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Abstract. We provide results on the smoothness of normalisers
in connected reductive algebraic groups G over fields k of positive
characteristic p. Specifically we we give bounds on p which guarantee
that normalisers of subalgebras of g in G are smooth, i.e. so that
the Lie algebras of these normalisers coincide with the infinitesimal
normalisers.

One of our main tools is to exploit cohomology vanishing of small
dimensional modules. Along the way, we obtain complete reducibility
results for small dimensional modules in the spirit of similar results
due to Jantzen, Guralnick, Serre and Bendel–Nakano–Pillen.
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1 Introduction

Let G be an affine group scheme over an algebraically closed field k. We say
G is smooth if dimLie(G) = dimG. A famous theorem of Cartier states that
every affine group over a field of characteristic zero is smooth. Therefore,
in this situation, the category of smooth group schemes is closed under the
scheme-theoretic constructions of taking centres, centralisers, normalisers and
transporters. However, Cartier’s theorem fails rather comprehensively in pos-
itive characteristic. A classic example of a non-smooth algebraic group is the
group scheme µp whose points are the pth roots of unity; this is not smooth
over a field of characteristic p—its Lie algebra is 1-dimensional, but its k-points
consist just of the identity element. Furthermore, since µp is also the scheme-
theoretic centre of SLp, the centre of this reductive1 group is also not smooth
over a field of characteristic p. This means that the group-theoretic centre of
SLp misses important infinitesimal information about the centre (for instance,
the fact that SLp is not adjoint).
Nonetheless, centralisers are usually smooth. For example, it is a critical result
of Richardson [Ric67, Lem. 6.6], used extensively in the theory of nilpotent
orbits, that the centraliser Ge = CG(e) of an element e of g = Lie(G) is
smooth whenever p is a very good prime for G.2 (Note that smoothness of the
centraliser, or what is the same, the separability of the orbit map G → G · e

1We call a smooth algebraic group G reductive provided that Ru(G0) = 1.
2Recall that p is good if the following holds: p is not 2 if G contains a factor not of type

A, p is not 3 if G contains an exceptional factor and p is not 5 if G contains a factor of type
E8. The prime p is very good if it is good and it does not divide n+1 for any factor of G of
type An.
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can be restated as Lie(Ge(k)) = cg(e).) In fact the centralisers of subgroup
schemes of a connected reductive group G are usually smooth: work of Bate–
Martin–Röhrle–Tange and the first author (cf. Proposition 3.1) gives precise
information on the characteristic p of k, depending on the root datum of G, for
centralisers of all subgroup schemes of G to be smooth. It suffices, for instance,
for p to be very good for G. Furthermore, centralisers of all subgroup schemes
of GLn are smooth.
The situation for normalisers is much less straightforward, which may explain
why results in this direction have been unforthcoming until now. For example,
even when G = GLn, for any n ≥ 3 and any p > 0 an arbitrary prime, there are
connected smooth subgroups of G with non-smooth normalisers (see Lemma
11.11 below). In light of this situation, perhaps it is surprising that there are
any general situations in which normalisers of subgroup schemes are smooth.
However, we prove that for sufficiently large p depending on the connected
reductive algebraic group G, (a) all normalisers of height one subgroup schemes
(in fact the normalisers of all subspaces of the Lie algebra of G); and (b) all
normalisers of connected reductive subgroups are indeed smooth. Theorem 3.2
makes (b) precise and the proof is a straightforward reduction to the case of
centralisers. Our main result follows.

Theorem A. There exists a constant c = c(r) such that if p > c and G is any
connected reductive group of rank r then all normalisers NG(h) of all subspaces
h of g are smooth.
More precisely, let d be the dimension of a minimal faithful representation of
G. Then all normalisers of subspaces of g are smooth provided that p > 22d.
In particular, if G = GLn we may take p > 22n.

Remarks 1.1. (a). Clearly, the constant c(r) in the theorem may be defined as
22d

′

for d′ the maximal dimension of a minimal faithful module of a connected
reductive group of rank r.
(b). Note that the maximum is finite since there are only a finite number
of isomorphism types of connected reductive groups of a given rank over an
algebraically closed field k. Each of these arises by base change from a split
reductive group defined over the integers, so one can consider the theorem as
a statement that for a fixed group GZ, the conclusion holds for each reduction
modulo p of GZ, whenever p is sufficiently large.

It is natural to ask if lower bounds for the constant c in Theorem A exist.
In §11, we present a menagerie of examples where smoothness of normalisers
fails; in particular, in Example 11.4 we give a p-subalgebra of gl2n+12 with non-
smooth normaliser whenever p|Fn, the nth Fibonacci number. Since Fn ∼ 1.6n

and infinitely many Fibonacci numbers are expected to be prime, we conclude
that c(G) should grow exponentially with the rank of G. In other words the
bound on p in the theorem is likely to be of the right order.
The obstruction to finding linear bounds for c comes from the fact that one
cannot, in general, lift the maximal tori of Lie-theoretic normalisers to group-
theoretic normalisers. However, many interesting subalgebras of g have nor-
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4 Herpel and Stewart

malisers which are generated by nilpotent elements (such as maximal semisim-
ple subalgebras). Adding in this extra, natural hypothesis gives rise to much
better bounds. In the following theorem let h = h(G) denote the Coxeter
number of (the root system Φ of) G. If Φ is reducible, then h is taken as the
maximum over all components.

