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Abstract. Schreyer has proved that the graded Betti numbers of a
canonical tetragonal curve are determined by two integers b1 and b2,
associated to the curve through a certain geometric construction. In
this article we prove that in the case of a smooth projective tetragonal
curve on a toric surface, these integers have easy interpretations in
terms of the Newton polygon of its defining Laurent polynomial. We
can use this to prove an intrinsicness result on Newton polygons of
small lattice width.
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1 Introduction

Let k be an algebraically closed field of characteristic 0 and let T2 = (k∗)2 be
the two-dimensional torus over k. Let ∆ ⊂ R2 be a two-dimensional lattice
polygon and consider the associated toric surface Tor(∆) over k, i.e. the Zariski
closure of the image of

ϕ∆ : T2 →֒ P
♯(∆∩Z

2)−1 : (α, β) 7→ (αiβj)(i,j)∈∆∩Z2 .

Let

f =
∑

(i,j)∈Z2

ci,jx
iyj ∈ k[x±1, y±1]

be an irreducible Laurent polynomial and consider its Newton polygon

∆(f) = conv
{

(i, j) ∈ Z
2
∣

∣ ci,j 6= 0
}

.
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Let Uf ⊂ T2 be the curve cut out by f . We say that f is ∆-non-degenerate if
∆(f) ⊂ ∆ and for every face τ ⊂ ∆ (vertex, edge, or ∆ itself) the system

fτ =
∂fτ
∂x

=
∂fτ
∂y

= 0

has no solutions in T2. Here

fτ =
∑

(i,j)∈τ∩Z2

ci,jx
iyj.

For a fixed instance of ∆ and given that ∆(f) ⊂ ∆, the condition of ∆-non-
degeneracy is generically satisfied. It implies that the Zariski closure Cf of
ϕ∆(Uf ) inside Tor(∆) is non-singular. A curve that is isomorphic to Cf for
some ∆-non-degenerate Laurent polynomial is in turn called ∆-non-degenerate.

Non-degenerate curves form an attractive class of objects from the point of view
of explicit algebraic geometry. On the one hand they vastly generalize well-
known families such as elliptic curves, hyperelliptic curves, trigonal curves1,
smooth plane curves, Ca,b curves, . . . covering a much broader range of geo-
metric situations. On the other hand they remain very tangible, because many
important geometric invariants can be told by simply looking at the combina-
torics of ∆. Two notable instances are:

• the (geometric) genus g, which equals ♯(∆(1) ∩ Z2), where ∆(1) is the
convex hull of the interior lattice points of ∆; see [10];

• the gonality γ, which equals lw(∆), except if ∆ ∼= 2Υ or ∆ ∼= dΣ for some
d ≥ 2, where

Υ = conv{(−1,−1), (1, 0), (0, 1)} and Σ = conv{(0, 0), (1, 0), (0, 1)},

in which case it equals lw(∆)− 1; here lw denotes the lattice width, and
∼= indicates unimodular equivalence; see [4, Lem. 6.2]. (Shorter charac-
terization: γ = lw(∆(1)) + 2 except if ∆ ∼= 2Υ in which case γ = 3.)

Similar interpretations exist for the Clifford index and the Clifford dimension
[4, §8], and in some cases for the minimal degree of a plane model [6]. The cur-
rent paper extends the list of combinatorial features of non-degenerate curves,
by focusing on tetragonal curves. Namely, we give the following interpreta-
tion for the invariants b1 and b2, as introduced by Schreyer in [14, (6.2)]. The
definition of these invariants will be recalled in Section 2 below.

1Strictly spoken, there do exist trigonal curves that are not non-degenerate; for example
see [4, Lem. 4.4]. But all trigonal curves are ‘morally’ non-degenerate, in the sense that they
can always be embedded in a toric surface, which is sufficient for most applications. See also
the remark at the end of this section.
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Theorem 1. Let C be a tetragonal ∆-non-degenerate curve. Then Schreyer’s
corresponding set of invariants {b1, b2} is given by

{

♯(∂∆(1) ∩ Z
2)− 4 , ♯(∆(2) ∩ Z

2)− 1
}

.

Here ∂ denotes the boundary and ∆(2) = ∆(1)(1) is the convex hull of the
interior lattice points of ∆(1).

Example 2. The Laurent polynomial f = 1 + y2 − x6y2 + x6y4 ∈ C[x, y] is
∆-non-degenerate, where ∆ is as follows.

The dashed lines indicate ∆(1). One verifies, purely by looking at the Newton
polygon, that Cf is a tetragonal curve of genus 9 with b1 = b2 = 2. (In view
of [4, Cor. 6.3, Thm. 9.1], one can even say that it carries a unique g14 , whose
scrollar invariants read 1, 1, 4; see Remark 2 below for more background on this
terminology.)

Schreyer’s invariants are known to determine the Betti diagram of the canonical
ideal, and vice versa [14, (6.2)]. In particular, Theorem 1 implies that in the
tetragonal case, the Betti diagram is combinatorially determined. We believe
that this holds in much greater generality (work in progress).

