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Abstract. The algebraic K-theory of Waldhausen ∞-categories is
the functor corepresented by the unit object for a natural symmetric
monoidal structure. We therefore regard it as the stable homotopy
theory of homotopy theories. In particular, it respects all algebraic
structures, and as a result, we obtain the Deligne Conjecture for this
form of K-theory.
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0. Introduction

Dan Kan playfully described the theory of ∞-categories as the homotopy theory
of homotopy theories. The aim of this paper, which is a sequel to [2], is to show
that algebraic K-theory is the stable homotopy theory of homotopy theories,
and it interacts with algebraic structures accordingly. To explain this assertion,
let’s recap the contents of [2].

0.1. The kinds of homotopy theories under consideration in this paper are
Waldhausen ∞-categories [2, Df. 2.7]. (We employ the quasicategory model of
∞-categories for technical convenience.) These are ∞-categories with a zero
object and a distinguished class of morphisms (called cofibrations or ingressive
morphisms) that satisfies the following conditions.

(0.1.1) Any equivalence is ingressive.
(0.1.2) Any morphism from the zero object is ingressive.
(0.1.3) Any composite of ingressive morphisms is ingressive.
(0.1.4) The (homotopy) pushout of an ingressive morphism along any mor-

phism exists and is ingressive.
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A pushout of a cofibration X Y along the map to the zero object is to be
viewed as a cofiber sequence

X Y Y/X.

Examples of this structure abound: pointed ∞-categories with all finite colimits,
exact categories in the sense of Quillen, and many categories with cofibrations
and weak equivalences in the sense of Waldhausen all provide examples of
Waldhausen ∞-categories.
Write Wald∞ for the ∞-category whose objects are Waldhausen ∞-categories
and whose morphisms are functors that are exact in the sense that they preserve
the cofiber sequences. This is a compactly generated ∞-category [2, Pr. 4.7]
that admits direct sums [2, Pr. 4.6].

0.2. We will be interested in invariants that split cofiber sequences in Wald-
hausen ∞-categories. To make this precise, for any Waldhausen ∞-category C,
let E(C) denote the ∞-category of cofiber sequences

X Y Y/X.

This is a Waldhausen ∞-category [2, Pr. 5.11] in which a morphism

U V V/U

X Y Y/X

is ingressive just in case each of

U X , V Y , and V/U Y/X

is ingressive. We have an exact functor m : E(C) C defined by the assign-
ment

[X Y Y/X ] Y.

We also have an exact functor i : C ⊕ C E(C) defined by the assignment

(X,Z) [X X ∨ Z Z]

as well as a retraction r : E(C) C ⊕ C defined by the assignment

[X Y Y/X ] (X,Y/X).

0.3. Now let S denote the ∞-category of spaces. The homotopy theory
Dfiss(Wald∞) constructed in [2, §6] has the property that homology theories
(i.e., reduced, 1-excisive functors)

Dfiss(Wald∞) S

are essentially the same data [2, Th. 7.4] as functors φ : Wald∞ S with the
following properties.

(0.3.1) φ is finitary in the sense that it preserves filtered colimits.
(0.3.2) φ is reduced in the sense that φ(0) = ∗.
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(0.3.3) φ splits cofiber sequences in the sense that the exact functor r induces
an equivalence

φ(E(C)) ∼ φ(C) × φ(C).

(0.3.4) φ is grouplike in the sense that the multiplication

φ(m ◦ i) : φ(C) × φ(C) ≃ φ(E(C)) φ(C)

defines a grouplike H-space structure on φ(C).

Dfiss(Wald∞) is called the fissile derived ∞-category of Waldhausen ∞-
categories, and its objects are called fissile virtual Waldhausen ∞-categories. It
is possible to be quite explicit about these objects: fissile virtual Waldhausen
∞-categories are functors Waldop

∞ S that satisfy the dual conditions to
(0.3.1–3). The homotopy theory Dfiss(Wald∞) is compactly generated and it
admits all direct sums; furthermore, suspension in Dfiss(Wald∞) is given by
the geometric realization of Waldhausen’s S• construction [2, Cor. 6.9.1].

0.4. From any finitary reduced functor F : Dfiss(Wald∞) S one may extract
the Goodwillie differential P1F , which is the nearest excisive approximation to
F , or, in other words, the best approximation to F by a homology theory [7].
This approximation is given explicitly by the colimit of the sequence

F Ω ◦ F ◦ Σ · · · Ωn ◦ F ◦ Σn · · · .

Since P1F is excisive, it factors naturally through the functor Ω∞ : Sp S.
Consequently, for any fissile virtual Waldhausen ∞-category X , we obtain a
homology theory

P1F (X) : S∗ S.

Unwinding the definitions, we find that this homology theory is itself the Good-
willie differential of the functor

T F (T ⊗X),

where ⊗ denotes the tensor product

S∗ ×Dfiss(Wald∞) Dfiss(Wald∞)

guaranteed by the identification of presentable pointed ∞-categories with mod-
ules over S∗ [10, Pr. 6.3.2.11].

0.5. The main result of [2, §10] can now be stated as follows. We have a Wald-
hausen ∞-category Fin∗ of pointed finite sets, in which the cofibrations are
injective (pointed) maps; if I : Dfiss(Wald∞) S denotes evaluation at Fin∗

(so that I(X) = X(Fin∗)), then algebraic K-theory may be identified as

K ≃ P1I.

