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ABSTRACT. Let K be an algebraically closed field of characteristic
zero, G,, = (K\ {0}, x) be its multiplicative group, and G, = (K, +)
be its additive group. Consider a commutative linear algebraic group
G = (Gn)" x G,. We study equivariant G-embeddings, i.e. normal
G-varieties X containing G as an open orbit. We prove that X is a
toric variety and all such actions of G on X correspond to Demazure
roots of the fan of X . In these terms, the orbit structure of a G-variety
X is described.
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1. INTRODUCTION

Let K be an algebraically closed field of characteristic zero, G, = (K\ {0}, %)
be its multiplicative group, and G, = (K, +) be its additive group. It is well
known that any connected commutative linear algebraic group G over K is
isomorphic to (G,,)" X (G,)® with some non-negative integers r and s, see [20]
Theorem 15.5]. We say that r is the rank of the group G and s is the corank
of G.

The aim of this paper is to study equivariant embeddings of commutative linear
algebraic groups. Let us recall that an equivariant embedding of an algebraic
group G is a pair (X,z), where X is an algebraic variety equipped with a
regular action G x X — X and x € X is a point with the trivial stabilizer
such that the orbit Gz is open and dense in X. We assume that the variety
X is normal. If X is supposed to be complete, we speak about equivariant
compactifications of G. For the study of compactifications of reductive groups,
see e.g. [26]. More generally, equivariant embeddings of homogeneous spaces of
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reductive groups is a popular object starting from early 1970th. Recent survey
of results in this field may be found in [27].

Let us return to the case G = (G,,)" X (G,)*. If s = 0 then G is a torus
and we come to the famous theory of toric varieties, see [13], [23], [1§], [12].
Another extreme r = 0 corresponds to embeddings of a commutative unipotent
(=vector) group. This case is also studied actively during last decades, see [19],
[8], [B], [16], [14]. The next natural step is to study the mixed case r > 0 and
s > 0 and to combine advantages of both torus and additive group actions.
The present paper deals with the case s = 1, i.e. from now on G is a con-
nected commutative linear algebraic group of corank one. In other words,
G = (G,n)" ! x G, where n = dim X.

Let X be a toric variety with the acting torus T. Consider an action G, x X —
X normalized by T. Then T acts on G, by conjugation with some character
e. Such a character is called a Demazure root of X. If T = Ker(e), then the
group G := T x G, acts on X with an open orbit, and X is a G-embedding, see
Proposition[dl Our main result (Theorem [2]) states that all G-embeddings can
be realized this way. To this end we prove that for any G-embedding X the
(Gn)" t-action on X can be extended to an action of a bigger torus T which
normalizes the G, -action and X is toric with respect to T.

This result can not be generalized to groups of corank two; examples of non-
toric surfaces which are equivariant compactifications of G2 can be found in [14].
Similar examples are constructed in [I4], [I5] for semidirect products G, XG,.
Such groups can be considered as non-commutative groups of corank one.

If two toric varieties are isomorphic as abstract varieties, then they are isomor-
phic as toric varieties [10, Theorem 4.1]. This shows that the structure of a
torus embedding on a toric variety is unique up to isomorphism. A structure
of a G-embedding on a given variety may be non-unique, see Examples 2 E
Such structures are given by Demazure roots and thus the number of struc-
tures is finite if X is complete, and it is at most countable for arbitrary X. At
the same time, GS-embeddings into P® admit a non-trivial moduli space [19,
Example 3.6].

The paper is organized as follows. Section 2] contains preliminaries on torus
actions on affine varieties. We recall basic facts on affine toric varieties and
introduce a description of affine T-varieties in terms of proper polyhedral di-
visors due to Altmann and Hausen [I]. A correspondence between G,-actions
on X normalized by T" and homogeneous locally nilpotent derivations (LNDs)
of the algebra K[X] is explained. We define Demazure roots of a cone and use
them to describe homogeneous LNDs on K[X], where X is toric. Also we give a
description of homogeneous LNDs of horizontal type on algebras with grading
of complexity one obtained by Liendo [22].

