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ABSTRACT. In this paper we prove that the linear Koszul duality
isomorphism for convolution algebras in K-homology of [MR3] and
the Fourier transform isomorphism for convolution algebras in Borel—-
Moore homology of [EM| are related by the Chern character. So,
Koszul duality appears as a categorical upgrade of Fourier transform
of constructible sheaves. This result explains the connection between
the categorification of the Iwahori-Matsumoto involution for graded
affine Hecke algebras in [EM| and for ordinary affine Hecke algebras
in [MR3].
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INTRODUCTION

0.1

This article is a sequel to [MRI, MR2, IMR3|. It links two kinds of “Fourier”
transforms prominent in mathematics, the Fourier transform for constructible
sheaves and the Koszul duality. This is done in a particular situation which is
of interest in representation theory, namely the context of convolution algebras.
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0.2 CHERN CHARACTER MAP

Our geometric setting consists of two vector subbundles Fi, F5 of a trivial vector
bundle X x V over a (smooth and proper) complex algebraic variety X. We
consider the fiber product F; xy F5 as well as the dual object — the fiber product
FlJ- X = FQJ- of orthogonal complements of F; and F5 inside the dual vector
bundle X x V*. The linear Koszul duality mechanism from [MR1 MR2, MR3]
is a geometric version of the standard Koszul duality between graded modules
over the symmetric algebra of a vector space and graded modules over the
exterior algebra of the dual vector space. Here, this formalism provides an
equivalence of categories of equivariant coherent sheaves on the derived fiber

products Fy XFyand F, i+ >P€F2L (in the sense of dg-schemes). In particular we get
an isomorphism of equivariant K-homology groups of algebraic varieties Fy Xy
Fy and Fit x v« F5- 11 On the other hand, the Fourier transform for constructible
sheaves provides an isomorphism of equivariant Borel-Moore homologies of
fiber products Fy xy Fy and Fi- xy- F5-, see [EM].

Our main result shows that the maps in K-homology and in Borel-Moore ho-
mology are related by the Chern character map (the “Riemann—Roch map”)
from equivariant K-homology to (completed) equivariant Borel-Moore homol-
ogyE In this way, linear Koszul duality appears as a categorical upgrade of the
topological Fourier transform.

0.3 CONVOLUTION ALGEBRAS

In Representation Theory the above setting provides a geometric construction
of algebras. Indeed, when F} = F» =: F then the equivariant K-homology and
Borel-Moore homology of F' xy F have structures of convolution algebras; for
simplicity in this introduction we denote these Ax(F) and Agm(F). The Chern
character provides a map of algebras Ax(F) — EBM(F ) from the K-homology
algebra to a completion of the Borel-Moore homology algebra [CGl [Kat]. This
gives a strong relation between their representation theories: one obtains results
on the representation theory of the (more interesting) algebra Ax(F') through
the relation to the representation theory of the algebra Agm(F') which is more
accessible[ In this setting, the maps

K - AK(F) 1> AK(FL), 1BM - ABM(F) l) ABM(FL)

induced respectively by linear Koszul duality and by Fourier transform are
isomorphisms of algebras.

1 Note that K-homology does not distinguish the derived fiber product from the usual
fiber product of varieties, see [MR3].

2 For simplicity we work under a technical assumption on Fj’s which is satisfied in all
known applications.

3 The reason is the powerful machinery of perverse sheaves that one can use in the topo-
logical setting, see [CG].

DOCUMENTA MATHEMATICA 20 (2015) 989-1038



LINEAR K0SzUuL DUALITY AND FOURIER TRANSFORM 991

An important example of this mechanism appears in the study of affine Hecke
algebras, see [KLL [CG]. The Steinberg variety Z of a complex connected re-
ductive algebraic group G (with simply connected derived subgroup) is of the
above form F' Xy F where the space X is the flag variety B of G, the vector
space V is the dual g* of the Lie algebra g of GG, and F' is the cotangent bun-
dle T*B. The G x Gy-equivariant K-homology and Borel-Moore homology of
the Steinberg variety Z are then known to be realizations of the affine Hecke
algebra Hag of the dual reductive group G (with equal parameters) and of the
corresponding graded affine Hecke algebra Hag. In this case the dual version
F+ xy. FL turns out to be another — homotopically equivalent — version of
the Steinberg variety Z. Therefore, ik and gy are automorphisms of H,g
and Hag, respectively. In fact these are (up to minor “correction factors”)
geometric realizations of the Iwahori-Matsumoto involution of Hag (see [EM])
and H.g (see [MR3]). The Chern character map can also be identified, in this
case, with (a variant of) a morphism constructed (by algebraic methods) by
Lusztig [L1]. So, in this situation, Theorem [[9] explains the relation between
results of [MR3] and [EM].

0.4 CHARACTER CYCLES AND CHARACTERISTIC CYCLES

In [Kas|, Kashiwara introduced for a group G acting on a space X an invariant
of a G-equivariant constructible sheaf 7 on X. This is an element chg(F)
of the Borel-Moore homology of the stabilizer space Gx = {(g,7) € G x X |
g-xz = z}. He “linearized” this construction to an element chy(F) of the Borel-
Moore homology of the analogous stabilizer space gx for the Lie algebra g of
the group G. Under some assumptions (that put one in the above geometric
setting) he proved that the characteristic cycle of F is the image of chy(F)
under a Fourier transform map in Borel-Moore homology (see [Kas, §1.9]).
This work is the origin of papers on Iwahori-Matsumoto involution [EM] and
linear Koszul duality [MR1]. From this point of view, the present paper is a
part of the effort to categorify Kashiwara’s character cycles.

0.5 CONVENTIONS AND NOTATION

In the body of the paper we will consider many morphisms involving K-
homology and Borel-Moore homology. We use the general convention that
morphisms involving only K-homology are denoted using bold letters, those
involving only Borel-Moore homology are denoted using fraktur letters, and
the other ones are denoted using “sans serif” letters.

If X is a complex algebraic variety endowed with an action of a reductive
algebraic group A, we denote by CohA(X ) the category of A-equivariant co-
herent sheaves on X. If Y C X is an A-stable closed subvariety we denote
by Coh{}(X ) the subcategory consisting of sheaves supported set-theoretically
on Y; recall that D?Cohit (X) identifies with a full subcategory in D?Coh” (X).
When considering Gm-equivariant coherent sheaves, we denote by (1) the func-
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tor of tensoring with the tautological 1-dimensional Gy,-module.

0.6 ORGANIZATION OF THE PAPER

In Section [Il we define all our morphisms, and state our main result (Theorem
[L9T). In Section P we study more closely the case of convolution algebras, and
even more closely the geometric setting for affine Hecke algebras; in this case
we make all the maps appearing in Theorem [L9T] explicit. In Sections [} and
[ we prove some compatibility statements for our constructions, and we apply
these results in Section [l to the proof of Theorem [L9.1l Finally, Appendix [A]
contains the proofs of some technical lemmas needed in other sections.
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1 DEFINITIONS AND STATEMENT

1.1 EQUIVARIANT HOMOLOGY AND COHOMOLOGY

If A is a complex linear algebraic group acting on a complex algebraic va-
riety Y, we denote by DA (Y) the A-equivariant derived category of con-
structible complexes on Y with complex coefficients, see [BL]. Let C,, re-
spectively Dy, be the constant, respectively dualizing, sheaf on Y. These are
objects of DA (V). We also denote by Dy: DA (V) = DA (V)P the
Grothendieck—Verdier duality functor.

If M is in DA .. (Y), the i-th equivariant cohomology of Y with coefficients in

M is by definition

HY (Y, M) == Extlya

const

v)(Cy, M).

In particular, the equivariant cohomology and Borel-Moore homology of Y are
defined by _
HY(Y) := Hy (Y. Cy), H(Y) := H'(Y.Dy).

We will also use the notation

HY(Y) = @@ HL(Y), Hy(Y) = [] HL(Y),

HAY) = @ HAY). REY) = [ HAY).
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(By construction of the equivariant derived category, see [BLL §2.2], these def-
initions coincide — up to grading shift — with the definitions used e.g. in [L2]
EG2| [BZ] using some “approximations” of EA.) Note that with our conven-
tions, one can have HA(Y') # 0 for i < 0. We will use the general convention
that we denote by the same symbol an homogeneous morphism between vec-
tor spaces of the form HZ(-) or H%(-) and the induced morphism between the
associated vector spaces ﬁf‘() or ﬁ;‘()

The vector spaces H%(Y) and HZ(Y) have natural gradings, and most mor-
phisms between such spaces that will occur in this paper will be homogeneous.
We will sometimes write a morphism e.g. as H%(Y) — H% (Y”) to indicate
that it shifts degrees by d.

There exists a natural (right) action of the algebra H% (Y') on HZ(Y") induced by
composition of morphisms in D2 . (Y); it extends to an action of the algebra
He (V) on HA(Y).

We will also denote by K4(Y) the A-equivariant K-homology of Y, i.e. the
Grothendieck group of the category of A-equivariant coherent sheaves on Y.
We will frequently use the following classical constructions. If Z is another
algebraic variety endowed with an action of A, and if f: Z — Y is a proper
A-equivariant morphism, then there exist natural “proper direct image” mor-
phisms

pdi;: K4(Z) = KA(Y),  resp.  pdi;: HNZ) — HI(Y),

see [CGl, §5.2.13), resp. [CG, §2.6.8] [ Each of these maps satisfies a projection
formula; in particular for ¢ € H%(Y) and d € H{(Z) we have

poi(d - f*(c)) = pois(d) - ¢, (1.1.1)

where f*: H%(Y) — H%(Z) is the natural pullback morphism.

On the other hand, if Y is smooth, Y’/ C Y is an A-stable smooth closed
subvariety, and Z C Y is a not necessarily smooth A-stable closed subvariety,
then we have “restriction with supports” morphisms

res: KA(Z) — KA(ZNY’), resp. tes: HNZ) = H 5 dim(y)r2dimyn (ZNY7)

associated with the inclusion Y’ — Y, see [CGl p. 246], resp. [CGl §2.6.21].
(The definition of the second morphism is recalled in §AL5l) Note that the
morphism ves satisfies the formula

ves(c- d) = ves(c) - i*(d) (1.1.2)

for c € HJH(Z) and d € H%(Z), where i: ZNY' < Z is the embedding and i* is
the pullback in cohomology as in (LLI). (In the non-equivariant setting, this

4Only non-equivariant Borel-Moore homology is considered in [CG]. However, the con-
structions for equivariant homology are deduced from these, since the equivariant homology
of Y can be described in terms of ordinary homology of various spaces of the form U x4 Y
where U is an “approximation” of EA, see e.g. [EGI] §2.8].
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follows from [CGl Equation (2.6.41)] and the definition of tes in [CG| §2.6.21];
the equivariant case follows using the remark in Footnote [l)

Finally, if E — Y is an A-equivariant vector bundle, then we have the Thom
isomorphism

HZ(E) = H?—Qrk(E)(Y)'

1.2 FOURIER—SATO TRANSFORM

Let again A be a complex linear algebraic group, and let Y be an A-variety.
If r: E—Y is an A-equivariant (complex) vector bundle, we equip it with an
A x Gy-action where t € Gy, acts by multiplication by t~2 along the fibers of r.
We denote by E°® the A x Gm-equivariant dual vector bundle (so that t € Gy,
acts by multiplication by #? along the fibers of the projection to Y), and by
E* the dual A-equivariant vector bundle, which we equip with a G,-action
where t € Gy, acts by multiplication by ¢~2 along the fibers. We denote by
7: E* — X the projection.

The Fourier—Sato transform defines an equivalence of categories

~

Fe: DES(BE) & DS (E°). (1.2.1)
This equivalence is constructed as follows (see [KS|, §3.7]; see also [AHJR] §2.7]
for a reminder of the main properties of this construction). Let Q := {(z,y) €
E xy E° | Re({z,y)) <0}, and let ¢: Q — E, §: Q@ — E° be the projections.
Then we have

SE = qq".

(This equivalence is denoted (-)" in [KS]; it differs by a cohomological shift
from the equivalence Ty of [AHJR].)
Inverse image under the automorphism of A x Gy, which sends (g,t) to (g,t~1)
establishes an equivalence of categories

Dirsm(E°) = DAXSm(E"), (1.2.2)

const const

see [BLL Chap. 6]. We will denote by

]:E: DAXGm (E) l> DAXGm(E*)

const const

the composition of (LZT]) and (TZ2).

Let F' C E be an A-stable subbundle, and denote by F- C E* the orthogonal
to F. Then one can consider the constant sheaf Cj. as an object of DAXSm (E).
(Here and below, we omit direct images under closed inclusions when no confu-
sion is likely.) Similarly, we have the object C . of DAX%™ (E*). The following

const
result is well known; we reproduce the proof for future reference.

