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1. Introduction

In his admirable book [24], Goro Shimura establishes various algebraicity results
concerning special L-values of Siegel modular forms, both of integral and half-
integral weight, as well as of Hermitian modular forms. All these results are
over an algebraic closure of Q, in the sense, that it is shown that the ratio
of the special L-values over the Petersson inner product of the corresponding
modular forms, defined over Q, is an algebraic number up to some powers of π
(see also the discussion in [24, page 239]). In this work, similar to our previous
works [2, 4], where the Siegel modular form situation was considered, we obtain,
in some cases, more precise information about the field of definition of these
ratios, and we establish a reciprocity law of the action of the absolute Galois
group. Moreover, in some cases, we even extend some of the results of Shimura
concerning the general algebraicity of these ratios. These can be achieved by
employing a recent result due to Klosin in [18] (see Theorem 4.2 below).
We note that the questions addressed here have been considered by Michael
Harris in [11, 13] where the situation of Hermitian modular forms attached
to unitary groups over a quadratic imaginary field was considered. In the
last section of this paper we will compare the results of this work with the ones
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obtained by Harris. Here we only mention that our work differs from the ones of
Harris in the method used. Harris uses the so-called doubling method to study
the L-values while here we employ the Rankin-Selberg method. Harris’ results
are more general in the sense that the doubling method can cover Hermitian
modular forms for unitary groups with archimedean components isomorphic to
U(n,m) with n 6= m, something which cannot be done by the Rankin-Selberg
method. Moreover Harris considers vector valued Hermitian modular forms,
while here we restrict ourselves to the scalar weight case. Having said that,
there are some critical values in the scalar weight situation, where the results
of our work are not covered by the ones obtained by Harris. We provide details
on this point in the last section of the paper.
However the main motivation for our work springs from the analytic part
of Iwasawa Theory. This work should be seen as the first step towards the
construction of p-adic measures for Hermitian modular forms, which is the
subject of our forthcoming work [5]. Actually the results obtained here will
be used in [5] to determine the field of definition of the p-adic measures
constructed there. The construction of such measures has been initiated
by Harris, Li and Skinner in [15, 16] (the interested reader should also see
important related work of Eischen [7, 8]), where an Eisenstein measure, which
interpolates p-adic Siegel type Eisenstein series is constructed, and some hints
toward the construction of the p-adic measure are given. Their work should
be seen as a vast generalization of the work of Katz [17]. Actually in our work
[3] we have constructed these measures for the case of Hermitian modular
forms attached to definite unitary groups of one obtaining p-adic measures
attached to Hecke Characters and two variables. However in all these works
one needs to assume that the prime ideals of F above p split in K. We
believe that this assumption is needed only in the case where the archimedean
components of the unitary group is of the form U(n,m) with n 6= m, that is
the Witt signature is not trivial. We defer a more detailed discussion on this
to our forthcoming work [5], but we only mention here, that this is related to
the fact that in the case of non-trivial Witt signature, one needs to evaluate
p-adic modular forms on CM points, and this can be done p-adically only
when the, corresponding to these points, CM abelian varieties are ordinary at
p. And the above condition on p guarantees this. Finally we mention that
our approach using the Rankin-Selberg method should be seen as the unitary
analogue of the work of Panchishkin, and of Courtieu and Panchishkin [6], who
considered the symplectic case (Siegel modular forms overQ and of even genus).

Notation: As in our works [2, 4] also in this one we use the books of Shimura
[23, 24] as our main references. For this reason we have decided to keep the
notation used in these two books. The only important notational difference,
is the use of the L-notation to denote the L-function instead of the Z used in
Shimura’s works.
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2. Hermitian modular forms

In this section we introduce the notion of a Hermitian modular form, both
classically and adelically. We follow closely the books of Shimura [23, Chapter
II] and [24, Chapter I], and we remark that we adopt the convention done in
the second book with respect to the weight of Hermitian modular forms (see
the discussion on page 32, Section 5.4 in [24]).
Let K be a field equipped with an involution ρ. For a positive integer n ∈ N

we define the matrix η := ηn :=

(
0 −1n
1n 0

)
∈ GL2n(K), and the group

G := U(n, n) := {α ∈ GL2n(K)|α∗ηα = η}, where α∗ := tα
ρ
. Moreover we de-

fine α̂ := (α∗)−1 and S := Sn := {s ∈Mn(K)|s∗ = s} for the set of Hermitian
matrices with entries in K. If we take K = C and ρ denotes complex conjuga-
tion then the group G(R) = {α ∈ GL2n(C)|α∗ηα = η} acts on the symmetric
space (Hermitian upper half space) Hn := {z ∈Mn(C)|i(z

∗− z) > 0} by linear

fractional transformations. That is for α =

(
aα bα
cα dα

)
∈ G(R) and z ∈ Hn

we have α · z := (aαz + bα)(cαz + dα)
−1 ∈ Hn.

Let now K be a CM field of degree 2d := [K : Q] and we let ρ denote the com-
plex conjugation. We write F for the maximal totally real subfield. Moreover
we write OK for the ring of integers of K, OF for that of F , DF and DK for
their discriminants and d for the different ideal of F . We write a for the set of
archimedean places of F . We now pick a CM type (K, {τv}v∈a) of K. For an
element a ∈ K we write av ∈ C for τv(a). We will identify τv with v and also
view a as archimedean primes of K. Finally we let b be the set of all complex
embeddings of K, and we note that b = a

∐
aρ.

We define GA := G(A), the adeles of G, and we write Gh =
∏′
v Gv for the finite

part, and Ga =
∏
v∈aGv for the archimedean part. Note that we understand

G as an algebraic group over F , and hence the finite places v above are finite
places of F . For a description of Gv at a finite place we refer to [23, Chapter
2]. We define an action of GA on H by g · z := ga · z, with g ∈ GA and z ∈ H.
Following Shimura, we define for two fractional ideals a and b of F such that
ab ⊆ OF , the subgroup of GA,

D[a, b] :=

{(
ax bx
cx dx

)
∈ GA|ax ≺ OFv , bx ≺ av, cx ≺ bv, dx ≺ OFv , ∀v ∈ h

}

where we use the notation ≺ in [24, page 11], where x ≺ bv means that the
v-component of the matrix x has are all its entries in bv. For a finite adele
q ∈ Gh we define Γq = Γq(b, c) := G∩D[b−1, bc], a congruence subgroup of G.
Given a Hecke character ψ of K of conductor dividing c we define a character
on D[b−1, bc] by ψ(x) =

∏
v|c ψv(det(dx)v)

−1, and a character ψq on Γq by

ψq(γ) = ψ(q−1γq).
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We write Za :=
∏
v∈a Z, Z

b :=
∏
v∈b Z and H :=

∏
v∈aHn. For a function

f : H → C and an element k ∈ Zb we define

(f |kα)(z) := jα(z)
−kf(αz), α ∈ GA, z ∈ H.

Here we write z = (zv)v∈a with zv ∈ Hn and define

jα(z)
−k :=

∏

v∈a

det(µ(cαvzv + dαv )
−kvdet(cαv

tzv + dαv )
−kvρ .

For a fixed b and c as above, a q ∈ Gh and a Hecke character ψ of K, we define

Definition 2.1. [24, page 31] A function f : H → C is called a Hermitian
modular form for the congruence subgroup Γq of weight k ∈ Zb and nebentype
ψq if:

(1) f is holomorphic,
(2) f |kγ = ψq(γ)f for all γ ∈ Γq,
(3) f is holomorphic at cusps (see [24, page 31] for this notion).

The space of Hermitian modular forms of weight k for the congruences group
Γq is denoted by Mk(Γ

q, ψq). For any γ ∈ G we have a Fourier expansion of
the form (see [24, page 33]

(f |kγ)(z) =
∑

s∈S

c(s, γ; f)ea(sz),

where S a lattice in S+ := {s ∈ S| sv ≥ 0, ∀v ∈ a}, and ea(x) =
exp(2πi

∑
v tr(xv)). An f is called a cusp form if c(s, γ; f) = 0 for any

γ ∈ G and s with det(s) = 0. The space of cusp forms we will be denoted
by Sk(Γ

q, ψq). Given an element f ∈ Sk(Γ
q, ψq), and a function g on H such

that g|kγ = ψq(γ)f for all γ ∈ Γq we define the Petersson inner product

〈f, g〉 := 〈f, g〉Γq :=

∫

Γq\H

f(z)g(z)δ(z)mdz,

where δ(z) := det( i2 (z
∗ − z)) and dz a measure on Γq \ H defined as in [24,

Lemma 3.4 ] and m = (mv)v∈a with mv = kv + kvρ.

We now turn to the adelic Hermitian modular forms. If we write D for a group
of the form D[b−1, bc], and ψ a Hecke character of finite order then we define,

Definition 2.2. [24, page 166]) A function f : GA → C is called an adelic
Hermitian modular form if

(1) f(αxw) = ψ(w)jkw(i)f(x) for α ∈ G, w ∈ D with wa(i) = i,
(2) For every p ∈ Gh there exists fp ∈ Mk(Γ

p, ψp), where Γ
p := G∩pCp−1

such that f(py) = (fp|ky)(i) for every y ∈ Ga.

Here we write i := (i1n, . . . , i1n) ∈ H. We denote this space by Mk(D,ψ).
Moreover there exists a finite set B ⊂ Gh such that GA =

∐
b∈BGbD and an

isomorphism Mk(D,ψ) ∼= ⊕b∈BMk(Γ
b, ψb) (see [23, Chapter 2]). Actually one
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can pick the elements of B to be of the form dia[q̂, q] for q ∈ GLn(K)h. For a
q ∈ GLn(K)A and an s ∈ SA we have (see [24, pages 167-168]

f

((
q sq̂
0 q̂

))
= det(qa)

kρ
∑

τ∈S+

cf (τ, q)ea(iq
∗τq)eA(τs)

For the properties of cf (τ, q) we refer to the [24, Proposition 20.2] and for the
definition of eA to [24, page 127]. Finally one can extend the notion of the
Petersson inner product to the adelic setting (see [23, page 81]. We write 〈·, ·〉
for this.
For a subfield L of C we will be writing Mk(Γ

q, ψ, L) for the subspace of
Mk(Γ

q, ψ) whose Fourier expansion at infinity has coefficients in L. For a
fixed set B, with elements of the form diag[q̂, q] and q ∈ GLn(K)h, we will
be writing Mk(D,ψ, L) for the subspace of Mk(D,ψ) consisting of elements
whose image under the above isomorphism lies in ⊕b∈BMk(Γ

b, ψb, L). Finally
we define the adelic cusp forms Sk(D,ψ) to be the subspace of Mk(D,ψ),
which map to ⊕b∈BSk(Γb, ψb).

In the rest of this section we obtain some results which we will use later. The
first two are minor modification of two results in [24, Theorem 10.4 (3) and
Theorem 7.11]. Since they are not stated there in the form we need for our
purposes we have decided to provide the needed changes in the proofs in [24].

Lemma 2.3. Let q ∈ GLn(K)h be a diagonal matrix and consider the space
Mk(Γ

q, ψ), with ψ a character of finite order. We write Φ for the Galois
closure of K over Q and Φψ for the extension of Φ obtained by adjoining the
values of the character ψ. Then we have that

Mk(Γ
q, ψ,C) = Mk(Γ

q, ψ,Φψ)⊗Φψ C

Proof. This is in principle [24, Theorem 10.4 (3) and (4)]. The difference with
the statement there is that we want to have a more precise base field in the
presence of nebentype. Keeping the notation as in the proof in [24] we explain
how we can obtain the result.
Our condition on q guarantees that if we write Dq = qDq−1 then we have
that xDqx−1 = Dq for every x ∈ ı(Z×

h ). Moreover, since we always take our
D of a very specific type we have that Mk(Γ

q, ψ)τ = Mk(Γ
q, ψ) for every

τ ∈ Gal(Q/Φψ) (see the remark of Shimura after the proof of his Theorem 10.4
in [24]). But then the argument of in the proof of Theorem 10.4 (4) in [24]
works also in this situation. Namely any f will be in some Mk(Γ

q,Ξ, ψ) and
fσ ∈ Mk(Γ

q,Ξ, ψ) for all σ ∈ Gal(Ξ/Φψ). In particular for any a ∈ Ξ we will
have

∑
σ(af)

σ ∈ Φψ. �

The next result is a modification of [24, Theorem 7.11]. There are three dif-
ferences: (i) we state it here for any weight, not necessarily parallel, (ii) our
field Φ′ contains the Galois closure of K over Q, and (iii) the field Φ′ contains
a finite abelian extension of Q and not the whole Qab as in [24].
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Lemma 2.4. Let Φ denote the Galois closure of K over Q, and let α ∈ G.
Consider an element f ∈ Mk(Γ, χ,Φ) for some k ∈ b. Then f |kα ∈
Mk(α

−1Γα, χα,Φ
′), where Φ′ is a finite extension of Φ obtained by adjoin-

ing roots of unity, and χα the character of the congruence subgroup α−1Γα
defined by χα(γ) = χ(αγα−1) for γ ∈ α−1Γα.