In Section Bl we show that if X is a normal affine T-variety of complexity one
and the algebra K[X] admits a homogeneous LND of degree zero, then X is
toric with an acting torus T, T is a subtorus of T, and T normalizes the corre-
sponding G,-action. This gives the result for affine G-embeddings. Moreover,
Proposition [ provides an explicit description of affine G-embeddings.
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Section [ deals with compactifications of G. Here we use the Cox construction
and a lifting of the action of G to the total coordinate space X of X to deduce
the result from the affine case.

In Section Bl we recall basic facts on toric varieties and introduce the notion of
a Demazure root of a fan following Demazure [I3]. The action of the corre-
sponding one-parameter subgroup on the toric variety is also described there.
Let ¥ be a fan and e be a Demazure root of ¥. In Section [0l we define a G-
embedding associated to the pair (X, e) and study the G-orbit structure of X.
It turns out that the number of G-orbits on X is finite.

Finally, in Section [7] we prove that any G-embedding is associated with some
pair (X, e). The idea is to reduce the general case to the complete one via equi-
variant compactification. At the end several explicit examples of G-embeddings
are given.

Some results of this paper appeared in preprint [5]. They form a part of the
Ph.D. thesis of the second author [21].

The authors are grateful to the referee for careful reading of the paper and
valuable suggestions.

2. G,-ACTIONS ON AFFINE T-VARIETIES

Let X be an irreducible affine variety with an effective action of an algebraic
torus 1', M be the character lattice of T', N be the lattice of one-parameter
subgroups of T', and A = K[X] be the algebra of regular functions on X. It is
well known that there is a bijective correspondence between effective T-actions
on X and effective M-gradings on A. In fact, the algebra A is graded by a
semigroup of lattice points in some convex polyhedral cone w C Mg = M ®7Q.

So we have
A= P Anx™

mewn

where wyr =w N M and x™ is the character corresponding to m.

A derivation 0 on an algebra A is said to be locally nilpotent (LND) if for each
f € A there exists n € N such that 9"(f) = 0. For any LND 0 on A the map
0o : Gy X A— A, ps(s, f) =exp(sd)(f), defines a structure of a rational G-
algebra on A. This induces a regular action G, x X — X, where X = Spec A.
In fact, any regular G,-action on X arises this way, see [I7, Section 1.5]. A
derivation 0 on A is said to be homogeneous if it respects the M-grading. If
f,h € A\ ker 9 are homogeneous, then 9(fh) = fO(h) + O(f)h is homogeneous
too and deg O(f) — deg f = deg d(h) — deg h. So any homogeneous derivation 9
has a well defined degree given as deg 0 = deg 9(f) —deg f for any homogeneous
f € A\ ker 0. Tt is easy to see that an LND on A is homogeneous if and only if
the corresponding G,-action is normalized by the torus 7" in the automorphism
group Aut(X), cf. [I7, Section 3.7].

Any derivation on K[X] extends to a derivation on the field of fractions K(X)
by the Leibniz rule. A homogeneous LND 0 on K[X] is said to be of fiber
type if O(K(X)T) = 0 and of horizontal type otherwise. In other words, 9 is of
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fiber type if and only if the general orbits of corresponding G,-action on X are
contained in the closures of T-orbits.
Let X be an affine toric variety, i. e. a normal affine variety with a generically
transitive action of a torus 7'. In this case
A= @ me = K[WJM]

mewn
is the semigroup algebra. Recall that for given cone w C My, its dual cone is
defined by

o ={n€ Ng|(n,p) >0 Vp € w},

where (,) is the pairing between dual lattices N and M. Let o(1) be the set
of rays of a cone ¢ and n, be the primitive lattice vector on the ray p. For
p € o(l) we set

S,:={e€ M|(ny,e) =—1and (ny,e) >0 Vo' €o(l), p # p}.

