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A as chiral left-right symmetry are in one-to-one correspondence with
Morita equivalence classes of Q-systems in the unitary modular tensor
category DHR(.A). The Mobius covariant boundary conditions with
symmetry A of such a net Bs are given by the Q-systems in the Morita
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ulo automorphisms of the dual category. We generalize to reducible
boundary conditions.

To establish this result we define the notion of Morita equivalence
for Q-systems (special symmetric *-Frobenius algebra objects) and
non-degenerately braided subfactors. We prove a conjecture by Kong
and Runkel, namely that Rehren’s construction (generalized Longo-
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categorical full center. This gives a new view and new results for
the study of braided subfactors.
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1 INTRODUCTION

The subject of algebraic quantum field theory has led to many structural re-
sults and recently also to interesting constructions and classifications in quan-
tum field theory. Conformal quantum field theory can be conveniently stud-
ied in this approach. In particular there is the notion of a conformal QFT
on Minkowski space and boundary conformal QFT on Minkowski half-plane
x> 0.

One can associate with a boundary conformal QFT (boundary theory) a con-
formal QFT on Minkowski space (bulk theory), but in general several boundary
theories can have the same bulk theory, which correspond to different boundary
conditions of the bulk theory.

In a different framework Fuchs, Runkel and Schweigert gave a general construc-
tion, the so-called TFT construction, of a (euclidean) rational full conformal
field theory (CFT). The construction can be divided into two steps: first one
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chooses a certain vertex operator algebra (VOA), whose representation cat-
egory C is a modular tensor category and which specifies chiral fields. This
can be seen as the analytical part. Then with a choice of a special symmetric
Frobenius algebra object A € C one can construct correlators on an arbitrary
Riemann surface. The bulk field content depends on the Morita equivalence
class of A, while A itself fixes a boundary condition.

Carpi, and two of the authors gave a general procedure starting from an al-
gebraic quantum field theory on the Minkowski space, to obtain all locally
isomorphic boundary conformal QFT nets, in other words to find all possible
boundary conditions (with unique vacuum). The main purpose of this paper
is to show that there is a similar classification for the boundary conditions for
maximal (full) (conformal) local nets on Minkowski space and its boundary
conditions as in the afore mentioned TFT construction.

Let us consider more concretely a quantum field theory on Minkowski space.
By introducing new coordinates x4 = t F  we identify the two-dimensional
Minkowski space M = {(t,z) € R?} with metric ds? = dt* — dz? with the
product Ly x L_ of two light rays L+ = {(t,2) : t £ 2 = 0} with metric ds? =
dzydz_. The densities of conserved quantities (symmetries) are prescribed
by left and right moving chiral fields, i.e. fields just depending on x4 or z_,
respectively.

For example for the stress-energy tensor holds Tpo o1 = T4(x4) £ T-(2z-)
and for the conserved U(1)-current holds jo1(¢,2) = j+(z4+) £ j-(z-). In
the algebraic setting such conserved quantities are abstractly given by a net
A2(0) = AL (1) @ A_(J).

In general, there can be other local observables, so the net of observables is a
local extension B(0) D A2(O) of A;. We ask this extension to be irreducible
(B(O)NA3(0O)" = C-1), which is for example true if we assume that Az contains
the stress energy tensor of B.

We will also assume that the algebras of left and right moving chiral fields are
isomorphic, in other words A5(0) = A(I) ® A(J) where O = I x J C Ly x L_
and A is a local Mdbius covariant net on R. So in this case symmetries are
prescribed by the net A.

We further assume A to be completely rational, this is for example true for the
net Vir, generated by the stress energy tensor with central charge ¢ < 1, SU(N)
loop group models, or conformal nets associated with even lattices (lattice
compactifications). The category of Doplicher—Haag—Roberts superselection
sectors of a completely rational conformal net is a unitary modular tensor
category [KLMOT].

Fixing A we are, as a first step, interested in classifying all nets B “containing
the symmetries described by A”, i.e. to classify all local extensions Bs O As.
It turns out that the maximal ones are classified by Morita equivalence classes
of chiral extensions A C B.

Let us look a moment into nets defined on My = {(t,z) € M : = > 0},
i.e. nets with a boundary at x = 0. We are interested to prescribe boundary
conditions of Bs without flow of “charges” associated with A. The vanishing of
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the chargeflow across the boundary of the charges associated with A is encoded
in the algebraic framework via the trivial boundary net A, (O) = A(I) V A(J)
with I x J € M. This net is locally isomorphic to Ay restricted to M. In
other words A4 prescribes the boundary condition of A3 such that there is no
charge flow across the boundary.

Now given a two-dimensional net B2 which contains the given rational symme-
tries described by A, i.e. a local irreducible extension By D Ag, we are now
interested in all boundary conditions with no charge flow associated with A as
above. Such a boundary condition is abstractly given [LRO4,/CKL13] by a net
B+ D A on My which is locally isomorphic to By such that this isomorphism
restricts to an isomorphism of A4 = A,.

A classification gets feasibile by operator algebraic methods. Finite index sub-
factors N C M are in one-to-one correspondence with algebra objects (Q-
systems) in the unitary tensor category End(N) of endomorphisms of N.
Local irreducible extension B O A of nets with finite index give rise to nets of
subfactors A(O) C B(O) and the corresponding Q-system (up to isomorphism)
is independent of O and is in the category of localized DHR endomorphisms.
Conversely, every such Q-system gives a relatively local extension, which is
local if and only if the Q-system is commutative. In particular, one has a
one-to-one correspondence between Q-systems and relatively local extensions.
This situation can be abstracted to the setting of braided subfactors, namely
we fix an interval I, set N = A(I) and denote by yCx the category of localized
DHR endomorphisms which are localized in I. We can start with a type III fac-
tor N and a modular tensor category yCn C End(]) and look into subfactors
N C M such that the corresponding Q-system is in yCxn. We introduce the
notion of Morita equivalence of such braided subfactors. As a main technical
result we show that a conjecture of Kong and Runkel [KR10] is true. Namely,
we show in Prop. I8 that the generalized Longo—Rehren construction [Reh00]
coincides with the full center construction in the categorical literature (e.g.
[FFRS06,KRO8]). We give some consequences on the study of braided subfac-
tors and modular invariants. This result opens the possiblity to apply many
results from the categorical literature to the braided subfactor and conformal
net setting. In particular, we make use of the result that Q-systems are Morita
equivalent if and only if they have the same full center [KROS].

Going back to the conformal net setting we get the main result. Namely,
maximal 2D extensions By O As are classified by Morita equivalence classes
of Q-systems in Rep(.A) (see Prop. and irreducible boundary conditions of
B, are classified by equivalence classes of irreducible Q-systems in the Morita
class (see Proplo.IT]). We also treat reducible boundary conditions, which were
not conisidered before in the literature, and show that we get a classification
by reducible Q-systems.

The article is structured as follows.

In Sec. 21 we give some background on the category of endomorphisms of a
type III factor, Q-systems, unitary modular tensor categories (UMTC), braided
subfactors and the a-induction construction.
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In Sec. Bl we give a notion of Morita equivalence for subfactors and Q-systems
in UMTCs. The Morita equivalence class of a subfactor in a UMTC can be
described by irreducible sectors in the module category of the subfactor modulo
automorphisms of some dual category.

In Sec. [ we show that the a-induction construction in subfactors coincide with
the full center construction in the categorical literature. This is the first main
technical result.

In Sec.Blwe study maximal commutative Q-systems in the category yCnyXnCn
(the Drinfel’d center of xyCpn) and give a characterization of them. We give some
application to the study of modular invariants and examples of inequivalent
extensions with same modular invariant, i.e. example of non-vanishing second
cohomology.

In Sec. [6] we apply our former results to the study of conformal field theory
on the Minkowski space in the operator algebraic (Haag—Kastler) framework.
We give a proof of a folk theorem about the representation theory of local
extensions (Prop. [6.4]). Given a completely rational conformal net A, as the
main result, we obtain a classification of maximal local CFTs containing the
chiral observables described by A and all its boundary conditions. We also
discuss reducible boundary conditions, i.e. we drop the assumption that the
boundary condition possesses a unique vacuum. Finally, we give a relation to
the construction of adding a boundary in [CKL13], which gives an alternative
proof for the classification of boundary conditions.

2 PRELIMINARIES

2.1 ENDOMORPHISMS OF TYPE III FACTORS AND Q-SYSTEMS

Let us look into the following strict 2-C*-category C. Its O-cells Ob(C) =
{N,M,P,...} are given by a (finite) set of type III factors. The 1-cells are
given for M, N € Ob(C) by Mor(M, N), i.e. the set of unital *~-homomorphisms
(morphism) from p : M — N with finite (statistical) dimension dp = d, =
[N : p(M)]z, where [N : p(M)] denotes the minimal index [Jon83,[Kos86]. The
2-cells are intertwiners, i.e. for A\, u € Mor(M, N) we define Hom(\, ) = {¢t €
N :tA(m) = p(m)t for all m € M}. Then Hom(\, p1) is a vector space and we
write (A, u) = dim Hom(\, p) for its dimension. Let p € Mor(M, N). We call
p IRREDUCIBLE if p(M)' NN = C-1x. A sector is a unitary equivalence class
[p] ={AdUop:U € N unitary}. We denote by End(N) = Mor(N, N), which
is a 2—C*-category with only one 0-cell, so a C*-tensor category.

Let p1,...,pn € Mor(M, N), and let r; € N be generators of the Cuntz algebra
Oy, ie. Y1 rirf =1y and 751 = 0ij - 1n. The morphism

p= ZAdri o p; € Mor(M, N),

=1

is called DIRECT SUM of p1,...,p, and we have r; € Hom(p;, p). The direct
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sum is unique on sectors and we write it as

n

o] =[] ® - @ [pa] = il

i=1

and for the multiple direct sum we introduce the notation:

nlo] := Plo], neN,o € Mor(M,N).

=1

We say that a full and replete subcategory C of Mor(M, N) has SUBOBJECTS,
if every object is a finite direct sum of irreducible sectors in C. Similarly, we
say it has DIRECT SUMS, if p1,..., pn € C implies that also their direct sum is
in C. Let

us assume C has subobjects. If e € Hom(p, p) is a (not necessarily orthogonal)
projection (idempotent), then there exists a p’ € C and s € Hom(p/, p) and
t € Hom(p, p') such that s -t = e and t-s = 1, = 1y. We note that if we
have e € Hom(6, #) we have an orthonormal projection p = e(1 + e —e*)7! €
Hom(6, 0) with the same range. If [p] = @, [pi] and [0] = @]_,[0;] we can
decompose t € Hom(p, o) as

t:@tij = Si'tij'T;-k, tij EHom(pi,oj),
iJ

where r; € Hom(p;, p) and s; € Hom(o;,0) are isometries as above. Similarly,
one can decompose ¢t € Hom(p, o7) etc.

Let us briefly explain the graphical notation (string diagrams) [JS91[BEK99,
BEKO00LSel11, BDHI4] which we will use. The 0-cells N, M, ... are drawn as
shaded two-dimensional regions, with different shadings for each factor. A 1-
cell p € Mor(N, M) is a vertical line (one dimensional) between the region M
and N and composition of 1-cells correspond to horizontal concatenation. The
identity idy € End(N) is not drawn. The 2-cells ¢ € Hom(p, o) are vertices
between two lines. Sometimes we draw also boxes and again the identity 1, =
1 € Hom(p, p) is in general not drawn. The composition of intertwiners is
vertical concatenation and the monoidal product horizontal concatenation.
We use a Frobenius rotation invariant convention for trivalent vertices, namely
for an isometry e € Hom(v, Au) we introduce the diagram

A M
. 4/d)\d,ue
i dv
v

Let C C End(N) and D C End(M) be two full subcategories. We define the
DELIGNE PRODUCT C X D to be the completion of C ®c D under subobjects
and direct sums cf. [LR97, Appendix].
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2D CONFORMAL NETS AND ITS BOUNDARY CONDITIONS 1143

A morphism p: N — M is said to be a CONJUGATE to p: M — N if there
exist intertwiners R € (idas, pp) and R € (idn, pp) such that the CONJUGATE
EQUATIONS hold:

(L, ®R) - (R®1,)=p(R*) - R=1, (1)
(159 R)- (R 15) = p(R") - R = 1;. 2)

The 2-morphisms R, R will graphically be represented by

pp pp
r="Y r=U
idy idas

and the above equations (), (2) are sometimes called ZIG-ZAG IDENTITIES,
because in diagrams they are given by

p p p p
p p p p
If p is irreducible we ask the solution R, R to be NORMALIZED, i.e. | R| = || R]|.