LEMMA 1.2.3. There exists a canonical isomorphism
Fe(Cr) = Cpr[—2rk(F)].
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Proof. Tt is equivalent to prove a similar isomorphism for §g. For simplicity
we denote F- by the same symbol when it is considered as a subbundle of E°.
By definition of §r we have a canonical isomorphism

Se(Cp) = drCq, .

where Qp := q_l(F) C @ and §p is the composition of ¢ with the inclusion
Qr — Q. There is a natural closed embedding ir: F xy F+ < Qp; we denote
by Ur the complement and by jr: Up < Qp the inclusion. The natural exact

triangle jmCy;, — QQF = irsCpy L N provides an exact triangle

. . +1
arjrCy, = anCoq, = qrimCry 1 — .

Using the fact that H?(R>0; C) = 0, one can easily check that ¢r1jmCyy,. = 0, s0

that the second map in this triangle is an isomorphism. Finally, groip: F Xy

FL — E° identifies with the composition of the projection F xx F+ — F+

with the embedding F'+ < E°. We deduce a canonical isomorphism

qrCq, = Cpu[—2rk(F)],
which finishes the proof. O

We will mainly use these constructions in the following situation. Let V' be an
A-module (which we will consider as an A-equivariant vector bundle over the
variety pt := Spec(C)), and let F := V x Y, an A-equivariant vector bundle
over Y. We denote by p: E — V', p: E* — V* the projections. As above, let
F C FE be an A-stable subbundle.

COROLLARY 1.2.4. There exists a canonical isomorphism

Proof. By [KS| Proposition 3.7.13] (see also [AHJR] §A.4]) we have a canonical
isomorphism of functors
Fvop = proFg.

In particular we deduce an isomorphism Fy (pCr) = p1Fg(Cr). Then the
result follows from Lemma [[L2.3] O

1.3 EQUIVARIANT HOMOLOGY AS AN Ext-ALGEBRA

From now on we let G be a complex connected reductive algebraic group, X be
a smooth and proper complex algebraic variety, and V' be a finite dimensional
G-module. Let F :=V x X, considered as a G X Gy,-equivariant vector bundle
as in §I.2] and let Fy, Fb be G-stable subbundles of the vector bundle E over
X. As in g2 we denote by p: E — V the projection, and by Fi-, F5- C E*
the orthogonals to F} and F,. Then there exists a canonical isomorphism

canp, F, - H?XG‘" (Fl Xy FQ) :—) EXt;cginéiZ()v_).(p!gFlap!QFZ).

const
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Let us explain (for future reference) how this isomorphism can be constructed,
following [CGl [L3]. Consider the cartesian diagram

ExyE—) _ExE

Ve & vy xv

where A is the diagonal embedding. Then in [CGl Equation (8.6.4)] (see also
IL3| §1.15 and §2.4]) the authors construct a canonical and bifunctorial isomor-
phism

paj (Dp(A1) K Ay) = RHome(pAr, prAs)
for Ay, As in Dgﬁg’m (E). Applying equivariant cohomology, we obtain an
isomorphism

EXt;)GxGm(V)(p!Alap!A2) = EJXGm (E Xy E,]'(DE(Al) X AQ)) (131)

const

Setting A; = Cp,, A2 = C, we deduce an isomorphism

EXt.DGXGm(V) (p!gFlvp!gFQ) = HET'XGm (E 9% Evj!(DFl &QFQ))'

const

Let a: F} x F; — E x E be the inclusion, and consider the cartesian diagram

Fixy et _ ExyE

T

F1 XF2C—U’>E><E_

Then using the base change isomorphism we obtain

&vem (Exv E, j' (D, KCp,)) 2 HG e, (E xv E, jla.(Dp, KCp,))
~ H g, (E xv E,b.k'(Dp, BCp,)) 2 HY ¢, (F1 xv Fo, k' (Dp BCh)).

Now we use the canonical isomorphisms Cp, = Dp, [-2dim(F3)] (since Fy is
smooth) and k' (Dp, KDy ) = k' (Dp, « p,) = Dp, o, g, to obtain the isomorphism
canp, F,-

1.4 THE Foutiert ISOMORPHISM

We continue with the setting of §L.3] and denote by p: E* — V* the projection.
Then we have canonical isomorphisms

canp, g, HSOm (FL xy ) = EX'E;(ETG(,?()V_;(Z’!QEW!QFZ);

const
UG XGn (L 1y~ 2dim(F5")—e - .
canpr gy He (Fi~ xv- Fy) — EXtDchmiv*) (P!QFIMP!QF;)-

const
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~

On the other hand, through the canonical isomorphisms Fy (p.Cp) =
P+ Cpai[—2rk(F;)] for i = 1,2 (see (LZH)), the functor Fy induces an iso-

morphism

o —2rk(F2)+2rk(F1)

EXt.pS)iﬁm(v)(p!QFlap!QFz) = EXthﬁﬁm(v*) (15@171L aﬁ!QF;)-
We denote by
Soutietpl,pz: H?XGm(Fl Xy F2) = HGX(Gm (Ff‘ Xy FQJ_)

e+2dim(Fyg)—2dim(F})

the resulting isomorphism. This isomorphism, considered in particular in [EM],
was the starting point of our work on linear Koszul duality.

1.5 LINEAR KOSZUL DUALITY

Let us recall the definition and main properties of linear Koszul duality, fol-
lowing [MRI1, MR2, [IMR3]. In this paper we will only consider the geometric
situation relevant for convolution algebras, as considered in [MR3, §4]. How-
ever we will allow using two different vector bundles F; and Fb; the setting of
[IMR3], §4] corresponds to the choice F} = F5.

We continue with the setting of .3 and denote by AV C V x V the diagonal
copy of V. We will consider the derived category

Do, (AV x X x X) Apxp (Fi X F))
as defined in [MR3] §3.1]. By definition this is a subcategory of the derived
category of G X Gy-equivariant quasi-coherent dg-modules over a certain sheaf
of Oxx x-dg-algebras on X x X, which we will denote by Ap, r,. Note that

the derived intersection

(AV x X x X)Npxp (Fy x F)
is quasi-isomorphic to the derived fiber product F} QV F5 in the sense of [BR]
83.7].
Similarly we have a derived category

Déve. (AV* X X % X) Agexp- (FiF x F3H)).

We denote by wyx the canonical line bundle on X. Then by [MR3, Theorem
3.1] there exists a natural equivalence of triangulated categories

frp Dée. (AV x X x X) Npxp (F x F))
S D (AVF x X x X) Oy e (Fi- x F3H)) .
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More precisely, [MR3 Theorem 3.1] provides an equivalence of categories

RF) Fy - DCGXGm((AV x X X X)F%ExE(Fl X FQ))

s D, (AVE x X x X)Pgoxpe (Fi- x F5-))P
where AV® C V° x V?° is the antidiagonal copy of V°. (The construction of
[MR3] depends on the choice of an object € in D?Coh®*®m (X x X') whose image
in D*Coh(X x X) is a dualizing object; here we take £ = Ox Kwx[dim(X)].)
Then R, r, is the composition of K, r, with the natural equivalence

Déve. (AV® X X x X) Agoxpe (Fi x F3)) =
Deg,, (AV® x X x X) Npoxpe (Fi- x F3H))

(see [MR3 §4.3]) and the natural equivalence

Dy (AV® X X x X) Agoxpe (Fib x F3)) =
D (AV* X X x X) Opex e (Fi- x F3H))

induced by the automorphism of G, sending t to ¢~1.

Note that we have H(Ap, 1) = (Tr, 1) «OF, xy Fy, Where 7, g, 0 Fy Xy Fy —
X x X is the projection (which is an affine morphism). Hence, using [MR3|
Lemma 5.1] and classical facts on affine morphisms, one can canonically identify
the Grothendieck group of the category D¢, ¢ ((AV x X x X) r%ExE (Fy x Fg))
with K&*Cm (Fy x v Fy). We have a similar isomorphism for Fj- and Fj-; hence
the equivalence &f, r, induces an isomorphism

Koszulp, r,: KECm(F) xy Fy) 5 KEXOm (L sy 5.

1.6 DUALITY AND PARITY CONJUGATION IN K-HOMOLOGY

To obtain a precise relation between the maps Fouvievy, g, of L4 and
Koszulp, g, of L5 we will need two auxiliary maps in K-homology.

Our first map has a geometric flavour, and is induced by Grothendieck—Serre
duality. More precisely, consider the “duality” equivalence

GXGm . GXGm GXGm o
DFlf’F;. DPCoh®* & (Fi- x Fit) — DPCoh® & (Fit x Fyb)ep

associated with the dualizing complex Op: Kwpy [dim(F3-)], which sends G to

RHomo G, Op @wF;)[dim(FQL)],

L L(
Fi-xXFg3

see e.g. [MR3| §2.1] and references therein. (Here, wpy is the canonical
line bundle on Fj3-, endowed with its natural G x Gp,-equivariant structure.)
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This equivalence induces a (contravariant) auto-equivalence of the subcategory
DbCohng’"‘: o (Fi- x F3"), which we denote similarly. We denote by
1 * 2

D o KO (B e Fy) = KO (B iy By

the induced automorphism at the level of Grothendieck groups.

Our second map is a “correction factor”, with no interesting geometric
interpretation. = Namely, the direct image functor under the projection
Tpd py Fi- xy- F3& = X x X (an affine morphism) induces an equivalence
between Coh®*Cm (Fi- xv+ F3) and the category of locally finitely generated
G x Gm-equivariant modules over the Oxxx-algebra (mps p2)Opsy gt
Since Gm acts trivially on X x X, one can consider (mpr p2)«Opty, . 5t
as a graded G-equivariant Ox x x-algebra, and this grading is concentrated
in even degrees. Hence if F is any module over this algebra, then we have
F = Feven g Fodd wwhere Feven, resp. F°49, is concentrated in even, resp. odd,
degrees. We denote by

the automorphism which sends the class of a module F = Fever @ Fodd a5
above to [Feven] — [Fodd],

1.7 REMINDER ON THE EQUIVARIANT RIEMANN—ROCH THEOREM

Let us recall the definition and the main properties of the “equivariant
Riemann—Roch morphism” for a complex algebraic variety, following [EG2].
(See also [BZ] for a more direct treatment, without much details.) Let A be a
complex linear algebraic group, acting on a complex algebraic variety Y. Then
we have a “Riemann—Roch” morphism

i KA(Y) = HA(Y).

More precisely, we define this morphism as the composition

KAY) — J]Qez CHY (V) — J[ HA(Y) = HAY), (1.7.1)
>0 i€EZ

where CHY (V) is the i-th equivariant Chow group, see [EG2, §1.2], the first ar-
row is the morphism constructed in [EG2l Section 3|, and the second morphism
is induced by the “equivariant cycle map” of [EGI] §2.8].

Remark 1.7.2. It follows from [EG2, Theorem 4.1] that the first morphism
in (LZI) induces an isomorphism between a certain completion of Q ®z K4(Y)
and [[;5, Q®zCHY (V). Hence, if the equivariant cycle map is an isomorphism,

a similar claim holds for our morphism 7.

Below we will use the following properties of the map Tgﬁ‘, which follow from
the main results of [EG2].
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THEOREM 1.7.3 (Equivariant Riemann—Roch theorem). If f: Y — Y’ is an
A-equivariant proper morphism, then we have

o pdiy = pdigo .
Proof. By [EG2, Theorem 3.1(b)], the first arrow in (7)) is compatible with
proper direct image morphisms (in the obvious sense). And by [Ful, p. 372] the
second arrow is also compatible with proper direct image morphisms, complet-
ing the proof. (More precisely, only the non-equivariant setting is considered

in [Fu], but the equivariant case follows, using the same arguments as in Foot-
note @) O

If F is an A-equivariant vector bundle over Y, then one can define its (coho-
mological) equivariant Chern classes in H% (Y"), and define a (cohomological)

equivariant Todd class td*(F) € ﬁ;‘(Y), see [EG2 Section 3] or [BZ, §3] for
similar constructions. This element is invertible in the algebra H% (Y). If YV is
smooth, we denote by Tdé the equivariant Todd class of the tangent bundle
of Y.

The following result can be stated and proved under much weaker assumptions,
but only this particular case will be needed.

PROPOSITION 1.7.4. Let Y be a smooth A-variety, and let f: Z — Y be the
embedding of a smooth subvariety with normal bundle N. Then we have

tesy o 7y () = (14 oresy(x)) - td* ()

for any * € KA(Y), where vesp: HA(Y) — H?—Qdim(Y)-i—Qdim(Z)(Z) and
resp: KA(Y) — KA(Z) are the “restriction with supports” morphisms.

