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1. INTRODUCTION

Let A and B be C*-algebras. A correspondence from A to B is a Hilbert
B-module £ with a nondegenerate *-homomorphism from A to the C*-algebra
of adjointable operators on £. It is called proper if the left A-action is by
compact operators, A — K(&). If £4p and Ep¢ are correspondences from A
to B and from B to C, respectively, then £4p ®p Epc is a correspondence
from A to C.

A triangle of correspondences consists of three C*-algebras A, B, C, corre-
spondences £4p, £ac and Egc between them, and an isomorphism of corre-
spondences u: E4p ®p Epc — Eac; that is, u is a unitary operator of Hilbert
C-modules that also intertwines the left A-module structures. Such triangles
appear naturally if we study the correspondence bicategory of C*-algebras in-
troduced in [12].

This article started with the observation that a correspondence triangle with
A = B and £gc = Eac is the same as a Cuntz—Pimsner covariant rep-
resentation of the correspondence £ := E£4p by adjointable operators on
F :=Epc = €ac, provided £4p is proper. Thus we get to the Cuntz—Pimsner
algebra directly, without going through the Cuntz—Toeplitz algebra.
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This is limited, however, to proper correspondences and the absolute Cuntz—
Pimsner algebra; that is, we cannot treat the relative Cuntz—Pimsner algebras
introduced by Muhly and Solel [59] and Katsura [42]. The relative versions are
most relevant if the left action map A — K(&) is not faithful. Then the map
from A to the Cuntz—Pimsner algebra is not faithful, and the latter may even
be zero.

Our observation about the Cuntz—Pimsner algebra of a single proper correspon-
dence has great conceptional value because it exhibits these (absolute) Cuntz—
Pimsner algebras as a special case of a general construction, namely, colimits
in the correspondence bicategory, see [2]. Other examples of such colimits are
crossed products for group and crossed module actions, inductive limits for
chains of *-homomorphisms, and Cuntz—Pimsner algebras for proper essential
product systems.

In this article, we apply our observation on the Cuntz—Pimsner covariance
condition to the case of Cuntz—Pimsner algebras for proper essential product
systems over monoids. Much less is known about their structure. Follow-
ing Fowler [33], they are always defined and treated through the corresponding
Cuntz—Toeplitz algebra. Many articles never get farther than the Nica—Toeplitz
algebra. We shall prove strong results about the structure of Cuntz—Pimsner
algebras of proper essential product systems over Ore monoids. Commutative
monoids and groups are Ore. So are extensions of commutative monoids by
groups such as the monoid M,,(Z)* of integer matrices with non-zero determi-
nant, with multiplication as group structure: this is an extension of the group
Gl,,(Z) by the commutative monoid (N>1,-). Thus most of the semigroups cur-
rently being treated in the operator algebras literature are Ore monoids. The
main exception are free monoids, which are not Ore.

Let P be a cancellative Ore monoid and let G be its group completion. Let A
be a C*-algebra and let (€;)pcp be a proper, essential product system over P
with unit fibre & = A; that is, the left action of A on each &, for p € P is by a
nondegenerate *-homomorphism A — K(&,). The Ore conditions for P ensure
that the diagram formed by the C*-algebras K(&,) for p € P with the maps

K(&p) — K(& ®a &) 2 K(Epg)

for q,p € P is indexed by a directed set. Hence the colimit for this diagram
behaves like an inductive limit; it may indeed be rewritten as an inductive
limit of a chain of maps K(&,,) = K(&p,,,) for a suitable map N — P if P is
countable. Let O; be the inductive limit of this diagram of C*-algebras. We
construct a Fell bundle (O,)4ee over G with O as its unit fibre, such that its
section algebra is the Cuntz—Pimsner algebra O of the given product system.
Thus the construction of the Cuntz—Pimsner algebra of a product system over P
has two steps: inductive limits and Fell bundle section algebras.

After putting this article on the arxiv, we learnt of the preprint [49] by
Kwagdniewski and Szymanski, which proves essentially the same result about
the structure of Cuntz—Pimsner algebras over Ore monoids.
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Assume now that the correspondences &, are full as Hilbert A-modules. Then
the C*-algebras K(&,) for p € P are all Morita—Rieffel equivalent to A and
the Fell bundle (Og)4ec is saturated. Let K be the C*-algebra of compact
operators. By the Brown—-Green—Rieffe] Theorem, £, ® K =2 A®K as a Hilbert
A ® K-module, so we may replace the proper correspondence &, by an endo-
morphism ¢,: A®K — A®K. Choose a cofinal sequence (p;);>o in P as above
with pp := 1, and let ¢; € P be such that p; = p;—1¢;. Then O; ® K is the
inductive limit of the inductive system

AK 2% AQK 22 AQK 2% AQK — -+ ;

this inductive limit carries a natural G-action with G x 01 = O ® K.

Thus the K-theory of O is an inductive limit of copies of the K-theory of A;
the maps are induced by the proper correspondences &, or, equivalently, the
endomorphisms ¢, of A®K. Roughly speaking, we have reduced the problem of
computing the K-theory for Cuntz—Pimsner algebras of proper product systems
over an Ore monoid P to the problem of computing the K-theory for crossed
products with the group G. This latter problem may be difficult, but is much
studied. We cannot hope for more because crossed products for G-actions are
special cases of Cuntz—Pimsner algebras over P.

Lots of C*-algebras are or could be defined as Cuntz—Pimsner algebras of prod-
uct systems over Ore monoids. Thus our structure theory for them has lots of
potential applications. As a sample of how K-theory computations in this con-
text might work, we consider certain higher-rank analogues of the Doplicher—
Roberts algebras that motivated the introduction of graph algebras. (Our
higher-rank analogues, however, need not be higher-rank graph algebras.)
Many Cuntz—Pimsner algebras are constructed from generalised dynamical sys-
tems, such as higher-rank topological graphs. The appropriate topological
analogue of a product system over P is given by locally compact spaces X
and M, for p € P with continuous maps rp,s,: M, — X and o, ,: My, —
M, X, x,r, Mq. We assume 7, to be proper and s, to be local homeomor-
phisms to turn (M, sp,7p) into proper correspondences over Co(X). These
form a product system over P with unit fibre Co(X). The data above may be
called a topological higher-rank graph over P; we prefer to call it an action
of P on X by topological correspondences.

In the above situation, we construct a groupoid model for the Cuntz—Pimsner
algebra of our product system. This model is a Hausdorff, locally compact,
étale groupoid. We translate what it means for this groupoid to be effective,
locally contracting, or minimal into the original data (X, Mp, $p,7p, 0p.q). We
also describe invariant subsets and invariant measures for the object space
of our groupoid model. This gives criteria when the Cuntz—Pimsner algebra
of an action by topological correspondences is simple or purely infinite and
often describes its traces and KMS-states for certain one-parameter groups of
automorphisms.

Our results are interesting already for the commutative Ore monoids (N¥, 4).
Several authors have considered examples of product systems over these and
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other commutative cancellative monoids ([T0,B1,B2,51,79]). Commutativity
seems to be a red herring: what is relevant are Ore conditions. Commutativity
is hidden also in Exel’s idea in [29] to extend a semigroup action to an “interac-
tion semigroup.” Examples in [31] show that interaction semigroups for product
systems over N2 only exist under some commutativity assumptions about cer-
tain conditional expectations. Our approach shows that a deep study of these
examples is possible without such technical commutativity assumptions (see
Section [B.T]).

Topological higher-rank graphs are already very close to our situation, so we
compare our constructions to the existing ones for this class as we go along.
As an example involving noncommutative Ore monoids, we discuss how the
semigroup C*-algebras of Xin Li [55] fit into our approach.

2. THE CUNTZ—PIMSNER COVARIANCE CONDITION

We first reinterpret the Cuntz—Pimsner covariance condition for a single corre-
spondence as a nondegeneracy condition.

DEFINITION 2.1. A correspondence from A to B is a Hilbert B-module F with
a nondegenerate left action of A by adjointable operators. A correspondence is
proper if A acts by compact operators. We often write the left action multiplica-
tively as a - & for a € A, € € F. An isomorphism between two correspondences
from A to B is an A, B-bimodule map that is unitary for the B-valued inner
products.

DEFINITION 2.2. Let A and B be C*-algebras and let £ be a correspondence
from A to itself. A transformation from (A,&) to B is a correspondence F
from A to B with an isomorphism of correspondences u: £ @ F — F.

)

This definition is a special case of the standard notion of a “transformation’
between two “morphisms” between two “bicategories” (see [52]). This point of
view is developed further in [2]. Here it will not play any role besides guiding
our choice of notation.

We want to relate transformations to certain Toeplitz representations of corre-
spondences. The next proposition is already implicit in [58] §5] and has also
been used by other authors before.

PROPOSITION 2.3. Let A, By, By be C*-algebras. Let £: A — By, F1: By —
By and Fa: A — By be correspondences. Isomorphisms € ®p, F1 — Fa of
correspondences are in natural bijection with linear maps S: & — B(Fy, Fa2)
that satisfy

(1) S(a&) =aS(&) forallac A, € &;

(2) S(&1)*S(&2) = (&1.&2)B, for all &, & € E;
(3) S(E) - F1 spans a dense subspace of Fs.

Furthermore, implies
(4) S(&b) = S(&)b for allb € By.
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Proof. First let u: £ ®p, F1 — F2 be an isomorphism of correspondences.
Define S(&)(n) :=u(f®n) for £ € £, n € F1. For fixed &, this is an adjointable
operator S(&): F1 — Fa because u and the operator F; — E®p, F1, n— @1,
are adjointable. This map S clearly satisfies Since u is isometric,

(1, S(&1)*S(§2)m2) = (S(§1)m, S(§2)m2) = (§1 @ M1, §2 @ m2) = (M1, (€1, €2)m2)

for all £&1,& € &, n1,m2 € F1. This is equivalent to Since u is unitary, it
has dense range, which gives

Conversely, let S: & — B(F1,F2) be given. Define u on the algebraic tensor
product of €& and F; by linear extension of u(§ ® ) := S(£)(n). Condition
ensures that this is an isometry and hence extends to the completion £ ® g, Fi.
Hence S satisfies S(£b)(n) = S(€)(bn) for all £ € €, b € By, n € Fi, which

is equivalent to Condition says that u is A-linear, and says that
it has dense range. Being isometric, this means that w is unitary. The two
constructions u <+ S are inverse to each other because u is determined by its
values on the monomials £ ® 7. O

A (Toeplitz) representation of £ is usually defined as a map S satisfying
and in the case F1 = Fa; we also allow the case F; # F5 for a while because
this is used in [2] and in Proposition 28§

DEFINITION 2.4. A representationn is nondegenerate if it satisfies

By Proposition 23], a transformation from (A, ) to B is equivalent to a corre-
spondence F: A — B with a nondegenerate representation of £ by operators
on F. We now relate nondegeneracy to the Cuntz—Pimsner covariance condi-
tion:

PROPOSITION 2.5. Nondegenerate representations of a correspondence £ are
Cuntz—Pimsner covariant. The converse holds if £ is proper.

Proof. Let A, By and By be C*-algebrasand let £: A — By, F1: By — Bs and
Fa: A — Bj be correspondences as in Proposition 2.3l The left actions of A in
our correspondences are nondegenerate *~-homomorphisms
we: A— B(E), pr,: A— B(F2).
Let u: £ ®p, F1 — F2 be an isomorphism of correspondences. The map
J: B(E) — B(F2), T uw(T®1l)u",

is a strictly continuous, unital *-homomorphism. It satisfies ¥ o pg = ¢r,
because u intertwines the left actions of A. If &1,& € &€ and |&) (€| is the
corresponding rank-one compact operator on £, then

(1) (Eal) = S(£1)S(&2)"

This formula still defines a (possibly degenerate) *-homomorphism ¥: K(&) —
B(F2) for any representation S: & — B(Fy, Fa), see [65] p. 202].

DEFINITION 2.6. A representation S is Cuntz—Pimsner covariant if 9(pg(a)) =
vr,(a) for all a € A with pg(a) € K(E).
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By Proposition[Z.3] a nondegenerate representation comes from an isomorphism
of correspondences. We have already seen ¥(pg(a)) = ¢r,(a) for all a € A in
that case. So nondegenerate representations are Cuntz—Pimsner covariant.
Conversely, let S be Cuntz—Pimsner covariant and assume that £ is proper,
that is, pg(A) CK(E). Let (X) denote the closed linear span of X. We have

(S(€)F1) 2 (S(€)S(E)" Fa) = (V(K(E))F2)
2 (Hpe(A)Fa) = (or, (A)F2) = (F2)
because ¢, is nondegenerate. Thus S is nondegenerate. 0

For a proper correspondence £, we may now reformulate the universal property
that defines its Cuntz—Pimsner algebra Og: it is the universal C*-algebra for
nondegenerate representations of £. Equivalently, O¢ is the universal target
for transformations from (A, ) to C*-algebras. The Cuntz—Pimsner algebra
comes with a nondegenerate *-homomorphism ¢g: A — Og and a representa-
tion Sy: £ — Og, which is Cuntz—Pimsner covariant and thus nondegenerate.
This is equivalent to a transformation from (A4, &) to Og; the underlying cor-
respondence is Og¢ itself as a Hilbert Og-module, with A acting via ¢g. The
isomorphism ug: € ®4 Og = Og is the unitary that corresponds to Sy by
Proposition 2.3

The transformation (Og¢, ug) has the following universal property: if (F,u) is an-
other transformation from (A, £) to a C*-algebra B, then there is a unique repre-
sentation ¢: Og — B(F) for which u = uo®yidr. Conversely, a representation
: Og — B(F) provides a unitary u = ugQyidr from EQF Z EQR O R0, F
to F =2 Og ®o, F. The pair (F, ) is the same as a correspondence from Og
to B. Thus transformations from (4, &) to B are the same as correspondences
from O¢ to B.

What happens for a representation S: &€ — B(F) that does not satisfy the
Cuntz—Pimsner covariance condition? The construction in the proof of Propo-
sition 23 still gives a map u: E®4 F — F, which is an A, B-bimodule map and
isometric for the B-valued inner product. But this isometry u need not be uni-
tary, not even adjointable. Thus allowing all Toeplitz representations replaces
the unitary in the definition of a transformation by a possibly non-adjointable
isometry.

Ezxample 2.7. What goes wrong if £ is not proper? Let us consider the sim-
plest case, A = C and £ = ¢?(N). In this case, no non-zero element of A acts
by a compact operator, so there is no difference between the Cuntz—Pimsner
and the Cuntz—Toeplitz algebra. A correspondence from A to B is the same
as a Hilbert B-module. The Cuntz—Pimsner algebra Og¢ is the famous Cuntz
algebra O.,. The identity map on O corresponds to a Cuntz—Pimsner co-
variant representation Sp: ¢2(N) — O, which maps the basis vector §; to the
generating isometry S;. The induced *-homomorphism K(¢?N) — O is degen-
erate, however, because O is unital. It corresponds to the isometry of Hilbert
Ouo-modules £2(N) @ O — Op, Eij ® x — S;zS7. If this were adjointable,
its range would be of the form pO., for a projection p € Oy because O is
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unital. Then [1]+p = p in K¢(Os) because O & (F2(N) @ O ) = £2(N) @ O,
giving [1] = 0 in K¢(O), which is false.

Katsura’s definition of a relative Cuntz—Pimsner algebra only requires the
Cuntz—Pimsner covariance condition on a certain ideal K < A that acts on &€ by
compact operators (see [41] or [42, Definition 3.4]). We may reformulate this
as a partial nondegeneracy condition:

ProroOSITION 2.8. Let A and B be C*-algebras, let € and F be correspon-
dences from A to A and from A to B, respectively. Let K be an ideal in A that
acts on € by compact operators. A representation S: £ — B(F) satisfies the
Cuntz—Pimsner covariance condition on K if and only if K - S()F = K - F.
Equivalently, the isometry € @4 F — F induced by S restricts to an isomor-
phism of correspondences KE @4 F — KF.

Proof. Proposition says that an isomorphism K& ®4 F — KF is equiva-
lent to a nondegenerate representation K& — B(F, KF). Now apply Proposi-
tion ZH] to the correspondences KE: K — A, F: A — B, and KF: K — B,
so substitute K, A, B, KE, F, KF for A, By, B2, &, F1, Fa. Since we assume K
to act by compact operators on £, the correspondence K&€: K — A is always
proper. So the nondegeneracy condition K& - F = KF is equivalent to the
Cuntz—Pimsner covariance condition for the restriction of the left action of K
to KF. That is, d(ps(k)) = or(k) for all k € K and £ € KF, with
9¥: K(€) — B(F) as in the proof of Proposition It remains to show that
this equality for all £ € K F implies the same equality for all £ € F: the latter
is the usual coisometry condition for the ideal K. Let T}, := ¥(ps (k) — or(k)
for k € K. Both T} and T} = Ty« map F to KF = K& - F, and they vanish
on K F by the above computation. Therefore, (Tx&, Ti§) = (£, Ty Ti&) = 0 for
all £ € F. O

3. CUNTZ-PIMSNER ALGEBRAS OF PRODUCT SYSTEMS OVER ORE MONOIDS

Product systems over a monoid P were introduced by Fowler [33], inspired
by previous definitions by Arveson [6] and Dinh [2I]. The following data is
equivalent to a product system in Fowler’s sense with the mild extra condition
that each fibre be an essential left module over the unit fibre:
e a C*-algebra A;
e correspondences &, from A to itself for all p € P\ {1};
e isomorphisms of correspondences py, q: & ®4 £ — Epq for all p,q €
P\ {1}, which are associative, that is, the following diagram commutes
for all p,q,t € P:

ide, ®4 fiq,
EpRaEgRa &t o mA R Ep R4 Eqt
Pp,g ®a idg, l L“p,qt
Epq @ & Epqt
Hpg,t
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here we let £&; = A, and we let p1 4 and pp1 be the isomorphisms A®4 &, = &,
and £, @4 A = &, from the left and right A-module structures, respectively;
this is needed to write down p, 4 if p- ¢ =1 and to formulate the associativity
condition for £, @4 g @A E = Epgr if p-g=10rqg-t=1.

Our main theorems will only hold if all correspondences &, are proper. Then
we speak of a proper product system over P.

Remark 3.1. A nondegenerate *-homomorphism f: A — B gives a proper cor-
respondence £; from A to B: take £ = B with A acting through f. For two
composable nondegenerate *~-homomorphisms, we have a natural isomorphism
Er ®@p Eg = Eg¢. Due to this change in the order of products, an action of
the opposite monoid P°P by ordinary nondegenerate *-homomorphisms gives a
product system over P. The Cuntz—Pimsner algebra of this product system is
the same as the crossed product for the original action by endomorphisms, see
[33} Section 3].

The change from P to P°P also explains why left Ore conditions are needed in
[16,50] to study actions of P by endomorphisms, while we will need right Ore
conditions to study product systems over P.

DEFINITION 3.2. Let (A, &y, tpq) be a product system over P. A transforma-
tion from it to a C*-algebra B consists of a correspondence F from A to B and
isomorphisms of correspondences V,,: &, ® 4 F — F for p € P\ {1}, such that
for all p,q € P\ {1}, the following diagram of isomorphisms commutes:

ide, ®a Vy
_—

EpRaEg®AF Ep®aF
(3.3) g @4 1dfl va
Epq ®a F F
Pq Voo

We let V1 be the canonical isomorphism A ® 4 F = F and use this in B3] if
p-q=1.

By Proposition 23] each isomorphism V, corresponds to a nondegenerate
representation S,: &, — B(F) of the correspondence &,. By convention,
S1: & = A — B(F) is the representation of A that is part of the correspon-
dence F. Equation (3] means that both maps around the square agree on all
monomials £, ® {; ®n € £, ®a £ ® 4 F. This amounts to the condition

Sp(gp) : Sq(‘fq) = Spq(,up,q(fp ® ‘fq)) for all §, € &y, &y € &,

which is standard for representations of product systems.

Example 2.7 shows that we cannot expect enough transformations to exist
unless our product system is proper. We assume this from now on. By Propo-
sition 25 the nondegeneracy of the representations S, is equivalent to the
Cuntz—Pimsner covariance condition for all of them. Hence the universal prop-
erty that defines the Cuntz—Pimsner algebra gives a natural bijection between
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correspondences from it to a C*-algebra B and transformations from the prod-
uct system to B; this bijection leaves the underlying Hilbert module F un-
changed.

A transformation (F,V,) gives unital, strictly continuous *-homomorphisms

Oy B(E,) = B(E, @4 F) = B(F), T V(T ®aids)Vy,

for all p € P. Similarly, the isomorphisms i, ¢: £, ®4 £ — Epq induce nonde-
generate *-homomorphisms

(3.4) Pp,q: K(&p) = K(Epg), T = pip,q(T ®@aide, )iy o

Since &, is proper, ¢, 4(K(&,)) is contained in K(€,;). The commuting dia-
gram ([B.3)) gives ¥pq 0 ¢@p g = ¥ for all p,q € P.

This situation invites us to take a colimit (or inductive limit) of the C*-algebras
K(&p) along the maps ¢, . More precisely, let Cp be the category with object
set P and arrow set P x P, where (p,¢) is an arrow from p to pg, and where

(pg.t) - (p,q) :== (p,qt) for all p,q,t € P.

LEMMA 3.5. The maps p — K(&,) and (p,q) — ¢p.q form a functor from Cp
to the category of C*-algebras and nondegenerate *-homomorphisms.

Proof. Functoriality means that ¢pqt © ¢pq = @p,qt for all p,q,t € P. This is
equivalent to the associativity of pu. O

The diagram in Lemma has a colimit in the category of C*-algebras and
nondegenerate *-homomorphisms. This colimit will act nondegenerately on F
by its universal property. Therefore, it is part of the Cuntz—Pimsner algebra of
the product system. In general, the colimit involves amalgamated free products,
which make it rather intractable. To get a well-behaved Cuntz—Pimsner algebra,
we assume that Cp is a filtered category in the following sense:

DEFINITION 3.6 ([57, Section IX.1]). A category C is filtered if it is nonempty
and
(F1) for any two objects x,y € Co, there are an object z € Cyp and arrows
g € C(x,z) and h € C(y, 2);
(F2) for any two parallel arrows g,h € C(x,y), there are z € Cy and k €
C(y, z) with kg = kh.
These conditions for Cp are equivalent to the following Ore conditions for P:
(O1) for all x1,x2 € P, there are y1,y2 € P with z1y; = x2ys;
(02) if zy1 = zys for y1,y2,x € P, then there is z € P with y12 = ya2.

DEFINITION 3.7. We call P a right Ore monoid if it has these two properties
or, equivalently, Cp is filtered. We call P a left Ore monoid if P°P is a right
Ore monoid.

Condition|(O2)|follows if P has cancellation. Both hold if P C G for a group G
with PP~! = G. Cancellative Ore monoids have already been considered by
C*-algebraists; see, for instance, [16,60]. We do not expect product systems
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over non-cancellative monoids to be very interesting (Lemma [£T6 hints strongly
towards this), but it costs little extra effort to work in this greater generality.
The monoid P is cancellative if and only if there is at most one arrow between
any two objects in Cp. Then Cp is the category associated to a directed set,
and colimits over Cp are the same as colimits over this directed set. Directed
sets are familiar to analysts as the indexing sets for nets.

Let P be a right Ore monoid. We may construct a group out of P by tak-
ing equivalence classes of formal quotients pg~! := (p,q) for p,q € P, where
(p1,q1) ~ (p2,q2) if there are t1,t2 € P with (p1t1,q1t1) = (p2t2, gata) (see
also [13]). Condition implies that this relation is transitive and that prod-
ucts p1g; L. D2qy ! may be rewritten as p¢g~! by finding a common multiple of
q1 and pa: if q1t1 = poto, then

pray o p2gy = (prta)(aat) ™ (pata)(g2tz) ™! = (pita)(gat2) ™"

Hence we define the multiplication by [p1, ¢1]-[p2, ¢2] := [p1t1, got2] for t1,t2 € P
with g1t1 = pata. The conditions|(O1)[and|(O2)[imply that this is a well-defined
group structure on G := P/~.

