. The canonical morphism f : X ×SpecF

SpecF0 → X is a finite étale cover in which every closed point of X splits
completely. It follows from a Chebotarev density type theorem ([La]; we refer
to [Ra, Lemma 1.7, p.98] for the statement which is ready for our use) that f
is an isomorphism. Hence d0 = 1. This completes the proof. �

Lemma 3.2. Let d ≥ 0 be an integer. Suppose that Theorem 1.1 holds for all
connected normal schemes over SpecFq of dimension d which are not proper
over SpecFq. Then Theorem 1.1 holds for all connected normal schemes of
dimension d which are proper over SpecFq.

Proof. LetX be a connected normal scheme of dimension d which is proper over
SpecFq. Let j ∈ {−1,−2}. Let x ∈ X0 be a closed point. The pushforward
map αX in the statement of Theorem 1.1 is surjective since its composite with
the pushforward map ιx∗ : HBM

−1 (Spec κ(x),Z(j))→ HBM
−1 (X,Z(j)) is surjective

by Lemma 2.7. By assumption, the group HBM
−1 (X \ {x},Z(j)) is zero. Hence
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the localization sequence shows that the pushforward map ιx∗ is surjective.
This implies that HBM

−1 (X,Z(j)) is of order dividing gcdx∈X0
(|κ(x)|−j − 1) =

q(−j)·gcdx∈X0
[κ(x):Fq] − 1. This equals q[F:Fq] by Lemma 3.1 where F is the al-

gebraic closure of Fq in O(X). We know the order of the target of αX is also
equal to this value from Lemma 2.5. Hence the bijectivity of αX follows. �

Lemma 3.3. Let S1
α1←− S3

α2−→ S2 be a diagram of sets and let R be an
integral domain. For i = 1, 2, 3, let Map(Si, R) denote the R-module of R-
valued functions on Si. Then the cokernel of the homomorphism

β : Map(S1, R)⊕Map(S2, R)→ Map(S3, R)

which sends (f1, f2) to f1 ◦ α1 − f2 ◦ α2 is R-torsion free.

Proof. Let e : Map(S3, R) → Cokerβ denote the quotient map. Let f ∈
Map(S3, R) and suppose that e(f) is an R-torsion element in Cokerβ. We
prove that e(f) = 0. Since e(f) is an R-torsion element, there exist a non-zero
element a ∈ R and an element (f1, f2) ∈ Map(S1,Z) ⊕Map(S2,Z) satisfying
af = f1 ◦ α1 − f2 ◦ α2. Let us take a complete set T ⊂ R of representatives of
R/aR. For i = 1, 2, let f i denote the unique T -valued function on Si satisfying
f i(x) ≡ fi(x) mod aR for every x ∈ Si. We then have

f1 ◦ α1 ≡ f1 ◦ α1 ≡ f2 ◦ α2 ≡ f2 ◦ α2

modulo aMap(S3, R). Since both f1 ◦ α1 and f2 ◦ α2 are T -valued functions,
we have f1 ◦ α1 = f2 ◦ α2. For i = 1, 2, let gi denote the unique R-valued
function on Si satisfying fi = f i + agi. Then

af = (f1 + ag1) ◦ α1 − (f2 + ag2) ◦ α2 = a(g1 ◦ α1 − g2 ◦ α2).

Since Map(S3, R) is R-torsion free, we have f = g1 ◦ α1 − g2 ◦ α2. This shows
that e(f) = 0, which proves the claim. �

Lemma 3.4. Let d ≥ 0 be an integer. Suppose that Theorem 1.1 holds for all
connected schemes of dimension smaller than d which are proper over SpecFq
and for all connected normal schemes over Spec Fq of dimension d. Then
Theorem 1.1 holds for all connected schemes of dimension d which are proper
over SpecFq.