One easily checks that the set S, is infinite for each p € o(1). The elements
of the set R := | | S, are called the Demazure roots of o. Let e € S,. Then p

P
is called the distinguished ray of the root e. One can define the homogeneous
LND on the algebra A by the rule

m-+te

Oe(X™) = (np, m)x
In fact, every homogeneous LND on A has a form ad, for some a € K, e € R,
see [22] Theorem 2.7]. In other words, G,-actions on X normalized by the
acting torus are in bijection with Demazure roots of the cone o.
Clearly, all homogeneous LNDs on a toric variety are of fiber type.

ExAMPLE 1. Consider X = AF with the standard action of the torus
(K*)k. It is a toric variety with the cone o = (@’;0 having rays p1 =
((1,0,...,0))Q50,--->06 = ((0,0,...,0,1))g-,- The dual cone w is @];0 as
well. In this case

Spi = {(Cla o ;Ciflvilvc’H*lv e 'ack) |cj € ZZO}

Sp.® Mg = Q?

Denote z; = y(10-0 2 = @0 Then K[X] = K[z, ...,azx]. It

)

is easy to see that the homogeneous LND corresponding to the root e =
(c1,...,c) €8,, is
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This LND gives rise to the G,-action

x; > x; + saft ...:Cfflleﬁl xk, xyexy, j#4, s €G,.
Let us recall that the complexity of an action of a torus T on an irreducible
variety X is the codimension of a general T-orbit on X, or, equivalently, the
transcendence degree of the field of rational invariants K(X)T over K. In
particular, actions of complexity zero are precisely actions with an open T-
orbit.
Now we recall a description of normal affine T-varieties of complexity one in
terms of proper polyhedral divisors. Let N and M be two mutually dual
lattices with the pairing denoted by (, ), o be a strongly convex cone in Ng, and
w € Mg be the dual cone. A polyhedron A C Ng, which can be decomposed
as Minkowski sum of a bounded polyhedron and the cone o, is called o-tailed.
Let C be a smooth curve. A o-polyhedral divisor on C' is a formal sum

D= A.-z

zeC

where A, are the o-tailed polyhedra and only finite number of them are not

equal to 0. The divisor © is trivial, if A, = o for all z € C.

The finite set Supp® := {z € C' | A, # o} is called the support of ©. For every

m € wy we can obtain the Q-divisor ®(m) = > h,(m) - z, where h,(m) :=
zeC

miAn (p,m). So a o-polyhedral divisor is just a piecewise-linear function from
PEA;

wpr to the group of Q-divisors on C. One can define the M-graded algebra
A[Ca 9] = @ ApmX™,

mewm
where
A = HY(C,D(m)) := {f € K(X) | div f + D(m) > 0},
where the multiplication of homogeneous elements is given as in K(X).
A o-polyhedral divisor on smooth curve C is called proper if either C is affine,

or C' is projective and the polyhedron deg® := > A, is a proper subset of o.
zeC
The next theorem expresses the main results of [I] specialized to the case of

torus actions of complexity one.

THEOREM 1. (1) Let C be a smooth curve and D a proper o-polyhedral divi-
sor on C. Then the M-graded algebra A[C,D] is a normal finitely generated
effectively graded (rk M + 1)-dimensional domain. Conversely, for each nor-
mal finitely generated domain A with a grading of complexity one there exist
a smooth curve C and a proper o-polyhedral divisor ©® on C such that A is
isomorphic to A[C,D].

(2) The M-graded domains Spec A[C, D] and Spec A[C,®’] are isomorphic if

and only if for every z € C there exists a lattice vector v, € N such that

9233/-1—2(1}2—1-0)-,2,
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and for all m € wyy the divisor Y (v, m) - z is principal.
V4

The following result is obtained in [T, Section 11].

PROPOSITION 1. Let ® be a proper o-polyhedral divisor on a smooth curve C,
X = Spec A[C, D], and T x X — X be the corresponding torus action. Then
this action can be realized as a subtorus action an a toric variety if and only if
either C = A' and ® can be chosen supported in at most one point, or C' = P!
and ® can be chosen supported in at most two points.