A second aim of this paper is to initiate a discussion on the intrinsicness of ∆.
Namely, given the many geometric invariants that are encoded in the Newton
polygon, one might wonder to what extent it is possible to reconstruct ∆ from
the abstract geometry of a given ∆-non-degenerate curve Cf . The best one can
hope for is to find back ∆ up to unimodular equivalence, because unimodular
transformations correspond to automorphisms of T2. Another relaxation is
that (usually) one can only expect to recover ∆(1), rather than all of ∆. For
example, let f ∈ k[x, y] be dΣ-non-degenerate for some integer d ≥ 2 and let
(x0, y0) ∈ Uf be sufficiently generic. Then f ′ = f(x + x0, y + y0) is ∆-non-
degenerate, where ∆ is obtained from dΣ by clipping off the point (0, 0). In this
case ∆ 6∼= dΣ, while clearly Cf

∼= Cf ′ . More generally, pruning a vertex off a
lattice polygon ∆ without affecting its interior boils down to forcing the curve
through a certain non-singular point of Tor(∆), which is usually not intrinsic.
One is naturally led to the following question.

Question 3 (intrinsicness). Let ∆,∆′ be two-dimensional lattice polygons
for which there exists a curve that is both ∆-non-degenerate and ∆′-non-
degenerate. Does it follow that ∆(1) ∼= ∆′(1)?
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Our conjecture is that for ‘most’ pairs of polygons the answer is yes. E.g., this
is known to be true as soon as

(a) ∆(1) is one-dimensional, because a ∆-non-degenerate curve is hyperellip-
tic of genus g ≥ 2 if and only if ∆(1) ∩ Z2 consists of g collinear points
[11, Lem. 3.2.9],

(b) ∆(1) = ∅ or ∆(1) ∼= (d − 3)Σ for some integer d ≥ 3, because a ∆-non-
degenerate curve is abstractly isomorphic to a smooth plane curve if and
only if ∆(1) is a multiple of the standard simplex (up to equivalence) [4,
Cor. 8.2].

(c) ∆(1) ∼= [0, a]× [0, b] for some integers a ≥ b ≥ −1 with (a+1)(b+1) 6= 4,
because a ∆-non-degenerate curve of genus g 6= 4 can be embedded in
P1 × P1 if and only if ∆(1) is a standard rectangle (up to equivalence);
see [5]. The assumption g 6= 4 is necessary: see the discussion following
(d) below.

Let us indicate why we expect Question 3 to have an affirmative answer for
many more instances of ∆, while gathering some material that will be needed in
Section 2. Our starting point is a theorem by Khovanskii [10], stating that there
exists a canonical divisor K∆ on Cf such that a basis for the Riemann-Roch
space H0(Cf ,K∆) is given by

{

xiyj
}

(i,j)∈∆(1)∩Z2 . (1)

Here x, y are to be viewed as functions on Cf through ϕ∆. Note that one
recovers the statements that g = ♯(∆(1) ∩ Z2) and that Cf is hyperelliptic if
and only if ∆(1) is one-dimensional; see [7, Lem. 5.1] for more details. If ∆(1) is
two-dimensional, then Khovanskii’s theorem implies that the canonical model
Ccan

f of Cf satisfies

Ccan
f ⊂ Tor(∆(1)) ⊂ P

g−1.

But surfaces of the form Tor(∆(1)) are very special. Most notably, they are of
low degree, and they are generated by binomials. The idea is that they are so
special that there is room for at most one such surface containing Ccan

f . This
idea is not always true, but the exceptions seem rare. If it is true, then the
following general and seemingly new statement allows one to recover ∆(1). A
proof will be given in Section 3.

Theorem 4. Let ∆,∆′ be two-dimensional lattice polygons with

♯(∆ ∩ Z
2)− 1 = ♯(∆′ ∩ Z

2)− 1 = N,

and suppose that Tor(∆),Tor(∆′) ⊂ P
N can be obtained from one another using

a projective transformation. Then ∆ ∼= ∆′.

Using this, we can immediately extend the above list to the case where
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(d) ♯(∆(1) ∩ Z2) ≥ 5 and ∆(2) = ∅, which holds if and only if Cf is trigonal
of genus g ≥ 5, or isomorphic to a smooth plane quintic [4, §8]. In
this case Tor(∆(1)) can be characterized as the unique irreducible surface
containing Ccan

f that is generated by quadrics. Indeed, the fact that it
is generated by quadrics follows from [12], while uniqueness follows from
Petri’s theorem [13].

The above argument breaks down in the genus 4 case where ∆ ∼= 2Υ, because
Tor((2Υ)(1)) = Tor(Υ) is not generated by quadrics. And indeed, using this,
it is not hard to cook up examples of (2Υ)-non-degenerate curves that are
non-degenerate with respect to [0, 3]× [0, 3], and also of (2Υ)-non-degenerate
curves that are non-degenerate with respect to conv{(0, 0), (4, 0), (0, 2)}. (See
§5.6 of our unpublished arXiv paper 1304.4997 for an extended discussion;
see also Example 13 below.)