Proof. Let X be a connected scheme of dimension d which is proper over
SpecFq. Without loss of generality we may assume that X is reduced. Suppose
that X is not normal. Let π : X ′ → X denote the normalization of X . The
scheme X ′ is proper over SpecFq since π is finite by [EGAII, Remarque 6.3.10,
p. 120]. Take a reduced closed subscheme Y ⊂ X of dimension less than that
of X such that X \ Y is normal and set Y ′ = (Y ×X X ′)red. By assumption,
Theorem 1.1 holds for each connected component of X \ Y , X ′, Y and Y ′.
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Let j ∈ {−1,−2}. Let us consider the commutative diagram

HBM
−1 (Y,Z(j))

β
−−−−→ HBM

−1 (X,Z(j))

αY





y

∼= αX





y

HBM
−1 (SpecO(Y ),Z(j))

γ
−−−−→ HBM

−1 (SpecO(X),Z(j))

where all the homomorphisms are pushforwards. Since αY is an isomorphism
and we know that γ is surjective using Lemma 2.5 and Lemma 2.7, the homo-
morphism αX is surjective.
Since HBM

−1 (X \ Y,Z(j)) is zero, the localization sequence shows that the map
β is surjective.
We use the following notation for short: for a scheme Z, we denote SpecO(Z)red
by a(Z).

Lemma 3.5. The diagram

H0
et(a(Y

′),Qℓ/Zℓ(−j)) −−−−→ H0
et(a(X

′),Qℓ/Zℓ(−j))




y





y

H0
et(a(Y ),Qℓ/Zℓ(−j)) −−−−→ H0

et(a(X),Qℓ/Zℓ(−j)),

where the arrows are the pushforward homomorphisms, is cocartesian for every
prime number ℓ 6= p.

Proof. Let X = X ×SpecFq
SpecFq and define Y , X

′
and Y

′
in a similar man-

ner. By [EGAIII-I, (1.4.16.1), p.94], we have a(X) = a(X)×SpecFq
SpecFq and

similarly for Y , X ′, and Y ′. Since j 6= 0, the weight argument shows that the
Gal(Fq/Fq)-coinvariants of any quotient Gal(Fq/Fq)-module and of any divis-

ible Gal(Fq/Fq)-submodule of H0
et(a(Y

′
),Qℓ/Zℓ(−j)) vanish. Hence it suffices

to show that the diagram

H0
et(a(Y

′
),Qℓ/Zℓ(−j)) −−−−→ H0

et(a(X
′
),Qℓ/Zℓ(−j))





y





y

H0
et(a(Y ),Qℓ/Zℓ(−j)) −−−−→ H0

et(a(X),Qℓ/Zℓ(−j))

is cocartesian in the category of Gal(Fq/Fq)-modules and that the kernel

of the homomorphism H0
et(a(Y

′
),Qℓ/Zℓ(−j)) → H0

et(a(X
′
),Qℓ/Zℓ(−j)) ⊕

H0
et(a(Y ),Qℓ/Zℓ(−j)) is divisible. By taking the Pontryagin dual, we prove

that the diagram

H0
et(a(X),Zℓ(j)) −−−−→ H0

et(a(X
′
),Zℓ(j))





y





y

H0
et(a(Y ),Zℓ(j)) −−−−→ H0

et(a(Y
′
),Zℓ(j)),
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where the arrows are the pullback homomorphisms, is cartesian in the category
of Gal(Fq/Fq)-modules and that the cokernel of the homomorphism

(3.1) H0
et(a(X

′
),Zℓ(j))⊕H

0
et(a(Y ),Zℓ(j))→ H0

et(a(Y
′
),Zℓ(j))

is torsion free.
Let Z be a scheme which is of finite type over Fq. Let us write Z = Z ×SpecFq

SpecFq. Then we have an isomorphism

(3.2) H0
et(a(Z),Zℓ(j))

∼= Map(π0(Z),Zℓ)⊗Zℓ
Zℓ(j)

of Gal(Fq/Fq)-modules, which is functorial with respect to pullbacks. It then
follows from Lemma 3.3 that the homomorphism (3.1) has a torsion free cok-
ernel. Hence it suffices to show that the diagram

(3.3)

π0(X) ←−−−− π0(X
′
)

x





x





ϕ

π0(Y )
ψ

←−−−− π0(Y
′
)

is cocartesian in the category of sets.
As X ′ → X is a normalization, it is surjective. As surjectivity is preserved

under base change, the map Y
′
→ Y is surjective, hence ψ is surjective. This

implies that the pushout of the diagram

π0(X
′
)
ϕ
←− π0(Y

′
)
ψ
−→ π0(Y )

is isomorphic to the quotient of π0(X
′
) by the following equivalence relation.