Example 3.8. All commutative monoids are Ore: we may take y; = x5 and
Yo = x1 in and z =z in Groups are also clearly Ore monoids. We
may combine both classes as follows.

Assume that G C P is a group such that zg; = xgo for x € P, g1, g2 € G implies
g1 = g2; assume further that pG = Gp for all p € P and p1p2G = pap1 G for all
p1,p2 € P; roughly speaking, GG is a normal subgroup of P such that P/G is
commutative. We claim that such a monoid P is Ore. In given z1,z9 € P,
we first take y; = x2 and yg = x7 as in the commutative case; then x1y1G =
T2y3G, so there is g € G with z1y; = 22139, so y2 = y3g will do. In [(O2)]
assume xy; = zys for some z,y;,y2 € P. Then y12G = 2y1G = 2y2G = y22G,
so there is g € G with y1x = yoxg. Then zy1x = rysxg = xyixg, which implies
g = 1 by one of our assumptions. Thus y12 = ysx, so z = x works in

Example 3.9. Let R be a commutative, unital ring. Let R* C R be the sub-
set of all elements that are not zero divisors; this is the largest submonoid
of (R,-) that does not contain 0. The “axz 4+ b-monoid” of R is the monoid
P = R* x R, consisting of pairs (a,b) € R* x R with the multiplication
(a1,b1) - (a2,b2) = (a1az,a1b2 + by). This monoid is cancellative because we
have taken away the zero divisors. It acts on R by (a,b) - x := ax + b. It con-
tains the additive group (R, +) as a normal subgroup, and the quotient P/R
is the commutative monoid (R*,-). Hence it is a special case of Example B.8
C*-algebras associated to semigroups of this form have recently been studied
by several authors, following Cuntz [15] and Li [54].

Example 3.10. Assume that P is cancellative and has a “norm” homomorphism
N: P — (N* ) such that G := ker N is a subgroup. This is a special case of the
situation in Example B8 with P/G C (N*,.). One example of this type is the
monoid M,,(Z)*, the ring of integer matrices with non-zero determinant, with
the determinant as norm: the kernel of the norm is the group Gl,,(Z). Another
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example is the monoid M,,(Z)* x Z™, with the determinant of the matrix part
as norm and the semidirect product group Gl,(Z) x Z" as the kernel of the
norm. More generally, we may replace M, (Z) by the ring of integers in a simple
algebra over Q; this also includes integer quaternion algebras. Semigroups of
this form appear in generalisations of the Bost—Connes dynamical system, see
[RLT4].

Ezample 3.11. The matrices of the form

1 a ¢
h(a,b,c):=10 1 b
0 0 1

for a,b,c € N form a noncommutative, cancellative monoid Hy under matrix
multiplication:

h(a1,b1,c1) - haz, ba, c2) = h(ai + az, b1 + ba, c1 + c2 + aiba).

This is an Ore monoid. To check the Ore condition|(O1)} pick h(ai, b1, c1) and
h(ag, bg, CQ) in HN. Let

a := max(aj,az), b:=max(by,b2), c:=max(ci+ai(b—>b1),ca+az(b—>b3)).

For i = 1,2, let ai* := a — a;, b = b — b;, and cf = ¢ — ¢; — a;b}; then

h(ai, bi, c;) - hai, b, cit) = h(a,b,c) for i = 1,2, so we have found the desired

common multiple. A similar formula works for the opposite monoid, so Hy is
both left and right Ore.

An inductive limit in the usual sense is the same as a colimit over the category
associated to the poset (N, <), which is easily seen to be filtered. Colimits
over general filtered categories behave very much like inductive limits. This is
well-known to category theorists. For the operator algebraists, we now assume
that P is a countable Ore monoid, so that Cp is a countable filtered category.
Then we may replace a colimit over Cp by an inductive limit over (N, <):

LEMMA 3.12. Let C be a countable filtered category. Then there is a sequence
of objects (xn)nen and maps fn, € C(xp—1,x,) such that for any object y of C
there is n € N and an arrow y — x,,. Furthermore, if y — x,, and y — ., are
two such arrows, they become equal by composing with fy_10---0 fp: zy —
Tpy1 = - = axy and fN_10--0fr: Ty = Typg1 — -+ — TN for sufficiently
large N.

Such a sequence of objects and maps is called cofinal or final. More precisely,
the functor (N, <) — C given by the objects x,, and the maps f,, is called final
in [57].

Proof. Tt is shown in [5] that any filtered category receives a cofinal functor
from a directed (partially ordered) set. A partially ordered set is viewed as a
category by putting a unique arrow z — y if x < y, and no arrow otherwise.
A category is of this form if and only if for any two objects there is at most
one arrow between them. To simplify the proof, we first use [5] to reduce to a
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countable, directed set. The category Cp comes from a directed set if and only
if P has cancellation.

Let (yn)nen be an enumeration of the objects of C. We construct z,, for n € N
inductively so that it receives maps from y1,...,y,. We start with zg = yo.
Assume z; and f; have been constructed for ¢ < n. Since C is filtered, there
is an object x, that receives maps from 3, and x,_1. Let f, be the arrow
Tp_1 — Tp. Since already x,_1 receives maps from y; for ¢ < n, so does x,, by
composing with f,,. Thus every object y has a map to some x,. Our simplifying
assumption makes the second part of the lemma trivial. O

We now describe the colimit of the inductive system on Cp given by the
C*-algebras K(&p) for p € P and the maps ¢, 4 for p,q € P defined in (3.4).
We first do this quickly in the countable case. Then Lemma allows us
to choose a cofinal functor (N, <) to Cp, that is, we get a pair of sequences
(Pn)nen and (¢n)neny in P with pp41 = ppgn for all n € N that is “cofi-
nal” in Cp. The C*-algebras K(&,, ) and the nondegenerate *-homomorphisms
Cpnsan - K(Ep,) = K(Ep,g,) = K(&p,,,) form an inductive system in the usual
sense. Let O; be its inductive limit C*-algebra. Cofinality implies that this
inductive limit is also a colimit of the whole diagram on Cp.

Now we give the more complicated construction without using Lemma B.12]
which also works in the uncountable case. Let

O, = |_| K(&p).

peP

Let O~ be the set of equivalence classes for the equivalence relation on Oy
generated by the relations (z,p) ~ (vp,q(z),pq) for all p,q € P, x € K(&,).

LEMMA 3.13. There is a unique *-algebra structure for which all maps K(&,) —
O~ are *-homomorphisms, and the mazximal C*-seminorm on O. exists.
Let Oy be the resulting C*-completion of O~. If (F,V,) is a transformation
from (A, Ep, pip.q) to a C*-algebra B, then the resulting maps ¥p: K(E,) — B(F)
factor through a unique nondegenerate *-homomorphism ©: O1 — B(F).

Proof. Let z € K(&,), y € K(&;). There are t1,t2 € P with pt; = gto. Then
(x,p) ~ (p,, (x),pt1) and (y, q) ~ (pq.t, (¥), gt2) both belong to the C*-algebra
K(Ept,) = K(&yt,); this dictates what their sum or product should be in O.. If
we choose t],t5 € P with pt] = ¢t} instead, then we may find mq,ms € P with
ptimy = ptymg and hence gthmi = gtama. If not yet thmy = toms, then we
find n € P with thmin = tamon and replace mi, ms by min, mon. Similarly,
we achieve t{my = tymo. Then multiplication with mo and my will map our
two choices of the sum or product to the same sum or product in K(Epsym.,),
respectively. Thus the multiplication and addition on O.. are well-defined.

A similar argument shows that any finite subset of O. belongs to the image
of K(&,) in O, for some p € P. Since the algebraic operations are defined using
those in K(&p), O~ is a *-algebra. By construction, this is the only *-algebra
structure for which all maps K(&,) — O~ are *-homomorphisms.
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The kernel of the map K(&£,) — O~ is the union of the kernels of the *-ho-
momorphisms g ,: K(E,) = K(Eyq). Thus the image of K(&,) in O~ is the
quotient by a union of closed *-ideals. We equip it with the quotient semi-
norm, which is a C*-seminorm (there may be a nullspace because the union
of ideals need not be closed). All these C*-seminorms on subalgebras of O.
together are compatible with each other and thus define a C*-seminorm on O...
Since any *-homomorphism between C*-algebras is contractive, this is the max-
imal C*-seminorm on the *-algebra O... Let O be the (Hausdorff) completion
of O. for this C*-seminorm. This is a C*-algebra with *-homomorphisms
09: K(Ep) — Oy for all p € P that satisfy 99, o ¢y, o = 99 for all p,q € P.

Now take a transformation to B as above. The resulting maps ¥,: K(&,) —
B(F) satisty ¥pq 0 ¢p,q = Up. Hence the map | |,c;7p: Oy — B(F) descends
to a map f: O — B(F). Since all ¥, are *-homomorphisms, so is f. Since
we took the maximal C*-seminorm on O., we may extend f uniquely to a
*-homomorphism ©: O; — B(F) with © 0 99 =¥, for all p € P. O

Any functor (pn, ¢n): (N, <) = Cp induces a *-homomorphism from the induc-
tive limit C*-algebra of the inductive system (K(&p, ), ¢p.,. q.) described above
Lemma to O;. If the functor is cofinal, then this map is an isomorphism.
Hence the simplified construction for countable P gives the same C*-algebra O;.
So far, we have described only a part of the Cuntz—Pimsner algebra of the prod-
uct system. For a single endomorphism, this is the fixed-point subalgebra of
the gauge action. We now describe the whole Cuntz—Pimsner algebra through
a Fell bundle over the group completion G of P.

Elements of G are equivalence classes of formal fractions pips Y for p1,pe € P,
with pip; b ~ (p1g)(p2g)~". The fibre of the desired Fell bundle over G at
1 € G is the C*-algebra O; described above.

DEFINITION 3.14. Fix g € G. Let
Ry ={(p1,p2) € Px P |pip;" = g in G}

be its set of representatives. Let C% be the category with object set R, and
arrow set Ry x P, where (p1,p2, ¢) is an arrow (p1, p2) — (p1g, p2q); the multi-
plication is (p1¢, p2q;t) - (p1,p2,q) = (p1, P2, tq).

LEMMA 3.15. The categories C}, for g € G are filtered if P is an Ore monoid.
The functor Cp — CL that maps an object p in Cp to (p,p) and an arrow (p,q)
in Cp to (p,p,q) is cofinal.

Proof. First we check that C% is filtered. Let p = (p1,p2) and ¢ = (q1,¢2)
be elements of R;. We must prove two things. First, there should be arrows
h:p—tandk: ¢ =t with the same target ¢t € Ry. Secondly, if h, k: p = g are
two parallel arrows, there is an arrow [: ¢ — ¢ for some object ¢ such that [oh =
lok. Since p and g both represent g € G, there are h, k € P with pith = ¢1k and
pah = q2k. Hence h: (p1,p2) — (p1h,p2h) and k: (q1,¢2) — (q1k, g2k) have
the same target, as desired. The second claim above is immediate from
we may simply forget ps and ¢o.
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The functor Cp — CL is fully faithful. If (p1,p2) € Ry, then there are ¢,h € P
with (p1h,pah) = (q,q). Hence the functor Cp — C} is cofinal. O

For (p1,p2) € Ry, let Op, p, :=K(Ep,, Ep, ); for now, we view this as a Banach
space. For ¢ € P, (p1,p2) € Ry, we define a contraction

Pp1,p2a’ K(Epsy Epy) = K(Epags Epig)s T pipyq(T ®aide, )y, 4

These maps form a functor from C% to the category of Banach spaces with
linear contractions. Since CY% is filtered by Lemma [BI5] the colimit O, of this
diagram may be constructed as in Lemma first take the disjoint union
of the Banach spaces Op, ,, for all (p1, p2) € Ry; then divide out the relations
given by the maps ¢, p,.q; this gives a vector space, and it inherits a canonical
seminorm by taking the quotient seminorms on the images of K(&,,, &y, ); finally,
take the completion to get Q4. If P is countable, then we may also use a cofinal
sequence in C% to describe the colimit as an inductive limit over (N, <).
Since the functor Cp — C}, is cofinal, the colimit of a diagram over Cp is the
same as the colimit of its restriction to Cp. Hence the construction of O, for
g = 1 gives the same C*-algebra O; as in Lemma BI3] as suggested by our
notation.
If g1,92 € G, (p1,p2) € Ry, (p2,p3) € Ry, then pips' = pip; ' - paps' =
g1 - g2, that is, (p1,p3) € Ry, .g,- The composition of compact operators gives a
bounded bilinear map Op, p, X Opy,ps —+ Op, ps- These maps define a bounded
bilinear map

091 X 092 - Oglgz

because for any (p},p5), (p2,p3) in Ry, X Ry, there are h, k € P with poh = phk,
so that the composition is defined on Oy . p; i X Op,h,psh, and these composition
maps are compatible with the structure maps of the inductive systems. Simi-
larly, taking adjoints gives maps Op, p, —+ Opyp,, T = T, for all p1,p2 € Ry;
these maps induce an involution O, — O;,l. These multiplication maps
and involutions on (Oy)4ec give a Fell bundle over the group G. The re-
sulting C*-algebra structure on its unit fibre O; is the one already described
in Lemma 313

THEOREM 3.16. Let P be an Ore monoid and let (A, &y, p1p.q) be a proper,
nondegenerate product system over P. Its Cuntz—Pimsner algebra is isomorphic
to the full sectional C*-algebra of the Fell bundle (Oy)4ec described above.

Proof. Let C' denote the Cuntz—Pimsner algebra of our product system. By
construction, a nondegenerate *-homomorphism C' — M(B) for a C*-algebra B
is the same as a Cuntz—Pimsner covariant representation of our product system
on B that is nondegenerate on the unit fibre A. The Cuntz—Pimsner covariance
condition is equivalent to the nondegeneracy condition £,-B = B for allp € P
by Proposition because we assume all £, to be proper and nondegenerate
left A-modules, and the left A-action on B is nondegenerate as well.

We are going to find a natural bijection between representations of the prod-
uct system with &, - B = B for all p € P and representations of the
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Fell bundle (Oy)gec in M(B). By the universal property of the sectional
C*-algebra of a Fell bundle, this gives a natural bijection between nondegen-
erate *-homomorphisms C — M(B) and C*((Oy)gec) — M(B), and this
implies C' = C*((Og)gec)-

By Proposition 2.3 a representation of the product system that is nondegen-
erate in the above sense is equivalent to a transformation from (A4, &p, tp.q)
to B with underlying Hilbert B-module B. We write F = B to be consis-
tent with our previous notation. We already constructed *-homomorphisms
Uy K(Ey) — B(F) with ¥pg 0 0p g = U for all p,q € P. The same recipe gives
linear contractions

Vpy et K(Epyy Epy) = B(F), T Vp (T®idr)V,,.

These satisfy ¥p,q,poag © ©p1,pe.g = Upi,pe for all pi,pa,q € P. Hence they in-
duce maps ©4: Oy — B(F) on the Banach space inductive limits. Routine
computations show that

(3.17) Upy.p1 (1) = Up1 ps ("), Upy ps (T) o Ups.ps (Tz) = Up1.,ps (T oT3)

for all p1,pa2,p3 € P, T € K(&p,,Ep), To € K(Ep,,Ep, ). Hence the maps 6,
form a representation of the Fell bundle (Oy)geq-
Conversely, a representation of the Fell bundle (Og)4ecq gives maps

K(5p2,5p1) - B(]:)

that satisfy (BIT). For pa = 1, there is a canonical isomorphism K(&,,, &y, ) =
Ep, because £ = A. Hence the Fell bundle representation gives maps S,: £, —
B(F). Since A = K(&1) C Oy, the conditions of a Fell bundle representation
imply that the maps S, form a representation of the product system. Since
the maps K(&,) - O1 — B(F) are nondegenerate, S,(Ep)F 2 K(&,)F =
F. This gives the desired bijection between Fell bundle representations and
Cuntz—Pimsner covariant representations of the product system and finishes
the proof. O

Theorem is similar to [49] Theorem 3.8], only the assumptions on the
product system differ slightly. Unlike in [49], we assume the product system
to be nondegenerate, but allow the left action to be non-injective. Similar
ideas are used in [16, Section 4] to dilate certain actions of Ore semigroups
by endomorphisms to group actions on a larger algebra. In fact, actions by
endomorphisms are a special case of product systems by Remark[B.Il To reduce
the dilation results in [I6] or [50] to Theorem [B.I6, another step is missing:
checking when the Fell bundle in Theorem comes from an ordinary group
action by automorphisms. We refrain from doing this because, from our point
of view, saturated Fell bundles are already actions of the underlying group.

PROPOSITION 3.18. The Fell bundle (Og)gecq is saturated if £, is a full Hilbert
A-module for each p € P.

Proof. Let g € G and let p € P. We want to show that the image of K(&,)
in O, is contained in the space of right inner products from O,. There is
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(p1,p2) € Ry and ¢ € P with pg = p;. The image of K(&,) in O; is contained
in the image of K(&pq) = K(&p, ).

Since &,, and &,, are full, both K(&,,) and K(&,,) are Morita—Rieffel equiva-
lent to A and hence equivalent to each other. The equivalence between them is
K(A4,&p,) @4 K(Ep,, A) = K(Ep,,Ep, ). Hence the latter is a full Hilbert bimod-
ule over K(&,,) and K(&,,). Since K(&p,,&p,) € Oy, it follows that the right
inner products from O, give a dense subspace of K(&,,) in Oy. Thus the Fell
bundle (Oy)4eq is saturated. O

Remark 3.19. The criterion in Proposition B.I§ is not necessary for rather
trivial reasons. If the left A-actions on &, are not faithful, then it may happen
that O; = 0. Since this has nothing to do with &, being full as a right Hilbert
module, the Fell bundle (O4) may be saturated although not all &, are full.

Saturated Fell bundles over a group G are interpreted as actions of G by corre-
spondences in [12]. Long before, it was known that one may replace a saturated
Fell bundle (Oy)4ec with unit fibre O; by an action of G by automorphisms
on a C*-algebra @1 that is Morita—Rieffel equivalent to O;: this is the Packer—
Raeburn Stabilisation Trick. Non-saturated Fell bundles over G are interpreted
in [II] as actions of G by Hilbert bimodules, that is, partial Morita—Rieffel
equivalences. The analogue of the Packer—Raeburn Stabilisation Trick says that
any Fell bundle, saturated or not, is equivalent to an action of G by partial
*-isomorphisms.

A saturated Fell bundle over G may, of course, be restricted to a product system
over P. Which product systems are of this form?

ProrosiTIiON 3.20. A proper product system over P is the restriction of a
saturated Fell bundle over G if and only if each &, is an A, A-imprimitivity
bimodule, that is, each &y is a full right Hilbert A-module and the left action is
by an isomorphism A = K(&,). The saturated Fell bundle over G is unique up
to isomorphism.

Proof. In a saturated Fell bundle over G, each &4 is an imprimitivity bimodule.
Conversely, assume that £, is an imprimitivity bimodule for each p € P. Then
all the maps K(&,) — K(&,q) in our inductive system are isomorphisms, so
that the inductive limit O is isomorphic to A = K(&;). Similarly, O, = &,
for all p € P. Thus our product system is the restriction to P of a Fell bundle
over G. Since all &, are assumed to be full, this Fell bundle is saturated by
Proposition 318l

Now start with a saturated Fell bundle (O4)4eq, restrict it to P, and then
go back to a Fell bundle over G. The maps K(&p,,Ep,) = K(Epog, Eprg) are
isomorphisms for all p1, ps, ¢ € P, so the inductive systems that give the fibres
of the new Fell bundle are constant. Thus the colimit Oy is canonically isomor-
phic to K(&p,, Ep, ) for any (p1,p2) € Ry, and our construction of a Fell bundle
from (&,)pep reproduces the original Fell bundle up to isomorphism. Hence
the product system on P determines the saturated Fell bundle over G uniquely
up to isomorphism. O
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A non-saturated Fell bundle over G need not give a proper product system
on P: this requires £, to be full as a left Hilbert A-module for each p € P.

THEOREM 3.21. If A is nuclear or exact, then so is O1. If A is nuclear and
the group G generated by P is amenable, then the Cuntz—Pimsner algebra O is
nuclear. If A is exact and G is amenable, then O is exact.

Proof. The first claim follows because O; is an inductive limit of C*-algebras
Morita—Rieffel equivalent to A and because nuclearity and exactness are hered-
itary under Morita—Rieffel equivalence and filtered inductive limits.

The other statements follow from TheoremB.I6land general results about nucle-
arity and exactness of Fell bundle C*-algebras. First, if the group is amenable,
then any Fell bundle over it has the approximation property, which implies that
the full and reduced sectional C*-algebras coincide (see [24]). The exactness
of the reduced sectional C*-algebra is proved in [25], assuming exact unit fibre
and an exact group. The nuclearity of the full sectional C*-algebra is proved
in [I], assuming nuclear unit fibre and an amenable group. O

Next we describe the K-theory of the unit fibre O; of our Fell bundle. Since &,
is a proper correspondence from A to A, it gives an element [£,] € KK(A, A)
with zero operator F'. This gives a map

(Ep)e: Ku(4) = K. (A);

here K, (A) denotes the Z/2-graded K-theory of A comprising both Kq and Kj.
The Kasparov product of [£,] and [&,] is [€, ® 4 €] with zero operator; since the
Fredholm operator is irrelevant, this case of the Kasparov product is easy. The
isomorphisms i, ; now show that [£,] ® 4 [£,] = [Epg] and hence (€;). 0 (&)« =
(Epq)« for all p,q € P. The order of p and ¢ is changed here because ® 4 is the
composition product in KK in reverse order. Hence our product system over P
gives an action of P°P on K, (A). We view this as a right module structure over
the monoid ring Z[P]. The group ring Z[G] is a left module over Z[P].

THEOREM 3.22. Let P be an Ore monoid and let (A,Ep, tip.q) give a proper,
nondegenerate product system over P. Assume also that all &, are full right
Hilbert A-modules. Then the K-theory of Oy is isomorphic to K. (A) ®zp) Z[G]
as a right Z|G]-module; here we use the canonical right module structure on
K. (A) ®z1p) Z|G] by right multiplication and the module structure on K.(Oy)
induced by the saturated Fell bundle (Og)gec.

Proof. Tt is well-known that K-theory is compatible with inductive limits. This
extends to colimits over countable filtered categories by Lemma We leave
it to the reader interested in uncountable monoids to check that the result
remains true for arbitrary filtered colimits. Hence K.(O1) is the colimit of
the diagram over Cp that maps p € P to K.(K(&,)) and (p,q): p — pg to
(Pp.q)+: Ku(K(Ep)) = Ki(K(Epg))-

Since &, is a full Hilbert bimodule, it gives a Morita—Rieffel equivalence
from K(&,) to A. This correspondence with zero operator F is a cycle for
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KK, (K(&Ep), A). This is a KK-equivalence: the inverse is the inverse imprimi-
tivity bimodule K(&,, A) with zero operator F'. We use this KK-equivalence to
identify K, (K(&,)) = K, (A) for all p € P. Composing the maps

K. (4) = Ko (K(E) 2225 Ko (K(Epg)) — Ku(A)

requires composing three KKy-cycles with zero operator F', which amounts to
tensoring the underlying correspondences. Identifying £pq = £, ®4 &, as in
the definition of ¢, 4, we see that this composite is [£,]. Thus the inductive
system with colimit K, (O;) is isomorphic to the inductive system with entries
K.(A) at all p € P, where the arrow (p,q): p — pq in Cp induces the map
(€g)«: Ku(A4) = K. (A4).

