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Abstract. Let K be a global field which contains a primitive p-th
root of unity, where p is a prime number. M. J. Hopkins and K. G.
Wickelgren showed that for p = 2, any triple Massey product over K
with respect to Fp, contains 0 whenever it is defined. We show that
this is true for all primes p.
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1. INTRODUCTION

Massey products were introduced by W. S. Massey in [M]. (We review the
definition in Section 2.) Massey products were first used in topology where
usual cohomology cup products would not detect some linking properties of
knots but Massey products would. (See for example [Mo, page 98] or [GM,
pages 154-158].) Further interest in Massey products arises as an obstruction
to the "formality" of manifolds over real numbers. In the case of compact
Kähler manifolds, formality formalizes the property that their homotopy type
is a formal consequence of their real cohomology ring. (See [DGMS].) We
treat Massey products also as obstructions to solving certain Galois embed-
ding problems.
Throughout this paper, we let p be a prime number. Let K be a field which we
assume contains a fixed primitive p-th root of unity ζp. Let GK be the absolute
Galois group of K. Let C• = C•(GK, Fp) denote the differential graded algebra
of Fp-inhomogeneous cochains in continuous group cohomology of GK (see
e.g., [NSW, Chapter I, §2]). For any a ∈ K× = K \ {0}, let χa denote the
corresponding character via the Kummer map K× → H1(GK, Fp), i.e., χa is
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defined by σ( p
√

a) = ζ
χa(σ)
p

p
√

a, for all σ ∈ GK. In the work of M. J. Hopkins
and K. G. Wickelgren [HW], the following fundamental result was proved.
(By a global field we mean a finite extension of Q, or a function field in one
variable over a finite field.)

Theorem 1.1 ([HW, Theorem 1.2]). Let the notation be as above. Assume that
p = 2 and K is a global field of characteristic 6= 2. Let a, b, c ∈ K×. The triple Massey
product 〈χa, χb, χc〉 contains 0 whenever it is defined.

In [MT1] we extend the result of Hopkins-Wickelgren to an arbitrary field K
of characteristic 6= 2, still assuming that p = 2.

Theorem 1.2 ([MT1, Theorem 1.2]). Let the notation be as above. Assume that
p = 2 and K is an arbitrary field of characteristic 6= 2. Let a, b, c ∈ K×. The triple
Massey product 〈χa, χb, χc〉 contains 0 whenever it is defined.

In this paper we extend the result of Hopkins-Wickelgren in Theorem 1.1 in
another direction. We still consider a global field K but we let the prime p be
arbitrary.

Theorem 1.3. Let the notation be as above. Assume that K is a global field contain-
ing a primitive p-th root of unity and a, b, c ∈ K×. Then the triple Massey product
〈χa, χb, χc〉 contains 0 whenever it is defined.

Let us denote by U4(Fp) the group of all upper-triangular unipotent 4-by-4-
matrices with entries in Fp. For a finite group G, by a G-Galois extension L/K,
we mean a Galois extension with Galois group isomorphic to G. It is a classical
problem to describe extensions M/K which can be embedded into a G-Galois
extension L/K with a prescribed Galois group G. From Theorem 1.3 and its
local version we can deduce the following contribution to this problem when
G = U4(Fp).

Corollary 1.4. Let K be a local or global field containing a primitive p-th root of
unity. Let a, b, c ∈ K× and assume that the classes [a], [b], [c] in the Fp-vector space

K×/(K×)p are linearly independent. Assume further that χa ∪ χb = χb ∪ χc = 0
in H2(GK, Fp). Then the Galois extension K( p

√
a, p
√

b, p
√

c)/K can be embedded in a
U4(Fp)-Galois extension L/K.