We define a binary relation ∼ on π0(X
′
) as follows. We say x′1 ∼ x′2 if there

exist y′1, y
′
2 ∈ π0(Y

′
) such that x′1 = ϕ(y′1), x

′
2 = ϕ(y′2), and ψ(y

′
1) = ψ(y′2). We

also write ∼ for the equivalence relation on π0(X
′
) generated by the binary

relation above. Let us show that the map φ : π0(X
′
)/ ∼→ π0(X) obtained

from the diagram (3.3) is an isomorphism.

As the étale base change of a normalization, X
′
→ X is a normalization.

Hence π0(X
′
) coincides with the set of irreducible components of X . As a

normalization is a surjective morphism, the map φ is surjective.
Let C1, C2 be two distinct irreducible components of X. We claim that if

C1 ∩ C2 6= ∅ then the classes of C1 and C2 in π0(X
′
)/ ∼ coincide. Let y ∈

C1 ∩C2. Then the local ring OX,y is not an integral domain. Since we chose Y

so that X \ Y is normal, y belongs to Y . One can take y1, y2 ∈ X
′
lying over

y such that yi lies in the same connected component as Ci for each i = 1, 2.

Note that y1, y2 ∈ Y
′
since they both lie over y ∈ Y . Then using the definition

of the equivalence relation above for y1 and y2, we see that C1 ∼ C2.
Let C′

1 and C′
2 be two irreducible components of X. It follows from the discus-

sion above that if they belong to the same connected component, then C′
1 ∼ C

′
2.

This implies the injectivity of φ. This proves the claim. �
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We return to the proof of Lemma 3.4. It follows from Lemma 2.5 and
Lemma 3.5 that the diagram

HBM
−1 (SpecO(Y ′),Z(j)) −−−−→ HBM

−1 (SpecO(X ′),Z(j))




y





y

HBM
−1 (SpecO(Y ),Z(j)) −−−−→ HBM

−1 (SpecO(X),Z(j))

is cocartesian. We saw that γ is surjective. Taking a lift and composing with
β◦(αY )−1 we obtain a mapHBM

−1 (SpecO(X),Z(j))→ HBM
−1 (X,Z(j)). The fact

that the diagram above is cocartesian and some diagram chasing imply that this
map does not depend on the choice of a lift and this map is a homomorphism.
We then see that the homomorphism β factors through the homomorphism

HBM
−1 (Y,Z(j))

αY−−→ HBM
−1 (SpecO(Y ),Z(j))

γ
−→ HBM

−1 (SpecO(X),Z(j)).

This proves that the order of HBM
−1 (X,Z(j)) divides the order of

HBM
−1 (SpecO(X),Z(j)).

Hence αX is an isomorphism. This completes the proof. �

Lemma 3.6. Let U be a nonempty open subscheme of a separated connected
scheme V over SpecFq such that V \ U 6= ∅. Then U is not proper over
SpecFq.

Proof. As V is separated, the diagonal ∆ ⊂ V ×SpecFq
V is closed, hence the

restriction ∆∩ (U ×SpecFq
V ) ⊂ U ×SpecFq

V is closed. The image of this closed
set under the second projection U ×SpecFq

V → V is U , hence it is not closed
in V since V is connected. This shows the structure map U → SpecFq is not
universally closed, hence it is not proper. �

Proof of Theorem 1.1. First suppose d = 1. The claim for X normal and non-
proper follows from Lemmas 2.4 and 2.2. Then the claim for X proper follows
from Lemmas 3.2 and 3.4.
Let us prove the claim for non-proper X . We use induction on the number of
irreducible components n of X . Suppose n = 1. We may without loss of gener-
ality assume X is reduced so that X is integral. Take an open immersion from
X to a connected scheme X ′ of dimension one which is proper over SpecFq such
that the complement X ′ \X is zero dimensional. Let j ∈ {−1,−2}. We have
proved that the pushforward map HBM

−1 (X ′,Z(j)) → HBM
−1 (SpecO(X ′),Z(j))

is an isomorphism. This implies, using Lemma 2.7, that the pushforward map
HBM

−1 (X ′ \X,Z(j))→ HBM
−1 (X ′,Z(j)) is surjective. Hence, by the localization

sequence, we have HBM
−1 (X,Z(j)) = 0.