Also we need a description of homogeneous LNDs of horizontal type for a T-
variety X of complexity one from [22]. Below we follow the approach given
in [7]. We have K[X] = A[C,D] for some C' and ©. It turns out that C is
isomorphic to Al or P! whenever there exists a homogeneous LND of horizontal
type on A[C, D], see [22] Lemma 3.15].

Let C be A! or P}, ® = > A, -2 a o-polyhedral divisor on C, zy € C,
zeC
200 € O\{20}, and v, a vertex of A, for every z € C. Put C' = C if C = A!

and €’ = C\{zs0} if C = P! A collection D = {D, zo;v,,Vz € C} if C = Al
and D = {D, 20, 200; V2, V2 € C'} if C = P! is called a colored o-polyhedral
divisor on C' if the following conditions hold:
(%) vdeg := Y. v, is a vertex of deg®|ci= Y, Ay

zeC’ zeC’
(%%) v, € N for all z € C', z # z.
Let D be a colored o-polyhedral divisor on C' and § C Ng be the cone generated
by deg ®|cr —vgeg. Denote by ¢ C (N @ Z)g the cone generated by (4,0) and
(vz,1) if C = Al] and by (6,0), (vs,1) and (A, + Vdeg — Vs + 0, —1) if
C = P!. By definition, put d the minimal positive integer such that d-v,, € N.
A pair (5, e), where e € M, is said to be coherent if

(i) there exists s € Z such that € = (e, s) € M ® Z is a Demazure root of
the cone & with distinguished ray p = (d - v,,, d);
(i) (v,e) = 1+ (vy,e) for all z € C'\{zp} and all vertices v # v, of the
polyhedron A.;
(i) d-(v,e) = 1+ (vy,,e) for all vertices v # v,, of the polyhedron A, ;
(iv) if Y =P, then d - (v,e) > —1—d- Y. (v,,e) for all vertices v of the
z€Y’
polyhedron A, __.
It follows from [7, Theorem 1.10] that homogeneous LNDs of horizontal type

on A[C,®] are in bijection with the coherent pairs (’)5, e). Namely, let (’)5, e)
be a coherent pair. Without loss of generality we may assume that zp = 0,
Zoo =00 if C =P and v, = 0 € N for all z € C'\{20}. Let K(C) = K(¢).

Then the homogeneous LND of horizontal type corresponding to (D, e) is given
by

(1) AX™ - t") = d({vo,m) + r)X" T - ¢"T*  for all me M,r € Z.
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In particular, the vector e is the degree of the derivation J.

3. THE AFFINE CASE

Let (X,r) be an equivariant embedding of the group G = (G,,)" ! x G,
where n = dim X. In this section we assume that X is normal and affine. Let
us denote the subgroup (G,,)"~! of G by T. Since the action of 7' on X is
effective, it has complexity one and defines an effective grading of the algebra
K[X] by the lattice M. In particular, the graded algebra K[X] has the form
A[C, D] for some smooth curve C' and some proper o-polyhedral divisor on C,
where o is a cone in Ng.

Since the action of the subgroup G, commutes with T-action on X, the cor-
responding homogeneous LND on K[X] has degree zero. Moreover, the group
G acts on X with an open orbit. It implies that the Gg-action on X is of
horizontal type, and hence either C = A! or C = P!.

PROPOSITION 2. Let X = Spec A[C, D] be a T-variety of complexity one. Sup-
pose that there exists a homogeneous LND of horizontal type and of degree zero
on A[C,®]. Then
(1) if C = A, then one can assume (via Theorem ) that ® is a trivial
o-polyhedral divisor;
(2) if C =T, then one can choose ® = Ay -[0], where Ay G o is some
o-tailed polyhedron.