This gives a “local” universal property for algebraic K-theory: for any fissile vir-
tual Waldhausen ∞-category X , the homology theory K(X) is the Goodwillie
differential of the functor

T I(T ⊗X).
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Our version of Waldhausen’s Additivity Theorem states that this differential
only requires a single delooping: K(X) is simply the homology theory S∗ S

given by

T ΩI(ΣT ⊗X),

or, equivalently, since suspension in Dfiss(Wald∞) is given by Waldhausen’s S•

construction, the assignment

T ΩI(T ⊗ S•(X)),

0.6. In this paper, we construct (Pr. 1.9) a symmetric monoidal structure on
Wald∞ in which the tensor product C ⊗D represents “bi-exact” functors

C ×D E,

i.e., functors that preserve cofiber sequences separately in each variable. The
unit therein is simply the Waldhausen ∞-category Fin∗. We then descend this
symmetric monoidal structure to one on Dfiss(Wald∞) with the property that
it preserves colimits separately in each variable (Pr. 2.5).
Now the functor represented by Fin∗ is the unit for the Day convolution sym-
metric monoidal structure constructed by Saul Glasman [6] on the ∞-category
of functors from Dfiss to spaces. Its differential — i.e., algebraic K-theory —
is therefore the unit among homology theories on Dfiss(Wald∞). That is, it
plays precisely the same role among homology theories on Dfiss(Wald∞) that
is played by the sphere spectrum in the ∞-category of spectra. It therefore has
earned the mantle the stable homotopy theory of homotopy theories.
Just as one may describe the stable homotopy groups of a pointed space X as
Ext groups out of the unit:

πsn(X) ∼= Ext−n(Σ∞S0,Σ∞X)

in the stable homotopy category, so too may one describe the algebraic K-
theory groups of a Waldhausen ∞-category C as Ext groups out of the unit:

Kn(C) ∼= Ext−n(Σ∞Fin∗,Σ
∞C)

in the stable homotopy category of Waldhausen ∞-categories.

0.7. Algebraic K-theory is therefore naturally multiplicative, and so it inherits
homotopy-coherent algebraic structures on Waldhausen ∞-categories. That is,
we show (Cor. 3.8.2) that if an ∞-operad O acts on a Waldhausen ∞-category
C via functors that are exact separately in each variable, then there is an
induced action of O on both the space K(C) and the spectrum K(C). As a
corollary (Ex. 3.9), we deduce that for any 1 ≤ n ≤ ∞, the algebraic K-theory
of an En-algebra in a suitable symmetric monoidal ∞-category is an En−1 ring
spectrum. In particular, we note that the K-theory of an En ring is an En−1

ring, and the A-theory of any n-fold loopspace is an En−1 ring spectrum. These
sorts of results are K-theoretic analogues of the so-called (homological) Deligne
Conjecture [11, 8].
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0.8. In fact, the main result (Th. 3.6) is much more general: we actually show
that any additive theory that can be expressed as the additivization of a mul-
tiplicative theory is itself multiplicative in a canonical fashion. This yields a
uniform way of reproducing conjectures “of Deligne type” for theories that are
both additive and multiplicative.
Of course since algebraic K-theory is the stable homotopy theory of Wald-
hausen ∞-categories, it is initial as a theory that is both additive and multi-
plicative. The sphere spectrum is the initial E∞ object of the stable ∞-category
of spectra; similarly, the object of the stable ∞-category of Waldhausen ∞-
categories that represents algebraic K-theory is the initial E∞ object. Just as
the universal property of algebraic K-theory [2] gives a uniform construction
of trace maps, this result gives a uniform construction of multiplicative trace
maps — in particular, any additive and multiplicative theory accepts a unique
(up to a contractible choice) multiplicative trace map (Th. 3.13).
The passage to higher categories is a sine qua non of this result. Indeed, note
that when n ≥ 3, an En structure on an ordinary category is tantamount to
a symmetric monoidal structure. As a result, it is difficult to identify, e.g., E3

structures on the K-theory spectrum of an E4-algebra without employing some
higher categorical machinery.

0.9. Remark. Note that the form of algebraic K-theory we study has an ex-
ceptionally strong compatibility with the tensor product. For example, the
Barratt–Priddy–Quillen–Segal theorem implies the endomorphism spectrum
End(Σ∞Fin∗) is the sphere spectrum. That is, the form of algebraic K-theory
studied here is strongly unital. This is of course false for any form of alge-
braic K-theory that applies only to Waldhausen ∞-categories in which every
morphism is ingressive. We intend to return to this observation in future work.

0.10. Remark. The heart of the proof is to use the description of K-theory as
a Goodwillie differential. The result actually follows from a quite general fact
about the interaction between the Goodwillie calculus and symmetric mon-
oidal structures. Namely, the Goodwillie differential of a multiplicative functor
between suitable symmetric monoidal ∞-categories inherits a canonical multi-
plicative structure. This fact, which may be of independent interest, doesn’t
seem to be recorded anywhere in the literature. So we do so in this paper (Pr.
3.5).

0.11. Remark. Some variants of some of these results can be found in the
literature.
Elmendorf and Mandell [5] constructed an algebraic K-theory of multicate-
gories, which the show is lax monoidal as a functor to symmetric spectra. Con-
sequently, they deduce that any operad that acts on a permutative category
will also act on its K-theory.
In later work of Blumberg and Mandell [4, Th. 2.6], it is shown that the K-
theory of an ordinary Waldhausen category equipped with an action of a cate-
gorical operad inherits an action of the nerve of that operad.
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In independent work, Blumberg, Gepner, and Tabuada [3] have proved that
algebraic K-theory is initial among additive and multiplicative functors from
an ∞-category of idempotent complete stable ∞-categories. (They used this
to uniquely characterize the cyclotomic trace.) The result here shows that al-
gebraic K-theory is initial among additive and multiplicative functors on all
Waldhausen ∞-categories.