In the case that p is not irreducible we further ask that R, R is a STANDARD
solution of the conjugate equation, i.e. R (and similar R) is of the form

R=Y (WioW,) Ri=DH,

where R; € (ida, pip:) is a normalized solution for an irreducible object p; < p
and W; € (p;, p) and W; € (p;, p) are isometries expressing p and p as direct
sums of irreducibles. We note that for the dimension d, = dp of p we have
R*R =d, -1y and dp = dp. For N # M we may always choose Rp = R;.
If we have a subcategory yCn C End(IN) we may choose a system yApy of
representants for every sector in yCy and choose R, for every p € yAn such
that for [p] # [p] we have R, = R;. For [p] = [p] the intertwiners R, and R,
are intrinsically related, namely Rp = £R, holds, where the sign &1 is called
the Frobenius—Schur indicator. In this case the sector [p] is called REAL for +1
and PSEUDO-REAL for —1. Although [p] and [p] might be represented by the
same p € yAx we still use p in the diagrammatically notation to distinguish
between R, and Rp.

A triple © = (0,w,z) with § € End(N) and isometries w: idy — 6 and
x: 0 — 62, which we will graphically display as

0 0 0
Vdow = J,w Vdl x = k{x)
0
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is called a Q-sYTEM (cf. [Lon94l[LRI7]) if it fulfills

xx = 0(x)x (x®@1p)r = (lp @ x)x (associativity)
w'r=0w" )z =My (W ®lg)r=lgRw")x =N, (unit law)

where A = v/ d9_1. In graphical notation this reads:

060 0 0 090 0 0 0
0 0 0 0 0

Two Q-systems © = (0, w, x) and~(:) = (é, W, &) in End(N) are called equivalent,
if there is a unitary v € Hom(6, §), such that

Tu=(u®u)x =ub(u)x; Ul = w

hold, or graphically:

60 0 b )

i v v
o= ; =I
v 9 0
) )

A Q-system in a C*-tensor category automatically [LR97] fulfills the “Frobenius
law”

(*@1l)(ly@z)=a*0(x) = zz* = (lpz")(z®1ly) =0(a")x

or graphically:

6 0 0 0 6 0
g 0 0 0 0 0

This means a Q-system is a special symmetric *-Frobenius algebra object, but
we prefer to use the name Q-system which is most common in the subfactor
context, (other names would be monoid, algebra object, monoidal algebra). We
say a Q-system © = (0, w, z) is IRREDUCIBLE (called haploid in the Frobenius
algebra context) if (idy,d) = 1.
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DEFINITION 2.1. Every irreducible a € Mor(M, N) defines an irreducible Q-
system

ea = (eaawaaxa) = (adafaaa(ra))

in End(N), where r,: idys — aa and 7,: idy — aa are isometries such that
R, =+Vda -7, and R, = v da - r, fulfill the conjugate equations (I for a. In
graphical notation:

aaaa

L Vdaw= Y. Viac- \U/
a q

]

0, =

Q—Q

l

We remark that up to this point everything can abstractly be defined in a
2—-C*-category.

Consider now a finite index irreducible subfactor N C M with inclusion ¢: N —
M then © := O; gives DUAL CANONICAL Q-SYSTEM of N C M (and T' = ©,
the canonical Q-system). The endomorphism § = 7w € End(N) is called the
DUAL CANONICAL ENDOMORPHISM of N C M (y = € End(M) is called the
canonical endomorphism).

Conversely, starting from an irreducible Q-system © in End(N), there is a
subfactor N3 C N, where Ny is defined to be the image Ny := E(N) of the
conditional expectation E( - ) = z*0( - )z and there is subfactor (extension)
N C M defined by the Jones basic construction Ny C N C M (cf. [LR95]).
One can make the construction of M explicit (cf. [BKLRI5]) and obtains this
way a dual morphism z: M — N of the inclusion ¢: N — M such that © = O;.
The upshot of this discussion is that there is a one-to-one correspondence (cf.
[Lon94]) of

e QQ-systems in End(N) up to equivalence.
e Irreducible finite index subfactors N C M up to conjugation.

Remark 2.2. We note that 6 alone does not fix N C M, which can be seen
as a cohomological obstruction. Izumi and Kosaki [IK02] define the SECOND
COHOMOLOGY H?(N C M) to be all equivalence classes of Q-systems © =
(0, w,x) with 0 the dual canonical endomorphism of N C M (their definition
uses actually the canonical endomorphism). We say the second cohomology of
N C M vanishes if there up to equivalence is just one Q-system © = (6, z, w),
where 6 is the dual canonical endomorphism of N C M.

We finally note that © is a Q-system in the full C*-tensor subcategory with
subobjects generated by 6. The Q-system becomes “trivial”, i.e. is of the form
O;, in the 2-C*-category formed of 0-cells { N, M} and full and replete subcat-
egories ,Cp C Mor(P, L) with subobjects and direct sums, which is generated
by {¢,7}. We remark that this is actually a general feature of Frobenius alge-
bra object in rigid tensor categors, in particular the obtained 2—C*-category
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together with the 1-morphisms ¢: N — M and 7: M — N appears in [Miig03a]
under the name MORITA CONTEXT. In the general situation having a special
symmetric Frobenius algebra A in a rigid tensor category C one can find a bi-
category Co¢C giving a Morita context in which the Frobenius algebra becomes
trivial, cf. [Mig03a] for details.

2.2 UMTCs IN End(N) AND BRAIDED SUBFACTORS

Let us fix a type III factor N and write yCnx C End(N) for a full and replete
subcategory yCn of End(N), such that each object is a finite direct sum of
irreducible objects and yCy is closed under taking finite direct sums. We
use this notation to stress that it is a category of N-N morphisms. We may
choose an endomorphism for each irreducible sector and denote the set of these
endomorphisms by yApy. Let us assume the following properties:

1. idy € NAn.
2. There are only finitely many irreducible sectors in yCy, i.e. |[NAN| < 0.
3. If o0 € NAp then also a conjugate (dual) 7 € yAy.

4. If p,o € yNAn, then po o € yCy, in other words we have that

lnov]=EP NLIpl, N, = (p, ),
where N/, are called FUSION RULE COEFFICIENTS.

This means that yCy is a finite rigid C*—tensor category [LR97], i.e. a UNITARY
FUSION CATEGORY. We associated with yCx a finite dimensional vector space
Ko(nCx) @7 C = CINAN1 where |yAy| denotes the cardinality of the system
~NAN and Ko(nCn) is the Grothendieck group of the monoidal category nyCh.
We define the GLOBAL DIMENSION dim yCxn of yCn to be

dim NCN = Z (dp)2.
PENAN

We remark that for convenience we assume yCy to be a subcategory of End(V).
But it turns out that this is not a lost of generality, because every countable
generated rigid C*—tensor can be embedded in End(N) by the result of [YamO03].
We will need more structure on yCy, in particular we additionally assume:

5. There is a natural family {e(u,v) € Hom(uv, vp) : p,v € yCy} fulfilling:
e ) = (1p@e(Xv)) - (e(A\p) ©1,) = p(e(X,v)) -e(A, 1)
5()‘:“’ v) = (5()" v)® 1#) ’ (1/\ ® 5(:“’? v)) E()" V) ’ )‘(E(IU” v)).

Naturality means, that for s: 0 — ¢’ and t: 7 — 7/

(t®s)-elo,7)=t-7(s) e(o,7)
=e(0,7) - (s@t)=¢e(o', 1) s a(t).
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We note that this family is determined by {e(u,v) € Hom(uv,vu) : y,v €
NAN}.

That means that yCy is a BRAIDED UNITARY FUSION CATEGORY which has
automatically the structure of a UNITARY RIBBON FUSION CATEGORY. We then
say that yCny C End(N) is a URFC. The braiding et (A, u) := (), u) always
comes along with an opposite braiding e~ (A, p) := &(u, A)* which in general is
different from ™ (), ). We will graphically denote the braiding by:

VoA VoA

€

\ . /
T\v) = e-(\v) = :
) (
AV ALY

We denote by yCpx the braided category obtained by interchanging the braiding
with the opposite braiding.
Finally, most of the time we will also use the following additional assumption:

6. The braiding is non-degenerate, i.e. et (A, pu) = e~ (A, pu) for all p € yAn
implies [A] = [idn].

We then say yCpy is MODULAR. In other words yCy is a UNITARY MODULAR
TENSOR CATEGORY (UMTC).
We define (see [BEK99]) for A\, € vAy

A

I
Y/\,LL)\GQM; W)\'l)\:p

A

and the following |y An| X |y A |-matrices

Sap = (dim NCN)_%Y)\,# 5 T = e_wic/mékuwk ; (3)
where
z= Z (dp)w,; c=4arg(z)/w.
PENAN

They obey the relations of the PARTIAL VERLINDE MODULAR ALGEBRA:
TSTST = 8, CTC =T, and CSC = S, where C,, = d,,5 is the CHARGE
CONJUGATION MATRIX.

The property (6) is equivalent to:

(6") Z(nCn) = NCn X NCy, where Z(nyCy) is the Drinfeld center of yCy
[Miig03bl Corollary 7.11] and

(6”) the matrix S = (Sy,) is unitary.
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In particular, in the modular case we have ([BEK99, Prop. 2.5]):
S*S=T"T=1, (ST)? =8*=C, CTC =T,

i.e. S and T define a unitary representation of SL(2,Z) & Zg 7, Z4 on CINANI
if and only if xyCpx is modular.

2.3 BRAIDED SUBFACTORS AND «-INDUCTION

Let N be a type III factor, yCxy C End(N) a URFC and let «(N) C M be
an irreducible subfactor such that § = & € yCxn. We call the data (¢(N) C
M, nCn) a BRAIDED SUBFACTOR. If yCny C End(N) happens to be a UMTC
we call the braided subfactor a NON-DEGENERATELY BRAIDED. There is an
obvious one-to-one correspondence between (the equivalence classes of) braided
subfactors in yCy and Q-systems in yCy .

For p € NCn we define its a-INDUCTION by

ar =7 ' o Ad(e* (N, 0)) o Ao € End(M).

We define the MODULE CATEGORY nCps to be the full subcategory with sub-
objects and direct sums of Mor(M, N'), which is generated by yCnT = {pl: p €
~NCn} and choose a set of representatives of irreducible sectors yAjs. In the
same way we define 3;Cxn and the DUAL CATEGORY p;Cps generated by ¢nCn
and (yCnT, respectively. Finally we define ]WCI:\t/I to be generated by ai(NCN),
respectively, and the AMBICHIRAL CATEGORY MCJOW = MCJJ\} N mCyy. Again we
choose a set of representatives of irreducible sectors p;An, pr A, MAE, M A?w
in the respective categories.

It turns out that MCE C mCyr and that MC;[I UmCy; generates 3Crr [BEK99L
Thm. 5.10]. It will be convenient to work in the 2-category generated by
NCN U NCar U pCn U arCoas.