In fact for each U4(Fp)-extension L/K, there exist a, b, c ∈ K× ∩ Lp such that
the classes [a], [b], [c] in the Fp-vector space K×/(K×)p are linearly indepen-
dent, and that χa ∪ χb = χb ∪ χc = 0 in H2(GK, Fp). Thus we see that this
hypothesis is both necessary and sufficient for embedding abelian extensions
of degree p3 and exponent p into a U4(Fp)-extension. (See Section 4 for more
detail.)
In the case when p = 2, Corollary 1.4 was also proved in [GLMS, Section 4]
for all fields K of characteristic not 2. (See also [MT1, Section 6].)
Let us now recall briefly how Theorem 1.1 is established in [HW].
Let p = 2 and K be a field of characteristic not 2. In [HW], the authors con-
struct for each a, b, c ∈ K×, a K-variety Xa,b,c which has a K-rational point if
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and only if the triple Massey product 〈χa, χb, χc〉 is defined and contains 0 (see
[HW, Theorem 1.1]). The authors then establish a local version of Theorem 1.1
by using the non-degeneracy property of the cup products and the indetermi-
nacy of Massey products. Now assume that K is a global field and consider
a, b, c ∈ K× such that 〈χa, χb, χc〉 is defined. By applying a result of D. B. Leep
and A. R. Wadsworth in [LW], the authors show that the splitting variety Xa.b,c
satisfies the Hasse local-global principle (see [HW, Theorem 3.4]), and then the
result follows from the local case.
In our paper we also use the local-global principle but our method is different
from the method used in the paper [HW]. Let p be any prime, and let K be a
field containing a primitive p-th root of unity. Let a, b, c ∈ K× such that the
triple Massey product 〈χa, χb, χc〉 is defined. Now instead of constructing a
splitting variety for 〈χa, χb, χc〉, we use the technique of Galois embedding
problems to detect the vanishing property of triple Massey products. Namely,
〈χa, χb, χc〉 vanishes if certain kinds of embedding problems are solvable. This
is true because of a result of W. G. Dwyer. We then use Hoechsmann’s lemma
to translate the problem of solvability of embedding problems to the problem
of showing the vanishing of some degree 2 cohomology classes. Then we
establish a local-global principle for the vanishing of the cohomology classes
(see Lemma 6.2). Theorem 1.3 then follows from its local version. This being
said, our proof also provides another proof for Theorem 1.1 in the case p = 2.

Acknowledgments: We would like to thank Stefan Gille, Thong Nguyen
Quang Do and Kirsten Wickelgren for their interest and correspondence. We
are grateful to the an anonymous referee for his/her very careful reading
of our paper and for providing us with insightful comments and valuable
suggestions which we used to improve our exposition considerably. For
example, Proposition 4.7 and Lemma 6.1 were formulated based on his/her
report.

Addendum (October 2015): Since submitting of this paper there have been
some new significant developments in this subject motivated and influenced
by this paper and [MT1]. In [EM1] Efrat and Matzri proved a result which
implies the main result Theorem 1.3 of this paper. In [Ma] Matzri extended
our main result Theorem 1.3 to an arbitrary field K. Efrat and Matzri [EM2]
and in parallel [MT3] gave a direct proofs of Matzri’s result, using only tools
from Galois cohomology. In [MT4] the explicit constructions of U4(Fp)-Galois
extensions over all fields which admit such extensions are provided. In [MT5]
the authors also considered the vanishing property of higher Massey products
over rigid fields.

2. REVIEW OF MASSEY PRODUCTS

In this section, we review some basic facts about Massey products, see [MT1]
and references therein for more detail.
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Let A be a unital commutative ring. Recall that a differential graded algebra
(DGA) over A is a graded associative A-algebra

C• = ⊕k≥0Ck = C0 ⊕ C1 ⊕ C2 ⊕ · · ·
with product ∪ and equipped with a differential ∂ : C• → C•+1 such that

(1) ∂ is a derivation, i.e.,

∂(a ∪ b) = ∂a ∪ b + (−1)ka ∪ ∂b (a ∈ Ck);

(2) ∂2 = 0.
Then as usual the cohomology H• of C• is ker ∂/im∂. We shall assume that
a1, . . . , an are elements in H1.

Definition 2.1. A collection M = (aij), 1 ≤ i < j ≤ n + 1, (i, j) 6= (1, n +

1) of elements of C1 is called a defining system for the n-fold Massey product
〈a1, . . . , an〉 if the following conditions are fulfilled:

(1) ai,i+1 represents ai.

(2) ∂aij = ∑
j−1
l=i+1 ail ∪ al j for i + 1 < j.

