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808 Giuseppe Ancona, Stephen Enright-Ward, Annette Huber

Introduction

The aim of this article is to prove a canonical Künneth decomposition for the
motive of a commutative group scheme over a field. Moreover, we show that
this decomposition behaves under the group law just as in cohomology.

Let us start with the concrete example of a connected commutative algebraic
group G over C, the field of complex numbers. Then the complex manifold
associated with G is homotopy equivalent to a product of unit circles S1. So,
by the Künneth formula for singular cohomology, one has

Hi
sing(G(C),Q) =

i
∧

H1
sing(G(C),Q).

This phenomenon exists also for ℓ-adic cohomology. Let G be a connected
commutative group scheme over a field k and let ℓ a prime number different from
the characteristic of k. Then H∗(Gk̄,Qℓ) is a graded finite-dimensional Qℓ-
vector space. Moreover, it has a canonical structure of graded commutative and
cocommutative connected Hopf algebra coming from the group structure and
the diagonal immersion ∆ : G → G ×G (the latter induces the cup product).
The classification of graded Hopf algebras implies that H∗(Gk̄,Qℓ) has to be
the exterior algebra of its primitive part. It turns out to be H1(Gk̄,Qℓ), the
dual of the Tate module tensor Qℓ. So one deduces an isomorphism of graded
Hopf algebras

H∗(Gk̄,Qℓ) =

∗
∧

H1(Gk̄,Qℓ) .

Our main theorem shows that this formula is motivic, up to two minor sub-
tleties. First, in odd degree symmetric powers realize to the exterior powers
(Koszul rule of signs), so one has to consider the former. Second, the realization
functors from motives to cohomology is contravariant so one has to consider
the opposite Hopf algebra structure.

Theorem 1. Let G be a connected commutative algebraic group over a field k.
Then there exists a canonical decomposition in DMeff

gm(k)Q

M(G) =
⊕

i=0

Mi(G),

such that, for any mixed Weil cohomology theory H∗, the motiveMi(G) realizes
to Hi(G). Moreover,

(1) for i big enough the motives Symi(M1(G)) and Mi(G) vanish,
(2) there is a canonical isomorphism

Mi(G) ∼= SymiM1(G) ,

(3) The canonical isomorphism

M(G) ∼= coSym(M1(G)) =
⊕

i

SymiM1(G)
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On the Motive of a Commutative Algebraic Group 809

is an isomorphism of Hopf algebras between the motive of G and the
symmetric coalgebra over the motive M1(G).

For more refined statements see Theorems 7.1.1 and 7.2.2
There are a number of useful applications of our motivic decomposition. For
instance, we are able to describe the weight filtration on Mi(G) explicitly (see
Section 7.3). We get a new proof of Kimura finiteness of 1-motives (which
implies Kimura finiteness of the motive of a curve). We also show thatH∗(M) is
concentrated in one degree for any 1-motiveM and any mixed Weil cohomology
theory.
Recently, Sugiyama [Sug14] has applied Theorem 1 to generalize to semiabelian
varieties results of Beauville [Bea86] and Bloch [Blo76, Theorem 0.1] on Chow
groups of abelian varieties.
In a sequel of this paper [AHPL], we will show that all the results in this
introduction hold for the relative motive of a general smooth commutative
group scheme G over a base scheme S (supposed noetherian and finite dimen-
sional). Note that Theorem 1 was known for abelian schemes over a regular
base [DM91, Kün94]. Our generalization will be interesting especially for Néron
models of abelian varieties and for the group scheme over compactifications of
Shimura varieties.

Theorem 1 was already known for tori and abelian varieties. The straightfor-
ward case of tori was discussed partially by Huber-Kahn [HK06]. The abelian
case was proven by Künnemann [Kün94] following earlier partial results by
Shermenev [Šer74] and Deninger-Murre [DM91]. The main tool in his proof is
the Fourier transform for cycles over an abelian variety, introduced by Beauville
[Bea86]. This is not available for more general groups.
Instead, our starting point is to use the more flexible category motivic com-
plexes. Indeed, we write down the component M1(G) completely explicitly.
This is non-trivial, even for abelian varieties.
First, following Barbieri-Viale and Kahn [BVK], consider G the sheaf on the
big étale site on Sm/k represented by G. It inherits from the group structure of
G a canonical structure of sheaf of abelian groups. By work of Spieß-Szamuely
([SS03]) G has transfers, hence it induces a motive (namely the singular com-
plex C∗G) that we will note M1(G).
Second, consider the map of (pre)sheaves with transfers

Cor(·, G) → G

which maps a multivalued map S → G (a correspondence) to the sum of its
values in the commutative group G. It induces a canonical map

αG :M(G) →M1(G) .

Using the comultiplication on M(G) this extends to a natural map

ϕnG : M(G) → SymnM1(G) .
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810 Giuseppe Ancona, Stephen Enright-Ward, Annette Huber

Most of the effort of this paper goes into proving the following (Theorem 3.1.4
in the paper):

Theorem 2. Let G be a semiabelian variety over a perfect field k. Then the
motive M1(G) is odd (i.e. SymnM1(G) vanishes for n big enough) and, more-
over, the map

ϕG =
⊕

n

ϕnG :M(G) −→
⊕

n=0

SymnM1(G).

is an isomorphism.

We will easily deduce Theorem 1 from Theorem 2: the construction of the
morphism ϕG has been done so that it is natural and it respects the Hopf
structures (and the unipotent part of a general commutative group will be easy
to treat, as well as the non-perfect case).
A difficulty in showing this theorem is that we do not have for free natu-
ral maps in the opposite direction (the reader can think of the embedding
MorSm/k(·, G) ⊂ Cor(·, G), but this is just a morphism of sheaves of sets).

We prove Theorem 2 by induction on the torus rank with the case of abelian
varieties as a starting point. Consider a short exact sequence of semiabelian
varieties

1 → Gm → G→ H → 1

and suppose to know Theorem 2 for H . On the one hand, the filtration on G
defined by the above short exact sequence induces triangles

SymnM1(G) → SymnM1(H) → Symn−1M1(H)(1)[2] .

On the other hand, the localization sequence for the Gm-torsor G→ H reads

M(G) →M(H) →M(H)(1)[2] .

By comparing these triangles, the hypothesis that ϕH is an isomorphism implies
that there is a non-canonical isomorphism

ψ :M(G) →
⊕

n

Symn(M1(G)) .

This fact has two essential consequences. First, the motive M(G) is Kimura fi-
nite. Second, there is a non-trivial morphism from

⊕

n Sym
n(M1(G)) toM(G).

We then show that one can modify this morphism in order to obtain a map
which is the inverse of ϕG after ℓ-adic realization. Then Kimura finiteness
allows us to conclude that ϕG is an isomorphism.

We now briefly discuss the structure of the paper. Section 1 settles notations
and recalls some facts from the literature. In Section 2 we define the motive
M1(G) and the morphism αG and establish basic properties. We will pretty
quickly specialize to the case of a semiabelian variety. In Section 3 we construct
the morphism ϕG and show that it respects the Hopf structures, under the
hypothesis that SymnM1(G) vanishes for n big enough. Section 4 deals with
the two special cases: tori and abelian varieties. In Section 5 we show that

Documenta Mathematica 20 (2015) 807–858



On the Motive of a Commutative Algebraic Group 811

the motive M1(G) of a semiabelian variety G is odd and geometric. We then
compute its ℓ-adic realization. Section 6 finally gives the proof of Theorem 2
for any semiabelian variety G.
Section 7 shows how to deduce Theorem 1 from Theorem 2. We also explain
how the semiabelian case implies the case of a general commutative group
scheme, possibly with a unipotent radical or several connected components.
Some other properties are studied, namely the uniqueness of the Künneth de-
composition and that the weight filtration in cohomology lifts canonically to a
filtration of each Künneth component.
Some technical points of the main proof are left to the appendices. Appendix A
is the essential input to relate the two triangles above. This is done comparing
two obvious definitions of the first Chern class of the line bundle defined by an
extension of a semiabelian variety by Gm. Appendix B rewiews the definition
of the symmetric coalgebra, its universal properties and a comparison with the
standard symmetric algebra in the setting of Q-linear pseudo-abelian additive
categories. Appendix C constructs a natural filtration on Symn(V ) given a
subobject U ⊂ V in the setting of general Q-linear abelian categories.

Acknowledgments. Part of these results have already been obtained in the
PhD thesis [EW13] of the second author, written under the supervision of the
third. The first author would like to thank them for letting him participate to
conclude this work and for the warm hospitality in Freiburg.
In more detail: the definition of ϕG was given in [EW13] and the results on
tori and abelian varieties were established there. It also contained the inductive
argument of Section 6.1 but not the proof of the main Theorem 2.
We would like to thank J. Ayoub, F. Déglise, B. Drew, J. Fresán, M. Huruguen,
P. Jossen, B. Kahn, S. Kelly, K. Künnemann, S. Meagher, S. Pepin Lehalleur,
J. Scholbach, R. Sugiyama, and C. Vial for useful discussions.
R. Sugiyama pointed out a gap in an earlier version of our preprint. The
problem is resolved by his [Sug14, Appendix B].
We are most thankful to M. Wendt, who has been involved in the project
from the start. He came to act as a coadvisor of the thesis and contributed
generously by discussions, advice on references and careful proof reading. The
(as it turns out decisive) remark that the very formulation of the main theorem
needs a finiteness assumption, was his.
Finally, we would like to thank the referee for useful comments.

1. Notations and Generalities

Throughout this paper k denotes a fixed base field of any characteristic. We
fix an algebraic closure of k and we call it k̄. We write (·) for the pull-back to
k̄ on varieties, motives and sheaves.

1.1. Categories of varieties. We denote:

• Sch/k the category of schemes separated and of finite type over k;
• Sm/k the full subcategory of smooth schemes over k;
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• SmPrVar/k the full subcategory of smooth and projective schemes
over k;

• SmCor/k the category of smooth correspondences. Objects are
smooth schemes over k and morphisms are finite correspondences in
the sense of Voevodsky [Voe00, Section 2]. The free abelian group gen-
erated by primitive finite correspondences from X to Y will be denoted
Cor(X,Y );

• cGrp/k the category of commutative group schemes of finite type over
k with morphisms of k-group schemes;

• sAb/k the full subcategory of cGrp of semiabelian varieties. By def-
inition an object of sAb/k is a connected smooth commutative group
scheme G over k such that its pullback Gk̄ does not have any subgroups
which are isomorphic to an additive group.

• Ab/k the full subcategory of cGrp of abelian varieties.

We will usually abbreviate Sch instead of Sch/k etc.

Remark 1.1.1. Suppose that the base field is perfect. By a theorem of Barsotti
[Bar55] and Chevalley [Che60] (see also [Con02] for a modern presentation) any
semiabelian variety can be uniquely decomposed as an extension of an abelian
variety by a torus.
Moreover, there are no non-constant homomorphism from a torus to an abelian
variety, see for example [Con02, Lemma 2.3]. In particular any homomorphism
between two semiabelian varieties induces morphisms between the tori and
between the abelian varieties of their decompositions.

Remark 1.1.2. Notice that a short exact sequence in cGrp of smooth groups
induces a short exact sequence of étale sheaves, as any smooth morphism has
a section locally for the étale topology.

1.2. Rational coefficients. When A is an additive category, then we will
write AQ for the pseudo-abelian hull of the category having the same objects
as A and such that for any X,Y ∈ A the set of the homomorphisms from X
to Y is the Q-vector space

HomA(X,Y )⊗Z Q .

This applies, in particular, to the additive categories SmCor, Ab and sAb.

Remark 1.2.1. (1) Notice that morphisms in SmCorQ between two vari-
eties are Q-linear combinations of primitive finite correspondences.

(2) The categories AbQ and sAbQ are the categories of abelian and semi-
abelian varieties up to isogeny, respectively. These categories are
abelian.

1.3. Symmetric powers, exterior powers and Kimura finiteness. Let
A be a pseudo-abelian Q-linear symmetric tensor category with unit 1. There
are canonical functors

Symn : A → A .
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Indeed, let X ∈ A be an object of A. As the category is symmetric the group
of permutations Sn acts on X⊗n. The endomorphism

1

n!

∑

σ∈Sn

σ : X⊗n → X⊗n

is a projector. Then one defines Symn(X) to be its image (notice that it is
fonctorial in X ∈ A). We define similarly the functor

∧n
: A → A. By

convention, we will write Sym0X =
∧0

X = 1 for all non-zero objects X .
Following [Kim05] and [O’S05] we will say that an object X is

• odd of dimension N if SymNX 6= 0 and SymN+1X = 0. In this case
we will write detX = SymNX ;

• even of dimension N if
∧N

X 6= 0 and
∧N+1

X = 0. In this case we

will write detX =
∧N X ;

• odd or even finite-dimensional if it is even or odd finite-dimensional for
some N ;

• Kimura finite if there exists a decomposition (in general not unique)
X = X+ ⊕X− such that X+ is even finite-dimensional and X− is odd
finite-dimensional.

The result we will need about finite-dimensional motives is the following theo-
rem of André and Kahn.

Theorem 1.3.1 (André, Kahn). Let K be a field of characteristic zero, C be
a K-linear pseudoabelian symmetric tensor rigid category, with unit object 1
satifsfying EndC(1) = K.
Let f : X → Y be a map in C between two finite-dimensional objects. Suppose
that there exist another K-linear pseudo-abelian symmetric tensor category D,
a non-zero K-linear symmetric tensor functor F : C → D (covariant or con-
travarient) and a map g : Y → X in C such that F (f) and F (g) are inverses
of the other. Then f is an isomorphism.