Theorem B. (i) Let G be a reductive algebraic group and let d be as in The-
orem A. Suppose p > d+1. Then all normalisers NG(h) of p-subalgebras
h are smooth whenever ng(h) is generated by nilpotent elements. More
precisely, the conclusion holds for normalisers generated by nilpotent el-
ements when G is simple of classical type (that is, the root system of G
is of A–D type) and p > h+ 1.

(ii) Let p > 2h−2 for the connected reductive group G. Then the normalisers
NG(h) of all subspaces h of g are smooth whenever ng(h) is generated by
nilpotent elements.

Remarks 1.2. (a). The bounds in Theorem B(i) are tight when G is classical
of type A, B or C: whenever p ≤ h+ 1 the smallest irreducible representation
of the first Witt algebra or its adjoint gives rise to a non-smooth normaliser
which satisfies the hypotheses. Theorem B(i) is also tight for G2, as it contains
a copy of the Witt algebra as a maximal subalgebra when p = 7; more generally,
the conclusion of Theorem B(i) fails for all exceptional algebraic groups when
p = h+ 1 (see [HS16]).
(b). Suppose that k is not algebraically closed, and that G is a connected
reductive algebraic group defined over k with a closed, k-defined subgroup-
scheme H . Since smoothness is a geometric property, we have that NG(H)
is smooth if and only if NG

k
(Hk) is smooth. Hence Theorems A and B give

sufficient conditions for the smoothness of normalisers over general base fields.

In proving the theorems above we require several auxiliary results which may
be of independent interest. The first is necessary in proving Theorem B(i).

Theorem C. Let g = Lie(G) for G a simply-connected classical algebraic group
over an algebraically closed field k and let p > 2 be a very good prime for G.
Then any maximal non-semisimple subalgebra of g is parabolic.

Remark 1.3. An announcement of a full classification of the maximal non-
semisimple subalgebras of the Lie algebras of classical groups is given in [Ten87].
We provide a straightforward proof of the stated part in §7 below.

The proof of Theorem B(i) also uses a number of results on cohomology of
low-dimensional modules. Such results have something of a history: in [Jan97]
Jantzen proved that a module for a connected reductive algebraic group with
p ≥ dimV is completely reducible. Building on this, Guralnick tackled the case
of finite simple groups in [Gur99]; this time one needs p ≥ dimV + 2 for the
same conclusion. In a different direction, Serre proved in [Ser94] that if two
semisimple modules V1 and V2 for an arbitrary group satisfy dimV1+dimV2 <
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p + 2 then their tensor product is semisimple. Extending work of Bendel–
Nakano–Pillen, we add analogues of these results for Lie algebras and Frobenius
kernels of reductive algebraic groups tackling the ‘crucial case’ of a question
of Serre [Ser94, Question 1.2] (though see Footnote 3 below). We summarise
our results when G is simple into the following. The extensions to the case
G is semisimple or reductive can be found in §8, where also can be found any
unexplained terminology.

Theorem D. Suppose G is a simple algebraic group and let Gr be its r-th
Frobenius kernel with g its Lie algebra. Let V be a k-vector space with dimV ≤
p.

(a) Suppose V is a Gr-module. Then V is completely reducible unless
dimV = p, and either G is of type A1 or p = 2 and G is of type Cn. In
the exceptional cases, V is known explicitly.

(b) Suppose g = [g, g] and V is a g-module. Then either V is completely
reducible or dimV = p, G is of type A1 and V is known explicitly.

(c) Let p > h. Then H2(g, L(µ)) = 0, for all µ in the lowest alcove CZ, unless
G is of type A1 and µ = (p− 2); or G is of type A2 and µ = (p− 3, 0) or
(0, p− 3).

(d) Suppose V and W are semisimple g-modules with dimV +dimW < p+2.
Then V ⊗W is semisimple and H2(g, V ⊗W ) = 0. 3

We also mention a further tool, used in the proofs of Theorems A and B(i), for
which we need a definition due to Richardson: Suppose that (G′, G) is a pair of
reductive algebraic groups such that G ⊆ G′ is a closed subgroup. We say that
(G′, G) is a reductive pair provided there is a subspace m ⊆ Lie(G′) such that
Lie(G′) decomposes as a G-module into a direct sum Lie(G′) = Lie(G) + m.
Adapting a result from [Her13] we show

Proposition E. Let (G′, G) be a reductive pair and let H ≤ G be a closed
subgroup scheme. Then if NG′(H) is smooth, NG(H) is smooth too.
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part of Theorem D(d) can be deduced from this. In fact, in part of Corollary 8.13 we do prove
the semisimplicity statement for arbitrary Lie algebras. Our proof is different to Deligne’s,
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6 Herpel and Stewart

2 Notation and preliminaries

Let k be a field of characteristic p ≥ 0 and let G be an algebraic group defined
over k. Unless otherwise noted, k will assumed to be algebraically closed.
For all aspects to do with the representation theory of a connected reductive
algebraic group G we keep notation compatible with [Jan03]. In particular, R
is the root system of G, and h is the associated Coxeter number.
For a closed subgroup H ≤ G, we consider the scheme-theoretic normaliser
NG(H), respectively centraliser CG(H) of H in G. We define NG(H) to be
subfunctor of G which takes a k-algebraA and returns the subgroup of elements

NG(H)(A) = {g ∈ G(A) : gH(B)g−1 = H(B)}

for all A-algebras B. Similarly, the centraliser is defined via

CG(H)(A) = {g ∈ G(A) : gh = hg for all h ∈ H(B)}.