0.12. Remark. Finally, let’s emphasize that work of Saul Glasman [6] made
it possible for me to sharpen the results of this paper significantly. Previous
versions of this paper did not contain the full strength of the universality of
algebraic K-theory as an additive and multiplicative theory.

1. Tensor products of Waldhausen ∞-categories

The first thing we need to understand is the symmetric monoidal structure
on the ∞-category of Waldhausen ∞-categories. As in [2, §4], we will regard
Wald∞ as formally analogous to the nerve of the ordinary category V (k) of
vector spaces over a field k. The tensor product V ⊗ W of vector spaces is
defined as the vector space that represents multilinear maps V ×W X ,
i.e., maps that are linear separately in each variable. In perfect analogy with
this, the tensor product C ⊗D of Waldhausen ∞-categories is defined as the
Waldhausen ∞-category that represents functors C ×D E that are exact
separately in each variable.

1.1. Notation. Let Λ(F) denote the following ordinary category. The objects
will be finite sets, and a morphism J I will be a map J I+; one composes
ψ : K J+ with φ : J I+ by forming the composite

K
ψ

J+
φ+

I++
µ

I+,

where µ : I++ I+ is the map that simply identifies the two added points.
(Of course Λ(F) is equivalent to the category Fin∗ of pointed finite sets, but
we prefer to think of the objects of Λ(F) as unpointed. This is the natural
perspective on this category from the theory of operator categories [1].)
For any morphism φ : J I of Λ(F) and any i ∈ I, write Ji for the fiber
φ−1({i}).

1.2. One way to write down a symmetric monoidal ∞-category [10, Ch. 2] is
to give the data of the space of maps out of any tensor product of any finite
collection of objects. More precisely, a symmetric monoidal ∞-category is a
cocartesian fibration p : C⊗ NΛ(F) such that for any finite set I, the
various maps χi : I {i}+ such that χ−1

i ({i}) = {i} together specify an
equivalence of ∞-categories

C⊗
I

∼
∏

i∈I

C⊗
{i}.

The objects of C⊗ are, in effect, (I,XI) consisting of a finite set I and a
collection XI = {Xi}i∈I of objects of C. Morphisms (J, YJ) (I,XI) of C⊗
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are essentially pairs (ω, φI) consisting of morphisms ω : J I of Λ(F) and
families of morphisms







φi :
⊗

j∈Ji

Yj Xi







i∈I

.

1.3. Example. For any ∞-category that admits all finite products, there is a
corresponding symmetric monoidal ∞-category C× called the cartesian sym-
metric monoidal ∞-category.

We will be particularly interested in identifying a suitable subcategory of the ∞-
category Pair×∞, where Pair∞ denotes the ∞-category of pairs of ∞-categories
[2, Df. 1.11].

1.4. Definition. Suppose I a finite set, and suppose CI := (Ci)i∈I an I-tuple
of Waldhausen ∞-categories. For any Waldhausen ∞-category D, a functor of
pairs

∏

CI D is said to be exact separately in each variable if, for any
element i ∈ I and any collection of objects (Xj)j∈I\{i} ∈

∏

CI\{i}, the functor

Ci ∼= Ci ×
∏

j∈I\{i}

{Xj}
∏

CI D

carries cofibrations to cofibrations and is exact as a functor of pairs between
Waldhausen ∞-categories.

1.5. Note that we do not assume the cubical cofibrancy criterion that appears in
Blumberg–Mandell [4, Df. 2.4]. It seems that the authors of this paper required
it to guarantee a compatibility with the “all at once” iterated S• construction.
We will not use such a construction here; the only compatibility we will need
to find with the S• construction is Pr. 2.3, which deals with one tensor factor
at a time.

1.6. Notation. Denote by Wald⊗
∞ ⊂ Pair×∞ the following subcategory. The

objects of Wald⊗
∞ are those objects (I, CI), where for any i ∈ I, the pair Ci

is a Waldhausen ∞-category. A morphism (J,DJ) (I, CI) of Pair×∞ is a
morphism of Wald⊗

∞ if and only if, for every element i ∈ I, the functor
∏

DJi
Ci

is exact separately in each variable.

We now identify the tensor product of Waldhausen ∞-categories.

1.7. Lemma. Suppose I a finite set, and suppose CI := (Ci)i∈I an I-tuple of
Waldhausen ∞-categories. Then there exist a Waldhausen ∞-category

⊗

CI
and a functor of pairs

f :
∏

CI
⊗

CI

such that for every Waldhausen ∞-category D, composition with f induces an
equivalence between the ∞-category FunWald∞

(
⊗

CI , D) and the full subcat-

egory of FunPair∞(
∏

CI , D) spanned by the functors of pairs that are exact
separately in each variable.
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Proof. We construct
⊗

CI as a colimit in Wald∞ in the following manner.
First, recall that the forgetful functor Wald∞ Cat∞ admits a left adjoint

W . Consider the pushout K = (I ×∆1) ∪I×∆{0}

(I ×∆{0})✄ and the obvious
functor

F : K Wald∞

that carries each object of the form (i, 0) to the coproduct
∐

(Xj)j∈I\{i}∈
∏

j∈I\{i} Cj

W (Ci),

each object of the form (i, 1) to the coproduct
∐

(Xj)j∈I\{i}∈
∏

j∈I\{i} Cj

Ci,

and the cone point +∞ to W (
∏

i∈I Ci). Now the desired Waldhausen ∞-
category

⊗

CI can be constructed as the colimit of F . �

1.8. The construction of this proof is of course the natural analogue of the
construction of tensor products of abelian groups. From this description, it is
clear that when I = ∅, then the Waldhausen ∞-category ⊗0 ≃ W (∆0) ≃
NFin∗, the nerve of the ordinary category of finite pointed sets, in which the
cofibrations are the monomorphisms.