Proof. As in the proof of [24, Theorem 7.11] we can write α as a product of
elements in the Siegel parabolic P and η. So it is enough to establish the claim
for such elements. For the element η ∈ SU(n, n) the claim follows from the
fact that (fσ|η)σ = χ(t)nf where t ∈ Z×

h , such that [t,Q] = σ on Qab. For
this we refer to [9]. So in particular we need to adjoin the values of the finite
character χ. For the action of the elements in the parabolic we use the same
argument as in the proof of Theorem 7.11 in [24], with the only difference that
since we are also considering non-parallel weight we need to take the field Φ′

to contain Φ. �

Lemma 2.5. Write hF and hK for the class number of F and K respectively.
Assume hF = 1 and that (2n, hK) = 1. Then we can pick a finite number of
q ∈ GL(K)h such that B = {diag[q, q̂]} and det(qq∗) = 1.

Proof. This lemma is in principle the one of Klosin in [18, Corollary 3.9] by
observing that his argument generalizes to CM fields by assuming the class
number of F is equal to one. �

For a fixed ideal b we write D(c) for the group D[b−1, bc].

Lemma 2.6. Write H := {x ∈ K×|xxρ = 1}. Then

det(D(c)) = det(D(OF )) = U0 := {xρ/x ∈ HA|xv ∈ O×
Kv
, ∀v ∈ h}.

In particular we have that there exists a set B such that

GA =
∐

b∈B

GbD(c) =
∐

b∈B

GbD(OF ).

Moreover the elements b ∈ B can be taken in the form b =

(
q̂ 0
0 q

)
with

q ∈ GLn(K)h.

Proof. For the fact that det(D(OF )) = U we refer to [23, Lemma 5.11]. The

first equality then follows by observing that the map q 7→

(
q̂ 0
0 q

)
defined

an embedding of GLn(K) into G. But then det

((
q̂ 0
0 q

))
= det(q)ρ

det(q) and

hence also det(D(c)) = U (see also the proof of Lemma 9.10 in [23]. The last
statement of the lemma follows from [23, Lemma 9.8]. �

3. Eisenstein and Theta series for U(n, n)/F

In this section we collect some results on theta series and Eisenstein series,
which we will need later.
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3.1. Theta series. Shimura in [24, Appendix A.5] and [23, Appendix A.7]
attach a theta series, θA(x, ω), to a Hecke character ω, a positive definite matrix
τ , a matrix r ∈ GLn(K)h and an element µ ∈ Zb with µvµvρ = 0 and µv ≥ 0
for all v ∈ b. His construction depends on a choice of a Hecke character φ of
K with infinity type φ(xa) = x−1

a |xa|, such that φ = θ on F×
A , where θ is the

non-trivial character of the quadratic extension K/F . We summarize various
results of Shimura in [23, 24] in the following theorem.

Theorem 3.1 (Shimura, section A5.5 in [24] and Proposition A7.16 in [23]).
θA(x, ω) is an element in Ml(C, ω

′) with C = D[b−1, bc] and ω′ = ωφ−n, and
l = µ+ na. Moreover θA(x, ω) is a cusp form if µ 6= 0. The ideals b and c are
given as follows. We define a fractional ideals y and t in F such that g∗τg ∈ y

and h∗τ−1h ∈ t−1 for all g ∈ rOn
K and h ∈ On

K . Then we can take b = dy and
bc = d(tefρf ∩ ye ∩ yf), where e is the relative discriminant of K over F . For
an element q ∈ GLn(K)h we have that the qth component of the theta series is
given by

θq,ω(z) = ω′(det(q)−1)|det(q)|
n/2
K ×

∑

ξ∈V ∩rR∗q−1

ωa(det(ξ))ω
∗(det(r−1ξq)OK)det(ξ)µρea(ξ

∗τξz),

where ξ ∈ V ∩ rR∗q−1 such that ξ∗τξ = σ. Here V = Mn(K), R∗ = {w ∈
Mn(K)A|wv ≺ OKv, ∀v ∈ h}, and ω∗ denotes the ideal character associated to
the Hecke character ω.

3.2. Eisenstein series. In this section we introduce Siegel type Eisenstein
series following closely Shimura [23, Chapter III] and [24, Chapter IV]. This
Eisenstein series will be nearly holomorphic, and can be given an algebraic
structure. In particular there is an action of the absolute Galois group on them
and our goal is to obtain a reciprocity law of this action. This question has
been considered by Feit in [9] for Eisenstein series of the special unitary group
SU(n, n), and hence our main aim here is to extend his results to the unitary
group. The main difference of course is the lack of the strong approximation
theorem which is available for the special unitary group. Our main contribution
in this section is Lemma 3.8.
We consider a weight k ∈ Zb and a c ⊂ OF , an integral ideal of F . Moreover
we pick a Hecke character χ of K with infinity type χa(x) = xℓa|xa|

−ℓ, where
ℓ = (kv −kvρ)v∈a and of conductor dividing c. For a fractional ideal b we write
D for D[b−1, bc]. Then for a pair (x, s) ∈ GA × C, we denote by EA(x, s) =
EA(x, s;χ,D) the Siegel type Eisenstein series associated to the character χ
and the weight k. We recall here its definition, taken from [24, page 131],

EA(x, s) =
∑

γ∈P\G

µ(γx)ǫ(γx)−s, ℜ(s) >> 0,
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where P is the Siegel parabolic subgroup and the function µ : GA → C is
supported on PAD ⊂ GA, defined for an x = pw with p ∈ PA and w ∈ D by,

µ(x) :=
∏

v

µv(pvwv), with µv(pvwv) =





χv(det(dpv ))
−1 if v ∈ h, v ∤ c

χv(det(dpvdwv ))
−1 if v ∈ h, v | c

jkvxv (i)
−1|jxv (i)|

mv if v ∈ a,

where m = (kv + kvρ)v. The function ǫ : GA → C is defined as ǫ(x) =
|det(dp)|hjx(i)2a where xh = pw with p ∈ Ph and w ∈ D[b−1, b]h. Moreover
we define the normalized Eisenstein series

DA(x, s) = EA(x, s)

n−1∏

i=0

Lc(2s− i, χ1θ
i),

where we recall that θ is the non-trivial character associated to K/F and χ1

is the restriction of the Hecke character χ to F×
A . Here, for a Hecke character

φ of F , we write Lc(s, φ) for the Dirichlet series associated to φ with the
Euler factors at the primes dividing c removed. For a q ∈ GLn(K)h we define
Dq(z, s; k, χ, c) a function on (z, s) ∈ H× C associated to DA(x, s) by the rule
(see [24, page 132])

Dq(x(i), s; k, χ, c) = jkx(i)DA(diag[q, q̂]x, s).

Even though the above defined Eisenstein series are the ones which are rele-
vant to our applications, we need to introduce yet another kind of Eisenstein
series for which we have explicit information about their Fourier expansion. In
particular we define the E∗

A(x, s) := EA(xη
−1
h , s) and D∗

A(x, s) := DA(xη
−1
h , s),

and as before we write D∗
q (z, s; k, χ, c) for the series associated to D∗

A(x, s).
We write the Fourier expansion of E∗

A(x, s) by

E∗
A

((
q σq̂
0 q̂

)
, s

)
=
∑

h∈S

c(h, q, s)eA(hσ),

where q ∈ GLn(K)A and σ ∈ SA. For the coefficients c(h, q, s) we have the
following results of Shimura,

Proposition 3.2 (Shimura, Proposition 18.14 and Proposition 19.2 in [23]).

Suppose that c 6= OF . Then c(h, q, s) 6= 0 only if (tqhq)v ∈ (db−1c−1)vS̃v for
every v ∈ h. In this case

c(h, q, s) = C(S)χ(det(−q))−1|det(qq∗)h|
n−s
h |det(qq∗)a|

sN(bc)−n
2

×

Ξ(qq∗;h; sa+ (kv − kρv)/2, sa− (kv + kρv)/2)αc(ω · tqhq, 2s, χ1),

where N(·) denotes the norm from F to Q, |x|h :=
∏
v∈h |xv|v with | · |v the

normalized absolute value at the finite place v, ω is a finite idele such that
ωOF = bd, S̃v the dual lattice to S(OFv ), the Hermitian matrices with entries
in OFv , and

C(S) := 2n(n−1)d|DF |
−n/2|DK |−n(n−1)/4.
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Moreover if we write r for the rank of h and let g ∈ GLn(F ) such that g−1hg =
diag[h′, 0] with h′ ∈ Sr. Then

αc(ω · tqhq, 2s, χ1) = Λc(s)
−1Λh(s)

∏

v∈c

fh,q,v
(
χ(πv)|πv|

2s
)
,

where

Λc(s) =

n−1∏

i=0

Lc(2s− i, χ1θ
i), Λh(s) =

n−r+1∏

i=0

Lc(2s− n− i, χ1θ
n+i−1).

Here fh,q,v are polynomials with coefficients in Z, independent of χ1. The
set c consists of finitely many finite places of F which are prime to c. For
the precise description we refer to [23, page 158-159], and for the function
Ξ(g;h;α, β) =

∏
v∈a ξ(yv, hv;αv, βv) we refer to [24, page 140].

For a number fieldW , a k ∈ Zb and r ∈ Za we follow [24] and write N r
k (W ) for

the space ofW -rational nearly holomorphic modular forms of weight k (see [24,
page 103 and page 110] for the definition). The index r should be thought as a
degree of nearly holomorphicity, with r = 0 being holomorphic. Without going
into much of details here on the definition of the nearly holomorphic forms, we
just mention that even though these modular forms are not holomorphic, one
can still impose an algebraic structure on them. In general this can be done
by studying their values at CM points. However we give here an equivalent
definition taken from [24, page 117], which is enough for our purposes, and it
is based on the Fourier expansion. Namely an element f ∈ N r

k (W ) is a C∞

function on H, with the modularity property (i.e. f |kγ = f for all γ in some
congruence subgroup Γ) and has an expansion of the form

f(z) =
∑

h∈S

sh(π
−1i(tz − zρ)−1)ea(hz),

where S is a lattice of S+, and sh(T ) is a finite sum of elements of the form∏
v∈a Pv(T

(v)
ij ) with Pv(T

(v)
ij ) are homogeneous polynomials of degree rv in

the variables T
(v)
ij , 1 ≤ i, j ≤ n, with coefficients in W . It turns out (see [24,

Theorem 14.12]) that the absolute Galois group acts on them by acting on the
coefficients of the polynomials sh(T ).

For the Eisenstein seriesDq(z, s;χ, c) we have the following theorem of Shimura
[24, Theorem 17.12], which tells us for which values of s the Eisenstein series
introduced above are nearly holomorphic.

Theorem 3.3 (Shimura, Theorem 17.12 in [24]). We set m := (kv + kvρ)v∈a.
Let K ′ be the reflex field of K with respect to the selected CM type and Kχ the
field generated over K ′ by the values of χ. Let Φ be the Galois closure of K
over Q and suppose 2n − mv ≤ µ ≤ mv and mv − µ ∈ 2Z for every v ∈ a.
Then Dq(z, µ/2; k, χ, c) belongs to πβN r

k (ΦKχQab), except when 0 ≤ µ < n,
c = OF , and χ1 = θµ, where β = (n/2)

∑
v∈a(mv + µ) − dn(n − 1)/2 and
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r = n(m − µ + 2)/2 if µ = n + 1, F = Q and χ1 = θn+1. Otherwise r =
(n/2)(m− |µ− n|a− na).

