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1. Introduction

Gabriel [Gab62] introduced a classification theory of subcategories of the cate-
gory of modules over a ring. The theory relates several classes of subcategories
to collections of ideals, and it reveals that geometry of the prime spectrum of
a commutative ring is reflected in the structure of subcategories of modules.
In this paper, we extend Gabriel’s result (Theorem 1.2) to an arbitrary locally
noetherian scheme X and give a systematic classification of subcategories of
the category QCohX of quasi-coherent sheaves on X .
We deal with the following classes of subcategories.

Definition 1.1. Let A be a Grothendieck category.

(1) A prelocalizing subcategory X of A is a full subcategory of A closed
under subobjects, quotient objects, and arbitrary direct sums.

(2) A localizing subcategory of A is a prelocalizing subcategory of A closed
under extensions.

(3) A closed subcategory of A is a prelocalizing subcategory of A closed
under arbitrary direct products.

(4) A bilocalizing subcategory ofA is a prelocalizing subcategory ofA which
is both localizing and closed.

It is known that a full subcategory X of a Grothendieck category A is prelo-
calizing (resp. closed) if and only if X is closed under subobjects and quotient
objects, and the inclusion functor X → A has a right adjoint (resp. both a
right and a left adjoint). See Proposition 4.3 and Proposition 11.2.
The notion of closed subcategories can be regarded as the categorical refor-
mulation of closed subschemes of a given scheme. In fact, for every ring Λ,
Rosenberg [Ros95] showed that there is a bijection

{ two-sided ideals of Λ } → { closed subcategories of ModΛ }

given by I 7→ {M ∈ ModΛ | MI = 0 }. It has been shown that the analogous
results hold for every noetherian scheme with an ample line bundle ([Smi02,
Theorem 4.1]) and for every separated scheme ([Bra14, Proposition 3.18]).
One of the aims of this paper is to classify the closed subcategories of QCohX
for a locally noetherian scheme X . In more generality, we classify the prelo-
calizing subcategories of QCohX by giving an analog of the following famous
theorem by Gabriel [Gab62].

Theorem 1.2 ([Gab62, Lemma V.2.1]; Theorem 9.3). Let Λ be a ring. There
is a bijection

{ prelocalizing subcategories of ModΛ }

→ { prelocalizing filters of right ideals of Λ }

given by Y 7→ {L ⊂ Λ in ModΛ | Λ/L ∈ Y }.

Note that the prelocalizing filters of right ideals of Λ bijectively correspond to
the right linear topologies on Λ (see [Ste75, section VI.4]).
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For a locally noetherian schemeX , there exist too many filters of quasi-coherent
subsheaves of OX compared with the prelocalizing subcategories of QCohX .
Hence we need to consider a suitable class of filters, which we call local filters
(Definition 9.5). By using local filters, we obtain a classification of prelocalizing
subcategories, and as a consequence, we deduce classifications of localizing
subcategories, closed subcategories, and bilocalizing subcategories.

Theorem 1.3 (Theorem 9.14, Corollary 10.9, Theorem 11.9, Corollary 12.7,
Theorem 11.11, and Corollary 12.11). Let X be a locally noetherian scheme.
There is a bijection

{ prelocalizing subcategories of QCohX }

→ { local filters of quasi-coherent subsheaves of OX }

given by

Y 7→

{
I ⊂ OX in QCohX

∣∣∣∣
OX

I
∈ Y

}
.

This bijection restricts to bijections

{ localizing subcategories of QCohX }

→

{
local filters of quasi-coherent subsheaves of OX

closed under products

}
,

{ closed subcategories of QCohX }

→ { principal filters of quasi-coherent subsheaves of OX },

and

{ bilocalizing subcategories of QCohX }

→

{
principal filters of quasi-coherent subsheaves of OX

closed under products

}
.

In particular, there exists a bijection between the closed subcategories of
QCohX and the closed subschemes of X, and it restricts to a bijection be-
tween the bilocalizing subcategories of QCohX and the subsets of X which are
open and closed.

The key of the proof of Theorem 1.3 is to reduce the problem to open affine
subschemes, and this part is in fact a consequence of the general theory of
Grothendieck categories (Theorem 8.11). The notion of atom spectrum plays
a crucial role in this process, and it clarifies the essential properties of the
Grothendieck category QCohX .
The atom spectrum ASpecA of a Grothendieck category A is the set of atoms
in A which were introduced by Storrer [Sto72] (Definition 3.6). It is regarded
as the collection of structural elements of the Grothendieck category in our
previous studies [Kan12, Kan15b, Kan15a]. An atom is a generalization of
a prime ideal of a commutative ring. Indeed, for every commutative ring R,
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there exists a canonical bijection between ASpec(ModR) and SpecR (Propo-
sition 3.7). For a locally noetherian scheme X , it is shown in this paper that
there exists a canonical bijection between ASpec(QCohX) and the underlying
space of X (Theorem 7.6). Several fundamental notions of commutative rings
and locally noetherian schemes are generalized to Grothendieck categories in
terms of atom spectrum as summarized in Table 1.
In this paper, we also generalize another kind of Gabriel’s classification
of localizing subcategories. Gabriel [Gab62] showed that for a noetherian
scheme X , the localizing subcategories of QCohX bijectively correspond to
the specialization-closed subsets of the underlying space of X ([Gab62, Propo-
sition VI.2.4 (b)]). This result has been generalized by a number of authors.
(For example, [Hov01], [Kra08], [GP08a], [GP08b], [Tak08], [Tak09], [Her97],
[Kra97], [Kan12], and [Kan15a] to some abelian categories. See [GP08a] or
[Tak09] for generalizations to derived categories.) By combining the theory
of atom spectrum and the description of the atom spectrum of QCohX for a
locally noetherian scheme X (Theorem 7.6), we obtain the following result.

Theorem 1.4 (Theorem 7.8). Let X be a locally noetherian scheme. There is
a bijection

{ localizing subcategories of QCohX } → { specialization-closed subsets of X }

given by X 7→ SuppX . Its inverse is given by Φ 7→ Supp−1 Φ.

This paper is organized as follows. In section 3, we recall the definition of
the atom spectrum and fundamental notions and results on it. Section 4 is
devoted to preliminary results on subcategories and quotient categories by lo-
calizing subcategories. In section 5, we summarize results on the atom spec-
trum and the localization at an atom. In section 6, we introduce the class
of Grothendieck categories with enough atoms and show that the localizing
subcategories are classified in terms of the atom spectrum for a Grothendieck
category with enough atoms (Theorem 6.8). In section 7, we describe the
atom spectrum of the Grothendieck category QCohX for a locally noether-
ian scheme X and show that QCohX has enough atoms (Theorem 7.6). In
section 8, we investigate a Grothendieck category A with some properties and
relate the prelocalizing subcategories (resp. localizing subcategories) of A with
the prelocalizing subcategories (resp. localizing subcategories) of quotient cate-
gories of A. For a locally noetherian scheme X , the prelocalizing subcategories,
the localizing subcategories, the closed subcategories, and the bilocalizing sub-
categories of QCohX are classified in section 9, section 10, section 11, and
section 12, respectively.

Remark 1.5. In this paper, we use the words “prelocalizing”, “localizing”, and
“bilocalizing” subcategories in the same way as in [Pop73]. Some authors use
different terminology on these subcategories and also on “closed” subcategories,
which are summarized below. Note that we always work inside a Grothendieck
category.
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Table 1. Corresponding notions on ASpecA, SpecR, and X

Grothendieck category A Commutative ring R Locally noetherian scheme X

Atom spectrum ASpecA Prime spectrum SpecR Underlying space |X |
Atom α in A Prime ideal p of R Point x ∈ X

Associated atoms AAssM Associated primes AssM Associated points AssM
Atom support ASuppM Support SuppM Support SuppM
Open subsets of ASpecA Specialization-closed subsets of SpecR Specialization-closed subsets of X

{α} for α ∈ ASpecA { q ∈ SpecR | q ⊂ p } for p ∈ SpecR { y ∈ X | x ∈ {y} } for x ∈ X

α1 ≤ α2 p1 ⊂ p2 {x1} ∋ x2

Maximal atoms in A Maximal ideals of R Closed points in X
Open points in ASpecA Maximal ideals of R Closed points in X
Minimal atoms in A Minimal prime ideals of R Points in X of height 0

(=Closed points in ASpecA)
Generic point in ASpecA Unique maximal ideal of R Unique closed point in X
Injective envelope E(α) Injective envelope E(R/p) jx∗E(x)

Residue field k(α) Residue field k(p) Residue field k(x)
Atomic object H(α) Residue field k(p) jx∗k(x)
Localization Aα ModRp ModOX,x
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(1) Prelocalizing subcategories are often called weakly closed subcategories.
This terminology was introduced by Van den Bergh [VdB01], and fol-
lowed by [Smi02] and [Pap02], for example. Closed subcategories in
[VdB01] were defined in the same way as we do.

(2) Van den Bergh used different terminology in the preprint version
[VdB98]. Weakly closed (resp. closed) subcategories in the published
version [VdB01] were called closed (resp. biclosed) subcategories in
[VdB98]. This fits into Gabriel’s terminology [Gab62].

(3) In the context of torsion theory, such as in [Ste75, Chapter VI], pre-
localizing subcategories, localizing subcategories, and bilocalizing sub-
categories in this paper are called hereditary pretorsion class, hereditary
torsion class, and TTF-class (TTF indicates “torsion torsionfree”), re-
spectively.

(4) In [Bra14], our prelocalizing subcategories (resp. closed subcategories)
are called topologizing subcategories (resp. reflective topologizing sub-
categories). This preprint is aimed at modifying a theory of Rosen-
berg [Ros98], and the definition of topologizing subcategories was also
changed. In Rosenberg’s paper [Ros98], our prelocalizing subcategories
(resp. closed subcategories) are called coreflective topologizing subcat-
egories (resp. reflective topologizing subcategories), and they are also
called closed subcategories (resp. left closed subcategories) in [Ros95].

Conventions 1.6. Throughout this paper, we fix a Grothendieck universe. A
set is called small if it is an element of the universe. For every category C, the
collection ObC (resp. Mor C) of objects (resp. morphisms) in C is a set, and
HomC(X,Y ) is supposed to be small for all objects X and Y in C. A category
C is called skeletally small if the set of isomorphism classes of objects in C is in
bijection with a small set. The index set of each limit and colimit is assumed
to be skeletally small.
Rings, modules over rings, schemes, and sheaves on schemes are assumed to be
small. Every ring is associative and has an identity element.

2. Acknowledgement

The author would like to express his deep gratitude to Osamu Iyama for his
elaborate guidance. The author thanks Mitsuyasu Hashimoto, S. Paul Smith,
and Ryo Takahashi for their valuable comments.

3. Atom spectrum

In this section, we recall the definition of the atom spectrum of a Grothendieck
category and fundamental results. We start with the definition of a
Grothendieck category.

Definition 3.1.

(1) An abelian category A is called a Grothendieck category if it satisfies
the following conditions.

Documenta Mathematica 20 (2015) 1403–1465
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(a) A admits arbitrary direct sums (and hence arbitrary direct limits),
and for every direct system of short exact sequences in A, its direct
limit is also a short exact sequence.

(b) A has a generator G, that is, every object in A is isomorphic to a
quotient object of the direct sum of some copies of G.

(2) A Grothendieck category is called locally noetherian if it admits a small
generating set consisting of noetherian objects.

The exactness of direct limits has the following characterizations.

Proposition 3.2. Let A be an abelian category with arbitrary direct sums.
Then the following assertions are equivalent.

(1) For every direct system of short exact sequences in A, its direct limit
is also a short exact sequence.

(2) Let M be an object in A. For each subobject L of M and each family N
of subobjects of M such that every finite subfamily of N has an upper
bound in N , we have

L ∩
∑

N∈N

N =
∑

N∈N

(L ∩N).

(3) For every family {Mλ}λ∈Λ of objects in A and every subobject L of⊕
λ∈Λ Mλ,

L =
∑

Λ′∈S

(
L ∩

⊕

λ∈Λ′

Mλ

)
,

where S is the set of finite subsets of Λ.

Proof. [Pop73, Theorem 2.8.6]. �

From now on, we deal with a Grothendieck category A. The atom spectrum
of a Grothendieck category is defined by using monoform objects defined as
follows.

Definition 3.3.

(1) A nonzero object H in A is called monoform if for each nonzero sub-
object L of H , no nonzero subobject of H is isomorphic to a subobject
of H/L.

(2) For monoform objects H1 and H2 in A, we say that H1 is atom-
equivalent to H2 if there exists a nonzero subobject of H1 which is
isomorphic to a subobject of H2.

We recall the definitions of essential subobjects and uniform objects. These are
also important notions in a Grothendieck category and related to monoform
objects.

Definition 3.4.

(1) Let M be an object in A. A subobject L of M is called essential if for
every nonzero subobject L′ of M , we have L ∩ L′ 6= 0.
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(2) A nonzero object U in A is called uniform if every nonzero subobject
of U is essential.

In other words, a nonzero object U in A is uniform if and only if for all nonzero
subobjects L1 and L2 of U , we have L1 ∩ L2 6= 0.
It is easy to show that each nonzero subobject of a uniform object is uniform.
This type of result also holds for monoform objects.

Proposition 3.5.

(1) Each nonzero subobject of a monoform object is monoform.
(2) Every monoform object is uniform.
(3) Every nonzero noetherian object has a monoform subobject.

Proof. (1) [Kan12, Proposition 2.2].
(2) [Kan12, Proposition 2.6].
(3) [Kan12, Theorem 2.9]. �

It follows from Proposition 3.5 (2) that atom equivalence is an equivalence
relation on the set of monoform objects in A ([Kan12, Proposition 2.8]). The
atom spectrum is defined by using this relation.

Definition 3.6. Let A be a Grothendieck category. Denote by ASpecA the
quotient set of the set of monoform objects in A by atom equivalence. We call
it the atom spectrum of A. Each element of ASpecA is called an atom in A.
For each monoform object H in A, the equivalence class of H is denoted by H .

It is shown in [Kan15b, Proposition 2.7 (2)] that the atom spectrum ASpecA
of a Grothendieck category A is in bijection with a small set.
The following result shows that the atom spectrum of a Grothendieck category
is a generalization of the prime spectrum of a commutative ring.

Proposition 3.7. Let R be a commutative ring.

(1) ([Sto72, Lemma 1.5]) Let a be an ideal of R. Then R/a is a monoform
object in ModR if and only if a is a prime ideal.

(2) ([Sto72, p. 631]) There is a bijection SpecR → ASpec(ModR) given

by p 7→ R/p.

We can also generalize the notions of supports and associated primes in com-
mutative ring theory.

Definition 3.8. Let M be an object in A.

(1) Define the subset AAssM of ASpecA by

AAssM = {α ∈ ASpecA | α = H for some monoform subobject H of M }.

We call each element of AAssM an associated atom of M .
(2) Define the subset ASuppM of ASpecA by

ASuppM={α ∈ ASpecA |α = H for some monoform subquotient H of M }.

We call it the atom support of M .

Documenta Mathematica 20 (2015) 1403–1465
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Proposition 3.9. Let R be a commutative ring, and let M be an R-module.
Then the bijection SpecR → ASpec(ModR) in Proposition 3.7 (2) restricts to
bijections AssM → AAssM and SuppM → ASuppM .

Proof. [Kan15b, Proposition 2.13]. �

The following results are generalizations of fundamental results in commutative
ring theory.

Proposition 3.10. Let 0 → L → M → N → 0 be an exact sequence in A.
Then

AAssL ⊂ AAssM ⊂ AAssL ∪AAssN,

and
ASuppM = ASuppL ∪ ASuppN.

Proof. [Kan12, Proposition 3.5] and [Kan12, Proposition 3.3]. �

Proposition 3.11.

(1) Let {Mλ}λ∈Λ be a family of objects in A. Then

AAss
⊕

λ∈Λ

Mλ =
⋃

λ∈Λ

AAssMλ,

and
ASupp

⊕

λ∈Λ

Mλ =
⋃

λ∈Λ

ASuppMλ.

(2) Let M be an object in A, and let {Lλ}λ∈Λ be a family of subobjects of
M . Then

ASupp
∑

λ∈Λ

Lλ =
⋃

λ∈Λ

ASuppLλ.

Proof. (1) [Kan15b, Proposition 2.12].
(2) Since we have the canonical epimorphism

⊕
λ∈Λ Lλ ։

∑
λ∈Λ Lλ and the

inclusion Lµ ⊂
∑

λ∈Λ Lλ for each µ ∈ Λ, we obtain

ASuppLµ ⊂ ASupp
∑

λ∈Λ

Lλ ⊂
⋃

λ∈Λ

ASuppLλ

by (1). Hence the claim follows. �

Similarly to the case of commutative rings, we have the following results on the
associated atoms of uniform objects and essential subobjects.

Proposition 3.12.

(1) Let U be a uniform object in A. Then AAssU consists of at most one
element. In particular, for every monoform object H in A, we have
AAssH = {H}.

(2) Let M be an object in A, and let L be an essential subobject of M .
Then AAssL = AAssM .

Proof. (1) [Kan15b, Proposition 2.15 (1)].
(2) [Kan15b, Proposition 2.16]. �
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We introduce a topology on the atom spectrum.

Definition 3.13. We call a subset Φ of ASpecA a localizing subset if there
exists an object M in A such that Φ = ASuppM .

Proposition 3.14. The set of localizing subsets of ASpecA satisfies the axioms
of open subsets of ASpecA.

Proof. [Kan12, Proposition 3.8]. �

We call the topology on ASpecA defined by the set of localizing subsets of
ASpecA the localizing topology. Throughout this paper, we regard ASpecA
as a topological space in this way. For a commutative ring R, the localizing
subsets of ASpec(ModR) define a different topology from the Zariski topology
on SpecR. Recall that a subset Φ of SpecR is said to be closed under spe-
cialization if for every p, q ∈ SpecR, the conditions p ∈ Φ and p ⊂ q imply
q ∈ Φ.

Proposition 3.15. Let R be a commutative ring, and let Φ be a subset of
SpecR. Then the corresponding subset

{(
R

p

)
∈ ASpec(ModR)

∣∣∣∣∣ p ∈ Φ

}

of ASpec(ModR) is localizing if and only if Φ is closed under specialization.

Proof. [Kan12, Proposition 7.2 (2)]. �

For each α ∈ ASpecA, let Λ(α) be the topological closure of {α} in ASpecA.
We introduce a partial order on the atom spectrum.

Definition 3.16. For α, β ∈ ASpecA, we write α ≤ β if α ∈ Λ(β).

The relation ≤ is called the specialization order on the topological space
ASpecA with respect to the localizing topology. This is in fact a partial or-
der on ASpecA since the topological space ASpecA is a Kolmogorov space
([Kan15b, Proposition 3.5]).
By definition, Λ(β) = {α ∈ ASpecA | α ≤ β } for each β ∈ ASpecA. The
partial order has the following descriptions.