Then ∑
n
k=2 a1k ∪ ak,n+1 is a 2-cocycle. (See for example [Fe, page 233].) Its co-

homology class in H2 is called the value of the product relative to the defining
system M, and is denoted by 〈a1, . . . , an〉M.
The product 〈a1, . . . , an〉 itself is the subset of H2 consisting of all elements
which can be written in the form 〈a1, . . . , an〉M for some defining system M.
The n-fold Massey product 〈a1, . . . , an〉 is said to be defined if it has a defining
system, i.e., the set 〈a1, . . . , an〉 is non-empty.
For n ≥ 2 we say that C• has the vanishing n-fold Massey product property if
every defined Massey product 〈a1, . . . , an〉, where a1, . . . , an ∈ C1, necessarily
contains 0. When n = 3 we will speak about triple Massey products and the
vanishing triple Massey product property.

Now let G be a profinite group and let A be a finite commutative ring con-
sidered as a trivial discrete G-module. Let C• = C•(G, A) be the DGA of
inhomogeneous continuous cochains of G with coefficients in A [NSW, Ch. I,
§2]. We write Hi(G, A) for the corresponding cohomology groups.

Definition 2.2. We say that G has the vanishing n-fold Massey product prop-
erty (with respect to A) if the DGA C•(G, A) has the vanishing n-fold Massey
product property.

3. UNIPOTENT MATRICES

Let Un+1(Fp) be the group of all upper-triangular unipotent (n+ 1)× (n+ 1)-
matrices with entries in Fp. Let Zn+1(Fp) be the subgroup of all such matrices
with all off-diagonal entries being 0 except possibly at position (1, n + 1). We
may identify the quotient Un+1(Fp)/Zn+1(Fp) with the group Ūn+1(Fp) of
all upper-triangular unipotent (n+ 1)× (n+ 1)-matrices with entries over Fp

with the (1, n + 1)-entry omitted.
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For a representation ρ : G → Un+1(Fp) and 1 ≤ i < j ≤ n + 1, let ρij : G →
Fp be the composition of ρ with the projection from Un+1(Fp) to its (i, j)-
coordinate. We use similar notation for representations ρ̄ : G → Ūn+1(Fp).
Note that ρi,i+1 (resp., ρ̄i,i+1) is a group homomorphism.
Now we assume n = 3. We consider the following exact sequence of finite
groups

1 −→ A −→ U4(Fp)
(a12,a23,a34)−−−−−−→ F3

p −→ 1,

here aij : U4(Fp) → Fp is the map sending a matrix to its (i, j)-coefficient.
Explicitly,

A =























1 0 a b
0 1 0 c
0 0 1 0
0 0 0 1









: a, b, c ∈ Fp















.

We consider the action of U4(Fp) on A by conjugation: g · a = gag−1, ∀ g ∈
U4(Fp), a ∈ A. Since A is abelian, this action induces an action of F3

p on A,
i.e., we get a homomorphism ψ : F3

p → Aut(A).
Let A′ = Hom(A, Fp) be the dual F3

p-module of the F3
p-module A. Here the

action of F3
p on A′ is given by

(gφ)(a) = φ(g−1 · a),

where φ ∈ Hom(A, Fp), g ∈ F3
p and a ∈ A. (Here we write the group F3

p mul-
tiplicatively.) From this action, we get a homomorphism ψ′ : F3

p → Aut(A′).
The following lemma is a special case of a more general result on matrix rep-
resentations of dual representations. For the convenience of the reader, we
include a short proof.

Lemma 3.1. Assume that {e1, e2, e3} is a basis for the Fp-vector space A. Let g be

any element F3
p. Suppose that ψ(g) is given by matrix X with respect to e1, e2, e3.

Then the matrix of ψ′(g) with respect to the dual basis is (X−1)T.

Proof. We write X−1 = (xij). Let {e′1, e′2, e′3} be the dual basis of the basis
{e1, e2, e3}. Then

(ψ′(g)(e′i))(ej) = e′i(ψ(g−1)(ej)) = e′i(∑
k

xkjek) = xij = (∑
k

xike′k)(ej).

Hence ψ′(g)(e′i) = ∑k xike′k, and the lemma follows. �

Lemma 3.2. There exists an Fp-basis of A′ such that with respect to this basis the

map ψ′ : F3
p → Aut(A′) becomes a map F3

p → GL3(Fp) which sends (x, y, z) ∈ F3
p

to





1 0 −x
0 1 z
0 0 1



 .
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Proof. We first describe the action of F3
p on A, i.e., we describe the map

ψ : F3
p → Aut(A), as follows.