1.9. Proposition. The functor Wald⊗
∞ NΛ(F) is a symmetric monoidal

∞-category.

Proof. We first claim that the functor p : Wald⊗
∞ NΛ(F) is a cocartesian

fibration; it is an inner fibration because Wald⊗
∞ is an ∞-category [9, Pr. 2.3.1.5].

Now suppose φ : J I an edge of NΛ, and suppose DJ a J-tuple of pairs of
∞-categories. We want to find a p-cocartesian edge of Pair⊗∞ covering φ. For
this, for any i ∈ I, consider a pair

⊗

DJi
along with a functor

∏

DJi

⊗

DJi

satisfying the property described in Lemma 1.7. These fit together to yield a
morphism

(J,DJ)

(

I,
(

⊗

DJi

)

i∈I

)

of Wald⊗
∞ covering φ. The property described in Lemma 1.7 guarantees that

this a locally p-cocartesian edge of Wald⊗
∞, so p is a locally cocartesian fibration.

Now to conclude that p is a cocartesian fibration, it is enough to note that for
any 2-simplex

(K,EK) (I, CI),

(J,DJ)

h

g f

if f and g are locally p-cocartesian edges, then so is h; this follows directly from
our construction of

⊗

CI . �
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1.10. Proposition. The tensor product functor

⊗ : Wald∞ × Wald∞ Wald∞

preserves filtered colimits and direct sums separately in each variable.

Proof. Suppose C a Waldhausen ∞-category. We will show that the endofunc-
tor −⊗ C preserves filtered colimits and direct sums.
Suppose Λ a filtered simplicial set, and suppose D : Λ✄ Wald∞ a colimit
diagram. Since filtered colimits in Wald∞ are preserved under the forgetful
functor Wald∞ Pair∞, it follows that for any Waldhausen ∞-category A,
there is an equivalence of ∞-categories

FunPair∞ (D+∞ × C,A) ∼ lim
α∈Λ

FunPair∞
(Dα × C,A).

To show that the tensor product preserves filtered colimits separately in
each variable, it remains to note that, under this equivalence, a functor
D+∞ × C A that is exact separately in each variable correspond to com-
patible families of functors Dα × C A that are exact separately in each
variable.
Note that if 0 is the zero Waldhausen ∞-category, then for any Waldhausen ∞-
category A, any functor 0× C A that is exact separately in each variable is
essentially constant, whence 0⊗C ≃ 0. Moreover, if D and D′ are Waldhausen
∞-categories, then the two inclusions

D × C (D ⊕D′)× C and D′ × C (D ⊕D′)× C

given by (y, x) (y, 0, x) and (y′, x) (0, y′, x) together induce a functor

FunPair∞((D ⊕D′)× C,A)

FunPair∞(D × C,A) × FunPair∞(D′ × C,A).

On the other hand, the coproduct induces a functor

FunPair∞(D × C,A) × FunPair∞(D′ × C,A)

FunPair∞((D ⊕D′)× C,A).

It is not hard to see that these functors carry (pairs of) functors that are exact
in each variable separately to (pairs of) functors that are exact in each variable
separately. Moreover, if F : (D ⊕D′)× C A is exact separately in each
variable, then

F ≃ F |D×C ∨ F |D′×C ,

and if G : D × C A and G′ : D′ × C A are each exact separately in each
variable, then

G ≃ (G ∨G′)|D×C and G′ ≃ (G ∨G′)|D′×C .
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Hence these two functors exhibit an equivalence

(D ⊕D′)⊗ C ≃ (D ⊗ C)⊕ (D′ ⊗ C),

as desired. �

1.11. For any integer m ≥ 0 and any Waldhausen ∞-category C, write mC for
the iterated direct sum C⊕· · ·⊕C, and write Cm for the iterated tensor product
C⊗· · ·⊗C. It follows from the previous proposition that we may form “polyno-
mials” in Waldhausen ∞-categories (with coefficients in the natural numbers),
and the usual formulas hold, such as

(C ⊗D)m ≃

m
⊕

i=0

(

m

i

)

Ci ⊗Dm−i.

1.12. There is a natural generalization [10, Df. 2.1.1.10] of the notion of a sym-
metric monoidal ∞-category to that of an ∞-operad. This is an inner fibration
p : O⊗ NΛ(F) satisfying properties that ensure that the objects of O⊗ are,
in effect, pairs (I,XI) consisting of a finite set I and a collection XI = {Xi}i∈I
of objects of O⊗

{∗}, and that morphisms (J, YJ ) (I,XI) of C⊗ are essentially

determined by pairs (ω, φI) consisting of morphisms ω : J I of Λ(F) and
families of “multi-morphisms”

{φi : YJi
Xi}i∈I .

An O⊗-algebra in a symmetric monoidal ∞-category is simply a morphism of
∞-operads [10, Df. 2.1.2.7].

1.13. Definition. For any ∞-operad O⊗, an O⊗-monoidal Waldhausen ∞-
category is an O⊗-algebra in Wald⊗

∞.

1.14. Example. In particular, a monoidal Waldhausen ∞-category is simply an
O⊗-monoidal Waldhausen ∞-category, where O⊗ is the associative ∞-operad
[10, Df. 4.1.1.3]. Similarly, a symmetric monoidal Waldhausen ∞-category will
be a O⊗-monoidal Waldhausen ∞-category, where O⊗ is the commutative ∞-
operad [10, Ex. 2.1.1.18].