In Section 2 we will give a similar but more complicated recipe for recovering
Tor(∆(1)) in most tetragonal cases. More precisely, we extend the list with the
situation where

(e) lw(∆(1)) = 2 and ♯(∂∆(1) ∩ Z2) ≥ ♯(∆(2) ∩ Z2) + 5, which holds if and
only if Cf is tetragonal and b1 ≥ b2 + 2. In this case Tor(∆(1)) can
be characterized as the unique surface containing Ccan

f that is linearly
equivalent to 2H−b1R, when viewed as a divisor inside the scroll spanned
by a g14 .

More explanation will be given in Section 4. Of course, in establishing this, we
will make extensive use of Theorem 1 and its proof.

Remark 5. Even though we formulate our results in terms of non-degenerate
curves, they remain valid for the slightly more general class of arbitrary smooth
curves in toric surfaces. Indeed, to a smooth (non-torus-invariant) curve C in
a toric surface ϕ : T2 →֒ X one can always associate a ‘defining Laurent
polynomial’ f ∈ k[x±1, y±1], by which we mean a generator of the ideal of
ϕ−1C. It is well-defined up to multiplication by cxiyj for some c ∈ k∗ and
(i, j) ∈ Z2. One then just proceeds with f and ∆ = ∆(f), as if f were ∆-non-
degenerate. We refer to [4, §4] for a more extended discussion.
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of the Research Foundation - Flanders (FWO).
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2 Schreyer’s tetragonal invariants

Let C/k be a tetragonal curve of genus g ≥ 5 and assume it to be canonically
embedded in P

g−1. Fix a gonality pencil g14 on C and consider

S =
⋃

D∈g1
4

〈D〉 ⊂ P
g−1,

where 〈D〉 ⊂ Pg−1 denotes the linear span of D. One can show that S is
a rational normal threefold scroll whose type we denote by (e1, e2, e3), where
we assume 0 ≤ e1 ≤ e2 ≤ e3. One has deg S = e1 + e2 + e3 = g − 3, and
S is non-singular if and only if e1 > 0. If e1 = 0 then the singularities are
resolved by the natural map µ : P(E) → S, where E is the locally free sheaf
O(e1)⊕O(e2)⊕O(e3) on P

1; if e1 > 0 then µ is an isomorphism. The Picard
group of P(E) is freely generated by the hyperplane class H = [µ∗(O(1))] and
the ruling class R consisting of the fibers of the projection π : P(E) → P1. The
following intersection-theoretic identities hold: H3 = g − 3, H2 · R = 1 and
R2 = 0. For more general background and references, see [4, §9] and [14, §2-4].

Remark 6. The numbers e1, e2, e3 are called the scrollar invariants of C with
respect to our g14 .

Now let C′ be the strict transform under µ of our canonical curve C ⊂ S.
Schreyer proved that C′ is the complete intersection of surfaces Y and
Z in P(E), with Y ∼ 2H − b1R, Z ∼ 2H − b2R, b1 + b2 = g − 5 and
−1 ≤ b2 ≤ b1 ≤ g − 4. He moreover showed that b1, b2 are invariants of the
curve: they depend neither on the canonical embedding, nor on the choice of
the g14 , nor on the choice of Y and Z. If b1 > b2, which is automatic if g is
even, then Y is in fact unique, and µ(Y ) ⊂ Pg−1 is independent of the chosen
g14 . For these particular statements we refer to [14, (6.2)].

The goal of this section is to prove the combinatorial interpretation for
Schreyer’s invariants b1, b2 stated in Theorem 1. Using the abbreviations

B = ♯(∂∆(1) ∩ Z
2)− 4, B(1) = ♯(∆(2) ∩ Z

2)− 1,

we will in fact show:

Theorem 7. Let f ∈ k[x±1, y±1] be non-degenerate with respect to its Newton
polygon ∆ = ∆(f), and suppose that Cf is tetragonal. Then its invariants
b1, b2 statisfy {b1, b2} = {B,B(1)}. If moreover B > B(1) then the surface
µ(Y ) associated to the canonical model Ccan

f from Section 1 equals Tor(∆(1)).

Proof. The assumption that Cf is tetragonal is equivalent to lw(∆(1)) = 2 and
∆ 6∼= 2Υ. We can also suppose that ∆ 6∼= 5Σ, because this case can be reduced
to

∆ ∼= conv{(1, 0), (5, 0), (0, 5), (0, 1)}
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by means of a coordinate transformation, as explained in the discussion pre-
ceding Question 3. By [4, Lem. 5.2] we can therefore suppose that

∆(1) ⊂
{

(X,Y ) ∈ R
2 | 0 ≤ Y ≤ 2

}

and ∆ ⊂
{

(X,Y ) ∈ R
2 | − 1 ≤ Y ≤ 3

}

.

