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1. Introduction

Let p be an odd prime. In this paper we study the reductions of two-dimensional
crystalline p-adic representations of the local Galois group GQp

. The answer is
known when the weight k is smaller than 2p+ 1 [E92], [B03a], [B03b] or when
the slope is greater than ⌊k−2

p−1 ⌋ [BLZ04]. The answer is also known if the slope

is small, that is, in the range (0, 1) [BG09], [G10], [BG13]. Here we treat the
next range of fractional slopes (1, 2), for all weights k ≥ 2.
Let E be a finite extension field of Qp and let v be the valuation of Q̄p nor-
malized so that v(p) = 1. Let ap ∈ E with v(ap) > 0 and let k ≥ 2. Let Vk,ap
be the irreducible crystalline representation of GQp

with Hodge-Tate weights
(0, k − 1) such that Dcris(V

∗
k,ap

) = Dk,ap , where Dk,ap = Ee1 ⊕ Ee2 is the

filtered ϕ-module as defined in [B11, §2.3]. Let V̄k,ap be the semisimplification

of the reduction of Vk,ap , thought of as a representation over F̄p.
Let ω = ω1 and ω2 denote the fundamental characters of level 1 and 2 re-
spectively, and let ind(ωa2 ) denote the representation of GQp

obtained by in-
ducing the character ωa2 from GQ

p2
. Let unr(x) be the unramified character

of GQp
taking (geometric) Frobenius at p to x ∈ F̄∗

p. Then, a priori, V̄k,ap
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is isomorphic either to ind(ωa2 ) ⊗ unr(λ) or unr(λ)ωa ⊕ unr(µ)ωb, for some a,
b ∈ Z and λ, µ ∈ F̄∗

p. The former representation is irreducible on GQp
when

(p + 1) ∤ a, whereas the latter is reducible on GQp
. The following theorem

describes V̄k,ap when 1 < v(ap) < 2. Since the answer is known completely for
weights k ≤ 2p+ 1, we shall assume that k ≥ 2p+ 2.

Theorem 1.1. Let p ≥ 3. Let 1 < v(ap) < 2 and k ≥ 2p+2. Let r = k− 2 ≡ b
mod (p− 1), with 2 ≤ b ≤ p. When b = 3 and v(ap) =

3
2 , assume that

(⋆) v(a2p −
(

r − 1

2

)

(r − 2)p3) = 3.

Then, V̄k,ap has the following shape on GQp
:

b = 2 =⇒
{

ind(ωb+1
2 ), if p ∤ r(r − 1)

ind(ωb+p2 ), if p | r(r − 1),

3 ≤ b ≤ p− 1 =⇒
{

ind(ωb+p2 ), if p ∤ r − b

ind(ωb+1
2 ), if p | r − b,

b = p =⇒
{

ind(ωb+p2 ), if p2 ∤ r − b

unr(
√
−1)ω ⊕ unr(−

√
−1)ω, if p2 | r − b.

Using the theorem, and known results for 2 ≤ k ≤ 2p+ 1, we obtain:

Corollary 1.2. Let p ≥ 3. If k ≥ 2 is even and v(ap) lies in (1, 2), then V̄k,ap
is irreducible.

It is in fact conjectured [BG15, Conj. 4.1.1] that if k is even and v(ap) is non-
integral, then the reduction V̄k,ap is irreducible on GQp

. This follows for slopes

in (0, 1) by [BG09]. Theorem 1.1 shows that V̄k,ap can be reducible on GQp
for

slopes in (1, 2) only when b = p or b = 3 (or both). Since k is clearly odd in
these cases, the corollary follows.
Let ρf : Gal(Q̄/Q) → GL2(E) denote the global Galois representation attached
to a primitive cusp form f =

∑

anq
n ∈ Sk(Γ0(N)) of (even) weight k ≥ 2 and

level N coprime to p. It is known that ρf |GQp
is isomorphic to Vk,ap , at least

if a2p 6= 4pk−1. This condition always holds for slopes in (1, 2) except possibly

when k = 4 and ap = ±2p
3
2 . Since it is expected to hold generally, we assume

it. We obtain:

Corollary 1.3. Let p ≥ 3. If the slope of f at p lies in (1, 2), then ρ̄f |GQp
is

irreducible.

Remark 1.4. Here are several remarks.

• Theorem 1.1 treats all weights for slopes in the range (1, 2), subject to
a hypothesis. It builds on [GG15, Thm. 2], which treated weights less
than p2 − p.
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• The hypothesis (⋆) in the theorem applies only when b = 3 and v(ap) =
3
2 and is mild in the sense that it holds whenever the unit

a2p
p3 and

(

r−1
2

)

(r − 2) have distinct reductions in F̄p.
• The theorem agrees with all previous results for weights 2 < k ≤ 2p+1
described in [B11, Thm. 5.2.1] when specialized to slopes in (1, 2). It
could therefore be stated for all weights k > 2. We note that (⋆) is
satisfied for weights k ≤ 2p+ 1, except possibly for k = 5.

• When b = p and p2 | r − b, the theorem shows that V̄k,ap is always
reducible if p ≥ 5 (and under the hypothesis (⋆) when p = 3). This
is a new phenomenon not occurring for slopes in (0, 1). When b = 3,
v(ap) =

3
2 and (⋆) fails, we expect that V̄k,ap might also be reducible

in some cases, by analogy with the main result of [BG13].
• Fix k, ap and b = b(k) as in Theorem 1.1. Then the theorem implies
the following local constancy result: for any other weight k′ ≥ 2p + 2
with k′ ≡ k mod p1+v(b)(p − 1), the reduction V̄k′,ap is isomorphic to

V̄k,ap , except possibly if v(ap) =
3
2 and b = 3. We refer to [B12, Thm.

B] for a general local constancy result for any positive slope.

The proof of Theorem 1.1 uses the p-adic and mod p Local Langlands Cor-
respondences due to Breuil, Berger, Colmez, Dospinescu, Paškūnas [B03a],
[B03b], [BB10], [C10], [CDP14], [P13], and an important compatibility between
them with respect to the process of reduction [B10]. The general strategy is
due to Breuil and Buzzard-Gee and is outlined in [B03b], [BG09], [GG15]. We
briefly recall it now and explain several new obstacles we must surmount along
the way.
Let G = GL2(Qp), K = GL2(Zp) be the standard maximal compact subgroup
of G and Z = Q∗

p be the center of G. Consider the locally algebraic represen-
tation of G

Πk,ap =
indGKZSym

rQ̄2
p

T − ap
,

where r = k− 2, indGKZ is compact induction and T is the Hecke operator, and
consider the lattice in Πk,ap given by

Θk,ap := image
(

indGKZSym
rZ̄2

p → Πk,ap

)

(1.1)

∼=
indGKZSym

rZ̄2
p

(T − ap)(ind
G
KZSym

rQ̄2
p) ∩ indGKZSym

rZ̄2
p

.

It is known that the semisimplification of the reduction of this lattice satisfies
Θ̄ss
k,ap

≃ LL(V̄k,ap), where LL is the (semisimple) mod p Local Langlands Corre-

spondence of Breuil [B03b]. One might require here the conditions a2p 6= 4pk−1

and ap 6= ±(1+ p)p(k−2)/2, see [BB10], but these clearly hold if k ≥ 2p+2 and
v(ap) < 2. By the injectivity of the mod p Local Langlands Correspondence,
Θ̄ss
k,ap

determines V̄k,ap completely, and so it suffices to compute Θ̄k,ap .
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Let Vr = SymrF̄2
p be the usual symmetric power representation of Γ := GL2(Fp)

(hence of KZ, with p ∈ Z acting trivially). Clearly there is a surjective map

indGKZVr ։ Θ̄k,ap ,(1.2)

for r = k − 2. Write Xk,ap for the kernel. A model for Vr is the space of all

homogeneous polynomials of degree r in the two variablesX and Y over F̄p with
the standard action of Γ. Let Xr−1 ⊂ Vr be the Γ- (hence KZ-) submodule
generated by Xr−1Y . Let V ∗

r and V ∗∗
r be the submodules of Vr consisting

of polynomials divisible by θ and θ2 respectively, for θ := XpY − XY p. If
r ≥ 2p+ 1, then Buzzard-Gee have shown [BG09, Rem. 4.4]:

• v(ap) > 1 =⇒ indGKZ Xr−1 ⊂ Xk,ap ,

• v(ap) < 2 =⇒ indGKZ V
∗∗
r ⊂ Xk,ap .

The proof of Theorem 1.1 for k = 2p+2 is known (cf. [GG15, §2]) and involves
slightly different techniques, so for the rest of this introduction assume that
r ≥ 2p + 1. It follows that when 1 < v(ap) < 2, the map (1.2) induces a

surjective map indGKZ Q։ Θ̄k,ap , where

Q :=
Vr

Xr−1 + V ∗∗
r

.

To proceed further, one needs to understand the ‘final quotient’ Q. It is not
hard to see that a priori Q has up to 3 Jordan-Hölder factors as a Γ-module.
The exact structure of Q is derived in §3 to §6 by giving a complete description
of the submodule Xr−1 and understanding to what extent it intersects with
V ∗∗
r . When 0 < v(ap) < 1, the relevant ‘final quotient’ in [BG09] is always

irreducible allowing the authors to compute the reduction (up to separating
out some reducible cases) using the useful general result [BG09, Prop. 3.3].
When 1 < v(ap) < 2, we show Q is irreducible if and only if

• b = 2, p ∤ r(r − 1) or b = p, p ∤ r − b,

and we obtain V̄k,ap immediately in these cases (Theorem 8.1).
Generically, the quotient Q has length 2 when 1 < v(ap) < 2. In fact, we
show that Q has exactly two Jordan-Hölder factors, say J and J ′, in the cases
complementary to those above

• b = 2, p | r(r − 1) or b = p, p | r − b,

as well as in the generic case

• 3 ≤ b ≤ p− 1 and p ∤ r − b.

We now use the Hecke operator T to ‘eliminate’ one of J or J ′. Something
similar was done in [B03b] and [GG15] for bounded weights. That this can be
done for all weights is one of the new contributions of this paper (see §8). It

involves constructing certain rational functions f ∈ indGKZSym
rQ̄2

p, such that

(T − ap)f ∈ indGKZSym
rZ̄2

p is integral, with reduction mapping to a simple

function in say indGKZ J
′ that generates this last space of functions as a G-

module. As (T −ap)f lies in the denominator of the expression (1.1) describing
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Θk,ap , its reduction lies in Xk,ap . Thus we obtain a surjection indGKZ J ։ Θ̄k,ap
and can apply [BG09, Prop. 3.3] again. For instance, let

J1 = Vp−b+1 ⊗Db−1 and J2 = Vp−b−1 ⊗Db,

where D denotes the determinant character. Then in the latter (generic) case
above, Q ∼= J1⊕J2 is a direct sum. We construct a function f which eliminates

J ′ = J2 so that J = J1 survives, showing that V̄k,ap
∼= ind(ωb+p2 ) (Theorem

8.3).
The situation is more complicated when Q has 3 Jordan-Hölder factors, namely
J0 = Vb−2 ⊗D, in addition to J1 and J2 above. That this happens at all came
as a surprise to us since it did not happen in the range of weights considered
in [GG15]. We show that this happens for the first time when r = p2 − p+ 3,
and in general whenever

• 3 ≤ b ≤ p− 1 and p | r − b.

This time we construct functions f killing J0 and J1 (except when b = 3,
v(ap) =

3
2 and v(a2p − p3) > 3), so that J2 survives instead, and the reduction

becomes ind(ωb+1
2 ) (Theorems 8.6, 8.7). Since J2 was also the ‘final quotient’ in

[BG09], the reduction in these cases is the same as the generic answer obtained
for slopes in (0, 1).
As a final twist in the tale, we remark that even though one can eliminate all
but 1 Jordan-Hölder factor J , one needs to further separate out the reducible
cases when J = Vp−2 ⊗Dn, for some n. This happens in three cases:

• b = 3, p ∤ r − b,
• b = p = 3, p || r − b,
• b = p, p2 | r − b.

In §9 we construct additional functions and use them to show that the map
indGKZ J ։ Θ̄k,ap factors either through the cokernel of T or the cokernel of

T 2 − cT + 1, for some c ∈ F̄p, and then apply the mod p Local Langlands
Correspondence directly to compute V̄k,ap , as was done in [B03b], [BG13]. In
the first two cases, we show that the map above factors through the cokernel
of T so that the reducible case never occurs. We work under the assumption
(⋆), namely if v(ap) = 3

2 , then v(a2p −
(

r−1
2

)

(r − 2)p3) is equal to 3, which is
the generic sub-case (Theorem 9.1). On the other hand, in the third case we
show that if p ≥ 5 or if p = 3 = b and (⋆) holds, then the map factors through
the cokernel of T 2 + 1, so that V̄k,ap is reducible and is as in Theorem 1.1
(Theorem 9.2).
One of the key ingredients that go into the proof of Theorem 1.1 is a complete
description of the structure of the submodule Xr−1 of Vr. We give its structure
now as the result might be of some independent interest. To avoid technicalities,
we state the following theorem in a weaker form than what we actually prove.
Let M := M2(Fp) be the semigroup of all 2× 2 matrices over Fp and consider
Vr as a representation of M , with the obvious extension of the action of Γ =
GL2(Fp) on it.
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Theorem 1.5. Let p ≥ 3. Let r ≥ 2p + 1 and let Xr−1 = 〈Xr−1Y 〉 be
the M -submodule of Vr generated by the second highest monomial. Then
2 ≤ length Xr−1 ≤ 4, as an M -module. More precisely, if 2 ≤ b ≤ p − 1,
then Xr−1 fits into the exact sequence of M -modules

Vp−b+1 ⊗Db−1 ⊕ Vp−b−1 ⊗Db → Xr−1 → Vb−2 ⊗D ⊕ Vb → 0,

and if b = p, then

V1 ⊗Dp−1 → Xr−1 →W → 0,

where W is a quotient of the length 3 M -module V2p−1.

Theorem 1.5 is proved for representations defined over Fp in §3 and §4 using
results of Glover [G78]. Here we have stated the corresponding result after
extending scalars to F̄p. We recall that V ∗

r is the largest singularM -submodule
of Vr [G78, (4.1)]. It is the M -module structure of Xr−1 given in the theorem
rather than just the Γ-module structure that plays a key role in understanding
how Xr−1 intersects with V ∗

r and V ∗∗
r .

A more precise description of the structure of Xr−1 can be found in Propo-
sitions 3.13 and 4.9. There we show that the Jordan-Hölder factors in The-
orem 1.5 that actually occur in Xr−1 are completely determined by the sum
of the p-adic digits of an integer related to r. As a corollary, we obtain the
following curious formula for the dimension of Xr−1 in all cases.

Corollary 1.6. Let p ≥ 3 and let r ≥ 2p+ 1. Write r = pnu, with p ∤ u. Set
δ = 0 if r = u and δ = 1 otherwise. Let Σ be the sum of the digits of u− 1 in
its base p expansion. Then

dimXr−1 =

{

2Σ + 2 + δ(p+ 1− Σ), if Σ ≤ p− 1

2p+ 2, if Σ > p− 1.

2. Basics

2.1. Hecke operator T . Recall G = GL2(Qp) and KZ = GL2(Zp)Q∗
p is

the standard compact mod center subgroup of G. Let R be a Zp-algebra
and let V = SymrR2 ⊗ Ds be the usual symmetric power representation of
KZ twisted by a power of the determinant character D (with p ∈ Z acting
trivially), modeled on homogeneous polynomials of degree r in the variables

X , Y over R. For g ∈ G, v ∈ V , let [g, v] ∈ indGKZV be the function with
support in KZg−1 given by

g′ 7→
{

g′g · v if g′ ∈ KZg−1

0 otherwise.

Any function in indGKZV is a finite linear combination of functions of the form
[g, v], for g ∈ G and v ∈ V . The Hecke operator T is defined by its action on
these elementary functions via

(2.1) T ([g, v]) =
∑

λ∈Fp

[

g
(

p [λ]
0 1

)

, v (X,−[λ]X + pY )
]

+
[

g
(

1 0
0 p

)

, v(pX, Y )
]

,
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where v = v(X,Y ) ∈ V and [λ] denotes the Teichmüller representative of

λ ∈ Fp. We will always denote the Hecke operator acting on indGKZV for
various choices of R = Z̄p, Q̄p or F̄p and for different values of r and s by T ,
as the underlying space will be clear from the context.