1.15. Example. Suppose that Φ is a perfect operator category [1], and suppose
that X NΛ(Φ) is a pair cocartesian fibration such that for any object I of
Λ(Φ), the inert morphisms I {i} induce an equivalence of pairs

XI
∼

∏

i∈|I|

X{i}.

Then we might call X a Φ-monoidal Waldhausen ∞-category if, for any object
I of Λ(Φ), the pair XI is a Waldhausen ∞-category, and the morphism

∏

i∈|I|

X{i} ≃ XI X{ξ}

induced by the unique active morphism I {ξ} is exact separately in each
variable. One may show that this notion is essentially equivalent to the notion
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of U⊗
Φ -monoidal Waldhausen ∞-category, where U⊗

Φ is the symmetrization of

the terminal ∞-operad over Φ. In particular, an O
(n)-monoidal Waldhausen

∞-category is essentially the same thing as an En-monoidal Waldhausen ∞-
category.

2. Tensor products of virtual Waldhausen ∞-categories

The derived ∞-categoryD≥0(k) of complexes of vector spaces over a field k with
vanishing negative homology inherits a symmetric monoidal structure from the
ordinary category of vector spaces. In precisely the same manner, the derived
∞-category of Waldhausen ∞-categoriesD(Wald∞) — which is the ∞-category
of functors Waldop

∞ S that preserve all filtered limits and all finite products
[2, Nt. 4.10] — inherits a symmetric monoidal structure from Wald∞.

2.1. Proposition. There exists a symmetric monoidal ∞-category
D(Wald∞)⊗ and a fully faithful symmetric monoidal functor
Wald⊗

∞ D(Wald∞)⊗ with the following properties.

(2.1.1) The underlying ∞-category of D(Wald∞)⊗ is the ∞-category
D(Wald∞) of virtual Waldhausen ∞-categories, and the underlying
functor is the inclusion Wald∞ D(Wald∞).

(2.1.2) For any symmetric monoidal ∞-category E⊗ whose underlying ∞-
category admits all sifted colimits, the induced functor

FunNFin∗(D(Wald∞), E) FunNFin∗(Wald∞, E)

exhibits an equivalence from the full subcategory of spanned
by those morphisms of ∞-operads A whose underlying functor
A : D(Wald∞) E preserves sifted colimits to the full subcate-
gory of spanned by those morphisms of ∞-operads B whose underlying
functor B : Wald∞ E preserves filtered colimits.

(2.1.3) The tensor product functor ⊗ : D(Wald∞)×D(Wald∞) D(Wald∞)
preserves all colimits separately in each variable.

Proof. The only part that is not a consequence of [10, Pr. 6.3.1.10 and Var.
6.3.1.11] is the assertion that the tensor product functor

⊗ : D(Wald∞)×D(Wald∞) D(Wald∞)

preserves direct sums separately in each variable. Pr. 1.10 states that this holds
among Waldhausen ∞-categories; the general case follows by exhibiting all the
virtual Waldhausen ∞-categories as colimits of simplicial diagrams of Wald-
hausen ∞-categories and using the fact that both the tensor product and the
direct sum commute with sifted colimits. �

Since our goal is to study multiplicative structures on additive theories, we
should see to it that the symmetric monoidal structure on the derived ∞-
category of Waldhausen ∞-categories gives rise to one on the fissile derived
∞-category described in the introduction 0.3. It is not the case that the tensor
product of two fissile virtual Waldhausen ∞-categories is still fissile; however,
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Dfiss(Wald∞) is the accessible localization of D(Wald∞) with respect to the set
of morphisms

{i : C ⊕ C E(C) | C ∈ Waldω∞} ,

where i is the functor defined in 0.2. We can therefore ask whether the local-
ization functor is compatible with the resulting localization functor

Lfiss : D(Wald∞) Dfiss(Wald∞).

That is, we wish to show that the assignment

(X,Y ) Lfiss(X ⊗ Y );

defines a symmetric monoidal structure on Dfiss(Wald∞).

2.2. Construction. The symmetric monoidal ∞-category D(Wald∞)⊗ can
be described in the following manner. An object (I,XI) thereof is a finite set I
and an I-tuple of virtual Waldhausen ∞-categoriesXI := (Xi)i∈I . A morphism
(J, YJ ) (I,XI) is a morphism J I of Λ(F) along with the data, for every
element i ∈ I, of a functor of pairs

⊗

YJi
Xi.

We denote by Dfiss(Wald∞)⊗ the full subcategory of D(Wald∞)⊗ spanned by
those objects (I,XI) such that for every i ∈ I, Xi is a distributive virtual
Waldhausen ∞-category.

2.3. Lemma. The localization functor Lfiss on D(Wald∞) of [2, Pr. 6.7] is
compatible with the symmetric monoidal structure on D(Wald∞) is the sense
of [10, Df. 2.2.1.6].