Define a diagram of left Z[P]-modules over Cp by taking the free module Z[P] at
all objects and letting ¢: p — pg act by 0, — 6,4 for all x,p,q € P. The colimit
of this diagram of modules is isomorphic to Z[G] by mapping Z[P] 3 §, at the
object p of Cp to d,,-1 € Z[G]. Hence M ®z;p) Z[G] for a right Z[P]-module M
is the colimit of the diagram over Cp with entries M ®zp) Z[P] = M and
with ¢: p — pq acting by m — m - q for all m € M, p,q € P. Now compare
this with our description of the inductive system that computes K. (O;) to get
K. (O1) = K.(4) ®z/p) Z[G].

Since the Hilbert modules &, are full, the Fell bundle (O,)4eq is saturated
by Proposition I8 Then each O4 is a proper correspondence from O
to itself and hence gives a class [O,] in KKo(O1,01). This induces maps
(Og)s: Ki(01) — K,(01). Since we have a saturated Fell bundle, we have
Oy ®0, On = Oyp,. Therefore, g — (Oy)+ defines a representation of G°P on
the Abelian group K.(O;); we view this as a right Z[G]-module structure.

To describe this action, it suffices to compute, for p € P, how (Oy). acts
on the image of K,.(K(&y)) in K.(O;) under the map K. (99) induced by
09 K(E,) — O1. First choose (p1,p2) € Ry and then ¢ € P with pg = pi.
Then K.(99) = K.(¥)) o Ki(pp,g), so it suffices to describe how (Oy).
acts on the image of K,(K(&,,)). The map K(&,,,&,,) — O, shows that
(99,)(Og) = K(Ep,,Ep,) ®@yo_ O1 as correspondences from K(&p,) to Os.
Now compose these correspondences with the KK-equivalences between K(&,,)
and A. Then we see that (Og). acts on the entry K. (A) at p; in the inductive
system describing K, (O1) by sending it to the same entry at po. Right mul-
tiplication by ¢ = p1py " in K, (A) ®z1p) Z[G] has the same effect. Thus the
action of G on K,(0O;) induced by the Fell bundle corresponds to the one by
right multiplication on K. (A) ®zp) Z[G]. O

By the Packer—-Raeburn Stabilisation Trick, there is a G-action by automor-
phisms on the stabilisation O; = O; ® K(L?G) such that the (full) crossed
product G x Oy is Morita—Rieffel equivalent to the Cuntz-Pimsner algebra O
(this follows from [12), Corollary 5.5]). Thus computing the K-theory of the
Cuntz—Pimsner algebra becomes a matter for the (full) Baum-Connes conjec-
ture for G with certain coeflicients.
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For a-T-menable groups, the Baum—Connes assembly map is known to be an
isomorphism for all coefficients, also for the full crossed product (see [36]).
The meaning of the Baum—Connes conjecture here is that we may compute
K..(O) by topological means from K. (O|x), the section algebras for restrictions
of (Og) 4ec to all finite subgroups H. These topological means may be expressed
as a spectral sequence, and it can be quite hard to perform this computation
in practice. At least, the results above show that the computation for a Cuntz—
Pimsner algebra over P is not more difficult than in the special case of an
action of G by automorphisms.

For instance, let P = (N*, 4) for k € N. Then G = Z*, and the computation of
K. (O) is a matter of iterating the Pismner—Voiculescu sequence k times. We
will consider a concrete case where a K-theory computation along these lines
is feasible in Section B3l Already two iterations may be very hard because
the boundary maps for the second iteration are not determined by the original
data.

Remark 3.23. The iteration of the Pimsner—Voiculescu sequence that we get is
equivalent to one by Deaconu in [20]. This is because the Pimsner—Voiculescu
sequence for Z-actions can be obtained from the Cuntz—Toeplitz algebra of the
product system over N associated to the Z-action.

Our theory contains the case of semigroup crossed products for actions of left
Ore monoids by endomorphisms by Remark Bl In that case, (&)« Ki(4) —
K. (A) is simply the map induced by the underlying endomorphism.

The K-theory computation for semigroup C*-algebras in [I6] also uses the
Baum—Connes isomorphism for the group G. In the situation of [I6], a di-
lation of the semigroup action to an action of G on a larger C*-algebra is
easy to write down by hand, giving a direct route to K.(O7). But then extra
assumptions on the action of G on K.(O;) are needed to compute K, (O).

3.1. MAKING LEFT ACTIONS FAITHFUL. Let (4, &, 11p.q) be a proper product
system over an Ore monoid P. Taking suitable quotients of A and &,, we are
going to construct another product system (A’, &, p;, ) with the same nonde-
generate representations and hence the same Cuntz—Pimsner algebra, such that
the left actions ¢}, A" — B(E)) are injective for all p € P.

For p € P, let ,: A — K(&p) denote the left action map and let I, := ker ¢,,.
Recall the maps ¢, 4: K(&,) = K(Epq) for p,q € P. Since ¢, 4 0 pp = @pq, We
have I, C I,,, for all p,q € P. Since Cp is filtered, this implies that the ideals I,
form a directed set of ideals in A. Thus I := |, p Ip is another ideal in A. We

let A":=A/land &, =&, @4 A" =&,/ (& - I).

LEMMA 3.24. The induced left action A — K(E,) factors through A’, and the
isomorphism pp.q: Ep @4 Eq —> Epg descends to an isomorphism of correspon-
dences i, .- &, @ E = &,,. This gives a product system (A’, ), 7, ).

Proof. Let p € P. To prove that the induced left A-module structure on &,
descends to A’, we must show that I€, C £,I. Since P is an Ore monoid, the
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subset pP is cofinal in P, so qup Ipq is still dense in I. Thus it suffices to
prove Ip,&E, C EpI for all p,q € P. We will prove the following more precise
result:

(3.25) Iy, ={a€ Ala&, CE&,}.
Let £ € £,. We have E®4n=01in &, ®4 &, for all n € &, if and only if

0=(®@m,E®n2) = (M, pq({§: ) a)m2)

for all n1,m2 € &, if and only ¢q((§,£)a) = 0, if and only if ({,{)4 € 1.
We claim that this is equivalent to & € &, - 1. Since I, is an ideal, we have
(€,6)a € I, for £ € &, - I,. Conversely, if (£,&)a € I, then the closure of £ - A
in £, is a Hilbert I,-module containing £, and thus it is nondegenerate as a
right I,-module, so that £ € £,1;. Hence E@4n=01n &, @4 &, for all n € &,
if and only £ € £,1,.

Now let a € A. Then af € £,1, for all £ € &, if and only if a& ® 4 n = 0 for all
£ e &y, n e &y, if and only if the left action by a vanishes on £, ®4 &, = Epq.
This is equivalent to a € I,,. This finishes the proof of (323)). In turn, this
implies that the left A-module structure on &, descends to A’. Now

gII) ®A’ 5('] = gp ®A AI ®A’ gq ®A AI = gp ®A gq ®A AI = gpq ®A AI - E;q

This gives the multiplication maps f, ,. From another point of view, p, . is
the map on the quotient spaces &, and & induced by ;4. Hence these maps
inherit associativity from the maps pp 4, so we have constructed a product
system. ]

THEOREM 3.26. The product system (A, &), j;, ,) has faithful left action maps
A — K(E{,), and it has the same nondegenerate representations as the original

system. Hence it also has the same Cuntz—Pimsner algebra.

Proof. Fix p € P. An operator on &, induces the zero operator on &,/E,I; =
Ep ®a (A/1,) if and only if it maps &, into £,I,. Thus ([B.20) shows that
the map ¢,: A — K(&,) descends to an injective *-homomorphism A/I,, —
K(&p/Eply). The C*-algebras A/I,q and K(&,/Ep1,) for ¢ € P form inductive
systems indexed by the filtered category Cp, and the maps A/, — K(&,/Ep14)
form a morphism of inductive systems, consisting of injective maps. It follows
that the induced map between the inductive limits li_I)nA/Ipq = A/U,ep Ipg =
A" and imK(€,/&Ep1,) = K(E,) is injective as well. That is, the left action
A" — K(&,) is faithful.

Now let ©': A" — B(F) and S,: £, — B(F) for p € P give a nondegener-
ate representation of the product system (A’, &), u;, ). Composing with the
quotient maps A — A’ and &, — &), then gives a nondegenerate representa-
tion of (4,&p, p,q). We claim that any nondegenerate representation (v, .S,)
of (A, &y, tp,q) factors through the quotient maps A — A’ and &, — &, and
thus comes from a unique representation (¢',S},). This gives a bijection on
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the level of nondegenerate representations and thus an isomorphism of Cuntz—
Pimsner algebras because they are universal for nondegenerate representations
by Proposition

Recall the maps 9,: K(&,) — B(F) with 9,4 0 ppq = ¥, for all p,qg € P. In
particular, ¥ = 9, 0 p,: A — B(F), so ¥ must vanish on I,. Since this holds
for all p € P, we get ¥|; = 0, so ¢ factors through the quotient map A — A’
Since Sp(£)*Sp(€) = 9((§,£)a) for £ € &, and (£,§) € I for £ € &, - I, we also
get Sp(§) =0 for £ € &, - I. Thus S, factors through &, O

PROPOSITION 3.27. If the maps A — K(&,) are injective for all p € P, then
so are the induced maps vpq1: K(Eq, Ep) = K(Eqt, Ept) for p,q,t € P and the
maps K(&,, Ep) — O to the Cuntz—Pimsner algebra.

Proof. We assume that I, = {0} for all p € P. The proof of ([3.25]) shows that
&€ &) satisfies E@an =01in £, ®4 &, for all n € &, if and only if £ = 0. Hence
the maps ¢y, 4+ are injective. Since O4 C O is the filtered colimit of the spaces
K(&,,&p), this implies the same for the maps K(&,,&,) — Oy C O. O

3.2. WHAT HAPPENS WITHOUT THE ORE CONDITIONS? We now consider an
example of a monoid without the Ore conditions where we can, nevertheless,
describe the Cuntz—Pimsner algebra by hand. Let F,© be the free monoid on
n generators, n > 2. Elements in F,} are finite words in the letters ay, ..., an,,
including the empty word. This monoid violates the Ore conditions: there are
no words w1, wy € FJ with a;w; = asws. A proper product system over F,j‘ is
equivalent to a C*-algebra A with proper correspondences &; from A to itself
for ¢ = 1,...,n, without any further data or conditions: given this data, we
may define &, for a word w by composing the correspondences for the letters
in w, and we use the canonical multiplication maps between them.

ProOPOSITION 3.28. Let A be a C*-algebra and let &; for 1 < i < n be proper
correspondences from A to A. Let O; be the Cuntz—Pimsner algebra of &; for
1 <4 < n. The Cuntz—Pimsner algebra of the resulting product system over F
is the amalgamated free product of the Cuntz—Pimsner algebras O; over A.

Proof. Let D be another C*-algebra and let G be a Hilbert module over D. A
nondegenerate representation of our product system over F on G is already
determined by what it does on the correspondences &;, and &; may act by
arbitrary nondegenerate representations because F,I is a free monoid. A non-
degenerate representation of &; is equivalent to a representation of the Cuntz—
Pimsner algebra O; by Proposition 23l Since all these representations give the
same representation when we compose with the canonical map A — O;, we
get a representation of the amalgamated free product of the C*-algebras O;
over A. Conversely, a representation of this free product gives nondegenerate
representations of the correspondences &; and thus of A, and it gives the same
representation on A for each i. This data may be extended to a nondegenerate
representation of the product system over Ff. O
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Free products with amalgamation are, unfortunately, rather large and compli-
cated. In particular, they are almost never nuclear or exact. Thus we view
Proposition as a negative result: it tells us that we should not expect
Cuntz—Pimsner algebras for proper product systems over F¥ to have a nice
structure. Standard assumptions in the theory of Cuntz—Toeplitz and Cuntz—
Pimsner algebras are that the underlying semigroup be “quasi-lattice-ordered”
and the product system “compactly aligned,” see [33]. Both assumptions are
satisfied for proper product systems over FF. If two elements in F)J have an
upper bound, they have a least upper bound because two elements in FI only
have an upper bound if one of them is a subword of the other, and then the
longer of the two is a least upper bound. Hence Cuntz—Pimsner algebras of
compactly aligned product systems over quasi-lattice-ordered monoids need not
be tractable.

3.3. HIGHER-RANK DOPLICHER—ROBERTS ALGEBRAS. In this section, we con-
sider higher-rank analogues of the C*-algebras introduced by Doplicher and
Roberts in [22]. The Doplicher—Roberts C*-algebras were an important mo-
tivation for Kumjian, Pask, Raeburn and Renault when they defined graph
C*-algebras in [48].

Our higher-rank analogue is constructed from a compact Lie group G and
finite-dimensional representations my,...,m; of G; in addition, we need a rep-
resentation p: G — U(H) on a Hilbert space H that contains each irreducible
representation of G. Different choices for p will, however, give Morita—Rieffel
equivalent C*-algebras, so we consider p to be auxiliary data only. From the
above data, we are going to construct a product system over the commutative
monoid (N*,+) and then take its Cuntz—Pimsner algebra. The case k = 1 is
considered in [48].

For m = (my,...,ms) € N¥, we form the representation

™= g™ ®---®7r];®m’€: G—=UV™);

here V™ denotes the finite-dimensional Hilbert space on which n™ acts. There
are canonical unitary operators fim,, m,: V" @ V™2 = Y1+ M2 that intertwine
the representations 7™ @ 72 and 7©™'T™2  and which satisfy the properties
of a symmetric monoidal category.

Let &, C K(H,V™ ® H) be the space of all compact intertwining operators
between the representations p and 7" ® p. Define multiplication maps &,,, x
Ems = Emy+m, by mapping (T1,T2) to the composite intertwining operator

1Ty

T: Hmg,mi @1
pBr™MRQp —H MM p ——Tt

7Tm1+m2 ® p;
this composite is compact because T5 is compact.

LEMMA 3.29. The multiplication above is associative.
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Proof. Let mi,ma, m3 € N¥ and let T; € &,,, for i = 1,2,3. Then the products
(ThT2)T5 and T (T>T3) are equal to the composite operators

Ts 10T> 1R1QT
P*>7Tm3 ®p*),n.mg ®7Tm2®p—>7rm3®7rm2®7rml ®p

um3,m2®1l J/tm3,m2®1
1®1RTy

gmatm2 ®p gmatm2 QT ® p

J/,Ufm3+7n2,7n1 ®1

s +mao+mq ® P

because Hmg+ma,mq © (/’me}amZ ® 1) = Hmgz,mat+mq © (1 ® :U/mmml)‘ U

The unit fibre & is the C*-algebra of all compact intertwining operators of p.
The multiplication maps above turn each &,, into an &-bimodule. We define
an &p-valued right inner product on &, by (T1,T) = Ty Ty for Ty, Ts € &p,.
This turns each &, into a correspondence from the C*-algebra & to itself.

LEMMA 3.30. The C*-algebra K(E,,) is isomorphic to the C*-algebra of compact
intertwiners of the representation ™ ® p, acting on E,, by left multiplication.
More generally, K(En,, Em,) is isomorphic to the space of compact intertwiners
TR p— 1" R p.

Proof. The map sending |T1)(Tz| € K(&,,) for T1,T> € &, to the intertwiner
T\Ty: 7™ ®p — 1 & p extends to a *-homomorphism from K(&,,) to the
C*-algebra of compact intertwiners of 7 ® p. Since |T1)(T2|T5 = T1T5 T3, this
representation is faithful. It remains to show that it is surjective.

Any compact intertwiner on 7" ® p may be approximated by linear combina-
tions of intertwiners with irreducible range because the representation 7™ ® p,
like any representation of G, is a direct sum of irreducible representations. Since
any irreducible representation of G occurs in p, any intertwiner with irreducible
range factors through the representation p. Thus we may write it as 7175 for
Ty, Ty € &,,. This shows that K(&,,) is mapped onto the C*-algebra of compact
intertwiners of 7" ® p.

The same argument still works in the more general case of K(Ep,, Ems,)- O

If T € &, then the induced operator 1 @ T: 7™ ® p — 7™ ® p is compact as
well because the representation 7 has finite dimension. Thus the correspon-
dence &,, is proper by Lemma B.30

LEMMA 3.31. The multiplication maps induce unitary operators Em, g, Em, —
Smlerz .

Proof. Tt is routine to check that the map &, X En, = Em,+m, defined above
preserves the inner products, so it gives an isometry &,,, ®g, Ema — Emy+mo-
This induces a *-homomorphism K(&,,) = K(Emy4ms); T — T @ 1. In terms
of Lemma [B.30 this is given by the map T +— T ® 1 from compact intertwiners
of 7™ ® p to compact intertwiners of 7™ ® 12 ® p = g™ tT™M2 @ p This
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*~homomorphism on compact operators is nondegenerate. Hence the underly-
ing isometry £, ®g, Em, — Emy+m, Must be surjective. O

Lemma [B3T] says that the correspondences &, with the above multiplication
maps form an essential product system over the commutative monoid (N¥, +).
As remarked above, Lemma [3.30] implies that this product system is proper.
Since any irreducible representation occurs in p, the Hilbert £-module &,, is
full and carries a faithful left &y-action.

DEFINITION 3.32. The Cuntz—Pimsner algebra of the product system (€, ), enk
over (N* +) is the higher-rank Doplicher—Roberts algebra for the representa-
tions 7y, ..., m, of G, relative to p.

LEMMA 3.33. The higher-rank Doplicher—Roberts algebras for different choices
of p are canonically Morita—Rieffel equivalent.

Proof. Let p and p’ be two representations of G that contain all irreducible
representations. Lemma identifies £§ and 55/ with the C*-algebras of
compact intertwiners on the representations p and p’, respectively. Let F
be the space of all compact intertwining operators p’ — p. This is a full
Hilbert bimodule for £ and &f g Furthermore, we may naturally identify both
Fop' Qgpt Eﬁ; and &F, ®gp Fpp with the space of compact intertwiners from p’ to

7" ® p. These identifications provide a Morita equivalence between the product
systems for p and p’ and thus induce a Morita—Rieffel equivalence between their
Cuntz—Pimsner algebras. g

To clarify the link to previous constructions, take & = 1 and let p be the
direct sum of all irreducible representations with multiplicity 1. Then the

N

C*-algebra & of compact intertwiners of p is Co(G). Since k = 1, our product
system is determined by the single self-correspondence of Co(é) given by &;.
Such a self-correspondence is equivalent to a graph with vertex set G. Since
the left action on & is faithful and & is proper and full, our graph has neither
sources nor sinks and no infinite emitters. Hence our absolute Cuntz—Pimsner
algebra agrees with the relative one used to define graph C*-algebras. Our
Doplicher—Roberts algebra is exactly the graph C*-algebra considered in [48]
Section 7]. As shown there, the C*-algebra defined by Doplicher and Roberts
in [22] is isomorphic to a full corner in this graph C*-algebra (assuming that
each irreducible representation of G occurs in 7™ for some m € N).

Remark 3.34. For k > 1, it seems unlikely that our higher-rank Doplicher—
Roberts algebras are higher-rank graph C*-algebras. For £ = 1, any product
system over (N* +) with unit fibre of the form Co(V) for a discrete set V/
(“vertices”) gives a higher-rank graph C*-algebra. For k > 1, this fails: we
also need the multiplication isomorphisms in the product system to be given
by permutation matrices in some chosen bases for our self-correspondences.

Let D denote our higher-rank Doplicher-Roberts algebra. The general theory
above applies here and shows that D = @, .,x Dr, is the section C*-algebra of
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a Fell bundle (D, ),ncz+ over Z¥, where D,, is the filtered colimit of the Banach
spaces K(Eq, Eqrm) for a € N* with a +m € N*¥. Here Lemma identifies
this Banach space with the space of compact intertwiners 7¢®p — 1T ®p. In
particular, the zero fibre Dy is the inductive limit of the system of C*-algebras
K(&,) for a € N¥; the sequence given by a = (aj,ay,...,a;) for a; € N is
cofinal in N*, so we may as well take this sequence.

For each a € N*¥, K(&,) is a C*-algebra of compact operators, hence a direct
sum of matrix algebras. The summands are in bijection with G because all
irreducible representations of GG occur in p and hence in 7® ® p. In particular,
K(&,) is Morita-Rieffel equivalent to C*(G) for each a € N*, and it is an
AF-algebra whose K-theory is equal to the K-theory Ko(C*(G)) of the group
C*-algebra of G and hence to the representation ring of G. Concretely, its
elements are functions G — (Z,+), and the positive cone in Ko(K(&,)) consists
of all functions G' — (N, +).

A countable inductive limit of AF-algebras remains an AF-algebra, so Dy is
AF. We compute its K-theory. The group Ko(C*(G)) is a commutative ring
through the tensor product of representations: the representation ring of G.
The map

Ko(C*(G)) = Ko(K(€a)) = Ko(K(Earm)) = Ko(CH(G))

induced by the canonical *-homomorphism K(&,) — K(Eg+m) is the multipli-
cation with [7™] in the ring structure on Ko(C*(G)). Hence

1 1
Ko(Do) = lim (Ko (C* (@) = Ko(C*(G)) T Ko(C*(G) = ).

where [r'*] denotes multiplication with the class of the representation 7 ®
-+ ® m in the representation ring. This inductive limit is the localisation of
the representation ring Ko(C*(G)) of G in which we invert [r1*]. Our K-theory
computation determines Dy uniquely up to Morita—Rieffel equivalence by El-
liott’s classification of AF-algebras.

Each D,, is a Hilbert bimodule from Dy to itself, which acts on Kg by multi-
plication with the class of 7”. From this information, it is sometimes possible
to compute the K-theory of D. We do not pursue this in general but merely
consider one special case where we can completely describe the higher-rank
Doplicher-Roberts algebra.

THEOREM 3.35. Let G = SU(n) for n > 2 and let m; = AY(C") € G for
i =1,....,n—1 be the exterior powers of the standard representation on C".
The associated rank-n—1 Doplicher—Roberts algebra D is purely infinite, simple,
separable, nuclear and in the bootstrap class, and has Ko(D) = Z, K1(D) = 0.

Kirchberg’s Classification Theorem implies that D is isomorphic to the Cuntz
algebra O, but we would not expect this isomorphism to be constructible.

Proof. The representations my,...,m,_1 € G are the fundamental representa-
tions of SU(n), that is, they are irreducible and generate a ring isomorphism
Z[ml, - ,$n_1] — R(G), T; = [ﬂ'i].
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Our Fell bundle description of D shows that it is stably isomorphic to a crossed
product of an action of Z"~! on an AF-algebra. Hence it is separable, nuclear
and in the bootstrap class. We compute the K-theory of D by iterating the
Pimsner—Voiculescu exact sequence n— 1 times. We write D x Z’ for the crossed
product with Z* C Z™~!, although this is really a Fell bundle section algebra;
the action by automorphisms only occurs on a stably isomorphic C*-algebra.

The AF-algebra Dy has Ko(Dy) = Z[zi',..., 25! ] because the representa-

yYn—1
tion ring of G is isomorphic to the polynomial algebra Z[x1,...,z,—1] with
x; = [m;] and localising at the elements z1,...,z,_1 simply adjoins their in-
verses. The elements 1 — z1,...,1 — z,_1 form a regular sequence in this
algebra; that is, for each ¢, multiplication by 1 — z;41 is injective on the
quotient Z[zF', ... 2=t /(1 — [#1],...,1 — [z;]) by the ideal generated by
1 —[z1],...,1 — [x;]. This is what allows us to compute the K-theory by

repeated application of the Pimsner—Voiculescu exact sequence.