Let e1 = I + E24, e2 = I + E13, e3 = I + E14. We have

ψ(x, y, z)(e1) =

=









1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1

















1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

















1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1









−1

=









1 0 0 x
0 1 0 1
0 0 1 0
0 0 0 1









= e1 + xe3;

ψ(x, y, z)(e2) =

=









1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1

















1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1









−1

=









1 0 1 −z
0 1 0 0
0 0 1 0
0 0 0 1









= e2 − ze3;

ψ(x, y, z)(e3) =

=









1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1

















1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

















1 x 0 0
0 1 y 0
0 0 1 z
0 0 0 1









−1

=









1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1









= e3.

Thus with respect to the Fp-basis {e1, e2, e3} of A, the element (x, y, z) ∈ F3
p is

sent to the matrix





1 0 0
0 1 0
x −z 1



 ∈ GL3(Fp).

Now we consider the F3
p-module A′. By Lemma 3.1, the structure map

ψ′ : F3
p → Aut(A′) describing the action of F3

p on A′ with respect to the dual
basis of (e1, e2, e3), is given by:

(x, y, z) 7→











1 0 0
0 1 0
x −z 1





−1






T

=





1 0 x
0 1 −z
0 0 1





−1

=





1 0 −x
0 1 z
0 0 1



 .

�

4. EMBEDDING PROBLEMS

A weak embedding problem E for a profinite group G is a diagram

E := G

α
��

U
f

// Ū
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which consists of profinite groups U and Ū and homomorphisms α : G → Ū,
f : U → Ū with f being surjective. (All homomorphisms of profinite groups
considered in this paper are assumed to be continuous.)
A weak solution of E is a homomorphism β : G → U such that f β = α.
We call E a finite weak embedding problem if the group U is finite. The kernel
of E is defined to be M := ker( f ).
Let φ1 : G1 → G be a homomorphism of profinite groups. Then φ1 induces the
following weak embedding problem

E1 := G1

α◦φ1
��

U
f

// Ū.

If β is a weak solution of E then β ◦ φ1 is a weak solution of E1.
The following result is due to W. Dwyer. We will use this result to reformulate
the vanishing Massey product property in terms of weak embedding prob-
lems.

Theorem 4.1 ([Dwy, Theorem 2.4]). Let α1, . . . , αn be elements of H1(G, Fp).
There is a one-one correspondence M ↔ ρ̄M between defining systems M for
〈α1, . . . , αn〉 and group homomorphisms ρ̄M : G → Ūn+1(Fp) with (ρ̄M)i,i+1 =
−αi, for 1 ≤ i ≤ n.
Moreover 〈α1, . . . , αn〉M = 0 in H2(G, Fp) if and only if the dotted homomorphism
exists in the following commutative diagram

G

ρ̄M
��ww♣

♣

♣

♣

♣

♣

0 // Fp
// Un+1(Fp) // Ūn+1(Fp) // 1.

Explicitly, the one-one correspondence in Theorem 4.1 is given by: For a defin-
ing system M = (aij) for 〈α1, . . . , αn〉, ρ̄M : G → Ūn+1(Fp) is defined by
letting (ρ̄M)ij = −aij (see [Dwy, Proof of Theorem 2.4]).

Lemma 4.2. Let G be a profinite group, and n ≥ 3 an integer. Then the following
statements are equivalent:

(1) G has the vanishing n-fold Massey product property with respect to Fp.

(2) For every homomorphism ρ̄ : G → Ūn+1(Fp), the finite weak embedding
problem

G

(ρ̄12,...,ρ̄n,n+1)

��zz✉
✉

✉

✉

✉

0 // A // Un+1(Fp) // Fn
p

// 1,

has a weak solution, i.e., (ρ̄12, ρ̄23, . . . , ρ̄n,n+1) can be lifted to a homomor-
phism ρ : G → Un+1(Fp).
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Proof. This follows from Theorem 4.1. �

Corollary 4.3. Let G be a profinite group. Let χ1, χ2, χ3 ∈ H1(G, Fp) be Fp-
linearly independent. Assume that G has the vanishing triple Massey product and
that χ1 ∪ χ2 = χ2 ∪ χ3 = 0 ∈ H2(G, Fp). Then there is a continuous surjective
homomorphism ρ : G → U4(Fp) such that ρ12 = χ1, ρ23 = χ2 and ρ34 = χ3.