Proof. As in [10, Ex. 2.2.1.7], our claim is that for any Lfiss-equvalence U V
and any virtual Waldhausen ∞-category Z, the morphism U ⊗ Z V ⊗ Z is
an Lfiss-equivalence. Since the tensor product preserves all colimits separately
in each variable, we may assume that Z is a compact Waldhausen ∞-category
D. Furthermore, since the set of Lfiss-equivalences is generated as a strongly
saturated class by the set of maps of the form

i : C ⊕ C E(C)

in which C is compact, we may assume that U V is of this form. Our claim
is thus that for any compact Waldhausen ∞-categories C and D, the map

i⊗ idD : (C ⊕ C)⊗D E(C)⊗D

is a Lfiss-equivalence. We have a retraction

r ⊗ idD : E(C)⊗D (C ⊕ C)⊗D

of this map, and the composition E(C)⊗D E(C) ⊗D is given by the
multi-exact functor that carries a pair (S T T/S,X) to the “simple
tensor”

(S S ∨ (T/S) T/S)⊗X.
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That is, the composition E(C)⊗D E(C)⊗D is given by the direct sum
of the functor

(S T T/S,X) (S S 0)⊗X

and the functor

(S T T/S,X)
(S T T/S)⊗X

(S S 0)⊗X
.

But in Dfiss(Wald∞), this is homotopic to the identity. �

2.4. Note that as a corollary, we find that, for any integer m ≥ 0, we obtain
Lfiss-equivalences

Fm(C)⊗D ≃ mC ⊗D ≃ Fm(C ⊗D),

where Fm(C) is the Waldhausen ∞-category of filtered objects
X0 · · · Xm [2, Nt. 5.5]. Consequently, we obtain an Lfiss-equivalence

Fm(C) ≃ Fm(NFin∗)⊗ C.

This observation yields another way to think about the suspension functor in
Dfiss(Wald∞). Just as suspension is smashing with a circle in the homotopy
theory of spaces, we have

ΣC ≃ S(C) ≃ S(NFin∗ ⊗ C) ≃ S(NFin∗)⊗ Lfiss(C)

in Dfiss(Wald∞). Here the fissile virtual Waldhausen ∞-category S(NFin∗) is
playing the role of a circle. The algebraicK-theory of a Waldhausen ∞-category
C can thus be described as the space

ΩIS(C) ≃ ΩIS(NFin∗ ⊗ C) ≃ ΩI(S(NFin∗)⊗ Lfiss(C)),

where I is the left derived functor of ι. More generally, for any pre-additive
theory φ, the additivization Dφ can be computed by the formula

Dφ(C) ≃ ΩΦS(C) ≃ ΩΦS(NFin∗ ⊗ C) ≃ ΩΦ(S(NFin∗)⊗ Lfiss(C)),

where Φ is the left derived functor of φ.

2.5. Proposition. The functor Dfiss(Wald∞)⊗ NΛ(F) is a symmetric
monoidal ∞-category with the property that the tensor product

⊗ : Dfiss(Wald∞)×Dfiss(Wald∞) Dfiss(Wald∞)

preserves all colimits separately in each variable.

Proof. That Dfiss(Wald∞)⊗ is symmetric monoidal follows from [10, Pr. 2.2.1.9].
Observe that the functor

⊗ : Dfiss(Wald∞)×Dfiss(Wald∞) Dfiss(Wald∞)

can be identified with the functor given by the assignment

(X,Y ) Lfiss(X ⊗ Y );

hence it follows from [2, Cor. 6.7.2] it preserves colimits in each variable. �
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2.6. Construction. The stabilization

Sp(Dfiss(Wald∞))

of the fissile derived ∞-category Dfiss(Wald∞) inherits a canonical symmet-
ric monoidal structure Sp(Dfiss(Wald∞))⊗, given by applying the symmetric
monoidal functor

L⊗ : PrL,⊗ PrL,⊗St

induced by the localization L = Sp⊗− of [10, Pr. 6.3.2.17] to the presentable ∞-
categoryDfiss(Wald∞). By construction, the tensor product functor ⊗ preserves
colimits separately in each variable. Furthermore, the functor

Σ∞ : Dfiss(Wald∞) Sp(Dfiss(Wald∞))

is symmetric monoidal.
We call the ∞-category Sp(Dfiss(Wald∞)) the stable ∞-category of Waldhausen
∞-categories, and we call its homotopy category hSp(Dfiss(Wald∞)) the stable
homotopy category of Waldhausen ∞-categories.
Note that Sp(Dfiss(Wald∞)) is equivalent to the full subcategory of the ∞-
category Fun(Waldω,op∞ , Sp) spanned by those functors X : Waldω,op∞ Sp
such that for any compact Waldhausen ∞-category C, the morphisms induced
by the exact functor i : C ⊕ C E(C) exhibits X(E(C)) as the direct sum
of X(C) and X(C).

2.7. Observe that the K-groups of a Waldhausen ∞-category C are given by
Ext groups in the stable homotopy category of Waldhausen ∞-categories. In-
deed, just as one may describe the stable homotopy groups of a pointed space
X as Ext groups out of the sphere spectrum:

πsn(X) ∼= Ext−nSp(Σ
∞S0,Σ∞X),

so too may one describe the algebraic K-theory groups of a Waldhausen ∞-
category C as Ext groups out of the suspension spectrum of Fin∗:

Kn(C) ∼= Ext−nSp(Dfiss(Wald∞))
(Σ∞Fin∗,Σ

∞C).

3. Multiplicative theories

Now we are in a position to study theories that are compatible with the mon-
oidal structure on Waldhausen ∞-categories.

3.1. Recall [2, Df. 7.1] that for any ∞-topos E, an E-valued theory is a reduced
functor

φ : Wald∞ E

that preserves filtered colimits.