Proof. This is a consequence of the work [AK02]. As this theorem is never
stated in this form let us explain how to deduce it from loc. cit. We will
suppose F to be covariant (otherwise one can compose with the canonical
antiequivalence of D with its opposite category).
First of all we can replace C by the K-linear symmetric tensor category gener-
ated by finite-dimensional objects, hence suppose that C is a Kimura category.
The kernel of the functor F is a tensor ideal of C, which is by hypothesis non-
trivial. Then by [AK02, Theorem. 9.2.2] the kernel is contained inside a tensor
ideal R called the radical and C is a Wedderburn category. Write π : C → C/R
for the canonical functor. Our hypothesis implies that π(f) and π(g) are in-
verses of each other. We can now conclude because by [AK02, Proposition
1.4.4(b)] the functor π detects the isomorphism, i.e., π(f) is an isomorphism if
and only if f is.
Notice that the erratum of [AK02] does not concern the statements we are
using. �
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1.4. Symmetric coalgebra. Let X be an odd object of dimension N in a
pseudo-abelian Q-linear symmetric tensor category with unit 1. We define the
symmetric coalgebra

coSym(X) =
N
⊕

n=0

Symn(X) .

The coalgebra coSym(X) has a canonical structure of Hopf algebra. Multiplica-
tion and comultiplication are defined so that coSym(X) becomes the standard
symmetric algebra in the opposite category. For details see Appendix B.

1.5. Graded super-vector spaces. Let F be a field. The category of graded
super-F -vector spaces will be denoted by GrVec±F . As an F -linear tensor cate-
gory it is equivalent to the category of graded F -vector spaces. In particular if
V =

⊕

i∈Z Vi and W =
⊕

i∈ZWi, then

(V ⊗W )n =
⊕

p+q=n

Vp ⊗Wq.

The difference is in the convention of the symmetry. If σi,j : Vi⊗Wj →Wj⊗Vi
is the isomorphism of symmetry in the category of F -vector spaces, then the
isomorphism of symmetry in GrVec±F is given by (−1)i·jσi,j .

1.6. Chow and Voevodsky motives. Let k be a perfect field (for the non-
perfect case see Section 1.7). Our conventions on motives will follow notations
and constructions from Voevodsky [Voe00] and especially from [MVW06, Sec-
tion 14], where the case of rational coefficients is explicitly treated. We will
study the following categories:

ShTét(k,Q) , DMeff
−,ét(k,Q) , DMeff

gm(k)Q , DMgm(k)Q , Chow(k)Q

of étale sheaves with transfers, motivic complexes, effective geometric motives,
geometric motives, and Chow motives, respectively. We are going to need the
functors

L : Smk → D−(ShTét(k,Q)) and q : D−(ShTét(k,Q)) → DMeff
−,ét(k,Q) .

We will write

M = q ◦ L ,

and for any variety X ∈ Smk we will call M(X) the motive of X .
Let us give more details. The category of sheaves of Q-vector spaces with
transfers on the big étale site on Sm/k is denoted

ShTét(k,Q) .

By [MVW06, Lemma 14.21] a rational presheaf with transfers is a sheaf for
the Nisnevich topology if and only if it is a sheaf for étale topology. We decide
to work with the latter topology. Tensor product is exact on this category by
[Sug14, Proposition B.1]. Moreover, by [MVW06, Theorem 14.30] the cate-

gories DMeff
−,ét(k,Q) and DMeff

,Nis(k,Q) are equivalent.
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By [MVW06, Theorem 14.28] and [MVW06, Remark 14.29] there are two ad-
joint Q-linear exact functors

q : D−ShTét(k,Q) ⇄ DMeff
−,ét(k,Q) : i .

The functor q is compatible with tensor products. Moreover, the functor i is an
embedding and the functor q is a localization. We may identify DMeff

−,ét(k,Q)

with its image in D−ShTét(k,Q) and avoid to write i.
The category of effective geometric motives will be denoted by

DMeff
gm(k)Q .

Several equivalent definitions are possible, here we define it as the full triangu-
lated Q-linear pseudo-abelian tensor sub-category of DMeff

−,ét(k,Q) generated
by motives of smooth schemes over k.

Remark 1.6.1. (1) Let DMeff
gm(k,Z) be the category of effective geometric

motives with integer coefficients defined by Voevodsky [Voe00, Defini-
tion 2.1.1], then

DMeff
gm(k)Q = DMeff

gm(k,Z)Q ,

where the tensor product on the right hand side is in the sense of
Section 1.2. This fact can be deduced from [CD09, Theorem 11.1.13],
[CD09, Remark 9.1.3(3)] and [CD09, Corollary 16.1.6].

(2) The reader should be warned that ShTét(k,Q) and DMeff
−,ét(k,Q)

are not ShTét(k,Z)Q and DMeff
−,ét(k,Z)Q. We will always work with

ShTét(k,Q) and DMeff
−,ét(k,Q).

After tensor-inverting the Lefschetz motive inside DMeff
gm(k)Q we obtain a Q-

linear pseudo-abelian triangulated rigid tensor category, denoted byDMgm(k)Q
and called the category of geometric motives. The category DMeff

gm(k)Q is
canonically a full subcategory of DMgm(k)Q by Voevodsky’s Cancellation The-
orem [Voe10].
The Q-linear pseudo-abelian rigid tensor sub-category of DMgm(k)Q gener-
ated by motives of smooth and projective schemes over k will be denoted by
Chow(k)Q and called the category of Chow (or pure) motives (with Q coef-
ficients). Note that by [Voe00, Proposition 2.1.4] together with [Voe02], this
category is equivalent to the opposite of the classical category of Chow motives.
Although we will use properties of classical Chow motives transposed in
this context, we will always keep the notations coming from the conventions
of Voevodsky, for instance the motive of the projective line decomposes as
M(P1

k) = 1⊕ 1(1)[2].
We are going to need the following facts.

Proposition 1.6.2. Let f be a morphism in DMeff
−,ét(k,Q). Then f is an

isomorphism if and only if its pull-back f to k̄ is. In particular a motive M
vanishes if and only if M does.
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Proof. Let f be a morphism in DMeff
−,ét(k,Q). Then f is an isomorphism if

and only if it is an isomorphism in the derived category of étale sheaves, i.e., if
it induces isomorphism on cohomology sheaves without transfers. A morphism
of étale sheaves is an isomorphism if it is an isomorphism on geometric stalks.
It suffices to consider geometric points over closed points of objects in Sm/k.
Hence we can check it after pull back to the algebraic closure. �

Remark 1.6.3. Voevodsky’s tensor product on ShTét(k,Q) is exact because
by [SV96, §5 and §6] the category can be seen as a full tensor subcategory of
the category of qfh-sheaves with the standard tensor product of sheaves. This
argument is due to Sugiyama, see [Sug14, Appendix B] for full details.

1.7. Motives over non-perfect fields. To avoid the hypothesis of per-
fectness one can consider Beilinson motives with rational coefficients following
Cisinski and Déglise [CD09]. These motives are defined over general bases and
when the base is a perfect field their definition is equivalent to the category
of geometric Voevodsky motives with Q-coefficients DMeff

gm(k)Q, see [CD09,
Corollary 16.1.6].
Suppose now that k is not perfect, and let ki be its perfect closure. Then
by [CD09, Proposition 2.1.9] and [CD09, Theorem 14.3.3] the pull-back from

DMeff
gm(k)Q to DMeff

gm(k
i)Q is an equivalence of category.

1.8. Realization functor. Fix a prime number ℓ different from the charac-
teristic of k. We denote

H∗ =
⊕

i∈Z

Hi : Smk → Smk −→ GrVec±Qℓ

the contravariant functor of ℓ-adic cohomology. By work of Ivorra [Ivo07, The-
orem 4.3] it extends uniquely to a contravariant functor called realization

H∗ : DMgm(k) −→ GrVec±Qℓ

which is a Q-linear symmetric tensor functor, sending the unit to the unit
triangles to long exact sequences and which moreover verifies H∗(M(n)) =
H∗(M)(−n) and Hm(M [n]) = Hm−n(M) for all integers m and n and all
motives M .

The structure of ℓ-adic cohomology of semiabelian varieties is well known.

Lemma 1.8.1. Let G be a semiabelian variety. Then

H∗(G) = Sym(H1(G)) .

Moreover, let Vℓ(G) be the ℓ-adic Tate module tensored by Qℓ, then we have

H1(G) = Vℓ(G)
∗ .

Proof. The abelian or torus case are classical. For the semiabelian case see
e.g. [BS13, Lemma 4.1 and 4.2]. The rational case follows from their stronger
assertion with torsion coefficients. �
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Lemma 1.8.2. The functor H1 is exact and faithful on sAbQ.

Proof. From the explicit formula for H1 we get both the exact sequence and a
formula for the dimension of H1(G). In particular, it does not vanish, if G is
non-trivial. �

2. The 1-motive M1(G) of G

Let k be a perfect field and G be a smooth commutative group scheme over
k (often a semiabelian variety). In this section we are going to construct a
natural morphism

αG :M(G) −→M1(G)

in the category DMeff
−,ét(k,Q) of triangulated motives, where M1(G) is the the

1-motive of G to be defined below. This is based on the work of Barbieri-
Viale/Kahn [BVK], Spieß/Szamuely [SS03], and Suslin/Voevodsky [SV96].
There is no need to work with rational coefficients in this section, but we prefer
to put them in the setting (they will become essential later).

2.1. Adding transfers.

Definition 2.1.1. Let G be the presheaf of abelian groups Sm/k defined by G,
i.e.,

G(S) = MorSm/k(S,G)

for S ∈ Sm/k. We denote GQ = G⊗Z Q the presheaf tensor product, i.e.,

GQ(S) = MorSm/k(S,G)⊗Z Q

for S ∈ Sm/k.

Lemma 2.1.2 (Spieß-Szamuely, Orgogozo). Let G be a smooth commutative
group scheme over k, then GQ is an étale sheaf with transfers of Q-vector
spaces. When G is a semiabelian variety, GQ is homotopy invariant.

Proof. Spieß and Szamuely showed in [SS03, Proof of Lemma 3.2] that G is
a presheaf with transfers (for more details we refer to second author’s thesis
[EW13, Section 2.3]).
Homotopy invariance follows as in the abelian or torus case, see [Org04,
Lemma 3.3.1].
We have to check the sheaf condition for GQ. It is enough to check this for
covers with finitely many objects, as a general cover can be refined to such a
cover. On the other hand the sheaf condition in this case is implied by the
sheaf condition of S 7→ MorSm/k(S,G), which is true by étale descent. �

Let us recall the relation between finite correspondences Cor(S,X) and multi-
valued maps. Let S be a connected smooth k-scheme and W ⊂ S ×X be an
irreducible subvariety finite and surjective over S, i.e., a primitive finite cor-
respondence. Let d be the degree of W/S. By work of Suslin and Voevodsky
[SV96, Preamble to Theorem 6.8] there is an associated morphism

S → Sd(X) ,

Documenta Mathematica 20 (2015) 807–858



818 Giuseppe Ancona, Stephen Enright-Ward, Annette Huber

where Sd(X) = Xd/Sd is the symmetric power of X .
From this description, the following is straightforward.

Proposition 2.1.3. Let G be a commutative group scheme over k. Then there
is a canonical map of sheaves with transfers

γG : Cor(·, G)⊗Z Q → GQ ,

characterized by the fact that it maps a morphism S
f
→ Sd(G) to

S
f
→ Sd(G)

µ
→ G ,

where µ : Sd(G) → G is the summation map. Moreover, γG is natural in
G ∈ cGrpk.

Definition 2.1.4. Let G be a semiabelian variety over k. Recall the functor
q : D−ShTét(k,Q) → DMeff

−,ét(k,Q) (see Section 1.6).

(1) We denote

M1(G) ∈ DMeff
−,ét(k,Q)

the image under the functor q of the complex given by GQ concentrated
in degree in 0. We call M1(G) the 1-motive defined by G.

(2) We denote

αG :M(G) →M1(G)

the image under the functor q of the morphism

γG : Cor(·, G) ⊗Z Q → GQ

of complexes concentrated in degree in 0.

Remark 2.1.5. The definition of M1(G) is a special case of the embedding of
the category of 1-motives into triangulated motives constructed by Barbieri-
Viale/Kahn [BVK].
The notation M1(G) should suggest the first Künneth component of G. This
intuition is justified by Proposition 2.2.1 and Lemma 2.2.2 (and of course by
the main Theorem 3.1.4).

Remark 2.1.6. The adjunction q : D−ShTét(k,Q) ⇄ DMeff
−,ét(k,Q) : i (Section

1.6) gives a canonical identification

HomDMeff

−,ét(k,Q)
(M(G),M1(G)) = HomD−ShTét(k,Q)(L(G), iM1(G)) .

On the other hand GQ is homotopy invariant (Lemma 2.1.2) so by [MVW06,
Corollary 14.9] iM1(G) is the complex GQ concentrated in degree zero. Alto-
gether we have a canonical identification

HomDMeff

−,ét(k,Q)
(M(G),M1(G)) = HomShTét(k,Q)(L(G), GQ) .

Under this identification αG corresponds to γG.
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2.2. Elementary properties.

Proposition 2.2.1 (Orgogozo). The assignment

M1 : sAb → DMeff
−,ét(k,Q)

is an exact functor, i.e., it maps short exact sequences to exact triangles. It is
isogeny invariant and factors via an exact functor

M1 : sAbQ → DMeff
−,ét(k,Q) .

In particular, it maps direct products in sAbQ to direct sums and multiplication
by n on a semiabelian variety G to multiplication by n on M1(G).
Moreover, M1 is a full embedding, i.e., for any two semiabelian varieties G and
H we have a natural isomorphism

HomsAbQ
(G,H) = HomDMeff

−,ét(k,Q)
(M1(G),M1(H)) .

Proof. The fact that M1 is a full embedding is shown more generally for the
derived category of 1-motives in [Org04, Proposition 3.3.3]. Exactness is ex-
plained in the preamble of loc. cit. �

Lemma 2.2.2. The morphism αG : M(G) → M1(G) is natural in G ∈ sAb/k
and it is always non-zero for G 6= 0 ∈ sAbQ.