We now explain how the nearly holomorphic Eisenstein series can be obtained
from holomorphic ones (excluding some cases) by the use of the so-called
Maasss-Shimura differential operators. An important property of these op-
erators is that they are Galois equivariant in the sense explained in Equation
1 below.
For an element p ∈ Za and a weight q ∈ Zb we write ∆p

q for the differential
operators defined in [24, page 146 and page 148]. Moreover it is shown in

[24] that ∆p
qN

t
q (ΦQab) ⊂ πn|p|N t+np

q′ (ΦQab), where q
′ ∈ Zb is defined by q′v =

qv+pv and q
′
ρv := qρv+pv for v ∈ a, and for any f ∈ N t

q (W ) and σ ∈ Gal(W/Φ)
we have that

(1)
(
π−n|p|∆p

q(f)
)σ

= π−n|p|∆p
q(f

σ)

Let µ ∈ Z and k ∈ Zb be as in Theorem 3.3. If µ ≥ n then by [24, page 148]
we have that

(2) ∆p
µaDq(z, µ/2; k

′, χ, c) =Q×

(i/2)n|p|Dq(z, µ/2; k, χ, c),

where p = (m − µa)/2 and k′ ∈ Zb with k′v = kv − pv and kρv = kρv − pv
for v ∈ a. The notation =Q×

means equality up to elements in Q×, and
|p| :=

∑
v∈a pv. Similarly if µ < n (see again [24, page 148]) then we have

(3) ∆p
νaDq(z, µ/2; k

′′, χ, c) =Q×

(i/2)n|p|Dq(z, µ/2; ka, χ, c),

where ν = 2n − µ, p = (m − νa)/2 and k′′v = k′ρv for all v ∈ b. Now the
following lemma is immediate from the above equations, and it reduces the
study of the Galois equivariant properties of the nearly Eisenstein series to
holomorphic ones of a very particular weight.

Lemma 3.4. Assume there exists A(χ), B(χ) ∈ Qab and β1, β2 ∈ N such that
for all σ ∈ Gal(Kχ/Q)
(
Dq(z, µ/2; k

′, χ, c)

πβ1A(χ)

)σ
=
Dq(z, µ/2; k

′, χσ, c)

πβ1A(χσ)
, µ ≥ n, and k′v + k′ρv = µ

and
(
Dq(z, µ/2; k

′′, χ, c)

πβ2B(χ)

)σ
=
Dq(z, µ/2; k

′′, χσ, c)

πβ2B(χσ)
, µ < n, and k′′v + k′′ρv = ν.

Then we have for µ ≥ n that
(
D(z, µ/2; k, χ, c)

πβ1+n|p|in|p|A(χ)

)σ
=

D(z, µ/2; k, χσ, c)

πβ1+n|p|in|p|A(χσ)
, p = (m− µa)/2 ∈ Za,

and for µ < n that
(
D(z, µ/2; k, χ, c)

πβ2+n|p|in|p|B(χ)

)σ
=

D(z, µ/2; k, χσ, c)

πβ2+n|p|in|p|B(χσ)
, ν = 2n−µ p = (m−νa)/2 ∈ Za,
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We are interested in algebraicity statements for Eisenstein series with the prop-
erty that kv+kvρ ≥ n for all v ∈ a, where k is the weight of the Eisenstein series.
The following lemma indicates that for these Eisenstein series it is enough to
study the effect of the action of the Galois group on the full rank Fourier coeffi-
cients. The proof of the lemma can be found in [2], where the similar situation
of Siegel modular forms was considered. Its proof relies on the fact (see [24,
Proposition 6.16]) that for the weights under consideration there does not ex-
ist singular Hermitian modular forms, that is Hermitian modular forms whose
Fourier coefficients are supported on singular Hermitian matrices.

Lemma 3.5. Let f(z) =
∑
h∈S c(h)e

n
a(hz) ∈ Mk(Q) with kv + kρv ≥ n. As-

sume that for an element σ ∈ Gal(Q/Φ) we have c(h)σ = ac(h) for all h with
det(h) 6= 0 for some a ∈ C. Then c(h)σ = ac(h) for all h ∈ S. In particular
fσ = af .

We can now consider the action of Gal(Q/Φ) on the Eisenstein series. Thanks
to the Lemma 3.4 above it is enough to consider the Galois action on the
holomorphic ones. That is, we consider the following two Eisenstein series

(1) Dq(z, µ/2; k, χ, c) ∈ πβMk(Q) for µ ≥ n and kv + kρv = µ,

(2) Dq(z, ν/2; k, χ, c) ∈ πβMk(Q) for ν = 2n− (kv+ kρv) for all v ∈ a and
ν ≤ n,

where β is determined by Theorem 3.3.
For these values of s we collect in the following lemma some properties that we
will need concerning the functions Ξ(y, h;α, β) =

∏
v∈a ξ(y, h;α, β). For the

proof, which can be obtained from the study of this function in [21], we refer
to the similar proof done in the symplectic case in [2].

Lemma 3.6. Let h ∈ S with det(h) 6= 0 and y ∈ Sa
+(R). Then for µ ∈ Z

Ξ(y, h;µ, 0) = 2d(1−n)i−dnµ(2π)dnµΓn(µ)
−dN(det(h))µ−nea(iyh)

and

Ξ(y, h;n, n− µ) = i−dnµ2−(dn(µ+1))πdn
2

Γn(n)
−d

(
∏

v∈a

det(yv)
−(n−µ)

)
ea(iyh).

Galois reciprocity of Eisenstein Series. We start by considering first
the holomorphic Eisenstein series D∗

q(z, µ/2; k, χ, c) ∈ πβMk(Q) for µ ≥ n and
kv + kρv = µ. If we write D∗

q(z, µ/2; k, χ, c) =
∑

h∈S b(h, q, χ)ea(hz) then we
have that for full rank h,

b(h, q, χ) =

n−1∏

i=0

Lc(µ− i, χ1τ
i)det(y)−µ/2c(h, q, µ/2), z = x+ iy.

In particular we conclude that

b(h, q, χ) = det(y)−µ/2C(S)χ(det(−q))−1|det(qq∗)h|
n−µ/2
h det(qq∗)a|

µ/2×

N(bc)−n
2

2d(1−n)i−dnµ(2π)dnµΓn(µ)
−dN(det(h))µ−n

∏

v∈c

fh,q,v (χ1(πv)|πv|
µ)
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and hence

(
b(h, q, χ)

c(S)|det(qq∗)h|
n−µ/2
h i−dnµ(2π)dnµ

)σ
=

b(h, q, χσ)

c(S)|det(qq∗)h|
n−µ/2
h i−dnµ(2π)dnµ

for all σ ∈ Gal(Q/Φ). In particular we conclude that
(

D∗
q(z, µ/2; k, χ, c)

c(S)|det(qq∗)h|
n−µ/2
h i−dnµ(2π)dnµ

)σ
=

D∗
q (z, µ/2; k, χ

σ, c)

c(S)|det(qq∗)h|
n−µ/2
h i−dnµ(2π)dnµ

for all σ ∈ Gal(Q/Φ). Similarly we consider the Eisenstein series

D∗
q(z, ν/2; k, χ, c) ∈ πβMk(Q)

for ν = 2n− (kv + kρv) for all v ∈ a, kv + kvρ = µ ∈ N and ν ≤ n. If we write∑
h∈S a(h, q, χ)ea(hz) then we have that for full rank h,

a(h, q, χ) =

n−1∏

i=0

Lc(ν − i, χ1τ
i)det(y)−µ/2c(h, q, ν/2).

In particular we have

a(h, q, χ) = det(y)−µ/2C(S)χ(det(−q))−1|det(qq∗)h|
n−ν/2
h det(qq∗)a|

ν/2i−dnµ×

N(bc)−n
2

2−(dn(µ+1))πdn
2

Γn(n)
−d
∏

v∈a

det(yv)
−(n−µ)

∏

v∈c

fh,q,v (χ1(πv)|πv|
ν) =

C(S)χ(det(−q))−1|det(qq∗)h|
n−ν/2
h N(bc)−n

2

× i−dnµ2−(dn(µ+1))πdn
2

Γn(n)
−d×

∏

v∈c

fh,q,v (χ1(πv)|πv|
ν) .

In particular as before we have that
(

a(h, q, χ)

c(S)|det(qq∗)h|
n−ν/2
h i−dnµ2−(dn(µ+1))πdn2

)σ
=

a(h, q, χσ)

c(S)|det(qq∗)h|
n−ν/2
h i−dnµ2−(dn(µ+1))πdn2

for all σ ∈ Gal(Q/Φ). In particular we conclude that
(

D∗
q(z, ν/2; k, χ, c)

c(S)|det(qq∗)h|
n−ν/2
h i−dnµ2−(dn(µ+1))πdn2

)σ
=

D∗
q(z, ν/2; k, χ

σ, c)

c(S)|det(qq∗)h|
n−ν/2
h i−dnµ2−(dn(µ+1))πdn2
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Remark 3.7. We note here that the appearance of the term |det(qq∗)h|h makes
the statement of the reciprocity law dependent on the choice of the component
q, when of course the exponents have roots. It is possible, under some assump-
tions, to force det(qq∗) = 1. For example, as it was shown in the previous
section, we could take that the class number of K is prime to 2n and the class
number of F is one. Or we could write the reciprocity law not over Φ but some
extension which contains the possible roots of |det(qq∗)h|h of the finitely many
selected q’s. However as we have seen, these terms show up also on the Fourier
expansion of the theta series, and later we will be considering products of the
theta series with Eisenstein series, and these terms will cancel.

Our next aim is to obtain information about the action ofGal(Q/Φ) onDA(x, s)
from the information we have obtained from the action on the components of
D⋆(x, s) for s = µ/2 or ν/2 as above. We start with the following lemma.

Lemma 3.8. Let f ∈ Mk(C, χ,Q) and define g(x) := f(xηh) ∈ Mk(C
′, ψ,Q),

where C′ := ηhCη
−1
h and some character ψ related to χ. For σ ∈ Gal(Q/Φ)

we have
gσ(x) = χ(a−n)σfσ(xηh),

where a ∈ Z×
h such that with respect to the reciprocity law we have [a,Q] =

σ|Qab . In particular we have that
(

g(x)

τ(χn1 )

)σ
=

fσ(xηh)

τ((χn1 )
σ)
,

where τ(χ1) is the Gauss sum associated to the Hecke character χ1 of F defined
by taking the restriction of χ to F .

Proof. We can pick a finite set Q ⊂ GLn(K)h such that GA =∐
q∈QGdiag[q, q̂]C, and moreover we can pick this set so that the matri-

ces q are diagonal (see for example the proof of [23, Lemma 9.8 (3)]). Then
we know that the adelic form f corresponds to the the array of modular forms
(fp) for p = diag[q, q̂] and q ∈ Q. We have fp ∈ Mk(Γ

p, χp). We now fix yet
another decomposition of GA by picking Q′ = {q′ := q̂|q ∈ Q} We note that if

we write p′ := diag[q′, q̂′] then p′ = ηhpη
−1
h . In particular we see that indeed

the set Q′ gives a decomposition GA =
∐
q′∈Q′ Gdiag[q′, q̂′]C′. Indeed we have

GA =
∐

q∈Q

Gdiag[q, q̂]C =
∐

q∈Q

Gdiag[q, q̂]Cη−1
h =

∐

q∈Q

Gη−1
h ηhdiag[q, q̂]η

−1
h C′ =

∐

q′∈Q′

Gη−1
h diag[q′, q̂′]C′ =

∐

q′∈Q′

Gηadiag[q
′, q̂′]C′ =

∐

q′∈Q′

Gdiag[q′, q̂′]ηaC
′ =

∐

q′∈Q′

Gdiag[q′, q̂′]C′.

We now claim that gp′(z) = fp(z)|kη
−1. It is enough to show that (gp′ |ky)(i) =

(fp|kη−1|ky)(i) for all y ∈ Ga. But we have

(gp′ |ky)(i) = g(p′y) = g(ηhpη
−1
h y) = f(ηhpη

−1
h yηh) = f(ηpη−1

a y) = f(pη−1
a y),
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and
(fp|kη

−1|ky)(i) = (fp|η
−1y)(i) = f(pη−1

a y).