Since H is closed, NG(H) and CG(H) are closed subgroup schemes of G.
By contrast, for any affine algebraic group H over k, we denote by Hred

the smooth subgroup with k-points Hred(k) = H(k). As k is algebraically
closed, the existence and uniqueness of such a subgroup is explained for ex-
ample in [Mil12, Prop. 5.1] and (as we will use in the sequel) we have that
NG(H)red(k

′) = NG(k′)(H(k′))(k′) (resp. CG(H)red(k
′) = CG(k′)(H(k′))(k′))

by [Mil12, §VII.6].
Let g be a Lie algebra over k. When the characterstic of k is greater than 0, g
is often referred to as a modular Lie algebra, and as such our reference for the
theory is [SF88]. Recall that a Lie algebra g is semisimple if its solvable radical
is zero, and that in characteristic p > 0 this is not enough to ensure that it is
the direct sum of simple Lie algebras.
Sometimes but not all the time, we will have g = Lie(G) for G an algebraic
group, in which cas we refer to g as algebraic; in this case, g will carry the
structure of a restricted Lie algebra. Bear in mind that Lie(G) may not be
semisimple even when G is. Examples of this sort only occur in not-very-good
characteristic; for instance, sl2 = Lie(SL2) in characteristic 2 gives a restricted
structure on the solvable Lie algebra sl2 with 1-dimensional centre.
More generally, all restricted Lie algebras are of the form Lie(H), where H is
an infinitesimal group scheme of height one over k. Under this correspondence,
the restricted subalgebras of g = Lie(G) correspond to height one subgroup
schemes of G. If the centre Z(g) = 0, then a Lie algebra g has at most one
restricted structure. In particular, if two semisimple restricted Lie algebras are
isomorphic as Lie algebras, they are isomorphic as restricted Lie algebras.
An abelian p-subalgebra h of g consisting of semsimple elements is called a
torus of g. Cartan subalgebras of algebraic Lie algebras are always toral and
in fact the Lie algebras of maximal tori of the associated algebraic group. This
follows from [Hum67, Thm. 13.3].
If g is a restricted Lie algebra, a representation V is called restricted provided
it is given by a morphism of restricted Lie algebras g → gl(V ). The following
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fact follows e.g. from the Kac–Weisfeiler conjecture (see [Pre95, Cor. 3.10]): if
G is a simple algebraic group defined in very good characteristic, and if V is
an irreducible g-module with dimV < p, then V is restricted. In particular,
it is well-known that V is then obtained by differentiating a simple restricted
rational representation of G.
When g is a Lie algebra, Rad(g) is the solvable radical of g and N(g) is the
nilradical of g. If g ⊆ gl(V ) there is also the radical of V -nilpotent elements
RadV (g). When g is restricted, Radp(g) is the p-radical of g, defined to be
the biggest p-nilpotent ideal. Further, g is p-reductive if the radical Radp(g) is
zero. Recall the following properties from [SF88, §2.1]:

Lemma 2.1. (a) Radp(g) is contained in the nilradical N(g) and hence in
the solvable radical of g. In particular, semisimple Lie algebras are p-
reductive.

(b) Radp(g) is the maximal p-nil (that is, consisting of p-nilpotent elements)
ideal of g.

(c) g/Radp(g) is p-reductive.

In particular, by part (b), if g ⊆ gl(V ) is a restricted subalgebra then Radp(g) =
RadV (g). If g ⊆ gl(V ) is a restricted Lie subalgebra and G1 is the height one
subgroup scheme of GL(V ) associated to g, then g is p-reductive if and only if
G1 is reductive in the sense that is has no connected normal nontrivial unipotent
subgroup schemes. For the usual notion of reductivity of smooth algebraic
groups only smooth unipotent subgroups are considered. The relation between
these two concepts is as follows:

Proposition 2.2 ([Vas05]). Let G be a connected reductive algebraic group.
Then G has no non-trivial connected normal unipotent subgroup schemes, ex-
cept if both p = 2 and G contains a direct factor isomorphic to SO2n+1 for
some n ≥ 1.