Proof. By Remark 2.1.6 we can replace in the statement αG by the map γG
(Proposition 2.1.3). Naturality is part of Proposition 2.1.3 and we have γG 6= 0
because it does not vanish on idG ∈ Cor(G,G) ⊗Z Q. �

Corollary 2.2.3. Let G be a semiabelian variety. Let µ be the multiplication,
−1 the inverse, 0 the unit and ǫ the structural map. Then

M1(µ) = + :M1(G)⊕M1(G) →M1(G) ,

M1(−1) = −1 :M1(G) →M1(G) ,

M1(0) = 0 :M1(Speck) →M1(G) ,

M1(ǫ) = 0 :M1(G) →M1(Speck) .

Proof. The statement on µ holds by definition. The second follows from Propo-
sition 2.2.1 with n = −1. The last two are trivial from M1(Speck) = 0. �

Recall that (̄·) denotes the pull-back to k̄.

Lemma 2.2.4. Let G be a semiabelian variety over k.

M(G) =M(G) ,

M1(G) =M1(G) ,

αG = αG .

Proof. The analogous statement in ShTét(k̄,Q) for Cor(·, G)⊗ZQ, GQ and γG
can be proved just by checking the definitions. Then one deduces the statement
by applying the functor q. �
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3. Main Theorem

In this section we state the main theorem. The point is to construct a mor-
phisms ϕG and the theorem will essentially state that it is an isomorphism. We
also establish some basic properties of ϕG.

3.1. The morphism ϕG.

Definition 3.1.1. Let G be a semiabelian variety over k, n ≥ 0 be an integer
and ∆n

G be the n-fold diagonal. We define ϕnG to be the morphism

ϕnG :M(G)
M(∆n

G)
−−−−−→M(G)⊗n

α⊗n
G−−−→M1(G)

⊗n.

As ∆n
G is invariant under permutations, this factors uniquely

M(G)
α⊗n

G
M(∆n

G)
//

ϕn
G &&◆◆

◆◆
◆◆

◆◆
◆◆

◆
M1(G)

⊗n

Symn(M1(G))

77♦♦♦♦♦♦♦♦♦♦♦♦

Remark 3.1.2. Equivalently, we have

ϕnG :M(G)
M(∆n

G)
−−−−−→M(G)⊗n

α⊗n
G−−−→M1(G)

⊗n −→ Symn(M1(G)),

which was the original definition in [EW13].

Definition 3.1.3. Let G be a semiabelian variety over k which is an extension
of an abelian variety of dimension g by a torus of rank r. Define the morphism
ϕG as

ϕG =

2g+r
⊕

n=0

ϕnG :M(G) −→

2g+r
⊕

n=0

Symn(M1(G)).

Our main theorem is the following; it will be proven in Section 6.

Theorem 3.1.4. Let k be a perfect field and G be a semiabelian variety which
is an extension of an abelian variety of dimension g by a torus of rank r. Then
the motive M1(G) is odd of dimension 2g + r and the map

ϕG :M(G) −→

2g+r
⊕

n=0

Symn(M1(G)).

is an isomorphism of motives.

More refined statements will be deduced in Section 7.

3.2. First properties and reductions. Let G be a semiabelian variety.
The motive M(G) has a canonical Hopf algebra structure induced by mor-
phisms of varieties:

• multiplication by multiplication on G;
• comultiplication by the diagonal ∆ : G→ G×G;
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• the antipodal map by the inverse on G;
• the unit by the neutral element;
• the counit by the structure map to the base field.

The aim here is to show that the morphism ϕG of Definition 3.1.3 is a natural
morphism of Hopf algebras from M(G) to the symmetric coalgebra

coSym(M1(G)) =
∏

n≥0

Symn(M1(G)) .

To consider such an object one needs to work under the following assumption:

Finiteness Assumption 3.2.1. The motive M1(G) is odd of dimension 2g+ r
(here G is a semiabelian variety which is an extension of an abelian variety of
dimension g by a torus rank r).

Remark 3.2.2. The finiteness assumption is needed to make coSym(M1(G)) an

object of DMeff
−,ét(k,Q). We are going to establish later (see Proposition 5.1.1)

that this assumption is always satisfied. The reader who does not want to
work under this assumption can simply work unconditionally in the procategory
Pro-DMeff

−,ét(k,Q).

Lemma 3.2.3. Under the finiteness assumption 3.2.1, the map ϕG is the unique
morphism of commutative coalgebras extending αG (Definition 2.1.4).

Proof. From the definitions it is clear that it is a morphism of coalgebras.
Uniqueness then comes by universal property of coSym(M1(G)). �

Lemma 3.2.4. The maps ϕnG are natural in G ∈ sAb.

Proof. Clear by construction and naturality of αG (Lemma 2.2.2). �

Lemma 3.2.5. Let k̄ be an algebraic closure of k and denote (̄·) the base change
to k̄. Then

ϕnG = ϕn
G
.

Proof. By construction this comes from the case of αG (Lemma 2.2.4). �

Corollary 3.2.6. Let G be a semiabelian variety over k. Then Theorem 3.1.4
holds for G if it holds for G.

Proof. By Lemma 2.2.4, we haveM1(G) =M1(G). We apply Proposition 1.6.2

to the motives SymnM1(G) and we obtain that M1(G) is odd of the same
dimension asM1(G). In particular, the finiteness assumption 3.2.1 is verified for
G. By Lemma 3.2.5 we have ϕG = ϕG, we then conclude applying Proposition
1.6.2 to f = ϕG. �

We want to study compatibility of ϕG with products. Let G and H be two
semiabelian varieties. Recall that we have

M1(G×H) =M1(G) ⊕M1(H)

M(G×H) =M(G)⊗M(H)

coSym(M1(G) ⊕M1(H)) = coSym(M1(G)) ⊗ coSym(M1(H))

Documenta Mathematica 20 (2015) 807–858



822 Giuseppe Ancona, Stephen Enright-Ward, Annette Huber

by additivity of M1 (Lemma 2.2.1), Künneth formula and Corollary B.3.1.

Proposition 3.2.7. Let G and H be two semiabelian varieties over k satisfying
finiteness assumption 3.2.1. Then, under the above identifications, we have

ϕG×H = ϕG ⊗ ϕH ,

i.e., the diagram

M(G×H)

∼=

��

ϕG×H// coSym(M1(G×H))
∼= // coSym(M1(G)⊕M1(H))

M(G)⊗M(H)
ϕG⊗ϕH

// coSym(M1(G)) ⊗ coSym(M1(H))

∼=

OO

commutes.

Proof. First, notice that G ×H verifies the finiteness assumption 3.2.1. Now,
by the universal property of the coalgebra coSym it is enough to check that the
diagram

M(G×H)

∼=

��

αG×H // M1(G×H)
∼= // M1(G)⊕M1(H)

M(G)⊗M(H)
(αG⊗ǫG)⊕(ǫH⊗αH )

// M1(G) ⊗ 1⊕ 1⊗M1(H)

∼=

OO

commutes, which is the case by Corollary 2.2.3. �

Corollary 3.2.8. Let G and H be connected semiabelian varieties satisfying
finiteness assumption 3.2.1. Then ϕG×H is an isomorphism if and only if ϕG
and ϕH are isomorphisms.

Proof. If ϕG and ϕH are isomorphisms, so is ϕG ⊗ ϕH . For the converse note
that M(G) is a direct factor of M(G×H) via G→ G×H . �

Proposition 3.2.9. Under the finiteness assumption 3.2.1, the morphism ϕG
is a morphism of Hopf algebras.

Proof. Comultiplication is part of the Lemma 3.2.3. Antipode, unit and counit
are special cases of naturality Lemma 3.2.4. Multiplication is also reduced to
naturality using Proposition 3.2.7. �

4. Special cases

Before giving a full proof we need to address the cases of tori and abelian
varieties, the two building blocks of the category of semiabelian varieties. The
case of tori is simple from the properties that we have established so far. In
the case of abelian varieties, there are two key ingredients: some properties of
the Chow motive of A (after Deninger, Murre, Künnemann and Kings) and
a computation of Voevodsky of the motive of a curve. We also draw some
consequences from these partial results.
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4.1. The case of tori. Recall that (cGrp/k)Q is the category of commuta-
tive groups schemes of finite type over k up to isogeny.

Definition 4.1.1. Let T be a torus over k. The cocharacter sheaf Ξ(T ) of T
is defined as the sheaf of Q-vector spaces on the small étale site of k given by

K 7→ Hom(cGrp/K)Q
((Gm)K , TK)

for all finite separable field extensions K/k By abuse of notation, we also write
Ξ(T ) for the pull-back to the category ShTét(k,Q) of étale sheaves with trans-

fers and for its image in DMeff
−,ét(k)Q.

Remark 4.1.2. The motive Ξ(T ) is an Artin motive.

Proposition 4.1.3. Let T be a torus over k of rank r. Then the main Theorem
3.1.4 holds for G = T , i.e., M1(T ) is odd of dimension r and

ϕT :M(T ) → coSym(M1(T ))

is an isomorphism. Moreover, the natural pairing

HomcGrpQ
(Gm, T )×GmQ

→ TQ

defines a map
Ξ(T )⊗ 1(1)[1] →M1(T )

which is an isomorphism.

Proof. Let us start with the first part of the statement. Let first T = Gm. In
this case it is well-known that

M(Gm) = 1⊕ 1(1)[1]

with 1(1)[1] = GmQ
and the factor 1 is the image of the projector induced by

the constant endomorphism of Gm. We claim that α induces an isomorphism

1(1)[1] →M1(Gm) .

The proper way of showing this would be to analyze the constructions carefully.
However, as HomDMeff

−,ét(k,Q)
(1,1) = Q we can use a quicker argument instead.

By the naturality of Lemma 2.2.2, the morphism αGm
vanishes when restricted

to the unit motive 1, hence it suffices to check that

αGm
:M(Gm) →M1(Gm)

is non-zero. This was pointed out in Lemma 2.2.2. Note that M1(Gm) is odd
of dimension 1 because 1 is even of dimension 1.
Now let T be general. By Corollary 3.2.6 it suffices to consider the case k
algebraically closed. Hence T ∼= Grm. The assertion now follows from Corollary
3.2.8 and T = Gm.
We now turn to the identification of M1(T ). In order to check that it is an
isomorphism, we use the same reduction steps as before. Without loss of gen-
erality, k is algebraically closed (Proposition 1.6.2) and hence T ∼= Grm. By
compatibility with products it suffices to consider the case r = 1 which is
tautological. �
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Remark 4.1.4. The analogous computation for the associated graded of the slice
filtration is shown in [HK06, Proposition 7.2], even with integral coefficients.
Note that by loc. cit. Corollary 7.9 we do not expect the integral version of
Proposition 4.1.3.

Remark 4.1.5. Let T be a torus of rank r. Then

det(M1(T )) = Symr(M1(T )) =

(

r
∧

Ξ(T )

)

(r)[r] = det Ξ(T )(r)[r]

is a finite-dimensional motive. It is odd of dimension 1 when r is odd and it
is even of dimension 1 when r is even. However, it is not always isomorphic to
1(r)[r] as the example of a non-split torus of rank 1 shows.
The Artin motive det Ξ(T ) is even of dimension 1. It is given by a one-
dimensional continuous representation of the absolute Galois group of k in
the category of Q-vector spaces. It is either trivial or of order 2.

4.2. The Chow motive of an abelian variety. We recall here some clas-
sical results on the Chow motive of an abelian variety.
Let us recall some notations and conventions: Chow(k)Q is the pseudo-abelian
Q-linear rigid symmetric tensor category of Chow motives over k with ratio-
nal coefficients, endowed with the covariant Q-linear symmetric tensor functor
called motive

M : SmPrVar/k → Chow(k)Q .

For a detailed description of this category see [DM91] or [Kün94].

Remark 4.2.1. Recall that the standard convention in the classical literature
on Chow motives is to take the functor to Chow motives to be contravariant.
By replacing a cycle by its transpose we can pass to the covariant version.
Note that this operation interchanges the notions of symmetric algebra and

symmetric coalgebra. Note also that [DM91] and [Kün94] use the notation
∧i

instead of Symi.

Theorem 4.2.2 ([DM91, Thm. 3.1]). For any abelian variety over k of dimen-
sion g there is a unique decomposition in Chow(k)Q

M(A) =

i=2g
⊕

i=0

hi(A),

which is natural in A ∈ Ab/k, and such that for all n ∈ Z

M(nA) =

i=2g
⊕

i=0

ni · idhi(A).

Moreover, one has h0(A) = 1.

Theorem 4.2.3 ([Kün94, Thm. 3.1.1 et 3.3.1]). For any abelian variety A over
k of dimension g the following holds:
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(1) The Poincaré duality holds

h2g−i(A)
∨ = hi(A)(−g)[−2g] .

In particular one has h2g(A) = 1(g)[2g].

(2) For i > 2g, the motive Symih1(A) vanishes.
(3) The canonical morphism of coalgebras

M(A) −→ coSym(h1(A))

induced by the projectionM(A) → h1(A) is an isomorphism. It respects
the grading, i.e. it induces isomorphisms

hi(A) −→ Symi(h1(A)) .

Proposition 4.2.4 ([Kin98, Prop. 2.2.1]). For all pairs of abelian varieties A
and B, the functor h1 induces an isomorphism of Q-vector spaces

HomAbQ
(A,B)

∼
−−→ HomChow(k)Q

(h1(A), h1(B)).

Proposition 4.2.5. Let C be a smooth and projective curve over k and J(C)
its Jacobian. Suppose that C(k) 6= ∅ and let x0 : C → C be a constant map.
Then the motive of the curve can be decomposed as

M(C) = 1⊕ h1(J(C)) ⊕ 1(1)[2]

such that the projector to 1 is given by M(x0) and the projector to 1(1)[2] by
its Poincaré dual.

Proof. This is classical, see for example [Sch94, Proposition 4.5]. Notice that
by Theorem 5.3 of loc. cit. the different notions of motivic h1 for an abelian
variety coincide. �

4.3. The Voevodsky motive of an abelian variety. We consider A an
abelian variety of dimension g over the base field k.
In order to prove the main Theorem 3.1.4 in this special case, the key point
is to show that αA induces an isomorphism between h1(A) and M1(A). We
will reduce this to the case of Jacobians and then use Proposition 4.2.5 and a
parallel result of Voevodsy for geometric motives.