As shown in [BEK99, Prop. 3.1], we have for a € yCps, A € NCi:

e (A, ar) € Hom(\a, aay) E%(\ @) € Hom(aia,al),

where EF(\,a) = T*i(e*(\, 7))t (T) for a € NCp with @ < v for some
v € NCy and T € (a@,7v) an isometry. The definition does not depend on
the choice of v and T. We set £%(a,\) := (§F(\,a))*. We represent this
graphically—where we use thin lines for morphisms in 3;Cx and xCjps, normal
lines for endomorphisms in 5Cx and thick lines for endomorphisms in 5;Cp;—as

follows:

+

a 9 a A

K = K
et (N al) = : ET(\a) =
\
A @ a;f a
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The INTERTWINING BRAIDED FUSION EQUATIONS (IBFE’s) [BEK99l Prop. 3.3]
hold, namely

p(t)e*(\, p) = e*(ar, p) a(E* (b, p))
te*(p,A) = a(EF(p,b)) ™ (p, ar) p(t)
p(y)e*, (ar, p) = (A, p) Me* (b, )y,
ye(p,ar) = A= (p,be) €= (p, V) p(y) ,
(Y)E*(a,p) = EX(b,p) b(e* (A, p)) Y
Y E*(p,a) =b(e* (p, \) EX(p,b) oy ( )

where A\, p € NCn, a,b € yCp With conjugates a,b € yCn; t € Hom(\,ab),
y € Hom(a, Ab) and Y € Hom(a, bA). The IBFE’s have simple graphical inter-
pretation, e.g. the first and sixth equations are represented by:

Pa b %%

Iy \az\f\p

AP

For details we refer to [BEK99, Sect. 3.3].
There is a RELATIVE BRAIDING [BEKOQQ, p. 738]

E(B, B-) 1= S au(T™)e(N, w)ay (S)T € Hom(B4 B, B4f-), (4)

where for fixed 54 € MCI\j}, we choose A\, u € yCy, such that 5, < ozj\r, B_ <
«,, and isometries S, T, such that 7' € Hom(f+,a" ) and S € Hom(5-, ;).
The definition is independent of the particular choice of A, i, S, T.

The relative braidings give a non-degenerate braidinge( - , - ):=&( -, )
on ,CY, by [BEKQO, Sec. 4], so in particular 5,C}, becomes a UMTC.

In general for two braided subfactors (V) C M, and ¢,(N) C M, in yCn we
define pz,Cay, as a full subcategory of Mor(Mp, M,) with subobjects and direct
sums generated by tq NCNTp.

3 MORITA EQUIVALENCE FOR BRAIDED SUBFACTORS

3.1 MODULE CATEGORIES, MODULES AND BIMODULES

In this section we give the notion of Morita equivalent non-degenerately braided
subfactors.
We adapt the following definitions from [Ost03].

DEFINITION 3.1. A (strict) MODULE CATEGORY over a tensor category C is
a category M together with an exact bifunctor ®: C x M — M such that
(XRY)eM=X® Y M) foral X,Y € C and M € M.
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Let My, M3 be two module categories over C. A (strict) MODULE FUNCTOR
from M to My is a functor F': My — My such that F(X@M) = X @ F(M).
Two module categories M7 and M5 over C are called ISOMORPHIC if there
exist a module functor, which is an isomorphism of categories.

Let yCny C End(N) be a UFC and let © = (0, w,z) be a Q-system in yCy
corresponding to N C M. A (right) ©-module (cf. [EP03]) is a pair (p,r) with
p € nCn and 7 € Hom(p o 6, p), such that r* is an isometry and 7 = v/dfr
satisfies

Fe(l,@m)=7-(E®1p) & - p(m) = p(i?)

Fl,or) =1, & 7ple) =1,

where m = v/dfz* the multiplication and e = v/dfw the unit of the (Frobenius)
algebra object corresponding to ©. Graphically this means:

P P
r r
* = : r =
xr — r ) -
w
Po 0 Poo P P

A left ©-module can be defined similarly. We note that because we are working
in C*-categories and ask r* to be an isometry, that a module is also a co-module
by the action r*. The endomorphism pf with p € yCxn has the structure of a
right ©-module, where the action is given by 7 = 1,@m = p(m) = v/df-p(z*) €
Hom(p00, pf) in other words r = p(z*), graphically:

po po
r = x*
p00 Pe 0

It is called the INDUCED MODULE. Any irreducible right ©-module is equivalent
to a submodule of an induced module cf. [Ost03].

The ©-modules form a category with Homg(p, o) = Home((p, 1), (0,8)) = {t €
Hom(p, o) : tr = st}, so the arrows are arrows of the objects which intertwine
the actions. There is a correspondence between projections p € Homeg/(p, p)
and submodules, namely we can choose p, and ¢ € Hom(p,, p) with t*t =1
tt* = p and define r, = t*rt.

Let ©, = (04, wa,z,) and Oy = (O, wy, zp) be two Q-systems in NCn. A Og4-
O, bimodule is a triple (p,rq,7rp) with p € yCy and p, € Hom(f,p, p) and
p» € Hom(pby, p), such that (p,7,) is a left ©,-module and (p, ) is a (right)
Op-module and which commute, i.e.

Pp?

Ta Oa(rp) =1p - 1rq.
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We can define:
ri=rq-(lg, @) =15 (ra ®1g,) € (0 0 po by, p).

Let p = (p, 74, ) and o = (0, 84, $p) be two ©,-0;, bimodules. An intertwiner
t: p — o is an ©,-0; bimodule intertwiner, if ¢ intertwines the actions r and
s, i.e.

tr =s5(lp, ®t® 1y,) = 50,(¢) .

Let us denote by Bim(©,, ©) the category of bimodules with Home, e, (p, o)
0,-0p bimodule intertwiner. We note that one can give Q-systems, bimodules
and intertwiners the structure of a bicategory, by introducing a relative tensor
product between bimodules.

We set Mod(©) = Bim(1,0) to be the category of (right) ©-modules.

The category Mod(©) has a natural structure of a (strict) left yCy module
category, where the functor yCny X Mod(©) is given by (u,p) — up where
pp is a right-module with r,, = p(r,) and Homyoqe)(p,0) > T = p(T) €
Homypoq(e) (10, 10)-

ProposITION 3.2 ([EP03| Lemma 3.1.)). Let nCn be a UMTC and ©,, 0y
irreducible Q-systems in yCn. The category of ©,-Op bimodules is equivalent
to the category a,Car,- The functor ® maps B € a,Car, to Tq 0 B0ty and
t € Hom(5, 8’) to 14(t) € Home, e, ((5), (F)).

Proof. In [EP03, Lemma 3.1.] is shown that the functor ® is fully faithful.
It is also shown that is is essentially surjective, so it gives an equivalence of
categories. O

The functor @ is graphically given as follows, where p = ®(3) 7 € Hom(0, 065, p)
the action:

B’ la Jel Lp P o B w
: -
B8 la B8 by 0, P 0y Lg la Lg B Ly 1y b

Remark 3.3. Let © = (6, w,z) be a Q-system in a UMTC nCy with corre-
sponding subfactor ((N) € M. The bimodule ®(af) = tafi = @\ is the
object X with left action the induced action z* and right action by z*e* (), 6),
namely for the +-case:

+

7 9

" 41&

[ L
0 O\ T L Tof

L

N

L

Sl
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where equality can be seen easily using (A = ajL, © = ©; and the IBFEs
by pulling the A-string between 7 and ¢. The —-case works analogous using
the opposite braiding. The obtained bimodules coincide with the notion of
a-induction in the categorical literature.

The category Bim(©, ©) becomes a tensor category, where p®g o is the object
associated to the projection in P,g,, € Hom(po, po) given by:

1
PP®®U:\/—d_9

p o

and it is easy to check that ® is a tensor functor. Thus, Bim(0, ©) and »,Cy,
are equivalent as tensor categories. We note that this category is non-strict.
We can define the categories Bim™ (0, ©) to be the image of mC3; under ® and
Bim"(©,0) = Bim"(0,0) N Bim™ (O, 0).

In the special case M, = N and M, = M and 6, = 6 we have an equivalence
of the category yCps and the category Mod(©) of right ©-modules given by
a +— at. The category of right ©-modules Mod(©) becomes a module category
over yCn using the monoidal structure inherent from End(N). The same is
true for NyCys.

In particular, it follows:

PROPOSITION 3.4. Let NCny C End(N) be a UMTC and © be a Q-system
in NCn with corresponding subfactor N C M. Then Mod(©) and nyCp are
equivalent as module categories.

Proof. Tt follows directly from the properties of the monoidal structure, that
the functor @ (in the case of M, = N and M, = M and 6, = 0) in the proof of
Prop. is a module functor, so in particular a module isomorphism, between
the two module categories Mod(©) and yCps over nCy. O

We remark that in general in the definition of module it is not assumed that
r is a (multiple) of an isometry, because the existence of a unitary structure
is not assumed. But since every module in the general sense is equivalent to
a submodule of an induced module and the submodule can chosen to have a
multiple of an isometry as action, we can without lost of generality restrict to
modules where r is a multiple of an isometry. This can also be shown directly
[BKLR15].

Let a € yCyps be irreducible and consider the subfactor N C M, given by the
Q-system O, (see Def.[ZT]). Let M, be the factor which is given by Jones basic
construction a(M) C N C M, and denote the inclusion map ¢q: N — M,.
Because the subfactors 7, (M,) C N and a(M) C N have by definition the same
Q-system and thus are conjugated by a unitary in N, we may and do choose
la: M, — N, such that 7,(M,) = a(M). This implies that « = 7,1 o a: M —
M, is an isomorphism with conjugate a ' =a" ! o7,: M, — M.
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LEMMA 3.5 (cf. [LRO4L[Eva02]). Let nCn C End(N) be a UMTC and © be a
Q-system in NyCn with corresponding subfactor N C M.

For a € NCyy irreducible let ©, be the canonical Q-system (©, = ad,wq, T4)
and N C M, the corresponding subfactor. Then nCpr and nCar, are iso-
morphic as module categories of NCn. The isomorphism is given by V: b —
boa~t o, and Homye,, (b,c) 3t~ t € Homc,, (¥(b),¥(c)).

Remark 3.6. Given a € NCM we have the Q-systen O, with 6, = aa. Let
B = ®(a) € Mod(©), then 3 is a © left module and there is another way to
construct a Q-system [KRO8|] denoted by 8 ®e 3, and it is easy to check that

B ®e B = aa and that the obtained Q-systems are equivalent.

3.2 THE MORITA EQUIVALENCE CLASS OF A BRAIDED SUBFACTOR

In the following we use the definition of Morita equivalence for module cate-
gories as in [Ost03] Def. 3.3]. Let yCny C End(N) be a UMTC. We remember
that we call a pair (N C M, yCy) where N C M is a subfactor whose Q-system
O is in yCy a non-degenerately braided subfactor.

DEFINITION 3.7. Let yCn C End(N) be a UMTC. Two irreducible Q-systems
O, and O, in yCy are called MORITA EQUIVALENT if one of the following
equivalent statements hold:

e Mod(©,) and Mod(©;) are equivalent as module categories over nyCy.

o nCu, and nCyy, are equivalent as module categories over nyCpn, where
N C M, is corresponding to ©O,.

We say that the subfactors N C M, and N C M, are Morita equivalent if their
Q-systems ©, and Oy, respectively, are Morita equivalent.

Let (¢(N) € M,nCn) be a non-degenerately braided subfactor. It follows
directly that for a,b € nyCys irreducible ©, and ©; are Morita equivalent and
in particular are Morita equivalent to ©;. But it can also happen that ©, and
O}, are equivalent for [a] # [b]. If C is a UTFC, we denote by Pic(C) the full and
replete subcategory (2-group) with objects {p € C : dp = 1} (not completed
under direct sums).

ProposITION 3.8 ([GS13]). Given two irreducible objects a,b € nyCar. Then

the Q-systems ©, and Oy are equivalent if and only if there is an automorphism
B € Pic(yCar) such that b = a.

Now we can give a characterization of the Morita equivalence class of a non-
degenerately braided subfactor.

PROPOSITION 3.9. Let NCny C End(N) be a UMTC and let © be a Q-system
in NCn. Then there is a one-to-one correspondence between

1. equivalence classes [©,] of irreducible Q-systems Morita equivalent to O,

DOCUMENTA MATHEMATICA 20 (2015) 1137-1184



1154 MARCEL BISCHOFF, YASUYUKI KAWAHIGASHI, ROBERTO LONGO

2. idrreducible sectors [a] with a € NCpr up the identification: [a] ~ [b] if
there is an automorphism B € p X, such that [a] = [BD],

3. elements in yAnr/ Pic(aChr).