Since there are a number of possible definitions, let us be clear on the following:
We define a Borel subalgebra (resp. parabolic subalgebra, resp. Levi subalgebra)
of g to be Lie(B) (resp. Lie(P ), resp. Lie(L)), where B (resp. P , resp. L) is a
Borel (resp. parabolic, resp. Levi subgroup of a parabolic) subgroup of G.
By P = LQ we will denote a parabolic subgroup of G with unipotent radical
Q and Levi factor L. We will usually write p = Lie(P ) = l+ q. A fact that we
will use continually during this paper, without proof, is that if H (resp. h) is a
subgroup (resp. subalgebra) of P (resp. p), such that the projection to the Levi
is in a proper parabolic of the Levi, then there is a strictly smaller parabolic
P1 < P (resp. p1 < p) such that H ≤ P1 (resp. h ≤ p1). See [BT65, Prop.
4.4(c)].
We also use the following fact: If t ⊆ gln is a torus, then CGLn

(t) is a Levi
subgroup (this follows e.g. from the construction of a torus T ⊆ GLn in [Die52,
Prop. 2] with CGLn

(t) = CGLn
(T )).
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8 Herpel and Stewart

Let V be an g-module and let λ : V × V → k be a bilinear form on V . We say
g preserves λ if λ(x(v), w) = −λ(v, x(w)) for all x ∈ g, v, w ∈ V .

We recall definitions of the algebraic simple Lie algebras of classical type: those
with root systems of types A–D. Then o(V ) is the set of elements x ∈ gl(V )
preserving the form λ(v, w) = vtw. so(V ) is the subset of traceless matrices
of o(V ). On the other hand when dimV is even, sp(V ) is the set of elements
preserving the form λ(v, w) = vtJw with J = [[0,−In], [In, 0]]. If char k 6= 2
then sp(V ) and so(V ) are simple (see below).

We say sp(V ) is of type Cn with 2n = dimV ; so(V ) is of type Bn when
dimV = 2n + 1, or type Dn when dimV = 2n. One fact that we shall use
often in the sequel is that that for types B–D, parabolic subalgebras are the
stabilisers of totally singular subspaces. (See for example, [Kan79].)

Furthermore recall that if G is simple, then g is simple at least whenever p is
very good. See [Hog82, Cor. 2.7] for a more precise statement. This means
in particular that sl(V ) is simple unless p| dimV , in which case the quotient
psl(V ) = sl(V )/kI is simple; we refer to such algebras as type An classical Lie
algebras, where dimV = n+1. In all cases, we refer to V as the natural module
for the algebra in question.

We make extensive use of the current state of knowledge of cohomology in this
paper, especially in §8. Importantly, recall that the group Ext1A(V,W ) (with
A either an algebraic group or a Lie algebra) corresponds to the equivalence
classes of extensions E of A-modules 0 → W → E → V → 0, and that
H2(A, V ) measures the equivalence classes of central extensions B of V by
A, equivalence classes of exact sequences 0 → V → B → A → 0, where B
is either an algebraic group or a Lie algebra. We remind the reader that for
restricted Lie algebras, two forms of cohomology are available—the ordinary Lie
algebra cohomology, denoted Hi(g, V ) or the restricted Lie algebra cohomology
(where modules respectively morphisms are assumed to be restricted). Since
the latter can always be identified with Hi(A, V ) for A the height one group
scheme associated to g, we shall always use the associated group scheme when
we wish to discuss restricted cohomology.

Finally, we record the following theorem of Strade which is a central tool in
our study of small-dimensional representations. Let char k = p > 0 and let
O1 = k[X ]/Xp be the truncated polynomial algebra. Then the first Witt
algebra W1 is the set of derivations of O1, with basis {Xr∂}0≤r≤p−1, where
∂ acts on O1 by differentiation of polynomials. For p > 2, W1 is simple, and
for p > 3, W1 is not the Lie algebra of any algebraic group. Since there is a
subspace k ≤ O1 fixed by W1, we see that W1 has a faithful (p−1)-dimensional
representation for p > 2.

Theorem 2.3 ([Str73, Main theorem]). Let g be a semisimple Lie subalgebra of
gl(V ) over an algebraically closed field k of characteristic p > 2 with p > dimV .
Then g is either a direct sum of algebraic Lie algebras or p = dim V + 1 and g

is the p-dimensional Witt algebra W1.
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3 Smoothness of normalisers of reductive subgroups

Let G be a connected reductive algebraic group and let T be a maximal torus
in G with associated roots R, coroots R∨, characters X(T ) and cocharacters
Y (T ). We say that a prime p is pretty good for G provided it is good for R and
provided that both X(T )/ZR and Y (T )/ZR∨ have no p-torsion. We recall the
main result of [Her13].

Proposition 3.1. Let G be as above, and let p = char(k). Then p is pretty
good for G if and only if all centralisers of closed subgroup schemes in G are
smooth.

Theorem 3.2. Let G be a connected reductive algebraic group. Then the nor-
malisers NG(H) of all (smooth) connected reductive subgroups are smooth if p
is a pretty good prime for G.

Proof. Let H ≤ G be a closed, connected reductive subgroup of G. We have
an exact sequence of group functors

1 → CG(H) → NG(H)
int
−−→ Aut(H).

Here the first map is the natural inclusion, the second map maps x ∈ G to
the automorphism int(x) of H given by conjugation with x, and Aut(H) is the
group functor that associates to each k-algebra S the group of automorphisms
of the group schemeHS . By [DGd70, XXIV, Cor. 1.7], we have that Aut(H)0 =
int(H) is smooth, which implies that int(NG(H)) is smooth. By Proposition
3.1, CG(H) is smooth. Thus the outer terms in the exact sequence of affine
group schemes

1 → CG(H) → NG(H) → int(NG(H)) → 1

are smooth, which forces NG(H) to be smooth.

