DOCUMENTA MATH. 879

RECTIFICATION OF ALGEBRAS AND MODULES
VLADIMIR HINICH

Received: September 9, 2014
Revised: June 12, 2015

Communicated by Stefan Schwede

ABSTRACT. Let O be a topological (colored) operad. The Lurie co-
category of O-algebras with values in (co-category of) complexes is
compared to the co-category underlying the model category of (clas-
sical) dg O-algebras. This can be interpreted as a ”rectification” result
for Lurie operad algebras. A similar result is obtained for modules
over operad algebras, as well as for algebras over topological PROPs.
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1. INTRODUCTION

1.1. OPERAD ALGEBRAS. In this paper we compare two notions of operad al-
gebras with values in complexes. Let O be a topological colored symmetric
operad. The functor of singular chains with coefficients in a commutative ring
k converts O into an operad in the category of complexes, so that one has the
category Alg,(C(k)) of O-algebras in C'(k) in the “conventional” sense: its
objects are complexes A € C(k) together with ¥,,-equivariant operations

C.(0(n), k) ® A®" —~ A

satisfying the standard compatibilities.

The category Alg,(C(k)) has (sometimes) a model category structure with
quasiisomorphisms as weak equivalences and surjective maps as fibrations.
Sometimes it does not have such model structure. In any case, one can find
a quasiisomorphism of dg operads R — C,(O) such that the category of R-
algebras has a model structure; moreover, under a mild extra requirement,
the model category Algy(C(k)) is independent, up to Quillen equivalence, of
the dg operad R. The operad R satisfying the above properties will be called
homotopically sound, see below.

A topological operad O defines, on the other hand, an co-operad O in the sense
of Lurie, [L.HA], Section 2, and an oco-category of algebras Alg,(QC(k)) with

values in the symmetric monoidal co-category QC(k) which is the oco-category
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version of the derived category of k-modules. Our main result Theorem ET.T]
claims that, given a quasiisomorphism of operads R — C,(O) with R homo-
topically sound] the oo-category Alg,(QC(k)) is equivalent to the co-category
underlying the “classical” model category Alg, (C(k)). This can be interpreted
as a rectification result: any Lurie O-algebra with values in QC(k) can be pre-
sented by a strict R-algebra. In good cases, when C.(O) is homotopically
sound, any Lurie O-algebra can be presented by a strict O-algebra with values
in C(k).

We feel this is an important (though not unexpected) result: the notion of
operad algebra in Lurie theory is very flexible; however, an algebra over an
oo-operad is defined by a huge collection of coherence data which is difficult to
specify. The description of Alg,(QC(k)) as a nerve of a model category allows
one to present O®-algebras in QC(k) and their diagrams by strict O-algebras in
complexes.

1.1.1. The mere formulation of Theorem T Tlrequires a model category struc-
ture on the category of algebras over a colored dg operad. An account of the
relevant theory is presented in Section[2l The results of this section are mostly
well-known, at least for colorless operads. Our approach here is very close to
the earlier colorless version [HI.

Note that there exists a very general result by C. Berger and I. Moerdijk,
[BM2], on model structure for algebras over color operads. Unfortunately, we
were unable to deduce from their result that all dg operads are admissible in
case k D Q. This is why we felt it important to present the colored version of
the notion of X-splitness used in [HJ.

1.1.2. Dold-Kan. Aswe mentioned above, a simplicial operad can be converted,
via the normalized chains functor, into a dg operad. This is due to the fact
that the normalized chains functor

C, :sSet — C'(k)

is lax symmetric monoidal, via Eilenberg-MacLane map.

Were it really symmetric monoidal, any strict operad algebra over O with values
in C(k) would automatically define an O-algebra in the sense of Lurie. In real
life this is “almost so” — the functor C\ induces an adjoint pair between the
symmetric monoidal co-categories Caty, and dgCat.

This “almost s0” has to be explained, and we do so in Section [3] which precedes
the rectification theorem.

1.1.3. The proof of Theorem LTl follows the idea of Lurie’s Theorem 4.1.4.4
of [L.LHA] where a similar result for associative algebras with values in a com-
binatorial monoidal model category is proven.

1aLny operad is homotopically sound if (and only if) k is a field of characteristic zero.
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1.2. ALGEBRAS OVER PROPs. Theorem [Tl allows one to (partially) rec-
tify algebras more general than algebras over operads, such as, for instance,
associative bialgebras.

These are algebras over PROPs, that is, symmetric monoidal functors from a
certain symmetric monoidal category designed to describe the necessary struc-
ture (PROP), to the category of complexes.

A topological PROP P gives rise to a SM oo-category P®; this leads to the
notion of P-algebra with values in complexes as a SM functor P® — QC(k)®.
We do not expect such algebras to be always presentable by strict P-algebras in
complexes. One can, however, slightly generalize the notion of strict dg algebra
over a PROP — allowing lax symmetric monoidal functors to complexes which
are “homotopy SM”, see Definition

Our rectification theorem [T Jlimplies easily the equivalence of two approaches,

see Corollary 1.4

1.3. MoDULES. The notion of module over an operad algebra is very straight-
forward in the “classical” theory. We describe a construction which assigns
to a topological operad O another operad MO whose algebras are pairs (A, M)
where A is an O-algebra and M is an A-module. A similar construction can be
easily defined in the world of co-operads as well.

J. Lurie suggests another notion of module over an operad algebra. Similarly to
the cases of commutative or associative algebras where modules (or bimodules)
form a symmetric monoidal (or simply monoidal) category, his version of the
oo-category of modules over a fixed co-operad algebra A has an O-monoidal
structure. To have such nicely behaved notion, one has to require some very
special properties from O — it has to be coherent, see [L.LHA], Sect. 3.

In Appendix [Bl we prove that our definition of module coincides with the one
suggested by Lurie (with discarded O-monoidal structure). Our rectification
result easily implies the rectification for modules, see Corollary £.2.3

1.4. SM ADJUNCTION. Appendix [Al deals with adjunction between two (or
more) symmetric monoidal (in what follows: SM) co-categories. It turns out
that if any of the adjunctions is a lax SM functor, all others automatically
acquire the same structure. This generalizes a well-known observation for con-
ventional SM categories that the functor right adjoint to a SM functor, is
necessarily lax. We believe that this is an important fact in its own. In this
paper we use it to construct the functor from strict operad algebras to algebras
over the corresponding co-operad.

Appendix [B] contains some technical details of the comparison between two
notions of module.

1.5. ACKNOWLEDGEMENTS. Parts of this paper were written during author’s
visit to MIT and THES. I am grateful to these institutions for hospitality and
excellent working conditions. I am very grateful to J. Lurie for several useful
conversations. I am also very grateful to the referee for numerous suggestions,

2A very close notion was used by K. Costello in [C] (h-split symmetric monoidal functors).
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as well as to F. Muro for pointing out to a wrong formula in the earler version
of the manuscript.

2. MODELS FOR ALGEBRAS

2.1. INTRODUCTION. In this section we present an account of the model cate-
gory structure on algebras over colored operads. The results described in this
section are mostly well-known, for the colorless case see [Hl [H. V], [BMI], and for
the colored case [BM2] (Berger and Moerdijk consider more general algebras
with values in any model category).

Having in mind applications to dg algebras, we wanted to make sure the impor-
tant case of algebras in characteristic zero would be covered. The only proof we
are aware of in the colorless case is via the notion of -split operads presented
in [H]. This is why we spend some time to give a colored version of this notion.
We also use this section as an opportunity to fix notation for colored operads.

2.2. COLORED OPERADS. Fix a symmetric monoidal category €. A colored
operad O in € consists of the following data.

1. A set [O] (the set of colors of O) B

2. An object O(c, d) of € (of operations) given for each collection of colors
¢: 1 —[0] (I is a finite set) and a color d € [0].

3. A composition map defined for each map of finite sets f : I — J, with
collections of colors ¢: I — [0], d: JJ — [0], e € [0]. This is a map

(1) 0(d, e) ® Q) 0(c;, d(j)) — O(c,e),
jeJ

where ¢; denotes the restriction of ¢ : I — [O] to I; = f~1(j).
4. The unit maps 1, : 1 —— O({c}, ¢) for each ¢ € [O], where 1 is the
unit object of C.

The composition maps are required to satisfy the following associativity and
unit conditions.

1. Associativity: for a pair of maps I BN J 21 K , collections of colors
c:1—10],d:J—[0],e: K—[0] and f € [0], two compositions

Ofe, f) @ Q) O(dx, e(k)) ® ) O(c;,d(5)) — O(c, ),
keK jed

with ¢; being the restriction of ¢ to I; = f~1(j) and di being the
restriction of d to J, = g~1(k), coincide.

2. Left unit: For any ¢ : I — [0], J = {j} consisting of one element and
d(j) = e € [0], the map (@) induces the identity map

O(c,e) =18 Oc,e) <28 0(d,e) ® O(c,e) — O(c,e).

30ne can allow [0] to be “big”, as the set of objects of a category.
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3. Right unit: For f: I — J bijection with ¢ = do f, the map () induces
the identity map

0(d,e) 2219 0(d,e) @ (R O(c;, d(j)) — Ofe,e).
jeJ

Note that colored operads in our definition are “symmetric”: the right unit
axiom defines a canonical action of the automorphism group of ¢ : I — [O] on
all O(e, d).
Colored operads are also known under other names as “multicategories” or
“pseudo-tensor categories”. The first name is self-explanatory. The reason
for the second one (due to Beilinson) is that colored operads can be assigned
to symmetric monoidal categories. Thus, colored operads can be seen as the
generalizations of symmetric monoidal categories. Here are the details.
Let D be a symmetric monoidal category enriched over € (The case C = Set
is as interesting as any other). We can put [D] = Ob(D) and define D(c,d) =
Homp (®;erc(i), d). This yields a colored operad in C.
It is not difficult to understand when a colored operad O comes in the above
described manner from a symmetric monoidal category. First of all, any colored
operad O has an underlying category (also enriched over €) denoted Oy in the
sequel. If we wish O to come from a symmetric monoidal (SM) category, the
functors d — O(c,d) should be representable for each ¢ : I — [0]. This
condition is not yet sufficient: assuming all functors above are representable
by the objects denoted as ®;erc(i), we obtain for each map f: I — J of finite
sets a canonical map

(2) ®ier c(i) — ®jes (®ier;c(i)).

If these maps are isomorphisms, our colored operad O comes from a SM cate-
gory (uniquely defined up to equivalence).

2.2.1. Planar versions. If one replaces finite sets with totally ordered finite
sets and the maps of finite sets with the monotone maps, we get a multicolor
notion of planar (or asymmetric) operad. This notion generalizes the notion of
monoidal category in the same way as the notion of colored operad generalizes
the notion of SM category.

2.2.2. Maps of operads. Given two colored operads P and Q, a map of operads
f P — Qis defined as a map f : [P] — [Q] together with a compatible
collection of maps

Ple,d) = P(f oc, f(d))
for each ¢ : I — [M].
Compatibility means that the above maps preserve units and are compatible
with compositions.
If P and Q are the operads corresponding to SM categories, a map of operads
f P — Qis what is usually called a laz SM functor.

4By the way, defining a SM category as a colored operad satisfying the above properties,
allows one not to care about associativity or commutativity constraints.
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2.2.3. SM functors. In more detail, let P and Q be SM categories and let f :
P — Q be a map of the corresponding colored operads. This means that a
compatible collection

Hom(®;erai, b) — Hom(®ier f(a:), f(b))
is given. By naturality, this is the same as a compatible collection of morphisms
(3) ®ier f(a;) — f(®iera;).

This is what is usually called a lax SM functor. A map of operads f : P — Q
is called a SM functor if the maps (3] are isomorphisms.

2.2.4. Algebras. We assume that the base symmetric monoidal category € ad-
mits colimits and the tensor product commutes with colimits along each one
of the arguments.

Let O be a colored] operad in € and let D be a SM category enriched over C.
An O-algebra in D is just a map of operads A : O — D.

The category of O-algebras in D is denoted as Algy (D) or just Alge if D can
be understood from the context.

The following theorem is very standard, see, for instance, [BM2], 1.2.

2.2.5. THEOREM. Let f : P — Q be a map of (small) operads and let D be a
SM C-enriched category having colimits. There is a pair of adjoint functors

fi:Algy(D) = Algg(D) : £~

where f* is the forgetful functor, assigning to A : Q — D the composition
ffX)=Aof:P—>Q9—>D.