Proof. Since χ1 ∪ χ2 = χ2 ∪ χ3 = 0 ∈ H2(G, Fp), there exist a12, a23 ∈
C1(G, Fp) such that ∂a12 = χ1 ∪ χ2 and ∂a23 = χ2 ∪ χ3. This implies that
the triple Massey product 〈χ1, χ2, χ3〉 is defined. By Theorem 4.1, we have a
homomorphism ρ̄ : G → Ū4(Fp) such that ρ̄12 = χ1, ρ̄23 = χ2 and ρ̄34 = χ3.
By Lemma 4.2, there exists a homomorphism ρ : G → U4(Fp) such that

ρ12 = ρ̄12 = χ1, ρ23 = ρ̄23 = χ2, ρ34 = ρ̄34 = χ3.

Note that the Frattini subgroup of U4(Fp) is A. Hence by the Frattini argu-
ment ρ : G → U4(Fp) is surjective. �

Remark 4.4. Let ρ : G → U4(Fp) be a surjective homomorphism. Let χ1 =
ρ12, χ2 = ρ23 and χ3 = ρ34. Since (ρ12, ρ23, ρ34) : G → Fp × Fp × Fp is surjec-
tive, we see that χ1, χ2 and χ3 are Fp-linearly independent. Furthermore since
ρ is group homomorphism, we see that χ1 ∪ χ2 = χ2 ∪ χ3 = 0 ∈ H2(G, Fp).

Lemma 4.5 (Hoechsmann). Let E be a finite weak embedding problem for G with
finite abelian kernel M. Let ǫ ∈ H2(Ū, M) be the cohomology class corresponding
to the embedding problem E . Then E has a weak solution if and only if α∗(ǫ) = 0 ∈
H2(G, M).

Proof. See [Ho, Statement 1.1, page 82]. (See also [NSW, Chapter 3, §5, Propo-
sition 3.5.9].) �

Corollary 4.6. Let E (G) = (α : G → Ū, f : U → Ū) be a finite weak embed-
ding problem for G with abelian kernel M. Let φi : Gi → G, i ∈ I, be a family of
homomorphisms of profinite groups. Assume that the natural homomorphism

H2(G, M) → ∏
i

H2(Gi, M),

is injective. Then the weak embedding problem E (G) has a weak solution if and only
if for every i ∈ I the induced weak embedding problem E (Gi) has a weak solution.

Proof. We consider the following sequence

H2(Ū, M)
α∗

// H2(G, M) // // ∏i∈I H2(Gi, M).

The statement follows from Lemma 4.5. �

Proposition 4.7. Suppose that Gi, i ∈ I, are closed subgroups of a profinite group
G, and that for every map α : G → F3

p the map

Res : H2(G, A) −→ ∏
i∈I

H2(Gi, A)
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Triple Massey Products over Global Fields 1475

is injective, where the action is via ψ ◦ α : G → Aut(A). If each Gi has the triple van-
ishing Massey product property, then G also has the triple vanishing Massey product
property.

Proof. We shall prove the condition (2) in Lemma 4.2.
Let ρ̄ : G → Ū4(Fp) be any homomorphism. We consider the weak embed-
ding problem

(E ) G

(ρ̄12,ρ̄23,ρ̄34)
��

0 // A // U4(Fp) // (Fp)3 // 1.

By assumption for every i ∈ I the induced weak embedding problem (Ei)

(Ei) Gi

(ρ̄12,ρ̄23,ρ̄34)
��zz✉

✉

✉

✉

✉

0 // A // U4(Fp) // (Fp)3 // 1,

has a weak solution. By Corollary 4.6, (E ) has a weak solution also. �

5. THE VANISHING OF A CERTAIN COHOMOLOGY GROUP

Let G be a profinite group, and let M be a discrete G-module. We define

H1
∗(G, M) = ker(H1(G, M) → ∏

C

H1(C, M)),

where the product is over all closed cyclic subgroups (in the profinite sense)
of G.
(The definition of H1

∗(G, M) is due to Tate (see [Se, §2]). This definition also
appeared in [DZ, §2], in which the authors used the notation H1

loc instead of
using H1

∗.)
The following lemma is a special case of [DZ, Lemma 3.3]. It is a simple lemma
and therefore we also omit a proof.