Proof. Statement (3) is just a reformulation of (2). Let a € yX)s then we
obtain a canonical Q-system ©, in yCx which is Morita equivalent to © by
Lemma Conversely given a Q-system O, Morita equivalent to © then
~Cus is equivalent to yCpy, . The element a € yCpy corresponding to ¢, € NCay,
under this equivalence is the corresponding element in yCyy, cf. [Ost03, Remark
3.5]. The rest follows by Prop. B8 O

4 @-INDUCTION CONSTRUCTION AND THE FULL CENTER

4.1 THE FULL CENTER AND REHREN’S CONSTRUCTION COINCIDE

Let N be a type III factor and yCn C End(IV) a UMTC. As before let yAx =
{idn, p1,--.,pn} a set of representatives for each sector.

Given v,\,u € nNApy, we can choose a set of isometries B(v,A\u) :=
{eiti=1,...,wau with e; € Hom ey (v, Ap), such that {e;} form an orthonor-
mal basis with respect to the scalar product (e, f) = ®,(e*f) defined by the
left inverse ®, of v [LRO7|] or equivalently defined by (e, f) -1, = e*f. We
define for an isometry e € Hom ¢, (v, Ait) an isometry & € Hom—z—(7, i) by

A B DT
L .
v v

DEFINITION 4.1 (Longo-Rehren construction). Let yCy C End(N) a URFC.
There is a Q-system Opr = (ILr, wWLR, ZLr) in NCn X yCy given by:

[OLr] = @ o X p, TLR = \/—@ Z \/Z)\;l'; Ke,

pENCN Apv e€ B(v,A\p

A K
-® X \/ \/
Apv e€B(v,Ap)

More general, for an equivalence of braided categories ¢: NCny — NCl, We
define the Q-system GfR = (GfR,wfR,fo) in yCn X §Cly by

_ [dXdp
[GfR]: @ [P X o(p)], ‘TLR_@ Z dvdo e&qﬁ

pENCN Apv e€B(v,Ap)
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DEFINITION 4.2. Let yCny C End(N) be a URFC. A Q-system © = (0, w, x)
in yCy is called COMMUTATIVE if €(0, 0)x = . Diagrammatically:

0 0 0 0
0 0
PROPOSITION 4.3 ([LR95)). The Q-system obtained by the Longo—Rehren con-
struction s commutative.

DEFINITION 4.4 (Product Q-system). Let ©; = (0;, w;,x;) with i = 1,2 be
two Q-systems in a URFC category nyCn. Then we define two Q-systems
01 o Oy = (61 0 Oy, wywa, 2+) in yCyn, where z1 = 01(cF(01,02))z161(72),
graphically:

01602 6104 01 62 61 0,

A

010 01 0

DEFINITION 4.5. For © = (0, w, z) a Q-system in yCy and p € yCp, we define

6 p 6 p
1 1 — B

Po(p) = N = € Hom(6p, p)
p Y

and P} = P}(idy). Similarly, we define P5(p) and P§ by interchanging the
braiding with the opposite braiding.

LEMMA 4.6. Pgr(p) is a projection.

Proof. That PL(p)? = PL(p) is proven as in [FRS02, Lemma 5.2], see also
IBKLR15]. We just remark that we have a prefactor due to another normal-
ization and that one can check that P(l_)(p) is selfadjoint. o

PROPOSITION 4.7 (Sub-Q-system cf. [BKLR15]). Let p € Hom(0,8) be an or-
thogonal projection satisfying pd(p)xp = 0(p)xp = pxp = pb(p)x and w*p = w*.
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Let 0, < 0 corresponding to p, i.e. there a isometry s € Hom(6),0), such that
s*s = 1g, and ss* = p. Then ©, = (0, wp, x,) with

N d9
wp = 8w, s

d9
is a Q-system.
Graphically, the conditions are given by:
0

0 0 0 0 0 0 0

0| B BB 5]
0
0 0 0 0

Remark 4.8. The notion of sub-Q-system ©, of © corresponds to the notion
of intermediate subfactor L with N C L C M where © is the dual canon-
ical Q-system of N C M. Namely, the properties of the sub-Q-system are
just a reformulation of [ILP98, Corollary 3.10]. Namely, they consider sub-
spaces K, C Hom(t, tp) for each p € yAp, which correspond to a projection
p € Hom(0, 6) if we identify the Hilbert spaces Hom(p,#) and Hom(¢,tp) by
Frobenius reciprocity.

Remark 4.9 (cf. [BKLRI15]). If one drops the condition w*p = w* in Prop. [£1]
then we obtain a more general “sub” Q-system ©, = (6, wp, ) with

j—;p - s*0(s")as

-1 L
wp 1= A s*w, Tpi= A

where A = /w*pw.

DEFINITION 4.10. We denote by C1(0) = (Ci(0), Ci(w), Ci(z)) the LEFT CEN-
TER of ©, which is defined to be the sub-Q-sytem associated with the projection
Pl € Hom(0,0). Analogously, the RIGHT CENTER C,(0) is defined using P}

Remark 4.11 ([EERS06, Lemma 2.30]). The Q-system C),.(©) is a maximal
commutative sub-Q-system of ©.

Remark 4.12. The intermediate factor N C My C M defined in [BEQ0] is
given by the Q-system C}(©). Namely, the characterization of Pé in [FERS06,
Lemma 2.30] is the characterization in [BE0O, Lemma 4.1] in terms of subspaces
M, C Hom(¢, tp) of “charged intertwiners”. Similarly, N C M_ C M is given
by C,(0).

DEFINITION 4.13 (cf. [FFRS08]). Let yCn be a UMTC. The FULL CENTER
of a Q-system O is defined to be the Q-system Z(0) = (Z(0), Z(w), Z(x)) =
C]((@ X ldN) O+ GLR) in NCN X NCN-
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In particular we have Z(idy) = OLR.

DEFINITION 4.14. Let yCy be a URFC and © = (0, w, z) a Q-system in yCy.
We define

Homy,.(0p, 0) = {t € Hom(0p, o) : t - Py(p) =t},
Home (0,0p) = {#* € Hom(o,0p) : Ph(p) - #* = ).

In particular, the spaces Homyo.(6p, o) and Homy (o, 6p) are anti-isomorphic,
due to the self-adjointness of Py(p).

LEMMA 4.15. The isometry v € Hom (Z(0), (0 Kidy)0Lr) with ¥y* =
P(le)&idN)o+@LR and ¥*1p =1 is of the form:

b= P P  m Ridy, € Hom (Z(0), (0 Ridy)bLr) ,
A1, A2ENAN MEB(OA2,M1)10c

where the sum over m goes over an ONB of Homyec (62, \1). In particular:

[Z(0)] = @ (A2, A1)1oc [A1 B Ao]
ALA2ENAN
where { -, + )oe = dimHomyoe( -, - ).

Proof. We first note that v € Hom (R(6), (0§ X 1)0Lr) given by

ui= P P m Ridy, € Hom (R(6), (0 Kidy)bLr) ,
A1, A2ENAN meEB(OA2,M1)
RO):= € (Or, )M EX,

A1, A2ENAN

is a unitary interwiner. It can be shown that

Plogian ot - = Pomiay (Lr) - u = ( @ P5(\) K 1,\> U
AENAN

The equality is the statement [FEFRS06, Prop. 3.14(i)], namely it is proven
that C1((©@ Kidy) o™ ©pr) which is associated with P(IQIZIidN)o+® is associated
with the projection Pé)@idz\; (Ci(0Lr)) = P(l)&idN(eLR)' We can conclude by
eventually choosing another basis that a maximal isometry invariant w.r.t.
P(le)&idN)o+®LR is given by summing just over ONB’s of Homje(OA2, A1). O

Given a Q-system O in yCn and ((N) C M its associated subfactor with the
inclusion map ¢: N — M, we will constantly use that the Q-system O is of the
form O; as in Def. 2] in other words the Q-system © becomes trivial in the
2—C*-category generated by nCy, ¢, . This simplifies many graphical proofs.
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LEMMA 4.16. Let yCxy C End(N) be a UMTC, © a Q-system in yCn and
N C M the corresponding subfactor. Let p,o € yCn be irreducible. The spaces

Homyee(0p, o) and Hom(ev, , af) are isomorphic by the map:

Homyo(0p,0) — Hom(a, , af)

ay
o
A ~7
— =
do
0 P |
a,
o
ag
1 !} N
v df
| a;

0 P

In the same way Homyec(p, 00) is isomorphic to Hom(a,‘;,a;). This gives a
unitary equivalence between the Hilbert spaces Homyoe(p, ) with scalar product
(e, f) = ®5(e*f) and Hom(a}}, o) with scalar product (¢', f') = @+ (™ '),
where ®, and ®_+ denote the unique left inverse and unique standard left

1muerse, respectivefy.

Proof. We first check that the map is well defined, namely the image is an
element in Homyoc(0p,0) and we have (“=" denotes the trivial intertwiner
identifying 6 = 7v)

5~

/

%II‘IH
=
=

0 P

where we used in the first equation that © is of the form ©; and in the second
equation that the closed string can be contracted which cancels the prefactor.
So we conclude that the image is actually in Hom.(6p, o).
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We have to show that both maps are inverse to each other:

aj; o
g g
% — »—>L = %
Vo
o P | | 6 P

=)
A+
>
Qu —
>
© —|==——Q
&‘*—‘
>
I a+
I
—

where the last equation in the first line is exactly the fact that the intertwiner is
in Homyoe(0p, o), namely the diagram can be deformed to obtain Py (p) which
can be omitted; in the last equation of the second line the closed string can
again be contracted to a dimension cancelling the prefactor.

Finally, unitarity can be seen as follows:

where in the last equation we use that the string diagram can be deformed to
give the standard left inverse for o} (cf. [Reh00), Lemma 2.2]). O

DEFINITION 4.17 (a-induction construction [Reh00]). For a braided subfactor
t(N) C M in yCy there is a Q-system Op; = (Opr, wpr, zpr) in NCn B NCy

DOCUMENTA MATHEMATICA 20 (2015) 1137-1184



1160 MARCEL BISCHOFF, YASUYUKI KAWAHIGASHI, ROBERTO LONGO
given by:

[GM]: @ Z#V[:ugl_/]a
pP,0ENAN
Zyy = (ozj o)
dA?dMQ 1 * * * —
e =P > Tnrdun v [t(er™) (9] @ &y, )e(e2)9n] - €1 K ez,

Imn e1,e2

A1t A2 fl2

_ @ Z 1 4 d)\Qd,U/Qdyl (I)l [ ) ] X /
Vi \ dhidpidv, = €2
151 1)

Imn e1,e2

where [ is considered as a multi-index (A € NAn,d2 € NAN,] =
1,-++,2Zx »,) and e; stands for an ONB in Hom(v;, A;u;) and ¢; an ONB
in Hom(o@\"1 , ary, ) with respect to the induced left inverse By,

The following result was conjectured in [KR10]. It can be seen as the main
technical result. It allows to apply a lot of results obtained in the categorical
literature to the braided subfactor and conformal net setting.

PROPOSITION 4.18. Let nCn be a UMTC. The a-induction construction for
(L(N) C M,nNCn) coincides with the full center Z(©) of the corresponding
Q-system O.