2.2. The mod p Local Langlands Correspondence. Let V be a weight,
i.e., an irreducible representation of GL2(Fp), thought of as a representation of
KZ by inflating to GL2(Zp) and making p ∈ Q∗

p act trivially. Let Vr = SymrF̄2
p

be the r-th symmetric power of the standard two-dimensional representation
of GL2(Fp) on F̄2

p. The set of weights V is exactly the set of modules Vr ⊗Di,

for 0 ≤ r ≤ p− 1 and 0 ≤ i ≤ p− 2. For 0 ≤ r ≤ p− 1, λ ∈ F̄p and η : Q∗
p → F̄∗

p

a smooth character, let

π(r, λ, η) :=
indGKZVr
T − λ

⊗ (η ◦ det)

be the smooth admissible representation of G, where indGKZ is compact induc-
tion and T is the Hecke operator defined above; T generates the Hecke algebra
EndG(ind

G
KZ Vr) = F̄p[T ]. With this notation, Breuil’s semisimple mod p Local

Langlands Correspondence [B03b, Def. 1.1] is given by:

• λ = 0: ind(ωr+1
2 )⊗ η

LL7−→ π(r, 0, η),

• λ 6= 0:
(

ωr+1unr(λ)⊕ unr(λ−1)
)

⊗ η

LL7−→ π(r, λ, η)ss ⊕ π([p− 3− r], λ−1, ηωr+1)ss,

where {0, 1, . . . , p − 2} ∋ [p − 3 − r] ≡ p − 3 − r mod (p − 1). It is clear
from the classification of smooth admissible irreducible representations of G
by Barthel-Livné [BL94] and Breuil [B03a], that this correspondence is not
surjective. However, the map “LL” above is an injection and so it is enough
to know LL(V̄k,ap ) to determine V̄k,ap .

2.3. Modular representations of M and Γ. In order to make use of re-
sults in Glover [G78], let us abuse notation a bit and let Vr be the space of
homogeneous polynomials F (X,Y ) in two variables X and Y of degree r with
coefficients in the finite field Fp, rather than in F̄p. For the next few sections
(up to §6) we similarly consider all subquotients of Vr as representations de-
fined over Fp. This is not so serious as once we have established the structure
of Xr−1 or Q over Fp, it immediately implies the corresponding result over
F̄p, by extension of scalars. Let M be the semigroup M2(Fp) under matrix
multiplication. Then M acts on Vr by the formula

(

a b
c d

)

· F (X,Y ) = F (aX + cY, bX + dY ),

making Vr an M -module, or more precisely, an Fp[M ]-module. One has to be
careful with the notation Vr while using results from [G78] as Glover indexed
the symmetric power representations by dimension instead of the degree of the
polynomials involved. In this paper, Vr always has dimension r + 1.
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We denote the set of singular matrices by N ⊆ M . An Fp[M ]-module V is
called ‘singular’, if each matrix t ∈ N annihilates V , i.e., if t · V = 0, for all
t ∈ N . The largest singular submodule of an arbitrary Fp[M ]-module V is
denoted by V ∗. Note that any M -linear map must take a singular submodule
(of its domain) to a singular submodule (of the range). This simple observation
will be very useful for us.
Let Xr and Xr−1 be the Fp[M ]-submodules of Vr generated by the monomials
Xr and Xr−1Y respectively. One checks that Xr ⊂ Xr−1 and are spanned by
the sets {Xr , (kX + Y )r : k ∈ Fp} and {Xr, Y r, X(kX + Y )r−1, (X + lY )r−1Y :

k, l ∈ Fp} respectively [GG15, Lem. 3]. Thus we have dimXr ≤ p + 1 and
dimXr−1 ≤ 2p+ 2. We will describe the explicit structure of the modules Xr

and Xr−1, according to the different congruence classes a ∈ {1, 2, . . . , p − 1}
with r ≡ a mod (p − 1). It will also be convenient to use the representatives
b ∈ {2, . . . , p− 1, p} of the congruence classes of r mod (p− 1).
For s ∈ N, we denote the sum of the digits of s in its base p expansion by
Σp(s). It is easy to see that Σp(s) ≡ s mod (p − 1), for any s ∈ N. Let us
write r = pnu, where n = v(r) and hence p ∤ u. The sum Σp(u− 1) plays a key
role in the study of the module Xr−1. For r ≡ a mod (p − 1), observe that
the sum Σp(u− 1) ≡ a− 1 mod (p− 1), therefore it varies discretely over the
infinite set {a− 1, p+ a− 2, 2p+ a− 3, · · · }.
Let θ = θ(X,Y ) denote the special polynomial XpY −XY p. For r ≥ p+1, we
know [G78, (4.1)]

V ∗
r := {F ∈ Vr : θ | F} ∼=

{

0, if r ≤ p

Vr−p−1 ⊗D, if r ≥ p+ 1

is the largest singular submodule of Vr. We define V ∗∗
r , another important

submodule of Vr, by

V ∗∗
r := {F ∈ Vr : θ

2 | F} ∼=
{

0, if r < 2p+ 2

Vr−2p−2 ⊗D2, if r ≥ 2p+ 2.

Note that V ∗∗
r is obviously not the largest singular submodule of V ∗

r .
Next we introduce the submodules

X∗
r := Xr ∩ V ∗

r , X
∗∗
r := Xr ∩ V ∗∗

r , X∗
r−1 := Xr−1 ∩ V ∗

r , X
∗∗
r−1 := Xr−1 ∩ V ∗∗

r .

It follows that X∗
r and X∗

r−1 are the largest singular submodules inside Xr and
Xr−1 respectively. The group GL2(Fp) ⊆ M is denoted by Γ. For r ≥ 2p+ 1,
we will study the Γ-module structure of

Q :=
Vr

Xr−1 + V ∗∗
r

.

We will be particularly interested in the bottom row of the following commu-
tative diagram of M -modules (hence also of Γ-modules):
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0

��

0

��

0

��

0 //
X∗
r−1

X∗∗
r−1

��

//
Xr−1

X∗∗
r−1

��

//
Xr−1

X∗
r−1

��

// 0

0 //
V ∗
r

V ∗∗
r

//

��

Vr
V ∗∗
r

��

//
Vr
V ∗
r

//

��

0

0 //
V ∗
r

V ∗∗
r +X∗

r−1

//

��

Q //

��

Vr
V ∗
r +Xr−1

��

// 0.

0 0 0

(2.2)

Proposition 2.1. Let p ≥ 3 and r ≥ p, with r ≡ a mod (p− 1), for 1 ≤ a ≤
p− 1. Then the Γ-module structure of Vr/V

∗
r is given by

0 → Va → Vr
V ∗
r

→ Vp−a−1 ⊗Da → 0.(2.3)

The sequence splits as a sequence of Γ-modules if and only if a = p− 1.

Proof. For r ≥ p, we obtain that Vr/V
∗
r
∼= Va+p−1/V

∗
a+p−1, using [G78, (4.2)].

The exact sequence then follows from [B03b, Lem. 5.3]. Note that it must split
when a = p− 1, as Vp−1 is an injective Γ-module. The fact that it is non-split
for the other congruence classes can be derived from the Γ-module structure of
Va+p−1 (see, e.g., [G78, (6.4)] or [GG15, Thm. 5]). �

Proposition 2.2. Let p ≥ 3 and 2p + 1 ≤ r ≡ a mod (p − 1), with 1 ≤ a ≤
p− 1. Then the Γ-module structure of V ∗

r /V
∗∗
r is given by

0 → Vp−2 ⊗D → V ∗
r

V ∗∗
r

→ V1 → 0, if a = 1,(2.4)

0 → Vp−1 ⊗D → V ∗
r

V ∗∗
r

→ V0 ⊗D → 0, if a = 2,(2.5)

0 → Va−2 ⊗D → V ∗
r

V ∗∗
r

→ Vp−a+1 ⊗Da−1 → 0, if 3 ≤ a ≤ p− 1,(2.6)

and the sequences split if and only if a = 2.

Proof. We use [G78, (4.1)] to get that V ∗
r /V

∗∗
r

∼= (Vr−p−1/V
∗
r−p−1)⊗D. Since

p ≤ r− p− 1 by hypothesis, we apply Proposition 2.1 to deduce the Γ-module
structure of (Vr−p−1/V

∗
r−p−1)⊗D. �
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The following lemma will be used many times throughout the article to deter-
mine if certain polynomials F ∈ Vr are divisible by θ or θ2. We skip the proof
since it is elementary.

Lemma 2.3. Suppose F (X,Y ) =
∑

0≤j≤r

cj · Xr−jY j ∈ Fp[X,Y ] is such that

cj 6= 0 implies j ≡ a mod (p− 1), for some fixed a ∈ {1, 2, · · · , p− 1}. Then

(i) F ∈ V ∗
r if and only if c0 = cr = 0 and

∑

j

cj = 0 in Fp.

(ii) F ∈ V ∗∗
r if and only if c0 = c1 = cr−1 = cr = 0 and

∑

j

cj =
∑

j

jcj = 0

in Fp.

2.4. Reduction of binomial coefficients. In this article, the mod p re-
ductions of binomial coefficients play a very important role. We will repeatedly
use the following theorem and often refer to it as Lucas’ theorem, as it was
proved by E. Lucas in 1878.

Theorem 2.4. For any prime p, let m and n be two non-negative integers
with p-adic expansions m = mkp

k + mk−1p
k−1 + · · · + m0 and n = nkp

k +
nk−1p

k−1 + · · · + n0 respectively. Then
(

m
n

)

≡
(

mk

nk

)

·
(

mk−1

nk−1

)

· · ·
(

m0

n0

)

mod p,

with the convention that
(

a
b

)

= 0, if b > a.

The following elementary congruence mod p will also be used in the text. For
any i ≥ 0,

p−1
∑

k=0

ki ≡
{

−1, if i = n(p− 1), for some n ≥ 1,

0, otherwise (including the case i = 0, as 00 = 1).

This follows from the following frequently used fact in characteristic zero. For
any i ≥ 0,

(2.7)
∑

λ∈Fp

[λ]i =











p, if i = 0,

p− 1, if i = n(p− 1) for some n ≥ 1,

0, if (p− 1) ∤ i,

where [λ] ∈ Zp is the Teichmüller representative of λ ∈ Fp.
We now state some important congruences, leaving the proofs to the reader
as exercises. These technical lemmas are used in checking the criteria given in
Lemma 2.3, and also in constructing functions f ∈ indGKZ SymrQ̄2

p with certain
desired properties (cf. §7, §8 and §9).

Lemma 2.5. For r ≡ a mod (p− 1), with 1 ≤ a ≤ p− 1, we have

Sr :=
∑

0<j <r,
j≡ a mod (p−1)

(

r

j

)

≡ 0 mod p.

Moreover, we have
1

p
Sr ≡

a− r

a
mod p, for p > 2.
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Lemma 2.6. Let r ≡ b mod (p− 1), with 2 ≤ b ≤ p. Then we have

Tr :=
∑

0< j <r−1,
j≡ b−1 mod (p−1)

(

r

j

)

≡ b− r mod p.

Lemma 2.7. Let p ≥ 3, r ≡ 1 mod (p− 1), i.e., b = p with the notation above.
If p | r, then

Sr :=
∑

1< j <r,
j≡ 1 mod (p−1)

(

r

j

)

=
∑

0< j <r−1,
j≡ 0 mod (p−1)

(

r

j

)

≡ (p− r) mod p2.

3. The case r ≡ 1 mod (p− 1)

In this section, we compute the Jordan-Hölder (JH) factors of Q as a Γ-module,
when r ≡ 1 mod (p− 1). This is the case a = 1 and b = p, with the notation
above.

Lemma 3.1. Let p ≥ 3, r > 1 and let r ≡ 1 mod (p− 1).

(i) If p ∤ r, then X∗
r /X

∗∗
r

∼= Vp−2 ⊗D, as a Γ-module.
(ii) If p | r, then X∗

r /X
∗∗
r = 0.

Proof. (i) Consider the polynomial F (X,Y ) =
∑

k∈Fp

(kX + Y )r ∈ Xr. We have

F (X,Y ) =
r

∑

j=0

(

r

j

)

·
∑

k∈Fp

kr−j ·Xr−jY j ≡
∑

0≤j < r,
j≡ 1 mod (p−1)

−
(

r

j

)

·Xr−jY j mod p.

The sum of the coefficients of F (X,Y ) is congruent to 0 mod p, by Lemma
2.5. Applying Lemma 2.3, we get that F (X,Y ) ∈ V ∗

r . As p ∤ r, the co-
efficient of Xr−1Y in F (X,Y ) is −r 6≡ 0 mod p. Hence F (X,Y ) /∈ V ∗∗

r

and so F (X,Y ) has non-zero image in X∗
r /X

∗∗
r . For r = 2p − 1, we have

0 6= X∗
r /X

∗∗
r ⊆ V ∗

r /V
∗∗
r

∼= Vp−2⊗D, which is irreducible and the result follows.
If r ≥ 3p− 2, then V ∗

r /V
∗∗
r has dimension p+ 1, but [G78, (4.5)] implies that

dimX∗
r � dimXr ≤ p+1. So we have 0 6= X∗

r /X
∗∗
r ( V ∗

r /V
∗∗
r . Now it follows

from Proposition 2.2 that X∗
r /X

∗∗
r

∼= Vp−2 ⊗D.

(ii) Write r = pnu, where n ≥ 1 and p ∤ u. The map ι : Xu → Xr, defined by
ι(H(X,Y )) := H(Xpn , Y p

n

), is a well-defined M -linear surjection from Xu to
Xr. It is also an injection, as H(Xpn , Y p

n

) = H(X,Y )p
n ∈ Fp[X,Y ]. Hence

theM -isomorphism ι : Xu → Xr must take X∗
u, the largest singular submodule

of Xu, isomorphically to X∗
r .

If u = 1, then X∗
r
∼= X∗

u = 0, so X∗
r = X∗∗

r follows trivially. If u > 1, then
as p ∤ u ≡ r ≡ 1 mod (p − 1), we get u ≥ 2p− 1 and V ∗

u
∼= Vu−p−1 ⊗D. For

any F ∈ X∗
r , we have F = ι(H), for some H ∈ X∗

u. Writing H = θH ′ with
H ′ ∈ Vu−p−1, we get F = ι(H) = (θH ′)p

n

. As n ≥ 1, clearly θ2 divides F .
Therefore X∗

r ⊆ V ∗∗
r , equivalently X∗

r = X∗∗
r . �
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The p-adic expansion of r − 1 will play an important role in our study of the
module Xr−1. Write

(3.1) r − 1 = rmp
m + rm−1p

m−1 + · · · ripi,
where rj ∈ {0, 1, · · · , p− 1}, m ≥ i and rm, ri 6= 0. If i > 0, then we let rj = 0,
for 0 ≤ j ≤ i− 1.
With the notation introduced in Section 2.3, we have a = 1, so Σp(r − 1) ≡ 0
mod (p− 1). Excluding the case r = 1, note that the smallest possible value of
Σp(r− 1) is p− 1. Also recall that the dimension of Xr−1 is bounded above by
2p+2 and a standard generating set is given by {Xr, Y r, X(kX+Y )r−1, (X+
lY )r−1Y : k, l ∈ Fp}, over Fp.
Lemma 3.2. For p ≥ 2, if p ≤ r ≡ 1 mod (p− 1) and Σ = Σp(r − 1) = p− 1,
then
p−1
∑

k=0

X(kX + Y )r−1 ≡ −Xr and

p−1
∑

l=0

(X + lY )r−1Y ≡ −Y r mod p.

As a consequence, dimXr−1 ≤ 2p.

Proof. It is enough to show one of the congruences, since the other will then
follow by applying the matrix w = ( 0 1

1 0 ) to it. We compute that

F (X,Y ) =

p−1
∑

k=0

X(kX+Y )r−1 ≡
∑

0<s<r
s≡0 mod (p−1)

−
(

r − 1

s

)

·Xs+1Y r−1−s mod p.

We claim that if 0 < s < r− 1 and s ≡ 0 mod (p− 1), then
(

r−1
s

)

≡ 0 mod p.

The claim implies that F (X,Y ) ≡ −
(

r−1
r−1

)

·Xr ≡ −Xr mod p, as required.
Proof of claim: Let s = smp

m + · · ·+ s1p+ s0 be the p-adic expansion of s <
r− 1, where m is as in the expansion (3.1) above. Since s ≡ 0 mod (p− 1), we
have Σp(s) ≡ 0 mod (p−1) too. If

(

r−1
s

)

6≡ 0 mod p, then by Lucas’ theorem
0 ≤ sj ≤ rj , for all j. Taking the sum, we get that 0 ≤ Σp(s) ≤ Σ = p − 1.
But since s > 0, Σp(s) has to be a strictly positive multiple of p − 1, and so
it is p − 1. Hence sj = rj , for all j ≤ m, and we have s = r − 1, which is a
contradiction. �

We observe that p | r if and only if r0 = p − 1 in (3.1). Therefore if Σ =
Σp(r − 1) = r0 + · · · + rm = p − 1, then the condition p | r is equivalent
to r = p. Our next proposition treats the case Σ = p − 1, and to avoid the
possibility of p dividing r, we exclude the case r = p. The fact that p ∤ r will
be used crucially in the proof. This does not matter, as eventually we wish to
compute Q for r ≥ 2p+ 1.