Hence we conclude that the p′-component of g is given by fp|kη−1. By [24,
Lemma 23.14] we have that gσ has p′-component gσp′ = (fp|kη

−1)σ. But

this has been established by Feit [9], (note that ηn ∈ SU(n, n) and hence
we have Shimura’s reciprocity law also here, but see also [25, Lemma 5] and
[2]) to conclude that gσp′ = (fp|kη−1)σ = χσ(a−n)(fp)

σ|kη−1. A last re-
mark here is that, since we are taking the q’s diagonal matrices we have that
diag[q, q̂]diag[a, a−1]diag[q−1, q̂−1] = diag[a, a−1], and hence the value of the
nebentype character of each component at diag[q, q̂]diag[a, a−1]diag[q̂, q] is the
same. But, by the same argument as above, the p′-component of fσ(xηh) is
equal to (fp)

σ|kη−1 and hence we conclude the first part of the proof. The
last follows by standard properties of Gauss sums over totally real fields (see
for example [20, page 657]). Note that in the reciprocity law, the values of χ
restricted to F (actually to Q) matter. �

We now fix a set B ⊂ Gh such that GA =
∐
b∈B GbD. We pick

this set to be of the form diag[q, q̂] with q ∈ GLn(Kh) and diagonal.
We define the Eisenstein series D(x, µ2 , χ) to correspond to q-components

1

|det(qq)h|
δ1/2

h

Dq(z, µ/2; k, χ, c) and similarly D(x, ν2 , χ) to correspond to q-

components 1

|det(qq)h|
δ2/2

h

Dq(z, ν/2; k, χ, c), where δ1 = 0 if n − µ/2 ∈ Z and

1 otherwise. Similarly δ2 = 0 if n − ν/2 ∈ Z and 1 otherwise. Then from the
Lemma 3.8 above and the reciprocity on the D∗

q Eisenstein series we conclude
that,

Proposition 3.9. For σ ∈ Gal(Q/Φ) we have that
(

D(x, µ/2, χ)

C(S)τ(χn1 )i
−dnµ(π)dnµ

)σ
=

D(x, µ/2, χσ)

C(S)τ((χn1 )
σ)i−dnµ(π)dnµ

,

and (
D(x, ν/2, χ)

C(S)τ(χn1 )i
−dnµ(π)dn2

)σ
=

D(x, ν/2, χσ)

C(S)τ((χn1 )
σ)i−dnµ(π)dn2

.

4. The L-function attached to a Hermitian modular form

In this section we introduce the L-functions, whose special values we will study,
and present an integral representation of them by using the Rankin-Selberg
method. Up to a result of Klosin [18, Equation (7.28)], presented as Theorem
4.2 below, everything else in this section is taken from [24, Chapter V].
We start by defining the L-functions associated to eigenforms, and introduce
Shimura’s generalization of the so-called Adrianov-Kalinin identity in the uni-
tary case. In particular this identity will allow us to obtain a relation of the
L-function with another Dirichlet series (in the notation below D′

r,τ (s, f , χ)),
which even though itself does not have an Euler product representation, can
be written as a Rankin-Selberg type integral. This Rankin-Selberg representa-
tion is the content of Theorem 4.1 below, which is due to Shimura. However
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this form is not enough for our purposes, the reason being that we do not
have a good understanding of the Fourier expansion of the Eisenstein series
involved. For this reason we will use an identity proved by Klosin (Theorem
4.2 below) to obtain a Rankin-Selberg representation involving the Siegel type
Eisenstein series introduced in the last section, and whose Galois reciprocity
we have studied.

4.1. The standard L-Function. We fix a fractional ideal b and an integral
ideal c of F . We set C = D[b−1, bc]. For an integral OK-ideal a we write T (a)
for the Hecke operator defined by Shimura in [24, page 162].
We consider a non-zero adelic Hermitian modular form f ∈ Mk(C,ψ) and
assume that we have f |T (a) = λ(a)f with λ(a) ∈ C for all integral OK-ideals
a. If χ denotes a Hecke character of K of conductor f, then in [24, page 171] it
is shown that the Dirichlet series

Z(s, f , χ) :=

(
2n∏

i=1

Lc(2s− i+ 1, χ1θ
i−1)

)
×
∑

a

λ(a)χ∗(a)N(a)−s, ℜ(s) >> 0,

has an Euler product representation which we write as Z(s, f , χ) =∏
q Zq (χ

∗(q)N(q)−s), where we recall χ∗ is the ideal character associated
to the Hecke character χ. The sum runs over all integral ideals of K and the
product is over all prime ideals of K. For the description of the Euler factors
Zq at the prime ideal q of K we refer to [24, page 171]. We will need another
L-function which we will denote by L(s, f , χ) and we define by

(4) L(s, f , χ) :=
∏

q

Zq

(
χ∗(q)(ψ/ψc)(πq)N(q)−s

)
,

where πq a uniformizer of Kq. We note here that we may obtain the first from
the second up to a finite number of Euler factors by setting χψ−1 for χ.

4.2. The Rankin-Selberg method. For τ ∈ S+ and r ∈ GLn(K)h we de-
fine, following [24, page 180], the Dirichlet series,

(5) D′
r,τ (s, f , χ) :=

∑

x∈B/E

ψ(det(rx))χ∗(det(x)OK)cf (τ, rx)|det(x)|
s−n
K .

Here B = GLn(K)h ∩
∏
vMn(OKv ), E =

∏
v∈hGLn(OKv ) and for an idele x

of K we write xOK for the fractional ideal of K corresponding to x. Moreover
| · |K denotes the adelic absolute values of K, and, for later use, we denote by
| · |F the one of F . This Dirichelt series cannot be written in an Euler product
form, but it has the advantage that it can be written as a Rankin-Selberg
type integral as we will see later. However first we give the relation of this
Dirichlet series and the L-function introduced before. The following equation,
which is taken from [24, Theorem 20.4], is often called an Adrianov-Kalinin
type equation, since it was first observed in the symplectic case by Adrianov
and Kalinin in [1]. We have,
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(6) D′
r,τ (s, f , χ)Λc (s)

∏

v∈b

gv(χ(ψ/ψc)(πv)|πv|
s) = L(s, f , χ)(ψ/ψc)

2(det(r))×

∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ

∗(det(r∗ŷ)OK)|det(r∗ŷ)|sKcf (τ, y),

where Λc(s) :=
∏n
i=1 Lc(2s+ 1− n− i, ψ1χ1θ

n+i−1).

Let us now explain the notation in the above equation (see [24, page 164] for
more details). Lτ is the set of OK-lattices L in Kn such that ℓ∗τℓ ∈ bd−1 for
all ℓ ∈ L. Moreover for the chosen ideal c above, and for two OK lattices M,N
we write M < N if M ⊂ N and M ⊗OK OKv = N ⊗OK OKv for every v | cOK .
In particular in the sum above we take L := rOnK , and in the sum, over the
M ’s, we take y ∈ GLn(K)h such that M = yOnK and y−1r ∈ B. Moreover we
define µ(A), for a torsion OK-module A, recursively by

∑
B⊂A µ(B) = 1 if A is

the trivial module and 0 otherwise. This is a generalized Möbius function and
we refer to [24, Lemma 19.10] for details. The important fact for our purposes
is that the function µ is Z-valued. Finally the gv are Siegel-series related to
the polynomials fv(x) mentioned in Proposition 3.2 above, and we refer to [24,
Theorem 20.4] for the precise definition.
We now fix a Hecke character φ of K such that φ(y) = y−1

a |ya| for y ∈ K×
a and

the restriction of φ to F×
A is the non-trivial Hecke character of F corresponding

to the extension K/F . The existence of this character follows from [24, Lemma
A5.1]. Keeping the notations from above we let t ∈ Za be the infinity type of
χ and define µ ∈ Zb (see [24, page 181]) by

µv = tv − kvρ + kv, and µvρ = 0 if tv ≥ kvρ − kv,

and
µv = 0, and µvρ = kvρ − kv − tv if tv < kvρ − kv.

We moreover define l = µ + na and ψ′ := χ−1φ−n. Given µ, φ, τ and χ as
above we write θχ(x) := θA(x, λ) ∈ Ml(C

′, ψ′) for the theta series that we can
associate to (µ, φ, τ, χ−1) by taking ω := χ−1 in Theorem 3.1. We write c′ for

the integral ideal defined by C′ = D[b′
−1
, b′c′].

We now fix a decomposition GLn(K)A =
∐
q∈QGLn(K)qEGLn(K)a. In par-

ticular the size of the set Q is nothing else than the class number of K. Then
we have the following integral expression for the Dirichlet series D′

r,τ (s, f , χ).

Theorem 4.1 (Shimura, pages 179-181 in [24]). With notation as above we
have∏

v∈a

(4π)−n(s+hv)Γn(s+ hv)D
′
r,τ (s+ 3n/2, f , χ) = det(τ)sa+h|det(r)|

−s−n/2
K ×

∑

q∈Q

(ψ/ψ′)(det(q))|det(qq∗)|sF ×A〈fq(z), θq,χE(z, s̄+ n;m−m′,Γq)〉Γq ,

where h := 1/2(kv + kvρ + lv + lvρ)v∈a, m = (kv + kvρ)v∈a, m
′ = (lv + lvρ)v∈a

and Γq := qΓq−1, with Γ a suitably chosen congruence subgroup of SU(n, n).
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A is a rational number times C(S)−1 (see Proposition 3.2 for the definition).
Here θq,χ is the theta series introduced in section 3,

E(z, s̄+ n;m−m′,Γq) =
∑

γ∈Γq∩P\Γq

det(i(z∗ − z)/2)s−
m−m′

2 |m−m′γ

is the Eisenstein series of SU(n, n) defined in [24, page 137] with κ = 0.

Let us remark here that in the form given in [24, pages 179-181] only one group
Γ appears. However it is easily seen that our choices can be made as above by
picking Γ ⊂ SU(n, n) ∩ C′′ for C′′ deep enough which is contained in both C
and C′.
As we mentioned at the beginning of this section, the next step is to replace
the Eisenstein series E(z, s,m−m′,Γq) in the expression above, with an Eisen-
stein series of the form appeared in the previous section. The two kinds of
Eisenstein series are related as for example it is explained in [24, Lemma 17.2].
In particular we want to have an Eisenstein series for which we have i) a good
understanding of its Galois reciprocity laws and ii) a good understanding of
nearly holomorphicity (see also the remark after Theorem 6.2 on this). This is
the reason of the importance for our purposes of the following result, shown by
Klosin in [18, Equation (7.28)] in a slightly different form.

Theorem 4.2 (Klosin, Equation (7.28) in [18]). With notation as above we
have

|X |

[Γ0(c′′) : Γ]
〈fq(z), θq,χ(z)E(z, s̄,m−m′,Γq)〉Γq =

(ψ′/ψ)(det(q))|det(qq∗)|−sF 〈fq(z), θq,χ(z)Eq(z, s̄; k − l, (ψ′/ψ)c, c′′)〉Γq
0
(c′′),

where (ψ′/ψ)c(x) := (ψ′/ψ)(xc) and X denotes the number of Hecke characters
of infinity type t and conductor dividing fχ, and c′′ any non-trivial integral ideal
such that cc′|c′′.

Proof. The proof is in principle done in [loc. cit.]. Here we only make a few
remarks in order to justify the slightly different formula.
We remark here that in [18] the case of F = Q is considered, but it is easy
to see that his result holds for totally real fields. Moreover the assumption
(|ClK |, 2n) = 1 which Klosin makes at the beginning of his section 7 in [18],
where the above equation is shown, it is used only later and not for the above
equation.
Moreover we have also considered the case of f with non-trivial nebentype
and this is why our formula differs slightly from these in [loc. cit.]. We also
comment on the fact that we use more general weights than in [loc. cit]. Indeed
one needs to observe that in Lemma 17.13 in [24] the identity used in [18] and
cited as formula (17.5) of [24] is extended to the case of weights k ∈ Zb. But
then one needs only to observe that for Γ ⊂ SU(n, n) we have the equality of
the Eisenstein series

Eq(z, s;m−m′,Γ) = Eq(z, s; k − l,Γ),
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where on the left side we havem−m′ ∈ Za and on the right we have k− l ∈ Zb.
This point is explained in [24, page 32, paragraph 5.4]. Here we simply note
that the Eisenstein series on the right is defined by

Eq(z, s; k − l,Γ) =
∑

α∈Γ∩P\Γ

det(i(z∗ − z)/2)s−
m−m′

2 |k−lα,

since m−m′ = ((kv − lv) + (kvρ − lvρ))v.
�

Putting all the above results together we can conclude the following theorem
(see also [18, Theorem 7.8]),

Theorem 4.3 (Shimura, Klosin). Let 0 6= f ∈ Mk(C,ψ)) such that f |T (a) =
λ(a)f for every a. Then

Γ((s))L(s+ 3n/2, f , χ)(ψ/ψc)
2(det(r))×

∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ

∗(det(r∗ŷ)OK)|det(r∗ŷ)|
s+3n/2
K cf (τ, y) =

Λc(s+ 3n/2, θ(ψχ)1) ·
∏

v∈b

gv(χ(ψ/ψc)(πv)|πv|
2s+3n)det(τ)sa+h|det(r)|

−s−n/2
K ×

C0

∑

q∈Q

|det(qq∗)|−nF vol(Φq)〈fq(z), θq,χ(z)Eq(z, s̄+ n)〉Γq
0
(c′′),

where Eq(z, s̄+ n) := Eq(z, s̄+ n; k − l, (ψ′/ψ)c, c′′), c′′ any non-trivial integral
ideal of F such that cc′|c′′. If moreover we assume that kv + kvρ ≥ n for some
v ∈ a, then there exists τ ∈ S+ ∩GLn(K) and r ∈ GLn(K)h such that

Γ((s))ψc(det(r))cf (τ, r)L(s + 3n/2, f , χ) =

Λc(s+ 3n/2, θ(ψχ)1) ·

(
∏

v∈b

gv(χ(πp)N(p)−2s−3n)

)
det(τ)sa+h|det(r)|

−s−n/2
K ×

C0

∑

q∈Q

|det(qq∗)|−nF vol(Φq) < fq(z), θq,χ(z)Eq(z, s̄+ n) >Γq
0
(c′′),

where

Γ((s)) :=
∏

v∈a

(4π)−n(s+hv)Γn(s+ hv), and C0 :=
[Γ0(c

′′) : Γ]A

|X |
.