Lemma 4.3.1. Consider the decomposition M(A) =
⊕i=2g

i=0 hi(A) of Theorem
4.2.2 and the map αA : M(A) → M1(A) of definition 3.1.3. Then the restric-
tion of the map to each factor hi(A) is zero for all i 6= 1. Moreover, the induced
map

αA : h1(A) →M1(A)

is non-zero.

Proof. By Lemma, 2.2.2 the map αA is natural in sAbQ. On the other hand
the action of the multiplication nA is equal to ni · id on hi(A) (Theorem 4.2.2)
and to n · id on M1(A) (Proposition 2.2.1). This implies that αA is zero on
hi(A) for i 6= 1.
To conclude, notice that the restriction of αA to h1(A) has to be non-zero,
otherwise the whole αA would be zero, which contradicts Lemma 2.2.2. �
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Lemma 4.3.2. Let C be a smooth and projective curve over k with a rational
point and J(C) its Jacobian. Then, the motives h1(J(C)) and M1(J(C)) are
isomorphic.

Proof. ConsiderM(C) ∈ D−(ShTét(k,Q)). It is cohomologically concentrated
in degrees 0 and −1. The cohomology in degree 0 is by [Voe00, Theorem 3.4.2]
given by PicC/k

Q
. In degree −1 it is equal to GmQ

.

We use the projector given by the rational point x and its Poincaré dual to cut
off 1 ⊕ 1(1)[2] = Q ⊕ GmQ

[1]. The remaining object is cohomologically con-

centrated in degree 0 and given by the kernel of the degree map PicC/k
Q
→ Q,

hence isomorphic to M1(J(C)).
By comparing with the decomposition in Proposition 4.2.5 we get the result. �

Proposition 4.3.3. For any abelian variety A, the map

αA|h1(A) : h1(A) →M1(A)

is an isomorphism.

Remark 4.3.4. In [EW13, Section 4.3] this is established by going through the
definitions carefully. The proof given here is different.

Proof. We can assume that k is algebraically closed by Proposition 1.6.2 and
Lemma 2.2.4. We may decompose A up to isogeny into simple factors. The
map αA is natural in AbQ and compatible with direct products. Hence it
suffices to consider the case of a simple abelian variety. We can choose a curve
C such that A is a factor of J(C) up to isogeny. As k is algebraically closed,
we can apply Lemma 4.3.2 and deduce that there is some isomorphism

h1(J(C)) →M1(J(C)) .

Hence we may view h1(A) and M1(A) as direct factors of the same object
X and α|h1(A) as an endomorphism of X . They are both simple factors by
Proposition 2.2.1 and Proposition 4.2.4. Hence any non-zero map between
them is an isomorphism. By Lemma 4.3.1 this is the case for αA. �

Proposition 4.3.5. Let A be an abelian variety over k of dimension g. Then
the main Theorem 3.1.4 holds for G = A, i.e., M1(A) is odd of dimension 2g
and

ϕA :M(A) → coSym(M1(A))

is an isomorphism.

Proof. First, h1(A) is odd of dimension 2g by Theorem 4.2.3. So by Proposition
4.3.3 the same holds for M1(A). Let us consider the following commutative
diagram:

M(A)

��

αA

$$■
■
■
■
■
■
■
■
■

h1(A)αA|h1(A)

// M1(A)
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where the vertical arrow is the projection. By the universal property B.2.1 it
induces a unique commutative diagram

M(A)

�� ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

coSym(h1(A)) // coSym(M1(A))

of morphisms of coalgebras. The diagonal morphism is ϕA by Lemma 3.2.3.
By Proposition 4.3.3 αA : h1(A) →M1(A) is an isomorphism, so the horizontal
arrow coSym(h1(A)) → coSym(M1(A)) is an isomorphism. The vertical arrow
is an isomorphism by Theorem 4.2.3. We deduce that ϕA is an isomorphism.

�

5. Properties of M1(G)

In all the section, G is a semiabelian variety over k. We consider the basic
exact sequence

1 → T → G→ A→ 1 ,

with T a torus of rank r and A an abelian variety of dimension g. We establish
properties for M1(G) which we already know for M1(T ) and M1(A).

5.1. The motive M1(G) is Kimura finite.

Proposition 5.1.1. Let G be a semiabelian variety over k which is an extension
of an abelian variety of dimension g by a torus T of rank r. Then the motive
M1(G) is odd of dimension 2g+ r, i.e., Symn(M1(G)) vanishes for n > 2g+ r,
and the motive

det(G) := det(M1(G)) = Sym2g+rM1(G)

is of the form
Λ(g + r)[2g + r]

where Λ is the tensor-invertible Artin motive detΞ(T ) of Remark 4.1.5. In
particular, if the torus part of G is split, then Λ = 1.

Proof. Let 1 → T → G → A → 1 be the basic sequence and consider the
associated filtration of Appendix C.2

Fil
M1(T )
i SymnM1(G) .

By Proposition C.3.4 its associated graded pieces have the form

SymiM1(T )⊗ Symn−iM1(A) .

Hence, they vanish in DMeff
−,ét(k,Q) for i > r (Proposition 4.1.3) or n− i > 2g

(Theorem 4.2.3). This implies vanishing for n > 2g + r. For n = 2g + r we get
a canonical isomorphism

detM1(G) = detM1(T )⊗ detM1(A) .

Hence the formula follows from the Proposition 4.1.3 for tori and Theorem
4.2.3 for abelian varieties. Note that Λ is indeed invertible. �
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The following is not needed in the sequel.

Corollary 5.1.2. (1) Let C be a curve (not necessarily smooth and pro-
jective). Then M(C) is Kimura finite.

(2) Fix the embedding of the category of 1-motives [Del74] in DMeff
−,ét(k,Q)

to be the one constructed in [BVK, Org04]. Then all 1-motives are even

objects in DMeff
−,ét(k,Q).

Proof. By [BVK, Theorem 11.2.1] the motive M(C) decomposes into the sum
of an Artin-motive and a 1-motive (shifted by 1). Then, it is enough to show
(2).
Consider a 1-motive [F → G] as a complex where F (in degree 0) is a k-group
scheme such that Fk̄ is a free abelian group of finite rank and G (in degree 1)
is a semiabelian variety.
By Proposition C.3.4, the filtration (in the abelian category Cb(ShTét(k,Q)))

0 → [0 → GQ] → [FQ → GQ] → [FQ → 0] → 0

induces a filtration on Symn[FQ → GQ] with associated graded pieces isomor-
phic to

Syma[0 → GQ]⊗ Symn−a[FQ → 0] .

These exact sequences induce triangles in DMeff
−,ét(k,Q) which reduce to the

case of [F → 0] and [0 → G]. The first is just an Artin motive, hence even.
The second, by definition, equals to M1(G)[−1], which is even by Proposition
5.1.1. �

Remark 5.1.3. (1) Kimura finiteness of motives of curves was known by the
work of Guletskii [Gul06] and Mazza [Maz04] (using different methods).

(2) The fact that 1-motives are Kimura finite is pointed out in [Maz04,
Remark 5.11] (attributed to O’Sullivan) as a consequence of Kimura
finiteness of motives of curves. The above is more precise and also more
direct.

5.2. The motive M1(G) is geometric.

Proposition 5.2.1. The motive M1(G) ∈ DMeff
−,ét(k,Q) belongs to the full

subcategory DMeff
gm(k)Q.

Remark 5.2.2. The fact that all 1-motives are geometric is already shown in
[Org04]. We give a straight-forward argument in our case.

Proof. If G is a torus or an abelian variety, we have established the isomorphism

ϕG :M(G) → coSym(M1(G))

in Proposition 4.1.3 and Proposition 4.3.5. In particular, M1(G) is a direct
summand of a geometric motive, hence geometric. (Alternatively, we have given
an explicit description of M1(G) in Proposition 4.1.3 and Proposition 4.3.3,
which is in both cases geometric.)
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In general, consider a basic exact sequence fixed in the beginning of the section

1 → T → G→ A→ 1 .

It induces an exact triangle

M1(T ) → M1(G) →M1(A)

in DMeff
−,ét(k,Q). The claim follows because the category of geometric motives

is triangulated. �

5.3. Computation of realization. Fix a prime ℓ different from the charac-
teristic of the base field k. Let

H∗ : DMgm(k) −→ GrVec±Qℓ

be the realization functor (see Section 1.8).

Proposition 5.3.1. The realization of the map αG : M(G) → M1(G) of Def-
inition 2.1.4 is zero in all degrees except in degree one where it induces an
isomorphism

H∗(αG) : H
∗(M1(G)) → H1(G).

Proof. Let us start by showing that the statement holds for all G which satisfy
the main Theorem 3.1.4. Indeed, applying H∗ one has an isomorphism of Hopf
algbras

H∗(G) ∼= Sym(H∗(M1(G))) .

Hence, their primitive parts are isomorphic. On the other hand, by the struc-
ture theory of connected graded Hopf algebras (see for example [Lod92, Ap-
pendix A]) the primitive part of on the right hand side is H∗(M1(G)) and the
primitive part of H∗(G) is H1(G) (Lemma 1.8.1).
Note that, in particular, we have shown the statement in the toric case and in
the abelian case, by Propositions 4.1.3 and 4.3.5.
In the general case, write

1 −→ T
f

−→ G
g

−→ A −→ 1 .

By Lemma 2.2.1 one has a triangle

M1(T ) →M1(G) →M1(A)
+1
→ .

By applying the functor H∗ one obtains a long exact sequence. For i 6= 1 we
have seen that Hi(M1(T )) and H

i(M1(A)) vanish hence Hi(M1(G)) vanishes
as well.
Then one has the following commutative diagram of short exact sequences

H1(M1(A))

H1(αA)

��

H1(M1(g))// H1(M1(G))

H1(αG)

��

H1(M1(f))// H1(M1(T ))

H1(αT )

��
H1(A)

H1(g) // H1(G)
H1(f) // H1(T ).
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(The two squares are commutative by Lemma 2.2.2 and the second line is also
a short exact sequence by Lemma 1.8.2.)
As we have shown that the first and third vertical arrows are isomorphisms so
is the second.

�

6. Proof of the Main Theorem

The proof is by induction on the torus rank. By comparing two triangles, we
establish that there is some isomorphism between M(G) and coSym(M1(G))
and deduce that these two motives are finite-dimensional. In the next section
6.2 we show that ϕG is an isomorphism studying its behaviour in the realization
and using Kimura finiteness.

6.1. Comparing exact triangles. Throughout this section, we consider a
short exact sequence of semiabelian varieties

1 → Gm → G→ H → 1 .

Lemma 6.1.1. (1) Let n ≥ 0. We denote

[M1(G)] :M1(H) → 1(1)[2]

the connecting morphism of the exact triangle

1(1)[1] →M1(G) →M1(H) .

Then there is an exact triangle

Symn(M1(G)) → Symn(M1(H))
∪[M1(G)]
−−−−−−→ Symn−1(M1(H))(1)[2] .

(2) Let

c1([G]) ∈ H1
ét(H,Gm) = MorDMeff

−,ét(k,Q)
(M(H),1(1)[2])

be the first Chern class of G viewed as a Gm-torsor over H. Then there
is an exact triangle

M(G) →M(H)
·∪c1(G)
−−−−−→M(H)(1)[2] .

(3) The diagram

M(H)
·∪c1([G]) //

ϕH

��

M(H)(1)[2]

ϕH(1)[2]

��
coSym(M1(H))

·∪[M1(G)]
// coSym(M1(H))(1)[2]

commutes.
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Proof. For (1), we apply Theorem C.4.4 to the exact sequence of sheaves with
transfers

0 → GmQ
→ GQ → HQ → 0

and the localization functor

q : ShTét(k,Q) → DMeff
−,ét(k,Q) .

Note that ShTét(k,Q) is Q-linear abelian symmetric tensor category with an
exact tensor product, see Remark 1.6.3, and that M1(Gm) = 1(1)[1] and
Sym2(1(1)[1]) = 0.
For the second triangle consider A(G) → H , the line bundle associated to the
Gm-torsor G. The zero section of A(G) identifies H with 0(H), a smooth sub-
variety of A(G) of codimension 1. Its complement is G. Hence the localization
sequence reads

M(G) →M(A(G)) →M(0(H))(1)[2] .

By homotopy invariance M(A(G)) = M(H). The identification of the bound-
ary map with the first Chern class is carried out in [HK06, Proposition C1].
By compatibility with comultiplication (which holds by definition of the maps),
it suffices to check commutativity in degree 1. This is precisely the comparison
of Chern classes in Proposition A.1.1. �

Corollary 6.1.2. Assume that there exists a short exact sequence of semia-
belian varieties

1 → Gm → G→ H → 1,

such that the main Theorem 3.1.4 holds for H. Then there exists an isomor-
phism

ψ : coSym(M1(G)) →M(G) .

In particular, M(G) is Kimura finite.

Proof. We consider

M(G) //

ψ

��✤
✤

✤

✤

✤

✤
M(H) //

ϕH≃

��

M(H)(1)[2]

ϕH (1)[2]≃

��

// M(G)[1]

ψ[1]

��✤
✤

✤

✤

✤

✤

coSym(M1(G)) // coSym(M1(H)) // coSym(M1(H))(1)[2] // coSym(M1(G))[1].

Both triangles are constructed in Lemma 6.1.1. The central square commutes
also by Lemma 6.1.1. By assumption ϕH is an isomorphism. By the axioms
of a triangulated category we obtain an isomorphism ψ as indicated. M(G)
is Kimura finite because M1(G) is Kimura finite by Proposition 5.1.1 and the
notion is stable under tensor products and direct summands. �
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Remark 6.1.3. The above corollary was the main result of [EW13]. We expect
ϕ? to define a morphism of triangles, i.e., ψ = ϕG. This would immediately
show that ϕG is an isomorphism. We were not able to establish this morphism
of triangles and use a completely different argument instead.

6.2. ϕG is an isomorphism. We modify the non-canonical isomorphism ψ
(Corollary 6.1.2) such that its realization is the inverse of the realization of
ϕG. To conclude we use conservativity of the realization functor on finite-
dimensional motives.