In the special case where P = [Q] is the operad with the same colors as Q and
with no nontrivial operations, the functor f is the free algebra functor which
is worth of a more detailed description.

Let V : [0] — D be a collection of objects of D numbered by the colors.

The free algebra Fe (V) is the collection of objects Fo(V)4, d € [0], described
as follows. Collections ¢ : I — [O] form a groupoid denoted Fin/[O]. To each
¢ € Fin/[0] we assign the object

iel
This gives rise to a functor F(V)4 : Fin/[0] = D; its colimit is the component
Fo(V)q of the free O-algebra generated by V. Note that Fin/[0] is a groupoid.
For ¢ : I — [0] € Fin/[0] denote X, its automorphism group (this is a subgroup

of the symmetric group 3j). Thus, the free O-algebra generated by V is given
by the formula

(5) Fo(V)a= @  0(c.d) @s. Q) Vi),

cemo(Fin/[0]) i€l

5Tn what follows we will say “operads” and “colorless operads” instead of “colored oper-
ads” and “operads”.
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where the direct sum is over a set of representatives of isomorphism classes of
objects in Fin/[0].

The functor fi carries the free P-algebra generated by a collection V' = {V.}.cp
to the free Q-algebra generated by the collection d +— Hce[tP]:f(c) 4V

2.3. DG VERSION. From now on we fix a commutative ring k£ and we study
operads and algebras with values in the category C(k) of complexes over k.
First of all, the category of complexes C(k) admits a model structure, with
quasiisomorphisms as weak equivalences and degree-wise surjective maps as
fibrations, see, for example, [HI.

For a large class of dg operads a model category structure on Alg, (C(k)) can
be defined using the adjoint pair of functors

(6) Fo : C(k)° — m1g,(C(k)) : G,

where G is the forgetful functor and F¢ is the free O-algebra functor.

A map of O-algebras f : A — B is called a weak equivalence (resp., a fibration)
if G(f) is a weak equivalence (resp., a fibration). In other words, f is a weak
equivalence if for each color ¢ € [O] the map A. — B. is a quasiisomorphism
of complexes. It is a fibration if all maps A. — B, are surjective. It is called
a cofibration if it satisfies the left lifting property with respect to all trivial
fibrations.

2.3.1. DEFINITION. An operad O in C(k) is called admissible if the category of
algebras Alg,(C(k)) admits a model category structure determined by weak
equivalences and fibrations defined as above.

The model category structure on Algq(C(k)) is cofibrantly generated as it is
transferred from the cofibrantly generated model category structure on (collec-
tions of) complexes. In particular, any cofibration is a retract of a transfinite
composition of maps of the form A — A(x) where z is a free variable of a given
color ¢, a given degree d, and a specified value of dr € (A4.)?*!.

The operads with a fixed collection of colors K can be described as the algebras
over an appropriate operad whose colors are the finite collections of the elements
of K. This allows one to define weak equivalence and fibration of a map of
operads with a fixed collection of colors in a usual way. This allows one to
define as well cofibrations for maps of operads via the left lifting property with
respect to trivial fibrations. Note that we are not requiring or claiming here
the existence of model structure for such category of dg operads.

One has the following

2.3.2. PROPOSITION. A cofibrant operad is admissible.

The colorless case is proven in [H.V]. The same reasoning proves the colored
case. g
Another class of admissible operads (X-split operads) is described in Subsection
It includes, for instance, all planar operads, or all operads over k D Q.
Note the following criterion of admissibility.

6In this we follow [BM2].
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2.3.3. THEOREM. An operad O in C(k) is admissible if and only if for any O-
algebra A and for any collection of contractible cofibrant complexes M = {M_.},
c € [0], the natural map

(7) 4 — AT[Fo(M)
18 a weak equivalence.

The proof for colorless operads is given in [H]. The same reasoning proves the
colored case. ([l
One immediately sees that it is sufficient to check that () is a weak equivalence
for M = {M_.} with M. = 0 for ¢ # ¢y, and M., contractible cofibrant.

2.4. CHANGE OF OPERAD. Recall that a map f : P —— Q of operads gives
rise to a pair of adjoint functors

(®) fithlgy T Mgy St
where f* forgets a part of the structure. One has the following

2.4.1. THEOREM. Assume P and Q are admissible. Then the pair of adjoint
functors (fi, f*) is a Quillen pair.

Proof. The forgetful functor obviously preserves fibrations (surjective maps)
and trivial fibrations (surjective quasiisomorphisms). O

One can expect the pair (fi, f*) to be a Quillen equivalence under some favor-
able conditions.

Recall that for a dg operad O we denote by O; the underlying dg category which
remembers only unary operations of O. Passing to the zeroth cohomology of
all Hom complexes, we get a category H%(01).

2.4.2. DEFINITION. 1. Amap f:P — Qis called a weak equivalence if
a. For each ¢ : I — [P] and d € [P] the morphism P(c,d) — Q(f o
¢, f(d)) is a quasiisomorphism.
b. The functor H°(f1) : H%(P1) — H°(Q;) is an equivalence of cat-
egories.
2. Amap f:P — Qis a strong equivalence if instead of (a) the following
stronger condition is fulfilled.
a’. Let ¢ : I — [P] be a collection of colors and d € [P]. Choose a
decomposition ¢ = ¢ op
(9) Ry S )
with p surjective, and let G be the subgroup of automorphisms of
I over J. The map

(10) Ple,d) @c k — Q(foc, f(d) ®c k

is a quasiisomorphism for all ¢, d and p.

"In case f induces bijection on the colors, our notion of weak equivalence coincides with
the one mentioned in [2.3]
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2.4.3. DEFINITION. An operad O in C(k) is called ¥-cofibrant if for each c¢ :
I — [0] and d € [O] with G the group of automorphisms of ¢, the complex
O(e, d) is a (projectively) cofibrant complex of G-modules.

2.4.4. REMARK. Weak equivalence of operads implies their strong equivalence
in case they are X-cofibrant.

2.4.5. THEOREM. A strong equivalence of admissible operads f : P —— Q gives
rise to a Quillen equivalence (fyi, f*).

The colorless case is proven in [H.V]. The proof of [H.V] directly generalizes
to the colored case. Theorem 4.1 of [BM2] proves that weak equivalence of
admissible X-cofibrant operads gives rise to a Quillen equivalence. O
The above observations lead us to the following definition.

2.4.6. DEFINITION. An operad O is called homotopically sound if it is admissible
and Y-cofibrant.

One can define therefore homotopy O-algebras as algebras over an operad which
is a homotopically sound replacement of O.

2.5. X-SPLIT OPERADS. In this subsection we present another class of admis-
sible operads in C'(k).

2.5.1. There is an obvious forgetful functor O +— OF assigning to an operad
its planar counterpart. The functor § admits a left adjoint functor which we
denote O — OF; if O is a planar operad, the operad OF has the same colors; it
is defined by the formula

(11) 0%(c,d) = P 0((c,0),d),

0:1~(n)
where (n) = {1,...,n} is the standard (totally ordered) n-element set, the
direct sum is over all bijections 6 and a pair (¢, §) describes a colored collection
¢ numbered by the totally ordered set (I, 6).
Let O be an operad. Applying the adjoint pair of functors described above, we
get a new operad which we will denote O*. It has the same colors as O and its
complexes of operations are defined by the formulas

(12) 0%(c,d)= P 0(cd),

0:1~(n)

in the previously explained notation.
The composition is defined as follows. Let f : I — J be a map of sets and let
c¢: I —[0]and d: J — [O] be collections. The map

(13) 0%(d,e) ®®Oz(cj,d(j)) — 0%(c,e)

is defined as follows. Choice of a total order on J together with a choice of
total orders on each fiber f~1(j) defines a lexicographical total order on I: if
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two elements of I belong to different fibers, we compare the fibers, and if they
belong to the same fiber, we compare them inside the fiber. With the described
above choice of the orderings, the corresponding component of the map (I3 is
given by the composition () for O.

For example, if O is the operad for commutative algebras, O is the operad for
associative algebras.

2.5.2. One has a canonical map
T:0% — 0

summing up the components corresponding to different orderings (this is just
the the counit of the adjunction).

One defines Y-splitting as a collection of splittings ¢t = ¢4
O(e,d) — O%(c,d) of the canonical map 7 described above, satisfying
the properties (SPL), (INV), (COM) which will be specified later on. We will
usually omit the superscript (¢, d) from the notation.

A Y-splitting ¢ is defined by a collection of its components tg : O(c,d) — O(e, d)
numbered by different orderings of I.

The first two requirements for X-splitting are

(SPL) The map t splits 7, that is >, ty = id.

(INV) For any isomorphism f : ¢/ — ¢ (that is, a bijection f : I’ — I satisfying
¢ = co f) the induced isomorphism f* : O(c,d) — O(c,d) commutes
with ¢. The latter means that

frotg =tgso f.

The last requirement of Y-splitness is a weak form of compatibility of the
splitting with the compositions.

Let ¢c: I = (0], d: J—=[0], a: K = [0],a’ : K" — [O] be finite collections in
O. Let f: I — J be a map of finite sets and let ¢ : a — o’ be an isomorphism
of collections (that is, a bijection ¢ : K — K’ such that a = a’ o ¢).

Gluing the above data, one gets collections cUa : T UK — [O] and d U a’ :
JU K" — [0], as well as a map of finite sets fU¢: TUK — JUK'.

The requirement (COM) describes a compatibility of the splitting with the
composition in O

(14) O(dud,e)® ®O(cj,d(j)) — O(cUa,e)
jes

induced by the morphism f L ¢.
We are now able to formulate the third requirement of -splittings.
(COM) The following diagram is commutative.
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(15)
O(dud’,e) @ Q) 0(c;, d(j))

jeJ

B ouud.)e@ol.di) P ocuae

N JUK ~(|J|+|K|) jeJ O:TUK~(|I|+|K|)

P o@dua’,e) @ Q) 0(c;, d(j) — EP O(cUae)

keK’ jeJ kEK

O(cUa,e)

The upper vertical arrows in the diagram are defined by splitting of O(dUa’, d)
and of O(c U a,e) respectively. In order to define the lower vertical ar-
rows we will introduce the following notation. For each ordering n of the
set J U K’ we denote by ming-(n) the smallest element of the subset K’ of
JUK'. In the same manner we define ming(6). Now the maps ¢ send each
7-component (resp., f-component) to the corresponding min - (n)-component
(resp., ming (f)-component).

2.5.3. REMARK. There is another (stronger) version of Y-splitness where ¢ is
replaced with a projection to the sum over orderings of K’ (resp., of K). It
seems more satisfactory aesthetically; in this formulation the condition (INV)
is its special case for I = J = ().

This stronger version was used in the definition given in [H] for the colorless
case.

2.5.4. EXAMPLE. In the case k D Q the map

1
to(m) = —m

defines a X-splitting.

2.5.5. EXAMPLE. Let P be a planar colored operad and let O = P*. The
canonical map of planar operads P — Of defines a map of operads t : O —
0% splitting the canonical map O* — O. This map satisfies obviously the
conditions (SPL), (INV), (COM).

2.6. ADMISSIBILITY OF Y-SPLIT OPERADS. One has

2.6.1. THEOREM.

o X-split operads in C(k) are admissible.
o [f the components O(c,d) of a X-split operad O are cofibrant complexes,
O is homotopically sound.
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The second claim of the theorem immediately follows from the first one, as
O(e,d) is a direct summand of O%(¢,d) which is cofibrant ¥.-complex, where
Y. denotes the group of automorphisms of ¢ : I — [0].

The forgetful functor commutes with filtered colimits. Thus, it is sufficient to
check that the map A — A[[F(H,) is a quasiisomorphism for H, standard
contractible complex Cone(idy)[d] concentrated at a color a € [O]. The proof
of the theorem is given in Z.6.22.6.5] below.

2.6.2. Extending homotopy to a free algebra. Let V = {Vy|d € [O]} be a collec-
tion of complexes, a : V' — V an endomorphism and A a homotopy of o with
idy, that is a degree —1 map satisfying the condition

dh =idy — o

The endomorphism « induces an endomorphism Fo(a) : Fo(V) = Fo(V); we
will present an explicit homotopy between idg,, vy and Feo (o) which we will
denote Fy(h). The homotopy Fe(h) will be based on a ¥-splitting of O.
Recall that one has a morphism of operads 7 : O — O identical on the colors,
as well as a Y-splitting ¢ : O(c,d) — 0% (e, d).