Proof. Tt is already clear that the two constructions give equivalent objects,
namely

ZO)= P O eMBA]= P (efo5,) i B o] = [0u]
A1, A2ENAN A1, 2ENAN

follows from Lemma and Lemma We have to show that the two
intertwiners Z(z) and x of the two respective constructions are equivalent.
We decompose Z(z) w.r.t. an ONB to show that we obtain the same coefficients
as in the a-induction construction for xp;. Using Lemma we have:

AL p1 Ao fi2

*pm*
d\y dpy dv
\/dQLR\/@Z(x):@Z4d_A;d_H;d_V; %2 X H)ez . (5
Imn ez
n
V1 Vo

where I;m,n run over an ONB of Homjoe(A1,0A2), Homjoe(p1,0p2) and
Homyoe (11, O12), respectively. We use the following expansion of an arbitrary
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intertwiner ¢ € Hom(v, Ap) with respect to an ONB {e} of

Zd) (et)e WZ 'H)

with respect to an orthonormal basis {e} of Hom(v, Ai). The rhs of Eq. (@)
becomes

A K

v

el Al A2 iz
M1
*
@y VEEE A" c
NN I ' e ey -
Ilmn e1,e2 d)\lduldyl €2 2
n
%1 g 123

We calculate:

el
M1
JPudi vy |EA AT didi g !
d)\g d/,I/Q dl/2 €a d)\g d/,I/Q dl/2
n
41
d)\ld)\gdﬂldyg
— dp/do & ZALEA2COR2 .
" dl/1 dVQ Ul[ ] ’
where we first use that the intertwiners [, m, n are in Homjoe( - , - ) and then

replace by Lemma[4.16l with an orthonormal basis in Hom(o@f1 , a;2) and in the
second step deform the ¢ string to obtain the left inverse of ;f, and ®} [ --]

is the expression of Def. [£17l This shows that Z(x) has the same coefficients
as xps from the a-induction construction. O
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We need the following general result as a main tool in the following sections.

PROPOSITION 4.19 (cf. [KRO8]). Let ©, and Oy be irreducible in a UMTC
NCn. Then O, and ©p are Morita equivalent if and only if Z(©,) and Z(Oy)
are equivalent.

4.2 'THE ADJOINT FUNCTOR OF THE FULL CENTER

We have a tensor functor 7" as follows: the map

T(@)\iﬂm>=@)\ioui (6)

is an extension of the monoidal product (which by definition is a bifunctor).
We have T'(idy Xidy) = idy and the family of morphisms

H(p1 R ), (pzRa): T(p1 B 1) 0 T(p2 W aa) — T(p1p2 X G102)
H(p1R51),(p2XN52) = (1P1 ® E(an 61)* ® 152) = pl(E(an 61)*) (7)

extends to a family

(B, (82) T(B1) o T(B2) — T(B1 0 fa), B1, B2 € NCn B NCN

and makes the following diagram commute:

T(B1)oT(B2) 0T (B3) — T(B1)oT(B2ofBs3)
{ { :
T(B1 0 f2) —  T(Brof20Ps)

This means T is a (strict with respect to the unity but in general non-strict for
associativity, i.e. fe,e # 1) strong monoidal functor (tensor functor). It is well
known that strong monoidal functors map monoids into monoids, by this we
can conclude that for Oy = (63, w2, x2) a Q-system in yCny K yCx we obtain a
(reducible) Q-system T'(©2) = (T'(02), wr(e,), T1(0,)) DY

wre,) = T'(wa), Tr(0,) = Hoy.0, * 1L(T2)

or explicitely by (tfk € Hom(p; X, pjpr X 7;5%))
i ijk

T(02) = @Pﬁi Tre) = @Pj(E(Pkﬁj)) T(t*) .

ijk

€Hom(piGi,p;5;prTk)

We note that even if © is commutative T'(©) is in general not commutative,
because the functor is not braided.
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We introduce the notion of a direct sum for Q-systems (cf. [EP03| p. 321]).
Let yCn C End(N) be a URFC and {©; = (0;, wi, ;) }i=1,....n be Q-systems in
~Cn. The direct sum Q-system © = (6, w,z) with § = @], 0; is defined by

n 1 n n
> i 2 2
where d; = /d(0;) = d(1;) and T; are generators of the Cuntz algebra with

n elements, i.e. T;T; = 6;; - 1 and ), T;T; = 1. If (05, w;, x;) corresponds to
the subfactor N C M; with inclusion map ¢;, then (6, w, z) corresponds to the
inclusion N € @, M;. The p; = T;T} give a decomposition in the sense of
Remark

The following identity has been proven on the level of objects in [Eva02, Prop.
3.3.]. We remark that a priori it is not clear that this “curious identity” holds
also on the level of Q-systems. It is directly related to the adding the boundary
construction in [CKL13] as we discuss in Sect.

ProOPOSITION 4.20 (cf. [KROS8| Prop. 4.3]). Let nCn C End(N) be a UMTC
and © a @Q-system in nyCn with corresponding subfactor N C M. Then we
have an equivalence of Q-systems:

7(Z©)= P 6.
aENAM

Our first aim was to prove this identity directly for the a-induction construc-
tion. We had a graphical proof for the trivial Q-system. Because the a-
induction construction coincides with the full center it follows now easily from
the general results of [KROS].

Proof. We note (see Rem. B.6]) that the Q-system O, for some a € yCps or
equivalently @ € pCn corresponds on the nose with the Q-system ®(a)¥ ®¢
®(a) = P(a) ®eo P(a) constructed in [KROK], where ®: p,Cny — Bim(0,id) is
the functor in Prop. Then one can directly apply [KRO8| Prop. 4.3]. O

As a corollary this implies the “curious identity” which was proven in [Eva02]
Prop. 3.3.] and shows that behind this identity indeed sits more structure.

COROLLARY 4.21 (cf. [Eva02l Prop. 3.3.], see also [BEK99, Cor 6.13.]). Let
N C M be a non-degenerately braided type III subfactor and Z, = <aj\r,a;>
for A\, € NAn. Then we have

P lal= B Zolo) (8)
aENAM pP,OENAN
and in particular the number of elements in yApr or pAn is given by
INAm| = [MAN] = Z Zpp -
PENAN

Remark 4.22. The functor T'( - ) gives a (left) adjoint to the full center Z( - ),
namely © is a sub-Q-system of T(Z(0)).
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5 MODULAR INVARIANCE AND Q-SYSTEMS IN yCn X nyCn

5.1 CHARACTERIZATION OF MODULAR INVARIANT Q-SYSTEMS

Let nCny C End(N) be a UMTC. Given a Q-system © and the correspond-
ing extension ¢(N) C M let Z,, = (a:;,alﬂ for p,v € yApn. The matrix
Z = (Zuw)uvenAy is @ MODULAR INVARIANT [BEK99], i.e. it commutes with
S and T from (B). It is called normalized because Zypy = 1 and sufferable
because it comes from an inclusion ¢(N) € M. The a-induction construc-
tion or equivalently the full center gives a Q-system O in yCny X yCn with
[02] = D, penan Zuwlp B D] It is sometimes convenient to write the matrix
(Zyw) formally in character form as Z =3 ¢ A\ ZuwXuXo-

LeMMA 5.1 ([BEKOQ0], see also [KO02, Thm 4.5]). Let nCn be a UMTC.
If © is an irreducible commutative Q-system in NCn, then dim pCQ, =
dim NCn/(d®)2. In particular, d® < dim(yCy)?.

Proof. The first statement is a combination of Thm. 4.2 and Prop. 3.1 in
[BEKOQ]. The second statement follows from the first, using dim »,C%, > 1.
Using Remark B3] and [5.6], this also follows from [KO02, Thm 4.5]. O

ProPOsSITION 5.2 (J[KR09, Thm. 3.4, Prop. 3.22]). Let O be an irreducible
commutative Q-system in NCn X nyCp, then the following are equivalent:

1. d@g = dim(NCN)
2. Z = (Z,) is a modular invariant
3. ©9 = Z(0©) for some irreducible Q-system © in NCy.

Proof. (3) are equivalent (1) by [KR09, Thm. 3.4, Prop. 3.22] (see also [Miig10}
Thm 3.4], [DMNOT3)).

The notion of modular invariance in [KR09, Thm. 3.4] is a bit different. But
by [LR04, Appendix C] we obtain that (2) implies (1), namely the argument
shows that if df < dim(yCx) then Z cannot be modular invariant. Together
with Lemma [5.1] this gives the statement.

(3) implies (2) is clear by the fact that Z,, = (a;f, ;) defines a modular
invariant and that Z(©) coincides with the a-induction construction Prop.

418 a

5.2 PERMUTATION MODULAR INVARIANTS

Let yCx C End(N) be a UMTC. A non-negative integer valued matrix
Z = (Zy)pvenay With Ziay jay = 1 is called a MODULAR INVARIANT if it
commutes with the matrices S and 7' constructed in Subsect. It is called
REALIZABLE (sufferable) if there exists a braided subfactor (+(IN) C M, yCn)
such that 7, = ('}, a; ).
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PROPOSITION 5.3. Let yCn C End(N) be a UMTC and ¢ € Aut(yAn) which
only fizes the sector [idn] and which extends to a braided automorphism of
~NCn. Then there is a braided subfactor N C My in nCn with

0s] = Pl =D (udi),v)

m

which realizes the permutation modular invariant Z,, = 0,,4(,)-

Proof. By the Longo-Rehren construction Def. [] there is a Q-system @fR

with:
075] = Pl B o(h)].

o

We define the Q-system O, := T(O7y) in xCy with

05) := Plue(@) = P rulvl,  n =Y (né(n),v)

I 7

as above which is irreducible because 0 = (u¢(fi),idn) for [u] # [idn] by the
assumption about ¢ not having non-trivial fixed points. Because T'( - ) is left-
adjoint to Z( - ) the subfactor N C M, given by the Q-system O, has the
modular invariant Z,,, = d,,4(.)- O

A particular case is, if yCx has no non-trivial self-conjugate sectors besides the
trivial sector, in this case the charge conjugation C' might fulfill the assumptions
and the obtained subfactor realizes the charge conjugation modular invariant
Z = C. We therefore can answer a particular case of the question how Z = C
is realized, namely the case that there are no non-trivial self-conjugate charges.

Example 5.4. The UMTC Eg; for example obtained by positive energy repre-
sentation of loop groups, has 3 sectors {po, p1,p2} with Zs fusion rules, i.e.
[pipj] = [pi+j moas] for 0 < 4,7 < 2, and the charge conjugation trans-
poses the two non-trivial charges. Then Prop. B3] yields a Q-system with
[0] = [po] @ [p1] & [p2] which realizes Z = C, i.e. Z = |xo|® + x1X2 + X2X1-

If there is fixed point in the permutation the same construction as in the proof
of Prop.[5.3lis possible but we do not know how a dual canonical endomorphism
of an irreducible Q-system giving the modular invariant would look, because
the “adjoint functor” gives a reducible Q-system. Nevertheless, we can con-
clude that for a permutation matrix Z of yAp which gives rise to a braided
automorphism, there exists a braided subfactor «(N) C M in yCx which has Z
as a modular invariant, i.e. such permutation modular invariants are realizable.
The category yCp is called pointed if all irreducible objects are invertible, i.e.
have dimension 1 or in other words yCn = Pic(nCn).

LEMMA 5.5. Let NCn € End(N) be a pointed UMTC and let ©1 and Oy be
Q-systems. If ©1 and O3 are Morita equivalent, then they are equivalent.
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Proof. Let ©1 and ©4 be irreducible Q-systems in xCx which are Morita equiv-
alent. Without lost of generatlity, we may assume that ©; = ©; comes from a
subfactor t(N) C M and O3 = O, with a € xyC)ps irreducible.

Because nyCy is pointed the sectors form an abelian (due to the braiding)
group denoted G. The multiplication in G is given by the fusion rules, i.e.
NAN = {)\g g€ G} with [)\g>\h] = [)\gh] for all g,h € G and [)\971] = [S\g]
We note that ¢\, is irreducible, namely by Frobenius reciprocity (tAg,tAg) =
(0, \gAg) = (0,idn) = 1. Therefore Ay C {N\s7 : g € G} (because there
can be [A\g7] = [An]). So we may assume that a = \,7 and can conclude that
[0a] = [NgltAg] = [0AgA,] = [6]. Tt is easy to check that using £()\,,0) we can
construct a unitary intertwiner 6, — 9)\95\9 — 6, which gives an equivalence of
the two Q-systems.