Isomorphism Assumption 6.2.1. We assume the existence of an isomorphism
ψ : coSym(M1(G)) → M(G). We fix such ψ and write ψ1 : M1(G) → M(G)
for its restriction to M1(G).

Lemma 6.2.2. Under the above isomorphism assumption 6.2.1, the realization
of ψ1 induces an isomorphism

H1(ψ1) : H
1(G)

∼
−−→ H1(M1(G))

Proof. Recall from Proposition 5.3.1 that H∗(M1(G)) is concentrated in degree
one. Hence the realization of ψ gives isomorphisms

Hn(G)
Hn(ψ)
−−−−→ Symn(H1(M1)) .

Moreover, H1(ψ1) = H1(ψ). �

Lemma 6.2.3. Under the isomorphism assumption 6.2.1, the endomorphism
αG ◦ ψ1 of the motive M1(G) is an isomorphism. In particular, there exists a
morphism β1 :M1(G) → M(G) such that

αG ◦ β1 = idM1(G) .

Proof. We write
αG ◦ ψ1 =M1(f0) .

This is possible because by Proposition 2.2.1 any endomorphism of M1(G) is
of the form M1(f) where f is in EndsAbQ

(G).

It is enough to show that f0 is an automorphism of G ∈ sAbQ. As H
1 is exact

and faithful on sAbQ (see Lemma 1.8.2), we can test this after applying H1.
Moreover,

H1(f0) = H∗(M1(f0)) = H∗(ψ1) ◦H
∗(αG) .

By Lemma 5.3.1, the map H∗(αG) is an isomorphism onto its image H1(G).
By Lemma 6.2.2, the map H∗(ψ1) is an isomorphism when restricted to H1(G).
Hence the composition is an isomorphism. �

Lemma 6.2.4. Under the isomorphism assumption 6.2.1, let us fix a morphism
β1 : M1(G) → M(G) such that αG ◦ β1 = idM1(G) as in the previous lemma.
Let

β : coSymM1(G) →M(G)

be the induced morphism of algebras (Corollary B.2.5).
Then H∗(ϕG) and H

∗(β) are inverse to each other.

Documenta Mathematica 20 (2015) 807–858



On the Motive of a Commutative Algebraic Group 833

Proof. By Assumption 6.2.1 the vector spaces H∗(coSym(M1(G))) and
H∗(M(G)) have the same dimension, in particular it is enough to check that
the composition in one direction is the identity.
By Proposition 3.2.9, ϕG is not only a morphism of coalgebras but also a
morphism of algebras. Hence

ϕG ◦ β : coSym(M1(G)) → coSym(M1(G))

is also a morphism of algebras and so

H∗(ϕG ◦ β) = H∗(β) ◦H∗(ϕG) : Sym(H∗(M1(G))) → Sym(H∗(M1(G)))

is a morphism of coalgebras.
By Corollary B.2.5, the bialgebra Sym(H1(M1(G)) also has the universal prop-
erty with respect to comultiplication. We are going to exploit it in order to
establish that H∗(ϕG ◦ β) is the identity.
By Proposition 5.3.1, H∗(M1(G)) = H1(M1(G)) is concentrated in degree one.
In degree one our morphism is equal to H∗(αG ◦ β1) so it is the identity by
assumption. �

Proposition 6.2.5. Under the isomorphism assumption 6.2.1, the morphism
ϕG is an isomorphism.

Proof. By Proposition 5.1.1 and Corollary 6.1.2 the objects coSym(M1(G))
andM(G) are finite-dimensional. Moreover, by Cancellation Theorem [Voe10],
effective motives are embedded in non-effective ones, hence we can suppose that
ϕG is a morphism defined in a rigid category. So we can use Theorem 1.3.1
(applied to the realization functor) and conclude by Lemma 6.2.4. �

6.3. Conclusion.

Proof of the Main Theorem 3.1.4. Let k be a perfect field and G be a semia-
belian variety over k which is an extension of an abelian variety A of dimension
g and a torus T of rank r.
By Proposition 5.1.1, the motive M1(G) is odd of dimension 2g+ r. It remains
to establish that ϕG is an isomorphism. By Corollary 3.2.6 we can suppose
that k is algebraically closed.
We now argue by induction on r. When r = 0 (and hence G = A) the theorem
is proved by Proposition 4.3.5.
Let us now consider the case r ≥ 1. As the ground field k is algebraically closed
we have T ∼= Grm. We fix such a splitting and let Gm → Grm be the inclusion
as the first coordinate. This defines a short exact sequence

1 → Gm → G→ H → 1,

with H a semiabelian variety of torus rank r − 1. By inductive hypothesis the
theorem holds for H . By Corollary 6.1.2, this implies the existence of some
isomorphism

ψ :M(G) → coSym(M1(G)) .

This is the isomorphism assumption 6.2.1 for G. Then Proposition 6.2.5 shows
that the morphism ϕG is an isomorphism. �
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7. Consequences

Let k be a field (not necessarily perfect). We deduce from our main Theorem
3.1.4 a Künneth decomposition for the motive of a semiabelian variety, the
behaviour under mixed Weil cohomology theories and the existence of a weight
filtration. Finally, we also compute the motives of arbitrary commutative group
schemes.

7.1. Künneth components. In this section we fix a prime number ℓ and
write H∗ : DMeff

gm(k)Q −→ GrVec±Qℓ
for the ℓ-adic realization, see Section 1.8.

Theorem 7.1.1. Let G be a semiabelian variety over k which is an extension
of an abelian variety of dimension g and a torus of rank r. Then there exists
a unique decomposition in DMeff

gm(k)Q

M(G) =

2g+r
⊕

i=0

Mi(G)

which is natural in G ∈ sAb/k and such that

H∗(Mi(G)) = Hi(Gk̄,Qℓ).

Moreover:

(1) The multiplication by nG acts as

M(nG) =

i=2g+r
⊕

i=0

ni · idMi(G).

In particular, for any non-zero integer n, the morphism M(nG) is
an isomorphism and hence the Künneth decomposition is natural in
G ∈ sAbQ.

(2) If L is a field extension of k, then we have

Mi(G)L =Mi(GL)

in DMeff
gm(L)Q.

(3) The image of the motive M1(G) in DMeff
−,ét(k,Q) is given by the ho-

motopy invariant sheaf with transfers

S 7→ MorSch/k(S,G) ⊗Q .

(4) For all pairs G1, G2 ∈ sAb/kQ, the functorM1 induces an isomorphism
of Q-vector spaces

HomsAbQ
(G1, G2)

∼
−−→ HomDMeff

gm(k)Q
(M1(G1),M1(G2)).

(5) Any exact sequence 1 → G1 → G2 → G3 → 1 in sAbQ induces an
exact triangle

M1(G1) →M1(G2) →M1(G3)

in DMeff
gm(k)Q

(6) For i > 2g + r, the motive Symi(M1(G)) vanishes.

Documenta Mathematica 20 (2015) 807–858



On the Motive of a Commutative Algebraic Group 835

(7) The canonical morphism of coalgebras

M(G) =
⊕

i

Mi(G) −→ coSym(M1(G)) =
⊕

i

Symi(M1(G))

induced by the projection M(G) → M1(G) is a graded isomorphism of
Hopf algebras.

(8) The motive

det(G) :=M2g+r(G) = det(M1(G))

is of the form
Λ(g + r)[2g + r]

with a tensor-invertible Artin motive Λ. If the torus part of G is split,
then Λ = 1.

(9) There is an isomorphism

Mi(G)
∨ ∼=M2g+r−i(G)⊗ det(G)−1

=M2g+r−i(G)⊗ Λ−1(−g − r)[−2g − r]

natural in G ∈ sAb/kQ. In particular there are isomorphisms

M(G)∨ ∼=M(G)⊗ det(G)−1 ,

Mc(G) ∼=M(G)⊗ det(G)−1(g + r)[2g + 2r]

=M(G)⊗ Λ−1[r]

natural in G ∈ sAb/kQ (where Mc(G) is the motive with compact sup-
port of G).

Proof. By Section 1.7, we may assume that k is perfect. We use the main
Theorem 3.1.4 and choose

Mi(G) = Symi(M1(G)) .

By Proposition 5.3.1 it has the correct behaviour for the realization of M1(G)
and by Lemma 1.8.1 also for all Mi(G). By Proposition 2.2.1 it also satisfies
(1). Suppose there is another natural decomposition

M(G) =

2g+r
⊕

i=0

M ′
i(G) .

By naturality, this decomposition is stable under the action of the Q-algebra
generated byM(nG). Notice now that, for all i, the projector pi definingMi(G)
is in this algebra, indeed

pi =

∏

i6=jM(nG)− nj id
∏

i6=j(n
i − nj)

.

So we get a decomposition

M ′
i(G) =

2g+r
⊕

j=0

M j
i (G)
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where the motive M j
i (G) is a direct factors of M ′

i(G) and of Mj(G). Hence by
hypothesis, its realization is concentrated, on one hand in degree i and on the
other hand in degree j, which implies that its realization is zero when i 6= j.
Moreover,M j

i (G) is a finite-dimensional motive (asM(G) is by Theorem 3.1.4)

so we can apply Theorem 1.3.1 to deduce that M j
i (G) vanishes for i 6= j. This

gives the uniqueness.
For (2) one can argue in two different ways: using uniqueness of the decom-
position or using the multiplication nG of (1). Properties (3) and (7) hold
by definition and main Theorem 3.1.4. The properties (4) and (5) come from
Proposition 2.2.1.
The properties (6) and (8) were established in Proposition 5.1.1.
Part (9) comes from a more general statement: we claim that if X is an odd
object of dimension d in a Q-linear pseudo-abelian symmetric tensor category,
then there is a canonical isomorphism

(SymiX)∨ ∼= Symd−iX ⊗ (SymdX)∨ .

Let us prove the claim. In [O’S05, Lemma 3.2] it is proven that for any even
object X of dimension d there is a canonical isomorphism (∧iX)∨ ∼= ∧d−iX ⊗
(∧dX)∨. One can change the sign of all symmetries so that one gets a new
category which is equivalent as Q-linear tensor category to the previous one
(but not as Q-linear symmetric tensor category). This transformation sends
even objects of dimension d to odd objects of dimension d so that [O’S05,
Lemma 3.2] implies our claim. �

7.2. Mixed Weil cohomology of semiabelian varieties. Let H∗ be any
mixed Weil cohomology with coefficients in F , in the sense of [CD12] (we do
not ask anymore this to be the ℓ-adic cohomology). Recall that, by definition,
this means that F is a field of characteristic zero, the Künneth formula and
excision hold, and that, moreover, the cohomology of the point, the affine line
and the multiplicative group have the standard dimensions.
We also require that the cohomology of any scheme is concentrated in non-
negative degrees. In [CD12, Remark 2.7.15] it is conjectured that this should
be deduced from the other axioms (see the comments in loc. cit. after Theorem
2.7.14). We also write

H∗ : DMeff
gm(k) −→ GrVec±F

for the realization functor induced by the mixed Weil cohomology [CD12, Thm
3].

Lemma 7.2.1. Let M be an Artin motive. Then H∗(M) is concentrated in
degree 0.

Proof. By [CD12, Thm 1(4)], the theory H∗ satisfies Poincaré duality. By
assumption it is concentrated in non-negative degrees. Hence H∗(M(SpecL))
is concentrated in degree 0. �
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Proposition 7.2.2. Let G be a semiabelian variety over k and Mi(G) be the
Künneth components constructed in Theorem 7.1.1. Then

H∗(Mi(G)) = Hi(G)

for any mixed Weil cohomology H∗.

Proof. We apply H∗ to the isomorphism of Hopf algebras

ϕG :M(G) → coSym(M1(G)) .

Hence H∗(M1(G)) is the primitive part of H∗(G) and it suffices to show that
it is concentrated in degree 1. We know thatM1(G) is odd of dimension 2g+ r
where r is the torus rank of G and g the dimension of the abelian part of A.
Hence H∗(M1(G)) is of dimension 2g + r. Moreover,

det(H∗(M1(G)) = H∗(det(G)) = H∗(Λ(g + r)[2g + r])

with Λ as in Theorem 7.1.1 an invertible Artin motive. By Lemma 7.2.1 the
cohomology of Λ is concentrated in degree 0. Hence the cohomology of det(G)
is concentrated in degree 2g + r. By assumption H∗(M1(G)) is odd and H∗ is
concentrated in non-negative degrees. This is only possible if all of H∗(M1(G))
is concentrated in degree 1. �

Consider now the category of 1-motives over k (introduced by Deligne [Del74])

and its embedding in DMeff
−,ét(k,Q) [BVK, Org04].

Proposition 7.2.3. Let [F → G] ∈ DMeff
−,ét(k,Q) be a 1-motive, with F (in

degree 0) a k-group scheme such that Fk̄ is a free abelian group of rank d and
G (in degree 1) an extension of an abelian variety of dimension g by a torus
of rank r. Let H∗ be a mixed Weil cohomology theory such that H∗(X) is
concentrated in non-negative degrees. Then H∗([F → G]) is concentrated in
degree 0 and of dimension 2g + d+ r.

Proof. This holds for [F → 0] by Lemma 7.2.1 and for [0 → G] by Proposition
7.2.2 (compare with the Definition 2.1.4 and note the shift on the degree here).
By considering the long exact cohomology sequence, it follows for [F → G]. �

Remark 7.2.4. To our knowledge this result is new. There is a discussion of
realizations of 1-motives in [BVK, Section 15.4] which is going into a different
direction.

7.3. Weight filtration. Recall that Bondarko defines in [Bon10, Definition
1.1.1, Proposition 6.5.3] categories ≤aDMgm of motives of weight at most a
and ≥aDMgm of motives of weight at least a such that

≤aDMgm ∩≥a DMgm = Chow(k)Q[−a] .