We are now ready to define a homotopy H on Fo (V). Recall that Fo (V)4 is
the direct limit of the functor F(V)4 carrying a collection ¢ : I — [0] to

§(V)a(e) = 0(c,d) & Q) Ve

We will define a degree —1 endomorphism H of each separate §(V)q(c) compat-
ible with the isomorphisms ¢ — ¢’ of collections. It is given by the composition

(16) O(c,d)©RVeey — P 0c.d)© R Vi) —
i ) i

0:I1~(n

@ O(C,d)®®‘/c(i) — O(Cad)®®VC(i)’

0:1~(n)

with the map S being defined at the #-component as
Sp = ido(egy @’ @h@id" ",

K2

2.6.3. In order to check that the morphism A — A[[Fo(H,) is a quasiiso-
morphism for H, = Cone(idy)[d], one proceeds as follows.

Let A" = A®H,. Then A[[Fo(H,) can be described as the quotient of F(A")
by the ideal generated by the kernel of the natural map Fo(4) — A.

Let a: A’ — A’ be zero on H, and id4 on A. Let h: A’ — A’ be the degree
—1 map vanishing on A such that dh = id — «. Then h defines a homotopy
Fo(h) on Fo(A’) extending h.

Let J the the kernel of the natural projection Fo(A) — A and let g be the ideal
in Fo(A’) generated by J. We check below that H(J) C J and this induces a
homotopy on the quotient Fo(A’)/J = A[[Fo(Ha).
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2.6.4. Action of Fo(h) on Fo(A’). Some relevant notation. For ¢ : I — [O]
and n > 0 we define ¢*” : I U (n) — [O] by the formula
(i) = c(i) for i € I; ¢ (k) = a for k € (n);

The e-component of the free algebra Fo(A’) with A’ = A & H, is the colimit
of the complexes

O(c*",e) ® ®AC(1) X Hl?n

The homotopy Fe(h) is defined by the components Sy numbered by the total
ordering 0 of the set I LI (n). Since h vanishes on A and « is identity on A and
vanishes on H,, the map Sy has form

So = ido(een o) ®ida ®id*" ' @ h@id" "
where the homotopy h is applied to the k-th component of H,, with k& :=

2.6.5. End of the proof. We keep the notation of 2.6.3
The ideal J in Fo(A’) generated by I, is spanned by the expressions

i€l—{0} ke(n)
where ¢ : I — [0], 0 € I, ¢(0) = co, 0 € Iy, u € O(c*",e), bi € Ac(;y and
xr € Hy.
We will now explicitly calculate the image of (I7) under the homotopy Fo(h) =
Y9 So oty to make sure it belongs to J.
Let

tw)= Y to(u)

0:1%7— (| T|+n)
We claim that Fo(h) carries (I7) to the sum

(18) dupeie Q) b K) vox
0 ke(n)

i€eI—{0}
where
_ | k # min, (6)
(19) Ty, = { h(ZCk), k= m1n<n> (9)
It is sufficient to check the formula (I8) in case 0 is a monomial in Fo(A):
(20) s=me®a
jET

with m € O(d, Co), d:J— [O], a; € Ad(j)-
Replace ¢ in (I7) with the expression [20). We get a monomial

(21) z::uom@@%@ ® bi®®$k,
ke(n)

jed ieI—{0}
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where u om denotes the composition of 4 and m belonging to O(cod, e) where
cod:I—{0}UJ — [0O] is the restriction of ¢l d, whose image under Fo(h) is
given by the formula

(22) Fo(h)(z) = > S, oty.

n:I—{0}uJ~(|I|+]|J|-1)

By the axiom (COM) of X-splitness applied to the surjection I —{0}UJ — T
sending the elements of J to 0 and the elements of I — {0} to themselves, we
deduce that Fo(h)(z) is equal to (8.

2.7. SIMPLICIAL STRUCTURE IN CHARACTERISTIC ZERO. All operads are -
split when k£ D @, so in this case the category of algebras Alg,(C(k)) has a
model structure described in Theorem .33

Moreover, polynomial differential forms allow one to define a simplicial struc-
ture on the category Alg,(C(k)) which is (partly) compatible with the model
category structure. We will present the definitions and formulate the theorem.
The proof is identical to the colorless case described in [H, 4.8.

For £k D Q and n > 0 one defines a dg commutative algebra €2,, by the formula

Q, = k:[:z:o,...,xn,dxo,...,dxn]/(zgci — 1,dei).

The assignment n — 2, defines a simplicial object in the category of commu-
tative dg algebras over k. It is canonically extended to a contravariant functor

Q:sSet — Alg. . (C(k))

carrying colimits to limits.
For A, B € Alg,(C(k)) the simplicial set Map(A, B) is defined by the formula

Map(A4, B), = Hom(A4, Q, ® B).

The compatibility of the simplicial structure on Algq(C(k)) with the model
category structure is described in the following theorem.

2.7.1. THEOREM. Assume k D Q and let O be an operad in C(k). The cat-
egory Algq (C(k)) of O-algebras with values in C(k) has a structure of model
category with quasiisomorphisms as weak equivalences and componentwise sur-
jective maps as fibrations. The category Algy(C(k)) has a “weak simplicial
model category structure” (see [H.L|, 1.4.2), that is a simplicial structure such
that the axzioms (M7) and the half of the axiom (M6), see [Hir], 9.1.6, are
satisfied.

(3M6) For every finite simplicial set K and A € Algy(C(k)) the “weak path
object” (see [ILL], 1.4.1) AKX exists and is defined by the formula

AK = Q(K)® A

81t has an O-algebra structure as the tensor product of a commutative algebra with an
O-algebra.
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(MT) For a cofibration i : A — B and a fibration p : X — Y in Alg,(C(k))
the map of simplicial sets

(23) Map(Ba X) - Ma'p(Aa X) X Map(A,Y) Map(Ba Y)
is a fibration which is trivial if either i or p is trivial.

2.8. A PUSHOUT OF ALGEBRAS. Let O be an admissible operad. In this sub-
section we will present, for a later use, explicit formulas for a specific type of
cofibrations of operad algebras. This is a generalization of formula presented
in [SSO0] in the proof of Lemma 6.2, see also F. Muro’s very detailed account
of the planar case [Mu], Lemmas 8.2, 8.5.

Recall that the model category structure on Alg,(C(k)) is transported from
the projective model structure on C'(k) via adjunction (@).

Given a cofibration f : V — W of cofibrant objects in C(k)[®], that is a
collection of cofibrations of cofibrant compexes f. : V. — W, numbered by
¢ € [0], and a pushout diagram in Alg, (C(k))

Fo(V) 229 Fo (W)
(24)

A B
with cofibrant A, we will explicitly describe the morphism G(A) — G(B) as
a colimit of a sequence of cofibrations

(25) G(A)ZBO - Bl ‘Bk > ...
in C(k)[°l.

2.8.1. Enwveloping operad. In order to describe the precise formula for B;, we
need a colored version of enveloping operads, as defined and used by Berger
and Moerdijk [BM3]. Let O be a colored operad and let A be a O-algebra.
The enveloping operad O 4 can be defined as the operad governing O-algebras
X endowed with a morphism of O-algebras A —— X. Admissibility criterion
2.33limmediately implies that, if O is admissible, then for any O-algebra A the
operad O 4 is as well admissible.

Furthermore, if O is X-cofibrant and A is a cofibrant, the enveloping operad
04 is also X-cofibrant. The latter is proven in [BMI], 5.4, for colorless operads,
but the colored version can be proven in the same way.

2.8.2. In the formula 7)) below we will use the following notation. Given a
collection of maps ¢; : X; = Y;, ¢ € I in C(k), we can form a functor from the
standard |I]-cube, considered as a poset of subsets S C I, to C(k), carrying S
to Z(S) := @Q;c; Zi where Z; = X; for i ¢ S and Y; for i € S. This yields a

map

(26) /\ @i : colimss Z(S) — Z(I) = @iesVi.
icl
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We will need some more notation. Recall that for ¢ : I — [O] we denote 3. the
automorphism group of c.

Now, fix d € [0]. The d-component of the map By_1 — By, is defined as the
pushout of the map

(27) @ O4lc,d) @3, /\ fe(iys

cemg(Fin/[0]) i€l
[I|=k

where f.;) 1 Vo) = We) is a component of the map f:V — W.

We have to specify the map from the source of [21) to the d-component of
Bj_;. Fixing ¢ : I — [0] with |I| = k, the formula (27)) is obtained from a
cubic diagram whose vertices are numbered by subsets T C I so that T-th
vertex has |T| times the factor W and k — |T'| times the factor V. We have to
specify a map from all such vertices corresponding to T' # I, to Bi_1. This is
done by replacing factors of V,(;) with respective factors of A.;y = 04(0, (7)),
composing the components of 04 via

OA(cv d) & ® OA((DaC(Z>> - OA(C|T7d)7
i€I—T
and, finally, composing the result with the map
Oalclr)® ® Wey — Bi-1.
€T
We now have
2.8.3. PROPOSITION. Let O-algebra B be given by the pushout diagram (27).

Then the object G(B) € C(k)I°! is a colimit of the sequence of cofibrations (23)
so that Bi_1 — By, is defined by the pushout diagram (27) in C(k)l°l.

Proof. The O-algebra B can be presented as a split coequalizer of

[e3

AUFo(VaeWw) —BL AUFo(W),

where « is determined by the map (f,idw) : V& W — W, and 8 is idw
on W and is defined by V. — A on V. The above coequalizer can be more
conveniently rewritten as the coequalizer of

[e3

FOA(V@W> T IFOA(W).

We will apply the functor G before calculating the colimit. The free algebras
considered as collection of complexes, are direct sums of components F¥ cor-
responding to collections of colors ¢ : I — [O] with |I| = k. We define By, as
the image of the map ng (W) —— B. Then it is obvious that the image of
IE%A(W) and Bji_; generate the whole By and that the d-component of the
fiber product Fk (W) x p, Br—1 coincides with the source of the map (7). O

2.8.4. COROLLARY. Assume O is homotopically sound. Let A be a cofibrant
O-algebra. Then for each d € [O] the complex G(A)q is cofibrant.
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Proof. Any cofibrant O-algebra is a retract of a transfinite sequence of cofi-
brations as in (24). Formulas ([27) show that each step is a cofibration in
C (k)] so the limit is as well a cofibration. Finally, retract of a cofibration is
a cofibration. g

3. SM 0co-CATEGORIES

In this section we will construct certain SM oco-categories (of oo-categories, of
dg categories and others) by Dwyer-Kan localization. We construct an adjoint
pair of functors

Cgg : Catl <~— N(dgCat)® : Mg

between the symmetric monoidal co-categories of infinity-categories and of dg
categories, induced by Dold-Kan equivalence. The functor €4, is symmetric
monoidal, whereas Mg is lax symmetric monoidal (that is, a morphism of co-
operads).

We will denote CatSM := Alg, (Catn,) and dgCatSM = Alg, (N(dgCat)).
The functor Mgg induces a functor

Myg : dgCat™ —— catM,

Furthermore, we will see that both oco-categories dgCat®™ (k) and CatSM are
enriched over Cato,, so that QMg preserves this enrichment. The latter means
that for a pair of symmetric monoidal dg categories C, D one has a functor

Fun®(C, D) — Fun®(Nag(C), Nag(D)).

3.1. LoCALIZATION. Given a symmetric monoidal co-category €% and a col-
lection of arrows W, we would like to be able to define a SM structure on the
localization £(€, W). This is easy if the tensor product preserves W, see [H.L|,
3.2 or [L.HA|, 4.1.3.4.

In this case the localization of the total category C® with respect to the collec-
tion of arrows in €% generated by W, yields what we call a strict SM localiza-
tion: this is a SM functor

(28) C¥ — L(C®,W?)

universal among SM functors €® — D® carrying W to equivalences. More-
over, the underlying co-category of the strict SM localization is the localization
L(€, W) and the localization functor is also universal among lax monoidal func-
tors C® — D¥ see [H.I], 3.2.