Lemma 5.1. Let V be a vector space of finite dimension over a field k. Let ϕ1, ϕ2 be
elements in the dual k-vector space V∗ := Hom(V, k). If ker ϕ1 ⊆ ker ϕ2 then there
exists λ ∈ k such that ϕ2 = λϕ1.

Lemma 5.2. Let

G =











1 0 a
0 1 b
0 0 1



 : a, b ∈ Fp







,

and let F3
p act on G by matrix multiplication. Then H1

∗(G, (Fp)3) = 0.
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Proof. Let (Zσ) be a cocycle representing an element in H1
∗(G, (Fp)3). Then for

each σ ∈ G, there exists Wσ ∈ (Fp)3 such that

Zσ = (σ − 1)Wσ.

Writing Zσ =





xσ

yσ

zσ



, Wσ =





uσ

vσ

tσ



 and σ =





1 0 aσ

0 1 bσ

0 0 1



 , we have





xσ

yσ

zσ



 =





0 0 aσ

0 0 bσ

0 0 0









uσ

vσ

tσ



 =





tσaσ

tσbσ

0



 .

Hence

(1) xσ = tσaσ, yσ = tσbσ, zσ = 0.

By the cocycle condition, σ 7→ xσ and σ 7→ yσ are homomorphisms. Also,
σ 7→ aσ and σ 7→ bσ are homomorphisms. From (1), one has ker aσ ⊆ ker xσ

and ker bσ ⊆ ker yσ. Hence by Lemma 5.1, there exist λ, µ ∈ Fp such that

(2) xσ = λaσ; yσ = µbσ.

We consider the matrix σ0 =





1 0 1
0 1 1
0 0 1



 , i.e., aσ0 = bσ0 = 1. Then (1) and (2)

imply that
xσ0 = tσ0 = λ, and yσ0 = tσ0 = µ.

Thus λ = µ. Hence for all σ ∈ G we have Zσ = (σ − 1)W, with W = (0, 0, λ)t.
Therefore (Zσ) is cohomologous to 0, as desired. �

6. THE INJECTIVITY OF A LOCALIZATION MAP

Let K be a global field containing a primitive p-th root of unity. For any GK-
module M with the structure map ρ : GK → Aut(M), let K(M) be the smallest
splitting field of M, explicitly K(M) is the fixed field of the separable closure
Ksep under ker(ρ). For each prime v of K, let Kv denote the completion of K at
v. We will fix an embedding ιv : GKv →֒ GK which is induced by choosing an
embedding of Ksep in K

sep
v . Then for each i, ιv’s induce a homomorphism

β1(K, M) : Hi(GK, M) → ∏
v

Hi(GKv , M).

This homomorphism does not depend on the choice of embeddings Ksep →֒
K

sep
v , and it is called the localization map.

Lemma 6.1. Let F be a finite Galois extension of K containing K(M). Then we can

inject the group ker β1(K, M) into the group H1
∗(Gal(F/K), M).

(See [Se, Proposition 8] for a similar statement.)
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Proof. By [Mi, Chapter I, Lemma 9.3] and/or [Ja, Lemma 1], we have the fol-
lowing diagram

ker β1(K, M)
� _

��

H1
∗(Gal(F/K), M)

≃
// H1

∗(GK, M).

The lemma then follows. �

Now let α : GK → F3
p be any (continuous) homomorphism. We consider A as

a GK-module via

ψ ◦ α : GK
α→ F3

p
ψ→ Aut(A).

Lemma 6.2. The localization map

H2(GK, A) → ∏
v

H2(GKv , A),

is injective.

Proof. First note that if we consider A′ = Hom(A, Fp) as a GK-module via

the composition map β = ψ′ ◦ α : GK → F3
p

ψ′
→ Aut(A′), then A′ is the dual

GK-module of the GK-module A. We shall choose an Fp-basis of A′ as in
Lemma 5.2. Clearly, after identifying A′ with F3

p, and Aut(A′) with GL3(Fp),
the action of GK on A′ via the image im(β) is the matrix multiplication.
By Poitou-Tate duality ([NSW, Theorem 8.6.7]), it is enough to show that

(3) ker(H1(GK, A′) → ∏
v

H1(GKv , A′)) = 0.