In each step, we are supposed to consider the kernel and cokernel of the map
1 — a; on K. (Do x Z'~1), where «; is induced by the action of the ith factor
of Z on Dy x Z=1. By induction, we show that K;(Dy x Z!) vanishes and
that Ko(Dg x Z') is the quotient ring Z[mfcl, ot /A =2y,...,1 —a;) &

»¥n—1

Z[x?ﬁrll, e ,gcrilil]. This is clear for i = 0. In each induction step, we use
the Pimsner—Voiculescu exact sequence. Since we have a regular sequence,
multiplication by 1 — z; is injective on Z[xfl, ceey gcfil]/(l — X1y, 1= 2mq).

Thus K1 (Dg x Z*) vanishes and Ko (Do x Z?) is Z[w{d, .. ,xfil]/(l —x1,...,1—
x;). After n — 1 steps, we get Kq1(D) = 0 and

Ko(D) = Z[m%l, - ,acfil]/(l — 21,1 —xp_1) 2 7.
Thus D has the asserted K-theory.
Next we prove that D is simple. We do not claim that the AF-algebra Dy is
simple. The crossed product Dy x Z!, however, is simple by [48, Corollary 7.3]
because the representation 7m; of G on C" is faithful. This crossed product is
just a rank-1 Doplicher—Roberts algebra, hence stably isomorphic to a graph
algebra. The graph algebra description of Dy x Z' shows also that it is purely
infinite.
The K-theory computation above shows that Dg x Z' has K-theory isomorphic

to Z[z3', ..., xx! ], where the automorphism associated to 5™ --- 7" ' acts
"'n . Since this is never the identity map, none
of these automorphisms can be inner. Since Dy x Z! is simple, separable and
purely infinite, the (reduced) crossed product by the group Z"~2 remains simple
and purely infinite by [46, Lemma 10]. Since the stabilisation (Dg x Z!) x Z" 2

of D is simple and purely infinite, so is D itself. g

by multiplication with 25" - - - 2

There is another way to construct higher-rank Doplicher—Roberts algebras us-
ing the comultiplication A: C*(G) — C*(G) ® C*(G), which is defined by
Ag > Ag ® Ag for the standard multipliers Ay of C*(G) for g € G. This comulti-
plication turns C*(G) into a discrete quantum group. Our comultiplication is
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only a morphism, that is, its image is only in the multiplier algebra of C*(G).
We know, however, that (C*(G) ® 1) - A(C*(G)) = C*(G) ® C*(Q).

Let 7: C*(G) — M, (C) be some finite-dimensional representation of C*(G) or,
equivalently, of G. We get a morphism

CH@) B ¢ (@) ® CH(Q) T2 M, © C*(G) = K(CHG)™).

Since (C*(G) ® 1) - A(C*(G@)) = C*(G) ® C*(G), this morphism has values in
K(C*(G)™). Thus any finite-dimensional representation = of C*(G) induces a
proper correspondence &£(m) from C*(G) to itself.

Let m;: C*(G) — M, (C) for i = 1,2 be two finite-dimensional representations
and let m ® m2: C*(G) — My, 5, (C) be their tensor product representation.
The coassociativity of A gives an isomorphism of correspondences

5(71’1) ®C*(G) 5(71’2) = 5(7‘(‘1 ® 7T2).
Hence the obvious intertwining unitary m; ® my = 79 ® m; gives canonical
isomorphisms £(m1) ®c« () E(m2) = E(12) @c=(e) £(m1). The category of rep-
resentations of G with the tensor product of representations and the obvious
associators and commuters m; ® Ty = Ty @71 is a symmetric monoidal category.

Therefore, k representations my,...,m; of G give a product system over the
monoid (N*, 4) with fibres
E(my,...,my) =E@Y™ @@ 7™

and with the canonical isomorphisms
E(ma,...,my) Qcw ) E(mh, ... ,my) = E(my +mh, ... my + my).

We claim that this product system is the same as the one constructed above
if p is the regular representation. A first point is that the C*-algebra of com-
pact intertwiners of p is canonically isomorphic to C*(G), acting by the right
regular representation. Hence & = C*(G). Furthermore, p absorbs every
other representation by the Fell absorption principle: 7 ® p is canonically
isomorphic to a sum of n copies of p if 7 has dimension n; the intertwiners
L?(G,C") + L?*(G,C") are given by pointwise multiplication with the ma-
trix 4 at g € G. Hence we may identify C*(G)™ canonically with the Hilbert
&f-module of compact intertwiners p — 7 ® p. These identifications provide
an isomorphism between our product systems because the tensor product of
representations of G is induced by the comultiplication A.

4. AcTIONS OF ORE MONOIDS ON SPACES

Now let X be a locally compact, Hausdorff space and let A = Cy(X). Since
any automorphism of A comes from a homeomorphism on X, we may turn an
action of a group G on A by automorphisms into an action of G on the space X
and form a transformation groupoid G x X. The crossed product G x Cy(X)
is canonically isomorphic to the groupoid C*-algebra of G x X. When is there
such a groupoid model for the Cuntz—Pimsner algebra of a self-correspondence
on A?
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As a counterexample, consider a Hermitian vector bundle over X. It gives
a proper self-correspondence from A to itself by taking the Hilbert module
of sections with its usual inner product and the left action by pointwise mul-
tiplication. The resulting Cuntz—Pimsner algebra is a locally trivial field of
C*-algebras over X with Cuntz algebras as fibres. Such C*-algebras are clas-
sified by Dadarlat in [I8] in terms of certain cohomology groups. Unless the
field of C*-algebras over X is particularly simple, it seems to have no natural
groupoid model.

Therefore, we restrict attention to self-correspondences of Co(X) that are in-
duced by topological correspondences (see [43]). We define product systems
of such topological correspondences in the obvious fashion, so that they in-
duce a product system of C*-correspondences. We will build a “transformation
groupoid” for a proper product system of topological correspondences and show
that its groupoid C*-algebra is isomorphic to the Cuntz—Pimsner algebra of the
product system. Our transformation groupoid construction is similar in spirit
to the boundary path groupoid of Yeend [79] for a higher-rank topological
graph, that is, for the case P = N* for some k > 1. Yeend’s construction, how-
ever, depends on special features of N¥. In contrast, our construction depends
on the properness of the product systems.

A topological correspondence between two spaces X and Y is given by a third
space M with two mapsr: M — X and s: M — Y. We want to turn this into a
C*-correspondence from Co(X) to Co(Y"). There are two ways to do this. First,
we may assume that s is a local homeomorphism; this is Katsura’s definition of a
topological correspondence in [43]. Other names for this are continuous graphs
(see [19]) or polymorphisms (see [TL[I7]). Secondly, we may add extra data,
namely, a family of measures (\;)zcx on the fibres of s; this is what Muhly
and Tomforde call a topological quiver in [60]. The family of measures (\;)
is equivalent to a transfer operator for s in the notation of Exel [26], or a
Markov operator in the notation of [39]. A topological correspondence gives a
topological quiver when combined with a suitably normalised family of counting
measures on the (discrete) fibres of s.

A topological quiver (M, r, s, ;) gives a C*-correspondence &, pr,s over Co(X):
complete C¢(M) with respect to the Co(X)-valued inner product

R R NGO
for &1,& € Co(M), x € X; the left and right module structures are (f£)(m) :=
f(r(m))€(m) and (£f)(m) := &£(m)f(s(m)) for all m € M, f € Co(X), § €
Cc(M). In particular, this construction applies to topological correspondences,
where we always take the family of counting measures.

PROPOSITION 4.1. The C*-correspondence &, nr,s s proper if and only if r is
proper and s is a local homeomorphism. In that case, the isomorphism class
of & a5 does not depend on (X)), so we may always use the family of counting
measures. The C*-correspondence &, p1,s 5 full if and only if s is surjective.
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Proof. The C*-correspondence &, 5/ s is proper if and only if =1 (K(& pr.5)) =
Co(X). In the notation of [60, Definition 3.14], all vertices are finite emitters.
[60, Corollary 3.12] shows that this happens if and only if r is proper and s is
a local homeomorphism.

Let (Az) and (X)) be two families of measures that make (M, r, s) into a topo-
logical quiver. Since both A, and A, have the same discrete subset s~1(x)
as support, they are equivalent, say, A, = f, - A, for a unique function
fz:s7H(x) — (0,00). The functions f, may be pieced together to a function
f: M — (0,00). The continuity of (\;) and (\,) implies that f is a continu-
ous function. Hence multiplication with 1/f is a unitary operator between the
Hilbert modules over Co(X) associated to the two families of measures. This
unitary also intertwines the left actions, which are by multiplication operators.
It is routine to check that &, as s is full if and only if s is surjective. ]

DEFINITION 4.2. A topological correspondence is called proper if r is proper
and s is a local homeomorphism.

LEMMA 4.3. Consider two topological correspondences
X &M 2 X & M, 2 X

Define M := My Xg, xpy Mo, r: M — X, (m1,m2) — r1(m1), s: M — X,
(m1,m2) — sa(ma). Then

~
5T17M1,81 Oy (X) 5T27M2,S2 = 57“,M,S‘
If r1 and ro are proper, so is r. If s1 and so are surjective, so is s.

Proof. The first part is routine to prove and holds even for topological quivers,
see [60, Lemmas 6.1-4]. The statements about proper and surjective maps are
easy as well; they amount to the statement that tensor products of proper or
full C*-correspondences are again proper or full, respectively. O

Proposition BTl says that the C*-correspondence associated to a topological
quiver is proper if and only if we are dealing with a proper topological corre-
spondence; the family of measures does not matter. We restrict attention to
proper topological correspondences from now on.

The notion of a “topological graph algebra” interprets a topological correspon-
dence as a “topological graph,” where vertices and (oriented) edges form topo-
logical spaces. This interpretation, however, fails to elucidate the lack of sym-
metry between r and s in the construction of the C*-correspondence. Another
interpretation is that a topological correspondence (r, M, s) is a multi-valued
map from Y to X, where r(m) € X for m € s~1(y) are the possible values
at y € Y. If s is a local homeomorphism and r is proper, then the subset
of values 7(s7!(y)) of y is discrete. The interpretation as a multivalued map
breaks down, however, if there are different m,m’ € M with s(m) = s(m') and
r(m) = r(m’). We suggest the following more dynamical interpretation of a
(proper) topological correspondence.

We consider points in M as possible developments or, briefly, stories. Each
story m € M assumes a certain initial situation s(m) € Y and leads to a
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certain ending r(m) € X. Several stories may have the same initial situation
and ending.

How does this interpretation account for the assumptions that s be a local
homeomorphism and r be proper? That s is a local homeomorphism means
the following: if we modify the initial situation s(m) of a story m a little bit,
then there is a unique story m, close to m with initial situation x. Roughly
speaking, m, describes how “the same” story would go in a slightly different
initial situation, and fits our intuition of story-telling. That r is proper means
that, given a compact set of possible endings, the set of stories with such an
ending is also compact. This is a rather technical finiteness condition on the
space of possible stories. It ensures that the space of complete histories defined
below is locally compact.

DEFINITION 4.4. Let P be a monoid. An action of P on X by proper topological
correspondences consists of the following data:

e proper topological correspondences (M,,7p,sp) from X to X for p €

P\ {1}

e homeomorphisms oy, 4: Mpq — My, X, x.r, My for p,q € P\ {1}.
Let M; = X and 1 = s; = idx, and let 0,1 and 01,4 be the canonical
homeomorphisms M, = M), X, xidx X and My = X Xiqy,x,r, Mg for p,q € P.
For an action of P, we require the diagram

g XxidM
p.q t
M, xx My xx My 222 " M. xx M,

(4.5) idpy, Xx Uq,tT T%q,t
Mp Xx Mqt Mpqt

Op,qt

to commute for all p,q,t € P\ {1} (since pg = 1 or gt = 1 is possible, we have
to define (M, s1,71), 01,4 and 0,1 for this condition to make sense). This
diagram commutes automatically if p =1, ¢ = 1 or ¢ = 1, so our assumption
implies that it commutes for all p,q,t € P.

Example 4.6. An action of N* on a countable discrete set X by proper topo-
logical correspondences is equivalent to a row-finite rank-k graph by [34]. The
Cuntz—Pimsner algebra that we shall attach to this data is not always the
higher-rank graph C*-algebra, however, because we do not incorporate Kat-
sura’s modification of the Cuntz-Pimsner algebra into our definition. See
also [67].

We fix an action of P on X by proper topological correspondences as
above. The proper topological correspondences (Mp,rp,s,) induce proper
C*-correspondences &, from Co(X) to itself for p € P\ {1}, and we let & =
Co(X). The homeomorphisms o, , induce isomorphisms of C*-correspondences

Ipg: Ep Dco(x) Eqg = Epg
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for p,g € P\ {1} by Lemma A3} and we let u; 4 and pp 1 be the canonical
isomorphisms. The diagram (&3] ensures the associativity of these multiplica-
tion maps pp 4 for all p,q,t € P\ {1} (even if pg = 1 or ¢t = 1); associativity
is automatic if p =1, ¢ =1 or ¢ = 1. So an action of P on X by topological
correspondences induces a proper product system over P with unit fibre Co(X),
as expected.

The defining property of the fibre product means that o, ¢ = (rp.,q, Sp,q) for two
continuous maps

Tp,q: Mpg — M, Spq: Mpg — My
with s, 01, g =74 0 8p 4. Since 0,1 and 04,1 are the canonical maps,
Sp,1 = Sp, Tp1 = id]up, Sl,q = idMq, Ti,g = Tq
for all p, g € P. The associativity condition (3] is equivalent to
(4.7) Tp,q © Tpg,t = Tp,qt>  Sp,q © Tpg,t = Tq,t © Sp,gts  Sq,t © Sp,qt = Spq,t-

LEMMA 4.8. The maps rp q are proper and the maps sp 4 are local homeomor-
phisms. If all s, are surjective, then so are the maps sp 4.

Proof. The map r,, is the composite of the homeomorphism o, , and the
coordinate projection M, X, x ., My — M,p. This coordinate projection is
proper if r4 is proper because properness is hereditary under this type of fibre
products. Similarly, the map s, 4 is the composite of the homeomorphism o, 4
and the coordinate projection M, X, xr, My — My; the latter inherits the
property of being surjective or a local homeomorphism from s,. 0

We interpret elements of P as a (multi-dimensional) kind of time, and elements
of M, as stories of length p € P; a story m € M), starts in the situation s,(m)
and ends in rp(m). The maps rpq: Mpq — My and s, q: Mpg — M, cut
a story m of length pq into two stories of length p and ¢: its ending m; =
Tp,q(m) € M, and its beginning ma = s, q(m) € My. These satisfy s,(m;) =
rq(mg), that is, the story m; starts where my ends. The inverse of 0, , combines
a pair my € My, mo € M, of stories of lengths p and ¢ to a story m; o my
of length pq, provided m; starts where my ends. The assumption that o, 4
be a homeomorphism says that m € My, and (mq,m2) € M, x M, with
sp(m1) = rq(mse) determine each other uniquely and continuously.

The length 1 € P is the neutral element, so nothing can happen in time 1,
and adding a story of length 1 before or after another story does nothing.
This means that M; = X and that o, and o014 are the canonical maps.
The associativity conditions (£7]) say that the two ways of cutting a story of
length pgt into three pieces of length p, ¢ and ¢ give the same results.

If P is a free monoid on n generators (which, however, is not Ore), then the
situation above may be interpreted as describing a game where the players
may do n different things in each time interval. If, say, the player has the three
options a, b, ¢, then p = baac means a time interval of length 4 in which the
player first does ¢, then twice a, then b. If the game was in situation x € X
initially, then the points in s, L(x) C M, are the possible game developments
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in this length-4 time period, provided the player’s actions are baac. And r,(m)
for m € s, (z) is the situation after this time period. If s, ' (z) has more than
one point, then the game contains randomness. It makes sense to quantify this
randomness by a transfer operator with Zsp(m):y pp(m) =1 for all z € X,
where p,(m) is the probability that the game develops as in story m, given the
initial situation y. We do not add such probabilities to our setup because they
are irrelevant for us by Proposition [£.1]

A relation in the monoid P means that certain actions of the player always
and automatically have the same effect on the game. For instance, if P is the
free Abelian monoid N™ on n generators, then the order in which the player
does various things does not matter. I know no game with this property; so
the interpretation through games works best for free monoids.

There are three simple cases of actions by proper topological correspondences:

(1) M, =X and s, =idx for all z € X, p € P; that is, a situation z € X
determines its future uniquely;

(2) My, =X and rp, =idx for all x € X, p € P; that is, a situation z € X
determines its past uniquely;

(3) M, is arbitrary, but s, = r, for all p € P; that is, the situation never
changes; then s, = r, must be both proper and a local homeomorphism;
equivalently, it is a finite covering map.

From now on, we assume that P is a right Ore monoid. In this case, the
Cuntz—Pimsner algebra of the product system (€, up ) over P is described
more concretely in Section We are going to identify this Cuntz—Pimsner
algebra with the groupoid C*-algebra of an étale, locally compact groupoid H.
We first describe the object space H° of this groupoid. The first associativ-
ity condition in (7)) says that the spaces M, for p € P and the continuous
maps 7,4 for p,g € P form a projective system of locally compact spaces
indexed by the directed category Cp. We let
HY = @1 (Mp,7p,q)-
Cp

Thus a point in H? consists of m, € M, for all p € P that satisfy 7, 4(mp,) =
m,, for all p,q € P. In other words, the m,, are stories that are consistent in
the sense that m,, is the ending of m,,, for each p, g € P. We call a point in H°
a complete history and think of m, as describing what happened in the last
length-p time period.

LEMMA 4.9. The space H is locally compact and Hausdorff. The projection
maps 7 HY — My, (mp)pep — my, are proper for all q € P.

Proof. Fix (my)pep € H® and let K C X = M; be a compact neighbourhood
of my. The preimage of K in H® is the subset of all (m},),cp with m}) € K
and hence 7,(m;,) € K for all p € P. Since all the maps r, are proper, the
subsets r, ' (K) C M, are compact. Hence so is the product L := [Ler o (K)
by Tychonov’s Theorem. Thus the map m1: H° — X is proper. The same
argument shows that all the maps m, are proper. Since L is also a compact
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neighbourhood of (m,)pep in HY, the space H® is locally compact. If (m]) #
(myp), then there is p € P with m;, # m,. There are open neighbourhoods
in M, that separate m; and m,,. These yield open neighbourhoods in H that
separate (m7,) and (m), so H° is Hausdorff. O

Given a complete history (mp),ep and ¢t € P, we may forget what happened
in the last time period of length ¢; this gives another complete history, defined
formally by m;, := s ,(myp) for p € P; the second condition in (£7) implies
Tp.q(my,,) =m, for all p,t € P, that is, (m;,),ep is again a complete history as
expected. Thus (my) = (m/,) defines a map 3,: H* — H°.

LEMMA 4.10. Let t € P. The map (m,5:): H® — My x5, x.n, H® is a homeo-
morphism, and §.: H® — H° is a local homeomorphism. If s; is surjective, so
is S¢. If s¢ is a homeomorphism, so is 3;.

Proof. Let (my)pep € H°. Then m(my) = my and 5:((myp)) = (St.p(mup))pep-
Since myp = T p(Mip) - Sep(Map) = my - 5:((Myp))p, we have m 0 §; = s 0y,
that is, the image of (m, §;) is contained in the fibre product M; xs, x ., H°.
Since the map (7, 8;) is clearly continuous, we must prove that it is a bijection
with a continuous inverse. So we let (m/,) € H” be a complete history and let
ms € My be a length-t story with m} = s;(m;) € X. We must show that there
is a unique complete history (m,) with given m; and with 5;((m;)) = (my,),
which depends continuously on (m;,) and m.

First assume that (mp)pcp as above has been found. Let ¢ € P. Then we may
write qu = tp for some u,p € P because P is a right Ore monoid. The story my,
is the concatenation mtom; of ry p(mpe) = my and sy p(Mmyp) = m;, which exists
because 7,(my,) = my = si(my). Thus mg = rgu(Mmgu) = 7gu(me omy). So
there is at most one possible solution (my)ycp, and it depends continuously
on (my,) and m;. We must show that the length-g stories mg := 74, (m; 0 my,)
with u,p € P as above form a complete history, that is, ¢ (mgy) = mq for all
q,v € P.

We have mgy, = 7gu,u, (M 0 mgoz) for some us, p2 € P with quus = tps. Since P
is a right Ore monoid, there are uz,us € P with vusuz = uug. Then tpoug =
quuous = quuy = tpuy. Since P is a right Ore monoid, there is us € P with
pausus = pugus. To simplify notation, we replace (us, uq) by (usus, ugus); thus
pb2u3z = pug.

Since quuy = tpus, we could also use (uu4, puq) instead of (u,p) to define m,.
The associativity conditions in (7)) show that this gives the same result:

Tq,uus (Mt © m;u4) = Tq,ulqu,us (Mt © m;u4)
= Tgulquus (M © m; 0 Spouy (m;u4)) = rqu(m o m;).

Similarly, we get the same result for mg, if we use (ugus,pous) instead
of (uz,p2). Thus we may assume that ps = p and u = vus. Then
Tg,0(Mqv) = Tq,0(Tqu,us (M © m;)) = Tg,0us (Mt © mlp) = rqu(me o mlp) = Myq.
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This finishes the proof that (m, 5;) is a homeomorphism. This homeomorphism
transforms the map 5; into the second coordinate projection M; X, x x, HO —
H°, which is a (local) homeomorphism if s; is one, and surjective if s; is. [J

First forgetting the last length-t time period and then the last length-u time pe-
riod gives the same result as directly forgetting the last time period of length tu.
That is, §, 0 § = §¢, for all t,u € P. Formally, this follows from the third
condition in ([@7). Thus the monoid P°P acts on H° by local homeomorphisms.
Why do we get the opposite monoid here? The maps 5,: H® — H? and
7+ = idgo form an action of P by topological correspondences with the ex-
tra property that any situation determines its past uniquely: a “situation”
in HY is a complete history, which simply contains its past. Thus we still have
an action by topological correspondences, but one where the maps 7, are all
identity maps, so that we may forget about them. This gives an action of the
opposite monoid P°P by local homeomorphisms because of the direction of the
maps Syp.

Example 4.11. Suppose that we start with an action of P on X by proper
maps 7, and let s, be identity maps; that is, every situation determines its
future. Then the maps §; are homeomorphisms by Lemma £I0 Thus our
action of P°P on HY extends to the group completion G of P°P. The groupoid
model we are going to construct is the transformation groupoid of this group
action.

DEFINITION 4.12. The transformation groupoid H := P°P x H° associated
to the P°P-action (5,) on H? by local homeomorphisms has object space H°,
arrow set

Hl = {('ragay) € HO X G X HO | 3plapQ S Pa g :p1p2_1) 5;01(:6) = gPZ(y)}7
range and source maps r(z, g,y) := x, s(z,g,y) := y, and multiplication

('Tlaglayl) . (‘T23923y2) = (‘TlﬂgngaQQ)
if 43 = x5. The unit on z € HY is (z,1,x), the inverse of (x,g,v) is (y, 9~
We describe the topology on H!. For p;,p; € P, let

Hy, p, = H° %5, o, H* = {(z,y) € H x H* | 5p,(x) = 5,,(y)},

P1,p2

L)

the fibre product of the diagram H° 2o HO P2 g0, We give each H!  the

Pp1,p2
subspace topology from the product H? x H, and | |, . p Hy, . the disjoint
union topology. We map H}  ~— H' by (z,y) — (z,p1p; ', y) € H'. This

P1,p2
gives a surjection | | H; — H'. We give H! the quotient topology from this
map.