Proposition 3.3. For p ≥ 2, if p < r ≡ 1 mod (p− 1) and Σ = Σp(r − 1) =
p− 1, then

(i) Xr−1
∼= V2p−1 as an M -module, and the M -module structure of Xr is

given by
0 → Vp−2 ⊗D → Xr → V1 → 0.
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(ii) X∗
r−1 = X∗

r
∼= Vp−2 ⊗D and X∗∗

r−1 = X∗∗
r = 0.

(iii) For r > 2p, Q has only one JH factor V1, as a Γ-module.

Proof. It is easy to check that {S(kS+T )2p−2, (S+ lT )2p−2T : k, l ∈ Fp} gives
a basis of V2p−1 over Fp. We define an Fp-linear map η : V2p−1 → Xr−1, by

η
(

S(kS + T )2p−2
)

= X(kX + Y )r−1, η
(

(S + lT )2p−2T
)

= (X + lY )r−1Y,

for k, l ∈ Fp. Note that for r ≤ p2 − p + 1, the map η is the same as the one
used in the proof of [GG15, Prop. 6]. We claim that η is in fact an M -linear
injection. By Lemma 3.2, we have

(3.2) η(S2p−1) = Xr, η(T 2p−1) = Y r.

The M -linearity can be checked on the basis elements of V2p−1 above by an
elementary computation which uses the fact that r − 1 ≡ 0 mod (p − 1) and
(3.2), so we leave it to the reader.
As a Γ-module, soc(V2p−1) = V ∗

2p−1
∼= Vp−2 ⊗ D is irreducible. Therefore if

ker η 6= 0, then it must contain the submodule V ∗
2p−1. Consider

H(S, T ) =

p−1
∑

k=0

( k 1
1 0 ) · S2p−1 = (SpT − ST p)Sp−2 ∈ V ∗

2p−1.

ByM -linearity, we have η(H) = F (X,Y ) ∈ X∗
r \X∗∗

r , where F is as in the proof
of Lemma 3.1 (i). In particular, this shows that H /∈ ker η. As V ∗

2p−1 * ker η,
we have ker η = 0.
Thus η : V2p−1 → Xr−1 is an injective M -linear map. By Lemma 3.2,
dimXr−1 ≤ 2p = dimV2p−1, forcing η to be an isomorphism. Therefore
the largest singular submodule X∗

r−1 inside Xr−1 has to be isomorphic to
V ∗
2p−1

∼= Vp−2 ⊗D, the largest singular submodule of V2p−1. Then Lemma 3.1
(i) implies that X∗

r is a non-zero submodule of X∗
r−1

∼= Vp−2⊗D, which is irre-
ducible. So we must have X∗

r = X∗
r−1. Again by Lemma 3.1 (i), X∗∗

r−1(⊇ X∗∗
r )

is a proper submodule of X∗
r−1. Hence X

∗∗
r−1 = X∗∗

r = 0.
Since dim(Xr−1/X

∗
r−1) = p + 1 = dim(Vr/V

∗
r ), the rightmost module in the

bottom row of Diagram (2.2) is 0. As the dimension of X∗
r−1/X

∗∗
r−1 is p − 1,

the leftmost module must have dimension 2. It has to be V1, as the short exact
sequence (2.4) does not split for p ≥ 3. For p = 2 and r ≥ 5, the only two-
dimensional quotient of V ∗

r /V
∗∗
r is V1, as one checks that V ∗

r /V
∗∗
r

∼= V1 ⊕ V0.
Hence we get Q ∼= V1 as a Γ-module. �

The next lemma about the dimension of Xr−1 is a special case of Lemma 4.2,
proved at the beginning of Section 4.

Lemma 3.4. For p ≥ 2, suppose p ∤ r ≡ 1 mod (p−1). If Σ = Σp(r−1) > p−1,
then dimXr−1 = 2p+ 2.

Lemma 3.5. For any r, if dimXr−1 = 2p+ 2, then dimXr = p+ 1.

Proof. Suppose Xr has dimension smaller than p+1. Then the standard span-
ning set of Xr is linearly dependent, i.e., there exist constants A, ck ∈ Fp, for
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k ∈ {0, 1, . . . , p− 1}, not all zero, such that AXr+
p−1
∑

k=0

ck(kX +Y )r = 0, which

implies that

AXr + c0Y
r +

p−1
∑

k=1

kckX(kX + Y )r−1 +

p−1
∑

k=1

ckk
r−1(X + k−1Y )r−1Y = 0.

But this shows that the standard spanning set {Xr, Y r, X(kX + Y )r−1, (X +
lY )r−1Y : k, l ∈ Fp} ofXr−1 is linearly dependent, contradicting the hypothesis
dimXr−1 = 2p+ 2. �

For any r, let us set r′ := r − 1. The trick introduced in [GG15] of using the
structure of Xr′ ⊆ Vr′ to study Xr−1 ⊆ Vr via the map φ described below,
turns out to be very useful in general.

Lemma 3.6. There exists an M -linear surjection φ : Xr′ ⊗ V1 ։ Xr−1.

Proof. The map φr′,1 : Vr′ ⊗ V1 ։ Vr sending u ⊗ v 7→ uv, for u ∈ Vr′ and
v ∈ V1, isM -linear by [G78, (5.1)]. Let φ be its restriction to theM -submodule

Xr′ ⊗V1 ⊆ Vr′ ⊗V1. The module Xr′⊗V1 is generated by Xr′⊗X and Xr′⊗Y ,
which map to Xr and Xr−1Y ∈ Xr−1 respectively. So the image of φ lands in
Xr−1 ⊆ Vr . The surjectivity follows as Xr−1Y generates Xr−1. �

Lemma 3.7. For p ≥ 3, if r ≡ 1 mod (p− 1), with Σp(r
′) > p− 1, then

(i) X∗∗
r′ = X∗

r′ has dimension 1 over Fp. In fact, it is M -isomorphic to
Dp−1.

(ii) φ(X∗
r′ ⊗ V1) ⊆ V ∗∗

r and φ(X∗
r′ ⊗ V1) ∼= V1 ⊗Dp−1.

Proof. Consider F (X,Y ) := Xr′ +
∑

k∈Fp

(kX + Y )r
′ ∈ Xr′ ⊆ Vr′ . It is easy to

see that

F (X,Y ) ≡ −
∑

0<j<r′

j≡0 mod (p−1)

(

r′

j

)

Xr′−jY j mod p.

Using Lemmas 2.3 and 2.5 we check that F (X,Y ) ∈ V ∗∗
r′ , for p ≥ 3. Since

Σp(r
′) > p− 1 or equivalently Σp(r

′) ≥ 2p− 2, using Lucas’ theorem one can

show that at least one of the coefficients
(

r′

j

)

above is non-zero mod p. So we

have 0 6= F (X,Y ) ∈ X∗∗
r′ ⊆ X∗

r′ . Since r′ ≡ p − 1 mod (p − 1), [G78, (4.5)]
gives the following short exact sequence of M -modules:

(3.3) 0 → X∗
r′ → Xr′ → Vp−1 → 0.

As dimXr′ ≤ p+1 and X∗∗
r′ 6= 0, we must have dimX∗∗

r′ = dimX∗
r′ = 1. Hence

X∗∗
r′ = X∗

r′
∼= Dn, for some n ≥ 1. Checking the action of diagonal matrices on

F (X,Y ), we get n = p− 1.
As X∗∗

r′ = X∗
r′ , each element of X∗

r′ is divisible by θ2. Therefore it follows
from the definition of the map φ that φ(X∗

r′ ⊗ V1) ⊆ V ∗∗
r . For any non-

zero F ∈ X∗
r′ , note that φ(F ⊗ X) = FX 6= 0. We know that X∗

r′ ⊗ V1 ∼=
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V1 ⊗ Dp−1 is irreducible of dimension 2 and its image under φ is non-zero.
Hence φ(X∗

r′ ⊗ V1) ∼= V1 ⊗Dp−1 ⊆ Xr−1. �

Proposition 3.8. Let p ≥ 3, r > 2p and p ∤ r ≡ 1 mod (p − 1). If Σ =
Σp(r − 1) > p− 1, then

(i) The M -module structures of Xr−1 and Xr are given by the exact se-
quences

0 → V1 ⊗Dp−1 → Xr−1 → V2p−1 → 0,

0 → Vp−2 ⊗D → Xr → V1 → 0.

(ii) X∗
r
∼= Vp−2 ⊗D and X∗

r−1
∼= V1 ⊗Dp−1 ⊕ Vp−2 ⊗D.

(iii) X∗∗
r = 0 and X∗∗

r−1
∼= V1 ⊗Dp−1.

(iv) Q ∼= V1 as a Γ-module.

Proof. By Lemma 3.4, dimXr−1 = 2p + 2, so by Lemma 3.6, we must have
dimXr′ ⊗ V1 ≥ 2p+ 2. This forces Xr′ to have its highest possible dimension,
namely, p+1. Thus theM -map φ : Xr′⊗V1 ։ Xr−1 is actually an isomorphism.
Tensoring the short exact sequence (3.3) by V1, we get the exact sequence

0 → X∗
r′ ⊗ V1 → Xr′ ⊗ V1 → Vp−1 ⊗ V1 → 0.

The middle module is M -isomorphic to Xr−1, and the rightmost module is
M -isomorphic to V2p−1, by [G78, (5.3)]. Thus the exact sequence reduces to

(3.4) 0 → X∗
r′ ⊗ V1 → Xr−1 → V2p−1 → 0,

where X∗
r′ ⊗ V1 ∼= V1 ⊗ Dp−1, by Lemma 3.7 (i). Since M -linear maps must

take singular submodules to singular submodules, the above sequence gives rise
to the following exact sequence

(3.5) 0 → V1 ⊗Dp−1 → X∗
r−1 → V ∗

2p−1
∼= Vp−2 ⊗D.

The rightmost module above is irreducible, so the map X∗
r−1 → Vp−2 ⊗ D is

either the zero map or it is a surjection. By Lemma 3.5, dimXr = p + 1 and
so by [G78, (4.5)], we have dimX∗

r = p− 1. By Lemma 3.1 (i), we get X∗∗
r = 0

and X∗
r
∼= Vp−2 ⊗ D must be a JH factor of X∗

r−1. Therefore the rightmost
map above must be surjective, as otherwise X∗

r−1
∼= V1 ⊗Dp−1. So we have

(3.6) 0 → X∗
r′ ⊗ V1 ∼= V1 ⊗Dp−1 → X∗

r−1 → Vp−2 ⊗D → 0.

ThusX∗
r−1 has two JH factors, of dimensions 2 and p−1 respectively. Moreover,

since X∗
r
∼= Vp−2 ⊗D is a submodule of X∗

r−1, the sequence above must split,
and we must have

X∗
r−1 = φ(X∗

r′ ⊗ V1)⊕X∗
r
∼= V1 ⊗Dp−1 ⊕ Vp−2 ⊗D.

Knowing the structure of X∗
r−1 as above, next we want to see how the sub-

module X∗∗
r−1 sits inside it. By Lemma 3.7 (ii), we have φ(X∗

r′ ⊗ V1) ⊆ V ∗∗
r ,

on the other hand Xr ∩ V ∗∗
r = X∗∗

r = 0. Therefore X∗∗
r−1 = X∗

r−1 ∩ V ∗∗
r =

φ(X∗
r′ ⊗ V1) ∼= V1 ⊗Dp−1 has dimension 2.
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Now we count the dimension dimQ = 2p + 2 − dimXr−1 + dimX∗∗
r−1 = 2.

The final statement Q ∼= V1 follows from Diagram (2.2) as in the proof of
Proposition 3.3. �

Thus we know Q is isomorphic to V1 whenever r is prime to p. Next we treat
the case p divides r. Since r ≡ 1 mod (p − 1), we see that r can be a pure
p-power. We will show that Q has two JH factors as a Γ-module, irrespective
of whether r is a p-power or not. The following result about dimXr−1 when
p | r is stated without proof, as it follows from the more general Lemma 4.3 in
Section 4.

Lemma 3.9. Let p ≥ 2 and r ≡ 1 mod (p − 1). If p | r but r is not a pure
p-power, then dimXr−1 = 2p+ 2.

Lemma 3.10. For p ≥ 2 and r = pn, with n ≥ 2, we have dimXr−1 = p+ 3.

Proof. We know that Γ = B ⊔ BwB, where B ⊆ Γ is the subgroup of upper-
triangular matrices, and w = ( 0 1

1 0 ). Using this decomposition and the fact that
r = pn, one can see that the Fp[Γ]-span of Xr−1Y ∈ Vr is generated by the
set {Xr, Xr−1Y, Y r, X(kX + Y )r−1 : k ∈ Fp} over Fp. We will show that this
generating set is linearly independent. Suppose that

AXr +BY r +DXr−1Y +

p−1
∑

k=0

ckX(kX + Y )r−1 = 0,

where A,B,D, ck ∈ Fp, for each k. Clearly, it is enough to show that ck = 0,
for each k ∈ F∗

p. Since r− 1 = pn− 1 for some n ≥ 2, Lucas’ theorem says that
(

r−1
i

)

6≡ 0 mod p, for 0 ≤ i ≤ r − 1. As r − p ≥ 2, equating the coefficients of

X iY r−i on both sides, for 2 ≤ i ≤ p, we get that
p−1
∑

k=1

ckk
i−1 ≡ 0 mod p. The

non-vanishing of the Vandermonde determinant now shows that ck = 0, for all
k ∈ F∗

p. �

Remark 3.11. Note that the proof does not work for r = p, since we need
r − p ≥ 2. Also the lemma is trivially false for r = p, because then Xr−1 ⊆ Vr
must have dimension ≤ p+ 1.

The next proposition describes the structure of Q for p | r. Note that if r > p
is a multiple of p, then for r′ = r− 1, we have Σp(r

′) > p− 1, so we can apply
Lemma 3.7.

Proposition 3.12. For p ≥ 3, let r (> p) be a multiple of p such that r ≡ 1
mod (p− 1).

(i) If r = pn with n ≥ 2, then X∗
r = X∗∗

r = 0 and X∗
r−1 = X∗∗

r−1 has
dimension 2.

(ii) If r is not a pure p-power, then X∗
r = X∗∗

r
∼= Vp−2 ⊗ D and X∗

r−1 =
X∗∗
r−1 has dimension p+ 1.

(iii) In either case, Q is a non-trivial extension of V1 by Vp−2 ⊗ D, as a
Γ-module.
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Proof. (i) By Lemma 3.7, dimX∗
r′ = 1 and dimXr′ = p + 1 by [G78, (4.5)].

By Lemma 3.10, dimXr−1 = p + 3. By Lemma 3.6, we get a surjection φ :
Xr′ ⊗V1 ։ Xr−1, with a non-zero kernel of dimension 2(p+1)−(p+3) = p−1.

Note that W :=
Xr−1

φ(X∗
r′ ⊗ V1)

is a quotient of (Xr′/X
∗
r′) ⊗ V1, which is M -

isomorphic to V2p−1 by [G78, (4.5), (5.3)]. We have the exact sequence of
M -modules

0 → X∗
r′ ⊗ V1

φ−→ Xr−1 →W → 0.

Restricting it to the maximal singular submodules, we get the exact sequence

0 → X∗
r′ ⊗ V1

φ−→ X∗
r−1 →W ∗,

where W ∗ denotes the largest singular submodule of W . By Lemmas 3.10 and
3.7 (ii), we get dimW = (p + 3) − 2 = p + 1. Being a (p + 1)-dimensional
quotient of V2p−1, W must be M -isomorphic to V2p−1/V

∗
2p−1.

By [G78, (4.6)], W has a unique non-zero minimal submodule, namely,

W ′ =
(

X2p−1 + V ∗
2p−1

)

/V ∗
2p−1.

Note that the singular matrix ( 1 0
0 0 ) acts trivially on X2p−1, which is non-zero

in W ′. Thus the unique minimal submodule W ′ is non-singular, so W ∗ = 0,

giving us an M -isomorphism X∗
r′ ⊗ V1

φ−→ X∗
r−1. Now by Lemma 3.7 (ii),

X∗
r−1 = φ(X∗

r′ ⊗ V1) = X∗∗
r−1 has dimension 2.