Proposition 3.17. Let α, β ∈ ASpecA. Then the following assertions are
equivalent.

(1) α ≤ β, that is, α ∈ Λ(β).
(2) For every object M in A, the condition α ∈ ASuppM implies β ∈

ASuppM .
(3) For every monoform object H in A with H = α, we have β ∈ ASuppH.

Proof. [Kan15b, Proposition 4.2]. �

The following result claims that the partial order ≤ on ASpecA is a general-
ization of the inclusion relation between prime ideals of a commutative ring.
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Proposition 3.18. Let R be a commutative ring and p, q ∈ SpecR. Then
R/p ≤ R/q in ASpec(ModR) if and only if p ⊂ q. In other words, the bijection
SpecR → ASpec(ModR) in Proposition 3.7 (2) is an isomorphism between the
partially ordered sets (SpecR,⊂) and (ASpec(ModR),≤).

Proof. [Kan15b, Proposition 4.3]. �

4. Subcategories and quotient categories

In this section, we show preliminary results on subcategories and quotient cat-
egories of a Grothendieck category A. We start with defining some classes of
subcategories, which are the main objects in this paper.

Definition 4.1.

(1) For full subcategories X1 and X2 of A, we denote by X1 ∗ X2 the full
subcategory of A consisting of all objects M admitting an exact se-
quence

0 → M1 → M → M2 → 0

in A, where Mi belongs to Xi for each i = 1, 2.
(2) We say that a full subcategory X of A is closed under extension if

X ∗X ⊂ X , that is, for every exact sequence 0 → L → M → N → 0 in
A, the condition L,N ∈ X implies M ∈ X .

(3) A full subcategory X ofA is called a prelocalizing subcategory (or weakly
closed subcategory in [VdB01]) of A if X is closed under subobjects,
quotient objects, and arbitrary direct sums.

(4) A prelocalizing subcategory X of A is called a localizing subcategory of
A if X is also closed under extensions.

(5) For a full subcategory X of A, denote by 〈X 〉preloc (resp. 〈X 〉loc) the

smallest prelocalizing (resp. localizing) subcategory of A containing
X . For an object M in A, let 〈M〉preloc = 〈{M}〉preloc and 〈M〉loc =

〈{M}〉loc.

Proposition 4.2.

(1) Let X1, X2, and X3 be full subcategories of A. Then

(X1 ∗ X2) ∗ X3 = X1 ∗ (X2 ∗ X3).

(2) Let X1 and X2 be prelocalizing subcategories of A. Then X1 ∗X2 is also
a prelocalizing subcategory of A.

Proof. (1) [Kan12, Proposition 2.4 (2)].
(2) [Pop73, Lemma 4.8.11]. �

Prelocalizing subcategories are characterized as follows.

Proposition 4.3. Let A be a Grothendieck category (or more generally, an
abelian category admitting arbitrary direct sums), and let X be a full subcategory
of A closed under subobjects and quotient objects. Then the following assertions
are equivalent.

Documenta Mathematica 20 (2015) 1403–1465
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(1) X is closed under arbitrary direct sums, that is, X is a prelocalizing
subcategory of A.

(2) The inclusion functor X →֒ A has a right adjoint.
(3) For each object M in A, there exists a largest subobject L of M which

belongs to X .

Proof. Assume (3). Then the functor A → X which sends each object M to its
largest subobject belonging to X and each morphism to the induced morphism
is a right adjoint of the inclusion functor X →֒ A.
The dual statement of (2)⇒(1) is essentially shown in [Ste75, Proposi-
tion X.1.2].
(1)⇒(3) follows from the next remark. �

Remark 4.4. Let X be a full subcategory of A closed under quotient objects
and arbitrary direct sums, and let M be an object in A. Since the sum L =∑

λ∈Λ Lλ of all subobjects of M which belong to X is a quotient object of the
direct sum

⊕
λ∈Λ Lλ, the subobject L of M also belongs to X . Hence L is the

largest subobject of M which belongs to X .

The operation in Remark 4.4 of taking the subobject L fromM is used through-
out this paper. The following result shows that this operation commutes with
taking arbitrary direct sums.

Proposition 4.5. Let A be a Grothendieck category, and let X be a full sub-
category of A closed under quotient objects and arbitrary direct sums. Let
{Mλ}λ∈Λ be a family of objects in A, and take Lλ to be the largest subobject of
Mλ which belongs to X for each λ ∈ Λ. Then

⊕
λ∈Λ Lλ is the largest subobject

of
⊕

λ∈Λ Mλ which belongs to X .

Proof. Let N be the largest subobject of
⊕

λ∈Λ Mλ which belongs to X . It
suffices to show that N ⊂

⊕
λ∈Λ Lλ.

We show the claim in the case where Λ = {1, . . . , n} for some n ∈ Z≥1. Let
πi : M1⊕· · ·⊕Mn ։ Mi be the projection for each i ∈ {1, . . . , n}. Since πi(N)
is a quotient object of N , it belongs to X . By the maximality of Li, we have
πi(N) ⊂ Li. Hence

N ⊂ π1(N)⊕ · · · ⊕ πn(N) ⊂ L1 ⊕ · · · ⊕ Ln

as subobjects of M1 ⊕ · · · ⊕Mn.
In the general case, let S be the set of finite subsets of Λ. Then by Proposi-
tion 3.2,

N =
∑

Λ′∈S

(
N ∩

⊕

λ∈Λ′

Mλ

)
⊂
∑

Λ′∈S

⊕

λ∈Λ′

Lλ =
⊕

λ∈Λ

Lλ. �

For a localizing subcategory X of A, we have the quotient category A/X of
A by X . It is a Grothendieck category together with a canonical (covariant)
functor A → A/X ([Pop73, Corollary 4.6.2]). We refer the reader to [Kan15b,
Definition 5.2] for the explicit definition of the quotient category. Instead, we
state a universal property of the quotient category.
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Theorem 4.6. Let A be a Grothendieck category, and let X be a localizing
subcategory of A. The canonical functor is denoted by F : A → A/X .

(1) The functor F : A → A/X is exact and has a right adjoint A/X → A.
For every object M in A, we have F (M) = 0 if and only if M belongs
to X .

(2) Let B be an abelian category together with an exact functor Q : A → B
with Q(M) = 0 for each object M in X . Then there exists a unique
functor Q : A/X → B such that QF = Q. Moreover, the functor Q is
exact.

Proof. (1) [Pop73, Proposition 4.6.3], [Pop73, Theorem 4.3.8], and [Pop73,
Lemma 4.3.4].
(2) [Pop73, Corollary 4.3.11] and [Pop73, Corollary 4.3.12]. �

Every object M in a Grothendieck category A has an injective envelope E(M)
([Gab62, Theorem II.6.2], see also [Pop73, Theorem 3.10.10]). By definition,
the object M is an essential subobject of the injective object E(M). The object
E(M) is also denoted by EA(M) in order to specify the category explicitly.
Let X be a localizing subcategory of A. An object M in A is called X -
torsionfree if M has no nonzero subobject belonging to X . Note that every
subobject of an X -torsionfree object is X -torsionfree.

Proposition 4.7. Let X be a localizing subcategory of A. Let M be an object
in A, and let L be the largest subobject of M which belongs to X . Then M/L
is X -torsionfree.

Proof. Assume that M/L is not X -torsionfree. Then there exists a subobject
L′ of M such that L ( L′, and L′/L belongs to X . The subobject L′ of M also
belongs to X . This contradicts the maximality of L. �

For an object M in A, it is also important to consider the torsionfreeness of
E(M)/M .

Proposition 4.8. Let X be a localizing subcategory of A, and let

0 → L → M → N → 0

be an exact sequence in A. If M and E(L)/L are X -torsionfree, then N is
X -torsionfree.

Proof. This can be shown similarly to the proof of [Pop73, Proposition 4.5.5].
�

We state important properties of the canonical functor to a quotient category
and its right adjoint by using the notion of torsionfreeness.

Proposition 4.9. Let X be a localizing subcategory of A. Denote the canonical
functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) F is surjective, that is, each object in A/X is of the form F (M), where
M is some object in A.
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(2) The counit morphism ε : FG → 1A/X is an isomorphism. Hence G is
fully faithful.

(3) Let η : 1A → GF be the unit morphism. Then for each object M in
A, the subobject Ker ηM of M is the largest subobject belonging to X ,
the subobject Im ηM of GF (M) is essential, and Cok ηM belongs to X .
The objects GF (M) and E(GF (M))/GF (M) are X -torsionfree.

(4) Let M ′ be an object in A/X . Then G(M ′) and E(G(M ′))/G(M ′) are
X -torsionfree.

Proof. (1) This is obvious from the definition of the canonical functor F . It
also follows from Theorem 4.6.
(2) [Pop73, Proposition 4.4.3 (1)].
(3) This follows from [Pop73, Proposition 4.4.3 (2)] and the proof of [Pop73,
Proposition 4.4.5].
(4) This follows from (1) and (3). �

The next result is necessary to describe subobjects of an object in a quotient
category.

Proposition 4.10. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A. Let M be
an object in A. For each subobject L′ of F (M), there exists a largest subobject
L of M satisfying F (L) ⊂ L′ as a subobject of F (M). Moreover, it holds that
F (L) = L′, and the quotient object M/L is X -torsionfree. The quotient object
F (M)/L′ of F (M) is equal to F (M/L).

Proof. Since G is left exact, the object G(L′) can be regarded as a subobject
of GF (M). Let η : 1A → GF be the unit morphism. There is a commutative
diagram

0 η−1
M (G(L′)) M

M

η−1
M (G(L′))

0

0 G(L′) GF (M)
GF (M)

G(L′)
0

ηM .
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By applying F to this diagram, we obtain the commutative diagram

0 F (η−1
M (G(L′))) F (M) F

(
M

η−1
M (G(L′))

)
0

0 FG(L′) FGF (M) F

(
GF (M)

G(L′)

)
0

0 L′ F (M) F

(
GF (M)

G(L′)

)
0

∼= ∼= ∼=

∼= ∼=

by Proposition 4.9 (2) and Proposition 4.9 (3). Hence the subobject L :=
η−1
M (G(L′)) of M satisfies F (L) = L′, and F (M)/L′ = F (M/L). By Propo-
sition 4.8, the object GF (M)/G(L′) is X -torsionfree, and hence M/L is also
X -torsionfree.
Let L̃ be a subobject ofM such that F (L̃) ⊂ L′. Since we have the commutative
diagram

L̃ M

GF (L̃) GF (M)

η
L̃ ηM ,

it holds that ηM (L̃) ⊂ GF (L̃). Therefore

L̃ ⊂ η−1
M (GF (L̃)) ⊂ η−1

M (G(L′)) = L. �

Several properties of objects are preserved by the canonical functor to a quo-
tient category and its right adjoint as in the following results.

Proposition 4.11. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) Let M ′ be an object in A/X , and let L′ be an essential subobject of M ′.
Then G(L′) is an essential subobject of G(M ′).

(2) Let U ′ be a uniform object in A/X . Then G(U ′) is a uniform object in
A.

(3) Let H ′ be a monoform object in A/X . Then G(H ′) is a monoform
object in A.

(4) Let I ′ be an injective object in A/X . Then G(I ′) is an injective object
in A.

(5) Let M ′ be an indecomposable object in A/X . Then G(M ′) is an inde-
composable object in A.

Proof. (1) [Pop73, Corollary 4.4.7].
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(2) Let L be a nonzero subobject of G(U ′). We have a commutative diagram

L G(U ′)

GF (L) GFG(U ′)

,

and the morphism G(U ′) → GFG(U ′) is an isomorphism by Proposition 4.9
(2). Hence the morphism L → GF (L) is a monomorphism, and in particular
F (L) is a nonzero subobject of FG(U ′) ∼= U ′. By the uniformness of U ′ and (1),
GF (L) is an essential subobject of GFG(U ′). Since L is essential as a subobject
of GF (L) by Proposition 4.9 (3), L is an essential subobject of G(U ′).
(3) [Kan15b, Lemma 5.14 (1)].
(4) [Pop73, Corollary 4.4.7].
(5) This follows from Proposition 4.9 (2). �

Proposition 4.12. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) Let M be an X -torsionfree object in A, and let L be an essential sub-
object of M . Then F (L) is an essential subobject of F (M).

(2) Let U be a uniform X -torsionfree object in A. Then F (U) is a uniform
object in A/X .

(3) Let H be a monoform X -torsionfree object in A. Then F (H) is a
monoform object in A/X .

(4) Let I be an injective X -torsionfree object in A. Then F (I) is an injec-
tive object in A/X .

Proof. (1) [Pop73, Lemma 4.4.6 (3)].
(2) This follows from Proposition 4.10 and (1).
(3) [Kan15b, Lemma 5.14 (2)].
(4) [Pop73, Lemma 4.5.1 (2)]. �

The prelocalizing subcategories ofA and those of quotient categories are related
by the following operations.

Proposition 4.13. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) For each prelocalizing subcategory Y ′ of A/X , the full subcategory

F−1(Y ′) := {M ∈ A | F (M) ∈ Y ′ }

of A is a prelocalizing subcategory, and

X ∗ F−1(Y ′) ∗ X = F−1(Y ′).

(2) For each prelocalizing subcategory Y of A, the full subcategory

F (Y) :=

{
N ∈

A

X

∣∣∣∣ N ∼= F (M) for some M ∈ Y

}

of A/X is a prelocalizing subcategory.
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(3) Let Y1 and Y2 be prelocalizing subcategories of A. Then

F (Y1 ∗ X ∗ Y2) = F (Y1) ∗ F (Y2).

Proof. (1) Since F is exact and commutes with arbitrary direct sums, the full
subcategory F−1(Y ′) is a prelocalizing subcategory. The inclusion F−1(Y ′) ⊂
X ∗ F−1(Y ′) ∗ X is obvious. By Theorem 4.6 (1),

F (X ∗ F−1(Y ′) ∗ X ) ⊂ F (X ) ∗ F (F−1(Y ′)) ∗ F (X ) ⊂ Y ′.

Hence X ∗ F−1(Y ′) ∗ X ⊂ F−1(Y ′).
(2) By Proposition 4.10, the full subcategory F (Y) of A/X is closed under
subobjects and quotient objects. It is also closed under arbitrary direct sums
since F commutes with arbitrary direct sums.
(3) Since F is exact, F (Y1 ∗ X ∗ Y2) ⊂ F (Y1) ∗F (Y2) by Theorem 4.6 (1). Let
M ′ be an object in A/X which belongs to F (Y1) ∗ F (Y2). Then there exists
an exact sequence

0 → F (M1) → M ′ → F (M2) → 0

where Mi is an object in A which belongs to Yi for each i = 1, 2. Since G is
left exact, we have the exact sequence

0 → GF (M1) → G(M ′) → GF (M2).

Let η : 1A → GF be the unit morphism, and let B be the image of the morphism
G(M ′) → GF (M2). Then we obtain a commutative diagram

0 GF (M1) M B ∩ Im ηM2 0

0 GF (M1) G(M ′) B 0

,

where M is an object in A. Let N be the cokernel of the composite Im ηM1 →֒
GF (M1) →֒ G(M ′). There is a commutative diagram

0 Im ηM1 M N 0

0 GF (M1) M B ∩ Im ηM2 0

.

By the snake lemma, we have an exact sequence

0 → Cok ηM1 → N → B ∩ Im ηM2 → 0.

By Proposition 4.9 (3), the object Cok ηMi
belongs to X for each i = 1, 2.

Hence F (Cok ηM1) = 0, and

F

(
B

B ∩ Im ηM2

)
∼= F

(
B + Im ηM2

Im ηM2

)
⊂ F

(
GF (M2)

Im ηM2

)
= 0.

By applying F to the morphisms B ∩ Im ηM2 →֒ B and Im ηM1 →֒ GF (M1),
we obtain F (B ∩ Im ηM2)

∼−→ F (B) and F (Im ηM1)
∼−→ FGF (M1) ∼−→ F (M1).
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Hence we have the commutative diagram

0 F (Im ηM1) F (M) F (N) 0

0 FGF (M1) F (M) F (B ∩ Im ηM2) 0

0 FGF (M1) FG(M ′) F (B) 0

0 F (M1) M ′ F (M2) 0

∼= ∼=

∼= ∼=

∼= ∼= ∼=

.

For each i = 1, 2, the quotient object Im ηMi
of Mi belongs to Yi, and hence

N belongs to X ∗ Y2. Therefore M ′ belongs to F (Y1 ∗ X ∗ Y2). �

Proposition 4.14. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) There is a bijection
{

prelocalizing subcategories Y of A

satisfying X ∗ Y ∗ X = Y

}
→

{
prelocalizing subcategories of

A

X

}

given by Y 7→ F (Y). Its inverse is given by Y ′ 7→ F−1(Y ′).
(2) For each i = 1, 2, let Yi be a prelocalizing subcategory of A such that

X ∗ Yi ∗ X = Yi. Then

F (Y1 ∗ Y2) = F (Y1) ∗ F (Y2).

(3) The bijection in (1) restricts to a bijection
{

localizing subcategories Y of A

satisfying X ⊂ Y

}
→

{
localizing subcategories of

A

X

}
.

Proof. (1) By Proposition 4.13 (1) and Proposition 4.13 (2), these maps are
well-defined. Let η : 1A → GF be the unit morphism.
Let Y be a prelocalizing subcategory of A satisfying X ∗Y∗X = Y. It is obvious
that Y ⊂ F−1F (Y). LetM be an object in A which belongs to F−1F (Y). Then
there exists an object N in A which belongs to Y such that F (M) ∼= F (N).
There is an exact sequence

0 → Im ηN → GF (N) → Cok ηN → 0.

The quotient object Im ηN of N belongs to Y. By Proposition 4.9 (3), the
object Cok ηN belongs to X . Hence GF (M) ∼= GF (N) belongs to Y ∗ X . By
Proposition 4.2 (2), the subobject Im ηM of GF (M) belongs to Y ∗ X . There
is an exact sequence

0 → Ker ηM → M → Im ηM → 0,

where Ker ηM belongs to X . Therefore M belongs to X ∗ Y ∗ X = Y. This
shows that F−1F (Y) ⊂ Y.
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Let Y ′ be a prelocalizing subcategory of A/X . It is obvious that FF−1(Y ′) ⊂
Y ′. Let M ′ be an object in A/X which belongs to Y ′. Then by Proposition 4.9
(1), there exists an object M in A such that F (M) = M ′. Since M belongs
to F−1(Y ′), the object M ′ = F (M) belongs to FF−1(Y ′). This shows that
Y ′ ⊂ FF−1(Y ′).
(2) By Proposition 4.13 (3),

F (Y1 ∗ Y2) = F (Y1 ∗ X ∗ Y2) = F (Y1) ∗ F (Y2).