Strict SM localizations seldom exist: tensor product does not always preserve
weak equivalences. In this paper we will use the following ad hoc construction.
Given a SM oo-category C® and a collection of arrows W in €, we will present
a full subcategory 689 such that

e The pair (€Y, Wy = W N €p) admits a strict SM localization.
e The embedding €y —— € induces an equivalence of the localizations
L(Go, Wo) — L(G, W)
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We will call £(CF, W) the SM localization of (C¥, ). This construction
depends, in general, on the choice of Cy. We believe that in the examples
below, it satisfies a universal property which makes it right SM localization as
defined in [H.L], 3.3. By [H.L], 3.3.3, this is so in Example B.1.1]

3.1.1. Ezample: QC(k)®. Let k be a commutative ring, € := C(k) the category
of complexes of k-modules and let W be the collection of quasiisomorphisms.
We choose Cqy to be the full subcategory of cofibrant complexes. As a result,
we get a SM oo-category denoted as QC(k). This is the SM oo-category of
k-modules; its homotopy category is the derived category of k.

3.1.2. Example: categories of enriched categories. We will use a similar con-
struction to define SM oco-categories of certain enriched categories. The corre-
sponding model categories were defined by G. Tabuada, see [Tl [T2]. These
are

e dgCat(k), the category of categories enriched over C(k).

e dg=OCat(k), that of categories enriched over C<°(k).

e sMod-Cat(k), that of categories enriched over the simplicial k-modules.
Symmetric monoidal structure on all these categories is induced by the sym-
metric monoidal structure on C(k), C<°(k) and sMod(k) respectively. In each
one of the cases € := dgCat, dg=YCat or sMod-Cat, the full subcategory Cq is
spanned by the categories whose Hom-objects are cofibrant.

In all three cases tensor product preserves weak equivalence of categories be-
longing to Cy. It remains to check that in all three cases the embedding
Cp — C induces an equivalence of DK localizations. This is routinely done
using Key Lemma 1.3.6 of [HL]H
This yields symmetric monoidal oo-categories which we denote N (dgCat)®,
N(dg=‘Cat)® and N (sMod-Cat)®.

3.2. DOLD-KAN CORRESPONDENCE.

3.2.1. Classical Dold-Kan equivalence. Here we will fix some notation. The
functor of normalized chains

C., : sMod(k) — C="(k)

from simplicial k-modules to nonpositively graded complexes of k-modules is
well-known to be an equivalence, with the inverse functor

N, : C=°(k) — sMod(k)

defined by the formula N, (X) = Hom(C,(A™), X).
The functor C, is not symmetric monoidal, but it is very close to be one. One
has functorial maps

(29) Vxy : C(X) @ CuY) — C(X ®Y)
9see 1.3.7 of [FL.I] for the routine.

DOCUMENTA MATHEMATICA 20 (2015) 879-926



RECTIFICATION OF ALGEBRAS AND MODULES 897

(Eilenberg-MacLane, or shuffle, map), and
(30) Axy :Ci(XQY) — C.(X) 2 Cu(Y)

(Alexander-Whitney map) such that

e The functor C, is lax symmetric monoidal via /.

e It is also colax monoidal 9 via A (equivalently, N, is lax monoidal via
AN).

e Both A and vy are homotopy equivalences and A o 17 = id.

3.2.2. Enriched categories. Any lax monoidal functor F' : M —— N induces
a functor

F :Cat); —— Caty

between the respective enriched categories.
Therefore, one has a pair of functors

(31) C : sMod-Cat(k) = dg=YCat(k): N,

where C = (C,, V) and N = (N,, ), with a natural isomorphism N o C' = id.
Note that the functors C', N do not form an adjoint pair.

The functor C' is lax symmetric monoidal. Developing the ideas of [SS03],
Tabuada proved in [T2] that the functor C' has a left adjoint and this pair
defines a Quillen equivalence.

Therefore, an equivalence

(32) N(C) : N(sMod-Cat(k)) — N(dg=Cat(k))

is induced. Since it is lax SM, it is a symmetric monoidal equivalence. Since
N(N) is left inverse, it is an inverse symmetric monoidal equivalence.

3.2.3.  We can now define an adjoint pair

(33) Cag : Catl +~— N(dgCat(k))® : Mg

as a composition

(34)

N(sCat™) <= N(sMod-Cat(k))® <— N(dg=‘Cat(k))® <= N(dgCat(k))®.

The adjoint pair in the middle is a SM equivalence. In two other adjoint pairs
the left adjoint is symmetric monoidal, therefore the right adjoint is a map of
operads, see Appendix [Al
Thus, €4 is symmetric monoidal and 914g is a map of operads.

10hut not colax symmetric monoidal!
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3.2.4. We will now show that the functor 4, carries the dg category C'(k) to
QC(k) € Cato. Moreover, Ny, carries the commutative algebra object C(k)®
to QC(k)®.

Let Cu‘(k:) denote the category of cofibrant complexes of k-modules. It is k-
linear and so is enriched in a “trivial” way over C'(k):

(35) Homy(X,Y) := Z°(Hom(X,Y)).
The functor Ny carries Cu‘(k:) into the category whose Hom object are discrete
(as simplicial objects) k-modules. We identify Nag(Cy(k)) with Cf (k) for the
obvious reason.
The functor Nyg applied to the map Cf(k) — C¢(k) yields a map

Cf (k) —= MNag(C(K))
which carries quasiisomorphisms to equivalences. Therefore, a map

QC(k) — Nag(C*(K))

is induced. It is an equivalence by [H.L], 1.4.3.
Let us show that 9144 also preserves the symmetric monoidal structure of C¢(k).
The adjoint pair

Cgg : Catl +~— N(dgCat(k))® : Nyg
gives rise to an adjoint pair of functors between the oco-categories of commuta-
tive algebras in respective categories,
(36) Cag : CatIM = dgCat™(k) : Ny,
that is between symmetric monoidal oco-categories and (weak) symmetric
monoidal dg categories.
We claim that 914 carries the symmetric monoidal dg category C¢(k)® to
QC(k)® as constructed in BTl
The dg category Ct‘f(k) has a symmetric monoidal structure and the map
Cf(k) — C¢(k) is a symmetric monoidal functor. Therefore, the induced
arrow

CE (k) — Mag(C*(1)®)

is also a symmetric monoidal functor. By universality of symmetric monoidal
localization we get a symmetric monoidal functor

(37) QC(k)® — Nag(C*(k)®).
Since we already know that the induced functor QC(k) — Mag(C¢(k)) is an

equivalence, it is an equivalence of symmetric monoidal co-categories.

3.3. Mgg, ENRICHED. We will now show that the oo-categories Cat3M and
dgCatSM(k) are enriched over Cato, and the functor Mg, defined in (B6) pre-
serves this enrichment. More precisely, we will present, for a pair A, B of
symmetric monoidal dg categories, a map of co-categories

(38) Fun®(A, B) — Fun®(Mgg(A), Nag(B))
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of respective symmetric monoidal functors extending the map of of spaces of
morphisms defined by the functor 4.

We will first explain the construction in the setup of conventional categories,
and then will provide the co-categorical generalization, using the formalism of
SM adjunction (see Appendix [A]).

3.3.1. A general setup (conventional categories). Let
(39) A:C «— D:p

be an adjoint pair of functors between symmetric monoidal categories, so that
A is symmetric monoidal (and therefore p is lax symmetric monoidal). We
assume that D is cotensored over C, which means that there exists a functor
n:CPxD— D (X,A) — AX, right adjoint to the bifunctor € x D — D
carrying the pair (X, A) to A(X)®A. One can easily see that 7 is lax symmetric
monoidal.

Assume now that € is cartesian. Then any object X € € has an obvious coalge-
bra structure defined by the diagonal. This implies that for any commutative
algebra A in D and any object X in € the power object AX has a commutative
algebra structure. The multiplication in A% is given by the composition

AY @AY — (A@ AN — AN AX
We can therefore define inner hom on Alg,, (D) by the formula
(40) Hom(X,Fun® (A4, B)) = Homy, (p)(4, BY),

provided the right-hand side is representable.
The C-enrichment on Alg, (D) so defined is functorial in the following sense.
Given a sequence of adjoint pairs

1 2
cC — Dl — 'DQ

P1 P2

between SM categories, satisfying the above properties, one has a natural iso-
morphism

(41) pa(BY) = pa(B)*,
which induces a canonical map
(42) Fun® (4, B) — Fun® (p2(A), p2(B)).

3.3.2. Construction for SM oo-categories. The only claim requiring a special
attention when extending the above construction to co-categories is the struc-
ture of lax symmetric monoidal functor on 7 : C°P x D —— D induced by the
adjunction [B9). The functor A leads to a C-left-tensored structure on D given
by a SM functor

CxD—D
defined by the formula (a,z) — A(a) ® .
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The corresponding functor C°P x DP x D —— § carrying the triple (a,z,y)
to Map(a ® x,y) is then lax monoidal by [AX5J] Existence of €-cotensor struc-
ture on D is equivalent to {1, 3}-representability of this functor. Once more,
according to[A.5.] this implies that the functor

(43) n:CPxD—D
is lax SM, see[A5.3]

Now, a lax SM functor induces a functor between respective co-categories of
commutative algebras. A commutative algebra in €°P x D is a pair (X, A)
where X € € and A € Alg, (D). This yields a required functor

(44) USM 1 C%P x AlgCom(Q) - AlgCom(®)7

which allows one to define C-valued inner Hom on Alg, (D) by the formula

@n).

3.3.3. We wish to apply the above construction to € = D; = Catyo, Do =
N(dgCat(k)). The oo-categories Cat., and N(dgCat(k)) can be described as
oo-categories underlying combinatorial model categories, see [L.T], 2.2.5.1 and
[T1], Thm 1.8.

Therefore, the corresponding underlying co-categories are presentable. The
tensor products in these oo-categories commute with colimits, so by Corol-
lary 3.2.3.5 of [L.HA] the categories of commutative algebras in Cate, and
N (dgCat(k)) are as well presentable. Furthermore, the functors 1 and 7°M
preserve limits in each of the arguments.

This implies presentability of the C-valued inner Hom given by (44).

We now have to make sure that the Cat.-enrichment of Cat3M defined by
the above universal construction, coincides with the standard one, see [L.HAJ,
Definition 2.1.3.7.

3.3.4. Inner Hom for SM oo-categories. In case € = D has products, the func-
tor "™ defined in (@) can be described much easier: the functor 7 (@3] pre-
serves products in the second variable; therefore, it carries algebras to algebras.
Here is an explicit description of n°M for € = Cat.,, where commutative alge-
bras in Cat., are presented as co-categories cocartesian over N Fin,, see [L.LHA],
Section 2.

Given a simplicial set X and a SM oo-category p : B —— N Fin,, we define a
simplicial set BX with a map ¢ : BX —— N Fin, as follows. The n-simplices
of BX over o : A" —— N Fin, are the commutative diagrams

-

A" x X B
(45) pry p
A" 7 » NFin,
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A diagram ([@3]) with n = 1 represents a cocartesian lifting of o iff the restriction
of o to each vertex of X is cocartesian. This implies that ¢ is a cocartesian
fibration; the fiber of ¢ at (n) is B<X so ¢ : BX —— NFin, is a SM oo-

ny’
category.
Now the identity
(46) Map(X, Fun® (Av B)) = MapCatgoM (Aa BX)

can be easily verified, which proves that Cat.,-valued function space defined
be our general construction is the conventional one for € = Cat.

4. RECTIFICATION OF ALGEBRAS

4.1. INTRODUCTION. Let O be a topological operad (that is, a fibrant simplicial
operad) with the set of colors [0]. We denote O% the corresponding co-operad
in the sense of Lurie [L.HA] which is defined as follows.

Let Fin, denote the category of finite pointed sets. Its objects are finite pointed
sets I, = I U {x} and the maps f : I, — J, satisfy f(x) = *.

We will define first of all a simplicial category 0% over F in,, and then will
put O% to be the (homotopy coherent) nerve of the simplicial category 0%,
see [LT], 1.1.5.5. Here is the definition of O®.

Its objects over I, € Fin, are maps ¢ : I — [O] and the simplicial sets of
morphisms over f : I, — J, defined by the formula

Mapé®(0, d) = H O(clg-1¢j),d(4))-
jeJ

The composition in 0% is determined by the composition in O, see the details
in |[.HA], 2.1.1.22.

Fix a commutative ring k. We are mostly interested in algebras over O%® with
values in the SM oo-category QC(k) of complexes of k-modules described in
detail in B.1.11

We want to compare the co-category Alge (QC(k)), as defined in Lurie’s book
[L.HA], 2.1.3.1 (this is just the co-category of operad maps O® —— QC(k)i
with the category of “strict” O-algebras Algs (C(k)) defined as in Section 21
Assume now we are given a quasiisomorphism of operads R — C, (0, k) with
R homotopically sound.