Proof. Let (5, 0) be the coherent pair corresponding to the homogeneous LND
of horizontal type. Without loss of generality we may assume that zgp = 0 and
Zoo = 00 if C = P'. By definition of a coherent pair, there exists s € Z such
that (0,s) is a Demazure root of the cone & with distinguished ray (dvy, d).
It implies that s = —1, d = 1, and hence vg € N. Further, the inequality
(v,0) > 1+ (v.,0) should be satisfied for every z € C’" and every vertex v # v,
of A,. It means that each polyhedron A, where z € C’, has only one vertex
v.. Replacing o-polyhedral divisor ® with ®" =D + 3" _~,(-v. +0) -z and
using Theorem [I] we obtain the assertion. The condition A, & o follows from
the fact that ® is a proper o-polyhedral divisor. O

COROLLARY 1. Under the conditions of Proposition [2 the variety X is toric
with T being a subtorus of the acting torus T.

Proof. Tt follows immediately from Propositions [I] and O

The next proposition is a specification of Corollary [l In particular, it shows
that the G4-action on X is normalized by the acting torus T.

PROPOSITION 3. Under the conditions of Proposition [,

(1) if C =Al, then X 2 Y xAl, whereY is the toric variety corresponding
to the cone o and G, acts on A! by translations;

(2) if C = P, then X is the toric variety with the cone ¢ C N @ Z
generated by (0,0), (Ax, —1) and (0,1). The G,-action on X is given
by Demazure root € = (0,—1) € M @ Z of the cone &.
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Proof. Let K(C) =K(t). If C = A! then D is trivial and
AlC,D] = @ K- x™ =Klwu] ® K[t] = K[Y] @ K[t].
mewnm

Hence X =2 Y x Al. Applying formula (I, we obtain that the homogeneous
LND is given by

2) O™ ) =™t

for all m € wys and r € Zsg. Thus G, acts on Y x Al as (y,t) — (y,t + s).
If C = P! then ® = A - [00] and we obtain

hoo(m)
AcDl= P P Kx"-t'= P K"t =Kagl,
mewyn  r=0 (m,r)ews;

where M = M & Z and @& C M@ is the cone dual to . So we see that A[C, D]
is a semigroup algebra and X is a toric variety with the cone . In this case
formula () gives the LND corresponding to the Demazure root € = (0,—1). O

4. THE COMPLETE CASE

In this section we study equivariant compactifications of the group G. First we
briefly recall the main ingredients of the Cox construction, see [4, Chapter 1]
for more details.

Let X be a normal variety with finitely generated divisor class group Cl(X)
and only constant invertible regular functions.

Suppose that C1(X) is free. Denote by WDiv(X) the group of Weil divisors on
X and fix a subgroup K € WDiv(X) which maps onto Cl(X) isomorphically.
The Cox ring of the variety X is defined as

R(X) = @) HO(X, D),
DEK

where HY(X, D) = {f € K(X) | div f + D > 0} and multiplication on homoge-
neous components coincides with multiplication in K(X) and extends to R(X)
by linearity.
If C1(X) has torsion, we choose a finitely generated subgroup K C WDiv(X)
that projects to Cl(X) surjectively. Denote by Ky C K the kernel of this
projection. Take compatible bases Dy, ..., Dg and DY = dy Dy, ..., D% = d,.D.,
in K and K respectively. Let us choose the set of rational functions F = {Fp €
K(X)* : D € Ky} such that div(Fp) = D and Fpyp = FpFp,. Suppose
that D,D’ € K and D — D’ € Ky. The map f — Fp_p/f is an isomorphism
of the vector spaces H%(X, D) and H°(X, D’). The linear span of the elements
f—Fp_p/ foverall D,D" with D— D’ € Ko and all f € H°(X, D) is an ideal
I(K,J) of the graded ring Tk (X) := @pcg H°(X,D). The Cox ring of the
variety X is given by

R(X)=Tkg(X)/I(K,TF).
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This construction does not depend on the choice of K and F, see [2, Lemma 3.1
and Proposition 3.2] and [4, Proposition 1.4.2.2].