(ii) If r = pnu for some n ≥ 1 and p ∤ u ≥ 2p − 1, then dimXr−1 = 2p + 2,
by Lemma 3.9. We have shown in the proof of Lemma 3.1 (ii) that
X∗
r = X∗∗

r
∼= X∗

u, which is isomorphic to Vp−2 ⊗ D, as p ∤ u (cf. Propo-
sitions 3.3 and 3.8). We proceed exactly as in the proof of Proposition 3.8, to
get that X∗

r−1
∼= φ(X∗

r′ ⊗ V1) ⊕ X∗
r has dimension p + 1. By Lemma 3.7, we

know φ(X∗
r′ ⊗ V1) ⊆ V ∗∗

r . Thus both the summands of X∗
r−1 are contained in

V ∗∗
r . Hence X∗∗

r−1 := X∗
r−1 ∩ V ∗∗

r = X∗
r−1.

(iii) Using part (i), (ii) above and Lemmas 3.9, 3.10, we count that
dim(Xr−1/X

∗∗
r−1) = p+1. Hence dimQ = 2p+2−dimXr−1+dimX∗∗

r−1 = p+1.
Since X∗

r−1 = X∗∗
r−1, the natural map V ∗

r /V
∗∗
r → Q is injective, hence an iso-

morphism by dimension count. Now the Γ-module structure of Q follows from
the short exact sequence (2.4). �

Note that in the course of studying the structure of Q, we have derived the
complete structure of the M -submodule Xr−1 ⊆ Vr, for r ≡ 1 mod (p − 1),
summarized as follows:

Proposition 3.13. Let p ≥ 3, r > p, and r ≡ 1 mod (p− 1).

(i) If Σp(r − 1) = p− 1 (so p ∤ r), then Xr−1
∼= V2p−1 as an M -module.

(ii) If Σp(r − 1) > p − 1 and r 6= pn, then we have a short exact sequence
of M -modules

0 → V1 ⊗Dp−1 → Xr−1 → V2p−1 → 0.
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(iii) If r = pn, for some n ≥ 2 (so Σp(r− 1) > p− 1), then we have a short
exact sequence of M -modules

0 → V1 ⊗Dp−1 → Xr−1 →W → 0,

where W ∼= V2p−1/V
∗
2p−1 is a non-trivial extension of Vp−2 ⊗D by V1.

4. Structure of Xr−1

In this section we study the M -submodule Xr−1 of Vr generated by Xr−1Y ,
for r lying in any congruence class a modulo (p − 1). Recall that Xr is the
M -submodule of Vr generated by Xr. For r ≤ p − 1, we have Xr = Xr−1 =
Vr, since Vr is irreducible. We begin with the following easily proved lemma
showing that outside this small range of r, the module Xr is properly contained
in Xr−1.

Lemma 4.1. For any p ≥ 2, if r ≥ p, then Xr ( Xr−1.

The following lemma is valid for r lying in any congruence class a mod (p−1),
with 1 ≤ a ≤ p− 1.

Lemma 4.2. Let p ≥ 2, r ≥ 2p + 1 and p ∤ r. If Σ := Σp(r − 1) ≥ p, then
dimXr−1 = 2p+ 2.

Proof. We claim that the spanning set {Xr, Y r, X(kX+Y )r−1, (X+ lY )r−1Y :
k, l ∈ Fp} of Xr−1 is linearly independent. Suppose there exist constants
A,B, ck, dl ∈ Fp, for k, l = 0, 1, · · · , p− 1, satisfying the equation

(4.1) AXr +BY r +

p−1
∑

k=0

ckX(kX + Y )r−1 +

p−1
∑

l=0

dl(X + lY )r−1Y = 0.

We want to show that A = B = ck = dl = 0, for all k, l ∈ Fp. It is enough to
show that ck = dl = 0, for all k, l 6= 0, since that implies that AXr + BY r +
c0XY

r−1 + d0X
r−1Y = 0, hence A = B = c0 = d0 = 0 too. As the matrix

( 0 1
1 0 ) flips the coefficients ck’s to dl’s in (4.1), it is enough to show that dl = 0,

for each l = 1, 2, · · · , p− 1. Let us define, for i, j ≥ 0,

Ci :=

p−1
∑

k=1

ckk
i, Dj :=

p−1
∑

l=1

dll
j.

Note that Ci, Dj depend only on the congruence classes of i, j mod (p − 1).
By the non-vanishing of the Vandermonde determinant, if D1 = D2 = · · · =
Dp−1 = 0, then (d1, · · · , dp−1) = (0, · · · , 0). Thus the proof reduces to showing
that Dt = 0, for 1 ≤ t ≤ p− 1.
Comparing the coefficients of Xr−t−1Y t+1 on both sides of (4.1), we get

(4.2)

(

r − 1

t+ 1

)

Cr−2−t +

(

r − 1

t

)

Dt = 0, for 1 ≤ t ≤ r − 3.

Let r − 1 = rmp
m + · · · + r1p + r0, as in (3.1), with ri being the rightmost

non-zero coefficient. Note that 0 ≤ r0 < p− 1, as by hypothesis p ∤ r.
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We will first consider the Dt’s with 1 ≤ t < ri. Suppose r0 = 0, then for
1 ≤ t < ri, choose t

′ := tpi. Clearly r − 3 ≥ t′ ≡ t mod (p − 1), so we apply
it to equation (4.2), to get Dt′ = Dt = 0, since

(

r−1
t′+1

)

≡ 0 6≡
(

r−1
t′

)

mod p,

by Lucas’ theorem. If r0 6= 0, i.e., ri = r0, let i
′ > 0 be the smallest positive

integer such that ri′ 6= 0. Then we choose t′ := t + pi
′ − 1 ≡ t mod (p − 1)

and check that t′ ≤ r− 3. Now equation (4.2) gives us the following two linear
equations:

(

r − 1

t+ 1

)

Cr−2−t +

(

r − 1

t

)

Dt = 0,

(

r − 1

t′ + 1

)

Cr−2−t +

(

r − 1

t′

)

Dt = 0.

The determinant of the corresponding matrix is congruent to
(

r0
t+ 1

)(

ri′

1

)(

r0
t− 1

)

−
(

r0
t

)(

ri′

1

)(

r0
t

)

≡ −
(

ri′

1

)(

r0
t− 1

)(

r0
t

)

· r0 + 1

t(t+ 1)
6≡ 0 mod p,

since we have 0 < r0 + 1, ri′ ≤ p− 1. This shows that Dt = Cr−2−t = 0.
Next we deal with the Dt’s, for ri ≤ t ≤ p− 1. As Σ = ri+ ri+1+ · · ·+ rm ≥ p,
we can write t as t = ri + si+1 + · · · + sm, with 0 ≤ sj ≤ rj , for all j. Let
us choose t′ := rip

i + si+1p
i+1 + · · · + smp

m, clearly t′ ≡ t mod (p − 1).

We observe that since t = ri + si+1 + · · · + sm ≤ p − 1 < p ≤
m
∑

j=i

rj = Σ,

there must exist at least one j > i, such that sj < rj . This implies that
t′ ≤ r−1−pj ≤ r−1−pi+1 ≤ r−3. By our choice of t′, we have t′+1 ≡ r0+1
mod p, with 0 ≤ r0 < r0+1 ≤ p−1, as r0 < p−1. Hence

(

r−1
t′+1

)

≡ 0 mod p, by

Lucas’ theorem. Also note that
(

r−1
t′

)

≡
(

ri
ri

)(

ri+1

si+1

)

· · ·
(

rm
sm

)

6≡ 0 mod p. Now

using (4.2) for t′, we get Dt′ = Dt = 0.
Thus we conclude Dt = 0, for all t = 1, 2, · · · , p− 1. �

Lemma 4.3. Let p ≥ 2, r = pnu with n ≥ 1 and p ∤ u, and say r ≡ a
mod (p− 1), with 1 ≤ a ≤ p− 1. If Σ := Σp(u− 1) > a− 1, then dimXr−1 =
2p+ 2.

Proof. We skip the details of this proof as the basic idea is the same as that of
Lemma 4.2. �

Remark 4.4. The special cases a = 1 of the two lemmas above have been used
in Section 3. Thus the proof of the structure of Xr−1, for a = 1, becomes
complete now. Next we will study the module Xr−1, for r lying in higher
congruence classes, i.e., for 2 ≤ a ≤ p − 1. The structure of Xr−1 for r ≡ 1
mod (p−1) will be used as the first step of an inductive process. Note that the
condition 2 ≤ a ≤ p− 1 implies that the prime p under consideration is odd.
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In spite of the lemmas above, the module Xr−1 often has small dimension, as
we are going to show below. The next lemma is complementary to Lemma 4.2,
for a ≥ 2. Note that the condition Σp(r− 1) = a− 1 forces r to be prime to p.

Lemma 4.5. Let p ≥ 3, r > p and let r ≡ a mod (p− 1), with 2 ≤ a ≤ p− 1.
If Σ = Σp(r − 1) = a − 1, then dimXr−1 = 2a. In fact, Xr

∼= Va and
Xr−1

∼= Va−2 ⊗D ⊕ Va as M -modules.

Proof. Write r′ = r − 1 = rmp
m + rm−1p

m−1 + · · · r1p + r0, where each ri ∈
{0, 1, · · · , p− 1} and r0 + · · ·+ rm = a− 1, by hypothesis. For any α, β ∈ Fp,
we have

(αX + βY )r
′ ≡ (αXpm + βY p

m

)rm · · · (αXp + βY p)r1 · (αX + βY )r0 mod p.

Considering this as a polynomial in α and β, we get that

(αX + βY )r
′

=

a−1
∑

i=0

αiβa−1−iFi(X,Y ),

where the polynomials Fi are independent of α and β. Hence Xr′ is contained
in the Fp-span of the polynomials F0, F1, . . . , Fa−1. Thus dim(Xr′) ≤ a. But
by [G78, (4.5)], we know Xr′/X

∗
r′
∼= Va−1, hence Xr′

∼= Va−1 and X∗
r′ = 0. By

[G78, (5.2)] and Lemma 3.6, we have the surjection

(4.3) Xr′ ⊗ V1 ∼= Va−2 ⊗D ⊕ Va
φ−→ Xr−1.

By [G78, (4.5)], we know that Va is a quotient of Xr. In fact, by an argu-
ment similar to the one just given for Xr′ , we have Xr

∼= Va and X∗
r = 0,

since Σp(r) = a. Now by Lemma 4.1, the surjection in (4.3) has to be an
isomorphism. �

Lemma 4.6. For any r > p, let r ≡ a mod (p − 1), for some 1 ≤ a ≤ p − 1.
Then either X∗

r = 0 or X∗
r
∼= Vp−a−1 ⊗Da as an M -module.

Proof. The statement for a = 1 is proved in Section 3 (cf. Propositions 3.3,
3.8, 3.12). Now we use the method of induction to prove it for 2 ≤ a ≤ p− 1.
So assuming the statement for all congruence classes less than a, we want to
prove it for r ≡ a mod (p− 1).
Recall that for r = pnu with p ∤ u, Xu

∼= Xr, where theM -linear isomorphism is
simply given by F 7→ F p

n

, for any F ∈ Xu. So the largest singular submodules
X∗
u and X∗

r are M -isomorphic. We also note that if u < p, then Xu = Vu and
X∗
r = X∗

u = 0. Thus without loss of generality we may assume that u > p and
p ∤ r, i.e., r = u > p. We denote r′ := r − 1, as usual. As p ∤ r and Σ ≡ a− 1
mod (p− 1), r satisfies the hypothesis of either Lemma 4.5 or Lemma 4.2. So
dimXr−1 is either 2a or 2p+2 respectively. In the first case we know Xr

∼= Va,
so X∗

r = 0 by [G78, (4.5)].
In the second case, Lemma 4.2, Lemma 3.5 and [G78, (4.5)] together tell us
that dimX∗

r = p − a. By Lemma 3.6, we have the M -map φ : Xr′ ⊗ V1 ։

Xr−1. As dimXr−1 = 2p + 2 in this case, Xr′ must have maximum possible
dimension p + 1, and hence X∗

r′ 6= 0. By the induction hypothesis, we get
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X∗
r′

∼= Vp−a ⊗Da−1. Counting dimensions we conclude that the map φ above
must be an isomorphism. The short exact sequence

0 −→ X∗
r′ ⊗ V1 −→ Xr′ ⊗ V1 −→ Va−1 ⊗ V1 −→ 0

implies, by [G78, (5.2)], that we have

0 −→ Vp−a−1 ⊗Da ⊕ Vp−a+1 ⊗Da−1 −→ Xr−1 −→ Va−2 ⊗D ⊕ Va −→ 0,

giving the M -module structure of Xr−1.
The obvious choice for the (p−a)-dimensional subspaceX∗

r ⊆ Xr−1 is Vp−a−1⊗
Da. In the particular case when 2a = p+ 1, we eliminate the possibility of X∗

r

being isomorphic to Va−2 ⊗D by using the fact that Xr is indecomposable as
an M -module [G78, (4.6)], so Xr cannot be M -isomorphic to Va−2 ⊗D ⊕ Va.
So X∗

r
∼= Vp−a−1 ⊗Da, as desired. �

Recall that in the case a = 1, we have X∗
r /X

∗∗
r 6= 0 if and only if p ∤ r, by

Lemma 3.1. Our next lemma shows that, for all the higher congruence classes,
X∗
r /X

∗∗
r = 0 always.

Lemma 4.7. Let p ≥ 3, r ≥ 2p and r ≡ a mod (p− 1). If 2 ≤ a ≤ p− 1, then
X∗
r = X∗∗

r .

Proof. For r = 2p, one has Xr
∼= V2 and X∗

r = 0, so there is nothing to
prove. So assume r > 2p. If X∗

r /X
∗∗
r 6= 0, then by Lemma 4.6 we must have

X∗
r /X

∗∗
r

∼= Vp−a−1 ⊗Da. But the short exact sequences (2.5) and (2.6) given
by Proposition 2.2 tell us that Vp−a−1 ⊗Da is not a Γ-submodule of V ∗

r /V
∗∗
r .

This is a contradiction. �

The next lemma is complementary to Lemma 4.3 for a ≥ 2 and is comparable
to Lemma 3.10 for a = 1. It generates examples of Xr−1 with relatively small
dimension, under the hypothesis p | r.
Lemma 4.8. Let p ≥ 3, r > 2p and let p divide r ≡ a mod (p − 1), with
2 ≤ a ≤ p− 1. Write r = pnu, where n ≥ 1 and p ∤ u. If Σp(u − 1) = a− 1,
then dimXr−1 = a+ p+ 2.

Proof. Since p | r, we have p ∤ r′ := r − 1 ≡ p− 1 mod p. As r > p, we know
that Σp(r

′ − 1) is at least p− 1. Since Σp(r
′ − 1) ≡ r′ − 1 ≡ a− 2 mod (p− 1),

we have Σp(r
′ − 1) ≥ p+ a− 3. If a ≥ 3, then by Lemma 4.2 and Lemma 3.5

we get dimXr′ = p+1. On the other hand if a = 2, then Propositions 3.3 and
3.8 show that dimXr′ = p+1. In any case, X∗

r′ 6= 0, by [G78, (4.5)]. Therefore
X∗
r′
∼= Vp−a ⊗Da−1, by Lemma 4.6. Now using [G78, (4.5), (5.2)], we get

0 // Vp−a−1 ⊗Da ⊕ Vp−a+1 ⊗Da−1 // Xr′ ⊗ V1

φ

��
��

// Va−2 ⊗D ⊕ Va // 0.

Xr−1

Since r = pnu, we know that Xu
∼= Xr. As Σp(u − 1) = a − 1, we have

Xu
∼= Va, by Lemma 4.5 if u > p, and by the fact that Vu = Va is irreducible
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if u < p. So Xr
∼= Va has dimension a + 1 < p + 1, and Lemma 3.5 implies

that dimXr−1 < 2p + 2. Hence all of the four JH factors of Xr′ ⊗ V1 given
above cannot occur in the quotient Xr−1. We will show that the last three JH
factors, i.e., Vp−a+1⊗Da−1, Va−2⊗D and Va, always occur in Xr−1. Therefore
Vp−a−1 ⊗Da must die in Xr−1. Adding the dimensions of the JH factors we
will get dimXr−1 = a+ p+ 2, as desired.
For F (X,Y ) ∈ Vm, let δm(F ) := FX ⊗ X + FY ⊗ Y ∈ Vm−1 ⊗ V1, where
FX , FY are the usual partial derivatives of F . It is shown on [G78, p. 449]
that the injection Vp−a+1 ⊗Da−1 →֒ (Vp−a ⊗Da−1) ⊗ V1 can be given by the
map 1

p−a+1 · δp−a+1 (φ̄ in the notation of [G78]). So the monomial Xp−a+1 ∈
Vp−a+1⊗Da−1 maps to the non-zero element Xp−a⊗X ∈ (Vp−a⊗Da−1)⊗V1.
Let F ∈ X∗

r′ be the image of Xp−a under the isomorphism Vp−a⊗Da−1 ∼→ X∗
r′ .