(3) This follows from (2). �

Remark 4.15. In the setting of Proposition 4.13 (3), the assertion F (Y1 ∗
X ∗ Y2) = F (Y1 ∗ Y2) does not necessarily hold. The next example gives a
counter-example.

Example 4.16. Let K be a field, and let Λ be the ring

Λ =




K 0 0
K K 0
K K K





of 3×3 lower triangular matrices. Define simple Λ-modules Si for each i = 1, 2, 3
by

S1 =
[
K 0 0

]
,

S2 =

[
K K 0

]
[
K 0 0

] ,

S3 =

[
K K K

]
[
K K 0

] ,

and let Xi be the localizing subcategory of ModΛ consisting of arbitrary direct
sums of copies of Si. Let F : A → A/X2 and G : A/X2 → A denote the
canonical functors. Since the Λ-module

M =
[
K K K

]

belongs to X1∗X2∗X3, it follows that M ∼= GF (M) belongs to GF (X1∗X2∗X3).
On the other hand, every Λ-module belonging to X1 ∗ X3 is the direct sum of
some object in X1 and some object in X3. Since ModΛ is a locally noetherian
Grothendieck category, by [Pop73, Proposition 5.8.12], the functor G commutes
with arbitrary direct sums. Hence every Λ-module belonging to GF (X1 ∗ X3)
is the direct sum of some object in GF (X1) = X1 ∗ X2 and some object in
GF (X3) = X3. Since M is indecomposable and belongs to neither X1 ∗ X2

nor X3, the Λ-module M does not belong to GF (X1 ∗ X3). This shows that
F (X1 ∗ X2 ∗ X3) 6⊂ F (X1 ∗ X3).

The following result gives a characterization of a quotient category.

Proposition 4.17. Let A and B be Grothendieck categories, and let Q : A → B
be an exact functor with a fully faithful right adjoint B → A. Then the full
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subcategory

X = {M ∈ A | Q(M) = 0 }

of A is a localizing subcategory, and there exists a unique equivalence
Q : A/X ∼−→ B such that QF = Q, where F : A → A/X is the canonical
functor.

Proof. [Pop73, Theorem 4.4.9]. �

We state some facts on the image of a localizing subcategory in a quotient
category.

Proposition 4.18. Let X and Y be localizing subcategories of A. Denote the
canonical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) It holds that 〈F (Y)〉loc = F (〈X ∪ Y〉loc).
(2) If X ⊂ Y, then the composite Y → A → A/X induces an equivalence

Y

X
∼−→ F (Y).

(3) If X ⊂ Y, then the composite

A → A/X →
A/X

F (Y)

induces an equivalence

A

Y
∼−→

A/X

F (Y)
.

Proof. (1) It is obvious that 〈F (Y)〉loc ⊂ F (〈X ∪ Y〉loc). Since F is exact and
commutes with arbitrary direct sums,

F (〈X ∪ Y〉loc) ⊂ 〈F (X ∪ Y)〉loc = 〈F (X ) ∪ F (Y)〉loc = 〈F (Y)〉loc

by Theorem 4.6 (1).
(2) The equivalence follows from the construction of A/X (see [Gab62, p. 365]
or [Kan15b, Definition 5.2]).
(3) By Proposition 4.14 (3), the full subcategory F (Y) of A/X is a localizing
subcategory, and F−1F (Y) = Y. By Proposition 4.9 (2), the composite is an
exact functor with a fully faithful right adjoint. Hence by Proposition 4.17, it
induces an equivalence

A

Y
=

A

F−1F (Y)
∼−→

A/X

F (Y)
. �

5. Atom spectra of quotient categories and localization

Throughout this section, let A be a Grothendieck category. We recall a de-
scription of the atom spectrum of a quotient category of A and fundamental
results on the localization of A at an atom. We start with relating localizing
subcategories of A and localizing subsets of ASpecA.
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Definition 5.1.

(1) For a full subcategory X of A, define the subset ASuppX of ASpecA
by

ASuppX =
⋃

M∈X

ASuppM.

(2) For a subset Φ of ASpecA, define the full subcategory ASupp−1 Φ of
A by

ASupp−1 Φ = {M ∈ A | ASuppM ⊂ Φ }.

Proposition 5.2.

(1) For every full subcategory X of A, the subset ASuppX of ASpecA is
a localizing subset.

(2) For every subset Φ of ASpecA, the full subcategory ASupp−1 Φ of A is
a localizing subcategory.

Proof. (1) Recall that ASpecA is in bijection with a small set. For each α ∈
ASuppX , choose an object M(α) in A which belongs to X such that α ∈
ASuppM(α). Then

ASupp
⊕

α∈ASuppX

M(α) =
⋃

α∈ASuppX

ASuppM(α) = ASuppX

by Proposition 3.11 (1).
(2) This follows from Proposition 3.10 and Proposition 3.11 (1). �

The following result shows that a localizing subset of ASpecA is determined
by the corresponding localizing subcategory of A.

Proposition 5.3. For every localizing subset Φ of ASpecA,

ASupp(ASupp−1 Φ) = Φ.

Proof. This follows from the proof of [Kan12, Theorem 4.3]. �

If A is a locally noetherian Grothendieck category, we also have
ASupp−1(ASuppX ) = X for every localizing subcategory X of A, and
these correspondences establish a bijection between the localizing subcate-
gories of A and the localizing subsets of ASpecA ([Kan12, Theorem 5.5]). We
generalize this result later as Theorem 6.8.
We describe the atom spectrum of the quotient category by a localizing sub-
category.

Theorem 5.4. Let A be a Grothendieck category, and let X be a localizing
subcategory of A. Denote the canonical functor by F : A → A/X and its right
adjoint by G : A/X → A. Then the map ASpecA \ ASuppX → ASpec(A/X )

given by H 7→ F (H) is a homeomorphism. Its inverse is given by H ′ 7→ G(H ′).

Proof. [Kan15b, Theorem 5.17]. �
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Remark 5.5. Every localizing subcategory X of A is a Grothendieck category,
and ASpecX is homeomorphic to the localizing subset ASuppX of ASpecA
by the correspondence H 7→ H ([Kan15b, Proposition 5.12]). We identify
ASpecX with ASuppX , and ASpec(A/X ) with ASpecA \ ASuppX via the
homeomorphism in Theorem 5.4. Then

ASpecA = ASpecX ∪ ASpec
A

X
,

and

ASpecX ∩ ASpec
A

X
= ∅.

We describe atom supports and associated atoms in a quotient category.

Proposition 5.6. Let X be a localizing subcategory of A. Denote the canonical
functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) For every object M ′ in A/X ,

AAssG(M ′) = AAssM ′,

and

ASuppG(M ′) \ASuppX = ASuppM ′.

(2) For every object M in A,

AAssF (M) ⊃ AAssM \ASuppX ,

and

ASuppF (M) = ASuppM \ASuppX .

Proof. These follow from [Kan15b, Lemma 5.16]. By considering Proposi-
tion 4.9 (4), the assertion AAssG(M ′) = AAssM ′ also follows. �

The atom spectrum of the image of a localizing subcategory in a quotient
category is described as follows.

Proposition 5.7. Let X and Y be localizing subcategories of A. Denote the
canonical functor by F : A → A/X and its right adjoint by G : A/X → A.
Then

ASpec 〈F (Y)〉loc = ASpecF (〈X ∪ Y〉loc)

= ASpecY ∩ ASpec
A

X
= ASpecY \ASpecX ,

and

ASpec
A/X

〈F (Y)〉loc
= ASpec

A

〈X ∪ Y〉loc

= ASpec
A

X
∩ ASpec

A

Y
= ASpecA \ (ASpecX ∪ ASpecY).
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Proof. This follows from ASupp 〈X ∪ Y〉loc = ASuppX ∪ASuppY and Propo-
sition 4.18. �

Definition 5.8. Let A be a Grothendieck category and α ∈ ASpecA. Define
a localizing subcategory X (α) of A by X (α) = ASupp−1(ASpecA \ Λ(α)).
Define the localization Aα of A at α by Aα = A/X (α). The canonical functor
A → Aα is denoted by (−)α.

In Definition 5.8, the subset ASpecA\Λ(α) of ASpecA is localizing. By Propo-
sition 5.3, ASuppX (α) = ASpecA \ Λ(α). Therefore we have the following
result.

Theorem 5.9. Let A be a Grothendieck category and α ∈ ASpecA. Then
ASpecAα = Λ(α). In particular, the partially ordered set ASpecA has the
largest element α.

Proof. [Kan15b, Proposition 6.6 (1)]. �

We obtain the following description of atom supports.

Proposition 5.10.

(1) For every α ∈ ASpecA,

X (α) = {M ∈ A | α /∈ ASuppM }.

(2) For every object M in A,

ASuppM = {α ∈ ASpecA | Mα 6= 0 }.

Proof. [Kan15b, Proposition 6.2]. �

We show that the localization of a Grothendieck category at an atom is “local”
in the following sense.

Definition 5.11. Let A be a Grothendieck category.

(1) We say that A is local if there exists a simple object in A such that
E(S) is a cogenerator of A.

(2) A localizing subcategory X of A is called prime if A/X is a local
Grothendieck category.

Theorem 5.12. Let A be a Grothendieck category. Then the following asser-
tions are equivalent.

(1) A is local.
(2) There exists α ∈ ASpecA such that for every nonzero object M in A,

we have α ∈ ASuppM .
(3) There exists α ∈ ASpecA such that the canonical functor A → Aα is

an equivalence.

Proof. [Kan15b, Proposition 6.4 (1)] and [Kan15b, Proposition 6.6 (2)]. �

In the case of where A is a locally noetherian Grothendieck category, the lo-
calness of A is characterized as follows.
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Proposition 5.13. Let A be a Grothendieck category. If A is local, then all
simple objects in A are isomorphic to each other. In the case where A is a
nonzero locally noetherian Grothendieck category, the converse also holds.

Proof. [Kan15b, Proposition 6.4 (2)]. �

Theorem 5.12 shows that the localizing subcategory X (α) is prime for every
α ∈ ASpecA. This correspondence gives the following bijection.

Theorem 5.14. Let A be a Grothendieck category. There is a bijection

ASpecA → { prime localizing subcategories of A}

given by α 7→ X (α). For each α, β ∈ ASpecA, we have α ≤ β if and only if
X (α) ⊃ X (β).

Proof. [Kan15b, Theorem 6.8]. �

We consider the localization of a quotient category.

Proposition 5.15. Let X be a localizing subcategory of A and α ∈ ASpecA \
ASuppX . Then the composite of the canonical functors A → A/X and A/X →
(A/X )α induces an equivalence Aα

∼−→ (A/X )α.

Proof. By Proposition 5.10 (1), X ⊂ X (α). Hence the claim follows from
Proposition 5.6 (2) and Proposition 4.18 (3). �

In the setting of Proposition 5.15, we identify Aα and (A/X )α.
The following result shows that the localization of a Grothendieck category at
an atom is a generalization of the localization a commutative ring at a prime
ideal.

Proposition 5.16. Let R be a commutative ring.

(1) Let p ∈ SpecR. Denote by α the corresponding atom R/p in ModR.
Then the functor −⊗R Rp : ModR → ModRp induces an equivalence
(ModR)α ∼−→ ModRp.

(2) The Grothendieck category ModR is local if and only if the commuta-
tive ring R is local.

Proof. (1) [Kan15b, Proposition 6.9].
(2) This follows from Theorem 5.12 and (1). �

6. Grothendieck categories with enough atoms

The purpose of this paper is to investigate the category QCohX of quasi-
coherent sheaves on a locally noetherian scheme X . In general, the category
QCohX is a Grothendieck category but not necessarily locally noetherian (see
Remark 7.5). In this section, we introduce the notion of a Grothendieck cate-
gory with enough atoms and investigate its properties. It is shown later that
QCohX is a Grothendieck category with enough atoms.
Let A be a Grothendieck category. Recall that every monoform object in A is
uniform (Proposition 3.5 (2)). We say that uniform objects U1 and U2 in A
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are equivalent (denoted by U1 ∼ U2) if there exists a nonzero subobject of U1

which is isomorphic to a subobject of U2. The equivalence between monoform
objects is exactly the same as the atom-equivalence defined in Definition 3.3
(2).

Proposition 6.1. Let U1 and U2 be uniform objects in A. Then U1 is equiv-
alent to U2 if and only if E(U1) is isomorphic to E(U2).

Proof. [Kra03, Lemma 2]. �

Since every indecomposable injective object in A is uniform ([Ste75, Proposi-
tion V.2.8]), the map

{ uniform objects in A}

∼
→

{ indecomposable injective objects in A}
∼=

induced by the correspondence U 7→ E(U) is bijective. We consider the restric-
tion of this bijection to ASpecA.

Definition 6.2. Let A be a Grothendieck category. For α ∈ ASpecA, define
the injective envelope E(α) of α by E(α) = E(H), where H is a monoform
object in A satisfying H = α.

Proposition 6.1 implies that the isomorphism class of E(α) in Definition 6.2
does not depend on the choice of the representative H .

Definition 6.3. We say that a Grothendieck category A has enough atoms if
A satisfies the following conditions.

(1) Every injective object in A has an indecomposable decomposition.
(2) Each indecomposable injective object in A is isomorphic to E(α) for

some α ∈ ASpecA.

Note that an indecomposable decomposition of an injective object is unique in
the following sense.

Theorem 6.4. Let A be a Grothendieck category, and let I be an injective
object with

I ∼=
⊕

λ∈Λ

Iλ ∼=
⊕

µ∈Λ′

I ′µ,

where Iλ and I ′µ are indecomposable for each λ ∈ Λ and µ ∈ Λ′. Then there
exists a bijection ϕ : Λ → Λ′ such that Iλ is isomorphic to I ′ϕ(λ) for each λ ∈ Λ.

Proof. This follows from Krull–Remak–Schmidt–Azumaya’s theorem ([Pop73,
Theorem 5.1.3]) and the fact that the endomorphism ring of each indecompos-
able injective object in A is local ([Pop73, Lemma 4.20.3]). �

The following result shows that a Grothendieck category with enough atoms is
a generalization of a locally noetherian Grothendieck category.

Proposition 6.5. Every locally noetherian Grothendieck category has enough
atoms.
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Proof. This follows from Proposition 3.5 (3) and [Ste75, Proposition V.4.5]
since every nonzero object in a locally noetherian Grothendieck category has a
nonzero noetherian subobject. �

We show that every quotient category of a Grothendieck category with enough
atoms has enough atoms.

Proposition 6.6. Let A be a Grothendieck category, and let X be a localizing
subcategory of A.

(1) If every injective object in A has an indecomposable decomposition, then
every injective object in A/X has an indecomposable decomposition.

(2) If A has enough atoms, then A/X has enough atoms.

Proof. Denote the canonical functor by F : A → A/X and its right adjoint by
G : A/X → A.
(1) Let I ′ be an injective object in A/X . By Proposition 4.11 (4), the object
G(I ′) in A is injective. Hence G(I ′) has an indecomposable decomposition

G(I ′) =
⊕

λ∈Λ

Iλ.

We obtain

I ′ ∼= FG(I ′) ∼=
⊕

λ∈Λ

F (Iλ).

By Proposition 4.9 (4), Proposition 4.12 (2) and Proposition 4.12 (4), the object
F (Iλ) is an indecomposable injective object in A/X for each λ ∈ Λ.
(2) Let I ′ be an indecomposable injective object in A/X . Then by Proposi-
tion 4.11 (5) and Proposition 4.11 (4), the object G(I ′) in A is indecomposable
and injective. Hence there exists α ∈ ASpecA such that G(I ′) ∼= EA(α).
We obtain I ′ ∼= FG(I ′) ∼= F (EA(α)). Let H be a monoform subobject of
EA(α). By Proposition 4.9 (4), the object H is X -torsionfree. By Proposi-
tion 4.12 (3), the object I ′ has the monoform subobject F (H). This implies
that I ′ = E(F (H)) = EA/X (α). �

A Grothendieck category A is called locally uniform2 if every nonzero object in
A has a uniform subobject. It is shown that this holds whenever A has enough
atoms.

Proposition 6.7. Let A be a Grothendieck category with enough atoms. Then
every nonzero object in A has a monoform subobject. In particular, the
Grothendieck category A is locally uniform.

Proof. Let M be a nonzero object in A. Then there exists a family {αλ}λ∈Λ

of atoms in A such that

E(M) ∼=
⊕

λ∈Λ

E(αλ).

2In [Pop73, p. 330], it is called locally coirreducible since a uniform object is called a
coirreducible object.
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Hence E(M) has a monoform subobject H . Since M is an essential subobject
of E(M), the subobject H ∩M of M is monoform by Proposition 3.5 (1). The
last assertion follows from Proposition 3.5 (2). �

The classification of the localizing subcategories by the atom spectrum we
mentioned after Proposition 5.3 is generalized to a Grothendieck category with
enough atoms.

Theorem 6.8. Let A be a Grothendieck category with enough atoms. There is
a bijection

{ localizing subcategories of A} → { localizing subsets of ASpecA}

given by X 7→ ASuppX . Its inverse is given by Φ 7→ ASupp−1 Φ.

Proof. By Proposition 5.2 and Proposition 5.3, it suffices to show that
ASupp−1(ASuppX ) = X for each localizing subcategory X of A. The in-
clusion X ⊂ ASupp−1(ASuppX ) holds obviously. Let M be an object in A
which belongs to ASupp−1(ASuppX ), and let L be the largest subobject of M
which belongs to X . If M/L is nonzero, then by Proposition 6.7, there exists a
monoform subobject H of M/L. Since H ∈ ASuppM ⊂ ASuppX , there exists
a nonzero subobject H ′ of H which belongs to X . Let H ′ = L′/L ⊂ M/L.
Since L and L′/L belongs to X , the subobject L′ of M also belongs to X . This
contradicts the maximality of L. Therefore ASupp−1(ASuppX ) = X . �

We show that every localizing subcategory is the intersection of some family of
prime localizing subcategories.

Corollary 6.9. Let A be a Grothendieck category with enough atoms. For
every localizing subcategory X of A,

X =
⋂

α∈ASpecA\ASuppX

X (α).

Proof. By Proposition 5.10 (1) and Theorem 6.8,
⋂

α∈ASpecA\ASuppX

X (α)

= {M ∈ A | α /∈ ASuppM for each α ∈ ASpecA \ASuppX }

= {M ∈ A | ASuppM ⊂ ASuppX }

= ASupp−1(ASuppX )

= X . �

Let A be a Grothendieck category and α ∈ ASpecA. It is shown in the proof of
[Kan15a, Theorem 2.5] that the injective envelope E(α) has a largest monoform
subobject H(α). The object H(α) is called the atomic object corresponding to
α. It is straightforward to show that no monoform object in A has a proper
essential subobject isomorphic to H(α).
The atomic objects correspond to the simple objects in the localizations.
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Proposition 6.10. Let A be a Grothendieck category and α ∈ ASpecA. De-
note the canonical functor by Fα : A → Aα and its right adjoint by Gα : Aα →
A. Let S′ be the simple object in Aα.