1,P2

To verify that the transformation groupoid has desirable properties, we rewrite
it using filtered colimits. Let H) := {(x,9,y) € H'} for g € G; so
H' = |],cq Hy. We describe Hy for fixed g € G as a colimit over C} (see Defi-
nition B14), which is a filtered category by Lemma BI5 If p1q = ps, p2qg = p4,
then 8, (x) = 3p,(y) implies 3,,(z) = 5,,(y), so H), ,, € H, , < H° x H°.
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. . . . . . . . . . 1
Since right multiplication with ¢ is locally injective, any (z,y) € H) .

has a neighbourhood in H® x HY so that for (z’,%’) in this neighbourhood,

Spy (2') # 3y, (y') implies 5p,4(2") # 5p,q(y'). Thus the subset H) is rela-

tively open in H;BM; so the spaces H;hm for (p1,p2) € P? and the inclusion

maps H ;1 o H, ;3,1,4 form a diagram of subsets of H% x H? with open inclusion

maps.

LEMMA 4.13. prlpgl = pgpzl, then there are ps,ps € P with pg,ps_1 = plpgl
and so that both H} and H} are open subsets of H;s,ps ; hence the subspace

P1,p2 P3,p4
. 1 1 . . 1 1 . .
topologies frorrlepl,p2 and Hzis,m coincide ;m H, b, mHP37P41’ and this subset is
open both in Hy, . andin H, , . Fach H, . isopenin Hg, and the topology

on H; restricts to the given topology on each H;l pa

Proof. Since C% is filtered, there is an object (ps,ps) that dominates both
(p1,p2) and (ps,ps). This has all required properties. Thus all the embeddings

1 1 . . . . 1 _
H, b — Hpsim are open. This 1mphf>s that th.e quotient t(?pology on H; =
U(pl,pz)eRg H, ,, from [_|(p17p2)eRg H, ,, restricts to the given topology on
each subset H) . O
Thus the subsets H, ,, for p1,ps € P form an open covering of H', and the

1 . 1 .

topology on H1 restricts to the usual t(ipology on each H,, . . In the following,
we identify H,, , with its image in H", which is an open subset.
PROPOSITION 4.14. The groupoid H is étale, locally compact and Hausdorff.
The decomposition H' = || . Hy satisfies Hy-Hy C Hy, and (Hy)™' = H) ;.
If the maps s, for p € P are surjective, then Hg1 -H! = Hglh forall g,h € G.
The groupoid Hi C H' is an increasing union of open subgroupoids that are
proper and étale and describe equivalence relations on HY.

Proof. The space H? is locally compact and Hausdorff by Lemma The
coordinate projections H;l p = H 0 are étale because P acts by local home-
omorphisms. Since the subsets Hgl po fOr p1,p2 € P form an open covering
of H', the coordinate projections H' = H° are étale. Any two points of H,
are contained in the same Hausdorff, locally compact, open subset H;l po fOT
suitable p1, p2, so they may be separated by open subsets of H ;; since the sub-
sets H; are open, it is also possible to separate points in Hg1 and Hj for g # h.
Thus H' is Hausdorff.

If the maps s, for p € P are surjective, then so are the maps 5, for p € P
by Lemma I0 Now let (x,gh,y) € H;h. Hence there are py,p2 € P with
gh = pip; " and 5p,(z) = 5p,(y). Write g = pap;, h = pg,pgl. Then also
g = p3q(paq)~! and h = (pst)(pet)~! for all ¢,t € P. The Ore condition
allows us to choose ¢ and t such that pyq = pst. Hence we may assume without
loss of generality that ps = p5s. Then

p1py " = gh = pspy 'pspg ' = pspg
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If 5,, (x) = 8p,(y), then also §,,+(x) = §,,+(y) for any ¢t € P, so we may rewrite
gh = (p1t)(p2t)~'. We may also replace (ps,ps,ps,p6) by (p3q, Paq, P54, P6q)
for any ¢ € P. Choosing ¢ and ¢ by condition we may achieve psq = p1t,
peq = pat, by the definition of the group G. Hence we find p1, p2,p3 € P with
gh=pipy ', g=pip3 ", h = p3py " and &, (z) = 5,,(y). Since 5,, is surjective,
we may choose z € H? with 5,,(z) = 5, (x) = 3p,(y). Then (z,g,2) € H; and
(z,h,y) € Hj satisty (z,g,2) - (z,h,y) = (z,gh,y).

The open subgroupoid Hi is defined as the union of H;l po With (p1,p2) € Ry.
Since Cp is cofinal in C} by LemmaBI5, H{ = Uper H) . Here H)  is the set
of all (z,y) € H® x H® with 3,(z) = 5,(y), and it carries the subspace topology
from HY x H°. So H} , is a proper equivalence relation on H°, and H] is the
union of these open subgroupoids. 0

If P is countable, then we may choose a cofinal sequence in C and write H{
as an increasing union of a sequence of proper étale equivalence relations.
Hence H{ is an approzimately proper equivalence relation in the notation of [71].
These are called hyperfinite relations in [47]. We allow ourselves to call H{ ap-
proximately proper also if P is uncountable, replacing a sequence of proper
(finite) open subrelations by a directed set of such subrelations.

If the maps s, for p € P are surjective, then the subsets H; for g € G form a
G-grading in the notation of [I1]. This is equivalent to an action of G on the
groupoid H{ by Morita equivalences with transformation groupoid H. Thus
we may think of H as the transformation groupoid associated to an action
of G on the noncommutative orbit space H'/H{. Points in this orbit space
are equivalence classes of complete histories, where two complete histories are
identified if they coincide in the distant past, that is, §,(x) = §,(y) for some
p € P. The group G acts on this by “time translations.”

If the maps s, are not surjective, then the G-action on H'! is only a partial
action because time translations x — pz into the future are not everywhere de-
fined. A partial G-action is the same as an action of a certain inverse semigroup
associated to G, see [23].

DEFINITION 4.15. A situation z € X is (historically) possible if = € r,(M,,) for
allp e P.

Let X’ C X be the subset of possible situations. We have X’ = X if and only
if all the maps 7, are surjective. Let M) = s7'(X’) and let 7, and s/, be the
restrictions of r, and s, to M. Any situation that occurs at some point in
a complete history is possible, so we have m, € M, for any (m;)pep € HO.
Conversely, a situation that is possible is the endpoint m; of some complete
history (mp)pep because the maps r, are proper (Lemma E.9)) and a projec-
tive limit of non-empty compact spaces is non-empty. Thus 7, LHY) = M;,
r,(M,) = X' for all p € P, and s,(M,) C X' by associativity: if a situa-
tion has a possible past, then it is itself possible because we may concatenate
stories. We still have isomorphisms M, x x: My = M, , so restricting to the
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possible situations gives a new action by topological correspondences. By con-
struction, both systems (X, M, s,,1p,0p4) and (X', M, s}, 7,0, ) have the
same complete histories and thus the same transformation groupoid H.

LEMMA 4.16. Let q,a1,a2 € P satisfy ga1 = qaz. Then rq.q, | M

=T | ro.
qay a,a21Mg,,

Proof. Condition [(O2)| gives us b € P with a;b = a2b. The associativity prop-
erty 7)) of the maps 7, gives ¢ q; © gai,b = Tq,a:b- Hence 744, and rq q,
coincide on the range of 74 4,5 = 7¢,a.5- The subspace Méal is contained in that

range. g

Write p > q for p,q € P if there is a € P with p = ga. Lemma .16 shows that
after restricting to the possible situations, the truncation map rq4: M; — M ,;
for p > q does not depend on the choice of a.

THEOREM 4.17. The groupoid C*-algebra C*(H) is canonically isomorphic to
the Cuntz—Pimsner algebra of the product system (E,)pep over P described
above.

Proof. The proof has two parts. In the first part, we show that the original
action on X has the same colimit as the induced action on H°. So we are
reduced to the special case of actions by correspondences of the special form
where the maps r,: M, — X are all identity maps. In the second part, we do
this case by hand.

Let D be a C*-algebra. A transformation from the product system (&p)pecp
to D consists of a correspondence F to D together with isomorphisms of cor-
respondences V,,: £, ®cy(x) F = F. The left action of Co(X) on &, extends to
an action of Co(M,) by pointwise multiplication. Thus we get a canonical left
action of Co(M,) on &, ®c,(x) F = F, where we use use the isomorphism V;,.
Thus Co(M,) acts on F in a canonical way for each p € P.

If p,q € P, then the isomorphism V,: £,y @cy(x) F = F is equal to the com-
posite isomorphism where we first identify &, = &£, ®c,(x) & and then apply
Vy and V,,. As a consequence, the action of Co(M,) on F is the composite of the
action of Cyo(Mpe) on F and the *-homomorphism 7y, q: Co(Mp) — Co(Mp,g).
So the left actions of Cy(M,) fit together to an action of the inductive limit

lny(Co(My).5.4) = Co (1%%, ) = Co(HO),

Thus F carries a nondegenerate *-representation of Co(HY), turning it into a
correspondence F from Co(H?) to D.
Now let &, := &, X Co(x) Co(HO). Then

Ep Oco(m0) F = & ®cy(x) Co(H®) @cy(moy F =2 & ®cy(x) F = F,

where the last isomorphism is V), and all other isomorphisms are trivial. By
definition, the correspondence &, from Co(X) to Co(H") is obtained from a
topological correspondence as well, namely, we replace M), by ]\Z/p = MyXs, xm
H° and use the map (m,w) ~— r,(m) as range and the map (m,w) + w as
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source map. Lemma [£.10] describes a homeomorphism Mp =~ HO such that the
second coordinate projection becomes 3,: H® — H°. We let 7, be the identity
map H° — H° and thus turn gp into a correspondence from Co(HY) to itself.
Since 5,035, = 34p, the usual composition of topological correspondences defines
an action of P on H° by topological correspondences. Thus the associated
C*-correspondences 5 form a product system over P with unit fibre CO(H ).
We claim that the isomorphism of Hilbert modules 5 Qo (HO) F = F con-
structed above is an isomorphism of correspondences from Co(H?) to D with
this choice of left action of Co(H®) on &,. Tt suffices that Co(M,) acts in the
same way on both sides for each ¢ € P. The Ore condition gives t,u € P
with pt = qu. Since the action of Co (M) factors through Co(My,) and qu = pt,
we may assume q = pt.

The left action of Co(M,) on 5 @, (HO) F is obtained as follows. First, as
Hilbert D-modules, we identify

Ep ®co(mo) F = (Ep ®cy(x) Co(Mr)) ®co(ar) (€ ®cy(x) F)-

Then we identify &, ®c,(x) Co(M;) with the C*-correspondence from Co (M)
to Co(M;) associated to the topological correspondence My = M, X, x.r,
M; — My, where the range map is the homeomorphism o, ; and the source map
is pry. By Lemma 3] the composite of this with the C*-correspondence &;
from Co(M;) to Co(X) is the C*-correspondence associated to the composite
topological correspondence, (M X, x.r, M¢) X pr, M, ,r My This is My X, x.r,
M; now viewed as a topological correspondence from My, to X. As such, it
is isomorphic to M,;. Thus we may also get the left action of Co(Mp) on
gp @y (HO) F by identifying this in the canonical way with Ept By (x) F and
then acting on the first tensor factor by pointwise multiplication. This, however,
is exactly how the left action of Co(M,:) on F is defined. Thus the left actions
of Co(M;) on &, ®cy(moy F and F coincide as expected.

Since Co(X) C Co(H®), we may view &, as a subspace of £,. The map from
the algebraic tensor product £, ©® F to 5~p ®c,(mo) F has dense range because
the target is isomorphic to F, which is also isomorphic to the correspondence
tensor product &, ®c,(x) F, and there £, ©® F is certainly dense. Hence the
map from &, © & © F to 5 @, (HO) 5 ®c,(mo) F also has dense range. The
coherence cond1t10n for a transformatlon of product systems (3.2 holds on
this dense subspace by assumption, and hence it holds everywhere. Thus our
isomorphisms of C*-correspondences gp ®c,(goy F = F form a transformation
as expected.

Thus a transformation from the product system &, to D gives a transformation
from the product system ffp to D, with the same underlying Hilbert mod-
ule F. Conversely, a transformation from the product system gp to D gives
one from the product system &, to D because &, C gp. Since £, ® F is dense in
fjp ®c, (o) F, these two constructions must be inverse to each other. Summing
up, we have found a bijection between the transformations from our two prod-
uct systems to D that does not change the underlying Hilbert module F. The
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results in Section ] show that such transformations are in bijection with non-
degenerate representations of the Cuntz—Pimsner algebras of the two product
systems on F, respectively. Having found bijections between the representa-
tions of both Cuntz—Pimsner algebras on any Hilbert module, we conclude by
the Yoneda Lemma that they must be isomorphic.

We have now reduced the general case of an action by topological correspon-
dences to the special case of an action with M, = X and r, = id for all p € P.
This case is much easier because the groupoid model has HY = X, so we merely
take a transformation groupoid and do not change the underlying object space.
By definition, C*(H) is the C*-completion of the dense *-subalgebra C.(H?')
of compactly supported, continuous functions on H', equipped with the usual
convolution and involution

frsfa(h) = > fi(h1)fa(ha), fr(h) = f(h1),
hiha=h

for f1,fo, f € Co(HY), h € H! (see [28, Section 3]). Here “C*-completion”
means that we complete in the largest C*-seminorm on C.(H!'). There is
no need to assume boundedness for the I-norm. First, the argument in [2§]
shows that every Hilbert space representation and hence every C*-seminorm is
continuous for the inductive limit topology; secondly, [70, Corollaire 4.8] shows
that such representations and C*-seminorms are bounded for the I-norm.

The disjoint decomposition H' = || .o Hy gives Cc(H') = @, Ce(Hy).
This is a non-saturated G-grading, that is, C.(H) * Cc(H}) € Ce(Hy,) and
Co(Hy)* = Co(H, ). This G-grading turns C*(H) into the section algebra
of a Fell bundle over G. Of course, our proof will show that this Fell bundle
structure corresponds to the same structure on the Cuntz—Pimsner algebra.
The space H, ! is an increasing union of the open subsets H! Thus any

p1,p2°
function in C (H ) already belongs to C.(H,, ) for some p, ¢ € P with pg—!

g:
= |J co
pq =g
Since X = H', we have H} , = X X, x5, X, the set of pairs (z, y) with s,(z) =
sq(z). We are now going to relate C (X Xs,.X,s, X) to the space K(&;, &) in
the description of the Cuntz—Pimsner algebra in the proof of Theorem
Given a function k € Cc(X x,, x5, X), we define

Ty: &g = &, (Ti€)(m) = > k(ma,m)é(ms);

sp(mi1)=sq(mz2)

these sums are uniformly finite for m; in a compact subset because s, and s, are
local homeomorphisms and the support of k is compact. The operator T} is a
rank-one operator if k(m1, ma) = k1(m1)-ka(me) with k1 € Co(X), k2 € Co(X).
Since functions k of this form are dense in C.(X x,, x s, X) and the map
k + T}, is continuous, we have Ty € K(&,;,&p) for all k € Co(X X, x5, X).
Since compactly supported functions are dense in &, and &, operators of the
form T}, for k € Co(X x4, x,5, X) are dense in K(&;,&,). If T}, = 0, then k = 0.
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We may express the product and involution on compact operators through ker-
nel functions: if k € Co(X x,, x5, X) and [ € Cc(X x,, x5, X), then T}, o T

has the kernel (mq,ms) — 5q(m)=sy (m1)=s:(ms) k(my,m)l(m, m2), and the

adjoint T} has the kernel (m1,ma) — k(ma, m1). These formulas correspond
to the convolution and involution in C.(H!). Therefore, the map k + T} is an
injective *-homomorphism with dense range from Cc(H') = 3 p Cc(H, )
to the *-algebra > O, of compactly supported sections of the Fell bun-
dle (Og)geG-

It remains to show that this *-homomorphism extends to an isomorphism
between the C*-completions. It suffices to prove that the restriction of any
*_representation of C.(H!) to CC(H;) is bounded with respect to the norm
of O,. Since ||£||? = [|£*¢]|o, for all £ € Oy, this holds for all g once it holds for
g = 1. Thus it remains to show that the unit fibre O; of the Cuntz—Pimsner
algebra is the C*-completion of C.(H{) for the subgroupoid Hi.

If p € P, then the subset H) , = X x,, x,, X of H{ is the groupoid de-
scribing the equivalence relation ~, induced by the map s,. This equivalence
relation is proper, that is, the map X — X/~ is proper, since s, is a local
homeomorphism. Hence the C*-algebra of the groupoid H;,p is Morita—Rieffel
equivalent to Co(sp(X)). The Hilbert bimodule constructed in the proof of
this Morita—Rieffel equivalent in [6I] is exactly our correspondence &,. Hence
C*(H,,) = K(&,). The C*-algebras C*(H"') and Oy are the colimits of the dia-
grams of C*-algebras C*(H, ,) and K(,) over the filtered category Cp. Hence
they are also canonically isomorphic. O

geG

5. SOME RELATIONS TO PREVIOUS WORK

The construction of groupoid models above is very general and contains many
known constructions. We discuss some of them in this section.

First let P = (N, +). An action of N by topological correspondences is already
determined by the single topological correspondence (M, 1, $1), where s; must
be a local homeomorphism (1 € N is not the unit element here, there is a conflict
with our usual multiplicative notation). This topological correspondence is the
same as a topological graph. We assume r; to be proper to get a proper
topological correspondence; then the composite correspondences M, for n € N
are automatically proper. We also assume 71 to be surjective; equivalently,
all maps r, are surjective and X = X’. What we are dealing with is a row-
finite topological graph without sources, which we simply call regular. The
space X is its space of vertices, and M is its space of edges, with m € M
giving an edge from s1(x) to r1(z). A point in M, is a path in the topological
graph of length n, and the maps s,, and 7, send such a path to its initial and
final point. The homeomorphism M,, X, x 5. My = My, builds a path of
length n 4+ m by concatenating two paths of length n and m. If the space X
of vertices is discrete, then so is the space of edges M; because s; is a local
homeomorphism. Thus the case where X is discrete gives the ordinary graphs
among the topological graphs.
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For a regular topological graph, the topological graph C*-algebra of Katsura
[43H45] is, by definition, the same absolute Cuntz—Pimsner algebra that we
study. If there are sources, that is, r1 is not surjective, then neither our (abso-
lute) Cuntz—Pimsner algebra nor its groupoid model see a difference between
the topological graph (X, My,r1,s1) and its restriction (X', M1, /|, s}), which
now has surjective r]. Thus we get the topological graph C*-algebra of the
regular graph (X', M7, r, s}); this is quite different from Katsura’s C*-algebra
for the original topological graph.

Groupoid models played an important role in the definition of (discrete) graph
C*-algebras by Kumjian, Pask, Raeburn and Renault in [48]. They are,
however, not used by Katsura to develop the theory of topological graph
C*-algebras. A pretty general construction of a groupoid model for topological
graph C*-algebras is due to Deaconu [19], under the extra assumption that
both maps s; and r; be surjective local homeomorphisms and both spaces X
and M; be compact. These assumptions are removed by Yeend [78], who con-
structs groupoid models for the more general class of higher-rank topological
graphs. His construction works for all rank-1 graphs, that is, he may allow r; to
be any map. The construction simplifies, however, if 1 is proper and surjective.
Since points in M,, are paths of length n, our complete histories in H° are
the same as infinite paths in the topological graph. The map m,: H° — M,
gives the initial segment of a path of length n. The local homeomorphism §,
truncates an infinite path by throwing away the initial segment of length n.
The groupoid H is Z-graded,

H= |_| H,,

nez

and the unit fibre Hy C H describes the equivalence relation of tail equivalence:
we identify two infinite paths if they eventually become equal (without shift).
The whole groupoid H combines tail equivalence with the shift map on infinite
paths: an arrow in H,, means that two infinite paths become eventually equal
if we also shift one of them by n steps.

The construction above is exactly how the usual groupoid model for a regular
topological graph is constructed. Thus our groupoid H is the same as Yeend’s
groupoid model for the C*-algebra of a regular topological graph, which in turn
generalises the groupoid models in [19,[48]. In particular, we get the familiar
groupoid model for the C*-algebra of a row-finite graph without sources. In
the irregular case, Yeend adds certain finite paths to H?, and he defines the
topology on the resulting space of “boundary paths” carefully to get a locally
compact space.

Next consider P = (N¥, +) for some k > 2. An action of the Ore monoid N* by
topological correspondences is the same, almost by definition, as a topological
rank-k graph. The case where the underlying space X is discrete corresponds
to an ordinary rank-k graph. Topological higher-rank graphs are introduced by
Yeend, who also describes a groupoid model for them in [79]. He requires the
source maps to be local homeomorphisms, but does not require the range maps
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to be proper; instead, he assumes a weaker condition called “compact align-
ment,” which may be formulated for lattice-ordered semigroups. He constructs
groupoid models for the Toeplitz C*-algebra and the relative Cuntz—Pimsner al-
gebra of the product system over N* associated to a compactly aligned topologi-
cal higher-rank graph. The relative and absolute Cuntz—Pimsner algebras agree
if and only if all range maps 7, are surjective (“no sources”). We call a topolog-
ical higher-rank graph regular if the maps 7, are surjective and proper for all
p € N¥. In the regular case, the groupoid model constructed by Yeend [79] is
the same one that we have constructed above: the boundary paths that form
the object space for Yeend’s groupoid model are the same as our complete his-
tories by [79] Lemma 6.6]. In the irregular case, the object space of Yeend’s
groupoid combines infinite paths with certain finite and partially infinite paths.
It is unclear how to carry this over to actions of Ore monoids.

How about groupoid models for actions of semigroups other than N*? Here
we are only aware of constructions in particular cases. We discuss two general
situations. First, if the action is by local homeomorphisms, then we are already
very close to an inverse semigroup action, which is easily translated to an étale
groupoid (see [28,[3T1[64]). Secondly, the construction of a semigroup C*-algebra
by Xin Li in [I6,65] may also be based on an action of the semigroup by
topological correspondences.

5.1. SEMIGROUPS OF PARTIAL LOCAL HOMEOMORPHISMS. Let P be a monoid,
and let P act on a locally compact space X by partial local homeomorphisms,
that is, by topological correspondences of the special form

(51) X inclusion Up a_p>X,

where U, C X is an open subset and oy, is a local homeomorphism. These
topological correspondences are only proper if the domains U, are also closed.
But the following construction of a groupoid does not need this assumption,
and neither does it require the monoid P to be Ore. We do not claim, however,
that the groupoid C*-algebra of the resulting groupoid is isomorphic to the
Cuntz—Pimsner algebra of the product system over P associated to our action:
our proof only gives this if P is an Ore monoid and the correspondences are
proper, that is, the subsets U, are clopen.

First we make the multiplication maps explicit. The fibre product U, X x,r,Uq
consists of pairs (z,y) with x € Uy, y € Uy, and a,(z) =y, and the range and
source maps on Uy, X, x,, Uy take (z,y) to x and a4(y), respectively. Since
y = op(x), the map (z,y) — z identifies U, ¥, x.r, Uy with U, N a; ' (U,);
under this identification, the range and source maps become the inclusion map
and the map x — a4(ap(x)), respectively. Thus we must have

(5:2) Upg = Up N a;l(Uq), Qpg = Qg © Qp-

Conversely, these conditions give a unique isomorphism of topological corre-
spondences Uy, X, x,r, Uy = Upq. These isomorphisms automatically verify
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the associativity condition required for an action of P by topological corre-
spondences. Thus an action of P by topological correspondences of the special
form (B.1)) is the same as a homomorphism from P°P to the monoid of partial
local homeomorphisms of X, with the composition of partial local homeomor-
phisms defined in (&.2)).