Then under the composition of maps

Vp−a+1 ⊗Da−1 →֒ (Vp−a ⊗Da−1)⊗ V1
∼−→ X∗

r′ ⊗ V1
φ−→ Xr−1,

the monomial Xp−a+1 7→ Xp−a ⊗ X 7→ F ⊗ X 7→ X · F 6= 0 in Xr−1. This
shows that Vp−a+1 ⊗Da−1 must be a JH factor of Xr−1.
Note that by hypothesis r ≡ 0 6≡ a mod p. We refer to Lemma 6.1 in Section
6 to show that Va−2⊗D is a JH factor of Xr−1, if 3 ≤ a ≤ p−1. For a = 2, the
hypothesis implies that r must be of the form r = pn(pm + 1) with m+ n ≥ 2.
An elementary calculation using Lucas’ theorem shows that in this case the
M -linear map Xr−1 ։ V0 ⊗ D, sending Xr−1Y 7→ 1, is well-defined. Thus
Va−2 ⊗D is a JH factor of Xr−1 for all a ≥ 2.
Finally, Va is always a JH factor of Xr−1, by [G78, (4.5)]. �

We write r = pnu, where p ∤ u and n ≥ 0 is an integer. Note that if p ∤ r, then
u simply equals r, and n = 0. Clearly u ≡ a mod (p − 1) as well, so the sum
of the p-adic digits of u− 1 lies in the congruence class a− 1 mod (p− 1). We
denote this sum by Σ := Σp(u − 1). Then the M -module structure of Xr−1

proved in this section can be summarized as follows:

Proposition 4.9. Let p ≥ 3, r > 2p, and r ≡ a mod (p − 1), with 2 ≤ a ≤
p− 1. Then with the notation above

(i) If Σ = a − 1 and p ∤ r (i.e., n = 0), then dimXr−1 = 2a and as an
M -module

Xr−1
∼= Va−2 ⊗D ⊕ Va.

(ii) If Σ = a − 1 and p | r (i.e., n > 0), then dimXr−1 = a + p + 2, and
we have the following exact sequence of M -modules

0 −→ Vp−a+1 ⊗Da−1 −→ Xr−1 −→ Va−2 ⊗D ⊕ Va → 0.

(iii) If Σ > a− 1, or equivalently Σ ≥ p+ a− 2, then dimXr−1 = 2p+ 2,
and we have the following exact sequence of M -modules

0 → Vp−a−1 ⊗Da ⊕ Vp−a+1 ⊗Da−1 → Xr−1 → Va−2 ⊗D ⊕ Va → 0.
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5. The case r ≡ 2 mod (p− 1)

With the notation of Section 2.3, let a = 2. In particular, p will denote an
odd prime throughout this section. By Proposition 2.2, we get V ∗

r /V
∗∗
r

∼=
Vp−1⊗D⊕V0⊗D as a Γ-module. For r′ := r−1, we know by [G78, (4.5)] that
Xr′/X

∗
r′

∼= V1. As usual by Lemma 3.6 and [G78, (5.2)], we get the following
commutative diagram of M -modules:

0 // X∗
r′ ⊗ V1

��
��

// Xr′ ⊗ V1

φ

��
��

// V0 ⊗D ⊕ V2

��
��

// 0

0 // φ(X∗
r′ ⊗ V1) // Xr−1

//
Xr−1

φ(X∗
r′ ⊗ V1)

// 0.

(5.1)

Lemma 5.1. Let p ≥ 3, r > 2p and r ≡ 2 mod (p− 1). If p ∤ r, then there is
an M -linear surjection

X∗
r−1/X

∗∗
r−1 ։ V0 ⊗D.

Proof. We claim that the following composition of maps is non-zero, hence
surjective:

X∗
r−1

X∗∗
r−1

→֒ V ∗
r

V ∗∗
r

∼= Vr−p−1

V ∗
r−p−1

⊗D
ψ−1⊗ id−−−−−→ V2p−2

V ∗
2p−2

⊗D ։ V0 ⊗D,

where ψ is the M -isomorphism in [G78, (4.2)] and the rightmost surjection
is induced from the Γ-linear map in [B03b, 5.3(ii)]. Indeed, one checks that
under the above composition of maps, F (X,Y ) = Xr−1Y − XY r−1 ∈ X∗

r−1

maps to r−2p
p−1 ∈ V0⊗D, which is non-zero, as p ∤ r. Note that the composition is

automaticallyM -linear, as both its domain and range are singular modules. �

Lemma 5.2. Let p ≥ 3, r > 2p, and r ≡ 2 mod (p− 1). If p ∤ r′ := r− 1, then
φ(X∗

r′ ⊗ V1) ⊆ X∗
r−1, but φ(X

∗
r′ ⊗ V1) * X∗∗

r−1.

Proof. The inclusion is obvious from the definition of the map φ. For the rest,

note that F (X,Y ) :=
p−1
∑

k=0

(kX + Y )r
′ ∈ X∗

r′ , as shown in the proof of Lemma

3.1 (i). The coefficient of Xr−1Y in φ(F ⊗X) = F (X,Y ) ·X is the same as the

coefficient of Xr′−1Y in F , which is congruent to −r′ mod p. By hypothesis
p ∤ r′, so θ2 cannot divide φ(F ⊗X). Therefore φ(X∗

r′ ⊗ V1) * X∗∗
r−1. �

Lemmas 5.1 and 5.2 will be used to study the Γ-module Q. If p ∤ r(r − 1),
then we can use both the lemmas simultaneously to prove the following simple
structure of Q.

Proposition 5.3. Let p ≥ 3, r > 2p and r ≡ 2 mod (p − 1). If p ∤ r(r − 1),
then Q ∼= Vp−3 ⊗D2 as a Γ-module.

Proof. Since p ∤ r(r− 1), we have Σ = Σp(r− 1) > a− 1 = 1 with the notation
of Proposition 4.9, as otherwise Σ = 1, which forces r − 1 to be a p-power. So
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by Proposition 4.9 (iii), dimXr−1 = 2p+ 2, and we have

(5.2) 0 −→ Vp−3 ⊗D2 ⊕ Vp−1 ⊗D −→ Xr−1 −→ V0 ⊗D ⊕ V2 −→ 0,

noting that here Vp−3 ⊗D2 ⊕ Vp−1 ⊗D = φ(X∗
r′ ⊗ V1) ⊆ Xr−1.

Restricting this short exact sequence of M -modules to the largest singular
submodules, we get the structure of X∗

r−1:

(5.3) 0 −→ Vp−3 ⊗D2 ⊕ Vp−1 ⊗D −→ X∗
r−1 −→ V0 ⊗D −→ 0,

where the last surjection follows from the fact that V0 ⊗ D is a JH factor of
X∗
r−1, by Lemma 5.1.

Next we want to compute the JH factors of X∗∗
r−1. By Lemma 3.5 and [G78,

(4.5)], we have dimX∗
r = p − 2. By Lemmas 4.7 and 4.6, we get that X∗∗

r =
X∗
r
∼= Vp−3 ⊗ D2, hence this submodule of φ(X∗

r′ ⊗ V1) (⊆ X∗
r−1) is in fact

contained in X∗∗
r−1. By Lemma 5.2, the other JH factor Vp−1⊗D of φ(X∗

r′ ⊗V1)
cannot occur in X∗∗

r−1. Since V0⊗D occurs only once in Xr−1, Lemma 5.1 tells
that V0 ⊗D cannot be a JH factor of X∗∗

r−1. Thus X
∗∗
r−1

∼= Vp−3 ⊗D2.
So now we know all the JH factors of Xr−1, X

∗
r−1 and X∗∗

r−1. As X∗
r−1/X

∗∗
r−1

has two JH factors Vp−1 ⊗D and V0 ⊗D, we have X∗
r−1/X

∗∗
r−1 = V ∗

r /V
∗∗
r , and

the left module in the bottom row of Diagram (2.2) vanishes. On the other
hand Xr−1/X

∗
r−1 has only one JH factor V2, so the short exact sequence (2.3)

of Γ-modules implies that the rightmost module in the bottom row of Diagram
(2.2) is Vp−3 ⊗D2. Therefore Q is Γ-isomorphic to Vp−3 ⊗D2. �

Next we will treat the case p | r(r − 1). Note that if p | (r − 1), then p ∤ r and
we can still use Lemma 5.1. Similarly if p | r, then p ∤ (r − 1) and we can use
Lemma 5.2.

Proposition 5.4. Let p ≥ 3, r > 2p and r ≡ 2 mod (p− 1). If p | r− 1, then
Q ∼= Vp−1 ⊗D ⊕ Vp−3 ⊗D2 as a Γ-module.

Proof. If r−1 is a pure p-power, then by Proposition 4.9 (i), Xr−1
∼= V0⊗D⊕V2

as an M -module. Hence X∗
r−1

∼= V0 ⊗D, being the largest singular submodule
of Xr−1. By Lemma 5.1, X∗∗

r−1 must be zero. In other words, Xr−1/X
∗
r−1

∼= V2
and X∗

r−1/X
∗∗
r−1

∼= V0 ⊗D.
If r − 1 is not a pure p-power, then Σp(r − 1) ≥ p. By Proposition 4.9 (iii),
dimXr−1 = 2p+ 2 and we have the exact sequence of M -modules

0 −→ Vp−3 ⊗D2 ⊕ Vp−1 ⊗D −→ Xr−1 −→ V0 ⊗D ⊕ V2 −→ 0.

Note that Vp−3 ⊗D2 ⊕ Vp−1 ⊗D = φ(X∗
r′ ⊗ V1) ⊆ Xr−1, with the notation of

Diagram (5.1). Similarly as in the proof of Proposition 5.3, we use Lemma 5.1
to obtain

0 −→ φ(X∗
r′ ⊗ V1) −→ X∗

r−1 −→ V0 ⊗D −→ 0.

As p | r′, by Lemma 3.1 (ii) we have X∗
r′ = X∗∗

r′ , therefore φ(X
∗
r′ ⊗ V1) =

φ(X∗∗
r′ ⊗V1) must be contained inside X∗∗

r−1. On the other hand V0 ⊗D occurs
only once in Xr−1, so Lemma 5.1 implies that V0 ⊗D cannot be a JH factor
of X∗∗

r−1. Thus X∗∗
r−1 = φ(X∗

r′ ⊗ V1) ∼= Vp−3 ⊗D2 ⊕ Vp−1 ⊗D. Thus again we
get Xr−1/X

∗
r−1

∼= V2 and X∗
r−1/X

∗∗
r−1

∼= V0 ⊗D.
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Therefore by the exact sequences (2.3) and (2.5), the bottom row of Diagram
(2.2) reduces to

0 −→ Vp−1 ⊗D −→ Q −→ Vp−3 ⊗D2 −→ 0.

Now the result follows as Vp−1 ⊗D is an injective Γ-module. �

Proposition 5.5. Let p ≥ 3, r > 2p and r ≡ 2 mod (p− 1). If p | r, then the
Γ-module structure of Q is given by

0 −→ V0 ⊗D −→ Q −→ Vp−3 ⊗D2 −→ 0.

Proof. Let us write r = pnu, n ≥ 1 and p ∤ u. Looking at Diagram (5.1) and
using Proposition 4.9, we get the exact sequence of M -modules

0 −→W −→ Xr−1 −→ V0 ⊗D ⊕ V2 −→ 0,

where W = φ(X∗
r′ ⊗ V1) =

{

Vp−1 ⊗D, if Σp(u − 1) = 1,

Vp−1 ⊗D ⊕ Vp−3 ⊗D2, if Σp(u − 1) ≥ p.

Restricting the above sequence to the largest singular submodules, we get

(5.4) 0 −→W −→ X∗
r−1 −→ V0 ⊗D −→ 0,

where the last map has to be a surjection, as otherwise V0 ⊗D would be a JH
factor of Vr/V

∗
r , which is not true by the sequence (2.3).

Now we claim that the restriction of the map X∗
r−1 ։ V0 ⊗D in (5.4) to the

submodule X∗∗
r−1 is also non-zero, and hence surjective.

Proof of claim: If not, then the above map factors via η1 : X∗
r−1/X

∗∗
r−1 ։

V0 ⊗ D ⊆ V1 ⊗ V1. We can check that the elements Xr′, Y r
′ ∈ Xr′ map to

X,Y ∈ V1 respectively under the map Xr′ ։ Xr′/X
∗
r′
∼= V1. Hence, for

F = F (X,Y ) = Xr−1Y − Y r−1X = φ(Xr′ ⊗ Y − Y r
′ ⊗X) ∈ φ(Xr′ ⊗ V1),

we get η1(F ) = X ⊗ Y − Y ⊗ X ∈ V1 ⊗ V1. Note that the non-zero element
X ⊗ Y − Y ⊗ X of V1 ⊗ V1 ∼= V0 ⊗ D ⊕ V2 actually belongs to V0 ⊗ D, as
it projects to XY − Y X = 0 ∈ V2. So η1(F ) 6= 0. Now we consider the
composition of maps η2 : X∗

r−1/X
∗∗
r−1 →֒ V ∗

r /V
∗∗
r ։ V0 ⊗ D, as described in

the proof of Lemma 5.1. If η2 is the zero map, then the short exact sequence
(2.4) implies that X∗

r−1/X
∗∗
r−1 ⊆ Vp−1 ⊗D, contradicting the existence of the

map η1 : X∗
r−1/X

∗∗
r−1 ։ V0 ⊗D. So η2 is a non-zero map. But the calculation

in the proof of Lemma 5.1 shows that η2(F ) = 0, since p | r. Thus we end up
with two different surjections η1, η2 : X∗

r−1/X
∗∗
r−1 ։ V0 ⊗D, one containing F

in its kernel and the other not. This forces V0 ⊗D to be a repeated JH factor
of X∗

r−1/X
∗∗
r−1, contradicting the fact that it occurs only once in X∗

r−1. Thus
the claim is proved.
If Σp(u − 1) ≥ p, then the extra JH factor Vp−3 ⊗ D2 of W is actually the
submodule X∗

r (cf. Lemma 4.6), which equals X∗∗
r , by Lemma 4.7. So this

JH factor is in fact contained in X∗∗
r−1. By Lemma 5.2, we know that W =
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φ(X∗
r′ ⊗ V1) * X∗∗

r−1. Therefore

W1 :=W ∩X∗∗
r−1 =

{

0, if Σp(u− 1) = 1,

Vp−3 ⊗D2, if Σp(u− 1) ≥ p.

By the claim above, the structure of X∗∗
r−1 is now given by

0 →W1 → X∗∗
r−1 → V0 ⊗D → 0.

Hence we always haveXr−1/X
∗
r−1

∼= V2, andX
∗
r−1/X

∗∗
r−1

∼=W/W1
∼= Vp−1⊗D.

Next we use the exact sequences (2.3) and (2.5) to see that the bottom row of
Diagram (2.2) reduces to

0 −→ V0 ⊗D −→ Q −→ Vp−3 ⊗D2 −→ 0.

�

Remark 5.6. The short exact sequences in Proposition 2.2 split only when
a = 2, the case we are dealing with. Note that all three possible non-zero
submodules of V ∗

r /V
∗∗
r

∼= V0 ⊗D⊕Vp−1 ⊗D occur as X∗
r−1/X

∗∗
r−1 in the three

distinct cases p ∤ r(r − 1), p | (r − 1) and p | r.

6. The case r ≡ a mod (p− 1), with 3 ≤ a ≤ p− 1

In this section we describe the Γ-module structure of Q, for r ≡ a mod (p−1),
with 3 ≤ a ≤ p− 1. Note that this bound on a forces p to be at least 5.

Lemma 6.1. Let p ≥ 5, r > 2p, r ≡ a mod (p − 1), with 3 ≤ a ≤ p − 1. If
r 6≡ a mod p, then X∗

r−1/X
∗∗
r−1 contains Va−2 ⊗D as a Γ-submodule.

Proof. By the non-split short exact sequence (2.6), it is enough to show the sub-
module X∗

r−1/X
∗∗
r−1 of V ∗

r /V
∗∗
r is non-zero. Using Lemma 2.3 (i) and Lemma

2.6, one may check that the polynomial

F (X,Y ) = (a− 1)Xr−1Y +

p−1
∑

k=0

kp+1−a(kX + Y )r−1X ∈ X∗
r−1.