Then the projection map Uf → T1 : (x, y) 7→ x has degree 4, i.e. it gives rise
to a g14 on Cf . As remarked in Section 1, the canonical model Ccan

f obtained

using the basis (1) of H0(Cf ,K∆) satisfies

Ccan
f ⊂ Tor(∆(1)) ⊂ P

g−1.

The scroll S corresponding to our g14 is easily seen to be the Zariski closure of
the image of the map

T
3 →֒ P

g−1 :

(α, β, γ) 7→
(

(αi)(i,0)∈∆(1)∩Z2 : (βαi)(i,1)∈∆(1)∩Z2 : (γαi)(i,2)∈∆(1)∩Z2

)

.

(Note that the scrollar invariants e1, e2, e3 are precisely the numbers

♯{(i′, j′) ∈ ∆(1) ∩ Z
2 | j′ = j} − 1

for j = 0, 1, 2, up to order; for a generalization of this observation, see [4,
§9].) Moreover, one verifies that S contains Tor(∆(1)), i.e. the above chain of
inclusions extends to

Ccan
f ⊂ Tor(∆(1)) ⊂ S ⊂ P

g−1.

Now let µ : P(E) → S be as above and denote by C′ the strict transform of
Ccan

f under µ. Similarly, denote by T ′ the strict transform of Tor(∆(1)). Write
the divisor class of T ′ as aH + bR with a, b ∈ Z. Let F be the fiber of π above
α ∈ T1 ⊂ P1. Then µ(F ) is a P2 whose intersection with Tor(∆(1)) has β = y
and γ = y2 as parameter equations on T2 ⊂ P2. In particular this intersection
is a conic, so we have that

a = (aH + bR) ·H · R = T ′ ·H ·R = 2.

Next, we compute the intersection product T ′ · H2 in two ways. On the one
hand we find the degree of Tor(∆(1)), which equals 2Vol(∆(1)) because the
Hilbert polynomial of Tor(∆(1)) equals the Ehrhart polynomial of ∆(1), see [8,
Prop. 9.4.3]. On the other hand one has

T ′ ·H2 = (2H + bR) ·H2 = 2(g − 3) + b.

We obtain that b = 2Vol(∆(1)) − 2(g − 3) = −B, where the latter equality
follows from Pick’s theorem. In conclusion, T ′ ∼ 2H −BR. Now

• if Y = T ′ then it is immediate that b1 = B and, consequently, b2 = B(1),

Documenta Mathematica 20 (2015) 927–942



934 Wouter Castryck and Filip Cools

• if Y 6= T ′ then if we intersect Y ∼ 2H− b1R and T ′ ∼ 2H−BR on P(E),
we obtain a (possibly reducible) curve whose image under µ has degree

H ·(2H−BR)·(2H−b1R) = 4(g−3)−2b1−2B ≤ 4(g−3)−2(g−5) = 2g−2.

This follows from 2b1 ≥ b1 + b2 = g − 5 and 2B ≥ B + B(1) = g − 5 if
B ≥ B(1), and from 2b1 ≥ b1+ b2+1 = g−4 and 2B = g−6 if B < B(1);
see Lemma 9 below. In both cases, if either one of the inequalities would
be strict, then we would run into a contradiction because C′ is contained
in this intersection (and µ(C′) = Ccan

f , being a canonical curve, has degree

2g− 2). We conclude that b1 = b2 = B = B(1) = g−5
2 or b1 = B(1) = g−4

2

and b2 = B = g−6
2 .

All conclusions follow.

Remark 8. Assume that Cf is not isomorphic to a smooth plane quintic, i.e.
∆(1) 6∼= 2Σ. Then by Petri’s theorem [13] the ideal of Ccan

f is generated by
quadrics. In this case we can construct (instances of) Schreyer’s surfaces
Y, Z ⊂ P(E) in a concrete way, by explicitly giving the defining equations of
µ(Y ), µ(Z) ⊂ S. Indeed, by [3, Thm. 4] the ideal of Ccan

f is minimally generated
by quadrics

b1, . . . , br, b
′
1 . . . , b

′
s,F2,w1 , . . . ,F2,wt

,

where

• the r =
(

g−3
2

)

binomials bi generate I(S),

• the s = (4g − 6)− ♯(2∆(1) ∩ Z2) binomials b′i cut Tor(∆
(1)) out in S,

• t = ♯(∆(2) ∩Z2) = B(1)+1 and the quadrics F2,wi
are constructed in the

explicit manner described in [3]. Note that there is some freedom in the
way these quadrics arise.

Then if Ff ⊂ P(E) denotes the strict transform under µ of the joint zero locus
of the quadrics F2,wi

, one can verify that Ff ∼ 2H − B(1)R, so that one can
take Y = T ′ and Z = Ff if B ≥ B(1), and Y = Ff and Z = T ′ if B < B(1).