Suppose n ≥ 2. We take a (non-empty) zero dimensional closed subscheme
Y ⊂ X such that X \ Y = X1

∐

· · ·
∐

Xr (disjoint union of schemes) with the
following properties:

(1) Xi is a connected one dimensional open subscheme of X ,

Documenta Mathematica 20 (2015) 737–752



On Two Higher Chow groups 747

(2) the number of irreducible components of Xi is less than n,
(3) the closure X i of Xi in X equals Xi ∪ Y ,

for each 1 ≤ i ≤ r.
We can for example take as Y the following scheme. Let Y0 be a zero di-
mensional subscheme of X such that the complement X \ Y0 is not con-
nected. We order the set of such Y0’s by inclusion, and let Y be a mini-
mal one with respect to this ordering. Let us check the properties (1)(2)(3).
Let {Xi}1≤i≤r be the set of connected components of X \ Y then (1) holds
true. We have r ≥ 2 by construction. Since the number of irreducible com-
ponents of X equals the sum of the number of irreducible components of the
Xi’s, the property (2) holds true. The closure X i of Xi in X is contained
in Xi ∪ Y by construction. Suppose Xi 6= Xi ∪ Y for some 1 ≤ i ≤ r. Let
y ∈ (Xi ∪ Y ) \ Xi. Then the minimality condition on the construction of Y
implies that X \ (Y \ {y}) = (X1

∐

· · ·
∐

Xr) ∪ {y} is connected. This implies
in particular that y ∈ X i, which is a contradiction, so (3) holds true.
Taking U = Xi and V = Xi in Lemma 3.6, we see that Xi is not proper. By
the non-properness of X (and changing the indexing) we may suppose that X1

is not proper. The localization sequence gives the exact sequence

HBM
0 (X1,Z(j))

ϕ
−→ HBM

−1 (Y,Z(j))→ HBM
−1 (X1,Z(j)).

By the inductive hypothesis, we have HBM
−1 (X1,Z(j)) = 0, hence ϕ is a surjec-

tion. Now use the following localization sequence
r

⊕

i=1

HBM
0 (Xi,Z(j))

ψ
−→ HBM

−1 (Y,Z(j))→ HBM
−1 (X,Z(j))

→
r

⊕

i=1

HBM
−1 (Xi,Z(j)).

Since ϕ is surjective, ψ is surjective. By the inductive hypothesis,
⊕r

i=1H
BM
−1 (Xi,Z(j)) = 0. It follows that HBM

−1 (X,Z(j)) = 0. The claim is
proved in the case d = 1.
Next suppose that d ≥ 2 and X is affine. Let j ∈ {−1,−2}. The localization
sequence gives an exact sequence

lim
−→Y

HBM
−1 (Y,Z(j))→ HBM

−1 (X,Z(j))

→ lim
−→Y

HBM
−1 (X \ Y,Z(j)),

where Y runs over the reduced closed subschemes of X of pure codimension
one. For dimension reasons, we have lim−→Y

HBM
−1 (X \ Y,Z(j)) = 0. Hence by

induction on d, we have HBM
−1 (X,Z(j)) = 0.

Next suppose that d ≥ 2 and X is not proper. Using a similar argument as
above, we are reduced, by induction on the number of irreducible components
of X , to the case where X is integral. Take an open immersion from X to a
connected scheme X ′ of dimension d, which is proper over SpecFq, such that
X is dense in X ′. Take a non-empty affine open subscheme U ⊂ X and set
Y = X ′ \ U . Let us take an algebraic closure Fq of Fq. By [Hart, Chapter

Documenta Mathematica 20 (2015) 737–752



748 Satoshi Kondo and Seidai Yasuda

II, Proposition 3.1, p. 66] and [Hart, Chapter II, Proposition, p. 67] (originally
due to [Go]), for each irreducible component X ′′ of X ′ ×Spec Fq