But F /∈ V ∗∗
r , as the coefficient of Xr−1Y in F (X,Y ) is (a−1)−

(

r−1
r−2

)

= a−r 6≡
0 mod p, by hypothesis. So F maps to a non-zero element in X∗

r−1/X
∗∗
r−1. �

Lemma 6.2. Let p ≥ 5 and r ≡ a mod (p − 1), with 3 ≤ a ≤ p− 1. If r ≡ a
mod p, then we have Xr−1 ⊆ Xr + V ∗∗

r and X∗
r−1/X

∗∗
r−1 = 0.

Proof. The lemma is trivial for r = a as Va is irreducible. Thus for each a,
r = p2 − p + a is the first non-trivial integer satisfying the hypotheses. We
begin by expanding the following element of Xr:

∑

k∈Fp

kp−2(kX + Y )r ≡ −rXY r−1 −
∑

0<j<r−1
j≡a−1 mod (p−1)

(

r

j

)

·Xr−jY j mod p.
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Using Lemma 2.3 (ii) and Lemma 2.6, one checks that

F (X,Y ) :=
∑

0<j<r−1
j≡a−1 mod (p−1)

(

r

j

)

·Xr−jY j

is in fact contained in V ∗∗
r , implying that the monomial −rXY r−1 is contained

in Xr + V ∗∗
r . Since r ≡ a 6≡ 0 mod p, we have Xr−1 ⊆ Xr + V ∗∗

r . Hence
X∗
r−1 ⊆ Xr−1 ∩ (X∗

r +V ∗∗
r ), which equals Xr−1 ∩ (X∗∗

r +V ∗∗
r ), by Lemma 4.7.

But X∗∗
r ⊆ V ∗∗

r , so we have X∗
r−1 ⊆ Xr−1∩V ∗∗

r = X∗∗
r−1. The reverse inclusion

is obvious and therefore X∗
r−1 = X∗∗

r−1. �

Remark 6.3. It was proved in [GG15, Prop. 4] that Xr−1 6⊂ Xr + V ∗∗
r , for

p ≤ r ≤ p2 − p+ 2 and all primes p. The lemma above shows that the upper
bound is sharp, at least if p ≥ 5, since the smallest non-trivial r covered by the
lemma is p2 − p + 3. As we show just below, the fact that Xr−1 ⊂ Xr + V ∗∗

r

causes Q to have 3 JH factors, leading to additional complications.

Proposition 6.4. Let p ≥ 5, r > 2p and r ≡ a mod (p−1), with 3 ≤ a ≤ p−1.
The Γ-module structure of Q is as follows.

(i) If r 6≡ a mod p, then

0 −→ Vp−a+1 ⊗Da−1 −→ Q −→ Vp−a−1 ⊗Da −→ 0,

and moreover the exact sequence above is Γ-split.
(ii) If r ≡ a mod p, then

0 −→ V ∗
r /V

∗∗
r −→ Q −→ Vp−a−1 ⊗Da −→ 0,

where V ∗
r /V

∗∗
r is the non-trivial extension of Vp−a+1⊗Da−1 by Va−2⊗

D.

Proof. Let r′ := r− 1. As explained in Section 4 (cf. Proposition 4.9), we have

0 −→ φ(X∗
r′ ⊗ V1) −→ Xr−1 −→ Va−2 ⊗D ⊕ Va → 0.

Restricting the above M -linear maps to the largest singular submodules, we
get

0 −→ φ(X∗
r′ ⊗ V1) −→ X∗

r−1 −→ Va−2 ⊗D → 0.

Indeed, the short exact sequence (2.3) shows that Va−2⊗D is not a JH factor of
Vr/V

∗
r , so the surjection Xr−1 ։ Va−2⊗D cannot factor through Xr−1/X

∗
r−1,

hence the rightmost map above is surjective. As 2 ≤ a − 1 ≤ p − 2, by
Lemma 4.7 we have X∗

r′ = X∗∗
r′ . Hence by the definition of the φ map, we get

φ(X∗
r′ ⊗ V1) ⊆ X∗∗

r−1.
If r 6≡ a mod p, then Lemma 6.1 implies that X∗

r−1/X
∗∗
r−1 must have ex-

actly one JH factor, namely Va−2 ⊗ D. So we have Xr−1/X
∗
r−1

∼= Va and
X∗
r−1/X

∗∗
r−1

∼= Va−2 ⊗D. Now using the short exact sequences (2.3) and (2.6),
the bottom row of Diagram (2.2) reduces to

0 −→ Vp−a+1 ⊗Da−1 −→ Q −→ Vp−a−1 ⊗Da −→ 0.
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That the sequence splits follows from [BP12, Cor. 5.6 (i)], which implies that
there exists no non-trivial extension between the Γ-modules Vp−a−1 ⊗Da and
Vp−a+1 ⊗Da−1.
On the other hand if r ≡ a mod p, then Xr−1/X

∗
r−1

∼= Va as before, but
X∗
r−1/X

∗∗
r−1 = 0, by Lemma 6.2. Now using the short exact sequence (2.3), the

bottom row of Diagram (2.2) reduces to

0 −→ V ∗
r /V

∗∗
r −→ Q −→ Vp−a−1 ⊗Da −→ 0,

where the structure of V ∗
r /V

∗∗
r is given by the exact sequence (2.6). �

7. Combinatorial lemmas

In this section we prove some technical lemmas which are used repeatedly in
the next two sections. Only the first lemma is proved in detail as the techniques
used to prove the others are similar.

Lemma 7.1. Let r ≡ a mod (p− 1), with 2 ≤ a ≤ p− 1. Then one can choose
integers αj ∈ Z, for all j ≡ a mod (p− 1), with 0 < j < r, such that

(i)
(

r
j

)

≡ αj mod p, for all j as above,

(ii)
∑

j

αj ≡ 0 mod p3,

(iii)
∑

j≥1

j αj ≡ 0 mod p2,

(iv)
∑

j≥2

(

j
2

)

αj ≡
{

(

r
2

)

mod p, if a = 2,

0 mod p, if 3 ≤ a ≤ p− 1.

Proof. For r ≤ ap, note that Σp(r) = a and one can check using Lucas’ theorem
that

(

r
j

)

≡ 0 mod p for all the j’s listed above. In this case we simply choose

αj = 0, for all j. So now assume r > ap, hence j = a, ap are both contained in
the list of j’s above. Let a′ be a fixed integer such that a′a ≡ 1 mod p2, and
then let us choose the αj , for all 0 < j < r, with j ≡ a mod (p−1), as follows:

αj =

(

r

j

)

, for j 6= a, ap,(7.1)

αa = −
∑

a< j <r
j≡a mod (p−1)

a′j

(

r

j

)

,(7.2)

αap = −
∑

j 6=a, ap

(

r

j

)

− αa.(7.3)

We will show that these αj satisfy the properties (i), (ii), (iii) and (iv).
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(i) Note that j
(

r
j

)

= r
(

r−1
j−1

)

, for any j ≥ 1. Using Lemma 2.5, for r − 1

and r respectively, we obtain

αa = −
∑

a<j<r
j≡a mod (p−1)

a′r

(

r − 1

j − 1

)

(2.5)≡ a′r

(

r − 1

a− 1

)

= a′a

(

r

a

)

≡
(

r

a

)

mod p,

αap
(2.5)≡

(

r

a

)

+

(

r

ap

)

− αa ≡
(

r

ap

)

mod p.

For j 6= a, ap, property (i) is trivially satisfied.
(ii) By our choice of αj , in fact

∑

j

αj = 0.

(iii) Since a′a ≡ 1 mod p2, using equation (7.2) we get a · αa ≡
− ∑

a<j<r,
j≡a mod (p−1)

j
(

r
j

)

mod p2. Since αap ≡
(

r
ap

)

mod p, we have

ap · αap ≡ ap
(

r
ap

)

mod p2. Using these two congruences we conclude

that
∑

j

jαj ≡ 0 mod p2, as desired.

(iv) We use property (i) and Lemma 2.5 for r − 2 to get

∑

0<j<r
j≡a mod (p−1)

(

j

2

)

αj ≡
∑

0<j<r
j≡a mod (p−1)

(

j

2

)(

r

j

)

=
∑

0<j<r
j≡a mod (p−1)

(

r

2

)(

r − 2

j − 2

)

≡
{

(

r
2

)

mod p, if a = 2,

0 mod p, if 3 ≤ a ≤ p− 1.

�

Lemma 7.2. Let r ≡ b mod (p − 1), and 3 ≤ b ≤ p. If p | r − b, then one
can choose integers βj, for all j ≡ b − 1 mod (p− 1), with b − 1 ≤ j < r − 1,
satisfying:

(1) βj ≡
(

r
j

)

mod p, for all j as above,

(2)
∑

j≥n

(

j
n

)

βj ≡ 0 mod p3−n, for n = 0, 1 and 2.

Proof. As p | b−r, we have r ≡ b mod (p2−p), so we may assume r ≥ p2−p+b.
Thus we have j = b − 1, (b− 1)p are two of the j’s in the expression for Tr in
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Lemma 2.6. Let us choose

βj =

(

r

j

)

, for all j 6= b− 1, (b− 1)p,(7.4)

βb−1 = −
∑

b−1<j <r−1
j≡b−1 mod (p−1)

b′j

(

r

j

)

,(7.5)

β(b−1)p = −
∑

j 6=b−1
j 6=(b−1)p

(

r

j

)

− βb−1,(7.6)

where b′ is any integer satisfying (b−1)b′ ≡ 1 mod p2. One can now check that
the integers βj satisfy the required properties. The proof uses the congruence in
Lemma 2.6 and is similar to that of Lemma 7.1, so we leave it as an exercise. �

Lemma 7.3. Let p ≥ 3, r ≡ 1 mod (p− 1), i.e., b = p. Suppose that p2 | r− p.
Then

(i) One can choose αj ∈ Z, for all j ≡ 1 mod (p − 1), with p ≤ j < r,
satisfying:

(1) αj ≡
(

r
j

)

mod p2, for all j as above,

(2)
∑

j≥n

(

j
n

)

αj ≡ 0 mod p4−n, for n = 0, 1 and 2,

(3)
∑

j≥3

(

j
3

)

αj ≡
{

0 mod p, if p ≥ 5

1 mod p, if p = 3.

(ii) One can choose γj ∈ Z, for all j ≡ 0 mod (p−1), with p−1 ≤ j < r−1,
satisfying:

(1) γj ≡
(

r
j

)

mod p2, for all j as above,

(2)
∑

j≥n

(

j
n

)

γj ≡ 0 mod p4−n, for n = 0, 1 and 2,

(3)
∑

j≥3

(

j
3

)

γj ≡
{

0 mod p, if p ≥ 5

−1 mod p, if p = 3.

Proof. Similar to that of Lemma 7.1 and 7.2, and uses the congruences given
in Lemma 2.7. �

Remark 7.4. The integers αj , βj , γj in the lemmas above are not unique, but
their existence will be crucial for us. We will use these integers in §8 and §9 to
construct functions to eliminate JH factors of Q, and to compute the reduction
V̄k,ap , which is the main goal of this paper.

8. Elimination of JH factors

For the rest of this paper, we will work under the assumption 1 < v(ap) < 2.

Let us recall Proposition 3.3 in [BG09]: If Θ̄k,ap is a quotient of indGKZ(Vs⊗Dn)

for some 0 ≤ s ≤ p− 1, then V̄k,ap
∼= ind(ω

s+1+(p+1)n
2 ), unless s = p− 2, where

one has the additional possibility that V̄k,ap is reducible and isomorphic to
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ωn⊕ ωn on Ip, the inertia subgroup at p. Using this result one can specify the
shape of V̄k,ap when Q is irreducible as a Γ-module, up to the fact that V̄k,ap
may be occasionally reducible, as mentioned above. For example, we have

Theorem 8.1. Let p ≥ 3 and r > 2p.

(i) If r ≡ 1 mod (p − 1) and p ∤ r, then V̄k,ap
∼= ind(ω2

2). If p = 3, then

V̄k,ap can also possibly be reducible and trivial on Ip.

(ii) If r ≡ 2 mod (p− 1) and p ∤ r(r − 1), then V̄k,ap
∼= ind(ω3

2).

Proof. As 1 < v(ap) < 2, there exists a surjection indGKZQ ։ Θ̄k,ap . In part

(i), we have Q ∼= V1 by Propositions 3.3 and 3.8. In part (ii), Q ∼= Vp−3 ⊗D2

by Proposition 5.3. Since Q is irreducible in both cases, we apply [BG09, Prop.
3.3] to determine V̄k,ap . �

Remark 8.2. In fact, Theorem 9.1 in the next section will imply that the re-
ducible possibility in part (i) above never occurs. Note that for p = 3, the

condition p ∤ r implies that
(

r−1
2

)

≡ 0 mod p and therefore the hypothesis of
Theorem 9.1 is automatically satisfied.

As we have already seen, Q is usually not irreducible. It can have two and
sometimes even three JH factors as a Γ-module depending on the congruence
class of r modulo both p−1 and p. In these cases we will use the explicit formula
for the Hecke operator T acting on the space indGKZSym

rQ̄2
p, to eliminate one

or two JH factors of Q, so that we can use [BG09, Prop. 3.3].
To work explicitly with the Hecke operator T , we need to recall some well-
known formulas involving T from [B03b]. For m = 0, set I0 = {0}, and for
m > 0, let

Im = {[λ0] + [λ1]p+ · · ·+ [λm−1]p
m−1 : λi ∈ Fp} ⊂ Zp,

where the square brackets denote Teichmüller representatives. For m ≥ 1,
there is a truncation map [ ]m−1 : Im → Im−1 given by taking the first m− 1
terms in the p-adic expansion above; for m = 1, [ ]m−1 is the 0-map. Let
α =

(

1 0
0 p

)

. For m ≥ 0 and λ ∈ Im, let

g0m,λ =

(

pm λ
0 1

)

and g1m,λ =

(

1 0
pλ pm+1

)

,

noting that g00,0 = Id is the identity matrix and g10,0 = α in G. Recall the
decomposition

G =
∐

m≥0, λ∈Im,
i∈{0,1}

KZ(gim,λ)
−1.

Thus, a general element in indGKZV , for a KZ-module V , is a finite sum of
elementary functions of the form [g, v], with g = g0m,λ or g1m,λ, for some λ ∈ Im
and v ∈ V . For a Zp-algebra R, let v =

∑r
i=0 ciX

r−iY i ∈ V = SymrR2 ⊗Ds.
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Expanding the formula (2.1) for the Hecke operator T one may write T =
T+ + T−, where

T
+([g0n,µ, v]) =

∑

λ∈I1

[

g
0
n+1,µ+pnλ,

r
∑

j=0

(

p
j

r
∑

i=j

ci

(

i

j

)

(−λ)i−j

)

X
r−j

Y
j

]

,

T
−([g0n,µ, v]) =

[

g
0
n−1,[µ]n−1

,

r
∑

j=0

(

r
∑

i=j

p
r−i

ci

(

i

j

)

(

µ− [µ]n−1

pn−1

)i−j
)

X
r−j

Y
j

]

(n > 0),

T
−([g0n,µ, v]) =

[

α,

r
∑

j=0

p
r−j

cjX
r−j

Y
j

]

(n = 0).

The formulas for T+ and T− will be used to calculate the (T − ap)-image of

the functions f ∈ indGKZSym
rQ̄2

p. Though T is a G-linear operator, note that

T+ and T− are not G-linear. Formulas similar to those above describe how
T acts on functions of the form [g1n,µ, v] but we will not use these functions in
this article.
An integral function, i.e., an element of indGKZSym

rZ̄2
p will be said to “die mod

p”, if it maps to zero in indGKZSym
rF̄2

p under the standard reduction map.

Theorem 8.3. Let p ≥ 5, r > 2p, r ≡ a mod (p− 1), with 3 ≤ a ≤ p− 1. If
r 6≡ a mod p, then there exists a surjection

indGKZ(Vp−a+1 ⊗Da−1) ։ Θ̄k,ap .

As a consequence, V̄k,ap
∼= ind(ωa+p2 ), if a > 3. For a = 3, we have the

additional possibility that V̄k,ap is reducible and its restriction to Ip is ω2 ⊕ω2.

Proof. By Proposition 6.4 (i), we have Q ∼= J1 ⊕ J2 as a Γ-module, where

J1 = Vp−a+1 ⊗Da−1 and J2 = Vp−a−1 ⊗Da. Let F1 be the image of indGKZJ1
in Θ̄k,ap under the surjection indGKZQ։ Θ̄k,ap , and let F2 denote the quotient

Θ̄k,ap/F1. Then we have the commutative diagram:

0 // indGKZJ1

��
��

// indGKZQ

��
��

// indGKZJ2

��
��

// 0

0 // F1
// Θ̄k,ap // F2

// 0.