We end this section by explicitly listing the lattice polygons for which B ≤ B(1).
We will need the following property of two-dimensional lattice polygons of
the form ∆(1). An edge τ of a two-dimensional lattice polygon Γ is always
supported on a line aτX + bτY = cτ with aτ , bτ , cτ ∈ Z and aτ , bτ coprime.
When signs are chosen appropriately, we can assume that Γ is contained in
the half-plane aτX + bτY ≤ cτ . Then the line aτX + bτY = cτ + 1 is called
the outward shift of τ . It is denoted by τ (−1), and the polygon (which may
take vertices outside Z2) that arises as the intersection of the half-planes
aτX + bτY ≤ cτ + 1 is denoted by Γ(−1). If Γ = ∆(1) for some lattice polygon
∆, then the outward shifts of two adjacent edges of Γ always intersect in a
lattice point, and in fact Γ(−1) = ∆(1)(−1) is a lattice polygon. Moreover,
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∆ ⊂ ∆(1)(−1), i.e. ∆(1)(−1) is the maximal lattice polygon with respect to
inclusion for which the convex hull of the interior lattice points equals ∆(1).
See [9, §4] or [11, §2.2] for proofs.

Even though the following statement is purely combinatorial, given its geomet-
ric interpretation, it is natural to abbreviate g = ♯(∆(1) ∩ Z2). Similarly, we
will write g(1) = ♯(∆(2) ∩ Z2).

Lemma 9. Let ∆ be a lattice polygon with lw(∆(1)) = 2. Then we have:

• B < B(1) if and only if

∆(1) ∼= Γ4k+4 := conv {(0, 0), (k, 0), (2k + 2, 1), (k + 1, 2), (1, 2)}

for some integer k ≥ 0. In this case g = 4k+4, B = 2k−1 and B(1) = 2k.

• B = B(1) if and only if either

∆(1) ∼= Γm
4k+5 := conv {(0, 0), (k, 0), (2k + 2, 1), (k +m, 2), (m, 2), (0, 1))}

for some integers k ≥ 0 and 0 ≤ m ≤ k + 2 (in these cases, g = 4k + 5
and B = B(1) = 2k), or

∆(1) ∼= Γ4k+3 := conv {(0, 0), (k, 0), (2k + 1, 1), (k + 1, 2), (1, 2)}

for some integer k ≥ 1 (in this case, g = 4k+3 and B = B(1) = 2k− 1),
or

∆(1) ∼= Γ4k+1 := conv {(0, 0), (k, 0), (2k, 1), (k, 2), (1, 2)}

for some integer k ≥ 2 (in this case, g = 4k+1 and B = B(1) = 2k− 2).

Proof. First we consider the polygons with g(1) equal to 0 and 1 separately. If
g(1) = 0 then ∆(1) ∼= 2Σ, hence B = 2 > B(1) = −1. If g(1) = 1 then B(1) = 0,
hence B ≤ B(1) if and only if g ≤ 5. It is easy to check that there is one
such polygon in genus 4 (namely ∆ ∼= 2Υ, so ∆(1) ∼= Υ = Γ4) and three such
polygons in genus 5 (corresponding to ∆(1) ∼= Γ0

5,Γ
1
5,Γ

2
5). Each of these appear

in the classification.
If g(1) ≥ 2, we can use Koelman’s classification [11, Section 4.3] of lattice
polygons Γ with lattice width 2. One can assume that Γ = ∆(1) is contained
in the strip {(X,Y ) ∈ R2 | 0 ≤ Y ≤ 2}. Koelman subdivided these polygons
into three types:

• Type 0: there is no boundary lattice point of Γ with Y = 1.
Then up to equivalence Γ = ∆(1) is of the form

(1, 2)

(0, 0)

(1 + 2g(1) − k, 2)

(k, 0)

(1, 1) (g(1), 1)
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with g(1) ≤ k ≤ 2g(1). One sees that B = 2g(1) − 2 and B(1) = g(1) − 1,
so B ≤ B(1) implies that g(1) ≤ 1: a contradiction.

• Type 1: there is one boundary lattice point of Γ with Y = 1.
Up to equivalence Γ = ∆(1) is of the form

(1, 2)

(0, 0)

(ℓ + 1, 2)

(k, 0)

(1, 1)

(g(1), 1)

with 0 ≤ k ≤ 2g(1) + 1 and

{

0 ≤ ℓ ≤ k if 0 ≤ k ≤ g(1),
0 ≤ ℓ ≤ 2g(1) − k + 1 if g(1) < k ≤ 2g(1) + 1.

Since moreover Γ is an interior lattice polygon we have that Γ(−1) takes its

vertices inside Z2, leading to the inequalities k ≥ g(1)
−1

2 and ℓ ≥ g(1)
−1

2 .

For this type, B = k+ ℓ−1 ≥ g(1)−2 and B(1) = g(1)−1. So if B ≤ B(1)

then either k = ℓ = g(1)
−1

2 (and g = 4k + 4 ≡ 0 mod 4), or k = ℓ = g(1)

2

(and g = 4k + 3 ≡ 3 mod 4), or k = g(1)+1
2 and ℓ = g(1)

−1
2 (and g =

4k + 1 ≡ 0 mod 4). We find back the polygons Γ4k+1,Γ4k+3,Γ4k+4 from
the statement of the lemma.