Proof. A similar formula for the first arrow in (IL7.1) follows from [EG2, The-
orem 3.1(d)]. To deduce our result we need to check that the equivariant cycle
map commutes with restriction with supports and with multiplication by a
Todd class. In the non-equivariant situation, the first claim follows from [Ful,
Example 19.2.1] and the second one from [Fu, Proposition 19.1.2]. The equiv-
ariant case follows, using the same arguments as in Footnote [ o

Remark 1.7.5. Note that, in the setting of Proposition[774, we have f*Td# =
Tdy - td*(N), where f* is as in (LLI). (In fact, this formula easily follows
from the compatibility of Chern classes with pullback and extensions of vector
bundles.)

Finally we will need the following fact, which follows from [EG2, Theo-
rem 3.1(d)] applied to the projection Y — pt (see also [BZ, Theorem 5.1]).

ProrosITION 1.7.6. If Y is smooth, then
7 (Oy) = [Y]- Tdy,

where [Y] is the equivariant fundamental class of Y (i.e. the image of the fun-
damental class in the Chow group from [EGI, §2.2] under the cycle map).
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1.8 RIEMANN—-ROCH MAPS

Following [CGl §5.11], we consider the “bivariant Riemann—Roch maps”
RRp p,: KE*Cm(Fy xy Fy) — HSXCm(Fy xy Fy),
ﬁFIL,F;: K Cm (FE xye F3h) — Q?XG“'(Fll Xy« F5h)
defined by
RRp, g, (c) = T}%Xx%nk (c) - (1 X (ng;(c’m)_l),
Ry (d) = 787m L (d) - ((TAG7Em) = TG Sm 8 (TaGXOm) ).

= TRl xy«Fs-

In the expression for RRp, g, 1 X (Td%X G“‘)_1 is considered as an element of

ﬁz;x@m (Fy xy F») through the composition

ﬁZGXGm)Z(Fl X FQ) — ﬁE;XGm(Fl X Fg) — ﬁéXGm(Fl Xy F2)

where the first morphism is the restriction morphism associated with the
diagonal embedding of G X Gm, and the second morphism is the pullback
in equivariant cohomology. In the expression for RRp1 s first we con-

sider ng’;XGm as an element of ﬁéxGm(E*) using the Thom isomorphism
HE ¢ (E*) = Hg ;. (X); then the same conventions as above allow to con-
sider (nglme)fl -Td$ % ) (TdG*%)~! as an element in ﬁ&x«;m (Fi- xy-
Fib).
1.9 STATEMENT
The main result of this paper is the following.
THEOREM 1.9.1. Assume that the proper direct image morphism

HE>Cm (P sy F3h) — HEXOm (F- xye E7) (1.9.2)

induced by the inclusion F5- — E* is injective. Then the following diagram
commutes:

1F1L,F2L°DF1L,FQLOKOSZUIFLI‘E

KGXGm(Fl Xy FQ)

RRFl,le lﬁ}?li,}:éL

Sourierp, m,

KGXCm (FiL sy Fyb)

/H\?XGm(Fl Xy FQ) Q?XG’“(F% Xy FQL)

The proof of Theorem [0l is given in §53 Tt is based on compatibility (or
functoriality) results for all the maps considered in the diagram, which are
stated in Sections Bl and M} some of these results might be of independent
interest. Let us point out that our assumption is probably not needed for the
result to hold.
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Remark 1.9.3. (Injectivity assumption.) The fiber product Fj- xy« E* is iso-
morphic to Fi* x X, hence is a vector bundle over X 2. In particular, by the
Thom isomorphism we have

HOXCm (B sye B = HP R0 (X % X)), (1.9.4)

Moreover, by [CGL Lemma 5.4.35] the following diagram commutes, where
m = dim(F5):

HE G (it e Fy) —— Homug, o (HEm (), 0 (F11))

| |

GXGpm GxGm GXGm
Ho:<2rk(F1*)(X x X) > HomH&Xem(Pt)(H.jzrk(F;)(X)’ H052m72rk(F1L)(X))'
(1.9.5)

Here the horizontal arrows are induced by convolution, the left vertical arrow is
the composition of ([L9:2) and the isomorphism ([Z94), and the right vertical
arrow is induced by the respective Thom isomorphisms. Assume now that
Hodd(X) = 0 (e.g. that X is paved by affine spaces). Then one can easily check
that the lower horizontal arrow in diagram ([9.5]) is an isomorphism. Hence
in this case our assumption is equivalent to injectivity of the upper horizontal
arrow. If moreover Iy = F = F, then H{*Cm(FL xy. F1) is an algebra
and HG*®m(F1) is a module over this algebra. In this case our assumption
amounts to the condition that the action on this module is faithful.

1.10 AN INJECTIVITY CRITERION FOR (L9.2)

The following result gives an easy criterion which ensures that the assumption
of Theorem [[.9T] is satisfied.

PROPOSITION 1.10.1. Assume that HS9Y(Fi- xy« F3-) = 0. Then the proper
direct image morphism

HE>Cm (P xye F3h) = HEXCm (F- xye E7)
induced by the inclusion Fs- < E* is injective.

Proof. Let T be a maximal torus of G. Then we have a commutative diagram

HEXCm (FY- Xy Fy') HEXCm (Fi- Xy EY)

| |

HI*Gm (it Xy Fft) ——————— HI*Gm (L xy. E7)

where horizontal arrows are proper direct image morphisms, and vertical arrows
are forgetful maps. The left vertical arrow is injective: indeed, by our assump-
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tion and [L2] Proposition 7.2], there exist (non-canonical) isomorphisms
HSOm (B xve F5') 2 H e, (pt) @c He(F{- xve Fy), (1.10.2)
HO*Cm (Fi xve F3') 2 HzS o (pt) ®c He (F x v+ F3h) (1.10.3)
such that our forgetful morphism is induced by the natural morphism
H% e, (Pt) = HY. g, (pt), which is well known to be injective. Hence, to
prove that the upper horizontal arrow is injective it is sufficient to prove that
the lower horizontal arrow is injective.

If Q denotes the fraction field of H := H%., ; (pt), then using again isomorphism
(CIO3), the natural morphism

HICm(FE xy- Fi) = Q@u HD® (- xv- F)

is injective. We deduce that to prove the proposition it suffices to prove that
the induced morphism

Q @u HIZ O (Fi- xy+ F5) = Q@n HY ™ (F{- xv+ EY)

is injective. Let Y := (X x X)T denote the T-invariants in X x X. Then we
have
Y = (Ff xy- F)T*Cm = (- xyo BF)TXCm,

Consider the commutative diagram

HY*Cm (i xv- FyY) - He*Cm (Fi- xv- B7)

HE G (1)

where all morphisms are proper direct image morphisms in homology. Then
by the localization theorem (see [L3| Proposition 4.4] or [EM| Theorem B.2])
both 8 and v become isomorphisms after applying Q ®u (-). Hence the same
is true for a; in particular idq ®n « is injective, which finishes the proof. [

Remark 1.10.4. Using a non-equivariant variant of isomorphism Foutierp p,,
one can check that the condition H94d(Fj- x - F5-) = 0 is equivalent to the
condition H(C)dd(Fl Xy FQ) =0.

2 THE CASE OF CONVOLUTION ALGEBRAS

In this subsection we study more closely the case Fy = F5. In this case, as
we will explain, all the objects appearing in the diagram of Theorem [[.9.1]
are equipped with convolution products, and all the maps are compatible with
these products. In a particular case, these algebras are related to affine Hecke
algebras, and our diagram explains the relation between the categorifications
of Iwahori-Matsumoto involutions obtained in [EM] and [MR3], via maps in-
troduced in [L1].

None of the results of this section are used in the proof of Theorem [[L9.11
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2.1 CONVOLUTION

We set F := F; = F,. As explained in [CGl §5.2.20] or [MR3, §4.1], the
group K&*Cm (F xy, F) can be endowed with a natural (associative and unital)
convolution product . In fact, for ¢,d € K&*Cm(F xy, F), with our notations
this product satisfied]

cxd=pdi, , ores(cXd)

where ¢ d € KE*Cm ((F xy F) x (F xy F)) is the exterior product of ¢ and
d

3

res: KC= ((F xy F) x (F xy F)) — K& (F xy F xy F)

is the restriction with supports morphism associated with the inclusion F3 —
F* sending (z,y,2) to (,9,9,2), and p13: F xyv F xy F — F xy F is the
(proper) projection on the first and third factors. (See [MR3| §4.2] for a similar
description at the categorical level.) The unit in this algebra is the structure
sheaf Oap of the diagonal AF C F' xy F. The same constructions provide a
left, resp. right, action of the algebra K&*®m(F x, F) on the group K&*C®m (F)
defined by

cxd = pdi, ores|(cXd), resp. d*c=pdi,, ores,(dXc)

for c € K&*Cm(F xy F) and d € K&*Om (F). Here py,pa: F xyv F — F are the
projections on the first and second factor respectively, the exterior products
are defined in the obvious way, and

res;: KE*Cm ((F xy F) x F) — K9 E=(F xy F),
resp. res;: KE*Em(F x (F xy F)) — K9 (F xy F),

is the restriction with supports morphism associated with the inclusion F2? —
F3 sending (z,vy) to (z,y,y), resp. to (z,,y).

Of course we have similar constructions for the subbundle F+ C E*, and we
will use the same notation in this context.

LEMMA 2.1.1. The morphisms Koszulg r, Dp. pi and ip. po are (unital)
algebra isomorphisms.

Proof. The case of Koszulp r follows from [MR3, Propositions 4.3 & 4.5]E
The case of Dp1 po is not difficult, and left to the reader (see [L4, Lemma 9.5]
for a similar statement, with slightly different conventions in the definition of
Grothendieck-Serre duality). Finally, the case of ip. g1 is obvious. O

5Note that our convention for the definition of the convolution product is opposite to the
one adopted in [MR3].

6In [MR3] we use the dualizing complex wx K Ox [dim(X)] instead of Ox Kwx [dim(X)].
But the results cited remain true (with an identical proof) with our present conventions.
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This convolution construction has a natural analogue in equivariant Borel-
Moore homology, see e.g. [CGl §2.7] or [L3], §2]. In fact, the convolution product
on HG*Cm (F xy, F), which we will also denote *, satisfies

cxd=poi, .

otes(cXd),

where tes is defined as for res above (replacing K-homology by Borel-Moore
homology). The unit for this convolution product is the equivariant fundamen-
tal class [AF] of the diagonal AF C F xy F. We also have a left and a right
module structure on HG*®m (F), defined via the formulas

cxd = poi, ortes)(cXd), resp. d % ¢ = pdi,, ovtes,(d X c)

for ¢ € HG*®m (Fxy F) and d € HG*®m (F). Finally we have similar structures
for the subbundle F+ C E*.

LEMMA 2.1.2. The morphism §outietp g is a (unital) algebra isomorphism.

Proof. One can show that the isomorphism canp p is a (unital) algebra iso-
morphism, where the right-hand side is endowed with the Yoneda product;
see [CGl Theorem 8.6.7], [L3| Lemma 2.5] or [Katl Theorem 4.5] for similar
statements. Then the claim follows from the fact that Foutiery p is induced by
a functor. O

2.2 COMPATIBILITY FOR THE RIEMANN-ROCH MAPS

LeMMA 2.2.1. Assumd that Hod4(F xy F) = 0. Then the morphisms RRp, p
and ﬁpLﬁFL are unital algebra morphisms.

Proof. We only treat the case of RRp p; the case of ﬁFm’FL is similar.
(Note that, by Remark [[LT0.4] our “odd vanishing” assumption implies that
Hodd(FL xy« F+) = 0 also.) The fact that our morphism sends the unit to
the unit follows from Theorem [[.7.3 and Proposition[I.7.6l using the projection
formula (IIT]). Tt remains to prove the compatibility with products.

To prove the lemma we use “projective completions,” namely we set V :=
P(V @ C) and let F be the projective bundle associated with the vector bundle

F x C over X. Then we have a projection F — V, and open embeddings

F—TF V< V._Note that ' xy F' = F x F, so that F' xy F is a closed
subvariety in F'x F'. Similarly, one can identify I xy I’ with a closed subvariety
in F' x F| so that we have proper direct image morphisms

11 HGXCm (F xyy F) — HS*Cm(F x F),
19 HG*Em(F xy F) — HG*Em(F x F),
131 HGXEm (F xy F) — HS*Cm(F x F).

7This assumption is probably unnecessary. However, to avoid it one would need a more
general variant of Proposition [[7.4] (as in [CGl Theorem 5.8.14], for instance) for which we
could not find any reference or easy proof.
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Using the same arguments as in the proof of Proposition [[T0.Il one can check
that the morphism 23 is injective under our assumption. There exists a natural
convolution product

*: HYXOm(F x F) x HG*®m(F x F) — HZ*®=(F x F)

defined by

cxd=pdi, o tes’ (¢ X d),
where pj 5 F'x Fx F — Fx F is the (proper) projection on the first and third
factors, and tes: HSXCm(F x F x F x F) — HF*Cm(F x F x F) is the restric-
tion with supports morphism associated with the inclusion sending (z,y, z) to

(%,y,y, 2). Moreover one can check (using in particular Lemma[A.5.7]) that for
¢,d € HG*Om(F xy F) we have

13(c* d) = 11(c) x22(d).