We close this section by remarking that vol(Φq) is independent from q (see for
example [23, page 67]) and hence we will be writing simply vol(Φ). Moreover

we have that this is equal to πdn
2

times a rational number [24, Proposition
24.9].
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5. Petersson Inner Product and Periods

In this section we define some archimedean periods, which we will use to nor-
malize the special values of the function L(s, f , χ). The definition of these
periods is inspired by the work of Sturm [25] (building on previous work of
Shimura), for integral weight Siegel modular forms of even genus over the ra-
tionals. In our works [2, 4] we have extended also these results to totally real
fields, considered odd genus and the case of half-integral weight Siegel modular
forms.
We start by proving a lemma with respect to the action of “good” Hecke op-
erator T (a), relative to the group C = D[b−1, bc]. Here good means that a is
prime to c.

Lemma 5.1. Let W be a number field, which contains the values of the finite
character ψ. Then the operators T (a) preserve Mk(C,ψ,W ).

Proof. Following Shimura in [24, page 161], and using the same notation as in
there, we consider the formal Dirichlet series f |J :=

∑
a[a]f |T (a). For τ ∈ S+

and q ∈ GLn(K)h Shimura shows in (page 170, loc. cit.) that c(τ, q; f |J) is
equal to

∑

g,h

ψc(det(h
−1g))|det(g)|−nK c(τ, qh−1g; f)αc(ĥq

∗τqh−1)[det(gh)OF ].

The point which is important here is that Shimura shows (see Theorem 16.2 in
(loc. cit.) that αc(·) is a rational formal Dirichlet series (i.e. has coefficients
in Q). In particular by the equation above we conclude that the c(τ, q; f |T (a)),
which is obtained by equating the [a] coefficient in the formal Dirichlet series
above, is a Q(ψ) linear combination of the Fourier coefficients of f . Hence we
conclude the lemma. �

We now fix a set B ⊂ Gh such that GA =
∐
GbC. Note that this does not

depend on the ideal c thanks to Lemma 2.6. Moreover we can take the elements

b to be of the form b = diag[b1, b̂1] with b1 ∈ GLn(Kh). Keeping the notation
of the previous section where we wrote Q ⊂ GLn(K)h, we define, following
Shimura [24, Lemma 28.4], the set Ab := {q ∈ Q|diag[q, q̂] ∈ GbC}, and the
map

πb : ⊕q∈AbMk(Γ
q, ψq) → Mk(Γ

b, ψb), (fq)q 7→ hb := B
∑

q∈Ab

fq|αq,

with diag[q, q̂] ∈ αqbC and B the size of the set B. As explained in [24] for
any cusp form g ∈ Sk(C,ψ)) we have that 〈gb, hb〉 = B

∑
q∈Ab

〈gq, fq〉. In
particular if we define the form h with local components hb we have that
〈g,h〉 =

∑
q∈Q〈gq, fq〉. From Lemma 2.4 we have that the map πb is defined

over some finite extension of Φ, the Galois closure of K. We write L for the
minimal field over which all πb for b ∈ B are defined. Clearly this field is equal
to Φ in the situation where the set B and the set Q have the same size. This,
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for example, can happen when the class number of F is one (see [23, page 66].

As we mentioned above, the following theorem should be seen as the unitary
analogue of a theorem by Sturm [25] for Siegel modular forms of integral weight,
even genus over the rationals (see also related work of Harris [14]), building on
ideas of Shimura. Our proof combines ideas taken from the proof of Sturm
in [25] as well as from the proof of a theorem of Shimura [24, Theorem 28.5].

This last one provides a result of the form 〈f ,g〉
〈f ,f〉 ∈ Q, for f a cusp form and

g modular forms defined over Q. We also mention that similar theorems have
been also proved in [2, 4] for Siegel modular forms over totally real fields of
integral and half-integral weight.

Theorem 5.2. Let f ∈ Sk(C,ψ,Q) be an eigenform for all the good Hecke
operators of C, and define mv := kv + kρv for all v ∈ a. Let Φ be the Galois
closure of K over Q and writeW for the extension of Φ generated by the Fourier
coefficients of f and their complex conjugation. Assume m0 := minv(mv) >
3n+2. Then there exists a period Ωf ∈ C× and a finite extension Ψ of Φ such
that for any g ∈ Sk(Q) we have

(
〈f ,g〉

Ωf

)σ
=

〈fσ,gσ
′

〉

Ωfσ
,

for all σ ∈ Gal(Q/Ψ), with σ′ := ρσρ. Here Ωfσ is the period attached to the
eigenform fσ. Moreover Ωf depends only on the eigenvalues of f and we have
〈f ,f〉
Ωf

∈ (WΨ)×. In particular we have 〈f ,g〉
〈f ,f〉 ∈ (WΨ)(g,gρ), where (WΨ)(g,gρ)

denotes the extension of WΨ obtained by adjoining the values of the Fourier
coefficients of g and gρ.

Remark 5.3. Before we give the rather long proof of the above theorem we
would like to indicate some of the ideas that allow us to obtain the above
theorem.

(1) For the proof of Theorem 5.2 we will make use of Theorem 4.3 of the
previous section. In particular, the fact that for the Eisenstein series
involved in Theorem 4.3 we have a very good understanding of the
Galois reciprocity obtained in section 3, will play a key role. Note that
this is not the case for the Eisenstein series involved in the original
expression of Shimura in Theorem 4.1, which of course is good enough
if one is only interested in obtaining results over an algebraic closure
of Q, but not for the results which we are aiming here.

(2) The second observation is related to the bound imposed on the weight
of the Hermitian modular form f . In particular this is a bit weaker than
the one appearing in [24, Theorem 28.5], where the bound is taken to
be 3n. The reason for this difference is to give us some freedom in
selecting a particular character (in the notation of the proof χ), which
will make the associated theta series (which we denote θq,χ in the proof
below) a cusp form. This will allow us not to have to worry about the
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field of definition under which we have a splitting of the cuspidal part
from the Eisenstein part. Note that this is quite important, since we
are considering weights, which may be below the range of absolute
convergent for Eisenstein series, which is 4n − 2 in the unitary case,
and hence we do not have an explicit description of the field over which
this decomposition is defined (see also Theorem 5.5 below).

(3) The extension Ψ will become explicit in the proof of the theorem. We
will see that it is a finite extension of the field L defined above (the
field of definition of the maps π′

bs) obtained by adjoining the values of
two, once and for all fixed, characters, which are denoted χ and φ in
the proof.

Proof of Theorem 5.2. We first consider the case where m0 is even. We define
µ ∈ Zb by setting µρv = 0 and µv = mv −m0 + 2 for all v ∈ a. We now set
t′ := µv−kv+kvρ, and consider a Hecke character χ of K of conductor fχ such

that χa(x) = x−t
′

a |xa|t
′

, and c|fχ. Later we explain more on the choice of the
character χ. We recall here that we are taking ψ to be of finite order, so the
infinity type is trivial. We now set s := m0−3n

2 − 1 in Theorem 4.3. We get

C(S)Γ((
m0 − 3n

2
− 1))L(

m0

2
− 1, f , χ)(ψ/ψc)

2(det(r))×

∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ

∗(det(r∗ŷ)OK)|det(r∗ŷ)|
m0
2

−1

K cf (τ, y) =

Λc(
m0

2
−1, θ(ψχ)1)·

∏

v∈b

gv(χ(ψ/ψc)(πv)|πv|
2m0−1)det(τ)m−n|det(r)|

−
m0+2n+2

2

K ×

C0

∑

q∈Q

|det(qq∗)|−nF vol(Φ)〈fq(z), θq,χ(z)Eq(z,
ν − 2

2
; k − ℓ, ξ, c′′)〉Γq

0
(c′′),

where ξ := (ψ′/ψ)c and we set ν := m0 − n. We note that m0

2 − 1 > 3n
2 and

that (kv − ℓv) + (kvρ − ℓvρ) = ν − 2 > 2n. In particular the bound on ν − 1
implies that Eq(z,

ν−2
2 ; k − ℓ, (ψ′/ψ)c, C′′) is holomorphic.

If m0 is odd we define µ ∈ Zb by setting µρv = 0 and µv = mv −m0 +1 for all
v ∈ a. We now set t′ := µv − kv + kvρ, and consider a Hecke character χ of K

of conductor fχ such that χa(x) = x−t
′

a |xa|t
′

.

We now set s := m0+1−3n
2 − 1 in Theorem 4.3 and get

C(S)Γ((
m0 + 1− 3n

2
− 1))L(

m0 + 1

2
− 1, f , χ)(ψ/ψc)

2(det(r))×

∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ

∗(det(r∗ŷ)OK)|det(r∗ŷ)|
m0−1

2

K cf (τ, y) =

Λc(
m0 − 1

2
, θ(ψχ)1) ·

∏

v∈b

gv(χ(ψ/ψc)(πv)|πv|
2m0+1)det(τ)m−n|det(r)|

2n+1−m0
2

K ×

C0

∑

q∈Q

|det(qq∗)|−nF vol(Φ)〈fq(z), θq,χ(z)Eq(z,
ν − 1

2
; k − ℓ, ξ, c′′)〉Γq

0
(c′′),
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where ξ := (ψ′/ψ)c and we set ν := m0 − n. We note that m0+1
2 − 1 > 3n

2 and
that (kv − ℓv) + (kvρ − ℓvρ) = ν − 1 > 2n. In particular the bound on ν − 1
implies that Eq(z,

ν−1
2 ; k − ℓ, (ψ′/ψ)c, C′′) is holomorphic.

In the case of m0 is even we have

Γ((
m0 − 3n

2
− 1)) =

∏

v∈a

(4π)−n(mv−n)Γn(mv − n),

and a similar equality holds for m0 odd, namely

Γ((
m0 + 1− 3n

2
− 1)) =

∏

v∈a

(4π)−n(mv−n)Γn(mv − n).

We now notice that

∏

v∈a

Γn(mv − n) =
∏

v∈a

πn(n−1)/2
n−1∏

j=0

Γ(mv − n− j) ∈ πdn(n−1)/2Q×,

where d = [F : Q]. In particular for m0 even we have,

Γ((
m0 − 3n

2
− 1)) ∈ πdn(n−1)/2+dn2−n

∑
vmvQ×

and similar equality holds for Γ((m0+1−3n
2 − 1)) when m0 is odd. Recalling

that vol(Φ) ∈ πdn
2

Q× we conclude that for m0 even,

Γ((m0−3n
2 − 1))

vol(Φ)
∈ πdn(n−1)/2−n

∑
vmvQ×,

and similarly for
Γ((

m0+1−3n
2

−1))

vol(Φ) when m0 odd.