(1) S′ is the atomic object corresponding to the atom S′ in Aα.
(2) Gα(S

′) is isomorphic to the atomic object H(α).
(3) The ring EndA(H(α)) is isomorphic to the skew field EndAα

(S′).

Proof. (1) It holds that S′ ⊂ H(S′) ⊂ E(S′) = E(S′). If S′ ( H(S′), then
by Theorem 5.12, S′ ∈ ASupp(H(S′)/S′), and hence there exist a subobject L
of H(S′) with S′ ⊂ L and a subobject of H(S′)/L which is isomorphic to S′.
This contradicts the monoformness of H(S′). Therefore S′ = H(S′).
(2) By Theorem 5.4, the object Fα(H(α)) is a monoform object in Aα, and
GαFα(H(α)) is a monoform object in A. By (1), Fα(H(α)) ∼= S′. Since
H(α) is X (α)-torsionfree, by Proposition 4.9 (3), the canonical morphism
H(α) → GαFα(H(α)) is a monomorphism, and H(α) is essential as a sub-
object of GαFα(H(α)). Therefore the morphism H(α) → GαFα(H(α)) is an
isomorphism, and Gα(S

′) ∼= GαFα(H(α)) ∼= H(α).
(3) By (2) and Proposition 4.9 (2),

EndA(H(α)) ∼= EndA(Gα(S
′))

∼= HomAα
(FαGα(S

′), S′)

∼= EndAα
(S′).

This gives a ring isomorphism EndA(H(α)) ∼= EndAα
(S′). �

The skew field EndA(H(α)) is called the residue field of α and denoted by k(α).

7. The atom spectra of locally noetherian schemes

In this section, we describe the atom spectrum of the category of quasi-coherent
sheaves on a locally noetherian scheme. Let X be a locally noetherian scheme
with the underlying topological space |X | and the structure sheaf OX . It is
known that the category ModX of OX -modules and the category QCohX of
quasi-coherent sheaves on X are Grothendieck categories (see [Har66, Theo-
rem II.7.8] and [Con00, Lemma 2.1.7]). For a commutative ring R, we identify
QCoh(SpecR) with ModR.

Proposition 7.1. Let U be an open affine subscheme of X, and let i : U →֒ X
be the immersion. Then the functor i∗ : ModU → ModX and its left adjoint
i∗ : ModX → ModU induce the functor i∗ : QCohU → QCohX and its left
adjoint i∗ : QCohX → QCohU .

Proof. [Gro60, 0.4.4.3.1] and [Gro60, Proposition I.9.4.2 (i)]. �

In the rest of this paper, every quasi-coherent sheaf M on X is always regarded
as an object in QCohX , not in ModX . Hence a subobject of M means a quasi-
coherent subsheaf of M .

Documenta Mathematica 20 (2015) 1403–1465



Classification of Categorical . . . 1431

For an open affine subscheme U ofX with the immersion i : U →֒ X , the functor
i∗ : QCohX → QCohU is also denoted by (−)|U . The category QCohU is
realized as a quotient category of QCohX through this functor.

Proposition 7.2. Let U be an open affine subscheme of X. Then the func-
tor (−)|U : QCohX → QCohU induces an equivalence (QCohX)/XU

∼−→
QCohU , where XU is a localizing subcategory of QCohX defined by

XU = {M ∈ QCohX | M |U = 0 }.

Proof. Let i : U →֒ X be the immersion. Since the counit functor i∗i∗ →
1QCohU is an isomorphism, the functor i∗ is fully faithful. The functor i∗ is
exact. Hence the claim follows from Proposition 4.17. �

For each object M in QCohX , the subset SuppM of X is defined by

SuppM = {x ∈ X | Mx 6= 0 }.

For each x ∈ X , let jx : SpecOX,x → X be the canonical morphism. Note
that j∗x is equal to the localization (−)x : QCohX → ModOX,x. The category
ModOX,x is realized as a quotient category of QCohX through this morphism.

Proposition 7.3. For every x ∈ X, the full subcategory

X (x) := {M ∈ QCohX | x /∈ SuppM } = {M ∈ QCohX | Mx = 0 }

of QCohX is a prime localizing subcategory. The functor (−)x : QCohX →
ModOX,x induces an equivalence (QCohX)/X (x) ∼−→ ModOX,x.

Proof. Let i : U →֒ X be the immersion of an open affine subscheme with
x ∈ U . Then the functor (−)x : QCohX → ModOX,x is equal to the com-
posite of (−)|U : QCohX → QCohU and (−)x : QCohU → ModOX,x. By
Proposition 7.2 and Proposition 5.16 (1), these two functors are exact func-
tors with fully faithful right adjoints. Hence we obtain the equivalence by
Proposition 4.17. By Proposition 5.16 (2), the localizing subcategory X (x) is
prime. �

For each x ∈ X , denote the unique maximal ideal of OX,x by mx, the residue
field of x by k(x) = OX,x/mx, and an injective envelope of k(x) in ModOX,x

by E(x) = EOX,x
(k(x)). We state that every injective object in QCohX is a

direct sum of indecomposable injective objects of this form.

Theorem 7.4 (Hartshorne [Har66]). Let X = (|X |,OX) be a locally noetherian
scheme.

(1) For every family {Iλ}λ∈Λ of injective objects in QCohX, the direct
sum

⊕
λ∈Λ Iλ is also injective.

(2) Every injective object in QCohX has an indecomposable decomposition.
(3) There is a bijection

|X | →
{ indecomposable injective objects in QCohX }

∼=

given by x 7→ jx∗E(x).
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Proof. [Con00, Lemma 2.1.5]. �

Remark 7.5. In [Har66, p. 135], it is shown that there exists a locally noe-
therian scheme X such that the Grothendieck category QCohX is not locally
noetherian. By combining Theorem 7.4 (1) and [Pop73, Theorem 5.8.7], we
deduce that QCohX is not even (categorically) locally finitely generated. On
the other hand, the set of coherent sheaves on X generates QCohX [Gro60,
Corollary I.9.4.9]. Consequently, a coherent sheaf on X is not necessarily a
finitely generated object in QCohX .

We give a description of the atom spectrum of QCohX .

Theorem 7.6. Let X = (|X |,OX) be a locally noetherian scheme.

(1) For each x ∈ X, the set AAss jx∗E(x) consists of one element, say αx.
The injective envelope of αx is E(αx) = jx∗E(x). The atomic object is
H(αx) = jx∗k(x). The residue field is k(αx) ∼= k(x).

(2) There is a bijection |X | → ASpec(QCohX) given by x 7→ αx. More-
over, the Grothendieck category QCohX has enough atoms.

Proof. (1) By Proposition 7.3 and Proposition 5.6 (1),

AAss jx∗E(x) = AAssE(x) = {k(x)}.

Since jx∗E(x) is an indecomposable injective object by Theorem 7.4 (3), it is an
injective envelope of each of its nonzero subobjects. Hence E(αx) = jx∗E(x).
By Proposition 6.10 (2), H(αx) = jx∗k(x). By Proposition 6.10 (3), k(αx) ∼=
EndOX,x

(k(x)) ∼= k(x).
(2) The bijection in Theorem 7.4 (3) is the composite of the map

|X | → ASpec(QCohX)

given by x 7→ αx and the injection

ASpec(QCohX) →
{ indecomposable injective objects in QCohX }

∼=

given by α 7→ E(α). Hence these maps are also bijective. By Theorem 7.4 (2),
the Grothendieck category QCohX has enough atoms. �

A subset Φ of X is said to be closed under specialization if for every x ∈ Φ, we
have {x} ⊂ Φ. Atom supports and related notions in QCohX are described as
follows.

Corollary 7.7.

(1) Let M be an object in QCohX. Then the bijection |X | →
ASpec(QCohX) in Theorem 7.6 (2) restricts to a bijection SuppM →
ASuppM .

(2) For each x ∈ X, we have X (αx) = X (x). The canonical func-
tor QCohX → ModOX,x induces an equivalence (QCohX)αx

∼−→
ModOX,x.
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(3) For each subset Φ of X, the corresponding subset

{αx ∈ ASpec(QCohX) | x ∈ Φ }

of ASpec(QCohX) is localizing if and only if Φ is closed under special-
ization.

(4) Let x, y ∈ X. Then αx ≤ αy if and only if y ∈ {x}.

Proof. (1) For each x ∈ X , by Proposition 7.3 and Proposition 5.6 (2),

αx ∈ ASuppM if and only if k(x) ∈ ASupp j∗xM . By Proposition 3.9, this
is equivalent to mx ∈ Supp j∗xM , which means Mx = j∗xM 6= 0.
(2) By (1) and Proposition 5.10 (1), X (αx) = X (x). The equivalence follows
from Proposition 7.3.
(3) By (2), it suffices to show that Φ is closed under specialization if and
only if there exists an object M in QCohX satisfying Φ = SuppM . For every
object M in QCohX , it is straightforward to show that SuppM is closed under
specialization.
Assume that Φ is closed under specialization. For each x ∈ Φ, we have
Supp jx∗k(x) = {x}. Hence

Supp
⊕

x∈Φ

jx∗k(x) =
⋃

x∈Φ

Supp jx∗k(x) = Φ.

(4) This follows from (3). �

We specialize Theorem 6.8 to the case of QCohX . For a full subcategory X of
QCohX , define the specialization-closed subset SuppX of X by

SuppX =
⋃

M∈X

SuppM.

For a subset Φ of X , define the localizing subcategory Supp−1 Φ of QCohX by

Supp−1 Φ = {M ∈ QCohX | SuppM ⊂ Φ }.

Theorem 7.8. Let X be a locally noetherian scheme. There is a bijection

{ localizing subcategories of QCohX } → { specialization-closed subsets of X }

given by X 7→ SuppX . Its inverse is given by Φ 7→ Supp−1 Φ.

Proof. In Theorem 7.6 (2), we showed that the Grothendieck category QCohX
has enough atoms and described ASpec(QCohX). Hence the claim follows from
Theorem 6.8 and Corollary 7.7 (3). �

Definition 7.9. Let X be a locally noetherian scheme, and let M be an object
in QCohX . The subset AssM of X is defined by

AssM = {x ∈ X | mx ∈ AssOX,x
Mx }.

Each element of AssM is called an associated point of M .

In order to show that associated atoms are generalizations of associated points
defined in Definition 7.9, we need the following results.
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Proposition 7.10. Let SpecR be an open affine subscheme of X, and let
i : SpecR →֒ X be the immersion. For every R-module M , we have Ass i∗M =
i(AssR M).

Proof. [Gro65, Proposition 3.1.13] and [Gro65, Proposition 3.1.2]. �

Lemma 7.11. For each x ∈ X, we have Ass jx∗E(x) = {x} and Supp jx∗E(x) =

{x}.

Proof. Let i : SpecR →֒ X be the immersion of an open affine subscheme such
that x = i(p) for some p ∈ SpecR. Then the morphism jx is the compos-
ite of j : SpecOX,x

∼= SpecRp → SpecR and i : SpecR →֒ X . By [Mat89,
Theorem 18.4 (vi)], j∗E(x) = ER(R/p). By Proposition 7.10,

Ass jx∗E(x) = Ass i∗ER

(
R

p

)
= i

(
AssR ER

(
R

p

))
= i({p}) = {x}.

By the argument in [Mat89, p. 150], for each q ∈ SpecR, we have ER(R/p)q =
ERq

((R/p)q). Hence we obtain

SuppER

(
R

p

)
= { q ∈ SpecR | p ⊂ q }

and

Supp jx∗E(x) = Supp i∗

(
ER

(
R

p

))
= {x}. �

Proposition 7.12. Let M be an object in QCohX. Then the bijection |X | →
ASpec(QCohX) in Theorem 7.6 (2) restricts to a bijection AssM → AAssM .

Proof. Assume that αx ∈ AAssM , and let i : U →֒ X be the immersion of an
open affine subscheme with x ∈ U . By Proposition 7.2 and Proposition 5.6
(2), αx ∈ AAss i∗M . By Proposition 3.9 and Proposition 7.10, we obtain x ∈
Ass i∗i

∗M . Since the canonical morphism M → i∗i
∗M induces an isomorphism

Mx
∼−→ (i∗i

∗M)x, we deduce that x ∈ AssM .
Conversely, assume that x ∈ AssM . By Theorem 7.4 (2) and Theorem 7.4 (3),
there exists a family {xλ}λ∈Λ of points in X such that

E(M) ∼=
⊕

λ∈Λ

jxλ∗E(xλ).

By [Gro65, Proposition 3.1.7],

x ∈ AssM ⊂ AssE(M) =
⋃

λ∈Λ

Ass jxλ∗E(xλ).

Hence there exists λ ∈ Λ such that x ∈ Ass jxλ∗E(xλ). By Lemma 7.11,
xλ = x. By Proposition 3.12 (2), we deduce that

αx ∈ AAss jx∗E(x) ⊂ AAssE(M) = AAssM. �
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8. Localization of prelocalizing subcategories and localizing

subcategories

In order to classify the prelocalizing subcategories of QCohX for a locally
noetherian scheme X , we show that they are determined by their restrictions
to open affine subschemes of X . In this section, we prove this claim in a
categorical setting (Setting 8.3). We start with two lemmas, which show the
setting includes the case of QCohX .

Lemma 8.1. Let X be a locally noetherian scheme, and let M be an object in

QCohX. Then for each y ∈ SuppM , there exists x ∈ AssM with y ∈ {x}.

Proof. By Theorem 7.4 (2) and Theorem 7.4 (3), there exists a family {xλ}λ∈Λ

of points in X such that

E(M) ∼=
⊕

λ∈Λ

jxλ∗E(xλ).

Then
y ∈ SuppM ⊂ SuppE(M) =

⋃

λ∈Λ

Supp jxλ∗E(xλ).

By Lemma 7.11, y ∈ Supp jxλ∗E(xλ) = {xλ} for some λ ∈ Λ. By Proposi-
tion 7.12 and Proposition 3.12 (2), we obtain

AssM = AssE(M) =
⋃

λ∈Λ

Ass jxλ∗E(xλ) = {xλ | λ ∈ Λ }.

Therefore the claim follows. �

Lemma 8.2. Let R be a commutative ring, and let S be a multiplicatively closed
subset of R. Let M be an R-module. Then the R-module MS is a quotient object
of the direct sum of some copies of M . In particular, for every p ∈ SpecR, the
R-module Mp belongs to the prelocalizing subcategory 〈M〉preloc of ModR.

Proof. For each s ∈ S, the image of the R-homomorphism M → MS given
by x 7→ xs−1 is Ms−1. Hence the R-submodule Ms−1 of MS is a quotient
R-module of M . Since ⊕

s∈S

Ms−1
։

∑

s∈S

Ms−1 = MS,

the claim follows. �

In the rest of this section, we investigate localizations of prelocalizing subcat-
egories in the following setting.

Setting 8.3. Let A be a Grothendieck category with enough atoms, and let
{Xλ}λ∈Λ be a family of localizing subcategories of A. For each λ ∈ Λ, let
Uλ = A/Xλ. Denote the canonical functors and their right adjoints by

• Fλ : A → Uλ and Gλ : Uλ → A for each λ ∈ Λ,
• Fλ

µ : Uλ → Uµ and Gλ
µ : Uµ → Uλ for each λ, µ ∈ Λ with Uµ ⊂ Uλ,

• Fα : A → Aα and Gα : Aα → A for each α ∈ ASpecA,
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• Fλ
α : Uλ → (Uλ)α and Gλ

α : (Uλ)α → Uλ for each λ ∈ Λ and α ∈
ASpec Uλ. (Note that (Uλ)α = Aα.)

We assume the following properties.

(1) It holds that

ASpecA =
⋃

λ∈Λ

ASpec Uλ.

Moreover, for each λ1, λ2 ∈ Λ and α ∈ ASpec Uλ1 ∩ ASpec Uλ2 , there
exists µ ∈ Λ such that

α ∈ ASpec Uµ ⊂ ASpec Uλ1 ∩ ASpec Uλ2 .

In other words, the family {ASpec Uλ}λ∈Λ satisfies the axiom of open

basis of ASpecA.3

(2) For each object M in A and β ∈ ASuppM , there exists α ∈ AAssM
with α ≤ β.

(3) Let λ ∈ Λ, and let M ′ be an object in Uλ and α ∈ ASpec Uλ. Then
the object Gλ

αF
λ
α (M

′) belongs to 〈M ′〉preloc.

For a locally noetherian scheme X , let {Uλ}λ∈Λ be an open affine basis of X
(that is, an open basis of X consisting of affine subsets). Then Lemma 8.1
and Lemma 8.2 show that the Grothendieck category QCohX together with
{QCohUλ}λ∈Λ satisfies the conditions in Setting 8.3.
We assume Setting 8.3 in the rest of this section.
We show that every quotient category of A also satisfies the same conditions.

Proposition 8.4. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A. Then
the Grothendieck category A/X together with the family {〈F (Xλ)〉loc}λ∈Λ of
localizing subcategories of A/X also satisfies the conditions in Setting 8.3. In
particular, for every α ∈ ASpecA, the Grothendieck category Aα together with
{〈(Xλ)α〉loc}λ∈Λ satisfies the conditions in Setting 8.3.4

Proof. By Proposition 6.6 (2), the Grothendieck category A/X has enough
atoms.
(1) By Proposition 5.7,

ASpec
A/X

〈F (Xλ)〉loc
= ASpec

A

Xλ
∩ASpec

A

X
.

(2) Let M ′ be an object in A/X , and let β ∈ ASuppM ′. By Proposition 5.6
(1), β ∈ ASuppG(M ′). Hence there exists α ∈ AAssG(M ′) = AAssM ′ with
α ≤ β.

3However, we regard ASpecA as a topological space only by the localizing topology. (See
Proposition 3.14.)

4It is shown in Proposition 8.15 (3) that 〈F (Xλ)〉loc = F (Xλ). In particular, 〈(Xλ)α〉loc =

(Xλ)α.
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(3) Let λ ∈ Λ. By Proposition 4.18 (1) and Proposition 4.18 (3),

A/X

〈F (Xλ)〉loc
∼=

A

〈Xλ ∪ X〉loc
∼=

A/Xλ

〈Fλ(X )〉loc
.

Let U ′
λ := Uλ/〈Fλ(X )〉loc. Denote the canonical functors by F ′ : Uλ → U ′

λ,
F ′
α : U

′
λ → Aα, and their right adjoints by G′ : U ′

λ → Uλ, G′
α : Aα → U ′

λ,
respectively. Let M ′′ be an object in U ′

λ, and let α ∈ ASpec U ′
λ. Then by the

assumption, the object Gλ
αF

λ
αG

′(M ′′) belongs to 〈G′(M ′′)〉preloc. Since F ′ is

exact, the object F ′Gλ
αF

λ
αG

′(M ′′) belongs to 〈F ′G′(M ′′)〉preloc = 〈M ′′〉preloc.
Since

F ′Gλ
αF

λ
αG

′(M ′′) ∼= F ′G′G′
αF

′
αF

′G′(M ′′) ∼= G′
αF

′
α(M

′′),

the claim follows. �

Under the assumptions of Setting 8.3, we can show a complemental fact on
associated atoms in a quotient category.