We have a similar construction of a convolution product in equivariant K-
homology, for which we will use similar notations. Hence, using the injectivity
of 73, Theorem and the projection formula ([CI.T]), to prove the lemma it
is enough to prove that

RRj(c + d) = RR, (c) « RRy(d) (2.2.2)
for ¢ € K&*Gm(F x F) and d € KE*Cm (F x F), where
RR,: KG*Cm(F x F) — HG*Cm(F x F)

is defined by
RR; (d) = 775 (d) - (1R (TdZ*Cm)71),

and RR, and RR; are defined similarly.
Now we have

RRs(cxd) = rgjgm(pdip,l ,ores'(cXd)) - (1K (TG Cm)=1)

TEm (res'(c®d))) - (1K (TdF*m)~1)

- (nggr;F(res’(c Xd))- (1K1K (Td5*C=)"1)
= poipll’g (tes’ 0 7G*Cm (cXd)- thXG“‘(N)

FXFXFxF
C(IR 1K (TdE*E=)~1),

== pDip/LS (

= poi

where N is the normal bundle to the embedding F x F x F < F x F x F.
(Here the second equality follows from Theorem [[L7.3] the third one from the
projection formula (IT)), and the last equality from Proposition [L7.4l) On
the other hand we have

RR, (c) * RRy(d) =

: GXGm GXGm\— GXGm\—
poiy, oves (T Ems (e Md) - (1K (T ™) DR1K(TdE%=)~).
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The normal bundle N is canonically isomorphic to the restriction to F x F x F

of the pullback of the tangent bundle of F' under the projection F «F'xF T
on the second factor. Using (LI2)) and comparing the formulas for RR;(c x d)
and for RR, (¢) x RR,(d) obtained above, we deduce (Z2.2).

2.3 COMPATIBILITY FOR THE ACTIONS ON THE NATURAL MODULES

In §2Twe have defined (left and right) actions of the algebra K&*Cm (F xy, F),
resp. KE*Cm (FL xy F1), resp. HEXCm(F xy F), resp. HO*Cm(FL xy.
F*), on the module K&*Cm(F) resp. KEXCm(FL)  resp. HEXCm(F),
resp. H#*Cm (F1). We now define “bivariant Riemann-Roch maps”

RRy: KECm(F) — HE*COm(F),  RRp.: KECm(Fl) 5 HE*Cm(pt)
by the formulas
RR, =75°%"  RRp:(e) = 70 5 (e) - (TdF* )~

(where use the same conventions as in §I.8). The following technical lemma
will be used to compute explicitly some Riemann—Roch maps in §2.6

LEMMA 2.3.1. Assume that Hodd(F xy F) = 0. Then the morphisms RR
and RR are compatible with the module structures, in the sense that for ¢ €
KEXCm(F xy, F) and d € KE*Cm(F), resp. for ¢ € KE*Cm(FL xy. FL) and

d € KEXGm(FL) we have

RRp(cxd) = RRp p(c)*RRp(d), resp. RRp:(dxc) = RRpo (d)*xRRpr po(c).

Proof. We only prove the first equality; the second one can be proved by similar
arguments. First, we claim that

T?XXS’;‘ ores)(cX d) = (tes; o Tgxxg’;‘xF(c Xd)) - td* (V)71 (2.3.2)

where N is the normal bundle to the inclusion F'x F' — F' x F' X F' considered in
the definition of res). Indeed, as in the proof of Lemma [2.2.1] our assumption
ensures that the proper direct image morphism

1: HGXCm (F xy F) = HJCm (F x F)

is injective. Hence it is enough to prove that the image under 2 of both sides
in (232) are equal. Now by the projection formula (I.TT]), Theorem [[L7:3 and
Lemma [A.5.1] we have

z((tesl orExCm(cRd)) - tdA(N)_l) = 1(ves o TR p(c®d)) - td(N) 7!
= (ves{ o Tpx g (2(c) W d)) - td (V)

where
tes): HOXCm(F x F x F) — HG*Cm(F x F)
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is the restriction with supports morphism associated with the embedding F?
F3 considered in the definition of tes;.

On the other hand, by Theorem and the obvious K-theoretic analogue of
Lemma, [A.5.7] we have

Z(T?:;E? ores|(cX d)) = Tgxxgm ores|(1(c) ¥ d),

where res; is defined as for ves]. Hence the desired equality follows from Propo-
sition [L7.41

Now we have

RRp(cxd) = 75 ““™ (pdi,, ores)(c X d))

_ : GXGm
= poi, o7y "7 ores|(cX d)

= poi,, ((vesy 0 X Ep, p(c B D)) - td (V)71
= iy, (ves (7 S (0) R rE¥Em () - (1B (Ta) ' 1)) )
=RRp p(c) * RRp(d).

(Here the second equality follows from Theorem [[7.3] the third one
from (232), and the fourth one from (I.2).) This concludes the proof. O

2.4 AFFINE HECKE ALGEBRAS AND THEIR GRADED VERSIONS

From now on in this section we restrict to the case of the affine Hecke algebra
and its graded version. Our notation mainly follows [LI]. Namely, we fix
a semisimple and simply connected complex algebraic group G, with fixed
maximal torus 7" and Borel subgroup B with T" C B. We denote by W the
Weyl group of (G, T), and by S C W the set of Coxeter generators determined
by the choice of B. We also denote by X the lattice of characters of T', and by
R C X the root system of (G, T). We denote by RT C R the system of positive
roots consisting of the roots opposite to the roots of B. Then the affine Hecke
algebra Hag (with equal parameters) attached to these data is the Z[v,v™1]-
algebra generated by elements T for s € S and 6, for z € X, subject to the
following relations (where my ; is the order of st in W):

1. (Ts+ 1)(Ts —v?) =0 for s € S;

2. T,Ty--- =TT, - for s,t € S (with m,, factors on each side);
3. 0,0y =0,y for z,y € X

4. g =1,

5. Ts 0, —Ogp - Ts = (02 — 1)% for s € S, where a € R is the corre-

sponding simple root.
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Remark 2.4.1. 1. Relations @) and (@) imply that the subalgebra gener-
ated by the generators 0, for x € X is isomorphic to the group algebra
Z[v,v~1][X]; then the quotient in the right-hand side in (E) denotes the
quotient in this integral ring.

2. The present notation differs slightly from the notation in [MR3]. In
fact the element denoted T here coincides with the element denoted
to in [MR3] §5.2] (for a the corresponding simple root).

The following reformulation of relation (B) (see [LI, Proposition 3.9]) will be
useful:

v20, — 1

oo (242)

(Ts+1)- 0, — 05 - (Ts+1) = (0, — s2) - Y () with ¥ (a) =
The subalgebra of H.g generated by the elements Ts (s € S) can be identified
with the Hecke algebra Hys of the Coxeter group (W,S). We will consider
the left module sgn; of this subalgebra which is (canonically) free of rank one
over Z[v,v~t], and where T, acts by —1. The same recipe also defines a right
module sgn,. over Hyy. Then we can define the “antispherical” left, resp. right,
module over H,g as

asph | h . _
MY = Hag @uyy sgLy, MEPE = gon_ Rqy, Hasi-

For both modules, we will simply denote by 1 the “base point” 1 ® 1.

We will also consider the associated graded affine Hecke algebra H.g (again,
with equal parameters). This algebra is the C[r]-algebra generated by O(t) =
S(t*) (where t is the Lie algebra of T') and elements t,, for w € W, subject to
the following relations:

1. tl == 1;
2. tyty = tyw for v,w € W;

3. ts - —s(d)ts = (¢ — s(¢) - (g(a) — 1) for s € S, where @ € R is the
corresponding simple root.

Here following [LI] we have used the notation

o+ 2r

gla) = ——,

(07

where & € t* is the differential of the root a. In this case also, one can
reformulate relation (B]) in the following form, see [L1l 4.6(c)]:

(ts+1)-¢—s(¢) (ts +1) = (¢ — 5(¢)) - g(r). (2:4.3)

The subalgebra of Hos _generated by the elements t,, (for w € W) identifies
with the group algebra Hy = C[r][W]. As above one can define a “sign” left,
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resp. right, module over this algebra (where t5 acts by —1 for s € S), which we
will denote by Sgny, resp. 5gn,, and corresponding “antispherical” modules
—_asph — ——asph a7
M?Sp = Hag @3, 5810, M?Sp =580, Q7 Hoasr

Let m C O(t)[r] = O(t x A!) denote the maximal ideal associated with the

point (0,0) € t x Al, and let W] be the m-adic completion of O(t)[r].
Then Hag := O(t)[r] ®o(1)[-) Hagt has a natural algebra structure extending the
structure on Hag. With this notation introduced, the algebras H,g and Hag

are related by the Lusztig morphism
oiﬁr: Haff — ﬁaff

defined in [T} §9]8 Let us recall the definition of this morphism. First, we
denote by Y := X, (T) the lattice of cocharacters of T, and consider the map

J t=Y®zC — T=Y®zC*
’ A ®a = AV ®exp(a)
This map induces a map
Zv,v™"[X] = O[]

sending « € X to (the power series expansion of) z o e and v to exp(r), which
can be used to define .Z; on the subalgebra of H.g generated by the elements
0, (x € X), see Remark 2ZAT|[). Then the description of .%; is completed by
the formula

L(To+1) = (ts+1) - gla)" - F(a), where  9(a) = Z(9(a)).
In more concrete terms, we have (see [L1, Proof of Lemma 9.5]):

exp(&+2r) —1 e

g(@)™" (o) = a+2r exp(d) — 1

From the defining relations of Hag (resp. Hag) one can see that there exists an
anti-involution of Hag (resp. Hag) as a Z[v, v~ !]-algebra (resp. C[r]-algebra),
which fixes all generators T for s € S and 6, for 2 € X (resp. the generators t
for s € S and the elements of O(t)). Conjugating the morphism %, with these
anti-involutions we obtain a second Lusztig morphism

wsﬁ: Haff — gaﬁ‘
which satisfies

L) = L0a),  AW) = L), AT A1) =g(e) Do) (t+1).

8The setting considered in [IL1} §9] is much more general than the case considered in the
present paper. With Lusztig’s notation, we only consider the case vg = 1 (which is covered
by [L1 §9.7]), 7o = 0, to = 1, & = {0}. This case suffices (except in the case when v is
specialized to a non trivial root of unity) for the study of the representation theory of H,g
via the (more accessible) study of the representation theory of H,g; see [LI] for details.
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2.5 GEOMETRIC REALIZATION OF H,g AND ITS ANTISPHERICAL MODULE(S)

Let B := G/B be the flag variety of G. Then we can consider the constructions
of §2.11 for the data X = B, V = g*, and with F' being the subbundle

N :={(&,9B) € g" x B| & = 0},

where b is the Lie algebras of B. (This variety is isomorphic to the Springer
resolution of the nilpotent cone of G.) We will also consider

g:={(&§9B) € g" X B|&g.0,6) = 0}

(This variety is isomorphic to the Grothendieck simultaneous resolution.) Note
that the Killing form defines a G-equivariant isomorphism (g*)* 2 g*, hence a
G x G-equivariant isomorphism E =2 E*. Via this isomorphism, F* identifies
with g.
The Steinberg variety is the fiber product

Z:=N x4 N.

If v is a simple root, we denote by P, C G the corresponding minimal standard
parabolic subgroup, and by P, := G/P, the associated partial flag variety.
Then as in [Rill we set

S; = {(Xa ngaQQB) € g* X (B XPq B) | ngb—i—gz‘b = O}

In other words, S?, is the inverse image of Bxp_ BB under the projection Z — Bx
B. This scheme is reduced but not irreducible: its two irreducible components
are the diagonal AN and

Y, = {(nglegQB) € g* X (B X Py B) | Xgl'Pa = 0}7

where p,, is the Lie algebra of P,.
With these definitions, we obtain algebras K&*¢m(Z) and H{*®m (7). 1t fol-
lows from work of Kazhdan—Lusztig [KL], Ginzburg [CG|] and Lusztig [L4] that
there exists an algebra isomorphis

Hag — KEXCm(7) (2.5.1)
which satisfies
v [Opg (D], 02 = [Op g (@)], Ts = =[Oy, (=p,p — a)] = [Op 5] = —[Os:].