3.2. Definition. Suppose E an ∞-topos. A multiplicative theory valued in E
is a morphism of ∞-operads

φ⊗ : Wald⊗
∞ E×
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such that the underlying functor φ : Wald∞ E preserves all filtered colim-
its and carries the zero object to the terminal object. We will say that the
multiplicative theory φ⊗ extends the theory φ.
We denote by

Thy⊗(E) ⊂ FunNΛ(F)(Wald⊗
∞, E

×)

the full subcategory spanned by the multiplicative theories, and we denote by
Add⊗(E) the full subcategory spanned by those multiplicative theories such
that the underlying theory Wald∞ E is additive.

3.3. It follows from Pr. 2.1 that any multiplicative theory

φ⊗ : Wald⊗
∞ E×

can be extended to a reduced functor Φ⊗ : D(Wald∞)⊗ E× of ∞-operads
such that the underlying functor D(Wald∞) E∗ preserves sifted colimits.
This is the multiplicative left derived functor of φ⊗.

3.4. Example. The theory ι : Wald∞ Kan [2, Nt. 1.7] can be extended
to a multiplicative theory ι⊗ in the following manner. The right adjoint
Cat∞ Kan of the inclusion can be given the structure of a symmetric
monoidal functor

Cat×∞ Kan×

for the cartesian symmetric monoidal structures in an essentially unique man-
ner. The desired morphism ι⊗ : Wald⊗

∞ Kan× of ∞-operads is now the
composite

Wald⊗
∞ Pair×∞ Cat×∞ Kan×.

We now wish to show that additivizations of multiplicative theories are natu-
rally multiplicative (Th. 3.6). Since additivizations are constructed via Good-
willie differentials, we will prove a general result about these. What follows
is surely not the most general result one can prove, but it’s enough for our
purposes.

3.5. Proposition. Suppose C⊗ and D⊗ symmetric monoidal ∞-categories.
Suppose that the underlying ∞-category D is presentable, and suppose that the
underlying ∞-category C is small and that it admits a terminal object and all
finite colimits. Finally, assume that C⊗ is compatible with all finite colimits,
and assume that D⊗ is compatible with all colimits. Then the inclusion

Exc(C,D) ×Fun(C,D) AlgC⊗(D⊗) AlgC⊗(D⊗)

admits a left adjoint.

Proof A. The Adjoint Functor Theorem [9, Cor. 5.5.2.9] and the existence of
excisive approximation [10, Th. 7.1.10] implies that Exc(C,D) ⊂ Fun(C,D) is
stable under both limits and κ-filtered colimits for some regular cardinal κ. The
fiber product

Exc(C,D) ×Fun(C,D) AlgC⊗(D⊗)

can be identified with the full subcategory of AlgC⊗(D⊗) spanned by those
functors F⊗ : C⊗ D⊗ over NΛ(F) with the property that the underlying
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functor F : C D is excisive. It now follows from [10, Cor. 3.2.2.5 and Pr.
3.2.3.1(4)] that this subcategory is stable under both limits and κ-filtered colim-
its. A second coat of the Adjoint Functor Theorem [9, Cor. 5.5.2.9] now yields
the result. �

Proof B. Alternately, one may prove this result (in fact a more general version
thereof) in an explicit fashion by applying a variant of [9, Cor. 5.2.7.11]. Note
that for the argument there to go through, one does not need the full strength
of the condition that the forgetful functor

p : AlgC⊗(D⊗) Fun(C,D)

be a cocartesian fibration. (It obviously isn’t in our case.) One need only en-
sure that for every multiplicative functor F⊗ : C⊗ D⊗ with underlying
functor F : C D, there exist a localization θ : F P1F with respect to
Exc(C,D) and a p-cocartesian edge F⊗ (P1F )

⊗ that covers θ. Recall [10,
Cnstr. 7.1.1.27] that P1F can be obtained as the sequential colimit of the se-
quence

F T1F T 2
1F · · · ,

where T1F = Ω ◦ F ◦ Σ as in 0.4.
Let N

+ denote the following ordinary category. An object is a pair (I, kI)
consisting of a finite set I and an I-tuple kI = (ki)i∈I of natural numbers. A
morphism (J, ℓJ) (I, kI) is a map of finite sets J I+ such that for any
element i ∈ I, one has

∑

j∈Ji

ℓj ≤ ki.

The forgetful functor N
+ Λ(F) is the Grothendieck opfibration that cor-

responds to the functor Λ(F) Cat that exhibits the ordered set of natural
numbers as a symmetric monoidal category under addition. Hence the cocarte-
sian fibration NN

+ NΛ(F) is a symmetric monoidal ∞-category. Now one
may define a functor

(P1F )
⊠ : NN

+ ×NFin∗ C
⊗ D⊗

such that the formula

(P1F )
⊠(I, kI , XI) := (T ki1 Xi)i∈I

holds. Then our desired functor (P1F )
⊗ will be the left Kan extension of (P1F )

⊠

along the projection NN
+ ×NΛ(F) C

⊗ C⊗.

We also have the functor F⊠ : NN
+ ×NΛ(F) C

⊗ D⊗, which is the projec-

tion NN
+ ×NΛ(F) C

⊗ C⊗ composed with F⊗ : C⊗ D⊗. The natural

transformations F T k1 F induce a natural transformation F⊠ (P1F )
⊠

and thus an induced natural transformation θ⊗ : F⊗ (P1F )
⊗. A quick com-

putation shows that θ⊗ is a cocartesian edge covering θ. �

3.5.1. Corollary. Suppose C⊗ and D⊗ symmetric monoidal ∞-categories.
Suppose that the underlying ∞-category D is presentable, and suppose that the
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underlying ∞-category C is compactly generated. Finally, assume that C⊗ and
D⊗ are compatible with all colimits. Then the inclusion

ExcF (C,D) ×Fun(C,D) AlgC⊗(D⊗) AlgC⊗(D⊗)

admits a left adjoint, where ExcF (C,D) denotes the full subcategory of
Fun(C,D) spanned by excisive functors C D that preserve all filtered col-
imits.