Spec Fq, we

know that X ′′ \U ×Spec Fq
Spec Fq is connected and is of pure codimension one

in X ′. This shows that Y is of pure codimension one in X ′.
Let us show that Y is connected. Write f : X ′ ×SpecFq

SpecFq → X ′ for the
canonical projection. We note that the map f is surjective, and, as the canon-
ical morphism SpecFq → SpecFq is universally closed by [EGAII, Proposition
(6.1.10)], the map f is a closed map. Let ξ ∈ X denote the generic point of
X . As X is dense in X ′, the closure of ξ in X ′ equals X ′. Take ξ′ ∈ f−1(ξ)
and let X ′′ be an irreducible component of X ′ ×SpecFq

SpecFq that contains
ξ′. Using that an irreducible component is closed, we see that X ′′ contains the
closure in X ′ ×SpecFq

SpecFq of ξ′. Then as f is a closed map, the morphism
f |X′′ : X ′′ → X ′ is surjective. Using the fact above by Goodman, we have that
X ′′ \U ×SpecFq

SpecFq is connected. Then as X ′′ \ (U ×SpecFq
SpecFq) surjects

onto X ′ \ U = Y , we have that Y is connected as the continuous image of a
connected space.
Write X ∩ Y = Z1

∐

· · ·
∐

Zr so that each Zi is connected. We claim that
each Zi is not proper. As X ⊂ X ′ is an open subset, X ∩ Y ⊂ Y is an open
subset of Y , hence each Zi ⊂ Y is an open subset of Y . As Y is connected,

Z
Y

i 6= Zi where Z
Y

i denotes the closure of Zi in Y . This implies that Zi is the

complement of a non-empty closed set, namely Z
Y

i \Zi, of a connected proper

scheme Z
Y

i . It follows from Lemma 3.6 that Zi is not proper.
Let j ∈ {−1,−2}. Since U is affine, from the localization sequence

HBM
−1 (Y ∩X,Z(j))→ HBM

−1 (X,Z(j))→ HBM
−1 (U,Z(j))

it follows by induction on d thatHBM
−1 (X,Z(j)) is zero (to remove the hypothesis

that the schemes in the localization sequence are quasi-projective, we refer to
[Le2, Theorem 1.7, p. 301] and [Ge-Le2, 2.6, p. 60]). This proves the claim for
X not proper.
The claim for X proper follows from Lemmas 3.2 and 3.4. This completes the
proof. �

4. Under Parshin’s conjecture

We assume Parshin’s conjecture in this section and draw some consequences.
Parshin’s conjecture states that for any projective smooth scheme Z over a
finite field, Ha

M(Z,Q(b)) = 0 unless a = 2b. We note that it is a theorem
of Harder for curves (we refer to [Gr, THEOREM 0.5, p.70] for the correct
implication of Harder’s result).

Proposition 4.1. Assume that Parshin’s conjecture holds. Then the statement
in Theorem 1.1 holds true for any j ≤ −1. We also have HBM

i (X,Z(j)) = 0
for i ≤ −2 and j ≤ −1.

We begin with a lemma.
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Lemma 4.2. (1) Let U be a connected scheme of pure dimension d ≥ 1 over
Fq. Then lim

−→V
HBM
i (V,Z(j)) = 0, where V runs over the (non-empty)

open subschemes of U , for i ≤ −1 and j ≤ −1 assuming Parshin’s
conjecture.

(2) Let V be a zero dimensional scheme over Fq. Then HBM
i (V,Z(j)) = 0

for i ≤ −2 and j ≤ −1 assuming Parshin’s conjecture.

Proof. Let K denote the function field of U . If d > i− j, then HBM
i (V,Z(j)) =

CHj(V, i−2j) = CHd−j(V, i−2j). So the limit is CHd−j(SpecK, i−2j), which
equals zero by dimension reason.
Suppose d ≤ i− j. Let V be an open smooth subscheme of U . We proceed as
in the proof of Lemma 2.2. We have