Lemma 8.5. Let X be a localizing subcategory of A. Denote the canonical
functor by F : A → A/X and its right adjoint by G : A/X → A. For every
object M in A,

AAssF (M) = AAssM \ASuppX .

In particular, for every α ∈ ASpecA,

AAssMα = AAssM ∩ Λ(α).

Proof. By Proposition 5.6,

AAssGF (M) = AAssF (M) ⊃ AAssM \ASuppX .

Let η : 1A → GF be the unit morphism and β ∈ AAssGF (M). Note that
β /∈ ASuppX . By Proposition 4.9 (3), the subobject L := Ker ηM ofM belongs
to X , and Im ηM is an essential subobject of GF (M). By Proposition 3.12
(2), β ∈ AAss(Im ηM ) = AAss(M/L). Hence there exists a subobject L′ of
M with L ⊂ L′ such that L′/L is a monoform object representing β. Since
β ∈ ASuppL′, by Setting 8.3 (2), there exists α ∈ AAssL′ with α ≤ β.
Since β /∈ ASuppX , it holds that α /∈ ASuppL by Proposition 3.17. By
Proposition 3.10 and Proposition 3.12 (1), α ∈ AAss(L′/L) = {β}. Therefore
β = α ∈ AAssL′ ⊂ AAssM . �

We show two lemmas as parts of the proof of Theorem 8.8. It is useful to
determine whether an object belongs to a given prelocalizing subcategory.

Lemma 8.6. Let λ ∈ Λ, and let Y ′ be a prelocalizing subcategory of Uλ. Let U ′

be a uniform object in Uλ with AAssU ′ = {α}. If U ′
α belongs to Y ′

α, then U ′

belongs to Y ′.

Proof. There exists an object N ′ in Uλ which belongs to Y ′ such that U ′
α
∼=

N ′
α. By Setting 8.3 (3), the object Gλ

αF
λ
α (U

′) ∼= Gλ
αF

λ
α (N

′) belongs to
Y ′. Let η : 1Uλ

→ Gλ
αF

λ
α be the unit morphism. Then by Proposition 4.9

(3), α /∈ ASupp(Ker ηU ′ ). If Ker ηU ′ 6= 0, then by Proposition 3.12 (2),
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α ∈ AAss(Ker ηU ′) ⊂ ASupp(Ker ηU ′). This is a contradiction. Hence ηU ′

is a monomorphism. The object U ′ belongs to Y ′. �

Lemma 8.7. Let Y be a prelocalizing subcategory of A, and let U be a uniform
object in A with AAssU = {α}. If Uα belongs to Yα, then U belongs to Y.

Proof. Let L be the largest subobject of U which belongs to Y. Assume
that L ( U . Then by Proposition 6.7, there exists β ∈ AAss(U/L). By
Setting 8.3 (2), α ≤ β. By Setting 8.3 (1), there exists λ ∈ Λ such
that β ∈ ASpec Uλ = ASpecA \ ASuppXλ. Then by Proposition 3.17, we
also have α ∈ ASpec Uλ. By a similar argument to that in the proof of
Lemma 8.6, the canonical morphism U → GλFλ(U) is a monomorphism, and
U is Xλ-torsionfree. By Proposition 4.12 (2), the object Fλ(U) is uniform, and
AAssFλ(U) = {α} by Proposition 3.12 (1). Since Fλ(U)α = Uα belongs to
Yα = Fλ(Y)α, by Lemma 8.6, the object Fλ(U) belongs to Fλ(Y). We ob-
tain an object N in A which belongs to Y such that Fλ(N) ∼= Fλ(U). Let
V be the image of the composite of the canonical morphism N → GλFλ(N)
and GλFλ(N) ∼−→ GλFλ(U). By Proposition 4.9 (3), the object GλFλ(U)/V
belongs to Xλ. Hence

GλFλ(U)

U ∩ V
→֒

GλFλ(U)

U
⊕

GλFλ(U)

V
∈ Xλ.

Since U ∩ V belongs to Y, we have U ∩ V ⊂ L by the maximality of L.
Hence U/L also belongs to Xλ, and β ∈ ASupp(U/L) ⊂ ASuppXλ. This is a
contradiction. Therefore L = U . �

Theorem 8.8. Assume Setting 8.3. Let Y be a prelocalizing subcategory of A,
and let M be an object in A. If Mα belongs to Yα for every α ∈ AAssM , then
M belongs to Y.

Proof. Since A has enough atoms, there exists a family {αω}ω∈Ω of elements
of ASpecA such that

E(M) ∼=
⊕

ω∈Ω

E(αω).

Let Z = 〈M〉preloc. For each ω ∈ Ω, let Lω be the largest subobject of E(αω)

which belongs to Z. Then by Proposition 4.5, M ⊂
⊕

ω∈Ω Lω. Since Lω is
uniform for each ω ∈ Ω, by Proposition 3.12,

{αω} = AAssLω ⊂ AAssE(M) = AAssM.

By Proposition 4.13 (2), it is straightforward to show that Zαω
= 〈Mαω

〉preloc.
Hence by the assumption, Zαω

⊂ Yαω
. Since Lω belongs to Z, the object

(Lω)αω
belongs to Yαω

. By Lemma 8.7, we deduce that Lω belongs to Y.
Therefore the subobject M of

⊕
ω∈Ω Lω also belongs to Y. �

The following results are consequences of Theorem 8.8.

Proposition 8.9. Let X be a localizing subcategory of A. Denote the canonical
functor by F : A → A/X and its right adjoint by G : A/X → A. Then for every
object M in A, the object GF (M) belongs to 〈M〉preloc.
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Proof. Let η : 1A → GF be the unit morphism. Let α ∈ AAssGF (M). By
Proposition 5.6 (1),

α ∈ AAssGF (M) = AAssF (M) ⊂ ASpec
A

X
= ASpecA \ASuppX .

By Proposition 4.9 (3), the objects Ker ηM and Cok ηM belong to X . By
applying (−)α to the exact sequence

0 → Ker ηM → M → GF (M) → Cok ηM → 0,

we obtain the isomorphism Mα
∼−→ GF (M)α. Hence GF (M)α belongs to

(〈M〉preloc)α. By Theorem 8.8, we deduce that GF (M) belongs to 〈M〉preloc.
�

Proposition 8.10. Let Y be a prelocalizing subcategory of A and α ∈ ASpecA.
Then α ∈ ASuppY if and only if H(α) belongs to Y.

Proof. If H(α) belongs to Y, then α = H(α) ∈ ASuppY.
Assume α ∈ ASuppY. Then there exists a monoform object H in A with
H = α such that H belongs to Y. By Proposition 8.9, the object GαFα(H)
belongs to Y. By the proof of Proposition 6.10 (2), the object GαFα(H) is
isomorphic to H(α). �

We show the main result in this section.

Theorem 8.11. Assume Setting 8.3. Then there exist bijections between the
following sets.

(1) The set of prelocalizing subcategories of A.
(2) The set of families {Yλ ⊂ Uλ}λ∈Λ of prelocalizing subcategories such

that Fλ
µ (Yλ) = Yµ for each λ, µ ∈ Λ with ASpec Uµ ⊂ ASpec Uλ.

(3) The set of families {Y(α) ⊂ Aα}α∈ASpecA of prelocalizing subcategories

such that Y(β)α = Y(α) for each α, β ∈ ASpecA with α ≤ β.

The correspondences are given as follows.

(1) Y 7→

{
(2) {Fλ(Y)}λ∈Λ

(3) {Yα}α∈ASpecA,

(2) {Yλ}λ∈Λ 7→






(1)
⋂

λ∈Λ

F−1
λ (Yλ)

(3) {Y(α)}α∈ASpecA,

where Y(α) = (Yλ)α for λ ∈ Λ with α ∈ ASpec Uλ,

(3) {Y(α)}α∈ASpecA 7→






(1)
⋂

α∈ASpecA

F−1
α (Y(α))

(2)

{
⋂

α∈ASpec Uλ

(Fλ
α )

−1(Y(α))

}

λ∈Λ

.

Proof. ((1)↔(2)) Let Y be a prelocalizing subcategory of A. It is obvious
that Y ⊂

⋂
λ∈Λ F−1

λ Fλ(Y). Let M be an object in A which belongs to
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⋂
λ∈Λ F−1

λ Fλ(Y). For each α ∈ AAssM , by Setting 8.3 (1), there exists λ ∈ Λ
such that α ∈ ASpec Uλ. Then

Mα = Fλ(M)α ∈ Fλ(Y)α = Yα.

By Theorem 8.8, the object M belongs to Y. We obtain Y =
⋂

λ∈Λ F−1
λ Fλ(Y).

Let {Yλ}λ∈Λ be an element of (2) and Y :=
⋂

λ∈Λ F−1
λ (Yλ). It is obvious that

Fλ(Y) ⊂ Yλ. Let M ′ be an object in Uλ which belongs to Yλ. We show that
Fλ′Gλ(M

′) belongs to Yλ′ for each λ′ ∈ Λ. For each β ∈ AAssFλ′Gλ(M
′), by

Lemma 8.5 and Proposition 5.6 (1),

β ∈ AAssM ′ ∩ ASpec Uλ′ ⊂ ASpec Uλ ∩ ASpec Uλ′ .

Hence there exists µ ∈ Λ such that

β ∈ ASpec Uµ ⊂ ASpec Uλ ∩ ASpec Uλ′ .

Since the object

Fλ′Gλ(M
′)β = Gλ(M

′)β = FλGλ(M
′)β = M ′

β

belongs to

(Yλ)β = Fλ
µ (Yλ)β = (Yµ)β = Fλ′

µ (Yλ′)β = (Yλ′ )β ,

by Proposition 8.4 and Theorem 8.8, the object Fλ′Gλ(M
′) belongs to Yλ′ .

Hence Gλ(M
′) belongs to Y, and M ′ ∼= FλGλ(M

′) belongs to Fλ(Y). We
obtain Fλ(Y) = Yλ.
(Well-definedness of (2)→(3)) Let {Yλ}λ∈Λ be an element of (2) and α ∈
ASpecA. Let λ1, λ2 ∈ Λ such that α ∈ ASpec Uλi

for each i = 1, 2. Then
by Setting 8.3 (1), there exists µ ∈ Λ such that

α ∈ ASpec Uµ ⊂ ASpec Uλ1 ∩ ASpec Uλ2 .

Hence

(Yλ1 )α = Fλ1
µ (Yλ1 )α = (Yµ)α = Fλ2

µ (Yλ2 )α = (Yλ2 )α.

((2)↔(3)) Let {Yλ}λ∈Λ be an element of (2). For each λ ∈ Λ, let

Ỹλ :=
⋂

α∈ASpec Uλ

(Fλ
α )

−1Fλ
α (Yλ).

Then Yλ ⊂ Ỹλ. Let M
′ be an object in Uλ which belongs to Ỹλ. For each α ∈

AAssM ′, we have M ′
α ∈ (Yλ)α. Hence by Proposition 8.4 and Theorem 8.8,

the object M ′ belongs to Yλ, and we obtain Yλ = Ỹλ.
Let {Y(α)}α∈ASpecA be an element of (3). For each λ ∈ Λ, let

Yλ :=
⋂

α∈ASpec Uλ

(Fλ
α )

−1(Y(α)).

For each α ∈ ASpecA, by Setting 8.3 (1), there exists µ ∈ Λ such that α ∈
ASpec Uµ. It is obvious that Fµ

α (Yλ) ⊂ Y(α). Let M ′′ be an object in Aα

which belongs to Y(α). We show that Fλ
β G

λ
α(M

′′) belongs to Y(β) for each β ∈
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ASpec Uλ. For each γ ∈ AAssFλ
βG

λ
α(M

′′), by Lemma 8.5 and Proposition 5.6

(1),
γ ∈ AAssM ′′ ∩ Λ(β) ⊂ Λ(α) ∩ Λ(β).

Since the object

Fλ
β G

λ
α(M

′′)γ = Gλ
α(M

′′)γ = Fλ
αG

λ
α(M

′′)γ = M ′′
γ

belongs to
Y(α)γ = Y(γ) = Y(β)γ ,

the object Fλ
β G

λ
α(M

′′) belongs to Y(β). Hence Gλ
α(M

′′) belongs to Yλ, and

M ′′ ∼= Fλ
αG

λ
α(M

′′) ∈ Fλ
α (Yλ). We obtain Fµ

β (Yλ) = Y(β). �

For a family {Yω}ω∈Ω of prelocalizing subcategories of A, we can consider the
smallest prelocalizing subcategory 〈

⋃
ω∈Ω Yω〉preloc containing Y

ω for every ω ∈

Ω and the intersection
⋂

ω∈Ω Yω. These are described in terms of prelocalizing
subcategories of quotient categories in the following ways.

Proposition 8.12. Assume that the following elements correspond to each
other by the bijections in Theorem 8.11 for each ω ∈ Ω.

(1) Yω.
(2) {Yω

λ }λ∈Λ.
(3) {Yω(α)}α∈ASpecA.

Then the following elements correspond to each other by the bijections.

(1) 〈
⋃

ω∈Ω Yω〉preloc.

(2) {〈
⋃

ω∈Ω Yω
λ 〉preloc}λ∈Λ.

(3) {〈
⋃

ω∈Ω Yω(α)〉preloc}α∈ASpecA.

Proof. For each λ ∈ Λ,

Fλ

(〈
⋃

ω∈Ω

Yω

〉

preloc

)
=

〈
Fλ

(
⋃

ω∈Ω

Yω

)〉

preloc

=

〈
⋃

ω∈Ω

Fλ(Y
ω)

〉

preloc

=

〈
⋃

ω∈Ω

Yω
λ

〉

preloc

.

It is shown similarly that (〈
⋃

ω∈Ω Yω〉preloc)α = 〈
⋃

ω∈Ω Yω(α)〉preloc for each
α ∈ ASpecA. �

Proposition 8.13. Assume that the following elements correspond to each
other by the bijections in Theorem 8.11 for each ω ∈ Ω.

(1) Yω.
(2) {Yω

λ }λ∈Λ.
(3) {Yω(α)}α∈ASpecA.

Then the following elements correspond to each other by the bijections.
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(1)
⋂

ω∈Ω Yω.
(2) {

⋂
ω∈Ω Yω

λ }λ∈Λ.
(3) {

⋂
ω∈Ω Yω(α)}α∈ASpecA.

Proof. Let λ ∈ Λ. It is obvious that Fλ(
⋂

ω∈Ω Yω) ⊂
⋂

ω∈Ω Fλ(Yω) =⋂
ω∈Ω Yω

λ . Let M ′ be an object in Uλ which belongs to
⋂

ω∈Ω Yω
λ . Then for

each ω ∈ Ω, there exists an object Mω in A which belongs to Yω such that
Fλ(Mω) ∼= M ′. By Proposition 8.9, the object Gλ(M

′) ∼= GλFλ(Mω) belongs
to 〈Mω〉preloc. Hence Gλ(M

′) belongs to
⋂

ω∈Ω Yω , and M ′ ∼= FλGλ(M
′) ∈

Fλ(
⋂

ω∈Ω Yω). This shows that Fλ(
⋂

ω∈Ω Yω) =
⋂

ω∈Ω Yω
λ .

It is shown similarly that (
⋂

ω∈Ω Yω)α =
⋂

ω∈Ω Yω(α) for each α ∈ ASpecA.
�

Families in Theorem 8.11 (3) have the following characterization.

Proposition 8.14. For each family {Y(α) ⊂ Aα}α∈ASpecA of prelocalizing
subcategories, the following assertions are equivalent.

(1) There exists a prelocalizing subcategory Y of A satisfying Yα = Y(α)
for each α ∈ ASpecA.

(2) For each α ∈ ASpecA, there exist λ ∈ Λ with α ∈ ASpec Uλ and
a prelocalizing subcategory Y ′ of Uλ satisfying Y ′

β = Y(β) for each
β ∈ ASpec Uλ.

(3) For each α, β ∈ ASpecA with α ≤ β, it holds that Y(β)α = Y(α).

Proof. This can be shown straightforwardly by using Theorem 8.11. �

In order to investigate the localizing subcategories of QCohX , we improve
Proposition 4.13 under the assumptions of Setting 8.3.

Proposition 8.15. Let X be a localizing subcategory of A. Denote the canon-
ical functor by F : A → A/X and its right adjoint by G : A/X → A.

(1) Let Y be a prelocalizing subcategory of A. Then Y ∗ X ⊂ X ∗ Y.
(2) Let Y1 and Y2 be prelocalizing subcategories of A. Then

F (Y1 ∗ Y2) = F (Y1) ∗ F (Y2).

(3) Let Y be a localizing subcategory of A. Then F (Y) is a localizing sub-
category of A/X .

Proof. (1) Let M be an object in A which belongs to Y ∗X . Then there exists
an exact sequence

0 → L → M → N → 0

in A, where L belongs to Y, and N belongs to X . Since F (L) ∼= F (M), the
object GF (M) ∼= GF (L) belongs to Y by Proposition 8.9. Let η : 1A → GF
be the unit morphism. There is an exact sequence

0 → Ker ηM → M → Im ηM → 0.

By Proposition 4.9 (3), the object Ker ηM belongs to X . The subobject Im ηM
of GF (M) belongs to Y. Therefore M belongs to X ∗ Y.

Documenta Mathematica 20 (2015) 1403–1465



Classification of Categorical . . . 1443

(2) By Proposition 4.13 (3),

F (Y1 ∗ Y2) ⊂ F (Y1 ∗ X ∗ Y2) = F (Y1) ∗ F (Y2).

By (1),

F (Y1 ∗ X ∗ Y2) ⊂ F (X ∗ Y1 ∗ Y2) ⊂ F (X ) ∗ F (Y1 ∗ Y2) = F (Y1 ∗ Y2).

(3) By (2),

F (Y) ∗ F (Y) = F (Y ∗ Y) = F (Y). �

Theorem 8.16. Assume that the following elements correspond to each other
by the bijections in Theorem 8.11 for each i = 1, 2.

(1) Yi.
(2) {Yi

λ}λ∈Λ.

(3) {Yi(α)}α∈ASpecA.

Then the following elements correspond to each other by the bijections.

(1) Y1 ∗ Y2.
(2) {Y1

λ ∗ Y2
λ}λ∈Λ.

(3) {Y1(α) ∗ Y2(α)}α∈ASpecA.

Proof. This follows from Proposition 8.15. �

Corollary 8.17. The bijections in Theorem 8.11 restrict to bijections between
following sets.