• Type 2: there are two boundary lattice points of Γ with Y = 1.
Up to equivalence Γ = ∆(1) is of the form

(m, 2)

(0, 0)

(m + ℓ, 2)

(k, 0)

(1, 1)

(g(1), 1)

with 0 ≤ m ≤ g(1) + 1, 0 ≤ k ≤ 2g(1) + 2− 2m and

{

0 ≤ ℓ ≤ k if 0 ≤ k ≤ g(1) + 1−m,
0 ≤ ℓ ≤ 2g(1) − k − 2m+ 2 if g(1) + 1−m < k ≤ 2g(1) + 2− 2m.

Since moreover Γ is an interior lattice polygon, we also get the inequalities

k ≥ g(1)
−1

2 and ℓ ≥ g(1)
−1

2 . If B ≤ B(1) then since B = k+ ℓ ≥ g(1) − 1 =

B(1), we have that k = ℓ = g(1)
−1

2 , B = B(1) = 2k and g = 4k+5. So we
get the polygons Γm

4k+5 from the statement.
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This concludes the proof.

Remark 10. For each lattice polygon Γ = Γg,Γ
m
g appearing in the statement

of the lemma, there is only one polygon ∆ for which ∆(1) = Γ, namely ∆ =
Γ(−1). Note that (Γ4)

(−1) ∼= 2Υ and recall that a (2Υ)-non-degenerate curve is
trigonal, rather than tetragonal.

3 From toric surfaces to polygons

This section is devoted to proving Theorem 4. As an a priori remark, note
that it is important to impose that Tor(∆) and Tor(∆′) are obtained from
one another using a transformation of PN , rather than just isomorphic. For
instance, let

∆ = conv{(0, 0), (3, 0), (3, 2), (0, 2)} and ∆′ = conv{(0, 0), (5, 0), (5, 1), (0, 1)},

then Tor(∆),Tor(∆′) ⊂ P11 are isomorphic (because their normal fans are the
same), but not projectively equivalent, as they have different degrees (6 resp.
5). Here clearly ∆ 6∼= ∆′.

Proof. We assume familiarity with the theory of divisors on toric surfaces, along
the lines of [4, §3]. Notation-wise, we will write

• Σ∆ for the (inner) normal fan associated to a given two-dimensional lat-
tice polygon ∆, and

• ∆D for the polygon (well-defined up to translation) corresponding to a
Weil divisor (or a Cartier divisor, or an invertible sheaf) D on a given
toric surface.

The proof then works as follows. Let ∆ and ∆′ be as in the statement of
Theorem 4. The projective transformation induces an automorphism Tor(∆) →
Tor(∆) that sends OTor(∆)(1) to OTor(∆′)(1). Because

∆ ∼= ∆OTor(∆)(1) and ∆′ ∼= ∆OTor(∆′)(1)

it suffices to prove the following general statement: if

ι : Tor(∆)
∼=−→ Tor(∆′)

is an isomorphism between two toric surfaces, and if D is a Weil divisor on
Tor(∆), then

∆D
∼= ∆ι(D).

Now it is known that two isomorphic toric varieties always admit a toric iso-
morphism between them [1, Thm. 4.1], i.e. an isomorphism that is induced by
a GL2(Z)-transformation taking Σ∆ to Σ∆′ . It is clear that such an isomor-
phism preserves polygons (up to equivalence). Therefore we may assume that
Σ∆ = Σ∆′ and that ι is an automorphism of Tor(∆). Every such automorphism
can be written as the composition of
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• a toric automorphism,

• the automorphism induced by the action of an element of T2,

• a number of automorphisms of the form eλv , where λ ∈ k and v ∈ Z2

is a column vector of ∆, i.e. a primitive vector v for which there exists
an edge τ ⊂ ∆ such that u + v ∈ ∆ for all u ∈ (∆ \ τ) ∩ Z2. To de-
scribe eλv explicitly, assume that v = (0,−1) and that τ lies horizontally
(the general case can be reduced to this case by using an appropriate
unimodular transformation). Then Tor(∆) can be viewed as a compacti-
fication of T2 ∪ (x-axis) rather than just T2. On T2 ∪ (x-axis), eλv acts as
(x, y) 7→ (x, y+λ). The column vector property ensures that this extends
nicely to all of Tor(∆).

Example. Let ∆ = [0, 1]× [0, 1] and consider the map

ϕ : T2 ∪ (x-axis) →֒ Tor(∆) : (x, y) 7→ (1, x, y, xy).

The point (x, y + λ) is mapped to (1 : x : y + λ : xy + λx). So here

eλ(0,−1) : (X0,0 : X1,0 : X0,1 : X1,1) 7→(X0,0 : X1,0 : X0,1+λX0,0 : X1,1+λX1,0).