Let F = (Ksep)ker β be the smallest splitting field of A′. Then Gal(F/K) ≃
im(β) ⊆ imψ′ = G, where G is the group defined in Lemma 5.2. Here the
equality imψ′ = G follows from Lemma 3.2.
If Gal(F/K) ≃ imβ = G, then by Lemma 5.2, H1

∗(Gal(F/K), A′) = 0. If
Gal(F/K) ≃ imβ 6= G, then Gal(F/K) is of order dividing p because |G| =
p2. Thus Gal(F/K) is cyclic. In this case, it is clear that H1

∗(Gal(F/K), A′) =
0. Thus in all cases we have H1

∗(Gal(F/K), A′) = 0. Therefore Lemma 6.1
implies that (3) is true, as desired. �

7. TRIPLE MASSEY PRODUCTS OVER LOCAL AND GLOBAL FIELDS

Recall that a pro-p-group G is call a Demushkin group if its cohomol-
ogy Hi(G, Fp) has the following properties: (1) dimFp H1(G, Fp) < ∞, (2)
dimFp H2(G, Fp) = 1 and (3) the cup product H1(G, Fp) × H1(G, Fp) →
H2(G, Fp) is non-degenerate.

Documenta Mathematica 20 (2015) 1467–1480
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Theorem 7.1. Let K be a local field containing a primitive p-th root of unity. Let n
be an integer greater than 2. Then every n-fold Massey product contains 0 whenever
it is defined.

Proof. Let G = GK(p) be the maximal pro-p quotient of the absolute Galois
group of K. If either K ≃ C or K ≃ R and p 6= 2, then G is trivial. Clearly then
G has the vanishing n-fold Massey product property.
If K ≃ R and p = 2 then G ≃ Z/2Z, which is a Demushkin group by
[NSW, Proposition 3.9.10]. Now assume that K is not isomorphic to either
R or C, then by [NSW, Proposition 7.5.9 and Theorem 7.5.11], G is also a De-
mushkin group. Hence, in the both main cases when G is non-trivial, G has
the vanishingn-fold Massey product property by [MT1, Theorem 4.3]. �

Proof of Theorem 1.3. Theorem 1.3 follows from Proposition 4.7, Lemma 6.2
and Theorem 7.1. �

Proof of Corollary 1.4. Corollary 1.4 follows from Theorems 7.1-1.3 and Corol-
lary 4.3. �

Remark 7.2. If F is a local field containing a primitive p-th root of unity, then
the situation in Corollary 1.4 actually occurs precisely when F is a finite ex-
tension of the field Qp. Indeed, let G = GF(p) be the maximal pro-p quotient
of the absolute Galois group of F. Then [NSW, Proposition 7.5.9 and Theo-
rem 7.5.11] imply that G is a Demushkin group of rank ≥ 3 precisely when
F is a finite extension of the field Qp. The statement then follows from [MT2,
Proposition 3.1 and Lemma 3.6].

REFERENCES

[DGMS] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy
theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274.

[DZ] R. Dvornicich and U. Zannier, Local-global divisibility of rational points
in some commutative algebraic groups, Bull. Soc. Math. France 129 (3),
2001, 317-338.

[Dwy] W. G. Dwyer, Homology, Massey products and maps between groups, J.
Pure Appl. Algebra 6 (1975), no. 2, 177-190.

[Ef] I. Efrat, The Zassenhaus filtration, Massey products, and representations
of profinite groups, Adv. Math. 263 (2014), 389-411.

[EM1] I. Efrat and E. Matzri, Vanishing of Massey products and Brauer groups,
Can. Math. Bull. 58 (2015), 730-740.

[EM2] I. Efrat and E. Matzri, Triple Massey products and absolute Galois
groups, to appear in J. Eur. Math. Soc., arXiv:1412.7265.

[Fe] R. Fenn, Techniques of Geometric Topology, London Math. Soc. Lect.
Notes 57 Cambridge 1983.
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[MT5] J. Mináč and N. D. Tân, The Kernel Unipotent Conjecture and Massey
products on an odd rigid field (with an appendix by I. Efrat, J. Mináč
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