In this case, as we know, the category Alg$!(C(k)) admits a model structure
with quasiisomorphisms as weak equivalences and surjective maps as fibrations.
Applying the nerve construction (see [HLL], 1.3) to Algi (C(k)), we get an co-
category. A certain effort is required in order to be able to interpret a strict
R-algebra as an object of Alg, (QC(k)). Unexpectedly, the problem exists even if
R = C4(O). The reason is that the singular chains functor C, : sSet — C/(k)
is not symmetric monoidal.

HNote that we have changed the notation in order to distinguish two notions of O-algebra!
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The construction of the functor Algs (C(k)) — Alg,(QC(k)) is explained in
Subsection below. Once we have this functor, the universal property of the
oo-localization yields an oo-functor

(47) ®: N(Algy (C(k)) —= Algy(QC(k)).
Here is the central result of this paper.

4.1.1. THEOREM. Let O be a topological operad and let R — C.(O) be a homo-
topically sound replacement. Then the functor ® (£7) is an equivalence.

4.1.2. The proof follows the idea of the proof of [L.HA] 4.1.4.4 dealing with
rectification of associative algebras. An oco-categorical version of Barr-Beck
theory [L.HA], 6.2, allows one to present an O-algebra A in QC(k) as a colimit
of its monadic Bar-resolution. The latter consists of free algebras which can be
easily lifted to Algi(C'(k)). The homotopy colimit of this simplicial object in
Algil(C(k)) gives the lifting of A. Further details of the proof are given in (3]
below.

But first of all we have to define the map ® in a greater detail.

4.2. CONSTRUCTION OF ®. Let O be a fibrant simplicial operad and let R —
C.(0,k) be a quasiisomorphism of dg operads (bijective on colors) with R
homotopically sound.

The simplicial operad O generates a simplicial PROP Py defined as follows.
Let Fin be the category of finite sets. It can be considered as a subcategory of
Fin, via the functor Fin — Fin, carrying a finite set I to Ehe pointed set I,.
One defines the simplicial category Py as the fiber product O% x gy, Fin. The
objects of Py are finite collections of colors of O, and the arrows are composed
from the operations in O. The symmetric monoidal structure is defined by
disjoint union of collections.

The image of Py under €4, see formula (BG), is presented by the SM dg category
Pc, o which is the k-linear PROP generated by dg operad C.(0). We will
replace Po, o with an equivalent SM dg category Px, the PROP generated by
the dg operad R.

Any cofibrant R-algebra A in C(k) gives rise to a symmetric monoidal dg
functor

A: Pr — C(k)

such that all A(xz), = € Pg, are cofibrant, see [Z874
This yields, in particular, an arrow in dgCat>™ (k). Applying to it the functor
Nag, and composing with the unit map, we get

Po — Nag(Pr) — Nag(C(k)) = aC(k)”.
The above construction defines a composition
(48) Algi (C (k)¢ — Fun®(Pg, C(k)) ~ Fun®(Pg, 0, C(k)) —
— Fun® (Meg (P, 0),QC(k)%) — Fun®(Py,QC%) = Alg, (AC(k)).
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Thus, we have a functor

¢ : Algy (C (k)" — Algo(QC(k)).

It remains to check that ¢ carries weak equivalences of cofibrant R-algebras to
an equivalence. This is really easy: the functor ¢ constructed above commutes
with the forgetful functors G*! and G in the following diagram

ALgs (C(k))° —2» Alg(QC(k))

(49) el G ,

(C(k>0)[0} L Qc(k)[ol

where ¢"1V is defined by localization.
Since weak equivalences in Alg$ are detected by G*' and since the functor G
is conservative (see [L.HA|], Lemma 3.2.2.6), the assertion follows.

4.3. PROOF OF @111

4.3.1. Look at the commutative diagram obtained from ([@9) by application of
the nerve functor to G*.

N(Algy (C(k))

Algy(QC(k))

qc(k)!

The reasoning briefly explained in [4.1.2] is formalized in Corollary 6.2.2.14 of
[L.HA]. It claims that the map ® in ({@7) is an equivalence, provided the
following properties are verified.

1. The functor G is conservative.
15t. The functor NG*! is conservative.
2. The functor G admits a left adjoint functor F'.
2%t The functor NG** admits a left adjoint functor F*¢.
3. Any G-split simplicial object in Alg,(QC(k)) has a colimit and G pre-
serves this colimit.
3%t. The same for NG*.
4. The unit map X — NG F*(X) = GO®(F** (X)) induces an equiva-
lence

F(X) — 3(F(X)).

2we denoted it G in Section 2.
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Let us check the assertions 1-4.

The properties 1,2,3 is are proven in [L.LHA], see 3.2.2.6, 3.1.3.5 and 3.2.3.1.
The functor F*' is obtained by application of the the nerve construction (see
Proposition 1.5.1, [H.L]) to the functor Fx which is left adjoint to the forgetful
functor G** : Algt(C(k)) — C(k)[O). This proves 2°¢.

The functor NG*' is conservative as weak equivalences in Alg$ are detected
by G*t. Thus, it remains to verify the assertions 3¢ and 4.

Assertion 3%t

According to [H.I], 1.5.2, colimits in an co-category underlying a combinatorial
model category can be calculated via derived colimits in the model category.
This is applicable to both C'(k) and Algj (C(k)).

A simplicial complex X € C(k)>"" will be called colim-adapted if

e The canonical map L colim X —— colim X is a quasiisomorphism.
e For all n € A°P the components X,, € C(k) are cofibrant.
e The complex colim X is cofibrant.

Simplicial objects in Alg$l(C(k)) are algebras over a certain operad which we
will denote R2". In Lemma E3.2 below we check that the operad R2™ is also
homotopically sound.
Since the category A°P is sifted, the colimit over A°P? commutes with the for-
getful functor G.
Therefore, in order to deduce Assertion 3°¢, it remains to prove that the for-
getful functor

Alggace (C(k)) = Algg(C(k))>

T k)R
carries cofibrant simplicial algebras to [R]-collections of colim-adapted simpli-
cial complexes. This is also proven in Lemma below.

Let C be a (small) category and R a dg operad. We will now describe a dg
operad R® such that R¢-algebras are precisely the functors C' — Algy, (C(k)).
The colors of RE are pairs (¢, m) where c is a color of R and m € C.

A collection of colors I — [R€] is given by a pair (c,m) where ¢ : I — [R]
is a collection of colors in R and m a function I — Ob(C'). The complex
RE((e,m), (d,n)) is defined as [[; Home (m;,n) x R(e, d), and the composition
in R¢ is defined by the compositions in R and in C.

4.3.2. LEMMA. Assume R is a homotopically sound operad. Then

a) RA™ is also homotopically sound.
b) the forgetful functor

G: Alg:RAop (C(k)) ., C(k)[fR]XAOD

carries cofibrant algebras to collections of colim-adapted simplicial com-
plexes.

13Note that 3.1.3.5 is applicable since tensor product in QC(k) commutes with colimits
along each one of the arguments.
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Proof. Assertion (a).

We prove that R is homotopically sound for any category C. First of all,
let us prove admissibility of RE. Let A be an R algebra and M a cofibrant
contractible complex. Choose a color (¢,m) of R®. We have to prove that
the map A — B is a weak equivalence, where B is obtained from A by freely
joining M at color (¢,m). In other words, we have to check that for each
n € C the map A(n) — B(n) is a weak equivalence. Note that B(n) is freely
generated over A(n) as R-algebra by Home (m,n) x M which is also cofibrant
and contractible. Therefore, R¢ is admissible by the criterion 2.3.31

It remains to make sure R® is Y-cofibrant. The automorphism group of a
collection (¢, m) of colors in PC is a subgroup of the automorphism group of
the collection ¢ in R. Thus, if R is X-cofibrant, RC is L-cofibrant as well. This
proves the assertion a).

Assertion (b). Here we follow, with minor amendments, Lurie [L.HA], 4.1.4.13
(4 A morphism of simplicial complexes X — Y will be called colim-adapted,
if

e X,Y are colim-adapted.
e For each n € A° the map X,, — Y, is a cofibration in C'(k).
e The map colim X —— colimY is a cofibration in C'(k).

The collection of colim-adapted morphisms satisfies the following properties
(proven in [L.HA], 4.1.4.13).

e Let X be a cofibrant complex. Then the constant simplicial complex
defined by X is colim-adapted.

e Let f,g be two colim-adapted maps. Then f A g defined as in ([28) is
colim-adapted.

e All cofibrations in C(k)»™ are colim-adapted.

e The collection of colim-adapted morphisms is closed under transfinite

composition.
e Base change: if f: X — Y and Z in a pushout diagram
x—1 .y
(51)
z—L .7

are colim-adapted, then f’ is also colim-adapted.

Let us now prove assertion (b).

Obviously, a retract of a colim-adapted simplicial complex is colim-adapted,
so we may assume that the cofibrant algebra A is a colimit of a transfinite
sequence of cofibrations A = colim A, where A° is the initial R2""-algebra,
A% ~ colimg<q Ag for a limit ordinal, and such that A,41 is obtained from

1ywe use the term ”colim-adapted” instead of Lurie’s ”good”.
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A, via a pushout diagram
IFRAUP (V) — F:RAOP (W)

(52) :

Aa

where V' — W is a cofibration of cofibrant objects in C(k)RI*A",

According to 83, A1, considered as an object of C(k)**A™ 'is obtained
as a colimit of arrows obtained by pushforward along the maps ([27)). Since the
components of A.(;y are cofibrant complexes and R is homotopically sound, the
properties of colim-adapted maps listed above imply that the map G(4,) —
G(Aa+1) is colim-adapted. This proves the assertion.

Aa—i—l

O

4.3.3. To prove assertion 4, we will need a minor generalization of [L.HA],
3.1.3.11, describing free algebras generated by a collection of objects corre-
sponding to different colors.

Let O® be an oc-operad and a : I — [O] a collection of objects in O. Let
© C Fin, denote the subcategory defined by the inert arrows in Fin,, so that
© is the “trivial co-operad”. We identify ©7 with the category whose objects
are finite sets over I and whose morphisms are inert partial maps over I. There
is an (essentially unique) extension of the map a : I — O to amap 0 : ©f — 0%
of co-operads.

Let ¢ : €®° — O® be an O-monoidal oo-category. A collection of objects
X ={X; € G}, i € I defines (essentially uniquely) a ©f-algebra X in € such
that go X = 0 : ©F — 0%. Let F € Alg,(C). The lemma below allows one
to check whether a given morphism X — 0*(F) exhibits F as free O-algebra
generated by the collection {X;}, i € I.

Denote @{SO the maximal subgroupoid of ©f. In other words, this is the
groupoid of finite sets over I. For each y € O we define a Kan simplicial
set P, as the full sub(oco-)category of O x e O% spanned by the objects

{0}

whose component in O% is given by an active arrow.

One has a canonical map h : Py, X Al —+ 9% defined as follows.

Its restriction hg to Py, x {0} is the composition Pr, — O — 0P whereas
the restriction hy to Py, x {1} carries everything to {y} € O. In general, if
7 is a k-simplex of P, and o; is a k-simplex of A! having i times value 1

(t=0,...,k+1), then the image of (,0;) is defined by the formula

| diga, 1=0
(53) ilm 00) = { S;c_fliJrld;.cfiJrlT’ i>0
where 7 is the k + 1-simplex of O® defining the projection of 7 to O(/gy.

Now, the map ¢ : €® — O being cocartesian fibration, the map h : Py, x
Al — 0% can be lifted to amap H : Py, x Al — €% so that the restriction
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Hj to Py x {0} is the composition

I X e
ﬂ)l,y ®iso ¢

and such that for each 7 € Py, the arrows H(m, Al) is cocartesian.
This yields a map H; : Py, — C,.

DEFINITION. The colimit of H; constructed above, if exists, is denoted

Symg (X )y-

Let now, X be as above, and let A be a a 0-algebra in €. A choice of a map of
O algebras f : X — 6*(A), which is given essentially by a collection of maps
fi : Xi — A(i), i € I, defines a canonical collection of maps

(54) Fy : Symg (X)y — 4,
as follows. The map f : X — 6*(A) induces a map
HO . AOhO : fP]’y —_— €®.