If V C U, is such that a,|v is injective, then o,y is a partial homeomorphism
on X. Since ay, is a local homeomorphism, any point in U, has a neighbour-
hood V on which «,|y is injective, so that these partial homeomorphisms con-
tained in «;, cover a,. Hence we do not lose any information if we replace o,
by the set of all partial homeomorphisms «,|y for V' C U, such that ay|yv
is injective. These partial homeomorphisms a,|y form a semigroup because
aglv o aplw = apglyynazry and W N o, 1(V) is an open subset of Uy, on
which g is injective by (B.2)).

We let S be the inverse semigroup of partial homeomorphisms generated by
these partial homeomorphisms «,|y. This inverse semigroup acts on X by
construction, and this action has an associated transformation groupoid X xS,
also called groupoid of germs; see [28[64]. This groupoid is often the same
as the groupoid model constructed in Section @] but there are some “trivial”
counterexamples. The issue is how to define the germ relation. To always get
the groupoid constructed in Section [ we do the following.

First, we assume now that P is an Ore monoid with group completion G. Since
the construction in Section [l is only for actions by proper correspondences, we
also require that the domains U, are clopen. We let Sy be the free inverse
semigroup on symbols (p, V') for a,|y as above. This comes with a canonical
homomorphism ~: S — G by mapping (p,V) — p~!, and with a canonical
action on X by mapping (p,V) — «a,|v. Let S be the quotient of Sy by the
kernel of this map. That is, we consider two elements of Sy equivalent if they
give the same element of G and the same partial homeomorphism on X. Now
we take the groupoid of germs of the action of S on X with the germ relation
from [28], that is, two elements s,¢ € S have the same germ at « € X if there
is an idempotent e in S defined at z so that se = te.

LEMMA 5.3. Assume that P is an Ore monoid and the subsets U, are clopen.
Then the groupoid X xS above is canonically isomorphic to the groupoid model
in Definition L12

Proof. We map the free inverse semigroup Sy above to the inverse semigroup
of bisections of the groupoid H in Definition by mapping (p, V) to Hll,p N
s71(V); this is easily seen to be a bisection of H that acts on X = H° by
the partial homeomorphism a,|y and has degree p~!. Thus the action of Sy
on X and the homomorphism ~ both factor through the inverse semigroup of
bisections of H, where v maps bisections contained in H g1 to g and where the
action of H on X is used to let bisections act on X.

By construction, s € Sy is annihilated by  if and only if the corresponding
bisection in H is contained in Hj. This groupoid comes from an equivalence
relation, so a bisection is trivial if and only if it acts trivially on X. Hence
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s € Sy becomes idempotent in S if and only if it is mapped to an idempotent
bisection of H. This shows that the quotient S of Sy is exactly the image of Sy
in the inverse semigroup of bisections of H.

The groupoid H is covered by bisections that belong to S and are of the form

(Hi,ns™H(V))o(Hy,ns™ (W)~

for p,¢g € P and V C U,, W C U, such that a,|y and ay|w are injective. It
is not clear whether these bisections already form an inverse semigroup; but at
least, since they cover the arrow space of H, any product of such bisections is
again covered by bisections of H of this special form. Therefore, the inverse
semigroup S and the inverse semigroup of bisections of H have the same germ
groupoids attached to their actions on X, that is, H 2 X x S. O

The examples considered by Exel and Renault in [31] are actions of (N*, +) by
(globally defined) local homeomorphisms, so they certainly fit into our frame-
work. This is remarkable because [31] also contains counterexamples where
Exel’s interaction group approach to non-invertible dynamical systems does
not apply. This leads Exel and Renault to speculate that something should go
wrong in these counterexamples.

Exel defines interactions in [27] as a way to describe dynamical systems that
are non-deterministic in both past and future time directions. A local home-
omorphism with a transfer operator is a particular example of an interaction,
and the dynamics generated by a single local homeomorphism may be studied
quite well using interactions. Exel proposed the concept of an interaction group
in [29] in order to extend this to more general dynamical systems. In [31], Exel
and Renault give rather simple examples of commuting local homeomorphisms
S, T: X — X that cannot be embedded in an interaction group over Z2. We are
going to discuss this, assuming both S, T to be surjective because this happens
in the counterexamples in [31].

The problem is the following. The local homeomorphism S generates an equiv-
alence relation on X by = ~g y if S(z) = S(y), and similarly for T. If there
is an interaction group, then these relations ~g and ~7 must commute, that
is, there is z € X with * ~g z ~p y if and only if there is w € X with
x ~p w ~g y (see [BI, Proposition 14.1]). There are, however, commuting
endomorphisms S, T for which the relations ~g and ~7 do not commute. So
such S, T cannot be part of an interaction group. Why is this no problem for
our groupoid model?

Since our topological correspondences are already local homeomorphisms, our
groupoid H has object space H = X. The group completion of (N2 +)
is (Z*,+), so the groupoid H is Z*-graded, H = | |,c;2 Hy. A point in H,
is given by (z,y) € X and nq,ng, mi,me € N with S™T"2(z) = S™1T™2(y)
and (m1,ms2) — (n1,n2) = g, and this is an arrow = < y. Thus the range and
source maps identify H, with the union of the subsets

Hpy nomims = {(x,y) € X x X | SMT™2(z) = S™T™(y)}.
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We treat these as relations on X. The subsets Hy, nym,,m, are closed
in X x X. If k1,ks € N then H,, nymq,m, 1S both open and closed in
Ho, k1 notkama+ky .matks because the map ST is a local homeomorphism,
hence locally injective. The relation Hy,, n, m,,m, may also be interpreted as
the graph of the multi-valued map S™™T~"28"™T"™2 on X.

What happens when we compose our relations? We have (z,y) € Hi, ky.11 15 ©
Hi, 1y.my.m, if and only if there is 2 € X with SMiTk2(z) = ShThk(z) =
SmiTmz2(y), Since SUT!2 is surjective by assumption, the point z can always
be found if Sk1T*2(x) = S™T™2(y), so

(54) Hk17k21l1712 © Hl17127m1,m2 = Hk11k2,m17m2'

Exel and Renault say that S and T star-commute if for all z,y € X with
T(x) = S(y) there is a unique z € X with S(z) = 2 and T(z) = y. Under this
assumption, they construct an interaction group containing S and 7. In our
notation, S and T star-commute if and only if Ho 1,1,0 = Ho,0,1,0 © Ho,1,0,0; the
inclusion Ho 1,1,0 2 Ho,0,1,0 © Ho,1,0,0 is trivial. The relation Ho 1,1,0 describes
the multi-valued map T~ ! o S, whereas the relation Hp 1,0 Ho 10,0 describes
the multi-valued map SoT 1. So S and T star-commute if and only if T~1oS =
SoT-1.

If this fails, there is no good way to define a topological correspondence or an
interaction for the element (1,—1) € Z2. The difference between these two
relations is, however, always small in the sense that

To(SoT H)=8So(ToT H)=8=To (T 08).

Since x,y € X with T'(z) = T(y) are equivalent in our groupoid H, the differ-
ence between the relations S o T~ and T~! o S does not matter once we take
the whole groupoid into account.

Let us also examine this issue from the point of view of the Cuntz—Pimsner
algebra of the resulting product system (€,)pen2. The subspace Hy, nymi mo
of the groupoid corresponds to the subspace K(E(m, ms), E(ny,ny)) of the Cuntz—
Pimsner algebra, compare the proof of Theorem ETI7 Since we assume the
maps S,T to be surjective, the correspondences &, are full for all p € N2
Hence

K(Emy,ma)s Eming))  K(Eky ka)s Emi,ma)) = K(Ehy k2)> Emrna))

for all k1, k2, m1, ma2, n1,ne € N. This corresponds to (&.4).

The zero fibre of the Cuntz—Pimsner algebra is the inductive limit of the
C*-subalgebras K(&p, n,) for n1,ne — oo. In particular, K(& 1) and K(&1,0)
are contained in K(5171). Although 5171 = 5170 ®C0(X) 5071 = 5071 ®C0(X) 51,0,
we cannot expect in general that K(&y 1) - K(&1,0) is equal to K(&,1): this
goes wrong if S and T do not star-commute. It may also happen that
K(go,l) . K(5170) 7é K((S‘OJ) . K(El,o) or, equivalently, that K(go,l) . K(5170) is
not a C*-algebra.

Summing up, we have seen that the commutative semigroup N? may well gen-
erate some noncommutative phenomena both on the groupoid and C*-algebra
level. So the reason why Cuntz—Pimsner algebras for proper product systems
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over N2 are tractable is not that N? is commutative—it is that N? satisfies Ore
conditions.

To make this clearer, consider now an arbitrary semigroup P. The Cuntz—
Pimsner algebra of a proper product system (&,),ep over P must contain K(&,)
for all p € P. Given p,q € P, we therefore need a C*-algebra containing both
K(&p) and K(&;). If P is an Ore monoid, then there is t € P with ¢ > p, g,
and then K(&,) and K(&,) are both contained in K(&;). It is irrelevant for the
construction how much of K(&;) is generated by K(&,) and K(&,;) or whether
K(&p)-K(&,) is a C*-algebra. Indeed, we would not even ask for any relationship
unless t were chosen minimal, ¢ = p V ¢, which only exists in lattice-ordered
semigroups. The examples in [31] show that for commutative P the interaction
group approach of Exel is trying implicitly to combine K(&,) and K(&,) in such
a way that K(&,) - K(&;) = K(&;) - K(&p) is again a C*-algebra. This led Exel
in [30] to study when A-B = B- A for two C*-subalgebras A and B of another
C*-algebra.

Finally, there is one thing where an interaction group helps. If we only have an
action of N2, then we can only restrict it to submonoids of N2. An interaction
group on Z2 may also be restricted to subgroups of Z2; in the above notation,
an interaction group gives well-defined topological correspondences S™ T2 for
all ny,ne € Z. Without it, we only have this if n; and ny have the same
sign. Examples of such restrictions are the polymorphisms in [I7]. These may,
however, be written directly as topological graphs.

5.2. SEMIGROUP C*-ALGEBRAS. How to define the C*-algebra of a monoid P?
A satisfactory answer is given by Xin Li [55], assuming P to be left cancellative.
If P is Ore, we shall describe Xin Li’s C*-algebra as the Cuntz—Pimsner algebra
of a product system. More precisely, we change the order of multiplication in P
0 as to get product systems over P instead of over P°P, compare Remark 311
Thus for us P is a right cancellative, right Ore monoid, and we describe the
semigroup C*-algebra of P°P in the notation of [55]. The discussion below is
closely related to the description of semigroup C*-algebras in [16].

Why is it non-trivial to construct semigroup C*-algebras? There is an obvious
product system over any monoid: just take the complex numbers everywhere,
with the obvious multiplication maps. A nondegenerate representation of this
product system, however, is a representation of P by wunitaries, not isome-
tries. Hence the Cuntz—Pimsner algebra of this product system is the group
C*-algebra of the group completion of P. To get an interesting Cuntz—Pimsner
algebra, we need a non-trivial product system.

So why not take the universal C*-algebra for representations of P by isometries?
This is generated by one isometry s, for each p € P, with the relations sys;, = 1
for all p € P and spsq = sq for all p,g € P. This universal semigroup
C*-algebra of P°P is introduced by Murphy [62]. It is, however, usually too
“wild” to say much about it. It is rarely simple or exact.

The right way to “tame” Murphy’s universal C*-algebra of a semigroup is to
impose relations on the range projections of the isometries s,. Xin Li [55]
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proposes a set of such relations modelled on properties of the regular represen-
tation of the semigroup. We are about to construct a product system (£,)pep
that gives Xin Li’s C*-algebra, and such that s, € £,. Thus s,s; € &1. In our
approach, the desired relations among the range projections s,s,, are encoded
in the C*-algebra D := &;.

Let D be the C*-subalgebra of £°°(P) generated by the characteristic functions
of left ideals of the form Ppg—! N P for p,q € P, where

Ppg'NP={xcP|3ycP:xq=uyp}.

In the following, we will use the group completion G of P and write Pg for
g € G. Since P C @ is right cancellative, we have zq € Pp if and only if
xqt € Ppt for some t € P; thus Pg for g € G is well-defined, that is, does not
depend on how we write ¢ = pg~! for p,q € P.

Since D is commutative and unital, it is of the form C(X) for a compact space X.
Right translation by p € P maps Pg N P to Pgp N Pp. The characteristic
function of this intersection is the product of the characteristic functions of
PgpN P and PpN P and hence belongs to D. Thus right translation by p gives
an endomorphism ¢,: D — D. These maps form an action of P°? on D by
endomorphisms, that is, ¢, 0 g = @gp for all p,q € P.

The endomorphism ¢, for p € P maps the constant function 1 to the char-
acteristic function e, of the subset P-p C P. Actually, ¢,: D — e,D is an
isomorphism because the map

P—P-p, T = TP,

is bijective and this map and its inverse map the generators of D to the char-
acteristic functions of subsets of the form Pg N Pp, which are exactly all the
generators of e, D.

We may turn the action of P°P by the endomorphisms (¢,)pep into a product
system (€p)pep over P as in Remark B with reversed order of multiplication
in P. Explicitly, £, = ¢,(D) - D = ¢p(1p) - D = e, D as a Hilbert D-module,
with left action of D through ¢, and the multiplication maps are £, ®p &, —
Epgs Y > pg(2)-y. The Cuntz—Pimsner C*-algebra of this product system is
canonically isomorphic to the semigroup crossed product for the action (¢p)pep
of P°P on D (see [33, Section 3]), and this is isomorphic to Xin Li’s semigroup
C*-algebra of P°P by [55, Lemma 2.14].

Explicitly, the isomorphism looks as follows. The Cuntz—Pimsner algebra O
of (&,)pep is generated by D and copies S,(E,) of &, for each p € P. Since
Ep = e, - D and Sp(epd) = Sp(ep)d for all d € D, O is already generated by D
and the elements s, = Sp(ep)*. Since (ep,ep)e, = €p and |ey)(ep| = ideg,, the
element s, is an isometry with range projection e,. Furthermore, s, - sy = s,
or, equivalently, s, - 54 = sqp for all p,q € P. As it turns out, the relations
of D and the relations ss, = €p, spsp =1, 55 - 8¢ = Sgp for p,g € P imply all
relations for the Cuntz—Pimsner algebra of (€,)pep. Thus the Cuntz—Pimsner
algebra agrees with Xin Li’s semigroup C*-algebra of P°P.
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Now we describe a groupoid model for our Cuntz—Pimsner algebra. Such
groupoid models are already constructed in [56], even under weaker assump-
tions on the semigroup P.

The projection e, in C(X) corresponds to a clopen subset V,, C X. The iso-
morphism ¢,: D — e, D corresponds to a homeomorphism r,: V,, = X. More
precisely, ¢, (x)|v, =z or, and @,(z)|x\v, =0 forallz € D. Let s,: V, = X
be the inclusion map; this is a homeomorphism onto a clopen subset and hence
a local homeomorphism. Thus (V},,r,,sp) is a proper topological correspon-
dence on X. The resulting correspondence on D = C(X) is C(V},) = e, D with
the obvious right Hilbert D-module structure and the left D-action ¢, = ry.
This is equal to the C*-correspondence &, associated to the endomorphism ¢,.
Now identify V, = X through 7, and rewrite our topological correspondence
in the form (X,idx,0,), where 6,: X — U, C X applies the inverse rp_l;
these topological correspondences are as in (5.1I), where U, = X and 6, is a
homeomorphism onto a clopen subset of X. We have 0, o 0, = 0,, for all
D,q € P because ¢, 0@, = pqp. Hence we get an action of P°P? on X by partial
homeomorphisms, which is an action of the type considered in Section Bl
The resulting product system over P is canonically isomorphic to the product
system (&,)pep associated to the action (¢p)pep of P® on D = C(X) by
*~endomorphisms.

As in Section Bl we get a groupoid model for the Cuntz—Pimsner algebra of
the product system (€,)pep, and this groupoid model is the groupoid of germs
for the pseudogroup of partial homeomorphisms of X generated by the partial
homeomorphisms 6, for p € P.

Finally, we mention a quicker alternative definition of Xin Li’s semigroup
C*-algebras, see also [56] for an extension of this approach to more general
semigroups. The main result of [50] shows that any semigroup crossed product
is a full corner in the crossed product for a group action on a larger C*-algebra.
In our case, this larger C*-algebra is the C*-subalgebra A of £°°(G) generated
by the characteristic functions of subsets of the form Pg C G for ¢ € G. The
right translation action of G on ¢*°(G) restricts to an action of G on A by
automorphisms. This also induces an action of G by homeomorphisms on the
spectrum Y of the C*-algebra A. The C*-algebra D is the full corner in A
corresponding to the projection 1p, the characteristic function of P C G. The
action (¢p) on D above is the compression of the action of G on A. Hence the
semigroup crossed product discussed above is canonically isomorphic to the
full corner 1p(A x G)1p in the crossed product A x G. Similarly, the groupoid
model for the action of P on X is the restriction of the transformation groupoid
Y X G to the compact-open subset X C Y.

6. PROPERTIES OF THE GROUPOID MODEL

Let an Ore monoid P act on a locally compact space X by topological corre-
spondences (M, 0p 4). The Cuntz—Pimsner algebra of the resulting product
system over P is identified with a groupoid C*-algebra C*(H) in Theorem FTT]
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Many properties of C*(H) are equivalent or closely related to properties of the
underlying groupoid H. We harvest some known results of this type regarding
nuclearity, simplicity or ideal structure, tracial and KMS weights, and pure
infiniteness.

One interesting aspect of our groupoid model is that it involves a “precompiler”:
given an action of an Ore monoid P by topological correspondences on a space X,
we first construct an action of P on another space H° by local homeomorphisms,
and then we take the Cuntz—Pimsner algebra of this new action. Hence any
C*-algebra that may be obtained as the Cuntz—Pimsner algebra of some action
of P by topological correspondences may also be obtained from an action of P
on another space by local homeomorphisms. Therefore, for some purposes
we may assume without loss of generality that we are dealing with an action
of P by local homeomorphism. In this section, however, the main point is to
rewrite properties of the groupoid H in terms of the original action on X. For
actions of P by local homeomorphisms, what we are going to do is already well-
known. Our criteria simplify further if the space X is discrete; this happens,
in particular, for higher-rank graphs.

We begin with quick criteria for separability, unitality and nuclearity.

Remark 6.1. The groupoid C*-algebra of an étale locally compact groupoid
is separable if and only if the underlying groupoid is second countable. This
happens if and only if the closed subspace X’ C X is second countable and the
group G is countable. This follows if X is second countable and P is count-
able; in the latter case, we can see directly that the Cuntz—Pimsner algebra is
separable.

Remark 6.2. The C*-algebra C*(H) is unital if and only if H® is compact.
This happens if and only if the closed subspace X’ C X is compact because
the projection map 71: H° — X is a continuous, proper map with image X’
(see Lemma [£.9] and the discussion after Definition ELT3]).

THEOREM 6.3. The full groupoid C*-algebra C*(H) is nuclear if and only if
the groupoid H is topologically amenable. In that case, C*(H) belongs to the
bootstrap class. The groupoid Hy C H is always topologically amenable. If G
is amenable, then the groupoid H is also amenable, and C*(H;) belongs to the
bootstrap class.

Proof. An étale, Hausdorff, locally compact groupoid is (topologically)
amenable if and only if its reduced C*-algebra is nuclear by [4, Corollary 6.2.14].
Furthermore, if H is amenable, then its reduced and full C*-algebras coincide,
so the full one is also nuclear. Conversely, if the full groupoid C*-algebra is
nuclear, then so is the reduced one because nuclearity is hereditary for quo-
tients. Hence nuclearity of the full groupoid C*-algebra is also equivalent to
amenability of the groupoid.

Any amenable groupoid is “a-T-menable” by [76, Lemma 3.5]; that is, it acts
properly and isometrically on a continuous field of affine Euclidean spaces. The
proof of the Baum—Connes conjecture for a-T-menable groupoids also shows
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that their groupoid C*-algebras belong to the bootstrap class, see [76, Propo-
sition 10.7].

Since Co(X) is nuclear, Theorem B.2T] shows that the unit fibre O; in the
associated Cuntz—Pimsner algebra is always nuclear; then O itself is nuclear
if G is amenable. Theorem ELT7 and its proof identify O; and O with C*(Hy)
and C*(H), respectively. So the statements about amenability of H; and H
follow from the first sentence in the theorem.

It is elementary to prove the topological amenability of H; directly. The open
subgroupoids H;yp for p € P are proper equivalence relations. So we may
normalise the counting measure on the fibres of H. 1 p 10 give an invariant mean
on H) ,. When we view these invariant means on H N ».p & means on H; for p in
the ﬁltered category Cp, we get an approximately invariant mean on H;. O

We have not yet tried to characterise amenability of H in terms of the original
action by topological correspondences.

6.1. OPEN INVARIANT SUBSETS AND MINIMALITY.

DEFINITION 6.4. A topological groupoid H is minimal if H° has no open,
invariant subsets besides # and H°.

Being minimal is a necessary condition for C*(H) to be simple because open
invariant subsets of H® generate ideals in C*(H). We are going to describe
the open, invariant subsets of H? in terms of the original data (M,, o} 4). The
following lemma gives a base for the topology on H° and will also be used for
other purposes.

LEMMA 6.5. For p € P and an open subset U C M, let

”gl(U) = {(mg)qep € H® | m;, € U} C H°.

The family B of subsets of this form is a base for the topology on H® and, for
each x € HY, the subsets 7Tp_1(U) with x € U form a neighbourhood base at x.
This base for the topology is closed under finite unions, finite intersections, and
under applying Et_l for allt € P; and

(6.6) & (m; H(U)) = my (s () for allt € P and U C M, open.

Proof. By definition of the product topology, intersections (,cp 7rp_1(Up) for
finite subsets F' C P and open subsets U, C M), for p € F form a base of the
topology on HY, and such intersections with x € Ty Y(U,) form a neighbourhood
base for x € H°. If B is closed under finite intersections, then B itself is this
canonical base of the topology, and similarly for neighbourhoods of x.

Let p,q € P. Then rp 4(mypg) = m,, for all (my)iep € H°. Thus

—1¢,—1 _ -1
(67) 7qu (Tp q(U)) - 7Tp (U)
for each open subset U C M,. Since the maps r,, are continuous, rp}](U )

is again open. Now we consider a finite intersection (), T, LU;) for F =
{p1,.-.,pn} C P and U; = U,, C M,,. Since P is a right Ore monoid, there
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,...yn. Then 7 Y(U;) =

are p € P and ¢; € P with p;q; = p for i = 1 o

7, (1t (Ui)). Thus

Tpi »qi

ﬂ ﬁ;ll(Uz) = ﬂgl <ﬂ Tpiql(Uz)) ,
] 1=1

=1

Um i) == (U rm%qxvz-))-

i=1 i=1
Thus B is closed under finite intersections and finite unions. We have
(6.8) 5 (my H(U) = my (1, (U))

because 3;((my)) = (s¢,p(m4p))pepr. Thus B is closed under 3; ! for all ¢ € P.

Lemma shows that (ms, 5:): H® — M; X5, x,r, H® is a homeomorphism.
Given U C M,, consider the set of all w € H® for which there is m € U with
(m,w) € My X, x.x, H°. By definition of the fibre product, this is 77 *(s:(U)).
The homeomorphism (7, 3;) shows, however, that it is also 5;(w; *(U)). This

gives (G.6). O

DEFINITION 6.9. The indicator of an invariant subset A C H? is the following
subset of X:
A* = {z e X | n(z) C A}.