Our structural knowledge also gives us a weight filtration in the sense of Bon-
darko on M(G). Let G be semiabelian with torus part T of rank r and abelian
part A of dimension g. Recall that there is a natural exact triangle

M1(T ) → M1(G) →M1(A)
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with M1(A) a Chow motive and M1(T ) = Ξ(1)[1] (with Ξ the Artin motive
of Proposition 4.1.3) a Chow motive shifted by [−1]. This means that M1(A)
is pure of weight 0 and M1(T ) is pure of weight 1. Hence M1(G) has weights
between 0 and 1 and the above sequence is a weight decomposition. Using the
filtration of Appendix C we extend this to all Künneth components.

Proposition 7.3.1. Fix an integer i. For every choice of −∞ ≤ a ≤ b ≤ ∞
in Z ∪ {−∞,∞} there is a functor

a≤w≤bMi : sAbQ →≤b DMgm ∩≥a DMgm

together with an exact triangle of functors for every choice of a ≤ b < c

b+1≤w≤cMi →a≤w≤c Mi →a≤w≤b Mi

such that

a≤w≤bMi =Mi for a ≤ i and b ≥ 0.

Moreover, for every semiabelian variety G with torus part T of rank r and
abelian part A of dimension g, we have naturally

a≤w≤aMi(G) =Ma(T )⊗Mi−a(A) = SymaM1(T )⊗ Symi−aM1(A) .

The weights of Mi(G) are concentrated in the range

Mi(G) =max(0,i−2g)≤w≤min(i,r) Mi(G) .

Remark 7.3.2. Suppose that G = T ×A, then

Mi(G) = Symi(M1(T )⊕M1(A)) =
⊕

j=0

Mj(T )⊗Mi−j(A)

and the definitions

a≤w≤bMi(G) =

b
⊕

j=a

Mj(T )⊗Mi−j(A)

verify all the properties of the statement. In general G will just be an extension
of A by T and one needs to replace this description by a filtered one, using
Proposition C.3.4.

Proof of Proposition 7.3.1. By Section 1.7, we may assume that k is perfect.
Recall that M1(G) = qG where q : D−(ShTét(k,Q)) → DMeff

−,ét(k,Q) is the
localization functor and G ∈ ShTét(k,Q) is a sheaf. We put

a≤w≤bMi(G) = q
(

FilTa Sym
iG/Fil

T
b+1Sym

iG
)

with FilT as defined in Definition C.3.1. The exact triangles are immediate from
this construction. The computation of a≤w≤aMi(G) follows from Proposition
C.3.4. In particular, it is pure of weight a and geometric. All other statements
follow from this case by induction on |b− a|. �

Corollary 7.3.3. Suppose we are in one of the following two cases:

(1) k is embedded into C and H∗ is the Betti realization with its natural
mixed Hodge structure;
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(2) k is a field of finite type over its prime field, ℓ a prime different from
the characteristic of k and H∗ the ℓ-adic cohomology;

In both cases let (WnH
∗)n∈Z be the weight filtration. Then

H∗ (−∞≤w≤aMi(G)) = Hi (−∞≤w≤aMi(G)) =Wi+aH
i(G) .

Proof. Let again be T the torus part of G and A the abelian part. Note that
by Proposition 7.2.2

H∗(Ma(T )⊗Mi−a(A)) = Ha(T )⊗Hi−a(A)

is concentrated in degree i. As A is smooth projective, Hi−a(A) is pure
of weight i − a. On the other hand, Ha(T ) is pure of weight 2a. Hence
H∗(a≤w≤aMi(G)) is concentrated in degree i and pure of weight i+ a.
The corollary follows by induction. �

Remark 7.3.4. In general one does not have to expect that the weight filtration
of a cohomology and its graded components lift canonically inDMeff

gm(k)Q. This
has been studied in [Wil09] and a sufficient criterion, called of avoiding weights,
has been given. This criterion does not apply here, but our situation allows
anyway to define such a canonical lifting.

7.4. General Commutative Group Schemes. Let k be a field and G/k an
arbitrary commutative group scheme of finite type over k. Our aim is to extend
the previous results to this case.
Let us initially consider k to be perfect. Let G0 be the connected component of
the neutral element and π0(G) the group of connected components of G. The
latter is finite. We have a natural short exact sequence

1 → G0 → G→ π0(G) → 1 .

We are going to express the motive of G in terms of G0 and π0(G). Note that
we always have

M(G) =M(Gred)

where Gred is the maximal reduced subscheme of G. As k is perfect, this scheme
is a group and it is, moreover, smooth. Recall that by the Barsotti-Chevalley
structure theorem ([Bar55] and [Che60]), there is a short exact sequence

1 → Gu → Gred → Gsa → 1

with Gu unipotent and Gsa semiabelian.

Remark 7.4.1. Let F be a finite group scheme over k. Then the Artin mo-
tive M(F ) has the explicit description as representation of the absolute Galois
group:

M(F ) ∼= Q[F (k̄)]

with operation of Gal(k̄/k) given by the operation on k̄-valued points. The
Hopf algebra structure is the one of the group ring. Note that we have naturally
F (k̄) = F red(k̄).
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Definition 7.4.2 (cf. Definition 2.1.1). Let G be a commutative group scheme
over a perfect field k. Define G to be the étale sheaf on Sm/k given by

G(S) = MorSch/k(S,G)

and GQ = G⊗Z Q.

Lemma 7.4.3. Let G be a commutative group scheme. Then G is an étale sheaf
with transfers and we have

GQ = Gred
Q = G0

Q = (G0)redQ .

Proof. First, Gred is smooth, hence the sheaf has transfers by Lemma 2.1.2.
The equality GQ = Gred

Q holds actually integrally because, for any smooth
scheme S, we have

MorSch/k(S,G) = MorSch/k(S,G
red)

(note that we consider G as a sheaf only on Sm).
To conclude note that the finite group of connected components does not con-
tribute after tensoring with Q. �

Definition 7.4.4 (cf. Definition 2.1.4). Let G be a commutative group scheme
over k. Consider GQ ∈ D−ShTét(k,Q) as an object concentrated in degree
zero and define

M1(G) ∈ DMeff
−,ét(k,Q)

as the image of GQ by the functor q (see Section 1.6). Similarly, consider

γGred : Cor(·, Gred)⊗Z Q → Gred
Q ,

of Proposition 2.1.3, as a map in D−ShTét(k,Q), and define

αG :M(G) =M(Gred) →M1(G
red) =M1(G)

as the image of γGred by the functor q. Moreover, let

ϕG :M(G) → coSym(M1(G))

be the unique extension of αG compatible with comultiplication.

If G is semiabelian, then this definition agrees with the old one.

Lemma 7.4.5. Let k be perfect, G a smooth connected commutative groups
scheme over k. Let Gsa be its semi-abelian part. Then

M(G) →M(Gsa), M1(G) →M1(G
sa)

are isomorphisms. In particular, M(G) and M1(G) vanish if G is unipotent.

Proof. It suffices to consider the case where k is algebraically closed. We con-
sider the sequence

1 → Gu → G→ Gsa → 1

with Gu unipotent and Gsa semiabelian. As M1 is exact, we need to show
that M1(G

u) vanishes. The unipotent group G has a filtration with associated
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graded components isomorphic to Ga. As M1 is exact, it suffices to consider
G = Ga. By definition

Ga = O

is the structure sheaf. We take its image under

ShTét(k,Q)
q
−→ DMeff

−,ét(k,Q)
i
−→ D−(ShTét(k,Q))

and get the Suslin complex

iqO = C∗(O) = O ⊗k O(∆∗)

where ∆∗ is the standard cosimplicial object with ∆n the algebraic n-simplex.
It suffices to show that O(∆∗) is exact. This is the case q = 0 of [BG76, Prop.
1.1] Note that they assume char(k) = 0, but the assumption is not used at this
point.
We now turn to M(G). We view G → Gsa as a Gu-bundle. Note that Gu

is A1-homotopy equivalent to a point. The surjectivity of the map of étale
sheaves G→ Gsa means that Gsa → G étale locally has a section. This implies
that the bundle is étale locally trivial. Hence the M(G) → M(Gsa) is an
isomorphism. �

Theorem 7.4.6. Let G be a commutative group scheme of finite type over a
field k, which is not necessarily perfect. Let π : G→ π0(G) be the projection to
its group of components. Then the natural map

ψG :M(G) → coSym(M1(G)) ⊗M(π0(G))

given by the composition

ψG : M(G)
∆
−→ M(G)⊗M(G)

ϕG⊗π
−−−−→ coSym(M1(G)) ⊗M(π0(G))

is an isomorphism of Hopf algebras and it is natural in G ∈ cGrp.

Remark 7.4.7. All other results, e.g., Künneth components, computation of
mixed Weil cohomology and weights immediately extend to this case.

Proof. By Section 1.7 we may assume that k is perfect and the above construc-
tions apply.
By Lemma 7.4.3 we may assume that G is reduced and hence smooth. By
Proposition 1.6.2, we may assume that k is algebraically closed. By Lemma
7.4.8 we may assume that G = G0 × F with F finite. The morphism ψG is a
morphism of coalgebras by construction. It is compatible with direct products
as in Proposition 3.2.7. Hence it suffices to consider the cases G = G0 and
G = F separately. The latter case is trivial. From now on let G = G0 and
assume also that G is reduced, i.e., smooth. By Lemma 7.4.5 we are reduced
to the semiabelian case. This is main Theorem 3.1.4.
Compatiblity with the Hopf object structure follows by the same reductions
from the semiabelian case and the finite case because (G×G)0 = G0×G0. �

The following statement must be well-known to experts but we have not found
a reference.
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Lemma 7.4.8. Let k be algebraically closed and G a smooth commutative group
scheme over k. Then

G ∼= G0 × F

with G0 connected and F finite.

Proof. We claim that

Ext1cGrp(F,G
0)

vanishes. We compute in the category of étale sheaves on Sch. The finite
group scheme F is constant because k is algebraically closed. Hence there is a
finite resolution

0 → Zn
M
−→ Zn → F → 0

where M is multiplication by a diagonal matrix. The interesting part of the
associated long exact sequence reads

G0(k)n
M
−→ G0(k)n → Ext1(F,G0) → Ext1(Zn, G0)

As k is algebraically closed the functor Hom(Z, ·) = Γ(k, ·) is exact, hence the
last group vanishes. The first map is surjective because the multiplication by
m is surjective on the connected group G0. �

Appendix A. Comparison of Chern classes

In this section we establish a comparison of two possible ways of attaching a
cohomology class to a semiabelian variety. This technical result is one of the
key inputs into the proof of our main Theorem 3.1.4. We keep the notation of
the main text, in particular Section 2.

A.1. The comparison result. Let

1 → Gm → G→ H → 1

be a short exact sequence of semiabelian varieties. Note that G is a Gm-torsor
on H , hence it has a cohomology class

c1([G]) ∈H
1
ét(H,GmQ

)(1)

∼= MorD−(ShTét(k,Q))(L(H), i(1(1)[2]))(2)

= MorDMeff

−,ét(k,Q)
(M(H),1(1)[2]) ,(3)

where the last equality comes by adjunction. On the other hand, the induced
exact sequence

0 →M1(Gm) →M1(G) →M1(H) → 0

is an element

[M1(G)] ∈ Ext1ShTét(k,Q)
(M1(H),1(1)[1]) =

= MorD−(ShTét(k,Q))(M1(H),1(1)[2]) .

By composition with the summation map (see Definition 2.1.4)

αH : M(H) →M1(H)
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we obtain

(4) α∗
H [M1(G)] ∈ MorDMeff

−,ét(k,Q)
(M(H),1(1)[2]) .

Proposition A.1.1. Let

1 → Gm → G→ H → 1

be a short exact sequence of semiabelian varieties. Then the elements c1([G])
and α∗

H [M1(G)] agree in MorDMeff

−,ét(k,Q)
(M(G),1(1)[2]). In other words, the

diagram

M(H)

c1([G])]

$$❏
❏
❏
❏
❏
❏
❏
❏
❏

α

��
M1(H)

[M1(G)]
// 1(1)[2]

commutes.

Remark A.1.2. We formulate everything with rational coefficients because this
is the way we want to apply the statement. However, the result is already true
with integral coefficients.

A.2. Proof. The proof will be given at the end of this appendix. We introduce
some notation.

Notation A.2.1. Let H be a commutative group scheme. As before we write
H for the corresponding étale sheaf of abelian groups. Moreover, we write Htr

for the corresponding étale sheaf with transfers.

Lemma A.2.2. Let H be a commutative group scheme. Then there is a com-
mutative diagram of δ-functors on ShTét(k,Q):

ExtiShTét(k,Q)
(Htr

Q , ·) −−−−→ ExtiShét(k,Q)
(HQ, ·)

γ∗





y





y

YShét(k,Q)

ExtiShTét(k,Q)
(L(H), ·) −−−−−−−−→

YShTét(k,Q)

Hi
ét(H, ·)

with γ : L(H) → Htr
Q the summation map of Proposition 2.1.3 and Y? the

Yoneda map in the categories ShTét(k,Q) and Shét(k,Q), respectively.

Proof. By universality in ShTét(k,Q) and Shét(k,Q), it suffices to check the
case i = 0. Let A be an étale sheaf with transfers and f : Htr

Q → A a morphism
in ShTét(k,Q). We describe its image in A(H) via the right-hand side map of
the diagram. By forgetting transfers, f gives rise to a map

f : HQ → A .

Evaluating on H , we get

f(H) : HQ(H) → A(H) .
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Then YShét(k,Q)(f) is defined as f(H)(id). Going via the left hand side, we

have to evaluate the map in ShTét(k,Q)

L(H)
γ
−→ Htr

Q

f
−→ A

on H and get

HomSmCor/k(H,H) = L(H)(H)
γ(H)
−−−→ Htr

Q (H)
f(H)
−−−→ A(H) .

Then YShTét(k,Q)(γ
∗(f)) is given by f(H)γ(H)(id). The summation map γ(H)

maps the identity in SmCor/k to the identity in Htr
Q (H) = HQ(H) hence

YShét(k,Q)(f) = YShTét(k,Q)(γ
∗(f)) .