(In the middle term, O, (z) is (the direct image of) the line bundle on AN
obtained by pullback of the line bundle on B naturally associated with z. In

9Due to a typo, the subscript “P,” is missing in the fiber product in the description of
S/, in [Ri §6.1].

0Due to our change of convention in the definition of the convolution product (see Foot-
note [G)), the isomorphism (2357 is the composition of the isomorphism considered in [MR3|
§5.2] with the anti-involution considered at the end of §2.41
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the third term, « is the simple root associated with s, and p is the half-sum of
the positive roots; the equality follows from [Ri, Lemma 6.1.1].)
We also have isomorphisms of Z[v, v™1]-modules

MR 2y KGXCm (), resp.  MXPM 2y KEXCm (AT, (2.5.2)
where v"0,, - 1, resp. 1-v"0,, corresponds to [0 (z)(n)] (for z € X).

LEMMA 2.5.3. The isomorphisms [25.2) are isomorphisms of left and right
Hag -modules respectively.

Proof. 1t is enough to prove that for a a simple root we have
(O, ] % [O] =[O =[O * [Os,, |-

By symmetry the two equalities are equivalent, so we restrict to the first one.
By definition we have [Og/ [x[O 5] = [Rp1.(Os: )]. If So C gxgis the subvariety
defined in [Ri, §1.4], in the derived category of (equivariant) coherent sheaves
on g X g, by [Ri, Lemma 4.1] we have

L
O/\7x§®oﬁxﬁ Os. = Osy,.

Then, by the (non flat) base change theorem (e.g. in the form of [BR] Propo-
sition 3.7.1]), to prove our equality it is enough to prove that

Rq1*OSa = OE;

where q; : g X g — @ is the projection on the first factor. This is proved in [BR],
Lemma 2.7.2] O

One also has a similar geometric realization using g instead of N. In fact, if
we set

Z =g Xg 0,
as explained in [MR3l Lemma 5.2], restriction with supports associated with
the inclusion N x § < § x § induces an algebra isomorphism KG*Cm(Z) =
K&*Gm (7). Therefore, we have an algebra isomorphism

Hagg — KE*Cm(2) (2.5.4)
which satisfies
v [Oag(1)], 0= [Oag(2)],  Ts— —[0s,].

(Here we use conventions similar to those for A, and S, is defined in [Ri §1.4].)
As in Lemma.5.3] we also have isomorphisms of left, resp. right, Hag-modules

MEPP 2 KOG (), e, MEPD 5 KOXEn (),

1 The subvariety Sq is denoted Z in [BR], where s is the corresponding simple reflection.
Also, in [BR] §2] the base field is assumed to be of positive characteristic; but the proof of
the cited lemma works over any algebraically closed field of coefficients.
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2.6 GEOMETRIC REALIZATION OF Hag AND ITS ANTISPHERICAL MODULE(S)

Following [L2| [L3], replacing K-theory by Borel-Moore homology in the con-
structions of §2.75 one obtains a geometric realization of H.g; in fact, apply-
ing |L3l Theorem 8.11] in our situation (i.e. for the Levi subgroup T, its nilpo-
tent orbit {0}, and the cuspidal local system Cy,, on {0}), we obtain an algebra
isomorphism

Hagr — HT*Om(2) (2.6.1)

such that the subalgebra O(t)[r] is obtained as the image (under proper direct
image) of

HECm (AF) 2 HE>Om (B) & HE*Cm (pr) 2 HIXSm (pt) = O()[r].  (2.6.2)

. . * GXGm
(More concretely, if € X, then & € t* corresponds to [Ag] - ¢ "™ (O5(x)),
where ¢&*®m () is the first equivariant Chern class.) The image of C[W] is
obtained via the “Springer isomorphism”
C[W] = Homexgm(g*)(ngE,p!Qﬁ) 3N H?XGm(Z).

(Here the inclusion is induced by the isomorphism cang z of §I.3) As in (2.6.2)
we also have a natural isomorphism of C[r]-modules

——asph ~ ——asph ~

M S HTO @), resp. M S HIOm (), (2.6.3)
where % - 1, resp. 1 - 2, corresponds to [g] - cfXGm(Oa(ac)).

LEMMA 2.6.4. The isomorphisms ([Z6.3) are isomorphisms of left and right

Hag-modules respectively.

Proof. As in Lemma [2.5.3] by symmetry it is enough to prove the equivariance
in the first case. Using similar constructions as for HS*®m(g), one can construct
an action by convolution of HS*®m(Z) on H{*®m (B), where B is seen as the
zero section of g; see [CGL Corollary 2.7.41] in the non-equivariant setting.
Moreover, the Thom isomorphism HS*C®m (g) = HG*Cm (B) is equivariant for
this action. Therefore, it is enough to prove that the natural isomorphism
O)[r] = HE*Em(B) induces an isomorphism of left H,g-modules M?Sph =
HE*Cm(B). And for this it is enough to prove that t, - [B] = —[B] for s € S.
Now the forgetful morphism Hg(ﬁg'(“s) (B) — Hadims)(B) is an isomorphism,
Hg(ﬁg'(“z)(Z) — Hadim(z)(Z). Hence we have reduced
our question to a claim about non-equivariant Borel-Moore homology, which
can be solved using Springer theory.

By [CGl Proposition 8.6.16], if ig: {0} < g denotes the inclusion, there exists
a canonical isomorphism He(B) — HQdim(g)ﬂ(i!Op!Qa), which identifies the
action of He(Z) with the natural action of Hombgmst(g*)(pgga,p!ga) via the
non-equivariant analogue of the isomorphism can; ;. Hence what we have to

9.9
show is that the 1-dimensional W-module

H2 dim(B) (B) o H2 dim(g)—2dim(B) (’L:)plg’g)

and so is the morphism
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is the sign representation. This fact is well known, see e.g. [AHJR] Lemmas
4.5 & 4.6]. O

As in §2.8 we have a similar story when g is replaced by N.In fact, construc-
tions similar to those in [MR3], Lemma 5.2] show that restriction with supports
induces an algebra isomorphism H*®m(Z) = HG*Cm(Z). (This property
can also be extracted from [L2| [L3]; it is used implictly in [EM].) Therefore,
we obtain isomorphisms of algebras and modules over these algebras

——asph ~ ——asph

Ha = HI*Cm(2), M7 S HOC=(N), M 55 HO O ().
(2.6.5)

PROPOSITION 2.6.6. 1. Under the isomorphisms 25.1) and 26.3), the
morphism RR 5  identifies with .

2. Under the isomorphisms Z5.4) and Z61), the morphism RRg 5 iden-
tifies with the morphism ¢ — ep - % (c) - ez", where

&

e€Ep = —_— Q-

ag+ 1 —exp(—a)

Proof. First, we note that Z and Z are paved by affine spaces, so that the
“parity vanishing” assumptions in some of our statements above are satisfied
in these cases.
(@) Both of our maps are algebra morphisms (see Lemma [Z2.)), so it is enough
to check that they coincide on the generators of H,g. The case of v is obvious
(see [EG2| §3.3]), and the case of 0, follows from Proposition 7.6 It remains
to consider the case of Tg; in fact it will be simpler (but equivalent) to prove
that

RRyg o (1+7Ty) = AL+ 1) = g() ™" - F(a) - (s + 1). (2.6.7)

By Remark 3.3 and Proposition [LI0I, HE*Cm () is faithful as a mod-
ule over HS*®m (7). Therefore, the same is true for the completions, and to
prove (Z6.7) it is enough to prove that both sides act similarly on HE*Cm (A7),
However, by Lemma 253 and (Z4.2), for z € X we have (14 Ts) - (0, -1) =

0r —0s2) - 9(x)) - 1. By Lemma [2.3.1] this implies that in ﬂ%ph we have
y p 1

RRyg (1 +T.) - (exp(d) - 1) = ((exp(d) — exp(si)) - ¥(a)) - 1.

Using ([Z.43)), this coincides with the action of g(a)™! -4 (a) - (ts + 1). Since
the elements of the form 7™ exp(&) - 1 form a topological basis of HE*Cm (/\7),
we deduce the equality in (Z6.7).

(@) The proof is similar to the proof of (), using the right action on Q?XG"“ (9),
and using the fact that

—

GXGm _ @ : e A
T = gl_exp(_a) in - Hi,, (8) = O]

DOCUMENTA MATHEMATICA 20 (2015) 989-1038



LINEAR KOSzZUL DUALITY AND FOURIER TRANSFORM 1015
(as follows from [EG2| §3.3], since the tangent bundle on B has a filtration with
associated graded the sum of the line bundles Og(«) for a € RT). O

Remark 2.6.8. In [L1l §0.3], Lusztig explains that his morphism %, “is of the
same nature as the Chern character from K-theory to homology.” Proposi-
tion 2.6.6l is a concrete justification of this claim.

2.7 COMMUTATIVE DIAGRAM FOR AFFINE HECKE ALGEBRAS

Finally we can consider the diagram of Theorem [L91]in the geometric setting

of §§2.5H2.Ct

Koszul 7 i~ ~oD= ~
KGXG‘“(Z) NN KGXG"‘(Z) §.6°75,8 KGXG“‘(Z)

@ml lRR“ (2.7.1)

Sautietﬁ’ﬁ

HE> G (2) HE X (2).

Note that Proposition [LT0.J] ensures that the assumption of Theorem [9.1]
is satisfied in this case, since Z is paved by affine spaces, and that the re-
sults of §2.TH2.2] ensure that all the maps in this diagram are unital algebra
morphisms. Using Proposition and the results of [EM] and [MR3|] we
can describe explicitly all the maps in this diagram, and hence illustrate the
content of Theorem [[L9.1]in this particular situation.

The morphism Koszulg 5 was studied in IMR3l, §5.3]. In particular, [MR3|
Theorem 5.4] describes this automorphism algebraically, and shows that it
is closely related to the [wahori-Matsumoto involution of H,g. Using the

identifications (Z5.1)) and (Z5.4]), we have
Koszul i (Ts) = 0,(—v*T; Ho_,, Koszuly (0:) = 0_.,

Koszulg (v) = —v

for s € S a simple root and x € x[2
Concerning the map Dg 3, one can check that, with the identification ([2.5.4),
it satisfies

Dis(Ts) =T;",  Dgz(a) =0, Dgzv)=0v"

(See |L4l Lemma 9.7] for a similar computation, with different conventions.)
Finally, the morphism i3z is the same as the involution ¢ of [MR3, §5.3]; it
satisfies

ig5(Ts) =Ts,  igg(0e) =0a,  izg(v) = —v.

12 As noted in Footnote [B the conventions in the definition of £R57 57 used in the present

paper differ slightly from the conventions used in [MR3]. Our identification of KGXEm (Z) is
also slightly different, see [MR3l, Comments at the end of §5.2]. This explains the differences
with the formulas in [MR3].
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On the Borel-Moore homology side, the map Foutiet 7 was studied in [EM].
In that paper it was shown to be closely related to the Iwahori-Matsumoto
involution of H.g; more precisely it satisfies

Soutietﬁﬁ(tw) = (—1)€(w)tw, Soutietﬁ,ﬁ(qb) = ¢, Soutietﬁ,ﬁ(r) =—r

for w e W and ¢ € O(t).

Using these formulas one can check the commutativity of (Z7.1]) by hand. For
instance, for the element 1+ T, the commutativity of the diagram amounts to
the following equality in Hag:

exp(a—2r)—1 e

o+ 1) =
& —2r exp((jz)—l( +1)

o1
1 — exp(—— 2r)es (1 + 1) 2RO @

&+ 2r exp(a) —1

— 1) e’ exp(p).

3 COMPATIBILITY OF THE Foutiet ISOMORPHISM WITH INCLUSIONS

In this section and the next one we will consider compatibility properties of our
morphisms in two geometric situations. We use the same setting and notation

as in §YL.3HLA

3.1 FURTHER NOTATION

First we will consider a situation which we will refer to as Setting (A): here
we are given an additional subbundle F} C E containing Fy and such that Fs,
F} and E can be locally simultaneously trivialized. Then we have “restriction
with supports” morphisms associated with the embedding F» < Fj, both in
K-homology and in Borel-Moore homology, which we denote as follows:

’
resy 2t KE<Cm(Fy sy Fp) — KEXCm(Fy xy By);

Iy, F

. HGXGm / GXGm
vesp g Hy (Fy xy Fy) — H

072rk(F2’)+2rk(F2)(F1 Xy Fy).

We also have proper direct image morphisms associated with the embedding
(F)* < F3-, again both in K-homology and in Borel-Moore homology, which
we denote as follows:

€L 7y L

pdi?}:gf) KOG (Bl e (F)Y) = KOCm(pl oy B,
€ 7y L

Pbig:gf)  HEXCom (B e (F))Y) = HEXCm(F . Fi).