Remark 3.3. The implication in the theorem cannot quite be reversed. For
example if G is SL2, p = 2 is not pretty good, but a connected reductive
subgroup is either trivial, or a torus, whose normaliser is smooth. However, we
give examples of non-smooth normalisers of connected reductive subgroups in
bad characteristics in Examples 11.6 below.

4 On exponentiation and normalising, and the proof of Theorem
B(ii)

Let G be a connected reductive group. We recall the existence of exponential
and logarithm maps for p big enough, see [Ser98, Thm. 3] or [Sei00, Prop. 5.2].
We fix a maximal torus T and a Borel subgroup B = T ⋉ U containing T .
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10 Herpel and Stewart

Theorem 4.1. Assume that p > h (p ≥ h for G simply connected), where h is
the Coxeter number of G. Then there exists a unique isomorphism of varieties
log : Gu → gnilp, whose inverse we denote by exp : gnilp → Gu, with the
following properties:

(i) log ◦σ = dσ ◦ log for all σ ∈ Aut(G);

(ii) the restriction of log to U is an isomorphism of algebraic groups U →
Lie(U), whose tangent map is the identity; here the group law on Lie(U)
is given by the Hausdorff formula;

(iii) log(xα(a)) = aXα for every root α and a ∈ k, where Xα = dxα(1).

The uniqueness implies that for G = GL(V ), p ≥ dim V , exp and log are the
usual truncated series.
Recall (cf. [Ser98]) that for a G-module V , the number n(V ) is defined as
n(V ) = supλ n(λ), where λ ranges over all T -weights of V , and where n(λ) =
∑

α∈R+〈λ, α∨〉. For the adjoint module g, one obtains n(g) = 2h− 2.

Proposition 4.2. Let ρ : G → GL(V ) be a rational representation of G.
Suppose that p > h and p > n(V ). Let x ∈ g be a nilpotent element. Then

ρ(expG x) = expGL(dρ(x)).

In particular, if p > 2h− 2, then Ad(expG x) = expGL(ad(x)).

Proof. Consider the homomorphism ϕ : Ga → GL(V ) given by ϕ(t) =
ρ(expG(t.x)). Under our assumptions, it follows from [Ser98, Thm. 5] that
ϕ is a morphism of degree < p, (i.e. the matrix entries of ϕ are polynomials of
degree less than p in t). Moreover, dϕ(1) = dρ(x). By [Ser94, §4], this implies
that dρ(x)p = 0 and that ϕ agrees with the homomorphism t 7→ expGL(t.dρ(x)).
The claim follows.

Lemma 4.3. Let X ∈ gl(V ) be a nilpotent element satisfying Xn = 0 for some
integer n ≤ p. Let l, r ∈ End(gl(V )) be left multiplication with X, respectively
right multiplication with −X. Set W = Wp(l, r) ∈ End(gl(V )), where Wp(x, y)
is the the image of 1

p ((x+ y)p − xp − yp) ∈ Z[x, y] in k[x, y]. Let h be a subset

of gl(V ) normalised (resp. centralised) by X. Suppose that h ⊆ ker(W ). Then
exp(X) ∈ GL(V ) normalises (resp. centralises) h.
In particular, if p ≥ 2n − 1, then W = 0 and so exp(X) normalises (resp.
centralises) every subspace that is normalised (resp. centralised) by X.

Proof. Since the nilpotence degree ofX is less than p, the exponential exp(X) =
1+X +X2/2+ . . . gives a well-defined element of GL(V ). Moreover, for each
Y ∈ h we have the equality

Ad(exp(X))(Y ) = exp(ad(X))(Y ) = Y +ad(X)(Y )+ad(X)2(Y )/2+· · · ∈ gl(V ).
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On the Smoothness of Normalisers. . . 11

Indeed, we have ad(X) = l + r, and Ad(exp(X)) = exp(l) exp(r). Now
by [Ser94, (4.1.7)], exp(l) exp(r) = exp(l + r − W ). Since l and r commute
with W , we deduce (l + r − W )m(Y ) = (l + r)m(Y ) for each m ≥ 0. Thus
Ad(exp(X))(Y ) = exp(l + r)(Y ) = exp(ad(X))(Y ), as claimed. Hence exp(X)
is contained in NGL(V )(h) whenever X ∈ ngl(V )(h) and exp(X) ∈ CGL(V )(h)
whenever X ∈ cgl(V )(h).

Moreover, Wp(l, r) =
∑p−1

i=1 cil
irp−i for certain non-zero coefficients ci ∈ k. In

particular, this expression vanishes for p ≥ 2n− 1.

Corollary 4.4. Let p = q+ l ⊆ gl(V ) be a parabolic subalgebra, and suppose
that p ≥ dim V . If X ∈ q normalises a subset h ⊆ p, then so does exp(X).