By construction of Symg(X),, one obtains a canonical map

H——> Aoh:Pr, x Al —» €&

whose restriction to Py, x {1} yields a map F), : Symy(X), — A,.
The following lemma is a straightforward generalization of [L.HA], 3.1.3.11.

4.3.4. LEMMA. A collection of maps f; : X; — 0*(A);, ¢ € I, exhibits A as a
free algebra generated by X iff for all y € O the natural map

Fy - Symo(X)y — 4,
18 an equivalence.

U
We will now apply the above lemma to prove Assertion 4. In our context O%®
is the oc-operad constructed from a topological operad O. We put I = [O]
and we represent the collection of X; € QC(k) by their cofibrant representatives
Y;. Let Fx(Y) be the free R-algebra on Y = {Y;}icj0]. We denote F to be
the O-algebra in QC(k) corresponding to Fx(Y') as explained in We have
canonical maps Y; — 6*(F);, so we can apply the above lemma.
It remains to check that the maps F, : Symy(X), — F, are equivalences.
Recall that ©L  identifies with the groupoid of collections Fin/[O] used in
the description of the (classical) free algebra, see One has a canonical
projection Py, — N Fin/[O] and n-simplices of P;, over o : cp — ... = ¢, in
N Fin/[0] correspond to n-simplices of O(co,y).
The map Symg(X), — F, is constructed as follows. The map Hp :
Pr,, — QC is the composition

(55) Py, —= NFin/[0] — QcC,

where the second arrow carries a collection ¢ : J — [0] to ®;e Y.
The canonical maps Y; — 6*(F); allow one to extend H; to a functor

Hlbz ?y—>QC
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carrying the vertex on the left to F,, = colim §(Y"),, where the functor F(Y), :
Fin/[0] —— C(k) is given by the formula F(Y)y(c) = R(c,y) ® @ ,cs Ye(i)s
see formula ().

The extension HY is constructed as follows. Omne chooses a section s of the
projection N,(R(c,y)) —— N.(Ci(O(c,y))). We will denote by the same
letter the composition s : O(c,y) — N.(C(O(c,y))) — Ni(R(c,y)). Now,
given an n-simplex (o, 7) of P;,, where 0 : ¢g — ... = ¢, in NFin/[0] and
7 € O(co,Y)n, one extends it with the map

Co(A™) @ Q) Yeo(j) —> Ty
Jj€Jo
defined by the map C.(A™) —— R(co,y) determined by s(7). It remains to
check that H} : P7 , —— QC(k) is a colimit diagram.
In fact, since the functor H; factors through N Fin/[0], see (B3), colim H; can
be calculated as the colimit of the left Kan extension of H; via the projection

?[7y ——— NFm/[O]

This functor is a Kan fibration, so by [L.T], 4.3.3.1 the left Kan extension of
H, is precisely the functor §(Y'),. Since R is X-cofibrant, its (naive) colimit

calculates as well the required homotopy colimit.
O

4.4. ALGEBRAS OVER A PROP. Theorem [£1.]] allows one to get a certain
rectification result for algebras over a topological PROP, or, more generally,
over any SM topological category.

A topological SM category P determines a SM oco-category P®, see BI], and
the oo-category of algebras Fun®(P®, QC(k)®).

We are going to give a “classical” description of this notion of co-algebra.

4.4.1. DEFINITION. Let R be a symmetric monoidal dg category. A homotopy
R-algebra in C(k) is a lax SM functor A : P —— C(k) such that the natural
map

Alz) @ Aly) — Az ©y)
induces a quasiisomorphism A(z) @ A(y) — A(z ®@y) for all 2,y € P.

We denote by P° the dg operad defined by P. A lax SM functor P — C(k) is
just a strict P°-algebra in C(k).

We need a minor generalization of the above definition. A dg operad R will be
called weak SM category if the corresponding operad enriched over the derived
category of k is an (enriched) SM category.

The only example of weak SM category we need is the following.

4.4.2. LEMMA. Let P be a SM dg category and let R — P° be a homotopically
sound replacement of dg operads. Then R is a weak SM category.

O
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If R is a weak SM category and z,y € [R] two objects, tensor product z ® y is
defined uniquely up to equivalence. Then Definition [£.4.1]is applicable also for
weak SM categories. We will repeat it once more.

4.4.3. DEFINITION. Let R be a weak SM dg category. A homotopy R-algebra
in C(k) is an algebra over the operad R such that the natural map

Alz) @ Aly) — Alz @y)
induces a quasiisomorphism A(z) @ A(y) — A(z ®y) for all z,y € [R].

Let P be a topological SM category and let R — C,(P?, k) be a homotopically
sound replacement.

The oo-category of homotopy R-algebras is defined as the full subcategory
of N(Algsl(C(k))) consisting of homotopy R-algebras. It can be otherwise
described as the DK localization of the category of cofibrant homotopy XR-
algebras, with respect to weak equivalences.

Theorem 1. immediately implies the following result.

4.4.4. COROLLARY. Let P be a topological SM category, and let R — Ci (P, k)
be a homotopically sound replacement of Cy(P, k) considered as an operad. Let
P® be the SM oo-category defined by P. Then the equivalence of co-categories

© : N(Algy (C(k)) — Algpe (AC(k))

induces an equivalence of the subcategory of homotopy R-algebras with

Fun® (P®,Qc(k)®).

O

5. MODULES

In this section we deduce from Theorem [£ 1] the rectification for modules over
operad algebras. Our definition of module over an O-operad algebra is very
straightforward. For any co-operad O we define a new oo-operad denoted MO
such that algebras over MO are pairs (A, M) where A is an O-algebra and M
is an A-module, see Subsection

Theorem [AT.1] implies the main result of this section Theorem saying
that the oo-category of modules over an operad algebra can be described as
the infinity category underlying the corresponding model category. The precise
formulation is given in The proof is based on the result on localization
of families of co-categories given in [H.L], Sect. 2.

In his foundational book [L.HA] J. Lurie gives another definition which, under
some restrictions, yields for any O-algebra A an O-monoidal category of A-
modules. In Appendix B we show that our definition is equivalent to the one
suggested by Lurie, with discarded O-monoidal structure.
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5.1. CLASSICAL SETTING. Let O be a topological operad. We define a new
topological operad MO as follows. We double each color, defining

MO] = [0] x {a,m}.

A collection of colors in MO is given by a pair of maps ¢ = (¢, X.) where
c: I —10], Xc:I— {a,m}.
The space of operations MO(Z, d) for ¢: I — MO], d € [MO] is nonempty in two
cases described below.

e X.(i)=aforalliel, X;=a.

e X.(i) = m for precisely one i € I, X4 = m.
In these cases MO(¢, d) = O(c, d).
Note that the same construction makes sense for operads enriched over any SM
category.
One has a map O — MO carrying any ¢ € [0] to (¢, a). In the opposite direction,
a map MO — O erases the X-marking of a color.
Algebras over MO are pairs (A, M) where A is an O-algebra and M is a A-
module.

5.2. A similar construction makes sense in the context of oc-operads. Given
an oo-operad O% we define a new operad MO® by the formula
MO® = CM® Xy pip, 0%,

where CM is the two-color operad governing pairs (A, M) with A a commutative
algebra and M an A-module, and CM® is the corresponding oo-operad.

5.2.1. DEFINITION. Let O® be an occ-operad and €® a SM oo-category. Let
A € A1g,(€). The co-category Mod§ (@) is defined as the fiber product

Mod9(C) = Algye(C) Xn1g, () {A}

Let O be a topological operad and let R — C,(O) be a homotopically sound
replacement.
We are not sure that MR is always homotopically sound. The following, however,
is very easy.

5.2.2. LEMMA. Let R be a X-split operad in C(k). Then MR is also X-split. If
R is X-cofibrant, then MR is 3-cofibrant.

Proof. If the collection of maps tg : R(c,d) — R(e,d), 0 : I — {(|I|), provides a
Y-splitting for R, the same maps provide a Y-splitting for nonzero components
of MR in the notation of [5.1] and The second claim is also obvious. O

In any case, we can choose a homotopically sound replacement
M — C,.(MO)

and define R as the full suboperad spanned by the original colors of O. Then
by R is a homotopicaly sound replacement of C,(0O).
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5.2.3. THEOREM. Let O be a topological operad. Let M be a homotopically
sound replacement of C,(MO) and let R be the full suboperad of M spanned by
the original colors of O. Let A be an R-algebra in C(k). There is a canonical
equivalence

(56) N (Mod} (C(k))) — Modj (QC(k)),
where we denote by the same letter A the corresponding O-algebra in QC(k).

Proof. According to Theorem [T.T] one has a commutative diagram of oo-
categories whose horizontal maps are equivalences.

N(A1gy;(C(k))) — Algye(QC(k))
(57) % &

N(A1gy (C(k))) —= Algy(QC(k))
This yields an equivalence of the homotopy fibers of the vertical maps. It
remains to identify the map of homotopy fibers with the map (G6).
The forgetful functor

(58) A1gy (C(k)) —= Algx (C(k))

inducing the left vertical arrow ¢, preserves cofibrant algebras. This map,
restricted to the subcategories spanned by the cofibrant objects, and consid-
ered as marked oo-categories (quasiisomorphisms being the marked arrows), is
a marked cocartesian fibration in the sense of Definition 2.1.1, [H.I]: this is a
cocartesian fibration of categories (a map f : A — A’ of algebras gives rise to
base change map f* : Modqs — Mod-), the base change preserves quasiisomor-
phisms of cofibrant modules, and weak equivalence of cofibrant algebras gives
rise to equivalence of the corresponding categories of modules). Then, accord-
ing to Proposition 2.1.4, [H.I], the (homotopy) fibers of ¢! identify with the
DK localizations of the fiber of the functor

(59) o™ Algy(C(k))" — Algx (C(k))°
at a cofibrant algebra A.

If we had M = MR, the fiber would be precisely the category of cofibrant A-
modules. In general one has to add a few lines.

We will now present a mini-theory, generalizing to algebras over colored operads
the notion of enveloping algebra.

Let R be a full suboperad of an operad M such that the following “linearity”
condition holds.

Let ¢ : I — [M] and d € [M] satisfy the condition M(c,d) # 0. Then either both
d and the image of ¢ belong to [R], or d & [R] and there is precisely one i € I
such that c(i) ¢ [R]. Given a pair of operads M D R satisfying the linearity
condition, and an R-algebra A in C(k), we can look at the fiber of the functor
Alg,(C(k)) — Algx(C(k)) at A as the category of generalized A-modules. In
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case M = MR this fiber is the category of A-modules. Keeping in mind this
analogy, we will denote it Mod%.

The category Modf:{[ can be easily described as the category of representations
(that is, C'(k)-enriched functors to C(k)) of a category enriched over C'(k) which
we will call the enveloping category of A and will denote UJJ{[ (A). Tts objects
are the elements of [M]—[R]. The complex of maps from x to y, z,y € [M]—[R],
is a certain colimit of tensor products of M(c,d) along a category of marked
trees.

In case R is a colorless operad and M = MR, we recover the classical notion of
universal enveloping algebra. In case R is a full suboperad of two operads M
and M’, a map of operads f : M — M’ is said to be over R if f|g =id. If A is
a cofibrant R-algebra and f : M — M’ is a quasiisomorphism of operads over
R, the induced map

U (A) — UR'(4)

is an equivalence of dg categories. This can be checked precisely as in the
colorless case, see [H], 5.3.3.

We can now complete our proof applying the above claim to R, M as in the
theorem and M’ = MR. O

APPENDIX A. SYMMETRIC MONOIDAL ADJUNCTION

Let F: C <= D : G be an adjoint pair of symmetric monoidal categories,
so that F' is a symmetric monoidal functor. Then it is easy to see that G is
automatically lax symmetric monoidal.

In this subsection we study the above phenomenon and its generalizations in
the context of oo-categories.

A.1. FIBRATIONS IN Cat.,. We are going to use the notions of left or cocarte-
sian fibration applied to arrows of Cats, rather than of sSet as in [L.T], 2.1
and 2.4. Here are the appropriate definitions.

A map f: X — Y in Caty is called a left fibration if the diagram below defined

by f

x4 ya'

(60)

xS | yio

is cartesian. Equivalently, this means that a map f is equivalent to one repre-
sented by a left fibration in sSet.

Similarly, one defines a cocartesian fibration in Cat., as a map equivalent to
one represented by a cocartesian fibration in sSet. Let X, Y be oco-categories.
A map f: X — Y in sSet represents a cocartesian fibration in Cat., if it can
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be embedded into a homotopy commutative triangle of co-categories

X h Z

(61) < >

Y

where ¢ is a cocartesian fibration in sSet and h is an equivalence of oo-
categories.