We now describe the extension Ψ of the theorem. We first note that we can
pick the characters χ and φ so that χ(x) and θ(x) belong in a finite extension
of Φ for any x ∈ K×

h . We start with the character φ. We note in the proof of
lemma A5.1 in [24] that φ(x) = b−a

a |ba|aθ(c) if x = abc with a ∈ K×, b ∈ U
(as in Shimura) and c ∈ F×

A . In particular φ(x)2 = 1 if x ∈ K×
h ∩ K×UF×

A .
But then by looking at the proof of Lemma 11.15 in [23], where the extension
of φ to K×

A one sees that we need to extend the values of φ by a finite number
of roots of 1 or −1. Similarly in order to obtain the character χ we can start
by a quadratic Hecke character χ1 of F with infinity type t′ mod 2. Note
that this is always possible, since we can take χ1 to be the quadratic character
corresponding to a quadratic extension of F that is imaginary when tv ≡ 1
mod 2 and real otherwise. Then we can apply the same argument as we did
with the character φ. We now define the field Ψ to be the finite extension of
Φ obtained by adjoining the values of the characters χ and φ on finite adeles,
and such that the maps πb discussed before the theorem are all defined over Ψ.
For every q we write Γ′

q and Γq for the groups Γq0(c
′′) and Γq0(c

′′) respectively.
We first consider the case of m0 being even. We now write δ for the rational
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part of Γ((m0−3n
2 − 1)) ∈ πdn(n−1)/2+dn2−n

∑
vmvQ× and take β ∈ N so that

π−βDq(ν − 2/2) ∈ Mk−l(ΦQab) where

Dq(
ν − 2

2
) := Λc′′(

m0 + 1

2
− 1), θ(ψχ)1)Eq(z,

ν − 2

2
; k − ℓ, (ψ′/ψ)c, c′′).

We further set

B(χ, ψ, τ, r, f) := δ(ψ/ψc)
2(det(r))×

∑

L<M∈Lτ

µ(M/L)(ψ2
c/ψ)(det(y))χ

∗(det(r∗ŷ)OK)|det(r∗ŷ)|
m0
2

−1

K cf (τ, y)

and

C(χ, ψ, τ, r) := C0

Λc(
m0−1

2 )

Λc′′(
m0−1

2 )
det(τ)m−n|det(r)|

2n+2−m0
2

K ×

∏

v∈b

gv(χ(ψ/ψc)(πv)|πv|
2m0−1).

We remark here that
Λc(

m0+1

2
−1)

Λ
c
′′ (

m0+1

2
−1)

is a product of finite many Euler factors,

none of which is zero, thanks to the bound on m0. We then have for every
σ ∈ Gal(Q/Φχ) that

B(χ, ψ, τ, r, f)σ = B(χσ, ψσ, τ, r, fσ) and C(χ, ψ, τ, r)σ = C(χσ, ψσ, τ, r).

Keeping now the character χ fixed, we define the space V := {g ∈
Sk(C,ψ)|g|T (a) = λ(a)g, (a, c) = 1}, where λ(a) is the eigenvalue of f with
respect to the good Hecke operators T (a). From above we have that for any
given g ∈ V there exists (τ, r) such that

B(χ, ψ, τ, r,g) = δψc(det(r))cg(τ, r) 6= 0.

We note here that the same pair (τ, r) can be used for the form gσ, as it follows
from the proof of Theorem 20.9 in [24]. As in [24, page 233] we write G for the
set of pairs (τ, r) for which such an g exists. From the observation above the set
G is the same also for the system of eigenvalues λ(a)σ , for all σ ∈ Gal(Q/Ψ).
In particular for such an (τ, r)

(7) 0 6= C(S)πγL(σ0,g, χ)δψc(det(r))cg(τ, r) =
(
∏

v∈b

gv(χ(πp)N(p)2m0−1)

)
det(τ)m−n|det(r)|

−
m0
2

+n+1

K C0×

Λc(
m0+1

2 − 1)

Λc′′(
m0+1

2 − 1)
×
∑

q∈Q

|det(qq∗)|−nF 〈gq(z), θq,χ(z)Dq(z,
ν − 2

2
)〉Γ′

q
,

where we have set σ0 = m0

2 − 1. The fact that L(σ0,g, χ) 6= 0 is in principle
[24, Theorem 20.13]. Indeed in page 183 of (loc. cit) Shimura first proves the
non-vanishing of Z ′(σ0,g, χ) for any character χ with µ 6= 0, as it is the case
that we consider. Further we note that this in particular implies also that
C(χ, ψ, τ, r) 6= 0 for all (τ, r) ∈ G.
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We note that

〈gq, θq,χDq

(
ν − 2

2

)
〉Γ′
q
= 〈gq, T r

Γq
Γ′
q

(
θq,χD

(
ν − 2

2

))
〉Γq ,

and we define an element gτ,r,ψ ∈ Sk(C,ψ) by defining its components as

gb,τ,r,ψ := πb

(
C(S)−1|det(qq∗)|−nF π−βTr

Γq
Γ′
q

(
θq,χπ

−βDq

(
ν − 2

2

)))

where we take diag[q, q̂] ∈ Ab. We note that it is a cusp form since we are
taking µ 6= 0 and hence the theta series is a cusp form. We now define W to
be the space generated by gτ,r,ψ for (τ, r) ∈ G.

We now claim that there exists an Ωf ∈ C× such that for any gτ,r,ψ

(
〈f ,gτ,r,ψ〉

Ωf

)σ
=

〈fσ ,gσ
′

τ,r,ψ〉

Ωfσ
,

where σ′ = ρσρ, with σ ∈ Gal(Q/Ψ). We first note that the action of σ on
gτ,r,ψ can be understood by the action on θq,χ and π−βDq

(
ν−2
2

)
. This follows

from the fact that the maps πb are defined over Ψ and the Galois equivariance
of the trace map, which is proved right after this theorem. We now have(
|det(qq∗)|

−n/2
h θq,χ

)σ′

= |det(qq∗)|
−n/2
h θq,χσ where we have used the Fourier

expansion of θq,χ given in Proposition 3.1 as well as the fact that χ is a unitary
character, hence χρ = χ−1. For the Eisenstein series we first note that for m0

even we have that n − (ν−2
2 ) = n − m0−n−2

2 ≡ n
2 mod Z. In particular for

n odd, we have that δ1 = 1 in Proposition 3.9. Since we are really interested
in the product θq,χDq(

ν−2
2 ) we have this factor cancelled out from the theta

series. So in particular we can conclude that gσ
′

τ,r,ψ = P (ξ)σ
′

P (ξσ′ )
gτ,r,ψσ , where

P (ξ) := τ(ξn1 )i
−dnµ. For any gτ,rψ we have

πγL(σ0, f , χ)B(χ, ψ, τ, r, f) =

C(χ, ψ, τ, r)〈f ,gτ,r,ψ〉.

For any (τ, r) ∈ G we have seen that C(χ, ψ, τ, r) 6= 0. We obtain

〈f ,gτ,r,ψ〉

πγL(σ0, f , χ)
=
B(χ, ψ, τ, r, f)

C(χ, ψ, τ, r)
.

For any σ ∈ Gal(Q/Ψ) we have then
(

〈f ,gτ,r,ψ〉

πγL(σ0, f , χ)

)σ
=

(
B(χ, ψ, τ, r, f)

C(χ, ψ, τ, r)

)σ
=

B(χσ, ψσ, τ, r, fσ)

C(χσ, ψσ, τ, r)
=

〈fσ,gτ,r,ψσ〉

πγL(σ0, fσ, χ)
.
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In particular we conclude that

(
〈f ,gτ,r,ψ〉

πγL(σ0, f , χ)

)σ
=

((
P (ξ)σ′

P (ξσ′)

))−1
〈fσ ,gτ,r,ψσ′ 〉

πγL(σ0, fσ, χ)
.

In particular if we set Ωf := πγL(σ0, f , χ)P (ξ)
−1

then we conclude the claim.

One should note here that P (ξσ
′

) = P (ξσ).

The case of m0 odd can of course be done similarly. Namely if we set Ωf =

πγL(σ0, f , χ)P (ξ)
−1

with σ0 = m0+1
2 − 1, with P (ξ) defined as above. then for

any f ∈ V and any gτ,r,ψ
(
〈f ,gτ,r,ψ〉

Ωf

)σ
=

〈fσ ,gσ
′

τ,r,ψ〉

Ωfσ
,

where σ′ = ρσρ and σ ∈ Gal(Q/Ψ). Here one needs to observe that for m0

odd we have that n − m0−n−1
2 = n − m0−1

2 − n
2 ≡ n

2 mod Z and hence again
the roots of |det(qq∗|h (when n odd) of the Eisenstein series will cancel with
the ones of the theta series.
With W ′ we denote the space generated by the projection of W on V . By
definition W ′ = V . Indeed for any element g ∈ V there exists h ∈ W ′ such that
〈g,h〉Γ 6= 0, simply by taking the projection of the corresponding gτ,r := gτ,r,ψ
to W ′. So the C span of gτ,r with (τ, r) ∈ G is equal to V . Since gτ,r have

algebraic coefficients we have that the Q-span is equal to V(Q). We can now
establish the theorem for any g ∈ V(Q) since after writing g =

∑
j cjgτj,rj ,V ∈

V(Q), where gτj,rj ,V is the projection of gτj,rj to V , we have

(
〈f ,g〉

Ωf

)σ
=
∑

j

cj
σ

(
〈fσ,gσ

′

τj ,rj,V
〉

Ωfσ

)
=

〈fσ ,gσ
′

〉

Ωfσ
.

Here we note that we make use of the important fact that gτj,rj are cusp

forms. We now take any g ∈ Sk(C,ψ;Q). The good Hecke operators act as
commutative semi-simple linear transformations hence we have Sk(C,ψ,Q) =
V⊕U , with U a vector space which is stable under the action of the good Hecke
operators. We write g = g1 + g2 with g1 ∈ V and g2 ∈ U . Then we have that

(
〈f ,g〉

Ωf

)σ
=

(
〈f ,g1〉

Ωf

)σ
=

〈fσ,gσ
′

1 〉

Ωfσ
=

〈fσ,gσ
′

〉

Ωfσ

where the first and the last equality follows from the fact that < f ,g >= 0
and < fσ,gσ

′

>= 0 for g ∈ U . It is enough to show this for g an eigenform
for all the good Hecke operators with eigenvalues different from that of f ’s.
That is, there exists an ideal a with (a, c) = 1 so that T (a)f = λf (a)f and
T (a)g = λg(a)g such that λf (a) 6= λg(a). But then we have

λf (a)
σ〈fσ ,gσ

′

〉 = 〈T (a)fσ,gσ
′

〉 =

〈fσ, T (aρ)gσ
′

〉 = 〈fσλg(a)
σρgσ

′

〉 = 〈fσ,gσ
′

〉λg(a)
σ
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and hence we conclude that < fσ,gσ
′

>= 0. Here we have used the fact (see
[24, Lemma 23.15]) that the adjoint of a good Hecke operator T (a) is T (aρ)

and that λg(a)
ρ = λg(a

ρ). In particular T (a)gσ
′

= λf (a
ρ)σρgσ

′

.
Finally taking g equal to f we obtain that Ωf is equal to < f , f > up to a
non-zero element (WΨ)×. �

We now prove the lemma on the Galois equivariance property of the trace map,
which was used in the proof above.

Lemma 5.4. With notation as in the theorem we consider the trace map Tr :
Sk(Γ

′
q, ψ) → Sk(Γq, ψ). Then for any σ ∈ Gal(Q/Φ) we have that Tr(f)σ =

Tr(fσ).

Proof. The proof of this is similar to the one given by Sturm in [25] for Siegel
modular forms and extended in [2]. All we need to observe is that if we write
Γq =

∐
Γ′
qy, then we can pick y ∈ SU(n, n). Indeed we have by Lemma 2.6

that det(Γq) = det(Γ′
q). In particular if we fix any decomposition Γq =

∐
x Γ

′
qx,

then det(x) ∈ det(Γq) = det(Γ′
q). That is there exists γ ∈ Γ′

q such that det(x) =

det(γ). So if we consider the elements y = γ−1x then we have det(y) = 1 and
so y ∈ SU(n, n) and they form a set of representatives, which concludes our
claim. Then we can follow an argument similar to the proof of [25, Lemma
11] or in [2, Lemma 8], since now we have the reciprocity law for elements in
SU(n, n) and the strong approximation holds. �

The above theorem can in some cases be stated in a stronger form, namely
we can take that g above is actually in Mk(Q). Of course this question is
meaningful only when Sk 6= Mk, that is if mv = m0 for all v. However for
this we need to know the rational decomposition of the Eisenstein part. This
is known in the case of absolute convergence by a result of Michael Harris [12,
Main Theorem 3.2.1]. Actually his result implies that,

Theorem 5.5 (Harris, Corollary to Theorem 3.2.1 in [12]). Assume that m0 >
4n− 2. Then there exists a projection operator

p : Mk(C,ψ,Q) → Sk(C,ψ,Q),

such that p(g)σ = p(gσ) for all σ ∈ Gal(Q/Φ).