�

Corollary A.2.3. Let

1 → Gm → G→ H → 1

be a short exact sequence of commutative group schemes. Then

YShTét(k,Q)γ
∗[Gtr

Q ] = ∂(idH)

where ∂ is the connecting homomorphism

Γ(H,HQ) → H1
ét(H,GmQ

) .

Proof. Note that [Gtr
Q ] = ∂(id) where ∂ is the boundary map

HomShTét(k,Q)(H
tr
Q , H

tr
Q ) → Ext1ShTét(k,Q)

(H tr
Q ,Gm

tr
Q
)

for the short exact sequence

0 → Gm
tr
Q
→ Gtr

Q → Htr
Q → 0 .

The statement follows from evaluating the δ-homomorphism of Lemma A.2.2

ExtiShTét(k,Q)
(Htr

Q , ·) → Hi
ét(H, ·)

on this short exact sequence. �

Proof of Proposition A.1.1. Let 1 → Gm → G→ H → 1 be an exact sequence
of commutative group schemes. It suffices to show that

c1([G]) = YShTét(k,Q)γ
∗[Gm

tr
Q
] ∈ H1

ét(H,GmQ
) .

By Corollary A.2.3 this is reduced to showing

c1([G]) = ∂(idH)

where ∂ is the connecting homomorphism

Γ(H,HQ) → H1
ét(H,GmQ

)

for the short exact sequence

0 → GmQ
→ GQ → HQ → 0 .
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We use the point of view of Čech cohomology in order to compute explicitly.
Choose a local trivialization of the Gm-torsor G, i.e., a covering {Ui → H}i∈I
and sections si : Ui → G|Ui

inducing isomorphisms

φi : Gm × Ui → G|Ui
.

By definition c1[G] is given by the cocycle gij ∈ Gm(Ui ∩ Uj) where

sj |Ui∩Uj
= si|Ui∩Uj

gij .

On the other hand, in order to define ∂(idH) we have to choose preimages of
idH |Ui

in G(Ui). We choose si. We then have to apply the boundary map of
the Čech complex of GQ and get the same cocycle gij . �

Appendix B. Universal properties of the symmetric (co)algebra

We review the Hopf algebra structure on the symmetric algebra and its oppo-
site. Throughout the appendix let A be a Q-linear pseudo-abelian symmetric
tensor category with unit object 1. These considerations are going to be applied
to the triangulated category DMeff

−,ét(k,Q).

B.1. The symmetric (co)algebra. Let V be an object of A. We denote

T (V ) =

∞
⊕

i=0

V ⊗i

the tensor algebra with multiplication

µ : T (V )⊗ T (V ) → T (V )

given by the tensor product.
We denote by

SymnV

the image of the projector 1
n!

∑

σ∈Sn
σ. Let

ιn : SymnV → V ⊗n, πn : V ⊗n → SymnV

be the natural inclusion and projection. For n = 0 we put Sym0(V ) = 1. The
projection

πn+m : V ⊗n+m → Symn+m(V )

factors uniquely via πn ⊗ πm and induces

πn,mn+m : Symn(V )⊗ Symm(V ) → Symn+m(V ).

The inclusion

ιn+m : Symn+m(V ) → V ⊗n ⊗ V ⊗m

factors uniquely via ιn ⊗ ιm and induces

ιn,mn+m : Symn+m(V ) → Symn(V )⊗ Symm(V ) .
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Definition B.1.1. Assume that V is odd finite-dimensional in the sense of
Section 1.3, i.e., there is N such that SymN (V ) = 0.
The symmetric algebra on V is given by

Sym(V ) =
⊕

n≥0

SymnV

with multiplication

µ : Symn(V )⊗ Symm(V ) → Symn+m(V )

given by πn+mn,m .
The symmetric coalgebra on V is given by

coSym(V ) =
∏

n≥0

SymnV

with comultiplication

∆ : Symn+mV → Symn(V )⊗ Symm(V )

given by ιn,mn+m.

Remark B.1.2. The finiteness assumption ensures that all direct sums and
products are finite. If we drop the assumption, the definition of the algebra
Sym(V ) needs existence of the direct sum and that infinite direct sums com-
mute with ⊗. The definition of the coalgebra coSym(V ) needs existence of
infinite products and that they commute with ⊗. The latter is not satisfied in
standard abelian categories like modules. Alternatively, one may work in the
ind-category and the pro-category, respectively. For simplicity, we make the
finiteness assumption. This is enough for our application.

B.2. Universal properties. Note that T (V ) → Sym(V ) is a morphism of
algebras.

Lemma B.2.1. Let V be odd finite-dimensional. Let A be a unital algebra object
in A and let α : V → A a morphism. Then there is a unique morphism of unital
algebras

T (V ) → A

extending α. If A is commutative, the map factors through a unique map of
algebras

Sym(V ) → A .

Let B be an augmented cocommutative coalgebra object in A and α : B → V a
morphism. Then there is a unique morphism of augmented coalgebras

B → coSym(V ) .

Proof. The argument is the same as for vector spaces, where it is well-known.
�
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We apply this principle to the diagonal map

∆ : V → V ⊗ 1⊕ 1⊗ V ⊂ T (V )⊗ T (V )

and obtain a comultiplication

∆ : T (V ) → T (V )⊗ T (V ) .

It turns T (V ) into a bialgebra. The same argument also turns Sym(V ) into a
bialgebra and

T (V ) → Sym(V )

is a morphism of bialgebras. Dually, the summation map

coSym(V )⊗ coSym(V ) → V ⊗ 1⊕ 1⊗ V
+
−→ V

gives rise to a multiplication on coSym(V ) making it a bialgebra. Finally,
multiplication by −1 defines a map

V
−1
−−→ V

which induces an antipodal map on Sym(V ) and on coSym(V ). It turns Sym(V )
and coSym(V ) into Hopf algebras.

Remark B.2.2. If A is the category of Q-vector spaces and V a finite-
dimensional vector space, then Sym(V ) is a polynomial ring, whereas coSym(V )
is the algebra of distributions. The two are isomorphic but not equal.

Lemma B.2.3. Let V be odd finite-dimensional.

(1) Let A be a unital commutative bialgebra in A and α : V → A a mor-
phism such that

V −−−−→ A

∆





y





y
∆

V ⊗ 1⊕ 1⊗ V −−−−→ A⊗A

commutes. Then the universal morphism Sym(V ) → A is a morphism
of bialgebras.

(2) Let B be an augmented cocommutative bialgebra in A and β : B → V
a morphism such that

B ⊗B −−−−→ V ⊗ 1⊕ 1⊗ V

µ





y





y

+

B −−−−→ V

commutes. Then the universal morphism coSym(V ) → B is a mor-
phism of bialgebras.

Proof. This is an assertion about algebra morphisms. It follows from the uni-
versal property of Sym(V ). The second part follows by the analogous argu-
ment. �
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Lemma B.2.4. (1) The component

∆n,m
n+m : Symn+mV → SymnV ⊗ SymmV

of comultiplication on Sym(V ) is equal to

∆n,m
n+m =

(

n+m

n

)

ιn,mn+m .

(2) The component of multiplication on coSym(V )

µn+mn,m : Symn(V )⊗ Symm(V ) → Symn+m(V )

is equal to

µn+mn,m =

(

n+m

n

)

πn+mn,m .

(3) Let V be odd finite-dimensional. The universal map of bialgebras

Sym(V ) → coSym(V )

induced from Sym(V ) → V is given by multiplication by n! in degree
n. It is an isomorphism.

In particular, the two bialgebras are not identical.

Proof. The statement on ∆ is elementary from the definitions. We now consider
the map

Sym(V ) → coSym(V )

given by multiplication by n! in degree n. We see from the explicit formula that
it is compatible with comultiplication, i.e., it is the canonical one. It satisfies
the criterion Lemma B.2.3, hence it is an isomorphism of bialgebras. The
formula for multiplication on coSym(V ) follows from this isomorphism. �

Corollary B.2.5. Assume that V is odd finite-dimensional. Then the bial-
gebra Sym(V ) has the universal properties of Lemma B.2.1 and Lemma B.2.3
with respect to comultiplication. The bialgebra coSym(V ) has the universal
properties of Lemma B.2.1 and Lemma B.2.3 with respect to multiplication.

B.3. Direct sums.

Lemma B.3.1. Let V = U ⊕W in A with U and W odd finite-dimensional.
The natural map

coSym(U)⊗ coSym(W ) → U ⊗ 1⊕ 1⊗W ∼= U ⊕W

gives rise to an isomorphism of bialgebras

coSym(U)⊗ coSym(W ) → coSym(U ⊕W )

with inverse given by

coSym(U⊕W )
∆
−→ coSym(U⊕W )⊗coSym(U ⊕W ) → coSym(U)⊗coSym(W )

with the second map induced by functoriality of coSym in each factor. The
analogous statement for Sym(U ⊕W ) holds as well.
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Proof. The isomorphism is well-known for vector spaces. The case of an addi-
tive category is a special case of [Del02, Propostion 1.8]. By construction, the
isomorphism is the one compatible with the inclusion into the tensor algebra,
i.e., the one for the symmetric coalgebra. The case of the symmetric algebra
follows because the map is a rational multiple of the one for the coalgebra. �

Remark B.3.2. The isomorphism

SymN (U ⊕W ) →
⊕

n+m=N

Symn(U)⊗ Symm(V )

via the symmetric coalgebra is not the same as the one defined on the symmetric
algebra!

Appendix C. Filtrations on the graded symmetric (co)algebra

The aim of this appendix is to establish a certain exact triangle for the sym-
metric coalgebra, see Theorem C.4.4. The basic construction behind it already
appears in a paper by Deligne [Del02], more precisely in the Proof of Propo-
sition 1.19 of loc. cit. We wanted to understand the details of the argument
and, in particular, keep precise control of the morphisms and the Hopf algebra
structure. Hence we decided to give the argument in full detail.
Throughout the appendix, let A be a Q-linear abelian symmetric tensor cat-
egory with unit object 1. We assume that ⊗ is exact. These considerations
are going to be applied to the abelian category ShTét(k,Q) of etale sheaves of
Q-vector spaces with transfers. This is possible by Remark 1.6.3.

C.1. The graded symmetric (co)algebra.

Definition C.1.1. Let V be an object of A. We denote by

Sym∗(V ) =
⊕

n≥0

Symn(V )

the graded symmetric algebra with Symn(V ) in degree n. It is a graded Hopf
algebra with structure morphisms as in Appendix B.
We denote

coSym∗(V ) =
⊕

n≥0

Symn(V )

the graded symmetric coalgebra with Symn(V ) in degree n. It is a graded Hopf
algebra with structure morphisms as in Appendix B.

The explicit formulae are given in Lemma B.2.4.

Remark C.1.2. Note that we are considering graded objects. In contrast to
Appendix B we do not assume that V is odd finite-dimensional. Neither do we
need existence of infinite direct sums. The notation

⊕

n≥0 is just convention.
A graded object really is given by a sequence of objects. Switching to graded
objects and graded morphisms allows all considerations of Appendix B without
finiteness assumptions of any kind.
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Lemma C.1.3. The universal properties of Lemma B.2.1 and Lemma B.2.3 are
satisfied for Sym∗(V ) and coSym∗(V ) with respect to graded morphisms.
The identity on V induces an isomorphism of graded Hopf algebras

Sym∗(V ) → coSym∗(V ) .

In degree n it is given by multiplication by n!.

Proof. Same arguments as in Appendix B. Note that the finiteness assumptions
are not needed because all morphisms respect the grading. �

C.2. The filtration on the graded tensor algebra.

Definition C.2.1. Let U ⊂ V be a subobject in A. We define a descending
filtration on V by

FilUi V =











V i = 0,

U i = 1,

0 i > 1.

For n ≥ 0 let

FilUi V
⊗n ⊂ V ⊗n

the product filtration on V ⊗n and

GrUi V
⊗n = FilUi V

⊗n/FilUi+1V
⊗n

the associated graded objec object.

This means that an elementary tensor is in ith step of the filtration step, if at
least i factors are in U .

Lemma C.2.2. Let U ⊂ V be a subobject in A. The filtration FilUi T (V ) turns
the graded tensor algebra into a filtered graded bialgebra, i.e.,

µ : FilUi V
⊗n ⊗ FilUj V

⊗m → FilUi+jV
⊗n+m ,

∆ : FilUI V
⊗N →

∑

i+i′=I,n+n′=N

FilUi V
⊗n ⊗ FilUi′V

⊗n′

.

In particular, GrU• T
∗(V ) is a bigraded bialgebra.

Proof. The statement on multiplication is obvious. The statement on comulti-
plication is reduced by the universal property to the basic case N = 1. �

The aim of this section is to compute the associated graded bialgebra.

Proposition C.2.3. Let

0 → U → V →W → 0

be a short exact sequence in A. Then there is a canonical isomorphism of
bigraded bialgebras

GrU• T
∗(V ) ∼= GrU• T

∗(U ⊕W ) = T •(U)⊗ T ∗−•(W ) .

The proof will be given at the end of the section.
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Remark C.2.4. Whenever the sequence has a splitting (e.g. in the case when
A is a category of vector spaces), this formula is easy to check. The purpose
of the following arguments is to verify that they work for more general A.

Lemma C.2.5. Let A′ ⊂ A and B′ ⊂ B be subobjects in A. Then

(A′ ⊗B) ∩ (A⊗B′) = A′ ⊗B′

where the intersection is taken in A⊗B.

Proof. Consider the monomorphism of short exact sequences

0 // A⊗B′ // A⊗B // A⊗ (B/B′) // 0

0 // A′ ⊗B′ //
?�

OO

A′ ⊗B
?�

OO

// A′ ⊗ (B/B′) //
?�

OO

0

The assertion follows from diagram chasing. �

Lemma C.2.6. Let i ≥ 0 and n ≥ 1 be integers, and let U ⊂ V be a subobject
in A. Then the sequence

0 → U ⊗ FilUi V
⊗(n−1) →

→
(

U ⊗ FilUi−1V
⊗(n−1)

)

⊕
(

V ⊗ FilUi V
⊗(n−1)

)

→ FilUi V
⊗n → 0

is exact.