Suppose that the Cox ring R(X) is finitely generated. Then X := Spec R(X) is
a normal affine variety with an action of the quasitorus Hx := Spec K[Cl(X)].
There is an open H x-invariant subset X C X such that the complement
7\)? is of codimension at least two in X, there exists a good quotient
px: X — X//Hx, and the quotient space X //Hx is isomorphic to X, see
[4, Construction 1.6.3.1]. So we have the following diagram

~

X —— X = Spec R(X)
l//HX

X
Let us return to equivariant compactifications of G.

PROPOSITION 4. Let G =T x G, and X be a normal compactification of G.
Then the T-action on X can be extended to an action of a bigger torus T such
that T normalizes G, and X is a toric variety with the acting torus T.

Proof. The variety X is rational with torus action of complexity one. By [4]
Theorem 4.3.1.5], the divisor class group Cl(X) and the Cox ring R(X) are
finitely generated.

There exists a finite epimorphism e¢: G — G of connected linear algebraic
groups and an action G’ x X — X which commutes with the quasitorus Hx
and px(¢'-T) = e(¢')-px (%) for all ¢’ € G’ and T € X, see [4, Theorem 4.2.3.1].
The group G’ has a form 7" x G,, where € defines a finite epimorphism of tori
T" — T and is identical on G.

Since X = Spec K[X], the action of G’ extends to the affine variety X. This
variety is an embedding of the group (7”H% ) x G,. By Proposition[3 it is toric
with an acting torus T normalizing the G,-action and 7" H$ is a subtorus of T.
Since X is complete, [25, Corollary 2.5] implies that the subset X is invariant
under the torus T. By [4, Lemma 4.2.1.3], the action of T descends to an action
of the torus T := T/H$% on X. Here T normalizes G, its action extends the
action of 7" on X, and X is toric with respect to T. ]

5. TORIC VARIETIES AND DEMAZURE ROOTS

We keep notations of Section 2l Let X be a toric variety of dimension n with
an acting torus T and ¥ be the corresponding fan of convex polyhedral cones
in the space Ng, see [I8] or [12] for details.

As before, let 3(1) be the set of rays of the fan ¥ and n, be the primitive
lattice vector on the ray p. For p € ¥(1) we consider the set S, of all vectors
e € M such that

(1) <7’Lp,€> = —1and <np/ae> 2 0 Vp/ € 0(1)7 pl 7& Ps
(2) if o is a cone of 3 and (v,e) = 0 for all v € o, then the cone generated
by o and p is in X as well.
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Note that condition (1) implies condition (2) if ¥ is a maximal fan with support
[X]. This is the case if X is affine or complete.
The elements of the set R := | |.S, are called the Demazure roots of the fan ¥,

p
cf. [I3} Définition 4] and [23] Section 3.4]. Again elements e € R are in bijection
with G,-actions on X normalized by the acting torus, see [I3, Théoreme 3]
and [23] Proposition 3.14]. If X is affine, the G,-action given by a Demazure
root e coincides with the action given by the locally nilpotent derivation 0,
of the algebra K[X] as defined in Section 2l Let us denote the image under
this action of the group G, in Aut(X) by H.. Thus H,. is a one-parameter
unipotent subgroup normalized by T in Aut(X).

We recall basic facts from toric geometry. There is a bijection between cones
o € ¥ and T-orbits O, on X such that o9 C o9 if and only if O,, C O,,.
Here dim O, = n — dim(o). Moreover, each cone o € ¥ defines an open affine
T-invariant subset U, on X such that O, is a unique closed T-orbit on U, and
01 C oy if and only if U,, C U,,.

Let pe be the distinguished ray corresponding to a root e, n. be the primitive
lattice vector on p., and R, be the one-parameter subgroup of T corresponding
to Nne.

Our aim is to describe the action of H, on X.

PROPOSITION 5. For every point x € X \ X the orbit H.x meets evactly
two T-orbits O1 and Oz on X, where dim Oy = dim Oy + 1. The intersection
Os N Hex consists of a single point, while

O1NHex=Rey forany ye€ O N Hex.