Secondly, we will consider a situation which we will refer to as Setting (B):
here we are given an additional subbundle F| C F containing F; and such
that Fy, F] and E can be locally simultaneously trivialized. Then we have
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proper direct image morphisms associated with the embedding F; < Fy, both
in K-homology and in Borel-Moore homology, which we denote as follows:

pdip) p: KO (P xy Fy) — KOEm(F] xy B);
poipy g HOOm(Fy sy o) — HOXEm(F] v F).

We also have “restriction with supports” morphisms associated with the embed-
ding (F})* < Fj-, again both in K-homology and in Borel-Moore homology,
which we denote as follows:

€1 €1
res! KO (B e ) o KOEm((B) o F);
Fi- F5- m GXGCrm
TS o) % o HS>Cm (Bl e F) — H._grkw)+2rk((F1,)L)((Fl')l Xy F3h).

3.2 CONVOLUTION ALGEBRAS AND INCLUSION OF SUBBUNDLES

Consider Setting (A) of §8I1 Then we have natural morphisms induced by
adjunction
!

adj’}zﬁFé: QFQ/ — QF2 and ad(](Fé)LﬁF; : Q(Fé)L — QFQL [QI'k(FQL)—QI'k((FQ/)L)]

The proof of the following result being rather technical (and the details not
needed), it is postponed to the appendix (see §§A.6HA.T).

ProrosiTIiON 3.2.1. 1. The following diagram commutes:

Npy .1y 2dim(Fj)—e
HG G (Fy xy FY) > Ext] ol (nCy piCy)
const
tesﬁi:%l \L(p!adj}zfg’)o(‘)
GXGm canrFy,Fy 2dim(F5)—e
Ho—2rk(F2’)+2rk(F2)(F1 Xy Fy) ————— EXtDﬁ;EﬁmZ(V) (p!QFlap!QFz)‘

2. The following diagram commutes:

CxCn (L NVl DY 2dim((F)Y)—e -
H > (Fy- Xy (Fy)©) ——=— EXtDGxGm(V*) (p!gFlva!g(Fé)i>
const
Fi(FHL o
(Pl g 90
canpi oo

172 dim(Fs5-)—e /. -~
HE;XGm(FlL Xy= FQJ_) ~ EXt;GXG(:Z(&*) (p‘gFlLap'gF;)

const

Consider now Setting (B) of §8I1 We have natural morphisms induced by
adjunction

adjp, gy Crp = Cpy and adjpys pr Coppyr — Cp [20k(F) =20k ((F]) ).

The proof of the following proposition is similar to that of Proposition [3.2.1]
and is therefore omitted.
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PROPOSITION 3.2.2. 1. The following diagram commutes:

canr, ,F. 2 dim(Fs)—
HS ¥ Cm (Fy xy Fy) ~1 = ExtDcHan(mz()V).(p!QFlap!Q&)
const
pmgfgt l(»)o(p;adj;l,pi)
CANr], ry 2dim(Fz)—e
HG G (Y sy ) —— e B (€, )

2. The following diagram commutes, where r1 =: tk(Fi-), 7} := rk((F})*)
and dy = dim(F5-):

Ca"Fll i
? 2dg — ~ 9
HE*Em (Fi v« Ff) —————>Ext2& 2, (BCri DiCry)
Deonse (V*) 1 2
Fi- F3- _
ru(F{)L,FQL ()o(p!ad_](F/)L Fl)
can
(F{)+, Fs- _opl _

GxG /L 1 1 2 2do 4211 =217 —0 / .

Ho—2T‘;n+2r’1 ((Fl) Xy F2 ) — = EXtDGXGm(V*) (p'g(Fl,)L ’p!gFQJ‘)'

const

3.3 FOURIER TRANSFORM AND INCLUSION OF SUBBUNDLES

In the next lemma G can be replaced by any linear algebraic group, X by
any smooth G-variety, and E by any G-equivariant vector bundle over X.
We consider subbundles F' C F’ C FE which can be locally simultaneously
trivialized. (In practice, £ and X will be as above, and we will take F' = F},
F’' = F! for i € {1,2}.) Adjunction induces morphisms

adjj i Cpw = Cp and  adj{pys po: Copryr — Cpu [2rk(F5) =20k ((F')1)].
LEMMA 3.3.1. The following diagram is commutative:

]:E(adj*pypl)

adj!(F/)L’FL

Cirye [-2rk(F")] ——————— Cp. [-2rk(F)],

where vertical isomorphisms are provided by Lemma [L2.3]

Proof. Tt is equivalent to prove a similar isomorphism for §g; for simplicity we
still denote by F*, (F")* the orthogonals viewed in E°, and by #: E® — X the
projection. By the construction in the proof of Lemma [[2.3] we have natural
isomorphisms

§5(Cp) =aCqy,, and  F5(Cp) = aCo,.,

where Qp = ¢ Y(F'), Qr := ¢ }(F). It follows from the definitions that
the morphism Fg(adjy p) is the image under ¢ of the morphism C, , —
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Cgp,. induced by adjunction (for the inclusion Qr — Qps). Hence what we
have to show is that the morphism ¢ in the following diagram coincides with
adj!( FIYL P where the upper arrow is induced by adjunction as above, and the
vertical isomorphisms are as in the proof of Lemma [[.2.3}

aCq,, aCy,.
zl lz
QCpr  (Fryt @Cpy e
zl lz
¢

Q(F/)L [72rk(F/)] — QFL [72rk(F)].
Now we have canonical isomorphisms
F (C oy [20k(F)]) = Cy[-20k(B)], 71 (Cpo [~20k(F)]) = C [~20k(E)],

and one can check that the functor 7y induces an isomorphism

~

HomDiﬁﬁm(EO) (Q(F/)L [—2rk(F")],Cp. [—2rk(F)]) =
Hottipg e ) (Cx [ 20K(E)), Cx [-20K(E)])

sending adj(piyr po[—2rk(F’)] to the identity morphism of Cy[-2rk(E)].
Hence it is enough to prove that 7p[2rk(E)] is the identity of Cy (through
the canonical isomorphisms above). The latter statement is about sheaves
(and not complexes), so that we can forget about equivariance and check the
claim locally over X. (This is allowed by combining [BL, Proposition 2.5.3] and
[Lel, Proposition 4.2.7].) By local triviality, one can then assume that X = pt
(i.e. that F is a vector space and that F, F/ C E are subspaces).

In this case the claim boils down to the fact that the dotted arrow in the
following diagram is the identity:

Hgdim(E) (F/ v (F/)L) ~ Hgdlm(E)(Q> ~ Hgdim(E) (F 5 FL)
zl lz
C o ~C.

To prove this fact we regard F x E* as a real vector space, endowed with the
non-degenerate quadratic form given by ¢(x,&) := Re((, z)). The orthogonal
group H of this form stabilizes @, hence acts on Hgdim(E) (Q), and this action
factors through the group of components H/H°. Now F x F'+ and F’ x (F')*

are conjugate under the action of H°, with finishes the proof. O

In the following proposition we get back to the assumption that £ =V x X,
and we let p: E — V be the projection. The following result is an immediate
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consequence of Lemma 3.3l and the isomorphism of functors Fy opy = pyo Fg,
see the proof of Corollary [L2.4]

PROPOSITION 3.3.2. The following diagram is commutative:

Fu (pr(adj )
Fv(pCr) Fv(pCr)

mlz llm
pr(adji 1 )
p!g(F/)L [72rk(F')] p!QFL [*2rk(F)] .

3.4 THE Foutiet ISOMORPHISM AND INCLUSION OF SUBBUNDLES
We come back to Setting (A) of §3.11

ProprosITION 3.4.1. We have an equality

: Fi-,(F3) ™+ :
Soutietp m, © tesFl Fz meL’F2L o Foutiery, ry
; GXGm / GXGm L L
of morphisms Hy (Fy xv F}) — Ho o dim((Fy) L )— 2d1m(F1)(F1 Xy« F5).

Proof. By functoriality the following diagram commutes, where horizontal
maps are induced by the functor Fy:

2dim(F,)—e 2 dim(F.
Ex thjﬁfim()V) (PCry,pCpy) —— Ex tpgiﬁm(v )(IV(P'(CFI) Fv(pCry))
(p!adj}z,Fé)OC)l lfV(P!adj?%Fé)o(')
dim dim °
Exty 6oy (Cry piCp,) —— Extpel3 S (Fu (0C, ). Fy (pC, ).

Now by Proposition[B.32the following diagram commutes, where vertical maps
are induced by the isomorphisms Fy (0 Cp) = piCpo [-2rk(F)] for F = Fy, F;
or Fy (see (L2H)) and where d; := dim(F}), dg := dim(F3) and df := dim(F3):

Ex tDGxUm( v @Cr ). Fv(pCry)) 7EXt;icligSI‘:m(v*)(p!gF#7p!£(F2’)i)

const
fv(p!adj’;z,%)oml l(ﬁ!adj;Fé)L,FzL)o(»)

2d’270
DGxGm(V*)

const

2dy+2d,—2do—e , . .
(Fv(pCr ), Fv(nCr,)) — EXtDéijiV*)Q (BCps, mCpy ).

const

Ext
Pasting these diagrams with the ones of Proposition[3.2.T] we obtain the desired
equality. O

Now we consider Setting (B) of §8.11 The proof of the following proposition is
similar to that of Proposition B.41] (replacing Proposition B.2.1] by Proposition
B22), and is therefore omitted.
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ProproOSITION 3.4.2. We have an equality

: (PP Fi- F3" :
Sourierp p, oleF{’F2 = tes(},ﬂl,)%Fz)L o foutietp, f,

of morphisms HZ*®m (Fy xv Fy) — H?ffd?’mw;)—zdim(m((Fll)L xve Fy).

4  COMPATIBILITY OF THE REMAINING CONSTRUCTIONS WITH INCLUSIONS

4.1 COMPATIBILITIES FOR LINEAR KOSZUL DUALITY

Consider Setting (A) of §3.I1 Then we have equivalences of triangulated cat-
egories 8r, r, and Rp, p; constructed as in .5l We also have natural mor-
phisms of dg-schemes

Fr(AV x X x X)Ppxp(FL x Fy) = (AV x X x X)Agxp(F1L x F)),
g: (AV* X X X X) Ao = (F1- % (F)1) = (AV* X X X X))o yc e (F- x F5)

associated with the inclusions Fy < Fj and (Fj)* < F3- respectively, and
associated functors

Lf*: Dgyg,. (AV x X x X)Npxp(Fi x F)) —
DéxGm((AV X X x X>r%E><E(F1 X F2)),

Rg.: Dy, (AV* x X x X)Dgesp (Fi x (F3))) —
Déye,. (AV* x X x X)\gewp- (F{- x F3))

(see [MR3| §§3.2-3.3] for details). By [MR3l Proposition 3.5] there exists an
isomorphism of functors

Rr F, 0 Lf* = Rg. 0 8p, Fy-
It easily follows from definitions that the following diagram commutes:

De e ((AV x XD (F x )~ Dg, o ((AV x X2)fige(Fy x Fy))

| l

DPCoh*Cm (Fy x FY) DPCoh®*Cm (Fy x Fy).

(Here the lower horizontal arrow is the usual pullback functor associated with
the embedding F} x Fy < Fy x Fj. The right vertical arrow is induced by
the “restriction of scalars” functor associated with the embedding A%h m
Ap, r,, where the dg-algebra Ap, p, is defined in §I.0F note that A%h F, is the
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direct image of the structure sheaf under the affine morphism Fj x Fp, — X x X.
The left vertical arrow is defined similarly.) We deduce that the morphism

induced by Lf* in K-homology is resg’%. Similarly, the morphism induced

FL (F/)L
102 (see the proof of [MR3|, Lemma 3.3]). We

by Rg. in K-homology is pdi ), ",
172

deduce the following result.
PRrROPOSITION 4.1.1. We have an equality

F Fit (Fy)*

Fl, 2 .
Koszulp, r, oresy f = plelszL o Koszulp, g

of morphisms K¢*Cm (Fy xy, F}) — KG*Cm (Fi- v« F3H).

Now, consider Setting (B) of §8.11 The same considerations as above allow to
prove the following result.

ProprosITION 4.1.2. We have an equality

sF1LFy - Py
Koszulp f, o ple{,F2 =res )" © Koszulp, r,

of morphisms KG*Cm (Fy xy Fp) — KE*Cm ((F))+ xy« Fi).

4.2 COMPATIBILITIES FOR THE OTHER MAPS IN K-HOMOLOGY
Consider Setting (A) of §311

PROPOSITION 4.2.1. We have equalities

Fi (F)*
Fit F5

Fi(F)t _ G F(F)
Fipl =Pdip gl odp e

Fi- ()™

Dps gy opdi = plelL,F; °Dpp (mp+

ipL gy opdi

of morphisms KG*Cm (Fik xy. (F3)1) — KEXGm(FL xy. F5b).