We will construct a function in Xk,ap = ker(indGKZVr ։ Θ̄k,ap), which maps

to a function of the form [g, v] ∈ indGKZJ2 under the surjection in the top row
above, for some g ∈ G and 0 6= v ∈ J2. Since the G-span of [g, v] is all of

indGKZJ2, we get F2 = 0 and Θ̄k,ap
∼= F1 is a quotient of indGKZJ1. The final

conclusion follows by applying [BG09, Prop. 3.3].
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Consider the function f ∈ indGKZSym
rQ̄2

p defined by f := f2 + f1 + f0 with

f2 =
∑

λ∈Fp

[

g02,p[λ],
1

p
·
(

Y r −Xp−1Y r−p+1
)

]

,

f1 =









g01,0,
(p− 1)

pap
·

∑

0<j<r
j≡a mod (p−1)

αj · Xr−jY j









,

f0 =

{

0, if a < p− 1,
[

Id, (1−p)p ·
(

Xr −Xr−p+1Y p−1
)

]

, if a = p− 1,

where the αj ∈ Z are integers satisfying the four properties stated in Lemma
7.1.
Applying the explicit formulas for T+ and T−, using Lemma 7.1 and the
facts r > 2p, 3 ≤ p − 1 and 1 < v(ap) < 2, we get that the functions
T−f0, T

−f1, T
+f1, apf0, apf2 are all integral and die mod p. We compute that

T+f2 ∈ indGKZ〈Xr−1Y 〉Z̄p
+ p · indGKZSymrZ̄2

p, hence it maps to 0 ∈ indGKZQ.

Next we use the formulas for T−, T+ and the identity (2.7) to compute that

T−f2 − apf1 + T+f0 ≡
[

g01,0, F (X,Y )
]

mod p,

where

F (X,Y ) =
∑

0<j<r
j≡a mod (p−1)

(p− 1)

p

((

r

j

)

− αj

)

·Xr−jY j + Y r.

Note that F (X,Y ) is integral, as αj ≡
(

r
j

)

mod p, for each j, by Lemma 7.1.

All the information above together implies that (T − ap)f ∈ indGKZSym
rZ̄2

p,

so its reduction lies in Xk,ap . Moreover, the reduction (T − ap)f maps to

[g01,0, , Pr2(F )] ∈ indGKZJ2, where Pr2 : Q ։ J2 is the projection map. It is

clear from Diagram (2.2) that Pr2 is induced by the map Vr ։
Vr
V ∗
r

։ J2.

Noting that the monomial Y r maps to 0 in Q, we have

Pr2(F ) = −Pr2





∑

j

1

p

((

r

j

)

− αj

)

·Xr−jY j





= −
∑

j

1

p

((

r

j

)

− αj

)

· Pr2(Xr−aY a),

since all the mixed monomials in F (X,Y ) are congruent to scalar multiples of

Xr−aY a modulo V ∗
r . Under the composition Vr/V

∗
r

∼−→ Va+p−1/V
∗
a+p−1 ։

Vp−a−1 ⊗Da = J2, where the first isomorphism is ψ−1 of [G78, (4.2)] and the
next surjection is induced from [B03b, Lem. 5.3], we have

Xr−aY a mod V ∗
r 7→ Xp−1Y a mod V ∗

a+p−1 7→ Xp−1−a 6= 0.
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Therefore Pr2(F ) = c · Pr2(Xr−aY a) = c · Xp−1−a, where c is the mod p

reduction of the sum −∑

j

1

p
·
(

(

r
j

)

− αj

)

∈ Z. By property (ii) of the integers αj

stated in Lemma 7.1, c is the reduction of −1

p
·∑
j

(

r
j

)

∈ Z, which is congruent to

r − a

a
mod p, by Lemma 2.5. By hypothesis, r 6≡ a mod p, so we get c ∈ F̄∗

p.

Thus the reduction (T − ap)f maps to [g, v] ∈ indGKZJ2, where g = g01,0 ∈ G

and v = c ·Xp−1−a is a non-zero element in J2, and we are done. �

The following theorem is complementary to Theorem 8.1 (ii).

Theorem 8.4. Let p ≥ 3, r > 2p, r ≡ 2 mod (p − 1). If p | r(r − 1), then

V̄k,ap
∼= ind(ω2+p

2 ).

Proof. If p | r(r − 1), then Q has two JH factors by Propositions 5.4 and
5.5. We will eliminate the JH factor J2 = Vp−3 ⊗ D2. We take the function
f = f0 + f1 + f2 as in the proof of Theorem 8.3, for a = 2. Note that property
(iv) in Lemma 7.1 implies that

∑

j

(

j
2

)

αj ≡
(

r
2

)

≡ 0 mod p, by hypothesis.

Now by the same argument as in Theorem 8.3, we eliminate the JH factor J2,
except for the following subtlety: to show T−f1 ≡ 0 mod p, we used the bound
3 ≤ p−1 in Theorem 8.3. This cannot be used in the present case as a = 2 and
so p = 3 is allowed. But p | r(r− 1) implies that αr−p+1 ≡

(

r
r−p+1

)

≡ 0 mod p

by Lucas’ theorem. This ensures that T−f1 dies mod p even in this case.
Therefore if p | r − 1, then we have a surjection indGKZ(Vp−1 ⊗ D) ։ Θ̄k,ap
by Proposition 5.4, and if p | r, then we have indGKZ(V0 ⊗ D) ։ Θ̄k,ap by
Proposition 5.5. Now we use [BG09, Prop. 3.3] to draw the final conclusion. �

Next we treat some cases where Q has three JH factors and those coming from
V ∗
r /V

∗∗
r are to be eliminated. We begin by stating the following easy lemma.

Note that we already have a complete solution to the problem in the case b = 2
by Theorem 8.1 (ii) and Theorem 8.4. So we assume b ≥ 3 from now on.

Lemma 8.5. Let p ≥ 3, r > 2p, r ≡ b mod (p− 1), with 3 ≤ b ≤ p. Then we
have the non-split short exact sequence of Γ-modules

0 → J0 := Vb−2 ⊗D → V ∗
r /V

∗∗
r → J1 := Vp−b+1 ⊗Db−1 → 0, where

(i) The monomials Y b−2, Xb−2 ∈ J0 map to θY r−p−1 and θXr−p−1 re-
spectively in V ∗

r /V
∗∗
r .

(ii) The polynomials θY r−p−1, θXr−p−1 ∈ V ∗
r /V

∗∗
r map to 0 ∈ J1 and

θXr−p−b+1Y b−2 maps to Xp−b+1 ∈ J1.

Proof. The exact sequence is given by Proposition 2.2. By [G78, (4.1), (4.2)],

we have an isomorphism V ∗
r /V

∗∗
r

ψ−1⊗id−−−−−→ (Vp+b−3/V
∗
p+b−3) ⊗ D. Then one

computes the images of the polynomials mentioned above under the Γ-maps
Vb−2⊗D →֒ (Vp+b−3/V

∗
p+b−3)⊗D and (Vp+b−3/V

∗
p+b−3)⊗D ։ Vp−b+1⊗Db−1

respectively, using the explicit formulas from [B03b, Lem. 5.3]. �
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The next two theorems are complementary to Theorem 8.3 above.

Theorem 8.6. Let p ≥ 5, r > 2p and r ≡ b mod (p− 1), with 4 ≤ b ≤ p− 1.

If r ≡ b mod p, then V̄k,ap
∼= ind(ωb+1

2 ).

Proof. By Proposition 6.4 (ii), Q contains V ∗
r /V

∗∗
r as a submodule, which is

an extension of J1 by J0, with the notation of Lemma 8.5. Let F0,1 denote the

image of indGKZ(V
∗
r /V

∗∗
r ) inside Θ̄k,ap , and let F2 := Θ̄k,ap/F0,1. Then we have

the following commutative diagram of G-maps

0 // indGKZ(V
∗
r /V

∗∗
r )

��
��

// indGKZQ

��
��

// indGKZJ2

��
��

// 0

0 // F0,1
// Θ̄k,ap // F2

// 0,

where J2 = Vp−b−1 ⊗ Db. We will show that F0,1 = 0, under the hypothesis
r ≡ b mod p.
Consider f = f0 + f1 ∈ indGKZSym

rQ̄2
p, given by

f1 =
∑

λ∈F∗

p

[

g01,[λ],
p

ap
[λ]p−2 ·

(

Y r −Xr−bY b
)

]

+

[

g01,0,
r(1 − p)

ap
·
(

XY r−1 −Xr−b+1Y b−1
)

]

,

f0 =









Id,
∑

0<j<r−1
j≡b−1 mod (p−1)

p(p− 1)

a2p
· βjXr−jY j









,

where the βj are the integers from Lemma 7.2.
Using b > 2 and the fact that p | r − b, we check that T+f1 ≡ 0 mod p.
Similarly, T−f0 ≡ 0 mod p, since v(a2p/p) < 3 ≤ p. We use the fact b >
3, together with the properties satisfied by the integers βj in Lemma 7.2 to
conclude that T+f0 ≡ 0 mod p as well. Next we compute that

T−f1 − apf0 ≡









Id,
∑

0<j<r−1
j≡b−1 mod (p−1)

(p− 1)p

ap

((

r

j

)

− βj

)

·Xr−jY j









,

which again dies mod p, since βj ≡
(

r
j

)

mod p for each j, by Lemma 7.2.

Finally we get (T − ap)f is integral and (T − ap)f ≡ −apf1 mod p. As r ≡ b
mod p, we have
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(T − ap)f

≡ −
[

g01,0, r(1 − p) · (XY r−1 −Xr−b+1Y b−1)
]

≡ −
[

g01,0, −b · θ
(

r − p− b+ 1

p− 1
·Xr−p−b+1Y b−2 + Y r−p−1

)

mod V ∗∗
r

]

≡
[

g01,0, −b · θ
(

Xr−p−b+1Y b−2 − Y r−p−1
)]

mod p.

Let v be the image of −b · θ
(

Xr−p−b+1Y b−2 − Y r−p−1
)

in V ∗
r /V

∗∗
r . Then

the reduction (T − ap)f maps to
[

g01,0, v
]

∈ indGKZ(V
∗
r /V

∗∗
r ) ⊆ indGKZQ. By

Lemma 8.5, v maps to the non-zero element −b·Xp−b+1 ∈ J1 = Vp−b+1⊗Db−1.
As the short exact sequence (2.6) is non-split, v generates the whole module

V ∗
r /V

∗∗
r over Γ, so the element

[

g01,0, v
]

generates indGKZ(V
∗
r /V

∗∗
r ) over G.

Thus F0,1 = 0 and hence Θ̄k,ap
∼= F2 is a quotient of indGKZ(Vp−b−1 ⊗ Db).

Finally we apply [BG09, Prop. 3.3] to get the structure of V̄k,ap . �

However, for b = 3 ≤ p−1, we do not have a complete solution to the problem of
computing V̄k,ap when r ≡ b mod p(p−1). But we have the following theorem

which is applicable whenever v(ap) 6= 3
2 . It is also applicable if v(ap) = 3

2 ,

unless the unit
a2p
p3 reduces to 1 in F̄p.

Theorem 8.7. Let p ≥ 5, r > 2p and r ≡ 3 mod p(p− 1). If v(ap) =
3
2 , then

assume that v(a2p − p3) = 3. Then V̄k,ap
∼= ind(ω4

2).

Proof. If v(ap) ≤ 3/2, then we consider f = f0 + f1, where f0 are f1 are as
in the proof of Theorem 8.6 with b = 3. The formula for the Hecke operator
shows that (T − ap)f is still integral. As b = 3, now T+f0 does not necessarily
die mod p. In fact we have

T+f0 ≡
[

g01,0,
p3(p− 1)

a2p

(

2

2

)

β2 ·Xr−2Y 2

]

mod p,

which is integral because v(a2p) ≤ 3, and we have

(T − ap)f ≡ T+f0 − apf1

≡
[

g01,0,
p3(p− 1)

a2p
β2 ·Xr−2Y 2 − r(1 − p)

(

XY r−1 −Xr−2Y 2
)

]

mod p.

Note that r ≡ 3 mod p and also β2 ≡
(

r
2

)

≡
(

3
2

)

= 3 mod p by Lucas’ theo-

rem. As XY r−1 vanishes in Q, the reduction (T − ap)f maps to the image of
[

g01,0, 3
(

1− p3/a2p
) (

Xr−2Y 2 −XY r−1
)]

in indGKZQ. The hypothesis implies

that 1 − p3/a2p is a p-adic unit. So, the module indGKZ(V
∗
r /V

∗∗
r ) maps to 0 in

Θ̄k,ap , as explained in the proof of Theorem 8.6.
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If v(ap) > 3/2, then we consider the new function f ′ =
a2p
p3

· f = f ′
0 + f ′

1, with

f ′
1 =

∑

λ∈F∗

p

[

g01,[λ],
ap
p2

[λ]p−2 ·
(

Y r −Xr−3Y 3
)

]

+

[

g01,0,
(1 − p)rap

p3
·
(

XY r−1 −Xr−2Y 2
)

]

,

f ′
0 =









Id,
∑

0<j<r−1
j≡2 mod (p−1)

(p− 1)

p2
· βj Xr−jY j









,

where the βj are the integers from Lemma 7.2. The computations are
very similar to the previous case, except that now we have apf

′
1 ≡ 0

mod p, since v(a2p/p
3) > 0. Finally we get (T − ap)f

′ ≡ T+f ′
0 ≡

[

g01,0, (p− 1)β2 ·Xr−2Y 2
]

mod p. So the reduction (T − ap)f ′ maps to the

image of
[

g01,0, 3(XY
r−1 −Xr−2Y 2)

]

in indGKZQ. The rest of the proof follows
as in the previous case. �

Remark 8.8. Note that when b = 3 and p | r− b, the hypothesis (⋆) in Theorem
1.1 is equivalent to the condition v(a2p − p3) = 3 above. If v(a2p − p3) > 3,

so necessarily v(ap) = 3
2 , we can only show that V̄k,ap is either ind(ω4

2) or

ind(ω3+p
2 ), or it is reducible of the form ω2 ⊕ ω2 or ω3 ⊕ ω on Ip.

The following theorem is complementary to Theorem 8.1 (i). It treats the case
p | r ≡ 1 mod p−1, where Q has two JH factors. With the notation of Lemma
7.2, a = 1 is equivalent to b = p, and so the condition p | r can also be stated
as r ≡ b mod p.

Theorem 8.9. For p ≥ 3, let p < r ≡ 1 mod (p − 1) and suppose p | r. If
p = 3 and v(ap) =

3
2 , then further assume that v(a2p − p3) = 3. Then we have

(i) If p2 ∤ r − p, then there is a surjection indGKZV1 ։ Θ̄k,ap . As a con-

sequence, V̄k,ap
∼= ind(ω2

2) unless p = 3, in which case V̄k,a3 may be
reducible, and trivial on I3.

(ii) If p2 | r − p, then there is a surjection indGKZ(Vp−2 ⊗D) ։ Θ̄k,ap . As

a consequence, either V̄k,ap
∼= ind(ω2

2) or V̄k,ap is reducible, with the
shape ω ⊕ ω on Ip.

Proof. By Proposition 3.12 (iii), we have Q ∼= V ∗
r /V

∗∗
r is an extension of J1 =

V1 by J0 = Vp−2 ⊗D. Let F0 ⊆ Θ̄k,ap be the image of indGKZJ0 under the map

indGKZQ։ Θ̄k,ap . Then F1 := Θ̄k,ap/F0 is a quotient of indGKZJ1 and we have
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the following commutative diagram:

0 // indGKZJ0

��
��

// indGKZQ

��
��

// indGKZJ1

��
��

// 0

0 // F0
// Θ̄k,ap // F1

// 0.

We show F0 = 0 if p2 ∤ r − p and F1 = 0 if p2 | r − p. Then (i) and (ii) will
follow as usual.

(i) Consider f = f2 + f1 + f0 ∈ indGKZSym
rQ̄2

p, given by

f2 =
∑

λ∈Fp

[

g02,p[λ],
[λ]p−2

p
· (Y r −Xr−pY p)

]

,

f1 =









g01,0,
p− 1

pap
·

∑

0<j<r−1
j≡0 mod (p−1)

βj · Xr−jY j









,

f0 =

[

Id,
1− p

p
· (Xr −XpY r−p)

]

,

where the βj are the integers from Lemma 7.2. Using the formula for the Hecke
operator, one checks that T+f2, T

−f1,−apf2, T−f0,−apf0 are all integral and
die mod p. Also T+f1 ≡ 0 mod p by Lemma 7.2, i.e., by the properties
satisfied by the integers βj . Moreover,

T−f2 + T+f0 − apf1 ≡








g01,0,
(p− 1)

p
·









∑

0<j<r−1
j≡0 mod (p−1)

((

r

j

)

− βj

)

·Xr−jY j + rXY r−1

















mod p.