Let X’ C X be the subset of possible situations. By definition, any saturated
subset contains X \ X’. So we lose no information if we restrict attention to
A* N X'

DEFINITION AND LEMMA 6.10. The indicator B of an open invariant subset

is open in X and has the following two properties:

HEREDITARY: if p € P, m € M, satisfy r,(m) € B, then s,(m) € B;

SATURATED: if p € P, x € X satisfy sp(m) € B for all m € szl(z), then
r € B.

If S C P is a subset that generates P, then a subset B C X is hereditary and

saturated if and only if it satisfies the above two conditions for allp € S.

Proof. Let B = A¥. First we show that A% is open. By definition, X \ A% =
7 (H®\ A). The map m: H® — X is proper by Lemma So it maps the
closed subset H? \ A to a closed subset of X. Hence X \ A# is closed and A%
is open.

Next we check that A# is hereditary. If s,(m) ¢ A¥, then there isn € H°\ A
with 71(n) = s,(m). The concatenation m -n € HY exists because s,(m) =
m1(n), and has 7 (m - n) = r,(m). Since A is invariant, so is H° \ A. Hence
m-n ¢ Aand r,(m) ¢ A*.

We check that A% is saturated. Assume s,(m) € A% for all m € r;'(z), and
let n € HY satisfy 71(n) = x. Decompose n as 7 = m -7’ with ' € H° and
m := mp(n) by Lemma [LI0l Since r,(m) = m1(n) = x, the assumption gives
m1(n') = sp(m) € A%, so i’ € A. Since A is invariant, we get n =m -7’ € A
and z € A%.
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If a subset B C X satisfies the conditions of being hereditary and saturated for
given p,q € P, then it also satisfies them for p-q because My, = My, ¥, x,r, M.
Hence it suffices to verify these conditions for a set of generators for P. O

THEOREM 6.11. The complete lattice of open H-invariant subsets of HO is
isomorphic to the complete lattice of open, hereditary, saturated subsets of X .
In one direction, the isomorphism maps an open H-invariant subset A C H°
to its indicator; in the other direction, it maps an open, hereditary, saturated
subset B C X to

A= U (spomp) (B) = {(mp)pep € H® | Ip: s,(m,) € B}.
peEP

Proof. Lemma shows that the indicator A% of an open invariant subset
A C H is open, hereditary and saturated. Conversely, let B C X be open,
hereditary and saturated, and define A C H? as above. This is clearly open.
We first check that A is invariant; then we check that its indicator is B.

Let n € H°. Then s,0m,(n) € X is the situation at time p € P in the complete
history n. Thus A consists of all complete histories that, at some time, visit
B C X. However, if s,om,(n) € B, then s,qmpq(n) € B for all ¢ € P because B
is hereditary; indeed, mpq(n) € Mp, = My X, x,r, My corresponds to a pair
(mp(n), mgq) with r¢(mq) = spmp(n) € B, 80 Spq(mpe(n)) = sq(mq) € B. The
subset pP C P is cofinal. Hence n € A if and only if the set of ¢ € P with
sq0mg(n) € B is cofinal in P.

A subset A of H° is H-invariant if and only if 5;'(A) = A for all t € P. Let
n € H° and write it as n = m -0/ for m € My, o’ € H® with s;(m) = ri(1').
Thus §,(n) = n'. Then si,my,(n) = spmp(n’) for all p € P. So if there is p € P
with s,m,(7') € B, then there is ¢ € P with s,my(n) € B, namely, ¢ = tp;
conversely, if there is ¢ € P with s,m,(n) € B, then the set of such ¢ € P is
cofinal and hence contains some element of the form ¢p with p € P by
Then spmy(n’) € B. This shows that n € A if and only if ¥ € A. So A is
invariant as desired.

Now we check that the indicator of A is B. By construction, if x € B, then
7 H(x) € A. Conversely, let € X \ B. We must construct n € H°\ A
with m1(n) = z. For each p € P, there is m, € M, with rp(m,) = = and
sp(mp) ¢ B because otherwise B would not be saturated. Since X \ X’ C B,
and sp(m,) ¢ B, there is n, € H° with m,(n,) = m, and hence m(n,) = = and
sp o mp(1p) ¢ B.

Since B is open and the map , is proper by Lemma 9] the set K, of all
such 7, is a compact subset of H°. We have seen above that s,m,(n) € B
implies $pqmpq(n) € B for all p,q € P. Hence K, DO K,, for all p,q € P.
Since P is Ore, this tells us that {K,},cp is a directed set of compact, non-
empty subsets in HY. The intersection of such a family of subsets is non-empty.
A point 7 in the intersection satisfies 1 (n) = x and spm,(n) ¢ B for all p € P,
so that n ¢ A. Thus A* = B.
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We have constructed two maps A — B and B — A from open invariant subsets
of HO to open, hereditary, saturated subsets of X and back, and we have seen
that the composite map B — A — B is the identity, that is, the indicator
of the subset A defined in the theorem is the given subset B. Conversely, let
A’ C H° be an invariant open subset. Let B be its indicator and define A C B
as in the statement of the theorem. We must show that A’ = A. Since B is
the indicator of A’, we have 7, '(B) C A’. Since A’ is invariant, this implies
(spmp) "1 (B) C A’ for all p € P, that is, A C A’. It remains to prove A’ C A.
So we take n € A’. Since A’ is open, Lemma gives p € P and an open
subset U C M, such that 7, ' (U) C A'. If o € HY satisfies m (1)) € s,(U),
then there is m € U C M, with s,(m) = m1(1'), so m-n’ € H® is well-defined;
it belongs to m,'(U) C A" by construction. Since 3,(m -7') = 1’ and A’ is
invariant, we get ' € A’ for all ¥/ € H® with m1(n') € s,(U). Thus s,(U) is
contained in the indicator B of A’. Then m, '(U) C A, son € A as desired. [

COROLLARY 6.12. The groupoid H is minimal if and only if X has no non-
trivial open, hereditary, saturated subsets. O

Ezample 6.13. Let P = (N, +) and let m be surjective, so that we are dealing
with a regular topological graph (see the beginning of Section [). Then our
notion of a hereditary and saturated subset of the space of vertices X is the same
one used by Katsura [45] to describe the gauge-invariant ideals of a topological
graph C*-algebra in the regular case.

Ezample 6.14. Let P = (N¥ +) and assume that X is discrete and r,,: M, — X
is surjective for all p € N*. Our data is equivalent to that of a row-finite
k-graph without sources, and our Cuntz—Pimsner algebra is the higher-rank
graph C*-algebra in this case. Since the standard basis ey, ..., e generates N*,
a subset is hereditary and saturated if and only if it satisfies the conditions in
Definition[G.I0 for p = €1, . .., eg. Our notion of being hereditary and saturated
is equivalent to the one used by Raeburn, Sims and Yeend in [68] to describe
the gauge-invariant ideals in a higher-rank graph C*-algebra. Theorem
below will show that, in general, the open invariant subsets of H° correspond
to those ideals in C*(H) that are “gauge-invariant” in a suitable sense.

6.2. EFFECTIVITY.

DEFINITION 6.15. An étale topological groupoid H is essentially free if the
subset of objects with trivial isotropy is dense in HY. It is effective if every
open subset of H' \ H® contains an arrow z with s(x) # r(z). Equivalently,
the interior of the set {h € H'\ H° | r(h) = s(h)} is empty.

For a second countable, locally compact, étale groupoid, being effective or
essentially free are equivalent properties by [72, Proposition 3.6] or [9, Lemma
3.1] (these articles use the name “topologically principal” for “essentially free”).
Being essentially free is a variant of the aperiodicity condition that is used to
characterise when topological higher-rank graph C*-algebras are simple (see,
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for instance, |79, Definition 5.2]). We cannot, however check whether H is
essentially free without looking at points in H°, that is, infinite paths.

As we shall see, the following definition characterises when the groupoid H is
effective in terms of the original data of an action by topological correspon-
dences:

DEFINITION 6.16. An action (M), o, ) of an Ore monoid P on a locally com-
pact Hausdorff space X by proper topological correspondences is effective if for
all p,q € P with pg~! # 1 in G and for all non-empty, open subsets U C X,
there are a, f,g € P with paf = qag and y € Mpe; = Myaq with rpqr(y) € U
and midy, o, 7(y) # midg,q,4(y) in M,. Here X’ C X denotes the closed subset of
possible situations; mid,, 4, r(y) denotes the component in the middle factor M,
after identifying Mpqr = M, X x M, x x My, and similarly for mid,  ¢(y).

Similar criteria for boundary path groupoids of higher-rank topological graphs
being effective have been found by Wright [77]; for higher-rank graphs without
topology, such criteria are also given in [40,[53,[74]. Before we explain the
relationship between our criterion and others, we prove the theorem suggested
by our notation:

THEOREM 6.17. The groupoid H is effective if and only if the action (M, op 4)
is effective.

Proof. We may assume without loss of generality that X = X',

First we assume that the action (M,,0p4) is not effective. This means that
there are p,q € P with pg~! # 1 in G and a non-empty open subset U C X'
such that midy o f(y) = midg e 4(y) in M, for all a, f,g € P with paf = qag
and all y € Mp,p with rper(y) € U. This means that (5,2)q = (342), for all
z € ;' (U) and all @ € P. Hence §,x = 3,2 in H° for all x € 7' (U). Thus
the elements of the form (z,pg~!,z) for z € 7, *(U) form a bisection B in
H'\ H° with 7| = s|p, which means that H is not effective.

Now assume that the action (M, 0, ,) is effective. Let U C H' \ H? be a
non-empty open subset. We need to find (z, g,y) € U with = # y.

The intersection U N H;q is non-empty for some p,q € P. Replacing U by
Un H;ﬁq, we may arrange that U C H;ﬁq. The subgroupoid H; is an increasing
union of equivalence relations, so it is certainly effective. Hence we are done if
pg~ ! =1in G. Thus we may assume from now on that pg~' # 1 in G.

We may shrink U to a bisection because H is étale. We may then shrink further
so that r(U) = m; '(U;) for some t € P and some non-empty open subset
U; C M; because subsets of the form wfl(Ut) form a base for the topology
on H° by Lemma Since the map s;: My — X is a local homeomorphism,
we may shrink U; even further, so that s; becomes injective on U;. Hence s;
restricts to a homeomorphism from U; C M; onto an open subset s:(U;) C X.
We are going to show that there is 2 € m; *(U;) with 5,z # 5,2. Thus (z, g, 2)
is not an arrow in H; since r(U) = m; 1(U;) and U C H} ,, there must be
y € H° with (2,9,y) € U C H;yq. Since §px = 4y # 54z, we have x # y, as
desired.
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Since P is Ore, we may find h,i € P with ph = ti. Then we may find b/, € P
with ghh/ = ti’. Thus phh' = tih’ and ghh’ = ti’. Since H;yq - H;hh’,qhh”
we may replace (p,q) by (phh/,qhh’). Thus we may assume without loss of
generality that there are p’, ¢’ € P with p = tp’ and q = t¢'.

Recall that s; restricts to a homeomorphism from U; onto V = s(Uy).
Hence z + 52 is a homeomorphism from m;*(U;) onto 7y * (V) (compare
Lemma ATI0). By assumption, there are a, f,g € P with p'af = ¢’ag and
Y € Mpay with rpar(y) € V and midy o (y) # midy q,4(y) in M,. By con-
struction, there is z € M, with s¢(2) = 7par(y). Then (2,y) € My X x Mpqr =
Miprar. We have 5,(z,y) = 3 (y) and 34(2,y) = 34 (y) because p = tp’ and
q = t¢’. The M,-component of 3, (y) is mid, 4 r(y), and that of 54 (y) is
midy 44(y). Since these are different, 5,(x) # 3,(x) for any x € H° with tp’af-
component (z,y). Such z exist because we have restricted to possible histories
throughout, making the maps m,: H 0 M, surjective for all p € P. O

THEOREM 6.18. Assume that P is countable and X is second countable or,
more generally, that H is second countable. The Cuntz—Pimsner algebra O or,
equivalently, the C*-algebra C*(H), is simple if and only if the following three
conditions are satisfied:

(1) C*(H) = Ci(H);

(2) the action (M, 0p.q) is effective;

(3) any non-empty, closed, hereditary, saturated of X contains X'.

The first condition above follows if H is amenable and, in particular, if G is
amenable.

Proof. We use [0, Theorem 5.1], which characterises when the groupoid
C*-algebra of a second countable, locally compact, Hausdorff, étale groupoid
is simple. The groupoid H is always locally compact, Hausdorff, and étale.
The third condition is equivalent to the minimality of H by Corollary
Since H is second countable, it is essentially free if and only if it is effective by
[9, Lemma 3.1]. This is equivalent to the effectivity of the action (M, 0, 4) by
Theorem 6171 Thus our conditions are equivalent to the three conditions in
[9, Theorem 5.1]. O

Kwasniewski and Szymanski [49] also provide an aperiodicity criterion and
use it to prove simplicity results and a uniqueness theorem for certain Cuntz—
Pimsner algebras over Ore monoids. On the one hand, their criterion still works
if the unit fibre A of a product system is only a liminal C*-algebra. On the other
hand, it does not imply the simplicity of the Cuntz algebra O,, because it only
uses the (partial, multivalued) action of P on the spectrum of A induced by
the product system. This contains no information if A = C as in the standard
construction of O,,.

Now we simplify the definition of being effective for the monoids P = (N¥ +).
Some of the steps also work for other monoids.
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LEMMA 6.19. The definition of an effective action of N* does not change if we
assume, in addition, that the pair (p,q) € N* is reduced, that is, there is no
t € N* with p,q € N*t.

Proof. Take p = p't, g = ¢'t for p’,¢',t € N*. Since U C X’ is non-empty and
consists of possible situations, there is m € M; with r,(m) € U. Since r; is
continuous, there is an open neighbourhood V' of m with (V') C U, and then
U’ := s:(V) is open as well. Let a, f,g and 3/’ verify the effectivity criterion for
p',q',U’. Then the same a, f,g and y = m -y’ verify it for p,q,U. O

The role of f, g in Definition is merely as padding to make paf = gag. In
a commutative monoid such as N*, we may simply take f = g and g = p; or we
may take f = (pV¢q)—pand g = (pVq) — p, where pV ¢ denotes the maximum
of p and ¢ in N*. The latter choice is minimal and may therefore be optimal.

LEMMA 6.20. Let P = N*. Then the action on X is effective if and only if, for
all reduced p,q € N* with p — q # 0 in Z* and for all non-empty, open subsets
U C X', there are a € NF andy € Mpi ot = Mytatg With Tpiats(y) € U and
midy,a,f(y) # midg,aq(y) in Ma, with f = (pV q) —q and g= (pV q) —p.

Proof. The criterion in the lemma differs from Definition in two ways.
First, we assume (p,q) reduced, which makes no difference by Lemma
Secondly, we choose particular f, g. To see that this makes no difference, choose
f'.q',y" as in Definition G.16l Then f' — f = ¢’ — g = h € N*. The truncation
Y = rptrats(y') € Mpyqty still has the same mid-part in M, and hence also
verifies the criterion in Definition O

The condition in Lemma [6:20]is exactly Condition (ii) in [77, Theorem 3.1]. As
shown in [77], this condition is equivalent to Yeend’s aperiodicity condition (A),
which characterises when the groupoid model of the topological higher-rank
graph is essentially free; Wright also gives an example where her finite-path
version of aperiodicity is much easier to check than the original criterion.

PROPOSITION 6.21. Let P = (N, +) and assume X = X'. Then the action of P
on X is effective if and only if the set of base points of loops without entrances
has empty interior in X.

We will explain during the proof what loops without entrances are. The condi-
tion we arrive at characterises when the groupoid model for a regular topolog-
ical graph is effective, compare [45] Definition 6.6].

Proof. Any reduced pair in N is of the form (p,0) or (0,p). Since our notion
is symmetric, we may as well take ¢ = 0. Thus the condition in Lemma
says that for any non-empty, open subset U C X’ and any p € N thereisa € N
and y € Mp, with 7,,(y) € U and mid,, 4,0(y) # midg 4,(y) in M,. If there is
y € M, with 7,(y) € U and s,(y) # rp(y), then a = 0 and y will do because
the relevant mid-parts are s,(y) and r,(y), respectively. Thus we may assume
as well that s,(m) = r,(m) for all m € M, with r,(m) € U; such a path is
called a loop, and r,(m) € X is its base point.
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Take m € M,, with r,(m) € U. Identify M, = M;**" and write m as a path
mi mo ms mp
Tl T2 T3 Ty —7 - Tpp1 = X1

with z1,...,2p € X, mq,...,mp € M;. An entrance for this loopis 1 <i <p
and an arrow m': ' — x; with m’ # m;. If ¢ is such an entrance, then take
a =i and let y € M, be the concatenation of the loop m and the path

my mo m'
T T — X3 < T3 T .

The relevant length-a mid-parts of this concatenation are the paths from z’
to x1 and z, to x1 involving m’ and m;, respectively. Hence an entrance to
some loop gives the data (a,y) required in Definition If the set of base
points of loops without entrances has empty interior, then we may find some
loop with an entrance with base point in U, so the action is effective.

Conversely, assume that U is an open subset so that all points in U are base
points of some loop without an entrance. Then there is only one path with
range x for any z € U: we must follow the loop based at that point because it
has no entrances (note that our paths go backwards). A continuity argument
shows that the period of the loop is locally constant. Shrinking U, we may
arrange that it is constant equal to p for all x € U. Then mid,qo(m) =
midg q,,(m) for all m € Mp4, with 7,14(m) € U. O

If X is discrete, so that we are dealing with an ordinary graph C*-algebra, then
Proposition[6.2T]simplifies further to the condition that there are no loops with-
out entrances, which is a standard condition in the theory of graph C*-algebras
(see [66]).

6.3. GAUGE-INVARIANT IDEALS. We now describe which ideals in C*(H) come
from open H-invariant subsets of H? if H is not effective. Recall that the
groupoid H is graded by the group completion G of P, H = | | gec Hg and that
this corresponds to the Fell bundle structure on the Cuntz—Pimsner algebra O,
that is, O1 = C*(H;) is the groupoid C*-algebra of the subgroupoid H;. The
canonical projection to O; is a conditional expectation E: O — O;.

DEFINITION 6.22. We call an ideal I C O gauge-invariant if I is equal to the
ideal in O generated by E(I) C O;.

If G is an Abelian group, so that there is a dual action of G on O, then standard
arguments show that an ideal is “gauge-invariant” in the sense of Definition [6.22]
if and only if it is invariant under the dual action of the compact group GonO
in the usual sense because E(z) = [ ay(x)dy.

THEOREM 6.23. The gauge-invariant ideals in O are in bijection with open
invariant subsets of HY or, equivalently, with open, hereditary and saturated
subsets of X.

Proof. The bijection between invariant subsets of H® and open, hereditary
and saturated subsets of X is Theorem [EIIl An open and invariant sub-
set U C H? corresponds to the ideal C*(H|y) € C*(H), where H|y denotes
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the subgroupoid of H with object space U C H° and arrow space r~1(U) =
s~1(U) C H'. This ideal is gauge-invariant with E(C*(H|y)) = C*(H1|v).

Conversely, let T C C*(H) be a gauge-invariant ideal. Then E(I) is an ideal in
C*(Hy). The groupoid H; is an approximately proper equivalence relation or
a hyperfinite relation. This implies that it is amenable and that any restriction
of Hy to an invariant closed subset remains effective. Now [9, Corollary 5.9]
implies that ideals in C*(H;) are in bijection with Hj-invariant open subsets
of HY where U C H° corresponds to the ideal C*(H;|y). This can only be
of the form E(I) for an ideal I C C*(H) if U is invariant under the whole
groupoid H, and then the ideal I generated by C*(Hi|y) is C*(H|y). Thus
any gauge-invariant ideal I is of the form C*(H|y) for an open H-invariant
subset U of H°. O

6.4. INVARIANT MEASURES. In the following, a “measure” on a locally compact
space X means a Radon measure or, equivalently, a positive linear functional
on C.(X). We assume X to be second countable and P to be countable,
so that H is second countable. Let ¢: P — (0,00) be a homomorphism to
the multiplicative group of positive real numbers. This extends to the group
completion G and then to H, by letting |1 = ¢(p)/c(g). This cocycle on H
generates a 1-parameter group of automorphisms of C*(H), see [69, Section 5].
The one-parameter automorphism groups of C*(H) described above are not as
special as it may seem:

PROPOSITION 6.24. Let H be effective. An automorphism of C*(H) that acts
trivially on the C*-subalgebra C*(H1) is given by pointwise multiplication with a
homomorphism G — T. A one-parameter group of such automorphisms comes
from a homomorphism c: P — (0, 00).

Proof. Renault’s construction of a groupoid model for C*-algebras with a Car-
tan subalgebra in [72] is natural. More precisely, any automorphism of a twisted
groupoid C*-algebra C*(H, L) for an étale, effective, Hausdorff, locally compact
groupoid H and a Fell line bundle L over H that maps the subalgebra Co(H?)
into itself must come from an automorphism of the pair (H, L).

The automorphism fixes Co(H") C C*(H;) if and only if the induced automor-
phism of H acts trivially on objects. For an effective groupoid, this implies
that the automorphism acts identically on the inverse semigroup of bisections.
Hence it is the identity automorphism. Thus the only source of such automor-
phisms of C*(H, L) are automorphisms of the Fell line bundle L; this is the
trivial Fell line bundle in our case.

Any automorphism of a Fell line bundle over a groupoid H acts by pointwise
multiplication with a continuous groupoid homomorphism H — T. Since we
want the automorphism to act identically on C*(H; ), this homomorphism must
be constant on H; C H. Hence it is constant on the subspaces H, and thus
comes from a group homomorphism on G. Since G is the group completion
of P, homomorphisms G — T are in bijection with homomorphisms P — T.
A one-parameter automorphism group is equivalent to a continuous homo-
morphism P x R — T; this is equivalent to a continuous homomorphism
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P — Hom(R,T) ¥ R = (Rsg,-). Hence all one-parameter automorphism
groups of C*(H) that fix C*(H;) come from a homomorphism P — (0,00). O

DEFINITION 6.25. A measure y on H? is c-invariant if u(r(B)) = ¢(g)u(s(B))
for any bisection B C H gl. If ¢ = 1, we speak simply of invariant measures.

A c-invariant measure on H gives a KMS-weight on C*(H) for the correspond-
ing automorphism group (with temperature 1); conversely, if H has trivial
isotropy groups, then any KMS-weight on C*(H) for this 1-parameter group
of automorphisms is of this form for a unique c-invariant measure on H° (see
[69, Proposition 5.4]); this result is generalised by Neshveyev [63] to KMS states
on groupoids with non-trivial isotropy, and by Thomsen [75] to KMS weights.
In particular, invariant measures on H° give tracial weights on C*(H); if the set
of objects with non-trivial isotropy has measure zero for all invariant measures
on HY, then all KMS weights are of this form.

We are going to describe invariant measures on H in terms of measures on X.
This requires two operations on measures: push-forwards along continuous
maps and pull-backs along local homeomorphisms. The first is standard: if
f: X — Y is a continuous map and p is a measure on X, then f.u is the
measure on Y defined by f.u(B) = u(f~(B)) for Borel subsets B C Y. If
f+ X — Y is alocal homeomorphism and A is a measure on Y, then f*X\ is the
measure on X defined by

FAB) = /Y £ () N Bl dA@).

If h: X — C is Borel measurable with compact support, then

/X h(z) d(f* M) (z) = / > @) dA)

Y (zeX|f(2)=y}

because this holds for characteristic functions of Borel subsets.

DEFINITION 6.26. A measure A on X is c-invariant if X = c(p)(rp)«s,(A) for
allpe P.

THEOREM 6.27. The map (m1)« induced by the projection m1: H® — X is a
bijection between c-invariant measures on H° and c-invariant measures on X .