Proof. By Lemma 4.3, it suffices to show that p ⊆ ker(W ). Let 0 = V0 ⊆ V1 ⊆
· · · ⊆ Vm = V be a flag with the property

p = {Y ∈ gl(V ) | Y Vi ⊆ Vi}

q = {Y ∈ gl(V ) | Y Vi ⊆ Vi−1}.

By assumption, we have p ≥ m, and therefore all products X1 . . .Xp+1 with
all Xi ∈ p and all but one Xi ∈ q vanish on V . In particular lirp−i(Y ) = 0 for
all Y ∈ p and hence W (Y ) = 0.

Lemma 4.5. Suppose g is a subalgebra of gl(V ) generated as a k-Lie algebra
by a set of nilpotent elements {Xi} of nilpotence degree less than p, and let
G = 〈exp(t.Xi)〉 be the closed subgroup of GL(V ) generated by exp(t.Xi) for
each t ∈ k. Then g ≤ Lie(G).

Proof. Since Lie(G) contains the element d/dt exp(t.Xi)|t=0 it contains each
element Xi. Since g is generated by the elements Xi, we are done.

Proof of Theorem B(ii). Let h be a subspace of g and let n = ng(h) be the
Lie-theoretic normaliser of h in g.
Let {x1, . . . , xr} be a set of nilpotent elements generating n. To show that
NG(h) is smooth, it suffices to show that each xi belongs to the Lie algebra of
NG(h)red.
But for a nilpotent generator xi, we may consider the smooth closed subgroup
Mi = 〈exp(t.xi) | t ∈ k〉 of G. By Proposition 4.2, Mi ⊆ NG(h)red and hence
xi ∈ Lie(Mi) ⊆ Lie(NG(h)red), as required.

5 Reductive pairs: Proof of Proposition E

The following definition is due to Richardson [Ric67].

Definition 5.1. Suppose that (G′, G) is a pair of reductive algebraic groups
such that G ⊆ G′ is a closed subgroup. Let g′ = Lie(G), g = Lie(G). We say
that (G′, G) is a reductive pair provided there is a subspace m ⊆ g′ such that
g′ decomposes as a G-module into a direct sum g′ = g⊕m.
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12 Herpel and Stewart

With p sufficiently large, reductive pairs are easy to find.

Lemma 5.2 ( [BHMR11, Thm. 3.1]). Suppose p > 2 dimV − 2 and G is a
connected reductive subgroup of GL(V ). Then (GL(V ), G) is a reductive pair.

We need a compatibility result for normalisers of subgroup schemes of height
one.

Lemma 5.3. Let H ⊆ G be a closed subgroup scheme of height one, with h =
Lie(H). Then NG(H) = NG(h) (scheme-theoretic normalisers).

Proof. We have a commutative diagram

Hom(H,H) −−−−→ Homp−Lie(h, h)


y



y

Hom(H,G) −−−−→ Homp−Lie(h, g),

where the horizontal arrows are given by differentiation and are bijective (cf.
[DG70, II, §7, Thm. 3.5]). Now if x ∈ NG(h), the map Ad(x)h in the bottom
right corner may be lifted via the top right corner to a map in Hom(H,H).
The commutativity of the diagram shows that conjugation by x stabilises H ,
and hence x ∈ NG(H). This works for points x with values in any k-algebra,
and hence proves the containment of subgroup schemes NG(h) ⊆ NG(H). The
reverse inclusion is clear.

We show that the smoothness of normalisers descends along reductive pairs.
Let us restate and then prove Propostion E.

Proposition 5.4. Let (G′, G) be a reductive pair and let H ⊆ G be a closed
subgroup scheme. If NG′(H) is smooth, then so is NG(H).
In particular, if h ⊆ g is a restricted subalgebra and if NG′(h) is smooth, then
so is NG(h).

Proof. The last assertion follows from Lemma 5.3.
Let H ⊆ G be a closed subgroup scheme. We follow the proof of [Her13, Lem.
3.6]. Let g′ = g⊕m be a decomposition of G-modules.
By [DG70, II, §5, Lem. 5.7], we have

dimLie(NG′(H)) = dim h+ dim(g′/h)H = dim h+ dim(g/h)H + dimmH

= dimLie(NG(H)) + dimmH ≥ dimNG(H) + dimmH .

On the left hand side, as NG′(H) is smooth by assumption, we have
dimNG′(H) = dimLie(NG′(H)). Thus to show that NG(H) is smooth, it
suffices to show that dimNG′(H)− dimNG(H) ≤ dimmH .
Now as in [Her13, Lem. 3.6], one shows that there is a monomorphism of
quotient schemes NG′(H)/NG(H) →֒ (G′/G)H , and that the tangent space on
the right hand side identifies as Tē(G

′/G)H ∼= mH . The claim follows.
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6 Lifting of normalising tori and the proof of Theorem A

In this section we let G = GL(V ) and h be a subspace of g. We would like to lift
a normaliser ng(h) to a subgroup N normalising h such that Lie(N) = ng(h).
It turns out that the hardest part of this is to find a lift of a maximal torus
normalising h. This is the content of the next lemma.

Lemma 6.1. Let G = GLn with p > 22n and let h ⊆ g be any subspace of
g = Lie(G). Suppose that c ⊆ g is a torus normalising h. Then c = Lie(C) for
a torus C ⊆ NG(h).