HBM
i (V,Z(j)) = H2d−i

M (V,Z(d − j)) = H2d−i−1
M (V,Q/Z(d− j)),

where the second equality follows from [Ge, Theorem 4.7 ii), p.312] (this
uses Parshin’s conjecture). Since we are in the range d ≤ i − j, we can
use [Ge-Le2, Corollary 1.2, p.56] and [Ge-Le1, Theorem 8.4, p.491] to see

that the quantity above is isomorphic to
⊕

ℓ 6=pH
2d−i−1
et (V,Qℓ/Zℓ(d − j)) ⊕

lim
−→r

Hd+j−i−1(XZar, ν
d−j
r ). The p-part is zero since we are in the range

d ≤ i− j.
We may assume that V is affine. Then H2d−i−1

et (V,Qℓ/Zℓ(d − j)) = 0 for
d − 3 ≥ i since the cohomological dimension of V is d + 1 ([SGA4-3, Exposé
XIV, Théorème 3.1, p.15]). Suppose d ≥ 2. Then the claim follows from this
immediately since i ≤ −1. Suppose d = 1. The vanishing H2

et(V,Qℓ/Zℓ(1 −
j)) = 0 can be shown using the same method as in the proof of Lemma 2.2.
This proves (1). Let V be as in (2). The remaining case is i = −2. We proceed
as in the proof of Lemma 2.2. We have an exact sequence

H1
et(V,Qℓ(−j))→ H1

et(V,Qℓ/Zℓ(−j))→ H2
et(V,Zℓ(−j)).

The third term is zero since V is zero dimensional. We use the Hochschild-
Serre spectral sequence as before. We have E0,1

2 = E1,0
2 = 0 using the weight

argument. The claim then follows. This completes the proof. �

Proof of Proposition 4.1. Suppose i = −1. For the proof of Theorem 1.1 to
work for general i, we need as an input the vanishing of lim−→Y

HBM
−1 (X \Y,Z(j))

(the notation as in the proof of Theorem 1.1), and this is all that we need.
As we have seen in Lemma 4.2 above, the vanishing holds under Parshin’s
conjecture, hence the claim follows if i = −1.
Suppose i ≤ −2. We show by induction on the dimension d that
HBM
i (X,Z(j)) = 0. The case d = 0 is Lemma 4.2(2). Consider the exact

sequence

lim
−→
Y

HBM
i (Y,Z(j))→ HBM

i (X,Z(j))→ lim
−→
Y

HBM
i (X \ Y,Z(j))

where Y runs over closed subschemes of X . By the inductive hypothesis, the
first term is zero, and the third term is zero by Lemma 4.2(1). �
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For fixed (i, j), we only need to assume Parshin’s conjecture for projective
smooth schemes of dimension (less than or equal to) i− j. Theorem 1.1 treats
the cases (i, j) = (−1,−1) and (−1,−2). Hence we can use Harder’s result and
need not assume Parshin’s conjecture.

Remark 4.3. For this remark, we do not use Parshin’s conjecture. Let us
define and compute the étale Borel-Moore (not motivic) homology groups for
a scheme X separated and of finite type over Fq in the same range as that of
Proposition 4.1. We will see that the étale Borel-Moore homology groups and
the Borel-Moore motivic homology groups are isomorphic in this range. Let
ℓ be a prime number prime to p. We define the étale Borel-Moore homology
group to be

HBM,et
i (X,Z/ℓn(j)) = H−i

et (X,Rf
!(Z/ℓn(−j)))

for i, j ∈ Z and n ≥ 1. Since this is isomorphic to

HomZ/ℓn(H
i+1
et,c (X,Z/ℓ

n(−j)),Z/ℓn),

we set

HBM,et
i (X,Zℓ(j)) = HomQℓ/Zℓ

(Hi+1
et,c (X,Qℓ/Zℓ(−j)),Qℓ/Zℓ).

Then it is easy to see that a statement similar to the one in Proposition 4.1
holds for étale Borel-Moore (not motivic) homology groups with Zℓ-coefficient.

Namely, we have HBM,et
i (X,Zℓ(j)) = 0 for i ≤ −2, and, for X connected and

for i = −1, the pushforward by the structure morphism is an isomorphism if

X is proper, and HBM,et
−1 (X,Zℓ(j)) = 0 otherwise.
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séminaire dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec
la collaboration de P. Deligne, B. Saint-Donat. Tome 3. Exposés IX
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