Proof. A measure p on H° gives measures i, := (m,)«(1) on M, for all p € P.
These are linked by (7 ¢)«tipg = pp for all p,q € P because rp 4 0 Tpg = p.
Conversely, we claim that any family of measures (tp)pep With (7p.q)«fipg = tp
for all p,q € P comes from a unique measure u on H®. This is because
Uper mp(Ce(M,)) is a dense subspace in Cc(H®). The consistency condi-
tion r, 4 o g = m, implies that the positive linear maps C.(M,) — C,
= fMp f(x)dpy(z), well-define a positive linear map on (U, p 7, (Ce(Mp)).
This extends uniquely to a positive linear map on C.(H°). Thus we may re-
place a measure u on H° by a family of measures (u,),cp on the spaces M,
whenever this is convenient.

Next we claim that p is c-invariant if and only if 1, = c(p)syu1 for all p € P.
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Assume first that p is c-invariant. Let p € P and let U C M), be an open,
relatively compact subset such that sp|¢: U — X is injective. Then

{(x,p,5p2) | w € 7, " (U)} C H},

is a bisection with range ! (U) and source 7y ' (s,(U)) by Lemma[G5l Since u
is c-invariant,

pip(U) = pu(m, ' (U)) = e(p)ulmy (sp(U))) = clp)pa (sp(V)).

This equality also holds for all open subsets of U because s, is still injective on
them. This implies p,(B) = ¢(p)u1(sp(B)) for all Borel subsets B of U.

If B C M, is an arbitrary Borel subset, then we may cover B by open, relatively
compact subsets on which s, is injective because s, is a local homeomorphism.
Then we may decompose B as a countable disjoint union B = | |, B; of Borel
subsets with B; C U; for open, relatively compact subsets U; such that s, |y, is
injective for all 7. Applying the formula above for each i gives

1ip(B) = c(p) /X 155 (2) N Bl dpa () = e(p)siyn (B).

Thus py, = c(p)sppur if p is c-invariant.

Conversely, assume 11, = ¢(p)sipu1. Let g = pg~' € G and let V C H, be a
bisection. We may assume without loss of generality that V C H;yq, replacing
(p,q) by (ph,qh) for some h € P if necessary. Decomposing V into disjoint
Borel subsets, we may further reduce to the case where s(V) C HY is one of
the base neighbourhoods in Lemma G5 say, s(V) = m; ' (U) for an open subset
U C M;. Replacing (p, q,t) by (pa, qa, tb) for suitable a,b € P, we may arrange
t = p by the Ore condition. We assume this from now on. Decomposing V'
even further, we may arrange that s,|u is injective. Then V' is the product
of two bisections, one of the form {(z,p,3,(z)) | © € 7, ' (U)}, the other of
the form {(y,,5,(1)) " | y € r(V)}; here 3,7(V) = 5pm  (U) = 77 (5,(U):
So 7(V) must be of the form ' (W) for some W C M, for which s,|w is a
homeomorphism onto s,(U).

The upshot of these reductions is that p is c-invariant once the c-invariance
condition holds for bisections of the form {(x,p,3,(x)) | x € m, ' (U)} with p €
P and an open subset U C M,,. But this is exactly the condition p, = c(p)s;ul.
This finishes the proof of the claim.

The claim shows that the family of measures (fp)pep and hence the measure p
is determined uniquely by the measure py on M; = X provided p is c-invariant.
If we are given a measure A on X, then s, := ¢(p)s;(A) is the only possibility
for a c-invariant measure on H® with p; = A. This family of measures gives a
measure on HY if and only if (7, ¢)«ppg = pp for all p,q € P. In particular, for
p =1and q € P, this gives the condition c(q)(ry)«s;A = (r¢)«ttqg = A, that is,
A has to be c-invariant.

The proof of the theorem will be finished by checking that

c(p)spA = c(pq)(1p.q)«5py\
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holds for all p,q € P if X is a c-invariant measure on X. Since ¢(pq) = ¢(p)c(q),
we have to prove ¢(q)(rp,q)«SpoA = s*/\ Let U C M, be an open, relatively com-
pact subset. On the one hand = [xls; '(@)NU|dA(z). Substituting
c(q)(rq)«syA for A, this becomes

(6.28) /|s_1 ) U] d(ry)- s A (& )—c(q)/ 155 (ra(2)) N U] ds?A(2)

(I

/ > |55 (rq(2)) NU|dA().
{2€M|s4(2)=2}
On the other hand,
(6.29)

c(a)((1p.0) 83N (U) = c(@)834 A (1,4 (U)) = c(q) /XIS;ql(fE) N75q(0)] dA(z).

We may identify Mpq = My Xs,,xr, Mg and 1y 4 with the projection to the
first factor. Hence s, (z) N rp_é(U) is the set of pairs (y,z) with y € U C M,

z € My, sp(y) = r¢(2) and sq(z) = x. The cardinality of this set is the sum
over all z € s, " () of the cardinalities of s, ' (ry(2)) NU. Hence the right hand

sides in ([628)) and ([629) are equal, as desired. O
Similar arguments as in the end of the proof of Theorem[6.27 show the following:

Remark 6.30. The map a, = (rp)«(sp)* on the space of measures on X is
an action of P, that is, ap,q = o, 0 oy for all p,q € P. Therefore, if S C P
generates P, then it suffices to check whether a measure is invariant for p € S.

Ezample 6.31. Assume that X is discrete. Then a (positive) measure
on X is simply a function A: X — Ry. We have (r,).(sp)*(N)(z) =
> s, (m)y=s MN(sp(m)); a c-invariant measure is a non-negative joint eigenvector
of these maps with eigenvalue p — ¢(p). If P = N, then it suffices to look at the
generator 1 € N and the resulting map on the measures of X is matrix-vector
multiplication with the adjacency matrix of the graph described by X;. For
= (N*, +), it suffices to look at the k generators of N¥. Thus the c-invariant
weights on H? are exactly those joint eigenvalues of the adjacency matrices
that have a non-negative eigenvector.
Any c-invariant weight on H? gives a KMS state on C*(H) by first applying
the conditional expectation C*(H) — Co(H") that restricts functions to H°
and then integrating against the measure on HC. If all isotropy groups are
trivial, then these are all KMS states. Neshveyev [63] shows how to describe
KMS states if there is non-trivial isotropy. A particularly simple case is if the
set of points in H® with non-trivial isotropy is a null set for all c-invariant
measures on H?. In that case, all KMS states for the R-action generated by
the cocycle ¢ factor through the conditional expectation, so we get the same
answer as if there were no isotropy groups.
If the set of non-trivial isotropy has positive measure, then Neshveyev’s descrip-
tion of KMS states uses essentially invariant measurable families of states on
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the C*-algebras of the isotropy groups. If there is lots of isotropy, these may be
hard to classify. The situation is tractable, however, if the set of points in H°
with non-trivial isotropy is countable.

This always happens for (separable) graph algebras. The set of orbits of points
in H° with non-trivial isotropy is in bijection with simple loops in the graph.
The orbit of a point in H° and the set of simple loops are both countable. Thus
for a graph C*-algebra, we may get all KMS states in two steps. First we find
the non-negative eigenvectors of the adjacency matrix. Then we examine which
loops in the graph give atoms for the induced measure on H°. For each such
loop, we take a state on C*(Z), that is, a probability measure on the circle.
The KMS states for a non-negative eigenvector of the adjacency matrix are in
bijection with the set of all such families of probability measures on the circle.
In the case of (higher-rank) graphs, the measures on H° that we get are essen-
tially product measures coming from a measure on the discrete set of vertices V'
of the graph. If the higher-rank graph is effective, then the set of points with
non-trivial isotropy in H? is often also a null set for such product type measures
on H°. This explains why the descriptions of the KMS states or weights on
(higher-rank) graph C*-algebras in, for example, [37,38l[75], are often equivalent
to what we found above, namely, those joint eigenvalues of the k adjacency ma-
trices that have a non-negative eigenvector. As usual, our analysis only applies
to regular (higher-rank) graphs.

Remark 6.32. Tt is shown in [35] that any stably finite, exact, unital C*-algebra
has a tracial state. Conversely, a C*-algebra with a tracial state is stably finite.
Thus a unital, exact C*-algebra has a tracial state if and only if it is stably
finite. We have already remarked that C*(H) is unital if and only if X’ is
compact, and exactness follows if H is amenable, compare Theorem[6.3] Hence
Theorem gives a necessary and sufficient criterion for C*(H) to be stably
finite in the case where X’ is compact metrisable, P is countable, and H is
amenable.

6.5. LOCAL CONTRACTIVITY.

DEFINITION 6.33 ([3]). A locally compact, Hausdorff, étale groupoid G is locally
contracting if, for every non-empty open subset U C GO, there are an open
subset V' C U and a bisection B of G such that V C s(B) and »(BV) C V.

Since H is an étale, locally compact groupoid, [3, Proposition 2.4] shows that
C#(H) is purely infinite (that is, every hereditary C*-subalgebra contains an
infinite projection) if H is essentially free and locally contracting. Actually,
we only need H to be effective here by [9, Lemma 3.1.(4)]: this is exactly the
condition in [3, Lemma 2.3] that is used in the proof of [3| Proposition 2.4]. We
would, however, not expect local contractivity to be necessary for C*(H) to be
purely infinite.

The following definition characterises when the groupoid H is locally contract-
ing in terms of the original action by topological correspondences:
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DEFINITION 6.34. An action (M), o, ) of an Ore monoid P on a locally com-
pact Hausdorff space X by proper topological correspondences is locally con-
tracting if for any relatively compact, open subset S C X', there are n € N and
Pi, qi,a;,b; € P and W; C leu X sp., X7 54, Méi for 1 <4 < n such that

(LCL) pray =paaz =+ = pnan = q1b1 = -+ = qnb;

(LC2) the restricted coordinate projections pry: W; — M, and pry: W; —

My, are injective and open;
(LC3) the subsets

pry(Wi)M,, := {0, ', (v1,22) | &1 € pry(W;), w2 € M, sp, (1) = ra, (x2)}

of M, ,. are disjoint, and so are the subsets pry(W;)Mj ;
(LCA) LIy pry (W) M, S LIy pro(Wi) My
(LC5) rq, pry(Ws) € S
(LC6) pig; " # pjq; " in G for i # j.
Here X’ C X is the closed invariant subspace of possible situations, which is
different from X if some of the range maps are not surjective.

'L’

The choice of a;, b; does not really matter: if the conditions hold for one choice
satisfying then also for all others. This follows from Lemma and
the surjectivity of the maps r,, , on the M .

Giving up some symmetry, we may use the Ore conditions to simplify the data
above slightly: we may assume either py = ps=---=p,and a; =ay =--- =
anpor qu =qa=---=¢qp and by = by = --- = b,.

Condition says, roughly speaking, that we cannot make n smaller by
combining the data for any i # j. This is its only role, and it could be left out.

THEOREM 6.35. The groupoid H is locally contracting if and only if the ac-
tion (Mp,0p.q) s locally contracting.

Proof. To simplify notation, we replace X by X’ throughout, so that the
maps 7, are all surjective.

Call a subset U of H? good if there are V, B as in Definition If U, C U,
and Uj is good, then so is Uy. If T C H! is a bisection, then r(7T") is good
if and only if s(T) is good: given V, B for s(T), then TV and TBT~! will
work for r(T). If U C HY is an arbitrary open subset, then there are p € P
and U, C M, such that 7, (U,) C U, s,|u, is injective, and U, is relatively
compact and open; here we use that subsets of the form 7, (U,) for U, C M,
open form a base (Lemma [G.5), that M, is locally compact, and that s, is a
local homeomorphism for each p (Lemma F10). Hence there is a bisection with
range m, ' (U,) and source 71 (sp(Up)). Thus U is good when 7y *(s,(U,)) is
good. Summing up, all non-empty open subsets of H° are good once all non-
empty subsets of the form 7, '(S) with S C X relatively compact and open
are good.

Assume now that the action (Mp, 0, ) is locally contracting. Let S C X be a
non-empty, open, relatively compact set. Pick n € N and p;, ¢;,a;,b; € P and
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subsets W; C M, Xsp,,X,5q, Mg; as In Definition [6.34] Let

Bi = {(zlyapiqz'_17$2y> | (x17x2> € Wia Yy e HO? Sp; (1‘1> = ﬁl(y)};

here z1y and 2y are well-defined because s, (x1) = $4, (z2) = 71 (y), which uses
that s,,(x1) = sq,(22) for (z1,22) € W;. Since §,, (1Y) = y = 3¢, (22y), we
have B; C Hgi, @ Condition ensures that the range and source maps are
open and injective on each B;, so these are bisections. For different ¢, they have
disjoint sources and ranges by Hence B := ByLIBsLI- - -LUB,, is a bisection
as well. Condition gives r(B) C s(B), and gives s(B) C 7 1(9).
Since we assume S to be relatively compact, the closed subset m is compact.
So there is an open subset V with #(B) € V C V C s(B). Hence m; *(9) is
good. This implies that H is locally contracting.

Conversely, assume that H is locally contracting. Let S C X be a relatively
compact, non-empty, open subset and let U := 77 *(S). Then U is relatively
compact, non-empty and open because 7;: H° — X is surjective, continuous,
and proper. Since H is locally contracting, there is a bisection B C H'! with
r(B) C s(B) C U. Next we have to analyse this bisection B locally. This does
not yet use the special feature of B and gives slightly more, namely, a “base’
for the inverse semigroup of bisections of H. By this we mean an inverse
subsemigroup closed under finite intersections that covers H'. This can be
used to study actions of H on C*-algebras as in [11].

)

LEMMA 6.36. Let B C H' be a bisection and n € B. Then there is an open
bisection B, with n € B, C B that has the following form:

By = {(z1y,pq" ", 22y) | (x1,22) €W, y € HY, sp(x1) = mi(y)}
for some p,q € P and a subset W C M, X, x5, My such that pry: W — M,
and proy: W — M, are injective and open.
If pt =p1, gt = q1 and

Wi = {(z1y, v2y) | (v1,22) € W, y € Wy, sp(z1) = 1e(y) }

for some t € P, then the data (p,q, W) and (p1,q1, W1) define the same bisec-
tion By,.

Proof. We write B, for the homeomorphism s(B) — r(B) induced by B; this
is determined uniquely by B.(s(h)) = r(h) for all h € B. Let £ := s(n).

There are p,q € P with € H) , because these subsets cover H'. Since the
subsets B and H}, and the map s: H' — H° are open, s(B N H,,) is an
open neighbourhood of £&. Let h € BN H;ﬁq. Lemma [£10] shows that there are
unique zo € M, and y € H® with s,(z2) = m1(y) and s(h) = z2y, namely, zo =
m4(s(h)) and y = 3,(s(h)). Similarly, there are unique z1 € M, and y’ € H°
with sp(z1) = m1(y') and r(h) = x1y/, namely, z1 = m,(r(h)) and ¥’ = §,(r(h)).
The assumption i € H) , means exactly that y = . Thus h = (z1y, pg~", z2y)
for z1 € My, o € My, y € H° with s,(z1) = sq(x2) = m1(y).

Since s, is a local homeomorphism, there is an open neighbourhood V' around
7p(BE) € M, so that s,|y: V — X is a homeomorphism onto an open subset
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of X. The subset
V':={ze€s(BNH),)|m(B.x) eV}

is still an open neighbourhood of £. It contains a neighbourhood of ¢ that
belongs to the base in Lemma This gives us ¢o € P and V" C M,
with £ € 7Tq_21 (V") C V'. Since sq, is a local homeomorphism as well, we may
further shrink V" so that sg, |~ becomes injective; we assume this. The first
Ore condition gives us a,b € P with ga = g2b. Let p’ := pa and ¢’ := qa = ¢2b.
Let

W= {(mp (r(h)), g (s(h))) | h € B, mg,(s(h)) € V"}.

We claim that p’, ¢’, W have the asserted properties.

Let h € B satisty mg,(s(h)) € V". Write s(h) = zay, r(h) = x1y with 1 € M,
xy € My, y € H® and sp(z1) = s4(z2) = m1(y) as above. Then z1 € V, so z is
the unique point in V' with s, (1) = sq(z2). Now write y = y1y2 with y1 € M,,
yo € HO, s4(y1) = m1(y2). Then s(h) = 219192 and r(h) = z2y1y2. The point
21y1 € Mp, = M,y is the unique one in 7,3 (V) with s, 4(21y1) = y1. This
shows that (r(h)) is determined by 7y ( (h)) and that the map that takes
g (s(h)) to my (r(h)) is continuous. Hence the second coordinate projection
pro: W — My is injective and open. Since we assumed sq, to be injective
on V", the same holds for pry: W — M.

If (z1y,pq~ " w2y) € By, then §y(z1y) = y = 34(z2y), so (z1y,pq~ ", 22y) €
H} ,and B, C H'. Since pr;: W — M,y and pry: W — My, are injective and
open, so are the maps s,r: B, — H 9 because ¥, is common to both source
and range and z1y; and x2y; determine each other uniquely and continuously.
Thus B, is a bisection. It is clear from the construction that n € B, C B.
The last statement about different data giving the same B, is implicitly shown
above. O

Fix & € s(B) \ 7(B). The subset r(B) U {£} C s( ) CU =77 Y(8S) is closed
and contained in the relatively compact subset 77 *(S), so it is compact. For
each z € r(B) U {&} C s(B), there is a unique € B with s(n) = z. Let
B,, C B be some bisection as in Lemma[6.36l The open subsets s(B,) for these
chosen bisections cover r(B) U {&}. By compactness this only needs finitely
many of them, say, By,...,By. Let B’ := By UBy...U By, C B. This is still
an open bisection, and it satisfies r(B’) C r(B) C s(B’) C s(B) C U. Since
o € s(B')\ r(B), we get 7(B’) C s(B'). Hence we may replace B by B'.

Each B; is constructed from certain p;,¢; € P and W; C M, x M,, as in
Lemma [6.360 The Ore conditions also provide e, a;, b; € P with pzaz =e = qb;
for all . Our construction so far already achieves the most crucial properties
[[LCT)| [[LC2)] [[LC4) and [[LC5)} the last one follows from s(B’) C s(B) C
7 '(S). So far, however, the subsets s(B;) and 7(B;) may still overlap, and
some among the group elements p;q; ~1 may well be equal. We now rectify this.
Let piq;1 = qu;1 for some i # j. We may replace (p;,q;) by (pic,gic) for
¢ € P using the last statement in Lemma By this, we can arrange that
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p; = p; and ¢; = qj, which we now assume. Then
BiUB;j = {(x1y,pq~ " w2y) | (w1, 22) € Wi UW;, y € H, sp(x1) = mi(y)}-

We know that B; U Bj is a bisection because it is contained in the bisection B.
Since X = X', this implies that the coordinate projections remain injective on
W; UW;. They are open because this holds locally on W; and W;. Hence we
may simply merge the data (p;, ¢;, W;) and (p;, g;, W;) into one piece, without
changing the bisection B’. We go on merging part of our data until all group
elements g; ‘= piq; 1 are different. This achieves By construction,
B; C H;i,qi C H ;i, and these subsets are disjoint for different g;. Hence the
B; are disjoint bisections. Since their union remains a bisection, their ranges
and sources must be disjoint, which is Hence all the conditions in
Definition [6.34] hold. O

Our condition for local contractivity is rather complicated because it is neces-
sary and sufficient. If we restricted to n = 1 in Definition [6.34], the condition
would no longer be necessary, and it would depend on the G-grading on H, so
it would not be a property of the groupoid H alone. Nevertheless, the case
n = 1 of our criterion gives a useful sufficient condition:

COROLLARY 6.37. The groupoid H is locally contracting if, for any relatively
compact, open subset S C X', there are p,q,a,b € P with pa = qb and a subset
W C M, X5, x5, M such that the projections pry: W — M, and pro: W —
M, are injective and open, rq(pry(W)) C S, and pry(W) - M C pro(W) - Mj
as subsets of My, = My,.

Proof. Besides restricting to n = 1, we also have rewritten
pry (W) - Mg = pry (W) - Mg,
using the closure of pry(W) in M. This is because pry(W) - M; =

pry(W) g, x5, M}, C MT', Xs,, X5, M, and for such a subset the closure

a?’

operation clearly works on the first entry only. ]

Specialising further, we may assume W to have the form W = W x, x/ s, Wy
for open subsets W), C M, and W, C M; if W has this form, then we may
choose W), and W, minimal given W by taking W, = pr; (W) and W, = pr,(W).
Then s,(W),) = s4(W,) because s, o pr; = s, 0 pry on W.

LEMMA 6.38. The maps pry |w and pry |w are injective and open if and only
if Wy € My, and Wy € M, are open and the restrictions splw, and sq|w, are
injective.

Proof. Assume first that pry | and pr, |w are injective and open. Then W), =
pry (W) and W, = pry(W) are open. If x € W, then any y € W, with sq(y) =
sp(x) gives a point (z,y) € W with pry(z,y) = . Hence sq|w, is injective
if pry |w is injective. Conversely, assume that W), C M, and W, C M, are open
subsets and the restrictions s,|w, and s,|w, are injective. Since s, and s, are
local homeomorphisms, so are their restrictions to the open subsets W, and W,,.
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Being also injective and continuous, they are homeomorphisms onto s,(W,) =
sq(Wy). Hence the coordinate projections on W are homeomorphisms onto W,
and Wy, respectively. Since these subsets are open, the coordinate projections
are injective and open. ]

COROLLARY 6.39. The groupoid H is locally contracting if, for any relatively
compact, open subset S C X', there are p,q,a,b € P with pa = gb and open
subsets Wy, C My, and W, C M, such that s,(Wy) = sq(Wy), the restrictions
splamy and sq|my are injective, ro(Wq) C S, and W, - M, C W, - M} as subsets
of le)a = Méb.

Proof. Specialise Corollary [6.37 to the case where W = W, X5y, X" 54 Wa- O

The role of a,b € P is only as padding to be able to compare Wp and W,.
Since we restricted to possible histories, so that all range maps are surjective,
we have

WP'M;QWQ'MI; — Wp'MétQWq'Mét

for any ¢t € P. This shows that the choice of a, b does not matter: if the criterion
holds for one choice, it holds for all choices. The same is true, of course, for
Corollary [6.39] and an analogous statement holds for Theorem

If P is a lattice-ordered Ore monoid, we therefore get equivalent criteria if we
take a = p~1(pV¢q) and b= ¢ (pV q) in Corollary 637 or Corollary 639 We
write down the variant of Corollary [6.3%

COROLLARY 6.40. Assume that P is Ore and lattice-ordered. The groupoid H is
locally contracting if, for any relatively compact, open subset S C X', there are
p,q € P and open subsets W), C M, and W, C M, such that s,(W,) = s,(W,),
the restrictions sp|ay and sq|u; are injective, rq(Wy) C S, and W, - M! ¢

Wy - My as subsets of M, = M|

s Where a = pL(pVq) andb=q t(pVq).

The inclusion W, - M, C W, - M} for a = p~Y(pV q) and b = ¢! (p V q) means
that for any x, € W, there is x, € W, so that x, and z, have a common
extension; the minimal such extension lives in M;a =M ;b' The meaning of

W, - M, # W, - M is that some y € W, has no common extension with any
element of ﬁp-

Corollary involves the same ingredients as the sufficient condition for the
boundary path groupoid of a higher-rank topological graph to be locally con-
tracting in [73] Proposition 5.8]. The proof of [73| Lemma 5.9] shows that our
sufficient criterion is more general than the one in [73]. We are, however, not
aware of any applications of the criterion in [73].

Our criteria have the advantage that we understand very well which assump-
tions we have imposed on the contracting bisections for H. In Corollary [6.37]
the only assumption is that the bisection is contained in H ; for some g € G. In
Corollaries [6.39 and [6.40] we assume this and that the bisection has a product
form.
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