(1) The set of localizing subcategories of A.
(2) The set of families {Yλ ⊂ Uλ}λ∈Λ of localizing subcategories such that

Fλ
µ (Yλ) = Yµ for each λ, µ ∈ Λ with ASpec Uµ ⊂ ASpec Uλ.

(3) The set of families {Y(α) ⊂ Aα}α∈ASpecA of localizing subcategories

such that Y(β)α = Y(α) for each α, β ∈ ASpecA with α ≤ β.

Proof. This follows from Theorem 8.16. �

Prime localizing subcategories of A are characterized as follows.

Theorem 8.18. Assume Setting 8.3, and let X be a localizing subcategory of
A. Then the following assertions are equivalent.

(1) X is a prime localizing subcategory of A.
(2) There exists α ∈ ASpecA such that X = X (α).
(3) For each family {Xω}ω∈Ω of localizing subcategories of A satisfying

X =
⋂

ω∈Ω Xω, there exists ω ∈ Ω such that X = Xω.
(4) For each family {Yω}ω∈Ω of prelocalizing subcategories of A satisfying

X =
⋂

ω∈Ω Yω, there exists ω ∈ Ω such that X = Yω.

Proof. The equivalence (1)⇔(2) follows from Theorem 5.14.
Let {Yω}ω∈Ω be a family of prelocalizing subcategories of A satisfying X (α) =⋂

ω∈Ω Yω . Since H(α) does not belong to X (α), there exists ω ∈ Ω such that
H(α) does not belong to Yω. By Proposition 8.10, α /∈ ASuppYω , and hence
Yω ⊂ X (α). This shows (2)⇒(4).
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The implication (4)⇒(3) is obvious. The implication (3)⇒(2) follows from
Corollary 6.9. �

9. Classification of prelocalizing subcategories

Let X be a locally noetherian scheme with the structure sheaf OX . In this
section, we classify the prelocalizing subcategories of QCohX . Let {Uλ}λ∈Λ

be an open affine basis of X . Let iλ : Uλ →֒ X be the immersion for each λ ∈ Λ,
and let iλ,µ : Uµ →֒ Uλ be the immersion for each λ, µ ∈ Λ with Uµ ⊂ Uλ.
We recall the notion of a filter. This is an essential tool to classify prelocalizing
subcategories.

Definition 9.1. Let A be a Grothendieck category, and let M be an object
in A.

(1) A filter of subobjects of M in A is a set F of subobjects ofM satisfying
the following conditions.
(a) M ∈ F .
(b) If L ⊂ L′ are subobjects of M with L ∈ F , then L′ ∈ F .
(c) If L1, L2 ∈ F , then L1 ∩ L2 ∈ F .
If there is no danger of confusion, we simply say that F is a filter of
M .

(2) For each subobject L of M , denote by F(L) the filter consisting of all
subobjects L′ of M with L ⊂ L′. A filter of the form F(L) is called a
principal filter.

Remark 9.2. In Definition 9.1 (2), the principal filter F(L) is closed under
arbitrary intersection. Conversely, if a filter F of M is closed under arbitrary
intersection, then F = F(L), where L is the smallest element of F .
It is obvious that the map

{ subobjects of M } → {principal filters of M }

given by L 7→ F(L) is bijective.

For a ring Λ, we say that a filter F of right ideals of Λ is prelocalizing if for
each L ∈ F and a ∈ Λ, the right ideal

a−1L = { b ∈ Λ | ab ∈ L }

of Λ belongs to F . For a ring Λ, Gabriel [Gab62] gave a classification of the
prelocalizing subcategories of ModΛ.

Theorem 9.3 ([Gab62, Lemma V.2.1]). Let Λ be a ring. There is a bijection

{ prelocalizing subcategories of ModΛ }

→ { prelocalizing filters of right ideals of Λ }

given by

Y 7→

{
L ⊂ Λ in ModΛ

∣∣∣∣
Λ

L
∈ Y

}
.
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Its inverse is given by

F 7→ {M ∈ ModΛ | AnnΛ(x) ∈ F for every x ∈ M }

=

〈
Λ

L
∈ ModΛ

∣∣∣∣ L ∈ F

〉

preloc

.

Proof. [Pop73, Theorem 4.9.1]. �

For a commutative ring R, every filter F of R is prelocalizing. Indeed, for
L ∈ F and a ∈ R, we have L ⊂ a−1L, and hence a−1L ∈ F . Therefore the
following assertion holds.

Corollary 9.4. Let R be a commutative ring. There is a bijection

{ prelocalizing subcategories of ModR } → {filters of ideals of R }

given by

Y 7→

{
I ⊂ R in ModR

∣∣∣∣
R

I
∈ Y

}
.

Its inverse is given by

F 7→ {M ∈ ModR | AnnR(x) ∈ F for every x ∈ M }

=

〈
R

I
∈ ModR

∣∣∣∣ I ∈ F

〉

preloc

.

Proof. This is immediate from Theorem 9.3. �

In the case of a locally noetherian scheme X , we need to use the notion of a
local filter instead of a filter (see Theorem 9.14 and Example 12.13).

Definition 9.5. Let X be a locally noetherian scheme. We say that a filter F
of subobjects of OX in QCohX is a local filter of OX if it satisfies the following
condition: let I be a subobject of OX , and assume that for each x ∈ X , there
exist an open affine neighborhood U of x in X and I ′ ∈ F such that I ′|U ⊂ I|U
as a subobject of OU . Then I ∈ F .

Proposition 9.6. Every principal filter of OX is a local filter.

Proof. For every subobject I of OX , we show that F(I) is a local filter. Let
I ′ be a subobject of OX such that for each x ∈ X , there exist an open affine
neighborhood U(x) of x in X and J(x) ∈ F(I) such that J(x)|U(x) ⊂ I ′|U(x).
Let J :=

⋂
x∈X J(x) in QCohX . Then J ∈ F(I), and J |U(x) ⊂ I ′|U(x) for each

x ∈ X . For each open subset U of X ,

J(U) = { s ∈ OX(U) | s|U(x)∩U ∈ J(U(x) ∩ U) for each x ∈ X }

⊂ { s ∈ OX(U) | s|U(x)∩U ∈ I ′(U(x) ∩ U) for each x ∈ X }

= I ′(U),

and hence J ⊂ I ′ follows. This implies that I ′ ∈ F . �
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The next result shows that the local filters of OX are exactly the same as the
filters of OX in the case where X is quasi-compact. This is the reason that we
do not need to consider a local filter in the case of a commutative ring.

Proposition 9.7. If X is a noetherian scheme, then every filter of OX is a
local filter.

Proof. Let F be a filter of OX . Let I be a subobject of OX , and assume that
for each x ∈ X , there exist an open affine neighborhood U(x) of x in X and
I ′(x) ∈ F such that I ′(x)|U(x) ⊂ I|U(x). Since X is quasi-compact, there exists

x1, . . . , xn ∈ X such that X =
⋃n

j=1 U(xj). Let I ′ :=
⋂n

j=1 I
′(xj). Then I ′

belongs to F . Since I ′|U(xj) ⊂ I|U(xj) for each j = 1, . . . , n, we have I ′ ⊂ I,
and hence I also belongs to F . �

The following result describes the local filter generated by a set of subobjects
of OX .

Proposition 9.8. Let S be a set of subobjects of OX . Let F be the set con-
sisting of all subobjects I of OX satisfying the following condition: for each
x ∈ X, there exist an open affine neighborhood U of x in X and n ∈ Z≥1 and
I1, . . . , In ∈ S such that

(I1 ∩ · · · ∩ In)|U ⊂ I|U .

Then F is the smallest local filter of OX including S.

Proof. It is obvious that F satisfies the conditions (a) and (b) in Definition 9.1
(1). We show that (c) is satisfied. Let I(1), I(2) ∈ F . Then for each j = 1, 2 and
x ∈ X , there exist an open affine neighborhood U (j) of x in X and nj ∈ Z≥1

and I
(j)
1 , . . . , I

(j)
nj ∈ S such that

(I
(j)
1 ∩ · · · ∩ I(j)nj

)|U(j) ⊂ I(j)|U(j) .

Then

(I
(1)
1 ∩ · · · ∩ I(1)n1

∩ I
(2)
1 ∩ · · · ∩ I(2)n2

)|U(1)∩U(2) ⊂ (I(1) ∩ I(2))|U(1)∩U(2) .

This shows I(1) ∩ I(2) ∈ F . Hence F is a filter of OX .
Let I be a subobject of OX such that for each x ∈ X , there exist an open affine
neighborhood U of x in X and I ′ ∈ F such that I ′|U ⊂ I|U . Let x ∈ X , and
take such U and I ′. Then there exists an open affine neighborhood U ′ of x in
X and n ∈ Z≥1 and I ′1, . . . , I

′
n ∈ S such that

(I ′1 ∩ · · · ∩ I ′n)|U ′ ⊂ I ′|U ′ .

Since
(I ′1 ∩ · · · ∩ I ′n)|U∩U ′ ⊂ I ′|U∩U ′ ⊂ I|U∩U ′ ,

it holds that I ∈ F . This shows that F is a local filter. It is obvious that F is
the smallest local filter of OX including S. �

In the setting of Proposition 9.8, the local filter F is denoted by 〈S〉locfilt.
We investigate the restriction of a filter to an open affine subscheme and the
localization at a point.
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Proposition 9.9. Let F be a filter of OX .

(1) For every λ ∈ Λ, the set

F|Uλ
:= { I|Uλ

⊂ OUλ
in QCohUλ | I ∈ F }

is a filter of OUλ
.

(2) For every x ∈ X, the set

Fx := { Ix ⊂ OX,x in ModOX,x | I ∈ F }

is a filter of OX,x.

Proof. (1) Since OX ∈ F , we have OUλ
∈ F|Uλ

.

Let Ĩ ⊂ Ĩ ′ be subobjects of OUλ
with Ĩ ∈ F|Uλ

. By Proposition 4.10, there

exists a largest subobject I (resp. I ′) of OX satisfying I|Uλ
⊂ Ĩ (resp. I ′|Uλ

⊂

Ĩ ′), and it holds that I|Uλ
= Ĩ (resp. I ′|Uλ

= Ĩ ′). Then I ∈ F and I ⊂ I ′ imply

I ′ ∈ F . We deduce that Ĩ ′ = I ′|Uλ
∈ F|Uλ

.

Let Ĩ1, Ĩ2 ∈ F|Uλ
. Then for each i = 1, 2, there exists Ii ∈ F such that

Ii|Uλ
= Ĩi. It holds that I1 ∩ I2 ∈ F . Since (−)|Uλ

: QCohX → QCohUλ is an
exact functor, I1|Uλ

∩ I2|Uλ
= (I1 ∩ I2)|Uλ

∈ F|Uλ
.

(2) This is shown similarly to (1). �

We give a characterization of a local filter.

Proposition 9.10. Let F be a filter of OX . Then the following assertions are
equivalent.

(1) F is a local filter.
(2) Let I be a subobject of OX such that for each x ∈ X, there exists an

open affine neighborhood U of x in X satisfying I|U ∈ F|U . Then
I ∈ F .

Proof. It is obvious that (1) implies (2).
Assume (2). Let I be a subobject of OX such that for each x ∈ X , there exist
an open affine neighborhood U of x in X and I ′ ∈ F satisfying I ′|U ⊂ I|U .
Since F|U is a filter of OU by Proposition 9.9 (1), we have I|U ∈ F|U . Hence
I ∈ F . This shows (1). �

The following lemmas show that the bijection in Corollary 9.4 commutes with
the restriction to an open affine subscheme and the localization at a point.

Lemma 9.11. Let λ, µ ∈ Λ with Uµ ⊂ Uλ. Let Y be a prelocalizing subcategory
of QCohUλ, and let F be the corresponding filter of OUλ

by the bijection in
Corollary 9.4. Then the filter F|Uµ

of OUµ
corresponds to the prelocalizing

subcategory Y|Uµ
of QCohUµ by the bijection.

Proof. Let F ′ be the filter of OUµ
corresponding to Y|Uµ

, that is,

F ′ =

{
Ĩ ⊂ OUµ

in QCohUµ

∣∣∣∣
OUµ

Ĩ
∈ Y|Uµ

}
.
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It is obvious that F|Uµ
⊂ F ′. Let Ĩ ∈ F ′. Then there exists an object

M in QCohX which belongs to Y such that OUµ
/Ĩ ∼= M |Uµ

. By Proposi-

tion 4.10, there exists a subobject I of OUλ
such that I|Uµ

= Ĩ, and OUλ
/I is

X -torsionfree, where

X = {M ′ ∈ QCohUλ | M ′|Uµ
= 0 }.

By Proposition 4.9 (3), the canonical morphism OUλ
/I → (iλ,µ)∗i

∗
λ,µ(OUλ

/I)
is a monomorphism. By Proposition 8.9, the object

(iλ,µ)∗i
∗
λ,µ

(
OUλ

I

)
∼= (iλ,µ)∗

(
OUµ

Ĩ

)
∼= (iλ,µ)∗i

∗
λ,µM

belongs to Y. Hence OUλ
/I also belongs to Y. This shows that I ∈ F and that

Ĩ = I|Uµ
∈ F|Uµ

. Therefore F|Uµ
= F ′. �

Lemma 9.12. Let x, y ∈ X with y ∈ {x}. Let Y be a prelocalizing subcategory
of ModOX,y, and let F be the corresponding filter of OX,y by the bijection
in Corollary 9.4. Then the filter Fx of OX,x corresponds to the prelocalizing
subcategory Yx of ModOX,x by the bijection.

Proof. This is shown similarly to Lemma 9.11. �

We show a lemma to glue filters on open affine basis to a local filter of OX .

Lemma 9.13.

(1) For every local filter F of OX ,

F = { I ⊂ OX in QCohX | I|Uλ
∈ F|Uλ

for each λ ∈ Λ }.

(2) Let Fλ be a filter of OUλ
for each λ ∈ Λ, and assume that Fλ|Uµ

= Fµ

for each λ, µ ∈ Λ with Uµ ⊂ Uλ. Then there exists a unique local filter
F of OX satisfying F|Uλ

= Fλ for each λ ∈ Λ.

Proof. (1) This follows from Proposition 9.10.
(2) The uniqueness follows from (1). Let

F := { I ⊂ OX in QCohX | I|Uλ
∈ Fλ for each λ ∈ Λ }.

It is straightforward to show that F is a filter of OX satisfying F|Uλ
⊂ Fλ for

each λ ∈ Λ.
Let I be a subobject of OX such that for each x ∈ X , there exists an open affine
neighborhood U of x in X satisfying I|U ∈ F|U . For each λ ∈ Λ and y ∈ Uλ,
there exists an open affine neighborhood U ′ of y in X satisfying I|U ′ ∈ F|U ′ .
Take µ ∈ Λ satisfying y ∈ Uµ ⊂ Uλ ∩ U ′. Then (I|Uλ

)|Uµ
= (I|U ′ )|Uµ

∈
(F|U ′ )|Uµ

= (F|Uλ
)|Uµ

. Since F|Uλ
is a local filter by Proposition 9.9 (1) and

Proposition 9.7, we have I|Uλ
∈ F|Uλ

⊂ Fλ. This shows that I ∈ F . By
Proposition 9.10, the filter F is a local filter.

We show that Fλ ⊂ F|Uλ
. Let J̃ ∈ Fλ. By Proposition 4.10, there exists

a subobject J of OX such that J |Uλ
= J̃ , and OX/J is XUλ

-torsionfree (see
Proposition 7.2). It suffices to show that J ∈ F , that is, J |Uµ

∈ Fµ for each
µ ∈ Λ. Denote by Yλ and Yµ the prelocalizing subcategories of QCohUλ
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and QCohUµ corresponding to Fλ and Fµ by Corollary 9.4, respectively. We
show that the object OUµ

/J |Uµ
belongs to Yµ. Let x ∈ AssUµ

(OUµ
/J |Uµ

). By
Lemma 8.5,

x ∈ AssUµ

OX

J

∣∣∣∣
Uµ

= AssX
OX

J
∩ Uµ ⊂ Uλ ∩ Uµ.

Hence (
OUµ

J |Uµ

)

x

=
OX,x

Jx
=

(
OUλ

J |Uλ

)

x

=

(
OUλ

J̃

)

x

∈ (Yλ)x.

Take ν ∈ Λ such that x ∈ Uν ⊂ Uλ ∩ Uµ. Then (Yλ)x = (Yλ|Uν
)x = (Yν)x =

(Yµ|Uν
)x = (Yµ)x. Hence by Theorem 8.8, the object OUµ

/J |Uµ
belongs to Yµ.

This shows that J |Uµ
∈ Fµ. �

The following theorem is the main result in this section, which gives a classifi-
cation of the prelocalizing subcategory of QCohX .

Theorem 9.14. Let X be a locally noetherian scheme, and let {Uλ}λ∈Λ be an
open affine basis of X. Then there exist bijections between the following sets.

(1) The set of prelocalizing subcategories of QCohX.
(2) The set of families {Yλ ⊂ QCohUλ}λ∈Λ of prelocalizing subcategories

such that Yλ|Uµ
= Yµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.

(3) The set of families {Y(x) ⊂ ModOX,x}x∈X of prelocalizing subcate-

gories such that Y(y)x = Y(x) for each x, y ∈ X with y ∈ {x}.
(4) The set of local filters of OX .
(5) The set of families {Fλ}λ∈Λ, where Fλ is a filter of OUλ

for each λ ∈ Λ,
such that Fλ|Uµ

= Fµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.
(6) The set of families {F(x)}x∈X, where F(x) is a filter of OX,x for each

x ∈ X, such that F(y)x = F(x) for each x, y ∈ X with y ∈ {x}.

The correspondences are given as follows.

(1) Y 7→






(4)

{
I ⊂ OX in QCohX

∣∣∣∣
OX

I
∈ Y

}

(2) {Y|Uλ
}λ∈Λ

(3) {Yx}x∈X

(4) F 7→





(1)

〈
OX

I

∣∣∣∣ I ∈ F

〉

preloc

.

(5) {F|Uλ
}λ∈Λ

(6) {Fx}x∈X

(2) {Yλ}λ∈Λ 7→ (1) {M ∈ QCohX | M |Uλ
∈ Yλ for each λ ∈ Λ }

(3) {Y(x)}x∈X 7→ (1) {M ∈ QCohX | Mx ∈ Y(x) for each x ∈ X }

(5) {Fλ}λ∈Λ 7→ (4) { I ⊂ OX in QCohX | I|Uλ
∈ Fλ for each λ ∈ Λ }

(6) {F(x)}x∈X 7→ (4) { I ⊂ OX in QCohX | Ix ∈ F(x) for each x ∈ X }
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Proof. Theorem 8.11 gives bijections between (1), (2), and (3). Corollary 9.4
and Lemma 9.11 (resp. Lemma 9.12) give a bijection between (2) and (5) (resp.
(3) and (6)). Lemma 9.13 gives a bijection between (4) and (5). �

For a family of prelocalizing subcategories of QCohX , the supremum and the
intersection are described in terms of local filters as follows.