Note that the function above is integral because each βj ≡
(

r
j

)

mod p by

Lemma 7.2, and p | r by hypothesis. Now modifying the polynomial above

by a suitable XY r−1-term, we can see that (T − ap)f has the same image as
[

g01,0, (p− 1)

(

F (X,Y ) +
(p− r)θY r−p−1

p

)]

in indGKZQ, where

F (X,Y ) =
∑

0<j<r−1
j≡0 mod (p−1)

1

p

((

r

j

)

− βj

)

·Xr−jY j − (p− r)

p
·XpY r−p.

Using Lemmas 7.2, 2.7 and 2.6 we see that F (X,Y ) ∈ V ∗∗
r , by Lemma 2.3.

Hence (T − ap)f maps to the image of
(r − p)

p
·
[

g01,0, θY
r−p−1

]

in indGKZQ.

By hypothesis, p2 ∤ r − p. Thus c = (r − p)/p is a non-zero element in F̄p. By
Lemma 8.5 (i), the element c · [g01,0, Y p−2] ∈ indGKZJ0 maps to 0 ∈ F0 ⊆ Θ̄k,ap .
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Since c · [g01,0, Y p−2] generates all of indGKZJ0 as a G-module, we have F0 = 0

and Θ̄k,ap
∼= F1 is a quotient of indGKZJ1.

(ii) If p2 | r − p, we consider the function f = f2 + f1 + f0 ∈ indGKZSym Q̄2
p,

given by

f2 =
∑

λ∈F∗

p

[

g02,p[λ],
[λ]p−2

ap
· (Y r −Xr−pY p)

]

+

[

g02,0,
(1− p)r

pap
· (XY r−1 −Xr−p+1Y p−1)

]

,

f1 =









g01,0,
p− 1

a2p
·

∑

0<j<r−1
j≡0 mod (p−1)

γj · Xr−jY j









,

f0 =

[

Id,
1− p

ap
· (Xr −XpY r−p)

]

,

where the γj are integers from Lemma 7.3 (ii). Using Lemma 7.3 we check
that if either p ≥ 5 or if p = 3 and v(ap) < 3/2, then T+f2, T

+f0 + T−f2 −
apf1, T

−f1, T
+f1, T

−f0 are all integral and die mod p. That leaves us with

(T − ap)f ≡ −apf0 − apf2 ≡
∑

λ∈F∗

p

[

g02,p[λ],−[λ]p−2 · (Y r −Xr−pY p)
]

+

[

g02,0,
(p− 1)r

p
(XY r−1 −Xr−p+1Y p−1)

]

+
[

Id, (p− 1) · (Xr −XpY r−p)
]

mod p.

Hence the image of the reduction (T − ap)f in indGKZQ is the same as that of
∑

λ∈F∗

p

[ g02,p[λ],−[λ]p−2 · (Xr−1Y −Xr−pY p) ]

+[ g02,0,
(p−1)r
p (XY r−1 −Xr−p+1Y p−1)] + [Id, (p− 1) · (XY r−1 −XpY r−p)].

As we have r/p ≡ 1 mod p by hypothesis, the function above is congruent to
∑

λ∈F∗p

[g02,p[λ],−[λ]p−2
θX

r−p−1 ]+[g02,0, X
r−p+1

Y
p−1−XY

r−1]+[Id, θY r−p−1] mod p.

Since Xr−p+1Y p−1 −XY r−1 = θ · (Xr−2p+1Y p−2 + · · ·+ Y r−p−1), we have

X
r−p+1

Y
p−1 −XY

r−1 ≡ θ ·

(

(r − 2p+ 1)

p− 1
·Xr−2p+1

Y
p−2 + Y

r−p−1

)

mod V
∗∗

r .

Applying Lemma 8.5 (ii) we get that (T − ap)f maps to
[

g02,0, −X
]

∈ indGKZJ1

under the map indGKZQ։ indGKZ J1. As [g
0
2,0,−X ] generates all of indGKZJ1 as

a G-module, we get F1 = 0 and so Θ̄k,ap
∼= F0 is a quotient of indGKZJ0.

Documenta Mathematica 20 (2015) 943–987



982 Shalini Bhattacharya, Eknath Ghate

If p = 3 and v(ap) ≥ 3/2, then note that T−f1 and T+f1 do not die mod p
any more, and (T − ap)f is not necessarily integral. In this case we consider
the modified new function f ′ := (a2p/p

3) · f , with f as above. Then one checks

(T − ap)f
′ is integral and maps to c · [g02,0, X ] ∈ indGKZJ1, where c = 1− a2p/p

3.
By the extra hypothesis in the case v(ap) = 3/2, c is always a non-zero element
in F̄p, and thus the JH factor J1 is killed again. �

Remark 8.10. In the next section we will show that in part (i) above the
reducible case does not occur when p = 3, and that in part (ii) V̄k,ap is always
reducible.

9. Separating out reducible and irreducible cases

If Θ̄k,ap is a quotient of indGKZ(Vp−2 ⊗ Dn), then [BG09, Prop. 3.3] fails to

determine V̄k,ap . In this case, either V̄k,ap
∼= ind(ω

p−1+n(p+1)
2 ) is irreducible

or it is reducible with V̄k,ap |Ip ∼= ωn ⊕ ωn. We have faced this problem in the
following cases, cf. Theorems 8.1 (i), 8.3 and 8.9.

(1) If b = 3 and p1+v(b) ∤ r − b, then we have indGKZ
(

Vp−2 ⊗D2
)

։ Θ̄k,ap ,
hence

V̄k,ap |Ip ∼=
{

ind(ωp+3
2 ), or

ω2 ⊕ ω2.

(2) If b = p and p2 | r− b, then under the extra hypothesis ‘v(ap) = 3/2 ⇒
v(a2p−p3) = 3, when p = 3’, we have indGKZ (Vp−2 ⊗D) ։ Θ̄k,ap , hence

V̄k,ap |Ip ∼=
{

ind(ω2
2), or

ω ⊕ ω.

In this section we mostly separate out the reducible and irreducible possibilities
above. We will show that V̄k,ap is ‘almost always’ irreducible in the first case
whereas it is always reducible in the second case above. In the first case,
we work under the mild hypothesis (⋆) in Theorem 1.1. Note that (⋆) holds

trivially if p |
(

r−1
2

)

. In particular, it holds for the smallest new weight treated
in this paper, namely, k = 2p+ 3.

Theorem 9.1. Let p ≥ 3, r > 2p, r ≡ 3 mod (p − 1) and p1+v(3) ∤ r − 3.

If v(ap) = 3
2 , then further assume that v

(

a2p −
(

r−1
2

)

(r − 2)p3
)

= 3. Then

V̄k,ap
∼= ind(ωp+3

2 ) is irreducible.

Proof. Assuming the hypothesis, we will show that the G-map indGKZJ1 ։

Θ̄k,ap given by Propositions 3.3, 3.8 and Theorem 8.9 (i) for p = 3, and by
Theorem 8.3 for p ≥ 5, factors through the cokernel of the Hecke operator T
acting on indGKZJ1, where J1 = Vp−2 ⊗D2.
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If v(a2p) ≤ v
((

r−1
2

))

+ 3, we consider the function f = f2 + f1 + f0, where

f2 =
∑

λ∈Fp

[

g02,p[λ],
1

ap
· θ(Xr−p−2Y − Y r−p−1)

]

,

f1 =









g01,0,
∑

0<j<r−1
j≡2 mod (p−1)

(p− 1)p

a2p
· αjXr−jY j









,

f0 =

{

0, if p ≥ 5
[

Id, (1−p)p
ap

· (Xr −Xr−p+1Y p−1)
]

, if p = 3,

where the αj are integers from Lemma 7.1, applied with r−1 ≡ 2 mod (p−1),
instead of r.
It is easy to see using the formula for the Hecke operator that T+f2, T

−f1 are
integral and die mod p. Moreover,

T
−
f2 − apf1 + T

+
f0 ≡









g
0
1,0,

∑

0<j<r−1
j≡2 mod (p−1)

(p− 1)p

ap

·

((

r − 1

j

)

− αj

)

X
r−j

Y
j









dies mod p, since v(ap) < 2 and each αj ≡
(

r−1
j

)

mod p, by Lemma

7.1. Also, T−f0 and apf0 die mod p, which is relevant only when p = 3.
We use the four properties of the αj in Lemma 7.1, and the fact that

v(a2p) ≤ v
((

r−1
2

))

+ 3 to conclude that T+f1 is also integral and that T+f1 ≡
∑

λ∈Fp

[

g02,p[λ],
p3(p− 1)

a2p

(

r−1
2

)

·Xr−2Y 2

]

mod p. Thus (T−ap)f is integral and

is congruent to

∑

λ∈Fp

[

g02,p[λ], −θ(Xr−p−2Y − Y r−p−1) +
p3(p− 1)

a2p

(

r − 1

2

)

·Xr−2Y 2

]

mod p.

The image of Xr−2Y 2 in Q is the same as that of Xr−2Y 2 −XY r−1, which is

θ · (Xr−p−2
Y + · · ·+ Y

r−p−1) ≡ θ ·

(

r − p− 2

p− 1
·Xr−p−2

Y + Y
r−p−1

)

mod V
∗∗

r .

Hence (T − ap)f maps to

∑

λ∈Fp

[

g02,p[λ], −Xp−2 +
p3

a2p

(

r − 1

2

)

(r − 2) ·Xp−2

]

∈ indGKZ(Vp−2 ⊗D2),

by Lemma 8.5. This equals c · T ([g01,0, Xp−2]), with c = p3

a2p

(

r−1
2

)

(r − 2)− 1.

Using the hypothesis one checks that the constant c ∈ F̄p is non-zero, hence the
map indGKZ J1 ։ Θ̄k,ap factors through π(p− 2, 0, ω2). Therefore the reducible

case cannot occur and V̄k,ap
∼= ind

(

ωp+3
2

)

.
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Now let v(a2p) > v
((

r−1
2

))

+ 3. As v(a2p) < 4, this forces p ∤
(

r−1
2

)

and so

v(a2p) > 3. Note that in this case (T − ap)f is not integral for the f above.
However, we can use the following modified function f ′ = f ′

2 + f ′
1 + f ′

0 :

f ′
2 =

a2p
p3

· f2 =
∑

λ∈Fp

[

g02,p[λ],
ap · θ(Xr−p−2Y − Y r−p−1)

p3

]

,

f ′
1 =

a2p
p3

· f1 =









g01,0,
∑

0<j<r−1
j≡2 mod (p−1)

(p− 1)

p2
· αjXr−jY j









,

f ′
0 =

a2p
p3

· f0 =

{

0, if p ≥ 5
[

Id,
(1−p)ap
p2 · (Xr −Xr−p+1Y p−1)

]

, if p = 3,

with the same αj as before. Now apf
′
2, apf

′
0 dies mod p, as v(a2p) > 3. Also

T+f ′
2, T

−f ′
1, T

−f ′
0 and T−f ′

2 − apf
′
1 + T+f ′

0 die mod p as before, and hence

(T − ap)f
′ ≡ T+f ′

1 ≡
∑

λ∈Fp

[

g02,p[λ], (p− 1)

(

r − 1

2

)

Xr−2Y 2

]

mod p.

This maps to
∑

λ∈Fp

[

g02,p[λ], (r − 2)
(

r−1
2

)

·Xp−2
]

= (r − 2)
(

r−1
2

)

· T ([g01,0, Xp−2])

under the map indGKZVr ։ indGKZQ ։ indGKZJ1, as shown above. Since (r −
2)
(

r−1
2

)

is a p-adic unit, the map indGKZJ1 ։ Θ̄k,ap factors through the image

of T , and we have V̄k,ap
∼= ind(ωp+3

2 ). �

Surprisingly, if b = p and p2 | r − p, then V̄k,ap is always reducible, at least if
p ≥ 5. This is the first time in this paper that we have obtained a family of
examples where V̄k,ap is reducible, for slopes in the range 1 < v(ap) < 2. The
following theorem describes the action of both inertia and Frobenius elements.

Theorem 9.2. Let p ≥ 3, r > 2p and r ≡ 1 mod (p− 1), i.e., b = p. If p = 3
and v(ap) = 3

2 , then further assume that v(a2p − p3) = 3. If p2 | r − p, then

V̄k,ap is reducible and

V̄k,ap
∼= unr

(√
−1

)

ω ⊕ unr
(

−
√
−1

)

ω.

Proof. We claim that the map indGKZJ0 ։ Θ̄k,ap given by Theorem 8.9 (ii),
where J0 = Vp−2 ⊗D, factors through

indGKZ(Vp−2 ⊗D)

(T 2 + 1)
∼= π

(

p− 2,
√
−1, ω

)

⊕ π
(

p− 2,−
√
−1, ω

)

.

Once this claim is proved, the result follows as we know that Θ̄k,ap lies in the
image of the mod p Local Langlands Correspondence.
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Proof of the claim: We consider f = f2 + f1 + f0 ∈ indGKZ SymrQ̄2
p, given by

f2 =
∑

λ∈Fp,
µ∈F∗

p

[

g02, p[µ]+[λ] ,
1

ap
· (Y r −Xr−pY p)

]

+
∑

λ∈Fp

[

g02,[λ] ,
(1− p)

ap
· (Y r −Xr−pY p)

]

,

f1 =
∑

λ∈Fp









g01,[λ],
(p− 1)

a2p
·

∑

1<j<r
j≡1 mod (p−1)

αj · Xr−jY j









,

f0 =

[

Id,
r

pap
· (Xr−1Y −Xr−pY p)

]

,

where the αj are integers from Lemma 7.3 (i). If either p ≥ 5 or p = 3 and
v(ap) < 3/2, then we use the fact that p2 | r− p and the properties satisfied by
the αj to conclude that all of T+f2, T

+f1, T
−f1, T

−f0, T
−f2 − apf1 + T+f0

are integral and die mod p. Thus (T − ap)f is integral, and is congruent to
−apf2 − apf0 mod p, which equals

∑

λ, µ∈Fp

[

g02, p[µ]+[λ] , X
r−pY p − Y r

]

−
[

Id,
r

p
· (Xr−1Y −Xr−pY p)

]

.

Since Y r, Xr−1Y map to 0 in Q, and as r/p ≡ 1 mod p by hypothesis,

the image of the integral function above in indGKZQ is the same as that of

− ∑

λ, µ∈Fp

[

g02, p[µ]+[λ], θX
r−p−1

]

−
[

Id, θXr−p−1
]

, which, by the formula for T 2

and by Lemma 8.5, is the image of

(T 2 + 1)[Id,−Xp−2] =
∑

λ, µ∈Fp

[

g02, p[µ]+[λ], −Xp−2
]

+
[

Id, −Xp−2
]

∈ indGKZJ0

in indGKZQ. As [Id,−Xp−2] generates indGKZJ0, the image (T 2 + 1)(indGKZJ0)

must map to 0 under the G-map indGKZJ0 ։ Θ̄k,ap .
When p = 3 and v(ap) ≥ 3/2, then (T − ap)f is not necessarily integral for the
function f above. However, if we consider f ′ := (a2p/p

3) · f , then (T − ap)f
′ is

integral with reduction equal to the image of c·(T 2+1)[Id, X ] ∈ indGKZJ0 inside

indGKZQ, for c = 1− a2p/p
3 ∈ F̄p. By the extra hypothesis when v(ap) = 3/2,

we see c is non-zero, and the result follows as before. �

Errata to [GG15]

• p. 256, l. 21: α =
(

0 1
p 0

)

should be α =
(

1 0
0 p

)

.
• p. 267, l. 13: “hat” should be “that”.
• p. 273, l. 15: Sym Q̄2

p should be Sym2pQ̄2
p.

• p. 274, l. 15 and l. 18: “3 ≤ a ≤ p− 3” should be “3 ≤ a ≤ p− 1”.
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• p. 284: When a = p − 1, part (2) of Lemma 28 is not true, since

d0 = − p−1
p is not integral and so w is non-integral. This can be

corrected by modifying the function f2. Set f = f0 + f2, with
f0 = [Id, 1p (X

r−p+1Y p−1 −Xr)]. One checks that T−f0 is integral and

vanishes mod p and that T+f0 + T−f2 = [g01,0, w
′], with w′ integral.

Thus, (T − ap)f is integral and the proof of Theorem 27 proceeds as
before with w replaced by w′.
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