Proof. Let T be a diagonal maximal torus of GLn and t = Lie(T ). Since c

consists of semisimple elements, we may assume c ⊆ t.
Since c is restricted, it has a basis defined over Fp of elements Z1, . . . , Zs with
Zi = diag(zi1, . . . , zin) and each zij ∈ Fp. By [Die52, Prop. 2] we may assume
that c is a maximal torus of ng(h), which we do from now on.
Since k is algebraically closed, we may take a decomposition of h into weight
spaces for c. We have h = h0 ⊕

⊕

α hα where h0 is some set of elements
commuting with c, α is a non-trivial linear functional c → k and each hα is a
subspace of gln with [c,X ] = α(c)X for c ∈ c and X ∈ hα.
Let {Xi} be a basis for h with each Xi ∈ h0 or hα for some α as above. Then
c =

⋂

i nt(〈Xi〉). Suppose c = diag(c1, . . . , cn). The condition c ∈ nt(〈Xi〉) puts
a set of conditions on the ci. If only one entry of the matrix Xi is non-zero
or Xi is diagonal, then t normalises Xi, hence the set of conditions is empty.
Otherwise, if (Xi)j,k and (Xi)l,m are non-zero, then c normalising 〈Xi〉 implies
cj − ck = cl − cm. Letting c = (c1, . . . , cn) this condition can be rewritten as
a linear equation rc = 0, where r is an appropriate row vector whose entries
are all 0, except for up to four, where the non-zero entries take the values, up
to signs or permutations, (1,−1), (2,−2), (1,−2, 1) or (1,−1,−1, 1) according
to the values of j, k, l and m. The collection of these, say m relations, across
i and all pairs of non-zero entries in Xi gives an m × n integral matrix R so
that c ∈ c if and only if it satisfies the equation Rc = 0 modulo p. Similarly,
if χ(t) = diag(ta1 , . . . , tan) is a cocharacter with image in T , then one checks
that χ(t) normalises h if the integral equation Ra = 0 where a = (a1, . . . , an).
If the nullity of R is the same modulo p as it is over the integers then for any
c ∈ nt(h), there exists a cocharacter χ of NT (h) with d/dt|t=1(χ(t)) = c and
we are done. But if the nullity of R modulo p differs from the nullity of R over
the integers, then we must have that p|di for di one of the non-zero elementary
divisors of R. Now by the theory of Smith Normal Form, if r ∈ N is taken
maximal so that there exists a non-vanishing r× r minor, then the elementary
divisors of R are all at most the greatest common divisor of all non-zero r × r
minors. Let M be such an r × r minor. We are going to argue by induction
on r that | det(M)| ≤ 22r. Since r ≤ n, the hypothesis will then show that p is
not a prime factor of det(M), as required.
We must have r ≤ n. If there is a row of M containing only elements of
modulus 2, then at most 2 of these are non-zero and 2 is a prime factor of
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14 Herpel and Stewart

detM ; Laplace’s formula implies that the remaining matrix has determinant
at most 2 detM ′ where M ′ is a certain r − 1 × r − 1 minor of M , so that
we are done by induction. If there are no entries of modulus 2, then each row
contains at most 4 entries of modulus 1 and Laplace’s formula then implies that
detM ≤ 4 detM ′ where M ′ is a certain r−1×r−1 minor of M of the required
form, so that we are done again by induction. Otherwise there is at least
one row with non-zero entries (1,−2) or (1,−2, 1). By Laplace’s formula and
induction, it is now easy to see that | detM | ≤ 22n−2 + 2.22n−2 + 22n−2 = 22n

and we are done.

We are now in a position to prove Theorem A.

Proof of Theorem A. First consider the case G = GLn. Let h be a subspace of
g and let n = ng(h) be the Lie-theoretic normaliser of h in g.

As before, by definition, n is a restricted subalgebra of g. Hence, applying the
Jordan decomposition for restricted Lie algebras, we see that n is generated
by its nilpotent and semisimple elements. Let {x1, . . . , xr, y1, . . . , ys} be such
a generating set with x1, . . . , xr nilpotent and y1, . . . , ys semisimple. To show
that NG(h) is smooth, it suffices to show that all the elements xi and yj belong
to the Lie algebra of NG(h)red.

For a nilpotent generator xi, of nilpotence degree at most n < p, consider the
smooth closed subgroup Mi = 〈exp(t.xi) | t ∈ k〉 of G. Since p > 2h − 2, we
may apply Proposition 4.2, to obtain Mi ⊆ NG(h)red and hence xi ∈ Lie(Mi) ⊆
Lie(NG(h)red), as required.

It remains to consider the semisimple generators yi. Let ti := 〈yi〉p ≤ n be
the torus generated by the p-powers of yi. By hypothesis, p > 22n and so we
may apply Lemma 6.1 to find a torus Ti ≤ NG(h) such that Lie(Ti) = ti. In
particular yi ∈ Lie(NG(h)red). This finishes the proof in the case G = GL(V ).