Proposition 9.15. Assume that the following elements correspond to each
other by the bijections in Theorem 9.14 for each ω ∈ Ω.

(1) Yω.
(2) {Yω

λ }λ∈Λ.
(3) {Yω(x)}x∈X .

(4) Fω.
(5) {Fω

λ }λ∈Λ.
(6) {Fω(x)}x∈X.

Then the following elements correspond to each other by the bijections.

(1) 〈
⋃

ω∈Ω Yω〉preloc.

(2) {〈
⋃

ω∈Ω Yω
λ 〉preloc}λ∈Λ.

(3) {〈
⋃

ω∈Ω Yω(x)〉preloc}x∈X .

(4) 〈
⋃

ω∈Ω Fω〉locfilt.
(5) {〈

⋃
ω∈Ω Fω

λ 〉locfilt}λ∈Λ.
(6) {〈

⋃
ω∈Ω Fω(x)〉locfilt}x∈X.

Proof. This follows from Proposition 8.12. �

Proposition 9.16. Assume that the following elements correspond to each
other by the bijections in Theorem 9.14 for each ω ∈ Ω.

(1) Yω.
(2) {Yω

λ }λ∈Λ.
(3) {Yω(x)}x∈X .

(4) Fω.
(5) {Fω

λ }λ∈Λ.
(6) {Fω(x)}x∈X.

Then the following elements correspond to each other by the bijections.

(1)
⋂

ω∈Ω Yω.
(2) {

⋂
ω∈Ω Yω

λ }λ∈Λ.
(3) {

⋂
ω∈Ω Yω(x)}x∈X .

(4)
⋂

ω∈Ω Fω.
(5) {

⋂
ω∈Ω Fω

λ }λ∈Λ.
(6) {

⋂
ω∈Ω Fω(x)}x∈X.

Proof. This follows from Proposition 8.13. �

We demonstrate a calculation of the prelocalizing subcategories by using The-
orem 9.14.

Example 9.17. Let k be an algebraically closed field, and consider the poly-
nomial ring k[x] with a variable x. For each a ∈ k, let pa := (x− a) ⊂ k[x] and
ma := pak[x]pa

. Then

Spec k[x] = { pa | a ∈ k } ∪ {0}.

Since k[x]pa
is a discrete valuation ring, the set of ideals of k[x]pa

is

{mi
a | i ∈ Z≥0 } ∪ {0},
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where m0
a = k[x]pa

. For each n ∈ Z≥0, define the filter Fn
a of k[x]pa

by

Fn
a = {mi

a | 0 ≤ i ≤ n },

and let
F∞

a := {mi
a | i ∈ Z≥0 }, Fa := {mi

a | i ∈ Z≥0 } ∪ {0}.

Then the set of filters of k[x]pa
is

{Fn
a | n ∈ Z≥0 ∪ {∞}} ∪ {Fa}.

Since k[x]0 = k(x) is a field, the set of the filters of k(x) consists of F∞ = {k(x)}
and F = {0, k(x)}. For each a ∈ k and n ∈ Z≥0 ∪ {∞}, (Fn

a )0 = F∞, and
(Fa)0 = F . Hence the set
{
({Fr(a)

a }a∈k, F
∞)

∣∣∣∣∣ r = {r(a)}a∈k ∈
∏

a∈k

(Z≥0 ∪ {∞})

}
∪ {({Fa}a∈k, F)}

is the set of families of filters which are compatible with localizations. By
Theorem 9.14, the set of prelocalizing subcategories of Mod k[x] is

{
Yr

∣∣∣∣∣ r ∈
∏

a∈k

(Z≥0 ∪ {∞})

}
∪ {Mod k[x]},

where

Yr = {M ∈ Mod k[x] | Mpa
m

r(a)
a = 0 for each a ∈ k with r(a) 6= ∞}

for each r ∈
∏

a∈k(Z≥0 ∪ {∞}).

10. Classification of localizing subcategories

In this section, we investigate extensions of prelocalizing subcategories (Defi-
nition 4.1 (1)) in terms of local filters and classify the localizing subcategories
of QCohX for a locally noetherian scheme X . The classification is given as a
restriction of Theorem 9.14. We start with recalling Gabriel’s classification of
the localizing subcategories of ModΛ for a ring Λ.

Definition 10.1. Let Λ be a ring.

(1) For prelocalizing filters F1 and F2 of right ideals of Λ, define the product
F1 ∗ F2 as follows: L ∈ F1 ∗ F2 if and only if there exists L1 ∈ F1

satisfying a−1L ∈ F2 for every a ∈ L1.
(2) A prelocalizing filter F of right ideals of Λ is called a Gabriel filter if

F ∗ F ⊂ F holds.

Proposition 10.2. Let Λ be a ring. If F1 and F2 are prelocalizing filters of
right ideals of Λ, then F1 ⊂ F1 ∗ F2, and F2 ⊂ F1 ∗ F2.

Proof. Let L1 ∈ F1. Then a−1L1 = Λ ∈ F2 for each a ∈ L1. This shows that
F1 ⊂ F1 ∗ F2.
Let L2 ∈ F2. Then Λ ∈ F1, and a−1L2 ∈ F2 for each a ∈ Λ. This shows that
F2 ⊂ F1 ∗ F2. �

Theorem 10.3 ([Gab62, p. 412]). Let Λ be a ring.
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(1) For each i = 1, 2, let Yi be a prelocalizing subcategory of ModΛ, and
let Fi be the prelocalizing filter of right ideals of Λ corresponding to Fi

by the bijection in Theorem 9.3. Then Y1 ∗ Y2 corresponds to F2 ∗ F1

by the bijection.
(2) The bijection in Theorem 9.3 restricts to a bijection

{ localizing subcategories of ModΛ } → {Gabriel filters of right ideals of Λ }.

Proof. [Ste75, Theorem VI.5.1]. �

For a commutative ring R, we say that a filter F of R is closed under products
if I1, I2 ∈ F implies I1I2 ∈ F . In the case of a commutative noetherian ring,
products of filters and Gabriel filters are characterized as follows.

Proposition 10.4. Let R be a commutative noetherian ring.

(1) Let F1 and F2 be filters of R. Then

F1 ∗ F2 = { I ⊂ R in ModR | I1I2 ⊂ I for some I1 ∈ F1, I2 ∈ F2 }.

(2) Let F be a filter of R. Then F is a Gabriel filter if and only if F is
closed under products.

Proof. (1) Let I ∈ F1 ∗ F2. Then there exists I1 ∈ F1 such that a−1I ∈ F2

for each a ∈ I1. Since R is noetherian, there exist b1, . . . , bn ∈ R such that
I1 = b1R + · · ·+ bnR. Let I2 := b−1

1 I ∩ · · · ∩ b−1
n I. Then I2 ∈ F2, and

I1I2 = b1I2 + · · ·+ bnI2 ⊂ b1(b
−1
1 I) + · · ·+ bn(b

−1
n I) ⊂ I.

Conversely, let J1 ∈ F1 and J2 ∈ F2. For each a ∈ J1, we have J2 ⊂ a−1J1J2,
and hence a−1J1J2 ∈ F2. This implies that J1J2 ∈ F1 ∗ F2.
(2) This follows from (1). �

For a commutative noetherian ring R, the classification of the localizing sub-
categories of ModR is stated as follows.

Corollary 10.5. Let R be a commutative noetherian ring. Then the bijection
in Corollary 9.4 restricts to a bijection

{ localizing subcategories of ModR } → {filters of R closed under products }.

Proof. This follows from Theorem 10.3 (2) and Proposition 10.4 (2). �

In the rest of this section, letX be a locally noetherian scheme, and let {Uλ}λ∈Λ

be an open affine basis of X . For an object M in QCohX and a subobject I of
OX , the subobject MI of M is defined as the image of the canonical morphism
M ⊗OX

I → M in QCohX .

Definition 10.6.

(1) Let F1 and F2 be local filters of OX . We define the product F1 ∗F2 by

F1 ∗ F2 = 〈 I1I2 ⊂ OX in QCohX | Ii ∈ Fi for each i = 1, 2 〉locfilt.

(2) We say that a local filter F is closed under products if F ∗F ⊂ F holds.
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Note that a local filter F is closed under products if and only if I1, I2 ∈ F
implies I1I2 ∈ F .
Products of local filters of OX commute with the restriction to an open affine
subscheme and the localization at a point.

Lemma 10.7. Let Fi be a local filter of OX for each i = 1, 2.

(1) For every λ ∈ Λ,

(F1 ∗ F2)|Uλ
= F1|Uλ

∗ F2|Uλ
.

(2) For every x ∈ X,

(F1 ∗ F2)x = (F1)x ∗ (F2)x.

Proof. (1) Let J ∈ (F1 ∗ F2)|Uλ
. Then there exists I ∈ F1 ∗ F2 such that

I|Uλ
= J . For each x ∈ Uλ, there exist an open affine neighborhood U of x in

X and I1 ∈ F1 and I2 ∈ F2 such that (I1I2)|U ⊂ I|U . Hence

(I1|Uλ
I2|Uλ

)|Uλ∩U = (I1I2)|Uλ∩U ⊂ I|Uλ∩U = J |Uλ∩U .

This shows that J ∈ F1|Uλ
∗ F2|Uλ

.
Conversely, assume J ∈ F1|Uλ

∗ F2|Uλ
. Then for each x ∈ Uλ, there exist

an open affine neighborhood V of x in Uλ and J1 ∈ F1|Uλ
and J2 ∈ F2|Uλ

such that (J1J2)|V ⊂ J |V . For each i = 1, 2, there exists Ii ∈ Fi such that
Ii|Uλ

= Ji. Then (I1I2)|Uλ
∈ (F1 ∗ F2)|Uλ

, and

((I1I2)|Uλ
)|V = (J1J2)|V ⊂ J |V .

Since (F1 ∗ F2)|Uλ
is a local filter by Proposition 9.9 (1) and Proposition 9.7,

we obtain J ∈ (F1 ∗ F2)|Uλ
.

(2) This can be shown similarly to (1). �

We describe extensions of prelocalizing subcategories of QCohX in terms of
products of local filters.

Theorem 10.8. Assume that the following elements correspond to each other
by the bijections in Theorem 9.14 for each i = 1, 2.

(1) Yi.
(2) {Yi

λ}λ∈Λ.

(3) {Yi(x)}x∈X.

(4) F i.
(5) {F i

λ}λ∈Λ.

(6) {F i(x)}x∈X .

Then the following elements correspond to each other by the bijections.

(1) Y1 ∗ Y2.
(2) {Y1

λ ∗ Y2
λ}λ∈Λ.

(3) {Y1(x) ∗ Y2(x)}x∈X.

(4) F1 ∗ F2.
(5) {F1

λ ∗ F2
λ}λ∈Λ.

(6) {F1(x) ∗ F2(x)}x∈X.

Proof. This follows from Theorem 8.16, Theorem 10.3 (1), and Lemma 10.7.
�

Documenta Mathematica 20 (2015) 1403–1465



1454 Ryo Kanda

Corollary 10.9. The bijections in Theorem 9.14 restrict to bijections between
following sets.

(1) The set of localizing subcategories of QCohX.
(2) The set of families {Xλ ⊂ QCohUλ}λ∈Λ of localizing subcategories such

that Xλ|Uµ
= Xµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.

(3) The set of families {X (x) ⊂ ModOX,x}x∈X of localizing subcategories

such that X (y)x = X (x) for each x, y ∈ X with y ∈ {x}.
(4) The set of local filters of OX closed under products.
(5) The set of families {Fλ}λ∈Λ, where Fλ is a filter of OUλ

closed under
products for each λ ∈ Λ, such that Fλ|Uµ

= Fµ for each λ, µ ∈ Λ with
Uµ ⊂ Uλ.

(6) The set of families {F(x)}x∈X, where F(x) is a filter of OX,x closed
under products for each x ∈ X, such that F(y)x = F(x) for each

x, y ∈ X with y ∈ {x}.

Proof. This follows from Theorem 10.8. �

We apply Corollary 10.9 to Example 9.17.

Example 10.10. In the setting of Example 9.17,

Fm
a ∗ Fn

a = Fm+n
a

for each a ∈ k and m,n ∈ Z≥0 ∪ {∞}. Hence by Corollary 10.9, the set of
localizing subcategories of Mod k[x] is

{
Yr

∣∣∣∣∣ r ∈
∏

a∈k

{0,∞}

}
∪ {Mod k[x]}.

In Theorem 7.8, we showed that there exists a bijection between the localizing
subcategories of QCohX and the specialization-closed subsets of X . For a local
filter F of OX closed under products, the corresponding specialization-closed
subset of X is {x ∈ X | Fx 6= {OX,x} }.
Prime localizing subcategories of QCohX are characterized in terms of local
filters as follows.

Theorem 10.11. Let F be a local filter of OX closed under products. Then the
following assertions are equivalent.

(1) By the bijection in Theorem 9.14, the local filter F corresponds to a
prime localizing subcategory of QCohX.

(2) There exists x ∈ X such that

F = { I ⊂ OX in QCohX | Ix = OX,x }.

(3) For each family {Fω}ω∈Ω of local filters of OX closed under products
satisfying F =

⋂
ω∈Ω Fω, there exists ω ∈ Ω such that F = Fω.

(4) For each family {Fω}ω∈Ω of local filters of OX satisfying F =⋂
ω∈Ω Fω, there exists ω ∈ Ω such that F = Fω.

Proof. This follows from Theorem 8.18. �
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11. Classification of closed subcategories

In this section, we investigate the closed subcategories of QCohX for a locally
noetherian scheme X , whose definition is as follows.

Definition 11.1. Let A be a Grothendieck category. A prelocalizing subcat-
egory X of A is called a closed subcategory of A if X is closed under arbitrary
direct products.

Note that every Grothendieck category has arbitrary direct products ([Pop73,
Corollary 3.7.10]).
Closed subcategories are characterized by Proposition 4.3 and the following
result.

Proposition 11.2. Let A be a Grothendieck category (or more generally, an
abelian category admitting arbitrary direct products), and let Y be a full sub-
category of A closed under subobjects and quotient objects. Then the following
assertions are equivalent.

(1) Y is closed under arbitrary direct products.
(2) The inclusion functor Y →֒ A has a left adjoint.
(3) For each object M in A, there exists a smallest subobject L of M sat-

isfying M/L ∈ Y.

Proof. Apply Proposition 4.3 to the opposite category of A. �

Note that for a Grothendieck category, every full subcategory which is closed
under subobjects and arbitrary direct products is also closed under arbitrary
direct sums.
For a ring Λ, Rosenberg [Ros95] showed that there exists a bijection between
the closed subcategories of ModΛ and the two-sided ideals of Λ. This result
can be unified into Theorem 9.3 as follows.

Theorem 11.3 (Gabriel [Gab62, Lemma V.2.1] and Rosenberg [Ros95, Propo-
sition III.6.4.1]). Let Λ be a ring. Then there exist bijections between the fol-
lowing sets.

(1) The set of closed subcategories of ModΛ.
(2) The set of principal prelocalizing filters of right ideals of Λ.
(3) The set of two-sided ideals of Λ.

The bijection between (1) and (2) is induced by the bijection in Theorem 9.3.
The bijection between (1) and (3) is given by

(1) → (3) : Y 7→
⋂

M∈Y

AnnΛ(M),

(3) → (1) : I 7→ {M ∈ ModΛ | MI = 0 } =

〈
Λ

I

〉

preloc

.

Proof. We show that for each right ideal L of Λ, the principal filter F(L) of
right ideals of Λ is prelocalizing if and only if L is a two-sided ideal of Λ. Assume
that F(L) is prelocalizing. Then for each a ∈ Λ, we have a−1L ∈ F(L). This
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implies L ⊂ a−1L, and hence aL ⊂ L. Therefore L is a two-sided ideal of
Λ. The converse is obvious. The bijection between (2) and (3) follows from
Remark 9.2.
Let Y be a prelocalizing subcategory of A, and let F be the corresponding
prelocalizing filter of right ideals of Λ. If Y is a closed subcategory of A, then
by Proposition 11.2, there exists a smallest element of F . Hence F is principal.
Conversely, assume that F is principal. Then F = F(I) for some two-sided
ideal I of Λ. Since

Y = {M ∈ ModΛ | I ⊂ AnnΛ(x) for each x ∈ M }

= {M ∈ ModΛ | MI = 0 },

the prelocalizing subcategory Y of A is also closed under arbitrary direct prod-
ucts. �

The aim of this section is to generalize Theorem 11.3 to a locally noetherian
scheme X . Let {Uλ}λ∈Λ be an open affine basis of X .
We show a lemma on gluing of subobjects on open affine subschemes.

Lemma 11.4. Let M be an object in QCohX, and let Lλ be a subobject of M |Uλ

for each λ ∈ Λ. Assume that Lλ|Uµ
= Lµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.

Then there exists a unique subobject L of M such that L|Uλ
= Lλ for each

λ ∈ Λ.

Proof. (Existence) Define a subsheaf L of M by

L(U) = { s ∈ M(U) | s|Uλ
∈ Lλ(Uλ) for each λ ∈ Λ with Uλ ⊂ U }

for each open subset U of X . It is straightforward to show that L is a subsheaf
of M satisfying L|Uλ

= Lλ for each λ ∈ Λ. In particular, the sheaf L is
quasi-coherent.
(Uniqueness) Let L′ be a subobject of M in QCohX such that L′|Uλ

= Lλ for
each λ ∈ Λ. Then

L′(U) = { s ∈ M(U) | s|Uλ
∈ L′(Uλ) for each λ ∈ Λ with Uλ ⊂ U }

= { s ∈ M(U) | s|Uλ
∈ Lλ(Uλ) for each λ ∈ Λ with Uλ ⊂ U }

for each open subset U of X . �

The following lemma shows that for a principal filter of OX , its restriction to an
open affine subscheme and its localization at a point are also principal filters.

Lemma 11.5. Let I be a subobject of OX .

(1) For every λ ∈ Λ, we have F(I)|Uλ
= F(I|Uλ

).
(2) For every x ∈ X, we have F(I)x = F(Ix).

Proof. (1) For each J ′ ∈ F(I)|Uλ
, there exists J ∈ F(I) such that J |Uλ

= J ′.
Since I ⊂ J , it holds that I|Uλ

⊂ J |Uλ
= J ′. This shows that F(I)|Uλ

⊂
F(I|Uλ

).
It is follows from I ∈ F(I) that I|Uλ

∈ F(I)|Uλ
. Since F(I)|Uλ

is a filter of
OUλ

by Proposition 9.9 (1), we have F(I)|Uλ
⊃ F(I|Uλ

).
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(2) This is shown similarly by using Proposition 9.9 (2). �

Conversely, if the restriction of a local filter ofOX to each open affine subscheme
Uλ is principal, then the local filter is principal.