With this result in hand, we easily prove our main theorem.

3.6. Theorem. The inclusion Add⊗(E) Thy⊗(E) admits a left adjoint
that covers the left adjoint of the inclusion Add(E) Thy(E).

Proof. In light of [2, Th. 7.6], the claim is that the inclusion

ExcG∗ (Dfiss(Wald∞), E)×Fun(Dfiss(Wald∞),E) AlgDfiss(Wald∞)⊗(E
×)

FunG∗ (Dfiss(Wald∞), E)×Fun(Dfiss(Wald∞),E) AlgDfiss(Wald∞)⊗(E
×)

admits a left adjoint. We now appeal to Cor. 3.5.1, and the proof is completed
by the observation that if a functor Dfiss(Wald∞) E preserves geometric
realizations, then so does Goodwillie differential. (This follows from [2, Lm. 7.7];
see the proof of [2, Th. 7.8].) �

3.7. Notation. Write D⊗ for the left adjoint of the inclusion

Add⊗(E) Thy⊗(E).

We may now define K⊗ := D⊗ι⊗, whence we deduce that algebraic K-theory
is naturally a multiplicative theory.

3.8. Proposition. There exists a canonical multiplicative extension K⊗ of
algebraic K-theory.

In light of [10, Pr. 7.2.4.14 and Pr. 7.2.6.2], we also find the following.

3.8.1. Corollary. There exists a canonical multiplicative extension K
⊗ of the

connective algebraic K-theory functor K : Wald∞ Sp.

3.8.2. Corollary. For any ∞-operad O⊗, composition with the multiplicative
extensions K⊗ and K

⊗ induce functors

K⊗ : AlgO⊗(Wald⊗
∞) AlgO⊗(Kan×)

and
K

⊗ : AlgO⊗(Wald⊗
∞) AlgO⊗(Sp∧).

As a special case of this, we obtain the following.

3.8.3. Corollary. Suppose A⊗ a monoidal Waldhausen ∞-category. Then
composition with the multiplicative extensions K⊗ and K

⊗ induce functors

K⊗ : LModA⊗(Wald⊗
∞) LModK⊗(A⊗)(Kan×)
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and

K
⊗ : LModA⊗(Wald⊗

∞) LModK⊗(A⊗)(Sp∧).

3.9. Example (Deligne Conjecture for algebraic K-theory). Suppose C⊗ a
pointed, symmetric monoidal ∞-category that admits all finite colimits. As-
sume that the tensor product ⊗ : C × C C preserves finite colimits sepa-
rately in each variable. Then C⊗ may be viewed as an E∞ object of Wald⊗

∞,
and the K-theory spectrum of C is naturally endowed with an E∞-structure
given by K

⊗(C⊗) [Cor. 3.8.2].
Carrying an En-algebra in C⊗ to its ∞-category of right modules defines a
functor ΘC [10, Rk. 6.3.5.15], which factors through a functor

AlgEn
(C⊗) AlgEn−1

(Wald⊗
∞).

Composing this with K⊗ and K
⊗, we obtain functors

AlgEn
(C⊗) AlgEn−1

(Kan×) and AlgEn
(C⊗) AlgEn−1

(Sp∧).

3.10. Example. The previous example makes an assortment of iterated K-
theories possible. If n ≥ 1, then by forming iterated compositions of the various
functors AlgEk

(Sp∧) AlgEk−1
(Sp∧) constructed above, we obtain n-fold

algebraic K-theory functor

K
(n) : AlgEn

(Sp∧) Sp∧

as well as an infinite hierarchy of functors

K
(n) : AlgE∞

(Sp∧) AlgE∞
(Sp∧).

The Chromatic Red Shift Conjectures of Ausoni and Rognes (presaged by Wald-
hausen and Hopkins) implies that K(n) should, in effect, carry En-rings of tele-
scopic complexity m to spectra of telescopic complexity m + n. We hope to
investigate these phenomena in future work.

3.11. Example. We also find that Waldhausen’s A-theory of an n-fold
loopspace X (defined as in [2, Ex. 2.10]) carries a canonical En−1-monoidal
structure.

3.12. Note that, although this result ensures that algebraic K-theory is merely
lax symmetric monoidal, as a functor to spectra it’s actually slightly better: by
Barratt–Priddy–Quillen, K⊗ : Wald⊗

∞ Sp∧ carries the unit NFin∗ to the
unit S0.

Let us conclude by appealing to the recent work [6] of Saul Glasman. Glas-
man identifies the ∞-category AlgWald⊗(E×) with the ∞-category of E∞ al-

gebras in Fun(Wald∞, E), equipped with the Day convolution structure. When
E = Kan, one sees that the functor ι is corepresented by the unit NFin∗;
consequently it is the unit for the Day convolution product. Hence it admits a
unique E∞ structure, which under Glasman’s equivalence must coincide with
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the multiplicative theory ι⊗. Moreover, ι⊗ is initial in AlgWald⊗(E×). Mean-

while, the universal property of K⊗ ensures that for any additive multiplicative
theory φ⊗, we have

Map(K⊗, φ⊗) ≃ Map(ι⊗, φ⊗) ≃ ∗.

That is, there is an essentially unique multiplicative “trace map” from K-theory
to any additive and multiplicative theory. In other words, we have the following.

3.13. Theorem. Algebraic K-theory of Waldhausen ∞-categories is the initial
additive and multiplicative theory.
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