Proof. Tt follows from the proof of [23] Proposition 3.14] that the affine charts
U,, where o € ¥ is a cone containing p., are H.-invariant, and the complement
of their union is contained in X ¢  cf. [0, Lemma 2.4]. This reduces the proof
to the case X is affine. Then the assertion is proved in [6] Proposition 2.1]. [

A pair of T-orbits (O1,02) on X is said to be H.-connected if Hox C O1 U Oq
for some x € X \ X*#e. By Proposition B Oy C O; for such a pair (up
to permutation) and dim ©O; = dim O + 1. Since the torus normalizes the
subgroup H,, any point of O; U O3 can actually serve as a point x.

LEMMA 1. A pair of T-orbits (O, , O, ) is He-connected if and only if €|y, <0
and o1 1s a facet of oo given by the equation (v,e) = 0.

Proof. The proof again reduces to the affine case, where the assertion is [0
Lemma 2.2]. O

6. THE ORBIT STRUCTURE

We keep notations of the previous section. Let us begin with a construction
mentioned in the Introduction. Let X be a toric variety with the acting torus
T. Consider a non-trivial action G, x X — X normalized by T and thus
represented by a Demazure root e of the fan ¥ of X. Then T acts on G, by
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conjugation with the character e and the semidirect product T G, acts on X
as well. Let T'= Ker(e) C T and consider the group G :=T x G,.

PROPOSITION 6. The variety X is an embedding of G.

Proof. Take a point x € X whose stabilizers in T and G, are trivial. It suffices
to show that the stabilizer of x in G is trivial. To this end, note that by the
Jordan decomposition [20, Theorem 15.3] any subgroup of T' X G, is a product
of subgroups in T and G, respectively. O

Remark 1. The G-embedding of Proposition [6lis defined by the pair (X, e).
Since (ne,e) = —1, we have T =T X R,.
LEMMA 2. Any (T x G,)-invariant subset in X is also T-invariant.

Proof. Note that an orbit Tz does not coincide with the orbit Tz if and only if
the stabilizer of x in T is contained in T'. For x € O, this condition is equivalent
to e|, = 0. It shows that for every z € X%« we have Tz = Tx. If 2 € X \ XCe,
then by Proposition B the orbit G, is invariant under R.. This proves that
any orbit of (T x G,) is R.- and T-invariant, thus the assertion. O

PROPOSITION 7. Let X be a G-embedding given by a pair (X,e). Then any G-
orbit on X is either a union O1UQO4 of two T-orbits on X or a unique T-orbit;
the first possibility occurs if and only if the pair (O1,03) is H.-connected. In
particular, the number of G-orbits on X is finite.

Proof. The assertion follows directly from Lemma [2] and Proposition O

PROPOSITION 8. Let X be a G-embedding given by a pair (X,e). Then the
stabilizer of any point © € X in G is connected and the closure of any G-orbit
on X is a (normal) toric variety. If X is smooth, then the closure of any
G-orbit is smooth.

Proof. The stabilizer of a point x in G is the direct product of stabilizers in
T and in G,. An algebraic subgroup of G, is either {0} or G, itself, while
the stabilizer in T is the kernel of the (primitive) character e restricted to the
(connected) stabilizer of « in T. Thus the stabilizer of = in G is connected.

Proposition [[ shows that any G-orbit on X contains an open T-orbit, and thus
the closure of a G-orbit coincides with the closure of some T-orbit. Now the
last two assertions follow from [I8, Section 3.1]. O

Remark 2. If X contains [ torus invariant prime divisors, then the number of
G-invariant prime divisors on X is [ — 1. On a toric variety, the closure of any
torus orbit is an intersection of torus invariant prime divisors. In contrast, not
every G-orbit closure on X is an intersection of G-invariant prime divisors, see
Example
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7. THE GENERAL CASE

We are going to show that every G-embedding can be realized as in Proposi-
tion

THEOREM 2. Let G = T x G, and X be a normal equivariant G-embedding.
Then the T-action on X can be extended to an action of a bigger torus T such
that T normalizes G, and X s a toric variety with the acting torus T. In
particular, every G-embedding comes from a pair (X,¢e), where ¥ is a fan and
e is a Demazure root of .