Alternatively, we can use that 6‘?\:971 is an automorphism satisfying a&fgil =

)\gfaf\[rl = AgAg-1z = I. Then Prop. 3.8 gives an alternative proof of the
statement. O

Let NCny C End(N) be a pointed UMTC and © be a Q-system and Zyw =
(a)f, ;). Then Lemma shows that T(Z(©)) is equivalent to @7 ©.
Therefore in this case we obtain an easy formula for 6 in terms of its modular
invariant matrix Z = (Z,,):

o= @ Y ZuNull,

PENAN ,VENAN
see also [Pin07].

5.3 MAXIMAL CHIRAL SUBALGEBRAS AND SECOND COHOMOLOGY FOR MOD-
ULAR INVARIANT Q-SYSTEMS

Let us assume that © is a commutative Q-system in yCny and N C M the
associated subfactor.

The category Mod(©) forms a (non-strict) tensor category as follows. Let p,
o be two right ©-modules. Because © is commutative, we obtain a left action
on p and o using the braiding, which makes them bimodules. Then the tensor
product p ® o is defined to be the object p ®g o as in Remark B3] which we
see as right module by forgetting the left action.

Let Mody(©) the subcategory of dyslectic modules (see [Par95,[K0O02]), i.e.
modules (p, ), such that re(6, p)e(p, 0) = r, graphically:

P p
T r
X

P o P
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It can easily be seen that if we give the induced right ©-module p the structure
of a bimodule using the braiding that it becomes equivalent to the a-induction
@(a}) in RemarkB.3] where the sign is depending on the choice of the braiding.
We obtain that Bim®(©,0) = Mod(©) as tensor categories, but we will just
need the following fact.

Remark 5.6. The map obtained by restricting bimodules to right modules
Bim"(0,0) — Mody(©)

is an equivalence of categories. Namely, an object in Bim0(®, O) gives a dyslec-
tic module, because using the fact that it is contained both, in the image of
at and a~, we can “unwind” the double braid. Conversely, if a module is
dyslectic, the left action obtained by the both braidings coincide, so it must
come from Bim®(©, ©).

For B € pChr we define the o-RESTRICTION og = 18t € NCh.
Given O, commutative Q-systems corresponding to N C ML it follows
that . CY; . are again UMTCs. Let us assume there is a braided equiv-

alence ¢: M+Cg/[+ — Mfc?w,- Now we consider the Q-system GfR in

M+C9M+ X CY; . By composing (g with 1 K 12 we obtain a Q-system

SIS e(zlleQyJZﬁR

with
67k] = . Zapla BB, Zap = a,e(s)
QGN1+A[]{/[+1ﬁ€1V17 A9,
oo o= B Zuwkr] Zyw =Y Zaplod, w05, 1)
WVENAN

af
= Z b"tllb;(‘r),u

where b7, = (oF, u) for 7 € . CY .- All maximal commutative Q-systems in
~NCn X nyCpn are of this form:

ProOPOSITION 5.7 ([DNO13| Prop. 3.7, Cor. 3.8]). There is a one-to-one cor-
respondence between

1. Equivalence classes of commutative irreducible @Q-systems 4 in yCn K
NCN with d92 = dim(NCN).

2. Isomorphism classes of triples (04,0_,¢) where O are commutative
irreducible Q-systems in NCn and ¢: M+C9M+ — M C?M, s an equivalence
of braided categories.

8. Indecomposable module categories over yCn .
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Proof. This statement is proven in a more general setting in [DNO13l Prop.
3.7, Cor. 3.8]. They call the objects in point 1) Lagrangian algebras. We use
that by Remark 3.3] and (see also [Migl0, Thm 3.1]) the category M+C]0w+
is equivalent to the category of dyslectic modules. o

We note that there can exist inequivalent ¢1, @5 giving the same modular in-
variant Z = (Zy,,). Namely if (04, (), 1) = (g, (r), 1) holds for all 7 € a1, Cy
and pu € nyCy for which bi# # 0. Because ¢; and ¢o are inequivalent the
Q-systems @fg and Gfi‘{ are inequivalent. This (or using Prop. 0.7 implies
that also © @, e_,¢,) and O, e_ ¢,) are inequivalent. This means that the
second cohomology (see Rem. 2.2]) of O(e,,0_,¢1.,) does not vanish in this case.

Ezample 5.8. Let us consider for xCn the UMTC obtained by SU(3)9 and ©
coming from the conformal inclusion SU(3)g C Eg ;.
As in Ex.B.4lthe UMTC category Eg 1 has three sectors az, A?vu = {Bo, 51, B2}

and we obtain an extension M, C M with [0] = [o] @ [1] ® [B2], which gives
the permutation modular invariant interchanging 81 <+ 82. Now a;rl = 022, SO
both inclusions N € M, and N C M give by the above discussion the same
modular invariant with respect to SU(3)g, which is Z = |x0,0 + X9.0 + Xo0,90 +
Xa.1 + X1.4 + Xa,41? + 2|x2,2 + X5.2 + X2,5/>. This example appeared in [BE0I],
cf. [EPO9,[EP11].

So we can conclude that ©e, e, 1) and O, e, .¢) in NCN X nyCy have iso-
morphic endomorphisms [0(e, 6, i1)] = [f(e, 6. ,¢)] but the Q-systems are not
equivalent. So we have an example where the second cohomology does not
vanish.

The same happens for the inclusiond Ga,3 C Eg1 where Z = |xo0 + x11]? +
2|x02|*.

6 CONFORMAL NETS

We now apply the results to conformal nets.

Let R = RU{oo} be the one-point compactification of the real line R, which we
can by the Cayley map R > z — 2z = ijr—i € S! identify with the circle S c C.
We denote by Mob the MOBIUS GROUP which is isomorphic to both:

e PSL(2,R), which acts naturally on the real line R, and

e PSU(1,1), which acts naturally on the circle S' c C.

The universal covering group of Maob is denoted by M&b. We denote by Moby =
Mob x Zs where the action of Zs is given by the reflection r: z +— Z on St. The
ROTATIONS R(¥)z = e’ on S', the DILATIONS §(s)z = e®z on R, and the
TRANSLATIONS 7(t)r = x + ¢t on R give three distinguished one-parameter
subgroups of Mob which generate Mob.

4This was told to us by V. Ostrik via mathoverflow
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We denote by I € T the set of all PROPER INTERVALS on S!, i.e. all open,
connected, non-dense, non-empty intervals I C St.

DEFINITION 6.1. A local Mébius covariant net (conformal net) A on S! is a
family {A(I)}rez of von Neumann algebras on a Hilbert space H 4, with the
following properties:

A. IsoToNY. I C I implies A(I;) C A(l2).
B. Locaruity. I NIy = 0 implies [A(I), A(I2)] = {0}.

C. MOBIUS COVARIANCE. There is a unitary representation U of Méb on H
such that U(g)A(IU(g)* = A(gI).

D. PosITIVITY OF ENERGY. U is a positive energy representation, i.e. the
generator Lo (conformal Hamiltonian) of the rotation subgroup U(R(0)) =
elLo has positive spectrum.

E. Vacuum. There is a (up to phase) unique rotation invariant unit vector
Q € H which is cyclic for the von Neumann algebra \/; ., A(I).

The REEH-SCHLIEDER PROPERTY automatically holds [FJ96], i.e. Q is cyclic
and separating for any A(I) with I € Z. Furthermore, we have the
BI1SOGNANO-WICHMANN PROPERTY [GF93l[BGLI3| saying that the modular
operators with respect to {2 have geometric meaning; e.g. the modular oper-
ators for the upper circle Iy are given by the dilation Al* = U(§(—27t)) and
reflection J = U(r), where here U is extended to Moby. For a general interval
I € T the modular operators are given by a special conformal transformation d;
and a reflection r; both fixing the endpoints of I. The Bisognano—Wichmann
property implies HAAG DUALITY

AI) = AT IeT

and it can be shown (see e.g. [GF93]) that each A(I) is a type III; factor in
Connes’ classification [Con73]. A conformal net is ADDITIVE [EJ90], i.e. for
intervals I € 7 and I4,...,1I, € Z we have

rcyn = AQ)c\/AL).

A local Mébius covariant net on A4 on S* is called COMPLETELY RATIONAL if it

F. fulfills the SPLIT PROPERTY, i.e. for Iy,I € T with I, C I the inclusion

A(Ip) € A(I) is a split inclusion, namely there exists an intermediate type
I factor M such that A(ly) C M C A(I).

G. is STRONGLY ADDITIVE, i.e. for I1, I, € 7 two adjacent intervals obtained by
removing a single point from an interval I € Z the equality A(I1)V.A(I3) =
A(I) holds.
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H. for I1,1Is € 7 two intervals with disjoint closure and Is, Iy € T the two
components of (I3 U I3)’, the u-INDEX of A

u(A) == [(A(T2) V A1)+ A(T) V A(T5)] 9)
(which does not depend on the intervals I;) is finite.
Ezample 6.2. Examples of completely rational local M&bius covariant nets are:
e Diffeomorphism covariant nets with central charge ¢ < 1 [KL04a].

e The nets Ay, where L is a positive even lattice [DX06] which contain as
a special case [Bis12] loop group nets Ag,1 at level 1 for G a compact
connected, simply connected simply-laced Lie group.

e The loop group nets Asy(n),¢ for SU(n) at level £. [Xu00].

Further examples of rational conformal nets can be obtained from these as
follows:

e Finite index extensions and subnets of completely rational conformal nets.
Namely, let A C B be a finite subnet i.e. [B(I) : A(I)] < oo for some
(then all) I € Z, then A is completely rational iff B is completely rational
[Lon03], in particular orbifolds A% of completely rational nets A with G
a finite group are completely rational.

e Let A C B be a co-finite subnet , i.e. [B(I), A(I)V A°(I)] < oo for some
(then all) I € Z, where the COSET NET .A° is defined by A°(I) = A'NB(I)
with A" = (Vyez A(I))’. Then B is completely rational iff A and A°
are completely rational [Lon03]. This gives many example of completely
rational nets coming from the coset construction.

A SEPARABLE (NON-DEGENERATED) REPRESENTATION of a strongly additive
local Mobius covariant net is a family 7 = {n;: A(I) — B(Hx)}1ez of unital
representations (#-homomorphisms) 7 of LA(I) on a common separable Hilbert
space Hr, which are compatible, i.e.

W]Z[A(Il):ﬂ'jl, IlCIQ.

Such a representation is automatically normal, i.e. all 7r; are strongly continu-
ous. We denote by DHR(.A) the category of separable representations, where
morphisms in Hom(w!, 72) are given by intertwiners V € B(H 1, Hy2), such
that Vr}(a) = 77(a)V for all I € T and a € A(I). Let us denote by DHR"(A)
the representations m with finite statistical dimension dm, which is defined to
be

dr = [rp (AI') 7w (A(D))]2

for some I € Z, where [M : N] is the minimal index. The definition of dm does
not depend on the choice of I.
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Let us from now on fix a completely rational local Mobius covariant net A on
S!. The category DHR’(A) is a (unitary) modular tensor category [KLMOT].
Every m € DHRO(A) is equivalent to a representation localized in a given
In € 7, ie. it exists a p = 7 such that H, = Ha and py; = id4(y;). Namely,
71, (A(Iy)) on H is spatially isomorphic to A(Ij) on H4, by the type III
property. Let U: H, — H 4 be a unitary implementing this isomorphism, then
p = {pr := AdU o 7s}1cz does the job.

This implies that the category DHR'® (A) of representations with finite statis-
tical dimensions which are localized in Iy has the same irreducible sectors as

DHRY(A).
By Haag duality p € DHR™(A) implies p;(A(I)) € A(I) for every I D Iy,
that means such a representation is an endomorphism and dp = [A(ly) :

p1,(A(Ip))]2 equals the dimension of the endomorphism. Together with strong
additivity it follows that all intertwiners are in A(Ip). In particular, this means
that DHR'(A) can naturally be seen as a full subcategory of End(A(Ip)) and
that DHR'(A) is equivalent to DHR’(A). We note that the family {p;} is
determined by py, by using strong additivity and it is really enough to consider
DHR™(A) as a full and replete subcategory of End(.A(Iy)) and we will drop
the index Iy. Repleteness is just the fact that for U € A(Ip) also Ady op is
localized in Ij.