See [2, Thm. 3.2] for a proof of this statement, along with a more elaborate
discussion. Now the first type of automorphisms preserves polygons up to
equivalence, as before. The second type also preserves polygons because it
preserves torus-invariant Weil divisors. As for the third type, let Dτ be the
torus-invariant prime divisor corresponding to the base edge τ of v. Then by
adding a divisor of the form div(xiyj) if needed, one can always find a torus-
invariant Weil divisor that is equivalent to D and whose support does not
contain Dτ ; see [4, §4] for more details. But such a divisor is preserved by eλv ,
hence the theorem follows.

4 Intrinsicness for tetragonal curves

We are ready to explain why intrinsicness holds for lattice polygons ∆ satisfying

lw(∆(1)) = 2 and B ≥ B(1) + 2,

that is, for the polygons of type (e) from the introduction. Let C be a ∆-non-
degenerate curve. Then it is a tetragonal curve (indeed, B ≥ B(1) + 2 implies
∆ 6∼= 2Υ) whose Schreyer invariants b1, b2 satisfy b1 ≥ b2 + 2. By Theorem 7
we find that Schreyer’s surface µ(Y ) ⊂ Pg−1 equals Tor(∆(1)). Now suppose
that C is also ∆′-non-degenerate for some two-dimensional lattice polygon ∆′.
By the tetragonality of C we have lw(∆′(1)) = 2. In analogy with the previous
notation, write

B′ = ♯(∂∆′(1) ∩ Z
2)− 4, B′(1) = ♯(∆′(2) ∩ Z

2)− 1,
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so that
{

B′, B′(1)
}

= {b1, b2} by Theorem 7. It follows that either

B′ ≥ B′(1) + 2 or B′(1) ≥ B′ + 2.

But the latter is impossible by Lemma 9, which states that B′(1) is at most
B′ + 1. Therefore B′ > B′(1) and, again by Theorem 7, we find that µ(Y )
is given by Tor(∆′(1)). We conclude that Tor(∆(1)) and Tor(∆′(1)) are equal,
possibly modulo a projective transformation. Intrinsicness now follows from
Theorem 4.

This argument can be refined. For instance, in genus g 6≡ 0 mod 4 it suffices
that B ≥ B(1) + 1, because in this case Lemma 9 yields the sharper bound
B′(1) ≤ B′. In genus g ≡ 2 mod 4 one sees that this is automatically satisfied.

By pushing this type of reasoning, we obtain the following statement.

Theorem 11. Let ∆,∆′ be two-dimensional lattice polygons and let there be
a curve that is both ∆-non-degenerate and ∆′-non-degenerate. Suppose that
lw(∆(1)) = 2 and define g = ♯(∆(1) ∩ Z2) = ♯(∆′(1) ∩ Z2).

• Case g ≡ 0 mod 4. If ∆(1),∆′(1) 6∼= Γg then ∆(1) ∼= ∆′(1). This is auto-
matic if ♯(∂∆(1) ∩ Z2) ≥ ♯(∆(2) ∩ Z2) + 5.

• Case g ≡ 1 mod 4. If ∆(1),∆′(1) 6∼= Γm
g for all 1 ≤ m ≤ (g + 3)/4 then

∆(1) ∼= ∆′(1). This is automatic if ♯(∂∆(1) ∩ Z2) ≥ ♯(∆(2) ∩ Z2) + 4.

• Cases g ≡ 2, 3 mod 4. Here one always has ∆(1) ∼= ∆′(1).

Proof. The cases g ≡ 0, 2 mod 4 follow along the above lines of thought. For
the case g ≡ 3 mod 4 one remarks that Schreyer’s invariants coincide if and
only if B = B(1), which by Lemma 9 happens if and only if ∆(1) ∼= ∆′(1) ∼= Γg.
If not then B ≥ B(1) + 1, and one proceeds as before.
The most subtle case is when g ≡ 1 mod 4. If g = 5 then Schreyer’s invariants
coincide if and only if ∆(1) ∼= ∆′(1) ∼= Γ0

5 (indeed, the polygons Γ1
5 and Γ2

5

appearing in Lemma 9 were excluded in the statement), so this is analogous
to the g ≡ 3 mod 4 case. If g > 5 then one draws the weaker conclusion that
Schreyer’s invariants coincide if and only if ∆(1) and ∆′(1) are among Γg and
Γ0
g. To distinguish between both cases, one notes that the scrollar invariants

e1, e2, e3 are

g − 5

4
,
g − 1

4
,
g − 3

2
and

g − 5

4
,
g − 5

4
,
g − 1

2
,

respectively. Here we implicitly used that our curve carries a unique g14 by [4,
Cor. 6.3], so it does make sense to talk about the scrollar invariants. We con-
clude that ∆(1) ∼= ∆′(1) ∼= Γ0

g if the curve has two coinciding scrollar invariants,

and that ∆(1) ∼= ∆′(1) ∼= Γg if not.
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Remark 12. Note that the theorem remains valid if we replace ‘for all 1 ≤ m ≤
(g + 3)/4’ by ‘for all m ∈ {0, . . . , (g + 3)/4} \ {i}’, for whatever i.