Proof. We begin with a classical result of Sumihiro. Let X be a normal variety
with a regular action G x X — X of a linear algebraic group G. By [24]
Theorem 3], there exists a normal complete G-variety X such that X can be
embedded equivariantly as an open subset of X. In other words, X is an
equivariant compactification of X.

Let X be a normal embedding of G and X be an equivariant compactification
of X. By Proposition @] the T-action on X can be extended to an action of
a bigger torus T such that T normalizes G, and X is a toric variety with the
acting torus T. Since the subset X C X is (T' x G,)-invariant, it is invariant
under T, see Lemma Pl This provides the desired structure of a toric variety
on X. g

PROPOSITION 9. A complete toric variety X admits a structure of a G-
embedding if and only if Aut(X)? # T.

Proof. The variety X admits a structure of a G-embedding if and only if
Aut(X)? contains at least one root subgroup. It is well known that the group
Aut(X)? is generated by T and root subgroups [I3, Proposition 11], [23] Sec-
tion 3.4], [I1l Corollary 4.7]. O

Consider two structures of a G-embedding on a variety X. We say that such
structures are equivalent, if there is an automorphism of X sending one struc-
ture to the other. Since the structure of a toric variety on X is unique up to
automorphism, we may assume that our two structures share the same acting
torus T and the same fan X, and are given by two roots e, e’ of ¥. Then the
structures are equivalent if and only if e can be sent to ¢’ by an automorphism
of the torus T. This leads to the following result.

PROPOSITION 10. Two structures of a G-embedding given by pairs (3,¢e) and
(3,¢€') are equivalent if and only if there is an automorphism ¢ of the lattice N
which preserves the fan X and such that the induced automorphism ¢* of the
dual lattice M sends e to €'.

Let us finish with explicit examples of G-embeddings into a given variety.

EXAMPLE 2. We find all structures of G-embeddings on A2. The cone of A?
as a toric variety is @220. The set of Demazure roots of Qéo is

R = {(—1,k) | ke Z}Q} L {(k, —1) | ke 220},
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see Examplell The G-action on A? corresponding to the root (—1, k) is given
by
(3) (ta S) o (:Cla :CQ) = (thl + Sthlga t$2)a

where (z1,72) € A%, s € G,, and t € K*. If k # 0, then there is a line of
G-fixed points and the stabilizer of a non-zero point on this line is a cyclic
group of order k. If k = 0, then there is no G,-fixed point. So formula (B]) gives
non-equivalent G-actions for different k. With k # 0 we have three G-orbits
on A2, while for k£ = 0 there are two G-orbits.

Note that G-actions defined by the roots (k, —1) and (—1, k) are equivalent via
the automorphism x; <> x5 of A2.

EXAMPLE 3. Let X = P2 It is a complete toric variety with a fan ¥ generated
by the vectors (1,0), (0,1) and (—1,—1):

No Mg  e5 g
[ ) ®
€1
€4
® [ )
€3 €9

The set of Demazure roots is
9% = {61 = (1,0),62 = (1, —1),63 = (0, —1),
es = (—1,0),e5 = (—1,1),e6 = (0,1)}.

We see that for any ¢ and j there exists isomorphism of the fan ¥ sending e;
to ej. So any G-embedding into P? is equivalent to

(t,8) 020 : 21 : 22] = [tzo + stz1 : tz1 : 29).
This time seven T-orbits glue to five G-orbits.

ExaMPLE 4. Consider the Hirzebruch surface F;. The corresponding complete
fan ¥ is generated by the vectors (1,0), (0,1), (0,—1), and (—1,1):
No Mq ‘

€3 €4
[ ] [ ]

€2 €1

The set of Demazure roots is
R = {61 = (1,0),62 = (—1,0),63 = (0, 1),64 = (1, 1)}

By an automorphism, we can send e; to ez and eg to e4. For the first equivalence
class we have six G-orbits, while in the second one the number of G-orbits is
seven.
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