Given an oo-category C, we denote as Cocc the subcategory of (Catu)/c
spanned by cocartesian fibrations, with arrows preserving the cocartesian lift-
ings. The category Leftc is the full subcategory of (Cats ), spanned by the
left fibrations. One also defines the oco-category Left as the full subcategory
of Fun(A', Cat..) spanned by the left fibrations. The co-cateory Leftc is the
fiber at C of the cartesian fibration e; : Fun(Al, Caty,) — Cats, assigning to
each arrow in Cat, its target.

A.2. SM GROTHENDIECK CONSTRUCTION. Recall that for an co-category C'
there is an equivalence
(62) Cocc — Fun(C,Cate).

In this subsection we will describe symmetric monoidal versions of this corre-
spondence.

A map of SM oo-categories is called SM cocartesian fibration, see [L.HA],
2.1.2.13, if it is presented by a cocartesian fibration of the corresponding oo-
categories over N Fin,. In the following proposition Co c%% denotes the category
of SM cocartesian fibrations over C®.

A.2.1. PROPOSITION. Let C® be a SM oo-category. There is an equivalence
(63) Coct¥ —» Fun'™(C®, Caty.),
compatible with the equivalence (62).

Proof. Since Cat, is cartesian closed, the right hand side identifies with the
full subcategory of Fun(C®, Cat,,) spanned by the functors F' : C® —— Cat,
which are lax cartesian structures in the sense of [L.HA], 2.4.1.1: any object
X=X1®&...0X, with X; € C exhibits F(X) as the product of F(X;).

Now the claim follows from the equivalence of two definitions of operad co-
cartesian fibration, see [L.HA], 2.1.2.12. O

The following result is an immediate consequence of the above.

A.2.2. COROLLARY. Let C® be a SM oo-category. There is an equivalence
(64) Leftdd —» Fun'™(C?,8)

between the co-category of left fibrations M® —— C® which are SM functors

and lax SM functors C® — 8, compatible with the Grothendieck construction.
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The oco-category Left%% has a simple interpretation in terms of Left. The
latter co-category has a cartesian SM structure. One has

A.2.3. LEMMA. Let C® be a SM oo-category. The obvious functor
(65) Left2h —— Alg,, (Left)
identifies the left-hand side with the fiber of the forgetful functor

Alg,, (Left) — CatM
at C®.
Proof. We have to check that if a SM functor f : D® —— C® induces a
left fibration D —— C of the respective oco-categories, then f itself is a left
fibration. Applying Proposition 2.4.2.11 of [L.T], we get that f is a locally
cocartesian fibration. Moreover, the same proposition gives a description of

locally cocartesian arrows: these are arrows « : d —— d’ embeddable into a
commutative triangle

d < d
(66) \ / ’
d/l

where 3 is mp-cocartesian for 7 : D® —— N Fin,, and w(y) = id. Obviously,
these are all arrows in D®. Therefore, f is a left fibration. O

A.3. SM PAIRINGS. A pairing of oo-categories is a pair of maps
C «<—— M —— D, such that the induced map M —— C x D is a left
fibration 1.

The oco-category of pairings, Pair, is defined as the full subcategory of the
category Fun(A3, Cat, ), spanned by the diagrams giving rise to a left fibration.
Equivalently, Pair can be defined by a cartesian diagram

Pair ——— Left
(67)

Catoo X Cateo el Catoo
A pairing is uniquely defined, up to a usual ambiguity, by a corresponding
functor to the category of spaces C x D — 8.
The forgetful functor Pair —— Cat,, X Caty, induces a functor

Alg,,,(Pair) — Cat5M x catSM.

For a pair (C, D) of SM oo-categories we denote as Alg. . (Pair)c p) the fiber
of this functor at (C, D).

I5Note: Lurie [[.X], 3.1 and 4.2, uses right fibrations instead.
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According to Corollary [A.2.2] and Lemma [A2.3] one has an equivalence

(68) Mg, (Pair)c py —— Fun'™(C x D,8).

A.4. REPRESENTABILITY. A pairing (p,q) : M —— C x D is called left-
representable if for any x € C the fiber p~!(z) has an initial object.

We define Pair’ as the full subcategory of Pair spanned by the left-
representable pairings 9.

A left pairing p : M — C x D corresponds to a functor C x D —— § which
can be equivalently converted into a functor p: C —— P(D°P). ] Then p is
left representable iff p factors through Yoneda embedding D°? —— P(D°P).
More precisely, one has the following.

A.4.1. LEMMA. The equivalence
Pair(c,py —— Fun(C x D, 8)

identifies the full subcategory Pairfcp) on the left with Fun(C, D°P) on the
right.

Proof. We have to verify that the natural map Fun(C, D°?) — Fun(C'x D, 8)
is fully faithful. This is the composition of the equivalence

Fun(C, P(D°?)) — Fun(C x D, 8)
with the map
Fun(C, D°?) —— Fun(C, P(D°P))
which is fully faithful by Yoneda lemma. O

Pair’ is closed under direct products. Therefore, commutative algebras in

Pair’ form a full subcategory of Alg, (Pair).
Our aim is to prove the following SM version of Lemma [A4.1]

A.4.2. PROPOSITION. The equivalence (68)
Alg,,(Pair)c,py —— Funlax(C x D, 8)

identifies the full subcategory AlgCom(Pairl)(C,D) on the left with Fun'®(C, D°P)
on the right.

The proof is given in [AL4.3HA 4.4 below.

16This differs from the category of left-representable pairings considered in [[.X], 4.2.7
where the arrows are required to be left-representable.
1THere P(X) denotes the presehaves on X.
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A.4.3. Opposite S-family. Given a cocartesian fibration p : C —— S corre-
sponding to p’ : C' —— Catso, we define a cocartesian fibration p° : C° — S
as the one corresponding to the composition of p’ with the functor X — X°P.
More explicitly, if p is presented by a cocartesian fibration C —— S in sSet,
the cocartesian fibration C° —— S is defined by the formula

(69) Homg(T,C°) = Hom" (T x5 C,8) :=
{f € Hom(T xs C,8)|Vt € T f;:{t} xs C — 8§ is corepresentable }.
Note that the formula ([69]) yields immediately

(70) Fung(T,C°) = Fun(T x5 C, 8),
where Fun®(T x5 C, 8) is defined as
Fun®(T x5 C,8),, = Hom®((T x A™) x5 C,8).

This is a full subcategory of Fun(T xg C,8) consisting of left-representable
functors.

A.4.4. Proof of[A7.3. We will apply the formula (70) to S := N Fin,, T := C®,
C := D®. The right-hand side of (0] contains the full subcategory

Fune’laX(C"@ X N Fun. l)®7 8)

spanned by the left-representable lax cartesian structures on C® X ypun, D®
in the sense of [L.HA], 2.4.4.1.

We will now check that the corresponding full subcategory of
Funy pin, (C%®, D°®) coincides with Fun'**(C, D°).

In fact, let f: C® X N, D® —— 8 be lax cartesian and left-representable.
Recall that f is lax cartesian if for ¢ = @} ;¢;, d = ®]_;d; the natural map
f(e,d) — T] f(ci,d;) defined by the inert maps p’ : (n) — (1), is an equiva-
lence. In this case left representability can be checked at (1) € N Fin, only; it
will follow automatically for all (n) € N Fin,.

Left representability of f yields a map f : C® —— D°® over NFin,. If
c=®c; and d = f(c), we have immediately d = @f(ci) which is equivalent to
preservation of inert arrows.

This proves Proposition [A.4.2]

A.5. A GENERALIZATION. Proposition [AZ4.2] has an obvious (and important)
generalization to multi-variable adjunction.

Let K be a subset of {1,...,n}.

A functor F : Cy x ... x C, —— & will be called K-representable if the
corresponding functor I’ : [[;cp Ci — P([Ligx C;P) factors through the
fully faithful embedding

[[cr — P

igK igK
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Let now C; be symmetric monoidal. The claim below directly follows from
Proposition |A.4.2]

A.5.1. COROLLARY. There is an equivalence between the following oo-
categories.
L Fun™ ([T Ci Tligi CF),
2. The full subcategory of ]F‘unlax(]_[?:1 C;,8) spanned by the lax functors
which are K -representable, once the SM structure is discarded.

A.5.2. EXAMPLE. In particular, if a SM functor f : C —— D admits a right
adjoint as a functor between oo-categories, its right adjoint has a canonical lax
SM structure, see also [H.I], 3.1.1.

A.5.3. EXAMPLE. A symmetric monoidal functor f : C' —— D determines on
D a C-tensored structure, defined by a functor

CxD—D, (2,9 flz)®y

which is also symmetric monoidal. This implies that, if f induces also a C-
cotensored structure on D

C®xD — D,

it is automatically lax symmetric monoidal.

APPENDIX B. COMPARISON OF TWO NOTIONS OF MODULE

B.1. In this appendix we assume that the operad O is unital (see [L.HA],
2.3.1), that is that the space Map((, z) is contractible for any = € O. Here )
belongs to the contractible space O%.

Denote 8¢ the full subcategory of Fun(A!, O®) spanned by the semi-inert ar-
rows (see [L.HA], 3.3.1) z — y in 0% with p(z) = (1) € Fin, [1.

The maps s,t: 8o — O assign to an edge its source and its target, respec-
tively.

B.1.1. LEMMA. The map t : 8o — O% is a categorical fibration.

Proof. The map is the composition §¢o — Fun(A!, 9®) — O®. The second
map is a cartesian fibration by [L.T], 2.4.7.11 and 2.4.7.5. In particular, it is a
categorical fibration. The first map is an embedding as a full subcategory, so
is an inner fibration. Now Joyal’s criterion [L.T], 2.4.6.5 immediately shows it

is also a categorical fibration.
O

An edge « in 8¢ will be called inert if both s(«) and t(«) are inert edges
in O®. Note that s(«) has to be an equivalence since it lives over an inert
endomorphism of (1) € Fin, which has to be identity.

1811 the notation of Lurie [L.HA], 3.3.2.1, 8¢ is the fiber of the composition poeg : TK%) —
O® — NFin, at (1).
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The assignment O® s 8¢ is functorial. One can identify 8con with a subpre-
operad of CM®# via the map

(71) L Scog —— CM®"

carrying an arrow « : (1) — I, to the characteristic function b : I — {a,m} of

the image of a: h has value m on the image and a otherwise.

The commutative diagram

SO SCom CM®
(72) t t

0% N Fin, == N Fin,
defines the maps
(73) 860 —— Scon XNFin, 0% —— CM® Xy i, OF

The following result shows that Definition [5.2.1] of the category of modules over
an oc-operad algebra is equivalent to the one given by Lurie in [L.HA], 3.3.3.8.
In particular, Corollary 523 is applicable to Lurie modules (with O-monoidal
structure discarded).

B.1.2. PROPOSITION. Assume that O% is unital and O is Kan (this is so if
0% s coherent [LHA|, 3.3.1.9). Then the maps m and v in ({73) are weak
equivalences in Pop,,.

The proof of the proposition is given in [B.2.IHB.2. 71

We will prove that the ¢ and ¢ o 7w are weak equivalences in Pop_.

This will be done using Lurie’s notion of approximation of operads. We check
that both ¢ and ¢ o 7 are approximations in the sense of [L.HA], 2.3.3.6.
Then, using [L.HA], 2.3.3.23(1), we deduce that the maps ¢ and ¢ o 7 are weak
equivalences.

B.2. Proor or [B.1.2

B.2.1. ¢ is an approximation. The map ¢ is obtained from the embedding tcop :
Scom — CM® by a base change along fibration p : O® — N Fin,. Therefore, by
Remark 2.3.3.9 of [L.LHA], in order to prove ¢ is an approximation, it suffices
to check that the map tcon 1S an approximation. Scoy is a full subcategory of
CM® spanned by the objects having at most one appearance of m. Thus, if an
arrow o :  — y in CM® is inert and = € Scon then y € Scon. Similarly, if « is
active and y € Scon then x € Sgop. This implies ooy is an approximation.

We will now prove that ¢ o 7 is also an approximation. This is done in [B.2.2}

B.2.6
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B.2.2. 1 o7 is a categorical fibration. Let A — B be a trivial cofibration of
simplicial sets in the Joyal model structure. Given a pair of compatible maps
a:A— 89 and b: B — CM® X ypin, O, we have to find a lifting ¢ : B — 8o
making two triangles commutative.