Proof. The second equality is easy, and left to the reader. Let us consider the
first one. We denote the inclusion morphism by

ha: Fi- x (F3)* < F{* x F3-,
and consider the duality functor
DG Cm . DbCohglfS";‘*F; (Fi- x F3) — D”Cohglfg";*F; (Fi- x F3-)°P

defined as in §1.6] and similarly for ch“i;?;é) .. Then the result follows from
the natural isomorphism
GXGm ~ NG XGm
R(h‘A)* © DF;,(FQ’)l = DF;,F; © R(hA)*
provided by the duality theorem [Hal, Theorem VII.3.3]. More precisely we
need an equivariant version of the duality theorem, which can be derived from
the non-equivariant version by the arguments of [MR3] §2.1]. O
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Consider now Setting (B) of §3.11

PROPOSITION 4.2.2. We have equalities
L Fs i Fs
Dpys pp© res py i gl = TS p) 1" p O Dpt gy

. Fi- F5- Fi- F5- .
o ! = ! o
R R N ety

of morphisms KG*Cm (Fik xy. Fb) — KEXGm((F))L xy. F5b).

Proof. The second equality is easy, and left to the reader. Let us consider the
first one. We denote the inclusion morphism by

hp: (F))* x Fst — Fi- x F3-,

and consider the duality functors DZX®m and DEXCm  defined as in §L6l
Fl 7F2 (Fl) 7F2

The claim follows from an isomorphism of functors

* GXGm ~ NGXGm *
Lihg)" o Dyl i1 2 D)y © Llhs)

which can be proved by arguments similar to those of [Hal, Proposition I1.5.8],
taking into account our assumption that X is a smooth variety (so that Fi- x
Fs- and (F))t x Fs- are also smooth), which implies that every object of

the bounded derived category of coherent sheaves is isomorphic to a bounded
complex of locally free sheaves. O

4.3 COMPATIBILITIES FOR RR

First, consider Setting (A) of §3.11

PROPOSITION 4.3.1. Assume that the proper direct image morphism
HSXCm () xy Fy) — HE*Cm(F) x Fy)

1s injective. Then we have an equality

F\,F) P\, F,
@FLFz oresp m = teHFlsz O@FlaFé

of morphisms KG*Cm (Fy xy F3) — HE*Cm(Fy xy F).
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Proof. Consider the following cube:

RR

2Py FY ~
KE*Cm(Fy xy FY) HS>Cm (Fy xy FY)
pdi poi
’ (1) ~
res?ijiﬁ KGXGm(Fl X FQI) H?XGm(Fl X FQI)
Fy,F)
res L“%i,é
GxG BRem foxe
K m(Fl Xy FQ) H. m(F1 Xy FQ) tes
pdi poi

(2)

KG*Cm(Fy x Fy) HEXCm () x Fy).

Here the labels res and tes, resp. pdi and pdi, indicate restriction with supports
(always with respect to the morphism induced by F» < F}), resp. proper direct

image, the arrow labelled by (1) is given by T?.IXX%;‘ (1K (Td%XG’“)’l), and the

arrow labelled by (2) by TSIXX%‘; (1X (ngij)_l). The upper and lower faces
of this cube commute by Theorem[[.7.3 and the projection formula (I.I]). The
left face commutes by definition, and the right one by Lemma[A53] The front
face commutes by Proposition [L74] Remark and formula (CT2). Using
our assumption, we deduce the commutativity of the back face, which finishes
the proof. O

Now, consider Setting (B) of §311 The following proposition follows from
Theorem [[73] and the projection formula (CIT).

ProprOSITION 4.3.2. We have an equality

-Fl,FQ _ ‘F11F2
RRpy p, o pdip = POip s o RRe p,

of morphisms KG*Cm (F| xy Fy) — H?XG‘“(F{ Xy Fy).

4.4 COMPATIBILITIES FOR RR

The proofs in this subsection are analogous to those of the corresponding state-
ments in 4.3} they are therefore omitted.
First, consider Setting (A) of §311

ProprosSITION 4.4.1. We have an equality

Fi-(F)*
FitFs-

Fit (Fy)*

ﬁFﬁ,Fj o pdi :pDiFlL,FZL OﬁFlLﬁ(Fé)L

of morphisms KG*Cm (Fik xy. (F))1) — H?XGm(FlJ‘ Xy« F5-).

Now, consider Setting (B) of §3.11
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PROPOSITION 4.4.2. Assume that the proper direct image morphism
HEXCon(F{) e F) > HEXGm (B x B

is injective. Then we have an equality

RR Fi By P oRR
(F)4 Fs OTOS (s pg = Y88y a py © R B

of morphisms KG*Cm (Fik x,. Fib) — HEXCm ((F)L x v F-).

5 PROOF oF THEOREM [[LO. 1]

5.1 A PARTICULAR CASE

In this subsection we study the case when Fy = E and F5 = X (considered as
the zero-section of E), so that Fj- = X, F5- = E*. In this case, the assumption
of Theorem [[L9.1]is trivially satisfied.

LEMMA 5.1.1. Under the identifications E xy X = X x X = X Xy« E*, the
isomorphism

Foutiery x: HY*Cm (B xy X) 5 HE*Om (X xye BY)

coincides with the automorphism of HS*®m (X x X) induced by the involution
of G x Gy, sending (g,t) to (g,t71).

Proof. The lemma is equivalent to the statement that the isomorphism
HE*Cm (B xy X) &5 HG*Cm (X x e E°) induced by the equivalence Fy of JI.21
is the identity morphism of H{*®m (X x X).
Using the canonical isomorphism of §I3in the case V = {0}, F; = F; = X we
obtain an isomorphism

a: HG*Gm (X x X) & Ext;(ginéfg;;((po)!ng (po)Cx),

const

where pg: X — pt is the projection. Then the composition

HE > (X % X) = HOCm (B xy X) 2 Exte i) *(nCp, piCy)

const

sends each ¢ € HY*%m (X x X) to the morphism

Na(e . .
pCh = Cy B (po)Cx 222, € gy B (po):Cx[2dim(X) — i

= pCx[2dim(X) — i
where p: Cy, — Cyoy is the (¥, «)-adjunction morphism for the inclusion {0} <
V', and we use the identification V =V x pt. Similarly, the composition

const
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sends each ¢ € HY*® (X x X) to the morphism

. YMa(c . * .

PCx = Cioy B (pohCx = Cyo R (po)iCx[2dim(E") i
where 9 Cygp — Cyo[2dim(V*)] is the (i, H-adjunction morphism for the in-
clusion {0} — V°, and we use the identification V° = V° x pt. Now using
Lemma B3] we obtain that Fy sends ¢ K a(c) to ¥ K a(c), and the lemma
follows. -

With this result in hand we can prove Theorem [L9.1] in our particular case.
LEMMA 5.1.2. Theorem [L.91] holds in the case 1 = E, F, = X.

Proof. We have Fy xy F» = X x X, and also Fi* xy« F3- = X x X. There
exists a natural morphism of dg-schemes

(AV x X x X)Ppxp(E x X) = (X x X)Nxxx(X x X)

associated with the morphism of vector bundles p x p: E x E — X x X, see
[MR3, §3.2]. In our case it is easily checked that this morphism is a quasi-
isomorphism, hence it induces an equivalence of triangulated categories

LO*: Dgyg, (XX X)Axxx(Xx X)) = Dég (AVX X X X) gy p(ExX)),

see [MRIL Proposition 1.3.2]. Moreover by definition the left-hand side co-
incides with the category D’Coh®*®= (X x X), so that L®* can (and will)
be considered as an equivalence from D*Coh® %= (X x X) to D¢ g, ((AV x

X x X)(pxe(E x X)). It is easily checked that the induced automorphism of
KE*Cm (X x X) is the identity.
Similarly, the morphism dual to p X p induces a quasi-isomorphism

(X x X)xxx(X x X) = (AV* x X x X)Dgexpe (X x E*),
hence an equivalence of triangulated categories
RU,: D’ Coh®*Cm (X x X) & Do (AV* X X x X)pex - (X x EY)),

which induces the identity morphism in K-homology.
If Rx x denotes the linear Koszul duality equivalence defined as in §L.0 (in the
case V = {0}, F} = F, = E = X), by [MR3| Proposition 3.4] there exists an
isomorphism

ﬁE,X o L(I)* = R\I/* (e} nyx.
Using the remarks above and the definition of the equivalence Rx,x, we deduce
that, if G is in D*Coh® (X x X) (considered as an object of D?Coh®*®m (X x X)

with trivial Gm-action), the morphism Koszulg x sends the class of G(m) to
the class of

RHomoy, (G, 0x Rwx){m)[dim(X) + m].
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Using the compatibility of Grothendieck—Serre duality with proper direct im-
ages (as in the proof of Proposition 4.2.1]) one easily checks that, with similar
notation, Dx g+ sends the class of G(m) to the class of

RHomoy, (G, 0x Rwx)(—m)[dim(X)].

We deduce that Dx g+ o Koszulg x sends the class of G(m) to the class of
G(—m)[—m], and then that ix g+ o Dx g« o Koszulg x identifies with the
automorphism of K&*®m (X x X) induced by the involution of G x G, sending

(9,t) to (g,t7").

The statement in the lemma follows from this description, Lemma[B.T.1] and the
compatibility of the Riemann—Roch maps with inverse image (in K-homology
and Borel-Moore homology) under an automorphism of G X Gy,. o

5.2 COMPATIBILITY WITH INCLUSION
Consider first Setting (A) of §3.11
PrROPOSITION 5.2.1. 1. We have an equality

E53e) . FI,Fy
RRpt gy oipt g 0 Dpt gy o Koszulp, p, oresp gl =

Fi- (Fy)*

o
POy ol

o RRFIL,(FZ')L o lFlLﬁ(FQ/)* ] DFIL,(FQI)L o KOSZUlFl,FZ’

of morphisms KG*Cm (Fy xy F}) — HE*Cm(FL x . FiH).
2. Assume that the proper direct image morphism
HS>Cm () xy Fy) — HEXCm(F) x )
1s injective. Then we have an equality

PPy Fi (Fy)*

. WEL .
Soutietp, g, o RRpy g, oresy 2 = palFﬁyF; o Foutiety, gy 0 RRp py

of morphisms KE*Cm (Fy xy, F}) — HO*Cm(FL xy. F3H).

Proof. (1) follows from Propositions 1Tl 2.1l and 41l (2) follows from
Propositions £.3.1] and B.4.11 O

Consider now Setting (B) of §3.11
PROPOSITION 5.2.2. 1. Assume that the proper direct image morphism

HEXEm((F{)* v i) = HEXOm((F)E x )

is injective. Then we have an equality

555 . oF1,Fo
RR(F{)LFZL o I(F{)LvaZL o D(F{)L1F2L o I{OSZIJIIFI/J?2 o ple{vF2

Fi Fs-
=vtes, L, 2

(F{)L,F; ORRFILFZL OIFIL,FQL @) DF1L1F2L @) I(OSZL’[IFhF2

of morphisms KG*CGm (Fy xy Fy) — HE*Cm ((F)L x . FfH).
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2. We have an equality

; sF, P Fi- F5- :
Soutietp; g, o RRpr p, © ple{7F2 =ves ) © Soutierp, g, o RRp p,

of morphisms KG*Cm (F| xy Fy) — H?XG“‘((F{)L Xy« F5).

Proof. (1) follows from Propositions 1.2 22 and 42 (2) follows from
Propositions and O

5.3 PROOF OF THEOREM [[LO.1]
By assumption, the proper direct image morphism
HE>Cm (P xye F3h) — HEXOm (F- xy. E7)
is injective. Hence the same is true for the induced morphism
HE>Con (B <y F3h) — HEXCm (B sy B).

By Proposition 5.2 applied to the inclusion X C F5, we deduce that it suffices
to prove the theorem in the case F» = X. (Note that the inclusion Fy Xy X <
F; x X is the inclusion of the zero section in the vector bundle F; x X over
X x X. Hence the injectivity assumption in Proposition E2.1)(2) holds by
Lemma [A82])
Now consider the inclusion of vector subbundles F; C E (again with F» = X).
In this case, the morphism

L *
tes?é? c HGXCm (B 5y BY) — H?fﬁszﬁ)(X Xy« E*) = H?,XQ?QFIL)(XXX)
is the Thom isomorphism for the vector bundle Fj- xy- E* & Fi- x X over
X x X; in particular it is injective. Using Proposition we deduce that
it suffices to prove the theorem in the case Fy = F, F» = X. (Note that in
our situation the inclusion E+ xy« X+ <« EL x X< is the inclusion of the
zero section in the vector bundle X x E* over X x X, so that the injectivity
assumption in Proposition (.2.2(1) holds by Lemma [A.8.2]) In this case the
theorem holds by Lemma [E.1.2] hence our proof is complete.