Example 13. Let g ≥ 4 satisfy g ≡ 0 mod 4, and denote by ∆g the (unique)

lattice polygon for which ∆
(1)
g = Γg. Then it is possible that a ∆g-non-

degenerate curve is also non-degenerate with respect to a lattice polygon ∆′

for which ∆′(1) 6∼= Γg. For instance, consider f = 1 − x2y4 − x
g

2+2y2 and
f ′ = (y4 − 1)x

g

2+1 + 4y2. Both polynomials are non-degenerate with re-
spect to their respective Newton polygons. Note that ∆(f) ∼= ∆g and that
∆(f ′)(1) 6∼= Γg. Now the rational maps

Uf → Uf ′ : (x, y) 7→

(

x,
1− xy2

x
g

4+1y

)

Uf ′ → Uf : (x, y) 7→

(

x,
2y

x
g

4+1(1 + y2)

)

are inverses of each other, so Cf and Cf ′ are isomorphic. We conclude that Cf

is both ∆g-non-degenerate and ∆(f ′)-non-degenerate.

Example 14. We conjecture that for each g ≥ 5 with g ≡ 1 mod 4 and each
0 ≤ n,m ≤ (g + 3)/4, there exists a curve that is both ∆n

g - and ∆m
g -non-

degenerate. Here ∆n
g and ∆m

g are the unique lattice polygons having Γn
g and

Γm
g as their respective interiors.

Loosely speaking, we believe that the following strategy for finding such a curve
always works (although we could not prove this). From Sections 1 and 2 we
know that the canonical model Ccan

f of a ∆n
g -non-degenerate curve Cf satisfies

Ccan
f ⊂ Tor(Γn

g ) ⊂ S ⊂ Pg−1, where S is a rational normal scroll of type

(

g − 5

4
,
g − 5

4
,
g − 1

2

)

,

and that Ccan
f arises as the intersection of two surfaces Y and Z inside the class

2H −
g − 5

2
R

(the role of µ, which is only relevant for g = 5, is ignored for the sake of
exposition). Recall from Remark 8 that one can take Y = Tor(Γn

g ), and Z =
Ff . The idea is to switch the role of Y and Z, in the sense that one chooses
f such that Ff = θ(Tor(Γm

g )) for some θ ∈ Aut(S) ⊂ Aut(Pg−1). Because
non-degeneracy is generically satisfied, one expects θ−1(Y ) to be of the form
Ff ′ for some ∆m

g -non-degenerate Laurent polynomial f ′.
Explicit examples in genus g = 5 can be found in our unpublished arXiv paper
1304.4997.
For g = 9 and {n,m} = {0, 3}
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∆
0

9
∆

3

9

we used the above approach to find that the ∆0
9-non-degenerate Laurent poly-

nomial

f = 8x5y + 36x4y + 66x3y − x2y2 + 62x2y − x2 + 33xy+

+9y − 2x−1y3 − 2x−1y2 − 4x−1y − 3x−1 − 3x−1y−1

and the ∆3
9-non-degenerate Laurent polynomial

f ′ = 2x5y3 + x5y2 − x5y − 6x4y − 15x3y + 2x2y2 − 14x2y+

+x2 − 15xy − 6y − x−1y + 3x−1 + 3x−1y−1

define birationally equivalent curves in T2. To describe the automorphism θ
explicitly, we need to pick coordinates of Pg−1. When thought of as the ambient
space of Tor(Γ0

9), we will write

P
g−1 = ProjV with V = k[X0,0, X1,0, X0,1, X1,1, X2,1, X3,1, X4,1, X0,2, X1,2],

where Xi,j is the coordinate corresponding to the lattice point (i, j) ∈ Γ0
9 (the

origin is understood to be the bold-marked lattice point). Similarly, when
thought of as the ambient space of Tor(Γ3

9) we write

P
g−1 = ProjW with W = k[X0,0, X1,0, X0,1, X1,1, X2,1, X3,1, X4,1, X3,2, X4,2].

Then, on the level of coordinate rings, θ : V → W can be defined by





























θ(X0,1)
θ(X1,1)
θ(X2,1)
θ(X3,1)
θ(X4,1)
θ(X0,2)
θ(X1,2)
θ(X0,0)
θ(X1,0)





























=





























1 4 6 4 1 0 0 0 0
1 5 9 7 2 0 0 0 0
1 6 13 12 4 0 0 0 0
1 7 18 20 8 0 0 0 0
1 8 24 32 16 0 0 0 0
1 1 0 0 0 1 1 1 1
1 2 0 0 0 1 2 1 2
0 0 0 1 1 2 2 3 3
0 0 0 1 2 2 4 3 6





























·





























X0,1

X1,1

X2,1

X3,1

X4,1

X3,2

X4,2

X0,0

X1,0





























.

We leave it to the reader to verify that θ maps S to S and sends Tor(Γ3
9) to

Ff and Ff ′ to Tor(Γ0
9) (for an appropriate choice of defining equations for Ff

and Ff ′).
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