The BRAIDING (also called statistics operator) is given by:

(p1, p2) = p2(U7)UsUrp1(Uz),

where U; € Hom(p;, p;) and p; € [p;] is localized in I;. Here I, Is C Iy are two
disjoint intervals such that Iy > I (I sits clockwise after I inside Iy). We
also write e ™ for € and define the opposite braiding by €~ (p1, p2) = € (p2, p1)*.
We will interpret A as the chiral observables or as chiral symmetries. For
example A = Vir, with ¢ < 1 is the net generated by the chiral stress energy
tensor T'(x). We want to look into CFTs on Minkowski space containing the
chiral observables A and boundary conditions on M, which “preserve” these
observables.

6.1 EXTENSIONS AND Q-SYSTEMS

Let M be a spacetime, e.g. Minkowski space and KC a set of open spacetime
regions in M, e.g. the set of double cones. Let G be a group acting locally on
M and let G(O) be the set of all g € G, such that there is a continuous path
v in G from the identity to g such that y(¢)O € K.

DEFINITION 6.3. A local G-covariant net A on M is a family {A(O)}oex of
von Neumann algebras on a Hilbert space H, with the following properties:

A. IsoToNYy. O1 C Oy implies A(Ol) C A(OQ)

B. Locauity. [A(O1), A(O2)] = {0} for all pairwise spacelike separated
01,05 € K.
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C. G-COVARIANCE. There is a unitary positive energy representation U of G
on #H, such that U(g)A(O)U(g)* = A(gO) for all g € G(O)

D. VacuuM. There is a (up to phase) unique G- invariant unit vector Q € H
which is cyclic and separating for A(O) for all O € K.

A G-COVARIANT DHR REPRESENTATION of A is a compatible family 7 =
{mo: A(O) = B(Hx=)}oek of representations on a Hilbert space H,, such that
for all O € K there exists a unitary V: H, — H, such that the representation
p = AdVorislocalized in O, i.e. po, = id 4(0,) for Op spacelike to O, and that
there is a unitary projective representation U, of G, such that Ad U, (g) ompo =
g0 0 AdU(g) for all g € G(O).

Given two local G-covariant nets A and B on Hilbert spaces H4 and Hp,
respectively, an ARROW A — B is an isometry V: H 4 — Hp and a compatible
family of embeddings (representation) {mo: A(O) — B(O)} such that for all
O € Kwehave Va = mo(a)V,VUa(g) = Ug(g)V forallg € G and VQ2 4 = Q.
A and B are called UNITARY EQUIVALENT if V is a unitary and 7o are isomor-
phisms.

Let us assume that we have a subnet Ag of B, i.e. Ag(O) C B(O) for all O
and U(g)Ao(O)U(g)* = Ap(gO). Then A = Agpe with e the Jones projection
on VA (0)Q is a G-local net on H 4 := eH, in other words we have an arrow
A — B in the above sense. We say that A4 is a SUBNET of B and B is a LOCAL
EXTENSION of A. By abuse of notation we will not distinguish between the net
A and its representation on the bigger Hilbert space H and write A C B or
B D A for an inclusion/extension of nets.

For every connected region we have a subfactor A(O) C B(O). If the subfactor
is irreducible, we call the extension IRREDUCIBLE and if the index is finite
we call the extension FINITE. If we have a finite irreducible extension B of A
then the corresponding Q-system of A(O) C B(O) is a commutative irreducible
Q-system in DHRC (A) and conversely if we have a commutative irreducible Q-
system © in DHR? (A) we obtain a finite local extension B of A. In particular
we have a one-to-one correspondence between [LR95]:

e local finite irreducible extensions B O A up to unitary equivalence and

e commutative irreducible Q-systems © in DHR? (A) up to equivalvence.
If we assume © to be only irreducible, we still have a relatively local extension,
i.e. [A(O1),B(02)] = {0} for O; and Os spacelike separated. We call such an
extension B D A also non-local extension to stress the fact that we do not
assume locality of B. There is a one-to-one correspondence between [LR95]:

e finite irreducible extensions B O A up to unitary equivalence and

e irreducible Q-systems © in DHR? (A) up to equivalence.
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6.2 REPRESENTATION THEORY OF LOCAL EXTENSIONS

The following is well-known to experts [Miigl10].

PrOPOSITION 6.4. Let A C B a finite index inclusion of local Mébius covariant
nets on S and let either net be completely rational. Then A and B are both
completely rational and the inclusion is irreducible.

Further, let I € T be an interval N := A(I) C B(I) =: M and nCn =
DHRI(A), and © be the Q-system in xCy associated with N C M. Then
DHR!(B) = uCS, as UMTCs and in particular DHR(B) is equivalent to
Mod’(0) and Bim"(©, ©).

Proof. Both »C3, and DHR’(B) being full and replete subcategories of
End(M), the only thing which needs to be checked is that both have the
same irreducible sectors. The braiding on »/C%; can be checked to give the
braiding on Rep(B) since the braiding is fixed by the universal property
e(p1,p2) = 1 if I sits clockwise after I inside I. A sector [8] € pAn is
a DHR sector if and only it is in A%, (see [LR95,BE9S]), which implies
mCY, C DHR/(B). To see equality, we realize that global dimensions coincide,
namely dim DHR'(B) = u(B) = [M : N]~2u(A) = dim yCy/(d6)? by [KLMOT]
and dim »/CY; = dim yCn/(df)? by Lemma 511 O

Remark 6.5. Commutative Q-systems © in a UMTC nCy are also called QUAN-
TUM SUBGROUPS, so finding quantum subgroups in a given UMTCs yCx and
finding finite index local extensions of a local Mé&bius covariant A net with
DHR’(A) = nCy is equivalent. The representation theory of the extensions
can be completely understood on a categorical level.

An analogous statement for inclusions of rational VOAs appeared recently in
[HKT.15].

6.3 MAXIMAL 2D NETS WITH CHIRAL OBSERVABLES A

Let A be a local Mébius covariant net on S' 22 R. By restriction we can and
will see A as a net on R. Then Haag duality of A on R is equivalent to strong
additivity of A. We will assume that A is completely rational, therefore this
holds automatically.

We denote by M the two-dimensional Minkowski space and by K the set of
double cones O C M. Each double cone is of the form

O=IxJ:={(t,z):t—xzel, t+xeJ}

where I, J € Ty are two intervals on the light-rays Ly = {(t,z) : t £ « = 0}.

The action of Méb = PSL(2,R) on R gives a local action of Mdb on R as in
IKLO4a). We define G = M&b x Mdb which acts locally on Minkowski space
M.

For O € K we denote by G2(O) all g € Gy such that there is a path v: [0,1] —

G from the identity element e to g with v(¢)O C M for all ¢ € [0, 1].

DOCUMENTA MATHEMATICA 20 (2015) 1137-1184



1174 MARCEL BISCHOFF, YASUYUKI KAWAHIGASHI, ROBERTO LONGO

We denote by As the net on H 4 ® H 4 given by
As(I x J) = A(I) @ A(J).

It is a local Mobius covariant net on M as in [KL04a]. Every DHR repre-
sentation of Ay with finite index is a direct sum of representations of the
form p ® o where p € DHR(A) and 0 € DHR(A). The braiding is given
by e(p1 ® 01,p2 @ 02) = €T (p1,p2) ® € (01,02). Therefore the category of
DHR representations of Ay with finite statistical dimensions is equivalent to
DHR’(A) XK DHR” (A).

Let us write B D As for a local, Mobius covariant, irreducible extension of As,
i.e. a local Mobius covariant net By on Minkowski space M on the Hilbert space
Hp, with irreducible vacuum vector 2 which is extending A4s = A ® A, more
precisely there is a representation 7 of Az on Hp,, such that 7(A3(0)) C B2 (O)
is an irreducible inclusion of factors and U(g)w(A(O))U(g)* = m(A(gO)) for
all double cones O € K and all g € G(O). By abuse of notation we will omit
the 7.

We remember that there is a one-to-one correspondence between local irre-
ducible extensions Bs D As (up to unitary equivalence) and irreducible com-

mutative Q-systems Oy in DHR'(A) X DHR”(A) (up to equivalence).

PROPOSITION 6.6. Let Bo D Ay be a local extension. Then the following state-
ments are equivalent:

1. The net By is a maximal local irreducz;ble extension, i.e. if 5’2 OBy isa
local irreducible extension, then Bs = Bs.

2. The index [By : Az] = pa(A) = dim(DHR(A)).

3. The matriz (Zx,) is a modular invariant.

4. The p-index of Bs is 1.

5. The net Bs has no non-trivial superselection sectors.

Proof. To show (2 (1) let ©3 be a Q-system in DHR! (A)XDHR’(A) giving
the extension A(I) ® A(J) C Ba(I x J) and let us assume that [Ba(I x J) :
A(I) @ A(J)] = p2(A). By Lemma [B1] we have the following inequality:

=

~—

1
2

40, = [Bs : As] < dim(DHR(A ® A))} = dim (DHR(A) X DHR(A))
= dim(DHR(A)) = us(A) .

This implies maximality.
For showing (1) = (2), let us assume that [By : As] < p2(A). We need
to show that there is an extension By 2 By. This we obtain by adding the

boundary [CKL13], i.e. from By we obtain a possible reducible boundary net
(see Subsec. [6.6]) of which we choose an irreducible subnet 5. We claim B
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cannot be Haag dual, but this follows because [By : AL] = [Ba : Az] < p2(A)
and then [LR04, Prop. 2.13] implies [BY : B4] > 1. So we have an inclusion
Ay C By € Bﬁlr and a corresponding locally isomorphic inclusion Ay C By C B,
as in [LRO4], in particular By was not maximal.

The statements (2) and (3) are equivalent by Prop. and the implication (5)
= (1) is clear.

(2) = (4) follows by calculating the p index [KLMOI] and likewise the impli-
cation (4) = (5) is [KLMOIl Corollary 32]. O

PROPOSITION 6.7. There is a one-to-one correspondence between:

1. mazimal local irreducible extensions Bo D Ag up to unitary equivalence.

2. ©y commutative irreducible Q-systems in DHR!(A) X DHR'(A) with
dfs = p2(A) up to equivalence.

3. (Non-local) irreducible extensions B D A up to Morita equivalence.
4. Irreducible Q-systems © in DHR! (A) up to Morita equivalence.

5. Indecomposable yCx module categories, where N = A(I) and NCn =
DHRI(A).

6. Local chiral extensions Ar, D A, Ar D A together with a braided equiva-
lence ¢: DHR(AL) — DHR(AR).

Proof. The correspondence between (1) and (2) is Prop. [6.6] the one between
(3) and (4) [LR95]. Starting with (4) we obtain (2) by applying the full center
and it is well defined on Morita equivalence classes and injective by Prop. E19
It is surjective by Prop.[5.2] so (2) and (4) are equivalent. Equivalently, one can
start with By and add the boundary to obtain a Haag dual boundary net (as in
the proof before) which correspond to a non-local extension. The a-induction
construction gives back the original net.

The correspondence between (4), (5) and (6) is just Prop. 51 where (6) is (2)
of Prop. BT reformulated in the language of nets, cf. [Miigl0]. O

Remark 6.8. We know how the Morita equivalence looks like, see Subsec.

6.4 BOUNDARY CONDITIONS

Let A be a completely rational local Mobius covariant net on S!, which we
will see as a net on R by restriction. Let My = {(¢t,) € M : z > 0} be
Minkowski half-plane and let Kt be the set of double cones O € M. Double
cones O € K, are in one-to-one correspondence with pairs of proper intervals
I,J C R such that I < .J. We write O =1 x J.