Lemma 11.6. Let F be a local filter of OX . Then F is a principal filter if and
only if the filter F|Uλ

of OUλ
is principal for every λ ∈ Λ.

Proof. If F is a principal filter, then F|Uλ
is a principal filter for every λ ∈ Λ

by Lemma 11.5 (1).
Assume that there exists a subobject Iλ of OUλ

such that F|Uλ
= F(Iλ) for

each λ ∈ Λ. For each λ, µ ∈ Λ with Uµ ⊂ Uλ,

F(Iλ|Uµ
) = F(Iλ)|Uµ

= (F|Uλ
)|Uµ

= F|Uµ
= F(Iµ).

Hence Iλ|Uµ
= Iµ. By Lemma 11.4, there exists a subobject I of OX such that

I|Uλ
= Iλ for each λ ∈ Λ. Since F(I)|Uλ

= F(I|Uλ
) = F(Iλ) = Fλ for each

λ ∈ Λ, it follows from Lemma 9.13 (2) that F(I) = F . �

Remark 11.7. Let F be a local filter of OX . Even if Fx is a principal filter of
OX,x for each x ∈ X , the local filter F is not necessarily a principal filter. A
counter-example is given in Example 11.12.

We characterize closed subcategories of QCohX in terms of local filters.

Lemma 11.8. Let Y be a prelocalizing subcategory of QCohX, and let F be
the corresponding local filter of OX by the bijection in Theorem 9.14. Then
Y is a closed subcategory of QCohX if and only if F is a principal filter. If
F = F(I) for a subobject I of OX , then I is the smallest subobject of OX

satisfying OX/I ∈ Y, and

Y = {M ∈ QCohX | MI = 0 }.

Proof. Assume that Y is a closed subcategory of QCohX . Then by Propo-
sition 11.2, there exists a smallest subobject I of OX satisfying OX/I ∈ Y.
Hence F = F(I).
Conversely, assume that F = F(I) for some subobject I of OX . Then for each
λ ∈ Λ, we have F|Uλ

= F(I|Uλ
) by Lemma 11.5 (1), and hence

Y|Uλ
= {M ′ ∈ QCohUλ | M ′(I|Uλ

) = 0 }

by Theorem 11.3. By Theorem 9.14,

Y = {M ∈ QCohX | M |Uλ
∈ Y|Uλ

for every λ ∈ Λ }

= {M ∈ QCohX | M |Uλ
I|Uλ

= 0 for every λ ∈ Λ }

= {M ∈ QCohX | MI = 0 }.

For each object M in QCohX , the subobject MI of M is the smallest among
the subobjects L of M satisfying (M/L)I = 0. Therefore Y is a closed subcat-
egory of QCohX . �
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As in Remark 11.7, the same type of theorem as Corollary 10.9 does not hold
for the closed subcategories. For this reason, we use the characterization in
Proposition 8.14 in order to obtain a generalization to the closed subcategories.

Theorem 11.9. Let X be a locally noetherian scheme, and let {Uλ}λ∈Λ be an
open affine basis of X. Then there exist bijections between the following sets.

(1) The set of closed subcategories of QCohX.
(2) The set of families {Yλ ⊂ QCohUλ}λ∈Λ of closed subcategories such

that Yλ|Uµ
= Yµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.

(3) The set of families {Y(x) ⊂ ModOX,x}x∈X of closed subcategories
such that for each x ∈ X, there exist λ ∈ Λ with x ∈ Uλ and a closed
subcategory Y ′ of QCohUλ satisfying Y ′

y = Y(y) for each y ∈ Uλ.
(4) The set of principal filters of OX .
(5) The set of families {Fλ}λ∈Λ, where Fλ is a principal filter of OUλ

for
each λ ∈ Λ, such that Fλ|Uµ

= Fµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.
(6) The set of families {F(x)}x∈X , where F(x) is a principal filter of OX,x

for each x ∈ X, such that for each x ∈ X, there exist λ ∈ Λ with x ∈ Uλ

and a principal filter F ′ of OUλ
satisfying F ′

y = F(y) for each y ∈ Uλ.
(7) The set of subobjects of OX .
(8) The set of families {Iλ}λ∈Λ, where Iλ is a subobject of OUλ

for each
λ ∈ Λ, such that Iλ|Uµ

= Iµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.
(9) The set of families {I(x)}x∈X, where I(x) is an ideal of OX,x for each

x ∈ X, such that for each x ∈ X, there exist λ ∈ Λ with x ∈ Uλ and a
subobject I ′ of OUλ

satisfying I ′y = I(y) for each y ∈ Uλ.

The bijections between the sets (1), . . . , (6) are induced by Theorem 9.14.
The bijections (4)↔(7), (5)↔(8), and (6)↔(9) are defined by the bijection
L 7→ F(L) in Remark 9.2.

Proof. This follows from Theorem 9.14, Theorem 11.3, Lemma 11.6, and
Lemma 11.8. �

We establish a bijection between the closed subcategories of QCohX and the
closed subschemes of X by using the following fact.

Proposition 11.10. There is a bijection

{ subobjects of OX } → { closed subschemes of X }

given by I 7→ (Supp(OX/I), i−1(OX/I)), where i : Supp(OX/I) →֒ X is the
immersion. For each closed subscheme Y of X, the corresponding subobject I
of OX is given by the exact sequence

0 → I → OX → i∗OY → 0,

where i : Y →֒ X is the immersion, and OX → i∗OY is the canonical morphism.

Proof. [Har77, Proposition II.5.9]. �

Theorem 11.11. Let X be a locally noetherian scheme. Then there exists a
bijection between
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(1) The set of closed subcategories of QCohX.
(2) The set of closed subschemes of X.

For each closed subscheme Y of X with the immersion i : Y →֒ X, the functor
i∗ : QCohY → QCohX is fully faithful and induces an equivalence between
QCohY and the closed subcategory of QCohX corresponding to Y .

Proof. The bijection is obtained by Theorem 11.9 and Proposition 11.10. By
[Gro60, 0.5.1.4], [Gro60, Proposition I.5.5.1 (i)], and [Gro60, Corollary I.9.2.2
(a)], we have the functor i∗ : QCohX → QCohY and its right adjoint
i∗ : QCohY → QCohX . It is straightforward to show that the counit mor-
phism i∗i∗ → 1QCohY is an isomorphism. Hence i∗ is fully faithful. An object
M in QCohX is isomorphic to the image of an object in QCohY by i∗ if and
only if the canonical morphism M → i∗i

∗M is an isomorphism. Let I be the
subobject of OX corresponding to Y . Since we have the exact sequence

0 → MI → M → i∗i
∗M → 0,

M → i∗i
∗M is an isomorphism if and only if MI = 0. Therefore the claim

follows. �

Example 11.12. We follow the notations in Example 9.17 and Example 10.10.
Each nonzero proper ideal I of k[x] is generated by an element of the form
(x − a1)

r1 · · · (x − al)
rl , where l ∈ Z≥1, a1, . . . , al are distinct elements of k,

and r1, . . . , rl ∈ Z≥1. We have

Ipa
=

{
mri

ai
if a = ai for some i ∈ {1, . . . , l}

k[x]pa
if a ∈ k \ {a1, . . . , al}

.

For each r ∈
∏

a∈k(Z≥0 ∪ {∞}), the object k[x]/I belongs to Yr if and only if
ri ≤ r(ai) for every i = 1, . . . , l. Hence the corresponding filter of k[x] to Yr is




(x− a1)

r1 · · · (x− al)
rl ⊂ k[x]

∣∣∣∣∣∣∣

l ∈ Z≥1, a1, . . . , al ∈ k (distinct)

r1, . . . , rl ∈ Z≥1

ri ≤ r(ai) for each i = 1, . . . , l





∪ {k[x]}.

This is equal to

〈 (x− a)r ⊂ k[x] | a ∈ k, r ∈ Z≥1, r ≤ r(a) 〉locfilt,

and we have the description

Yr =

〈
k[x]

(x− a)r

∣∣∣∣ a ∈ k, r ∈ Z≥1, r ≤ r(a)

〉

preloc

.

By Theorem 11.9, the set of closed subcategories of Mod k[x] is
{
Yr

∣∣∣∣∣ r ∈
⊕

a∈k

Z≥0

}
∪ {Mod k[x]}.

Let r ∈ (
∏

a∈k Z≥0) \ (
⊕

a∈k Z≥0). Then for every p ∈ Spec k[x], the prelo-
calizing subcategory (Yr)p of Mod k[x]p is a closed subcategory, and Fp is a
principal filter of k[x]p. However, the prelocalizing subcategory Yr of Modk[x]

Documenta Mathematica 20 (2015) 1403–1465



1460 Ryo Kanda

is not a closed subcategory, and the corresponding local filter of k[x] is not a
principal filter.

12. Classification of bilocalizing subcategories

Let X be a locally noetherian scheme. We investigate extensions of closed
subcategories. The following lemma shows that products of principal filters are
also principal.

Lemma 12.1. Let I1 and I2 be subobjects of OX . Then F(I1)∗F(I2) = F(I1I2).

Proof. This follows from Proposition 9.6. �

Extensions of closed subcategories are described in terms of products of prin-
cipal filters.

Theorem 12.2. Assume that the following elements correspond to each other
by the bijections in Theorem 11.9 for each i = 1, 2.

(1) Yi.
(2) {Yi

λ}λ∈Λ.

(3) {Yi(x)}x∈X.

(4) F i.
(5) {F i

λ}λ∈Λ.

(6) {F i(x)}x∈X.

(7) Ii.
(8) {Iiλ}λ∈Λ.

(9) {Ii(x)}x∈X .

Then the following elements correspond to each other by the bijections.

(1) Y1 ∗ Y2.
(2) {Y1

λ ∗ Y2
λ}λ∈Λ.

(3) {Y1(x) ∗ Y2(x)}x∈X.

(4) F1 ∗ F2.
(5) {F1

λ ∗ F2
λ}λ∈Λ.

(6) {F1(x) ∗ F2(x)}x∈X.

(7) I1I2.
(8) {I1λI

2
λ}λ∈Λ.

(9) {I1(x)I2(x)}x∈X .

Proof. This follows from Theorem 10.8 and Lemma 12.1. �

As a corollary of Theorem 12.2, we obtain a classification of the bilocalizing
subcategories of QCohX . They are defined as follows.

Definition 12.3. Let A be a Grothendieck category. A prelocalizing subcat-
egory X of A is called a bilocalizing subcategory of A if X is both localizing
and closed.

Bilocalizing subcategories have the following characterization.

Proposition 12.4. Let A be a Grothendieck category, and let X be a localizing
subcategory of A. Then X is a bilocalizing subcategory of A if and only if the
canonical functor A → A/X has a left adjoint.
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Proof. [Pop73, Theorem 4.21.1]. �

For a ring Λ, the bilocalizing subcategories of ModΛ are classified by the idem-
potent two-sided ideals of Λ.

Definition 12.5. Let Λ be a ring. A two-sided ideal I of Λ is called idempotent
if I2 = I holds.

Proposition 12.6. Let Λ be a ring.

(1) For each i = 1, 2, let Yi be a closed subcategory of ModΛ, and let Ii be
the corresponding two-sided ideal of Λ by the bijection in Theorem 11.3.
Then Y1 ∗ Y2 corresponds to I2I1 by the bijection.

(2) The bijection in Theorem 11.3 restricts to a bijection

{ bilocalizing subcategories of ModΛ } → { idempotent two-sided ideals of Λ }.

Proof. (1) For two-sided ideals I1 and I2 of Λ, it is straightforward to show
that F(I1) ∗ F(I2) = F(I1I2). Therefore the claim follows from Theorem 10.3
(1).
(2) This follows from (1). �

A subobject I of OX is called idempotent if I2 = I holds. We classify the
bilocalizing subcategories of QCohX as follows.

Corollary 12.7. The bijections in Theorem 11.9 restrict to bijections between
following sets.

(1) The set of bilocalizing subcategories of QCohX.
(2) The set of families {Yλ ⊂ QCohUλ}λ∈Λ of bilocalizing subcategories

such that Yλ|Uµ
= Yµ for each λ, µ ∈ Λ with Uµ ⊂ Uλ.

(3) The set of families {Y(x) ⊂ ModOX,x}x∈X of bilocalizing subcategories
such that for each x ∈ X, there exist λ ∈ Λ with x ∈ Uλ and a bilocal-
izing subcategory Y ′ of QCohUλ satisfying Y ′

y = Y(y) for each y ∈ Uλ.
(4) The set of principal filters of OX closed under products.
(5) The set of families {Fλ}λ∈Λ, where Fλ is a principal filter of OUλ

closed under products for each λ ∈ Λ, such that Fλ|Uµ
= Fµ for each

λ, µ ∈ Λ with Uµ ⊂ Uλ.
(6) The set of families {F(x)}x∈X , where F(x) is a principal filter of OX,x

closed under products for each x ∈ X, such that for each x ∈ X, there
exist λ ∈ Λ with x ∈ Uλ and a principal filter of subobjects F ′ of OUλ

which is closed under products and satisfies F ′
y = F(y) for each y ∈ Uλ.

(7) The set of idempotent subobjects of OX .
(8) The set of families {Iλ}λ∈Λ, where Iλ is an idempotent subobjects of

OUλ
for each λ ∈ Λ, such that Iλ|Uµ

= Iµ for each λ, µ ∈ Λ with
Uµ ⊂ Uλ.

(9) The set of families {I(x)}x∈X , where I(x) is an idempotent ideal of
OX,x for each x ∈ X, such that for each x ∈ X, there exist λ ∈ Λ with
x ∈ Uλ and an idempotent subobject I ′ of OUλ

satisfying I ′y = I(y) for
each y ∈ Uλ.
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Proof. This follows from Theorem 12.2. �

Example 12.8. In the setting of Example 11.12, the set of bilocalizing subcat-
egories of Modk[x] is

{Yr | r = {0}a∈k } ∪ {Mod k[x]} = {0, Mod k[x]}.

We show that the sets in Corollary 12.7 also bijectively correspond to the set
of open closed subsets of X . We start with the following well-known fact on a
commutative noetherian ring.

Lemma 12.9. Let R be a commutative noetherian ring, and let I be an idem-
potent ideal of R. Then there exists an ideal J of R such that R = I ⊕ J in
ModR. In particular, the subset Supp(R/I) of SpecR is open and closed.

Proof. By Nakayama’s lemma ([Mat89, Theorem 2.2]), there exists a ∈ R such
that aI = 0 and 1− a ∈ I. Then a2 = a and (1− a)R = I. By letting J = aR,
we obtain R = I ⊕ J , and SpecR is the disjoint union of the closed subsets
V (I) and V (J) determined by I and J , respectively. �

The idempotence of a subobject of OX is characterized in terms of the corre-
sponding closed subscheme.

Lemma 12.10. Let X be a locally noetherian scheme. Let I be a subobject of
OX , and let Y be the corresponding closed subscheme of X by the bijection
in Proposition 11.10. Then I is idempotent if and only if Y is also an open
subscheme of X.

Proof. Assume that I is idempotent. For each open affine subscheme U of
X , the subobject I|U of OU is idempotent. By Lemma 12.9, the subset
Supp(OU/I|U ) of U is open and closed. Since

Supp
OU

I|U
= U ∩ Supp

OX

I
,

the underlying space Supp(OX/I) of Y is an open subset of X . For each y ∈ Y ,
the ideal Iy of OX,y is idempotent, and (OX/I)y 6= 0. Hence Iy = 0. It follows
that OY = (OX/I)|Y = OX |Y .
Conversely, assume that Y is also an open subscheme. Let i : Y →֒ X be the
immersion. There is an exact sequence

0 → I → OX → i∗(OX |Y ) → 0.

For each x ∈ X ,

Ix =

{
0 if x ∈ Y

OX,x if x /∈ Y
,

and hence Ix is idempotent. It follows that I is idempotent. �

Corollary 12.11. Let X be a locally noetherian scheme. Then there exist
bijections between the following sets.

(1) The set of bilocalizing subcategories of QCohX.
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(2) The set of idempotent subobjects of OX .
(3) The set of closed subschemes of X which are also open subschemes.
(4) The set of subsets of X which are open and closed.

The bijection (1)↔(2) is in Corollary 12.7. The bijection (2)↔(3) is induced by
the bijection in Proposition 11.10. For each element Y of (3), the corresponding
element of (4) is the underlying space of Y .

Proof. This follows from Corollary 12.7 and Lemma 12.10. �

By using the classification of the prelocalizing (resp. localizing, closed) subcat-
egories of Mod k[x], we can obtain a classification of the prelocalizing (resp.
localizing, closed) subcategories for the projective line.

Example 12.12. Let k be an algebraically closed field, and consider the pro-
jective line X = P1

k. Denote by Φ the set of closed points in X . For each
r ∈

∏
x∈Φ(Z≥0 ∪{∞}), we define a prelocalizing subcategory Yr of QCohX by

Yr = {M ∈ QCohX | Mxm
r(x)
x = 0 for each x ∈ Φ with r(x) 6= ∞}.

Then by the main results (Theorem 9.14, Corollary 10.9, Theorem 11.9, and
Corollary 12.7) and the examples on Spec k[x] (Example 9.17, Example 10.10,
Example 11.12, and Example 12.8), the set of prelocalizing subcategories of
QCohX is {

Yr

∣∣∣∣∣ r ∈
∏

x∈Φ

(Z≥0 ∪ {∞})

}
∪ {QCohX},

the set of localizing subcategories of QCohX is
{
Yr

∣∣∣∣∣ r ∈
∏

x∈Φ

{0,∞}

}
∪ {QCohX},

the set of closed subcategories of QCohX is
{
Yr

∣∣∣∣∣ r ∈
⊕

x∈Φ

Z≥0

}
∪ {QCohX},

and the set of bilocalizing subcategories of QCohX is

{Yr | r = {0}x∈Φ } ∪ {QCohX} = {0, QCohX}.

Example 12.13. For each i ∈ Z, let ki be a field, and let Ui := Spec ki.
Consider the disjoint union X :=

∐
i∈Z

Ui. For each subset B of Z, define a
prelocalizing subcategory YB of QCohX by

YB = {M ∈ QCohX | M |Ui
= 0 for each i ∈ Z \B }.

Then by Theorem 9.14, Corollary 10.9, Theorem 11.9, and Corollary 12.7, the
set

{YB | B ⊂ Z }

is the set of prelocalizing subcategories of QCohX , and every prelocalizing
subcategory of QCohX is bilocalizing. Therefore every local filter of OX is a
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principal filter. For each subset B of Z, let IB be the idempotent subobject of
OX corresponding to the bilocalizing subcategory YB . Then the filter

F = { IB | Z \B is a finite set }

of OX is not a local filter since F is not a principal filter.
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