We proceed as follows. Look at the commutative square with vertical arrows
A — B and 8¢ — 0%, as shown in the diagram.

(74) ¢ - ’ LOoT

B — CM® X N Fin., O® — O®

By Lemma [B.11] there is a lifting ¢ : B — 8¢ making two triangles ABSo
and B8xO® commutative. We claim ¢ makes also commutative the triangle
we need. In fact, the commutative diagram

A cM®

(75)

B N Fin,

has a unique lifting (as CM® and N Fin, are both nerves of categories, and the
functor between them admits lifting of isomorphisms). This implies that the
lifting ¢ automatically satisfies the required property.

B.2.3. Property (1) of [L.HA], 2.3.5.6. If a : x — y is an object in 8¢ and
b: p(y) — Z is an inert arrow in Fin,, we can lift b to an inert edge b: y — 2
in O® (so that p(b) = b). One has a triangle © —— 3 2 in OF that
determines an edge in 8§¢. Its image is obviously inert in CM® X y g, O®

B.2.4. Property (2) of [[.HA], 2.3.3.6. Here the assumptions of [B.1.2] on O®
will be used.
Let a : # — y be an object of 8¢ and let (a,y) € CM® X y i, OF denote the
image ¢ o 7(a).
An active edge 8 : (7,2) — (@, y) in CM® X y i, OF is uniquely determined
by an active edge b : 2 — y in O®, together with an element v : p(x) — p(z) in
Scom such that p(a) = p(b) o ~.
We have to find a cartesian lifting for 3, that is a 2-simplex in O®

z

(76) y o

a

€ > Y
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such that p(c) = v and satisfying a certain universal property.

In case a is null, the map ~ is null and we choose ¢ to be the null map from x to
z. The required 2-simplex is now essentially unique as Map(0, y) is contractible.
In case a is not null let y = @y; with y; € O, 2 = ©z; with z; € 09,

b= ®b; : z; = y;. Let, furthermore, a be defined by an equivalence ay, : © — yy.
Write 2z = @27 where 27 € O. The map v : p(z) — p(z) factors through
~": p(z) — p(zx) which singles out an element j in p(zx). This allows one to
produce an arrow 27 — y; in O obtained from b; : z; — y; by precomposing with
units. It should be equivalence as O is Kan. Choose a two-simplex £ — 27 — y,
with the described above edges  — yi and 27 — y;. Adding to it an essentially
unique triangle

; 0
00— 2062 — yOu,

we get a triangle with required properties .

We claim that the edge in 8¢ defined by the above two-simplex, is a ¢ o 7-
cartesian lifting of 8 : (v, 2) — (p(a),y).

The map f : 8¢ — CM® X ypin, OF is a categorical fibration, so the criterion
2.4.4.3 of [L.T] can be applied.

We have to check that for any d : s — w in 8¢ the following homotopy com-
mutative diagram

Maps, (d, c) Maps,, (d, a)

(77)

Mapeye X N Fing OF (f(d), f(c)) — Mapeye X N Finy, O® (f(d), f(a))

is homotopy cartesiand.

Since 8¢ is a full subcategory of Fun(Al, O®), we can replace Mapg, in the
above diagram with Mapp,,a1,00). Here the following easy lemma is very
convenient.

B.2.5. LEMMA. Let € be an co-category and D = Fun(A',C). Leta:x — vy
and a' : ¥’ — vy’ be two objects in D. Then one has a homotopy cartesian
diagram

Map, (a,a’) — Mape(y, ')
(78)

Mape (z,z") — Mape(z,3")

190f course Y O Yr = Dixry: and similarly for 2 © PR
20T make this formulation precise, one has to replace the map spaces with their explicit
representatives by Kan simplicial sets, so that the diagram (7)) is commutative.
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Proof. The formulation of the lemma is imprecise: the diagram (78) has to
be replaced with an explicit commutative diagram of spaces, similarly to the
diagram (7). It is described below. By definition, Mape(x,y’) is realized as
the fiber of the categorical fibration

Fun(A', @) — Fun(9A!, @) = €2
at the point (x,y’). Similarly, Mapq,(a, a’) is realized as the fiber of
Fun(A' x A, €) = Fun(A', D) — Fun(9A', D) = Fun(A', €)?
at the point (a,a’).

Furthermore, we replace the space Mape(y,y’) with Mapp(y,y’) defined as the
fiber of the map

Fun(A?, €) — Fun(A',@) x €,

induced by 0% : A — A% and 99! : A® — A2 at the point (a,’). Similarly,
we replace Mape(z,2') with Mapp (z,2’) defined as the fiber of the map

Fun(A?%,€) — € x Fun(Al, @),
induced by 8° : Al — A% and 9'9% : A° — A? at the point (z,a’).
The canonical maps Mapp(y,y’) — Mape(y,y’) and Mapp(z,2’) —
Mape(z,2’) are trivial Kan fibrations as they can be obtained by base
change from the trivial fibration

(79) Fun(A?, @) — Fun(A%,C).

This, in particular, proves that all Map’-spaces are Kan.
The commutative square

Map'D(aaa/) - Ma'p/(‘f(yay/)

Mapp(z,2") — Mape(z,y’)

replacing the diagram (78)), is now obtained from the following commutative
cube

21gee Lurie, [L.T], 4.2.1, this is the realization via “alternative join”
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Fun(A' x A', @) Fun(AZ, €)

Fun(AZ?, €) Fun(A', @)

(81)

Fun(A!, €)2 » Fun(A',€) x €

€ x Fun(A', @) - C?

as the fiber along the vertical edges at (a,a’) € Fun(A, €)? and at its images.
Here the upper face is defined by the presentation of A! x A! as a union of two
2-simplices glued along an edge. The upper and the lower faces are cartesian
and homotopy cartesian. Therefore, the commutative square ([80) of the fibers
is also homotopy cartesian. O

B.2.6. End of the proof of Property (2). Recall that we have to verify that the
diagram (7)) is homotopy cartesian.
Note that

(8¥apeye x y 1, 0@ (f(d), f(c)) =
Mapge (W, 2) X Hom i, (p(w),p(z)) Homs,,, (p(d), p(c)) =
Mapye (W, 2) XHompu, (p(s),p(z)) HOMFin, (p(s), p(T)),
and similarly
(88JabPeye x y 5, 00 (f(d), f(a)) =
Map e (W, Y) X Homp, (p(s).p(y)) HOM Fin, (P(5), P(T)).

Let us first replace the diagram (77)) with a commutative diagram so that the
claim become formally meaningful. Similarly to what we did in the proof of

Lemma [B.2.5 we replace in (T7) Mapsg, (d,c) and

Mapeys X N Fin, O® (f(d), f(c) =
= Map(‘)@ (’LU, Z) X Hom in,, (p(s),p(2)) HOmFm* (p(S),p(:E))

with homotopy equivalent versions, Mapg o (d,c) and
Map/o® (wa Z) X Hom pin, (p(s),p(2)) HomF’in* (p(S),p((E))
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where Mapy, (d, c) is the fiber of the map

(84) Fun(A?,8¢) — 8p x Fun(A', 8p)
at (d, 3 : ¢ — a) whereas Mapjye (w, 2) is the fiber of
(85) Fun(A?,09) — 0% x Fun(A', 09)

at (w,b:z = y). The maps ([B84) and (BE) are both induced by the embedding
AP U Al —— A2 defined by 0'0? and by 0°.
The diagram is now replaced with a commutative diagram

MapS o (dv C) lc' Mapo@ (’LU, Z) xHompm* (p(s),p(2)) HomFin* (p(S), p(x))

(86) MapiS o (dv C) lc' Mapl(‘)® (’LU, Z) xHompm* (p(s),p(2)) HomFin* (p(S), p(x))

MapS o (dv a’) - Mapo® (’LU, y) X Hom pin, (p(s),p(y)) HomFin* (p(S), p(x))

The upwards arrows are weak equivalences; we will prove that the lower com-
mutative square is homotopy cartesian, considering separately the cases a = 0
and a # 0.

In case a is non-null, the edge c is also non-null. In this case we will check that
the horizontal arrows 7. and 7, of (8f) are equivalences. The case a = 0 = ¢
will be verified separately.

CASE a # 0.

We will prove that if d : s — w and a : x — y are in 8¢ so that a # 0, then the
natural map

Tg * Mapso (dv a’) - Map(‘)® (’LU, y) X Hom pin,, (p(s),p(y)) HomFin* (p(S),p(SC))

is an equivalence.

The proof goes as follows. We replace Mapg, with Mapg,,a1,0) and use
Lemma [B.2.5] to express it as a fiber product. We have to check therefore that
the map

(87) Map,o@ (’LU, y) XMapog, (s,y) Map,o@ (Sﬂ 1') -
Mapoe (W, ¥) X Hom i, (p(s),p(y)) HomFin_ (p(s), p(2))

is an equivalence, where the notation for Map' is as in Lemma [B.2.5
Since the map
Mapye (w,y) — Mapgs (w,y)

22rotated by 90° to fit on the page

23we denote by 0 a null map which exists and is essentially unique for any choice of source
and target.
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is a trivial fibration, it is sufficient to check that the diagram

Mapgs (s, y)

Mapy (s, )
(88)

Hompin, (p(s), p(x)) — Hompin, (p(s), p(y))
is cartesian if @ # 0. In other words, we have to check that for any map
e : p(s) — p(z) (there are two such maps as p(s) = p(z) = (1)) the fiber of
the left vertical map at e is equivalent to the fiber of the right vertical map at
p(a) oe. If e = 0, both fibers are contractible. Otherwise write y = @y; with
y; € O, so that a is determined by an equivalence ay :  — yi, for some k. Then
the fibers are equivalent respectively to Map (s, z) and to Mapy (s, yx), that
is, equivalent to each other.
CASE a = 0.
We will show that the lower commutative square in (80]) is equivalent to the
following diagram

Mapg (s, z) x F. — Hompin_ (p(s),p(z)) x Fe
(89)

Mapg (s, 2) x Fy — Hompin, (p(s), p(z)) x Fu

for appropriately chosen F,. and F,. This will imply the claim.
We proceed as follows.
Define F, as the fiber of the map Mapye (w,y) — Hompi,, (p(s), p(y))
at zero. Then the target of m, in the diagram (BG) identifies with F, x
Hompi,, (p(s),p(z)).  Similarly, we define F. as the fiber of the map
Mapjye (w, 2) — Homp, (p(s),p(2)) at zero. This will identify the target of
7/ in the diagram (86) with F, x Hompg;,, (p(s), p(z)).
The projections s,t : 8¢ — O® yield the maps
(90)

Sa : Mapg, (d,a) — Mapg(s,x), tq: Mapg, (d,a) — Mapjye (w,y),

where Map{ys (w, y) is defined as the fiber of the map
Fun(A?,0®) — Fun(A!,0%) x 0%
defined by 9% : Al — A? and 9°9° : A® — A? at (d,y). The composition
ta
Maps, (d, a) — Mapje (w,y) — Mapgs (s, 9)

is zero. We can therefore define F, as the fiber of

(91) Ma’p/(‘)®(way) - Mapo®(5ay)
at 0 (at the contractible space of null maps), and get a canonical map
(92) Ma‘pSo (da a) - Ma'pO (Sa ‘T) X Fy.
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One easily sees this is an equivalence. Note that one has a canonical map
F, — F, which is a trivial Kan fibration.
Similarly, one has a pair of maps
(93)
se : Mapg, (d,¢) — Mapgy(s,z), tc:Mapg,(d,c) — Mapye (w, 2),

with Mapge (w, 2) defined as the fiber of the map
(94) Fun(A?, 0%) — Fun(A', 0%)?
given by 9203 : Al — A3, 9°9Y : Al — A3, at (d,b).
Once more the composition
Mapigo(d, c) e, Mapye (w, 2) — Mapge (s, 2)
is zero, so we define F, as the fiber of
(95) Mapye (w, z) — Mapgs (s, 2)
at 0 and get a canonical map
(96) Maps, (d,c) — Mapg (s, z) x F..

It is also an equivalence and the map F, — F, is a trivial Kan fibration.
We are done.

B.2.7. Having checked that ¢ and tom are approximations, we can now deduce
from Theorem 2.3.3.23(2) of [L.HA] that both ¢ and co7 are weak equivalences.
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