Let A4 be the net on M given by

AL (0) = A(I) V A(J) O=1IxJ
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which is locally covariant w.r.t. G4 the universal covering of Mob, namely
U(9)A+(0)U(g)" = A+(90) g€ G.(0)

where G acts locally on O = I x J € K4 by gO = gI x gJ and G4(O) is the
set of all g € G+ such that there is a continuous path ~ from the identity to g
such that v(¢)O € K.

By the split property it follows that .4 (O) is spatially isomorphic to A2(O) =
A(I) ® A(J). This implies that the net Ay is locally isomorphic to the net A
restricted to M.

A boundary net B associated with A is a local, (locally) G4-covariant net
B, which is an irreducible extension By D A, .

Starting with B, D Ay, we define the generated net B > A on R by

BEN(1) = \/ By(0)> A,
Oeky
OoCWr
where Wi = {(t,z) : t £ « € I} is the left wedge, such that its intersection on
the t-axis is I.
Conversely, given B D A a (non-local) extension on R, we define

Br(0) = B(L)n B(K)',

where O = I x J and L € K, such that LN K’ = I U J or equivalently
O=WrnN WII(

The dual net is defined by B4 (0) = B, (0')" and B} = By if and only if By is
Haag dual.

Then (Bird)e = B and (B&™")ird = B = By provided B, was already Haag
dual.

Together we have:

ProproSITION 6.9 ([LRO4[LRI5]). There is a one-to-one correspondence be-
tween the equivalence classes of:

1. boundary nets By associated with A, such that By is Haag dual.

2. boundary nets By associated with A, such that Ay C B+ is mazimal.
3. (Non-local) extensions B D A on R.

4. Q-systems in NCn, where N = A(I) and nCn = DHRI(A).

DEFINITION 6.10. Let Bs D As be local extension, i.e. a CFT on Minkowski
space. A (MOBIUS COVARIANT) BOUNDARY CONDITION OF By D Az WITH
CHIRAL SYMMETRY A is a unitary equivalence class of boundary nets By O A,
where By [ My is locally covariantly isomorphic to B, more precisely there is a
compatible family of isomorphisms ®o: B4 (O) — B2(O) such that it restricts
to an isomorphism A4, (0) — A3(O) for all O € K and that ® is covariant

respect to the covariance U, of Mob and Up, of Mob x Mob (where Méb is
the diagonal subgroup of Mdb x Mab).
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PROPOSITION 6.11. Let By D Ay mazimal and let A C B given by Prop. 6.7
Then there is a one-to-one correspondence between:

1. Boundary conditions of Ba O As with chiral symmetry A.
2. Unitary equivalence classes of B, O A Morita equivalent to B O A.

3. Sectors in
NCan/Pic(amCur),

where N = A(I), M = B(I) and nCx = DHR'(A).

In particular the number of boudary conditions of Bo D As with chiral symmetry
A is less or equal than

|NAM| = Z Z)\,\.
AENAN

Proof. The following diagram commutes [LR09, Cor. 2]

{B+ D A4 maximal}

removing the boundary

(B> A} (Bs > Ay = A2 A}

a-induction

Given a boundary condition, i.e. a boundary net B, 4+ D Ay let B, D A
be the corresponding chiral extension. We note that B, 4 is Haag dual (cf.
[LR0O9, App. C]), because B2 is modular invariant. If we remove the boundary
we obtain By D Aj, because the extensions are locally isomorphic and therefore
isomorphic, see [LR0O9].

We conclude by commutativity of the above diagram that B > A and B, D A
are Morita equivalent, namely the a-induction construction gives equivalent
two-dimensional extensions, which means the full centers are equivalent, which
is equivalent to the Morita equivalence of B > A and B, D A.

Conversely, if we have given a chiral extension B, O A Morita equivalent to
B D A, then B, + D Ay is locally equivalent to By o D Az [ M4 obtained by
a-induction. But Bap D Aj is isomorphic to By D A by Morita equivalence,
so we get a boundary condition (this follows also from [LR04], realizing that
the DHR orbit exhausts the Morita equivalence class).

Choosing N = A(I), M = B(I) and yCxy = DHR’(A) the Q-systems O,
corresponding to B, D A which is Morita equivalent to B D A are in one-to-
one correspondence with yCps/Pic(yCpr) by Prop. B9l O

FErample 6.12. We can give several cases as an example.
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e If A is holomorphic, i.e. DHR(A) just contains the vacuum sector or
equivalently u(A) = 1, then By = Az is maximal and the only 2D net
and Ay is the only boundary condition. The family of holomorphic nets
contains for example the conformal nets Ay, associated with even selfdual
lattices [DX06] like the Eg lattice, Leech lattice etc., the Moonshine net
Ay [KLO6] and certain framed nets [KS14].

e For A from the family of conformal nets, for which DHR(.A) is pointed, it
follows from Lemma 5.5l that there is always just one boundary condition
for each Bs D As. This family for example contains all conformal nets
Ajp, coming from an even lattice L [DX06], which include all loop group
conformal nets Ag 1 of compact, connected, simply connected, simply
laced Lie groups G (the simple one being in one-to-one correspondence
with A-D-E Dynkin diagrams) at level 1 [Bis12].

e If A is any completely rational net and Bo = Apg D Ay given by the
trivial Longo-Rehren extension, then yCpr = nyCn = DHR(A) and the
boundary conditions are given by DHR, sectors of A modulo DHR auto-
morphisms of A. This case is sometimes also called the Cardy case.

e For A = Asy(2), the two-dimensional extensions are in one-to-one cor-
respondence with Dynkin diagrams of A-D-E type with Coxeter number
k+2. The boundary conditions are given by orbits [v] of a marked vertex
v under the automorphism group of the Dynkin diagram cf. [KLPROT].

e For A = Vir, with ¢ < 1, the only possible values for ¢ are ¢ = 1—6/m(m+
1) with m = 2,3,4,.... The maximal two-dimensional extensions are in
one-to-one correspondence with pairs (G1, G2) of Dynkin diagrams of A-
D-E type with Coxeter number m and m + 1, respectively, cf. [KL04b].
The boundary conditions are given by pairs ([v1], [v2]) with [1;] the orbit
of a marked vertex on G; under the automorphism group of G; (i = 1,2).
This result now follows also from [KLPRO7].

The invertible objects (automorphisms) in p;Cps have to do with invertible
defects (see for an interpretation of invertible defects in a different framework
[DKR11]).

The difference between two inequivalent a,b € nCjs related by an invertible
B € nmChr gets important if we also consider also reducible boundary conditions
in the next section.

6.5 REDUCIBLE BOUNDARY CONDITIONS

With the notation as before, let us assume By O A, is a maximal extension of
As. Using Prop. [6we can choose a (non-local) extension B O A such that B
is given by the a-induction construction of B O A.

Let I be an interval, N = A(I), nCxy = DHR!(A), M = B(I) and © the
Q-system in yCy giving N C M. Then every a € nyCps gives a in general
reducible Q-system ©, and an extension B, D A.
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We can define as before
B,+(0) = Bo(L)N B,(K)' .

This net fulfills all the properties of a boundary CFT in [LR04], but the unique-
ness of the vacuum and the joint irreducibility.

PROPOSITION 6.13. Let a € nCpr possibly reducible. Then the (reducible)
boundary net By + D Ay is a (reducible) boundary condition for Bs O Aj,
which is given by the Q-system Z(0,).

Proof. If a is irreducible this is already proven.

Let a be reducible and let ©, = &t be the Q-system with inclusion «(A(I)) C
Bo(I). Let {p;}!, be a set of minimal projections in ¢(A(I)) N B,(I) =
Hom(¢,¢) with Y7, p; = 1 with corresponding morphisms ¢; < t. By the
usually Reeh—Schlieder argument, the projection do not depend on the choice
of I. The inclusion «(A(I)) C By(I) is conjugated to

t1(a)
ca€ A(l) p C Bo(I) @ M, (C) = B,(I).

In (a)

With the same notation A4 (O) C B +(0) is conjugated to:

t1(a) b
ra€e AL(0) p C :b € By 1 (0)
in(a) b
(10)

Because O := Z(0,) and Z(Oz,) are equivalent (by Prop. LI9) every B; 1 D
A, is a boundary condition for By D As. But then also the inclusion By D As
is locally isomorphic to B, + D A4+ by ([I0) and the isomorphism restricted to
A gives a local isomorphism of As restricted to My and Ay . O

Note that in the reducible case the vacuum €2 of B is neither cyclic nor unique
and that Q = 2?21 Q,; with Q; = p;Q2. The restriction of B4 to the subspace

B1(0)<; is unitarily equivalent to the boundary condition coming from ¢;. In
other words, yCpr 3 a — B, 4+ maps direct sums of sectors to direct sums of
boundary conditions.

Ezxample 6.14. Consider a,b € yCyy irreducible and mutually inequivalent but
related by an automorphism 8 € 5;Cps, or equivalently ©, = ©,. This means
the boundary conditions coming from a and b are the same, but for example
the boundary conditions coming from ¢ := a & a and d := a & b are different.
This can be seen for example by regarding the relative commutants of the
subfactors associated with ©, and ©g4, namely ¢(N) NN = C & C, while

d(N)Y NN = M(C).
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6.6 ADDING THE BOUNDARY

In [CKL13] a purely operator algebraic construction of all boundary conditions
is given. As a result a boundary net is obtained which is the direct sum of all
boundary conditions.

Let us consider the inclusion

A(I) ® A(J) C B2(0)

for some fixed O = I x J € W and let ©5 be the associated Q-system in

DHR’(A) ® DHR”(A). Let Q be the vacuum in H4 and let us define the
state po(z @ y) = (Q,zyQ) for x € A(I), y € A(J) and let eo: B2(0) —
A2(0) =2 A, (O) be the conditional expectation. This gives a state ¢ = g 0 £g
on B3(0O) (which can be extended to a state on 23(W)). Using the GNS
representation one get an inclusion A4 (0O) C B4 (O) on a bigger Hilbert space
and which is by construction isomorphic to A2(O) C B2(0O). This construction
extends to 2A3(W) and gives a (reducible) boundary net {B,(O)}oex, . Let
us ('1eﬁne B('I) = .\/’C+3OCW(I) BJT(O) Whelﬁe W (I) is the 1§ft Wedge such that
its intersection with the time axis x = 0 is equals I. This gives a non-local
extension B D A. Let us fix L D I UJ, then the Q-system of B(L) D A(L) can
be chosen to be localized in I U J and it can be in particular trivially extended
from the inclusion A4 (O) C B4 (O) using strong additivity. Let’s denote its
Q-system by ©.

PROPOSITION 6.15. Let By D Az be a local irreducible extension with Q-system

O2. The Q-system of the inclusion A(I) C B(I), where B = BS™ and By is
obtained by adding the boundary is equivalent to the Q-system T(©2).

Proof. We have to show that O is equivalent to T'(03), where we see O3 as a
Q-system by the equivalence yCn X yCn = DHR? (Az).

An endomorphism p! X 57 gives an endomorphism p’57 € End(A(I) Vv A(J))
and this gives actually an isomorphism of tensor categories

End(A(I) © A(J)) = End(A(I) V A(J)).

Starting from an object in DHR? (A,) the image is a localized endomorphism
of A(I) vV A(J) which can by strong additivity be extended to a localized en-
domorphism of End(A(L)), so we get a tensor functor

T: DHR'(A,) — DHRY(A) = vCn

where we choose N := A(L) and xCx = DHR*(A). We note that the x from
(@ is trivial as is €(p2, 1) because of the order of localization.
So the functor

~NCy B NCy = DHRY(Ay) — DHRY(A) = yCy

is by construction equivalent to the tensor 7" from Subsec. and, in particular
© is equivalent to T'(02). O
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This gives as an alternative proof of Prop.[6.11l Let us assume B2 was modular
invariant/maximal. All boundary conditions are obtained by the adding the
boundary construction, and by Prop. [4.20] we can conclude:

COROLLARY 6.16. All boundary conditions of By come from an a € nyAyy,
where N = A(I), M = B(I), nCx = DHR(A) and B C A is any (non-local)
extension giving By by the a-induction construction.
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