In particular if we assume that m0 > 4n−2 then we can take g in the Theorem
5.2 to be in g ∈ Mk(Q). Actually an improvement of this bound will allow us
to remove some of the assumptions made in the theorems below. We note here
that Shimura in [24, Theorem 27.14] has results towards this direction, but his
results are only over an algebraic closure Q of Q.

6. Algebraicity Results for Special L-Values and Reciprocity
Laws

In this section we present various results regarding special values of the function
L(s, f , χ), with f ∈ Sk(C,ψ), an eigenform for all Hecke operators. We recall
that we have also considered the function Z(s, f , χ). The two coincide when
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the nebentype of f is trivial. Indeed if we write Zq(χ
∗(q)N(q)−s) for the Euler

factor of Z(s, f , χ) at some prime q of K then the corresponding Euler factor
of L(s, f , χ) is equal to Zq((ψ/ψc)(π)χ

∗(q)N(q)−s), where π is a uniformizer of
Kq. We note the equation

L(s, f , χψ−1) = Zc(s, f , χ),

where the subindex on the right hand side indicates that we have removed
the Euler factors at all primes in the support of c. In particular if we take
the character χ trivial at the primes dividing c (the character χ may not be
primitive) then we have that the two functions are the same.
We start by stating a result of Shimura [24, Theorem 28.8]. We take f ∈
Sk(C;Q), where

C = {x ∈ D[b−1, bc]|ax − 1 ≺ c}.

We moreover take f of trivial Nebentypus and assume that it is an eigenform for
all Hecke operators away from the primes in the support of c. In the notation
of [24, Chapter V], we take e = c, and not e = OF . In particular here we take
the Euler factors Zv trivial for v in the support of c.

Theorem 6.1 (Shimura, Theorem 28.8 in [24]). With notation as above define
m0 := min{mv := kv + kvρ|v ∈ a} and assume m0 > 3n. Let χ be a Hecke
character of K such that χa(x) = xta|xa|

−t with t ∈ Za. Let σ0 ∈ 1
2Z such that

4n− (2kvρ + tv) ≤ 2σ0 ≤ mv − |kv − kvρ − tv|,

and

2σ0 − tv ∈ 2Z, ∀v ∈ a.

We exclude the cases

(1) 2σ0 = 2n+ 1, F = Q and χ1 = θ, and kv − kvρ = tv,
(2) 0 < 2σ0 ≤ 2n, c = OF , χ1 = θ2σ0 and the conductor of χ is OK .

Then we have
Z(σ0, f , χ)

〈f , f〉
∈ πn(

∑
vmv)+d(2nσ0−2n2+n)Q,

where d = [F : Q].

We now take f ∈ Sk(C,ψ;Q) with C of the form D[b−1, bc] (i.e. the standard
setting in this paper). Then, with notation as in the previous theorem,

Theorem 6.2. Let f ∈ Sk(C,ψ;Q) be an eigenform for all Hecke operators, and
assume that m0 ≥ 3n+2. Let χ be a character of K such that χa(x) = xta|xa|

−t

with t ∈ Za, and define µ ∈ Zb by µv := −tv − kvρ + kv and µvρ = 0 if
kvρ − kv + tv ≤ 0, and µv = 0 and µvρ = kvρ − kv + tv, if kvρ − kv + tv > 0.
Assume moreover that either

(1) there exists v, v′ ∈ a such that mv 6= mv′ , or
(2) mv = m0 for all v and m0 > 4n− 2, or
(3) µ 6= 0.
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Then let σ0 ∈ 1
2Z such that

4n−mv + |kv − kvρ − tv| ≤ 2σ0 ≤ mv − |kv − kvρ − tv|,

and,
2σ0 − tv ∈ 2Z, ∀v ∈ a.

We exclude the σ0’s in n ≤ 2σ0 < 2n, for which there is no choice of the integral
ideal c′′ in Theorem 4.3 such that for any prime ideal q of F , q|c′′c−1 implies
either q|f′ or q ramifies in K. Here f′ denotes the conductor of the character χ1.

Then we have
L(σ0, f , χ)

〈f , f〉
∈ πn(

∑
vmv)+d(2nσ0−2n2+n)Q.

Moreover, if we take a number field W so that f , fρ ∈ Sk(W ) and ΨΦ ⊂ W ,
where Φ is the Galois closure of K in Q, and Ψ as in the Theorem 5.2 then

L(σ0, f , χ)

πβτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pv 〈f , f〉
∈ W :=W (χ),

where β = n(
∑

vmv)+d(2nσ0−2n2+n), W (χ) obtained from W by adjoining
the values of χ on finite adeles, and p ∈ Za is defined for v ∈ a as pv =
mv−|kv−kvρ−tv |−2σ0

2 if σ0 ≥ n, and pv =
mv−|kv−kvρ−tv |−4n+2σ0

2 if σ0 < n.

Remark 6.3. With respect to the cases excluded in the above theorem we would
like to make the following comment. As it will become clear in the proof, we

need to make sure that the finite product Λc(σ0)
Λ

c
′′ (σ0)

does not have a pole. But if

it is possible to pick the integral ideal c′′ such that for any prime ideal q of F ,

q|c′′c−1 implies either q|f′ or q ramifies in K, then the finite product Λc(σ0)
Λ

c
′′ (σ0)

is

equal to one, where we recall that for an integral ideal h of F we write

Λh(s) =

n∏

i=1

Lh(2s− n+ 1− i, ψ1χ1θ
n+i−1).

Actually even a weaker condition is needed in order to guarantee that Λc(σ0)
Λ

c
′′ (σ0)

does not have a pole. Indeed this can only happen for σ0 in the range n ≤
2σ0 ≤ 2n− 1 and if we have (ψ1χ1θ

2σ0 )(q) = 1 for some integral ideal q of F
with q 6 | c and q |c′′. Since there are only finite many primes q dividing c′′c−1,
this is a condition in finitely many integral ideals imposed on the character
ψ1χθ

2σ0 , which is equal to ψ1χ1 if σ0 ∈ Z and ψ1χ1θ otherwise. Finally we
mention that a similar condition appears in the Siegel modular forms case in
[22, Proposition 8.3].

Remark 6.4. Before giving the proof of the Theorem 6.2, we would like to
make some comments on the differences and new input in comparison to the
Theorem 6.2 [24, Theorem 28.8]. Of course as we mentioned the L-functions
appearing in the two theorems will differ in the presence of nebentype. Even
if we take the nebentype to be trivial, then one could try to compare the
results, but one should keep in mind, as we indicated above, we obtain the
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Z-function from the L-function after removing the finitely many bad Euler
factors. However one should exclude then the values of s where some of these
Euler factors are zero. Moreover the main aim of Theorem 6.2 is to provide
more precise information about the field where the normalized L-values lie.
Moreover:

(i) We would like to remark that our theorem (Theorem 6.2) provides some
algebraic results in cases, which are not covered by the one of Shimura (Theo-
rem 6.1), since the excluded values of σ0 in Theorem 6.1 do not coincide with
the ones excluded in Theorem 6.2. We would like to explain briefly why this is
happening. In the proof of Theorem 6.1 [24, Theorem 28.8] two methods are
provided. One is based on the doubling method (1st method in the notation
there) and the other is based on the Rankin-Selberg method (2nd method in
the notation there). The cases excluded in Theorem 6.1, are the ones where the
Eisenstein series involved in the doubling method are not nearly holomorphic.
Of course the question is whether one could avoid these restrictions by working
with the Rankin-Selberg method (2nd method of proof). However in the proof
of Theorem 6.1, the Rankin-Selberg method is applicable only to the case of
σ0 ≥ n. The reason for this is that Shimura is working with the form given
in Theorem 4.1. The Eisenstein series involved there does not allow one to
consider the case of σ0 < n, since in this case they are not nearly holomorphic.
However in our proof we employ the form of Theorem 4.3, in which the nearly
holomorphicity of the Eisenstein series involved is better understood, even
when we take σ0 < n.

(ii) The second point we would like to emphasize is related to the results about
the field in which the L-values (after divided with the appropriate periods)
lie. We start by explaining the assumptions (i),(ii) and (iii) of the Theorem
6.2. The reason for these assumptions is the lack of precise information about
the field over which we have a decomposition of the Hermitian modular forms
to the Eisenstein part and to the cuspidal part. As we mentioned above in
Theorem 5.5, we have such an information in the case of absolute convergent,
which is case (ii) in our theorem. In case (i), the non parallel situation we
know that there is no Eisenstein part [23, Proposition 10.6]. Finally case (iii)
will make the theta series, involved in the Rankin-Selberg method, a cusp
form, and hence also the product with a nearly holomorhic Eisenstein series
will be again cuspidal. In particular, after taking holomorphic projection, we
will not have to worry about splitting from the Eisenstein part. We also would
like to emphasize here that even though the cases (i) and (ii) could also be
available using the doubling method, case (iii) is possible only when one uses
the Rankin-Selberg method, due to the presence of the theta series.

(iii) Finally our proof relies heavily on the various results which we proved
about the Galois reciprocity of Siegel-type Eisenstein series in section 3, as
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well as Theorem 5.2, which provides precise information about the ratio of
Petersson inner products needed in the proof of Theorem 6.2.

Proof of Theorem 6.2. We set s := σ0 −
3n
2 , and ℓ := µ+ na. By Theorem 4.3

we know that there exists τ ∈ S+ ∩GLn(K) and r ∈ GLn(K)h such that

C(S)Γ((σ0 −
3n

2
))ψc(det(r))cf (τ, r)L(σ0, f , χ) =

Λc(σ0, θ(ψχ)1) ·

(
∏

v∈b

gv(χ(πp)N(p)−2σ0)

)
det(τ)σ0−

3n
2
a+h|det(r)|−σ0+n

K C0×

∑

q∈Q

|det(qq∗)|−nF vol(Φq)〈fq(z), θq,χ(z)Eq(z,
ν

2
, (ψ′/ψ)c, C′′)〉Γq

0
(c′′),

where we have set ν := 2σ0 − n a,d hence s = ν
2 − n.

We first consider the conditions under which the gamma factors do no have
any poles. We first recall that

Γn(s) = πn(n−1)/2
n−1∏

j=0

Γ(s− j).

Hence for
∏
v∈a Γn(σ0 −

3n
2 +

kv+kvρ+ℓv+ℓvρ
2 ). we have

σ0 −
3n

2
+
kv + kvρ + ℓv + ℓvρ

2
= σ0 − n+

kv + kvρ + µv + µvρ
2

=

σ0 − n+
kv + kvρ + |kv − kvρ − tv|

2
.

Hence we need that σ0 − n+
kv+kvρ+|kv−kvρ−tv|

2 > n− 1 or equivalently

2σ0 > 4n− 2−m− |kv − kvρ − tv|

We now consider the Eisenstein series Dq(
ν
2 ) := Λc′′(σ0, θ(ψχ)1)Eq(z,

ν
2 ; k −

ℓ, (ψ′/ψ)c, C′′) of weight k−ℓ. We check for which values is nearly holomorphic.
It is nearly holomorphic if and only if 2n − (kv − ℓv) − (kvρ − ℓvρ) ≤ ν ≤
(kv − ℓv) + (kvρ − ℓvρ) or equivalently

4n−mv + |kv − kvρ − tv| ≤ 2σ0 ≤ mv − |kv − kvρ − tv|.