Proof. Obviously,

(U ⊗ FilUi−1V
⊗n−1) + (V ⊗ FilUi V

⊗n−1) = FilUi V
⊗n .

It remains to check that

(U ⊗ FilUi−1V
⊗n−1) ∩ (V ⊗ FilUi V

⊗n−1) = U ⊗ FilUi V
⊗n−1 .

This is true by Lemma C.2.5. �

Lemma C.2.7. Let n ≥ 1, i ≥ 0 and

0 → U → V →W → 0

be a short exact sequence in A. Then there is a natural isomorphism

GrUi V
⊗n → GrUi (U ⊕W )⊗n .

Remark C.2.8. The object GrUi (U ⊕W ) is a direct sum of tensor products of
i copies of U and n− i copies of W , running through all possible choices. E.g.

GrU1 (U ⊕W )⊗3 = (U ⊗W ⊗W )⊕ (W ⊗ U ⊗W )⊕ (W ⊗W ⊗ U) .

Proof of Lemma C.2.7. We argue by induction on n. The case n = 1 holds
by definition. For n > 0 we consider the commutative diagram of short exact
sequences
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0 // U ⊗ FilUi+1V
⊗n //

_�

��

(

U ⊗ FilUi V
⊗n

)

⊕
(

V ⊗ FilUi+1V
⊗n

) //
_�

��

FilUi+1V
⊗n+1 //

_�

��

0

0 // U ⊗ FilUi V
⊗n // (U ⊗ FilUi−1V

⊗n
)

⊕
(

V ⊗ FilUi V
⊗n

) // FilUi V
⊗n+1 // 0

By the snake lemma we get a short exact sequence of cokernels. By induction
it reads

0 → U ⊗GrUi (U ⊕W )⊗n →

→ U ⊗GrUi−1(U ⊕W )⊗n ⊕ V ⊗GrUi (U ⊕W )⊗n → GrUi V
⊗n+1 → 0 .

Note that the map

U ⊗GrUi (U ⊕W )⊗n → U ⊗GrUi−1(U ⊕W )⊗n

vanishes, hence

GrUi V
⊗n+1 ∼= U⊗GrUi−1(U⊕W )⊗n⊕W⊗GrUi−1(U⊕W )⊗n = GrUi (U⊕W )⊗n+1 .

�

Proof of Proposition C.2.3. We apply Lemma C.2.7 for all i and n. The com-
patibility with multiplication and comultiplication follows from the construc-
tion or more abstractly from naturality. �

C.3. The filtration on the graded symmetric (co)algebra.

Definition C.3.1. Let U ⊂ V be a subobject in A and n ≥ 0. We define a
descending filtration on Symn(V ) by

FilUi Sym
n(V ) = πn

(

FilUi V
⊗n
)

and
GrUi Sym

n(V ) = FilUi Sym
n(V )/FilUi+1Sym

n(V )

the associated graded object.

Remark C.3.2. We have the simpler presentation

FilUi Sym
n(V ) = πn

(

U⊗i ⊗ V ⊗n−i
)

.

Lemma C.3.3. Let U ⊂ V be a subobject in A. The filtration

FilUi coSym
∗(V ) =

⊕

n≥0

FilUi Sym
n(V )

turns the graded symmetric coalgebra coSym∗(V ) into a filtered graded bialge-

bra. In particular, GrU• coSym
∗(V ) is a bigraded bialgebra.

The analogous statement for the symmetric algebra is also true.

Proof. The assertion for the symmetric algebra follows from the case of the ten-
sor algebra. The assertion for the symmetric coalgebra follows because multi-
plication and comultiplication on coSym∗(V ) are degreewise rational multiples
of multiplication and comultiplication on Sym∗(V ). �
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Proposition C.3.4. Let

0 → U → V →W → 0

be a short exact sequence in A. Then there is a natural isomorphism of bigraded
bialgebras

GrU• coSym
∗(V ) ∼= coSym•(U)⊗ coSym∗−•(W ) .

In particular for 0 ≤ i ≤ n, there are natural short exact sequences

0 → FilUi+1Sym
n(V ) → FilUi Sym

n(V )
gn,i

−−→ Symi(U)⊗ Symn−iW → 0 .

The map gn,i is obtained by factoring

U⊗i ⊗ V ⊗n−i → U⊗i ⊗W⊗n−i µcoSym
−−−−→ Symi(U)⊗ Symn−i(W )

uniquely through FilUi Sym
n(V ).

The analogous statement for Sym∗(V ) is also true.

Proof. We first consider the case of the symmetric algebra. As a projector,
the symmetrization map πn preserves short exact sequences. Hence Proposi-
tion C.2.3 implies

GrU• Sym
∗(V ) ∼= GrU• Sym

∗(U ⊕W ) ∼= Sym•(U)⊗ Sym∗−•(W ) .

Specializing to GrUi Sym
n(V ) provides the required short exact sequence. It

remains to verify the explicit description of gn,i. Everything is determined on
the level of the graded tensor algebra, where the map to the associated graded
object is induced from the projection V → W in the appropriate factors. As
FilUi Sym

n(V ) is the image of U⊗i ⊗ V n−i ⊂ FilUi V
⊗n, it suffices to describe

the map on this object.
In the case of the symmetric coalgebra everything agrees up to rational factors.
Exactness of the sequence follows from the first case. �

Remark C.3.5. This agrees with the map denoted gn,i in second author’s thesis
[EW13] (see loc. cit. Notation 5.3.10).

C.4. Cup-product. Let W be an object of A. The coalgebra structure on
coSym∗(W ) allows to define cup-products.

Definition C.4.1. Let W be an object of A, c : W → K a morphism in the
derived category Db(A). Then we define

· ∪ c : coSym∗(W ) → coSym∗−1(W )⊗K

as the composition

coSym∗(W )
∆
−→ coSym∗(W )⊗ coSym∗(W )

→ coSym∗(W )⊗W

id⊗c
−−−→ coSym∗(W )⊗K .
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We apply this to the morphism [V ] : W → U [1] in Dn(A) represented by a
short exact sequence

0 → U → V →W → 0

in A.

Proposition C.4.2. Let

0 → U → V →W → 0

be a short exact sequence in A. Then

· ∪ [V ] : coSym∗(W ) → coSym∗−1(W )⊗ U [1]

is equal to the extension class

[coSym∗(V )/FilU2 coSym
∗(V )]

under the identifications of Proposition C.3.4 GrU0 coSym
∗(V ) = coSym∗(W )

and GrU1 (V ) ∼= coSym∗(W )⊗ U .

Remark C.4.3. This corresponds to the crucial computation [EW13,
Lemma 5.3.13].

Proof of Proposition C.4.2. We view the morphisms in D(A) as Yoneda ex-

tensions. We need to identify the extension class [Symn(V )/FilU2 Sym
n(V )],

i.e.,

0 → Symn−1(V )⊗ U → Symn(V )/FilU2 Sym
n(V ) → SymnW → 0

with the pull-back of

0 → Symn−1W ⊗ U → Symn−1W ⊗ V → Symn−1W ⊗W → 0

via the component

∆n−1,1 : SymnW → Symn−1W ⊗W

of the comultiplication. The same component of the comultiplication but for
coSym∗(V ) gives rise to a map

∆̄n−1,1
n : SymnV

∆n−1,1

−−−−−→ Symn−1V ⊗ V → Symn−1W ⊗ V .

This gives rise to a morphism of short exact sequences

0 −−→ GrU1 Sym
nV −−→ SymnV/FilU2 Sym

nV −−→ SymnW −−→ 0




y





y
∆̄n−1,1

n





y
∆n−1,1

n

0 −−→ Symn−1W ⊗ U −−→ Symn−1W ⊗ V −−→ Symn−1W ⊗W −−→ 0

It remains to check that the induced map on kernels equals gn,1, i.e., it is
induced by multiplication. By the explicit description, it suffices to check that
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the diagram

V ⊗n−1 ⊗ U
µn

//

µn−1⊗id
��

SymnV

∆̄n,1
n

��
Symn−1V ⊗ V // Symn−1W ⊗ V

commutes. Recall that multiplication and comultiplication are the ones of the
symmetric coalgebra, and hence

µn = n!πn , µn−1 = (n− 1)!πn−1

and

∆n−1,1 = ιn−1,1 =
1

n

n
∑

i=1

σi

where

σi : V
⊗n → V ⊗n−1 ⊗ V

is the permutation that swaps the i-th factor into the last place and leaves the
order otherwise intact. Hence we can equivalently check the commutativity of
the following diagram

V ⊗n−1 ⊗ U
πn

−−−−→ SymnV

πn−1⊗id





y





y

∑n
i=1 σi

Symn−1V ⊗ V −−−−→ Symn−1W ⊗ V

It suffices to check the same identity on the level of tensor algebras. By abuse
of notation

σi(g1 ⊗ g2 ⊗ . . .⊗ gn) = (g1 ⊗ . . .⊗ ĝi ⊗ . . .⊗ gn)⊗ gi

where ĝi means that the factor is omitted. The composition

V ⊗n−1 ⊗ U ⊂ V ⊗n σi−→ V ⊗n−1 ⊗ V →W⊗n−1 ⊗ V

vanishes for i 6= n because it involves a factor U → W . Hence only σn = id
contributes to

V ⊗n−1 ⊗ U ⊂ V ⊗n ∆n−1,1

−−−−−→ V ⊗n−1 ⊗ V →W⊗n−1 ⊗ V .

This finishes the proof. �

Theorem C.4.4. Let A be a Q-linear abelian symmetric tensor category.
Moreover, let T be a Q-linear, tensor, symmetric, triangulated category and
q : Db(A) → T be a Q-linear, tensor, symmetric and triangulated functor. Let

0 → U → V →W → 0

be a short exact sequence in A. Suppose that Sym2(q(U)) = 0.
Then there is a canonical triangle in T

coSymn(q(V )) → coSymn(q(W ))
·∪[V ]
−−−→ coSymn−1(q(W ))⊗ q(U)[1] .
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Proof. By Proposition C.4.2 the short exact sequence in A

0 → coSym∗−1(W )⊗ U → coSym∗(V )/FilU2 coSym
∗(V ) → coSym∗(W ) → 0

gives rise to the exact triangle

coSym∗(V )/FilU2 coSym
∗(V ) → coSym∗(W )

·∪[V ]
−−−→ coSym∗−1(W )⊗ U [1] .

We apply q. It remains to show that

q(FilU2 coSym
∗(V )) = 0 .

This follows by descending induction from the system of triangles of Proposition
C.3.4

q(FilUi+1Sym
n(V )) → q(FilUi Sym

n(V )) → Symi(q(U))⊗ Symn−iq(W )

and the vanishing of Symi(q(U)) for i ≥ 2. �
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Math. Ann., 273(4):647–651, 1986.

[BG76] A. K. Bousfield and V. K. A. M. Gugenheim. On PL de Rham theory
and rational homotopy type. Mem. Amer. Math. Soc., 8(179):ix+94,
1976.

[Blo76] Spencer Bloch. Some elementary theorems about algebraic cycles on
abelian varieties. Inventiones Math., 37:215–228, 1976.

[Bon10] M. V. Bondarko. Weight structures vs. t-structures; weight filtrations,
spectral sequences, and complexes (for motives and in general). J. K-
Theory, 6(3):387–504, 2010.

[BS13] Michel Brion and Tamás Szamuely. Prime-to-p étale covers of al-
gebraic groups and homogeneous spaces. Bull. Lond. Math. Soc.,
45(3):602–612, 2013.

[BVK] Luca Barbieri-Viale and Bruno Kahn. On the derived cate-
gory of 1-motives. To appear in Astérisque 216. Available on
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Priložen., 8(1):55–61, 1974.

Documenta Mathematica 20 (2015) 807–858



858 Giuseppe Ancona, Stephen Enright-Ward, Annette Huber

[SS03] Michael Spieß and Tamás Szamuely. On the Albanese map for smooth
quasi-projective varieties. Math. Ann., 325(1):1–17, 2003.

[Sug14] Rin Sugiyama. Motivic homology of a semiabelian variety over a per-
fect field. Doc. Math. (19), pages 1061–1084, 2014.

[SV96] Andrei Suslin and Vladimir Voevodsky. Singular homology of abstract
algebraic varieties. Invent. Math., 123(1):61–94, 1996.

[Voe00] Vladimir Voevodsky. Triangulated categories of motives over a field. In
Cycles, transfers, and motivic homology theories, volume 143 of Ann.
of Math. Stud., pages 188–238. Princeton Univ. Press, Princeton, NJ,
2000.

[Voe02] Vladimir Voevodsky. Motivic cohomology groups are isomorphic to
higher Chow groups in any characteristic. Int. Math. Res. Not.,
(7):351–355, 2002.

[Voe10] Vladimir Voevodsky. Cancellation theorem. Doc. Math., (Extra vol-
ume: Andrei A. Suslin sixtieth birthday):671–685, 2010.

[Wil09] J. Wildeshaus. Chow motives without projectivity. Compos. Math.,
145(5):1196–1226, 2009.

Giuseppe Ancona
Universität Duisburg-Essen
Thea-Leymann-Straße 9
45127
Essen
Germany
monsieur.beppe@gmail.com

Stephen Enright-Ward
Mathematisches Institut
Albert-Ludwigs-Universität
Freiburg
Eckerstraße 1
79104 Freiburg im Breisgau
Germany
steveleward@gmail.com

Annette Huber
Mathematisches Institut
Albert-Ludwigs-Universität
Freiburg
Eckerstraße 1
79104 Freiburg im Breisgau
Germany
annette.huber@math.uni-
freiburg.de

Documenta Mathematica 20 (2015) 807–858


	Introduction
	1. Notations and Generalities
	2. The 1-motive M1(G) of G
	3. Main Theorem
	4. Special cases
	5. Properties of M1(G)
	6. Proof of the Main Theorem
	7. Consequences
	Appendix A. Comparison of Chern classes
	Appendix B. Universal properties of the symmetric (co)algebra
	Appendix C. Filtrations on the graded symmetric (co)algebra
	References