A PROOFS OF SOME TECHNICAL RESULTS

A.1 CONVENTIONS

In §§A2HA 4l we work in the A-equivariant constructible derived category of
some complex algebraic A-varieties (for some arbitrary complex linear alge-
braic group A). If XY, Z are A-varieties and f: X - Y, g: Y — Z are
A-equivariant morphisms, then there exist canonical “composition” isomor-
phisms

gufi 2(go fe, gfiZ(gofl frg"=(g0f), fgd=(g0f),

DOCUMENTA MATHEMATICA 20 (2015) 989-1038



LINEAR K0SzUuL DUALITY AND FOURIER TRANSFORM 1029

which we will all indicate by (Comp). Similarly, given a cartesian square

f/

Y —= 7'
g’l O lg
f
Y ——7
of A-equivariant morphisms, there exist canonical “base change” isomorphisms
o=@ fla=)(),
which we will indicate by (BC).

A.2 SOME COMMUTATIVE DIAGRAMS

Consider a commutative diagram of A-varieties and A-equivariant morphisms

Sy

Y// Z//

where all squares are cartesian. The following lemma is a restatement of [AHRJ,
Lemma B.7(d)].

LEMMA A.2.1. The following diagram of isomorphisms of functors commutes:

Com BC
(") f. — 2 (g eud, —— P bu(g)'d,
(BC)l? zl(BC)
Com
g’ ( z ») byayg'.
Now, consider A-equivariant morphisms
f g h
w X Y Z.

The following lemma is a restatement of [AHR] Lemma B.4(a) & Lemma
B.4(d)].

LEMMA A.2.2. The following diagrams of isomorphisms of functors commute:

(Comp) (Comp)

haguf ——=—=hu(g o f)« flg'ht ——— f'(hog)'
(Comp)ll Zl(Comp) (Comp)ll Zl(Comp)
(Comp) m
(hog)efs “2% (hogo f).. (g0 N'h 2 (hogo ).
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A.3 DBASE CHANGE AND ADJUNCTION

Consider a cartesian diagram

gll ? lg (A.3.1)

of A-varieties and A-equivariant morphisms. Then there exists a canonical
morphism of functors

(f)i(g') = d'f (A.3.2)
which can be defined equivalently as the composition

(Comp)

(g = () f 1 (Fn(fogd)f (Fn)'g fir = g' i

Com
(Comp)

or as the composition

(Comp) ! (Comp)

(g = g gy g'(go f')lg) g1 ng) = g'f

where the unlabelled arrows are induced by the appropriate adjunction mor-
phisms. (We leave it to the reader to check that these compositions coincide.)

As stated in [KS, Exercise II1.9], the following diagram is commutative, where
vertical arrows are induced by the canonical morphisms fi — f. and (f'); —

(f)«:

We deduce the following.

LEMMA A.3.3. If f (hence also f') is proper, then the base change isomorphism
(f1)+(g")' = g' f« coincides, under the natural identifications fi = f. and (f')) =
(f")s, with morphism (A3.2).
A.4 SOME CONSEQUENCES

Consider again a cartesian diagram (A3.]), and assume that f (hence also f”)
is proper.
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First, one can consider the diagram of morphisms of functors

(1)) — g1 f!
ll(Comp)

(F)+(f o) (A4.1)
ll(Comp)

(f)(f)'g ————¢

where the right vertical arrow is induced by the adjunction morphism f, f' =
fif" — id and the lower horizontal arrow is induced by the adjunction morphism

() = () = id.
LEMMA A.4.2. Diagram (A4I) is commutative.

Proof. The claim follows from Lemma[A.3.3] (using the first description of mor-
phism ([(A3.2)) and the fact that the composition of adjunction morphisms

fr= A= f
is the identity. O

One can also consider the diagram of morphisms of functors

a()ale) — L~ gig' s
?\L(Comp)
(go (g (A-4.3)

felgnlg) ——— 1.

where unlabelled arrows are induced by adjunction, and in the left-hand side
we use the identifications fi = f. and (f'); = (f)«.

LEMMA A.4.4. Diagram (A43) is commutative.

Proof. The claim follows from Lemma [A-3.3] (using the second description of
morphism (A32])) and the fact that the composition of adjunction morphisms

g — g!g!g! — g

is the identity. O
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A.5 RESTRICTION WITH SUPPORTS IN BOREL-MOORE HOMOLOGY

As in §I.T] let A be a complex linear algebraic group, let Y be a smooth complex
A-variety, and let Y’ C Y be a smooth A-stable closed subvariety. Consider
another A-stable closed subvariety Z C Y, not necessarily smooth, and set
7' :=ZNY’'. Then we have a cartesian diagram of closed inclusions

-/

7/C ? ’
g !
7 Loy,

Set N :=2dim(Y) — 2dim(Y”’). The “restriction with supports” morphism

vesZ,: HNZ) — HE y(Z))

associated with the inclusion Y’/ < Y is defined as follows. Consider the
composition

it B g )

~

where the first morphism is induced by the adjunction morphism id — f, f*.
Then applying this composition to Dy and using the isomorphisms

iDy =Dy, ['Dy = f*Cy[2dim(Y)] = Cy/[2dim(Y)] = Dy [N]
and (i)'Dy, =D,

we obtain a morphism

Dy — gDy [N].

Taking (equivariant) cohomology provides our morphism tesZ,.

The same construction, applied to the subvariety Y’ C Y instead of Z, provides
another morphism

tesy,: HA(Y) — HE (YY)
LEMMA A.5.1. The following diagram is commutative:

V4
HA(Z) — 2> HA \(2')

poi; ‘/ lpaii/
1‘25}};/

HAY) ——————=H2 (Y.
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Proof. Consider the following diagram:

C
it —— i f =B g (i)

|

id fof*

Here the unlabelled arrows are induced by the appropriate adjunction mor-
phisms, and the arrow labelled with (1) is induced by the composition of natural
isomorphisms

! (Comp)

S = fu(@)

The left part of the diagram is clearly commutative, and the right part is com-
mutative by Lemma [A. 4.4 Hence the diagram as a whole is commutative.
Now, when applied to Dy and after taking equivariant cohomology, this dia-
gram induces the diagram of the lemma, hence these remarks finish the proof.
(In this argument we also use the left diagram in Lemma [A:2.2] which allows to
forget about the “(Comp)” isomorphisms in the right-hand side of the diagram
once equivariant cohomology is taken.) o

. . C .
1G9« = 1 Lﬂ)% (iog)

~

A.6  PRrROOF OF ProposITION [3.2.T](1)

By functoriality of isomorphism (L3 the following diagram commutes, where
the right vertical morphism is induced by adjFp, By

. D, ,, )
Extyoxcm (1) (P+Cry» P Cry) === Hipxg,, (B v B, (D, W Cry))
(p*adj}z,pé)%)l l (A.6.1)

EXt;chm(V)(P*QFIaP*QFZ) — HET'XGm(E Xy Eaj!(DFl &QFZ))-

const

Now, consider the following diagram, where all squares are cartesian and all
morphisms are closed inclusions:

b

T

F1 XvF2—0>F1 XvFQ/bﬁ/EXVE

1

FixF—%sF xF,—*“~FExE.

\_/

a
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Then under the natural identifications

ExCm (B Xv B, j'(Dp, B Cp,)) 2 Heyg,, (E xv B, j'as(Dp, BCp,)),

ExGm (B XV B, j'(Dp, B Cry)) 2 He g, (B v E, j (')« (R, K Cry)),
the right vertical morphism in (AZ6.1)) identifies with the morphism

E?X(Grm (E Xy Ea j! (a/)* (DF1 X QFé)) — HE?XGm (E Xy Ea j!a’* (DFl X QFQ))
(A.6.2)

induced by the adjunction morphism id — d.d* (through the “composition”
isomorphism (a').d, = a.).
Consider the following diagram of morphisms of functors:

). = (¥). (k"

l |

W Na)dud (5¢) O (K) dud* @
"'-.___(Comp>J/? IJ/(BC)
U C Com ~
flasds — LDy g —COm gy ektdr

Here the upper vertical arrows are induced by the adjunction morphism id —
d.d*, and other arrows are either base change or composition isomorphisms
as indicated. The upper square is clearly commutative, and the lower square
is commutative by Lemma [A-2.1l Hence the whole diagram is commutative,
which allows to define the dotted arrows uniquely. The arrow labelled with (x)
is the morphism which defines (A.6.2)), and the arrow labelled with (1) is the
morphism used in the definition of restriction with supports tes?ﬁ%, see JATL
Applying this diagram to Dy X C 7 and taking equivariant cohomology allows
to finish the proof of Proposition BZZT[(1). (In this argument we also use the
left diagram in Lemma [A2.2] which allows e.g. to forget about the “(Comp)”
isomorphism on the lower line once equivariant cohomology is taken.)

A.7 PROOF OF PROPOSITION B.2.T](2)

Consider the following diagram, where all squares are cartesian and all mor-
phisms are closed inclusions:

b

~ E/
Fit xye ()Y —55 Ft xye Ff —% > E* xy. B

A i

’

Fix(F)t—4 s Ftx Pt —% 5 B* x B*,

\—/

a
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Then by functoriality of isomorphism ([L3J]) we have a commutative diagram

Ext® GXGm )(p*gpﬁyp*g(pé)L) — H.qu_;m (E* Xy E*vj!a*(Dpli gg(Fz/)i))

Deonst - (V*
< 2!
(p*adJ(FZ/)L'F;)O(')l l
o+27ro—2r) - - ~ o+2ro—27) ~N g~
ExtDGXém(‘f*)(P*QFIL,p*gF;) S HET AT (B iy E*J!(a')*(@Fﬁ IZIQF;)L
const

(A.7.1)
where horizontal arrows are induced by isomorphism (3] and the right ver-
tical morphism is induced by the adjunction morphism did" — id (through
the isomorphisms (a@').d) = (&@').d. = @, and Ciryr = Dipyy[-2 dim((F3)4)],
Cpp & Dpy[-2 dim(F5H)]), and where ro := rk(F3b), rh := rk((F3)*4).
Consider the following diagram of morphisms of functors:

PR (B—NC)>Z~)*/;:!CZ!
1| (Comp)
____.-('Comp) Z ). itd —Com) (5/)*&*(%.@1_.“_...
(#) | (BC) | (Comp) ()

(i) —— e (B). (R

Here all the unlabelled arrows are induced by the appropriate adjunction mor-
phisms (using the identifications ¢, = é& and dy = Ju) The upper square is
commutative by Lemma[A.2.1] the lower square is obviously commutative, and
the right square is commutative by Lemma Hence the diagram as a
whole is commutative, which allows to define the dotted arrows uniquely. The
arrow labelled with (#) is the one which induces the right arrow in diagram
(AZI) (when applied to Dp1, g ), while the arrow labelled with (b) is the
one which induces the proper direct image morphism pbi?ﬁ:iéy (again when
applied to Dp1, g ), see [CGl §8.3.19]. The result follows. (As in §A.6 in this
argument we also use the diagrams of Lemma [A-2.2])

A.8 A LEMMA ON EULER CLASSES

Let A be a complex linear algebraic group acting on a smooth complex algebraic
variety Y, and let ' — Y be an A-equivariant vector bundle of rank r. We
consider F' (hence also its zero-section V) as an A x Gy-variety with the G-
action defined as in §L.21 Note that, as Gy, acts trivially on Y, there exists a
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canonical isomorphism of graded algebras
Hixc.n (Y) = HY(Y) ®c HE,, (pt). (A8.1)
LEMMA A.8.2. The proper direct image morphism
HJX o (1) — Mo ()
associated with the inclusion Y — F' is injective.

Proof. Tt is well known that the composition of our morphism with the Thom
isomorphism HZA*Gm (F) 2 HAXEm (Y identifies with the action of the equiv-
ariant Euler class Bu(F) € HY, g (V) of F, see e.g. [L3, §1.19]. Since Y is
smooth, the equivariant homology HA*®m (Y") is a free module of rank one over
H% ¢, (Y), hence it is enough to prove that Eu(F) is not a zero-divisor in
H% «g,. (Y). However one can check that (due to our choice of Guy-action) this

Euler class can be written, using isomorphism (A8.1]), as
Eu(F)=1® (—2u)" 4+«

where 1 € H%(Y) is the unit, u € Hém (pt) is the canonical generator and

r € P;sy H%(Y) ® Hé:i(pt). It follows that this element is indeed not a
zero-divisor. O
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