Moreover we need that mv−|kv−kvρ−tv|−2σ0 ∈ 2Z or equivalently tv−2σ0 ∈
2Z for all v ∈ a.
For the values at which the series Dq(

ν
2 ) is nearly holomorphic we know that

π−γDq(
ν

2
) ∈ Nk−ℓ(Q),

for γ = (n/2)
∑
v∈a(mv − |kv − kvρ − tv| − 2n+ 2σ0)− dn(n− 1)/2. Moreover

we note that the condition tv − 2σ0 ∈ 2Z implies that

σ0 − n+
kv + kvρ + |kv − kvρ − tv|

2
∈ Z
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in particular Γn(σ0−
3n
2 +

kv+kvρ+ℓv+ℓvρ
2 ) ∈ πn(n−1)/2Q× and so

∏
v∈a Γn(σ0−

3n
2 +

kv+kvρ+ℓv+ℓvρ
2 ) ∈ πd(n(n−1)/2Q×. We then conclude that

Γ((σ0 −
3n

2
)) =

∏

v∈a

(4π)−n(σ0−
3n
2
+hv)Γn(σ0 −

3n

2
+ hv) ∈ πǫQ×,

where ǫ = dn(n−1)/2−n
∑
v∈a(σ0−n+

kv+kvρ+|kv−kvρ−tv |
2 ). Finally we recall

that vol(Φ) ∈ πdn
2

Q×. Putting this together we have that up to elements of
Q×

C(S)π−βL(σ0, f , χ) =
Q

×

ψ−1
c (det(r))cf (τ, r)

−1

(
∏

v∈b

gv(χ(πp)N(p)−2σ0)

)
det(τ)σ0−

3n
2
a+h×

|det(r)|−σ0+n
K C0

Λc(σ0, θ(ψχ)1)

Λc′′(σ0, θ(ψχ)1)

∑

q∈Q

|det(qq∗)|−nF 〈fq(z), θq,χ(z)
Dq(

ν
2 )

πγ
〉,

where β = n(
∑

vmv) + d(2nσ0 − 2n2 + n). We have moreover established that
σ0 − 3n

2 a + hv ∈ Z for all v ∈ a. Moreover we notice that because of the

assumption in the theorem, the factor Λc(σ0,θ(ψχ)1)
Λ

c
′′ (σ0,θ(ψχ)1)

does not have a pole and

belongs to W . Hence in order to conclude the theorem it is enough to show
that

∑
q∈Q |det(qq∗)|−nF 〈fq(z), θq,χ(z)

Dq(
ν
2
)

πγ )〉

πγτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pv 〈f , f〉
∈ W .

First we assume that σ0 ∈ Z. We note that for every q component

|det(qq∗)|−nF θq,χ(z)Dq(
ν
2 )

τ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pvπγ
∈ Nk(W).

Indeed this follows from Lemma 1 and Proposition 3.9 combined with the
observation that n− ν

2 = n−σ0+
n
2 ≡ n

2 mod Z, and hence we do not have to

worry about the |det(qq∗)|
n/2
h , since the will cancelled out by the theta series.

If we are in the cases (i) or (iii) then we know that θq,χ(z)Dq(
ν
2 ) ∈ Rk as in

the notation of Shimura in [24, page 124] (cuspidal nearly holomorphic forms),
and by [24, Proposition 15.6] we have that there exists gq ∈ Sk(W) such that

〈fq(z),
|det(qq∗)|−nF θq,χ(z)Dq(

ν
2 )

τ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pvπγ
〉 = 〈fq, gq〉.

Using the fact that the maps πq are defined over W we have that there exists
a cusp form g defined over W such that

∑
q∈Q〈fq, gq〉 = 〈f ,g〉, and then using

Theorem 5.2 we have that
〈f ,g〉

〈f , f〉
∈ W ,
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and hence we conclude the theorem. In case (ii) we can use [24, Lemma 15.8]
to conclude that there exists gq ∈ Mq(W) such that

〈fq(z),
|det(qq∗)|−nF θq,χ(z)Dq(

ν
2 )

τ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pvπγ
〉 = 〈fq, gq〉,

and then use the theorem of Harris, stated in the previous section, and write
gq = Eq + g′q with g′q ∈ Sk(W) and Eq an Eisenstein series. And so we obtain
< fq, gq >=< fq, g

′
q >. Then arguing as before we conclude the Theorem also

in this case.
For the case σ0 ∈ 1

2Z \ Z the argument is almost identical, but now we have
that n− ν

2 6≡ n
2 mod Z. That is, we may have to worry about square roots of

|det(qq∗)|h. But we note that the final expression is independent of the choice
of q ∈ Q. As before we can establish that

L(σ0, f , χ)

πβτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pv 〈f , f〉
∈ WQ,

where WQ is the field obtained by adjoining |det(qq∗)|
1/2
h to W . Let us pick

another set Q′ ⊂ GLn(Kh) so that for all Q′ ∈ Q′ we have q′v = 1 for all v that
ramify in WQ. In particular WQ′ ∩WQ = W . But we also have that

L(σ0, f , χ)

πβτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pv 〈f , f〉
∈ WQ′

by the same argument as for Q. But then we have that the values must actually
lie in the intersection, namely W . �

We now obtain also some results with reciprocity laws.

Theorem 6.5. Let f ∈ Sk(C,ψ;Q) be an eigenform for all Hecke operators.
With notation as before we take m0 > 3n + 2. Let χ be a Hecke character of
K such that χa(x) = x−ta |xa|t with t ∈ Za. Define µ ∈ Zb as in the previous
theorem. With the same assumptions as in the previous theorem and with
Ωf ∈ C× as defined in the previous section in Theorem 5.2 we have for all
σ ∈ Gal(Q/ΨQ) that

(
L(σ0, f , χ)

πβτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pvΩf

)σ
=

L(σ0, f
σ, χσ)

πβτ((χn1ψ
n
1 θ

n2)σ)in
∑
v∈a

pvΩfσ
,

where ΨQ = Ψ if σ0 is an integer and it is the algebraic extension of Ψ obtained

by adjoining |det(qq∗)|
1/2
h for all q ∈ Q, for a fixed set Q, if σ0 is a half integer.

Proof. This follows exactly in the same way as we argued in the theorem above,
so we just mention the necessary additional observations. First we see that

(
|det(qq∗)|−nF θq,χ(z)

Dq(
ν
2 , χψφ

n)

πγτ(χn1ψ
n
1 θ

n2)in
∑
v∈a

pv
)

)σ′

=

|det(qq∗)|−nF θq,χσ (z)
Dq(

ν
2 , χ

σψσφn)

πγτ(χσn1ψ
σn
1 θ
n2)in

∑
v∈a

pv
.
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and the fact that the holomorphic projection we used Proposition 15.6 in [24]
for cuspidal nearly holomorphic modular forms is Galois equivariant. This will
settle the cases (i) and (iii). For (ii) we use as before Lemma 15.8 of [24] and
Harris’s projector from Theorem 5.5 which is Galois equivariant. We remark
here that in Lemma 15.8 of [24] the Galois equivariance is not explicitly men-
tioned. However it follows from the fact that in our situation the space of
nearly holomorphic modular forms has a basis over Φ ⊂ ΨQ (see [24, Propo-
sition 14.13]), and the map will preserve the field of definition of the basis.
Finally using now Theorem 5.2 we can finish the proof of the theorem. �

Remark 6.6. The only difficulty to obtain stronger results in the case where
µ = 0 and the (mv)v is parallel is the lack of result as in [12], on the rationality
of Eisenstein series beyond the absolute convergence. A strengthen of the
Theorem 5.5 of Harris, will allow to obtain stronger results.

Comparison with the results of Harris in [11, 13]: Let us now compare
the above results with the rationality results obtained by Harris in [11, Theorem
3.5.13]. As we indicated in the introduction the results of Harris are much
more general than the ones obtained here. For example, Harris establishes his
results using the doubling method, which allows him to consider more general
Hermitian modular forms, namely forms attached to unitary groups of the
form U(n,m) at infinity, where n 6= m. This cannot be done using the Rankin-
Selberg method. Another direction in which the results of Harris are more
general is the fact that he considers vector valued Hermitian modular forms,
where in this work we have restricted ourselves to the scalar weight situation.
So, in what follows we will be comparing results in the case of scalar weight
modular forms, associated to a unitary group of trivial Witt signature (i.e of
the form U(n, n) at infinity).
We start by establishing a dictionary between unitary Hecke characters and
Hecke characters of type A0 in the sense of Weil. We recall the definition,

Definition 6.7. A Grössencharacter of type A0, in the sense of Weil, of con-
ductor dividing a given integral ideal m ofK, is a homomorphism χ : I(m) → Q
such that there exist integers λ(τ) for each τ : K →֒ Q, such that for each
α ∈ K× we have

χ((α)) =
∏

τ

τ(α)λ(τ), if α ≡ 1 mod ×m, and α >> 0.

It is well known (see for example [17]) if we take K to be a CM field then the
above λ(τ) must satisfy some conditions. In particular if we select a CM type
Σ of K then there exists integers d(σ) for each σ ∈ Σ and an integer k such
that

χ((α)) =
∏

σ∈Σ

(
1

σ(α)k

(
σ(ᾱ)

σ(α)

)d(σ))
, if α ≡ 1 mod ×m.

We now keep writing χ for the associated by class field theory adelic character
to χ. As it is explained in [17, page 286] the infinity type is of the form (after
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we identify a with Σ),

χa(x) =
∏

v∈a

(
xk+dvv

x̄vdv

)
.

We now consider the unitary character ψ := χ| · |
−k/2
AK

, where |x|a =
∏
v∈a |xv|

k
v ,

where | · |v is the standard absolute value as in Shimura, not the normalized
(i.e. the square). We then have that

ψa(xa) =
∏

v∈a

(
x
k/2+dv
v

x̄vk/2+dv

)
=
∏

v∈a

(
xk+2dv
v

(xvx̄v)k/2+dv

)
=
∏

v∈a

(
xk+2dv
v

|xv|k+2dv

)
.

In particular to a Grössencharacter χ of type A0 of infinity type −kΣσσ +
Σσd(σ) (σ − σ̄) we can associate a unitary character ψ of weight {mv}v∈a with
mv := k+2d(σ) after identifying Σ with a. The relation between the associated
L functions is given by

L(s, χ) = L(s+ k/2, ψ).

Now we turn to the paper of Harris [11], and we use his notation. First
we observe that the Dirichlet series relevant to our discussion is the function
Lmot(s, π, St) in the notation of Harris and not the function L(s, π, St), which
is related to the previous one by Lmot(s, π, St) = L(s − n+ 1

2 ). Here we note
that Harris’ n is equal 2n with our notation. In the work of Harris n is the di-
mension of the Hermitian space i.e. n = r+ s for U(r, s). Now as Harris writes
(page 154) the function Lmot(s, π, St) is absolutely convergent for Re(s) > 2n,
which means Re(s) > n + 1

2 for the other function. By ([23, 24, Theorem
20.13 and Theorem 22.11]) we then conclude that L(s, f) = Lmot(s, π), where
L(s, f) is the L-functions considered in this paper. Now we consider twists by
Hecke characters. Here we remark that in this paper we follow Shimura and
we consider unitary Hecke characters. Harris considers Hecke characters of a
particular type at infinity i.e. χa(x) = xka (see [11, page 136] for the defini-
tion of ηk that shows up in the main theorem). By the discussion above we
have then that if we write ψ for the corresponding unitary character defined

by ψ := χ| · |
−k/2
AK

then

L(s, χ) = L(s+ k/2, ψ).

In particular we have the equality

Lmot(s, π, St, χ) = L(s+ k/2, f , ψ).

That means that our variable σ0 is related to the variable m of Harris by
σ0 = m+ k/2. Hence in Harris [11] the results are for σ0 > 2n or equivalently
2σ0 > 4n.
We now move to the more recent paper [13] of Harris, in which he explains how
the results of his first work in [11] could be extended to cover cases beyond
the absolute convergence range. Indeed in his Theorem 4.3 in [13] he obtains
results which are beyond the range of absolute convergence. However he puts
an assumption on the twisting character χ [13, equation 4.3.2], which allows
the use of the Siegel-Weil formula. This assumption excludes various cases
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considered here, so there are still quite a few cases where the results of Harris
and ours do not overlap. Moreover, since Harris is using the doubling method
to obtain his results, the limitations of the method, as they were explained in
Remark 6.4 (i), are present also here, and hence there are some special values
which can be only considered by employing the Rankin-Selberg method.
Let us add at this point that in the case of F 6= Q we obtained some results
in the non-parallel weight situation without any assumption on the twists. We
do not know whether the results in [11, 13] could be strengthen in the case of
F 6= Q and non-parallel weight (both works are written in the case of F = Q).
Finally we mention that a result on the ratio of Petersson inner products, as it
is stated in our Theorem 5.2, could be of independent interest.
A last comment on scalar weights. We finish this paper by making a
last comment on the fact that we restrict ourselves here to the scalar weight sit-
uation. To the best of author’s knowledge the Rankin-Selberg method has been
utilized towards algebraicity results only for scalar weight modular forms. And
this both in the Hermitian and in the Siegel modular form case. However the
work of Piatetski-Shapiro and Rallis in [19] indicates that the Rankin-Selberg
method could be used to study also the L-values of vector valued Hermitian or
Siegel modular forms. Needless to say that that there are numerous technical-
ities to be worked out in order to get from the analytic continuation results,
which is one of the main aims in [19], to algebraicity results. Perhaps the most
difficult of them seems to be to define the appropriate theta series, and espe-
cially the defining Schwartz function at infinity (note that the result in [19]
guarantees the existence but it is not constructive). And, of course, then also
worked the algebraicity of these theta functions. This could be the aim of a
future work.
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