If G is a reductive algebraic group suppose G → GL(V ) ∼= GLd is a minimal
faithful module for G. Now since p > 22 dimV , we have that normalisers of
all subspaces of GL(V ) are smooth. But now, by Lemma 5.2, (GL(V ), G) is
a reductive pair, so that invoking Proposition 5.4 we obtain that NG(h) is
smooth. This completes the proof.

7 Non-semisimple subalgebras of classical Lie algebras. Proof
of Theorem C

Suppose char k > 2 for this section.

This section provides proofs for some of the claims made in [Ten87]. Here we
tackle the proof of Theorem C.

Proposition 7.1 (see [SF88, §5.8, Exercise 1]). Let g ≤ gl(V ) be a Lie algebra
acting irreducibly on an g-module V such that g preserves a non-zero bilinear
form. Then g is semisimple.
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Proof. Assume otherwise. Then Rad(g) 6= 0 and we can find an abelian ideal
0 6= J ⊳ g. Take x ∈ J . As [xp, y] = ad(x)py ∈ J (1) = 0, xp centralises g and
we have that v 7→ xpv is a g-homomorphism V → V . Since k is algebraically
closed and V is irreducible, Schur’s lemma implies that xpv = α(x)v for some
map α : J → k.
Since λ 6= 0 there are v, w with λ(v, w) = 1. Now α(x) = λ(xpv, w) =
−λ(v, xpw) = −α(x) so α(x) = 0. Thus xpv = 0 for all x ∈ J . Hence J
acts nilpotently on V and so Engel’s theorem gives an element 0 6= v ∈ V an-
nihilated by J . Since V is irreducible, it follows that JV = J(gv) ≤ gJv = 0.
Thus J = 0 and g is semisimple.

Since any subalgebra of a classical simple Lie algebra of type B, C or D pre-
serves the associated (non-degenerate) form we get

Corollary 7.2. If h is a non-semisimple subalgebra of a classical simple Lie
algebra g of type B, C or D then h acts reducibly on the natural module V for
g.

Remark 7.3. If g = g2 (resp. f4, e7, e8) then a subalgebra acting irreducibly
on the self-dual modules V7 (resp. V26, or V25 if p = 3, V56, V248 = e8) is
semisimple. Here Vn refers to the usual irreducible module of dimension n.

A subalgebra is maximal rank if it is proper and contains a Cartan subalgebra
(CSA) of g. (Note that CSAs of simple algebraic Lie algebras are tori.) Call a
subalgebra h of g an R-subalgebra if h is contained in a maximal rank subalgebra
of g.
For the following, notice that if p| dimV then sl(V ) is not simple, though
provided sl(V ) 6= sl2 in characteristic 2, the central quotient psl(V ) is simple.
Now, a subalgebra h of psl(V ) is an R-subalgebra of psl(V ) if and only if its
preimage π−1h under π : sl(V ) → psl(V ) is an R-subalgebra. We say h acts
reducibly on V if π−1h does.

Proposition 7.4. Let g be a simple algebraic Lie algebra of classical type and
let h ≤ g act reducibly on the natural module V for g. Then h is an R-subalgebra
unless g = so(V ) with dimV = 2n with h ≤ so(W ) × so(W ′) stabilising a
decomposition of V into two odd-dimensional, non-degenerate subspaces W and
W ′ of V .

Proof. Let V be the natural module for g and let W ≤ V be a minimal h-
submodule, so that h ≤ Stabg(W ). If g is of type A then Stabg(W ) is Lie(P )
for a (maximal) parabolic P of SL(V ). Hence h is an R-subalgebra of g.
If g is of type B, C or D, then consider U = W ∩W⊥; this is the subspace of
W whose elements v satisfy λ(v, w) = 0 for every w ∈ W . Since M preserves
λ, this is a submodule of W , hence we have either U = 0 or U = W by
minimality of W . If the latter, W is totally singular. Thus StabgW is Lie(P )
for a parabolic subgroup P of the associated algebraic group.
On the other hand, U = 0 implies that W is non-degenerate. Then V =
W ⊕W⊥ is a direct sum of h-modules and we see that StabgW is isomorphic
to
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(i) sp2r × sp2s in case L is of type C, dimW = 2s and 2r + 2s = dimV

(ii) sor × sos in case L is of type B or D, dimW = s and r + s = dim V .

Note that by [Bou05, VII, §2, No. 1, Prop. 2] the dimensions of the CSA of a
direct product is the sum of the dimensions of the CSAs of the factors. In case
(i), the subalgebra described has the (r+ s)-dimensional CSA arising from the
two factors. In case (ii), if dimV = 2n+ 1 is odd then one of r and s is odd.
If r is odd then sor has a CSA of dimension (r − 1)/2, and sos has a CSA of
dimension s/2, so that the two together give a CSA of dimension s/2 + (r −
1)/2 = n. (Similarly if s is odd.) Otherwise dim V = 2n is even. If dimW is
even then StabgW contains a CSA of dimension r/2 + s/2 = n. If dimW is
odd then we are in the exceptional case described in the proposition.

Remark 7.5. In the exceptional case, note that so2r+1× so2s+1 contains a CSA
of dimension r+s, whereas so2n+2 contains a CSA of dimension n+1 = r+s+1.

Corollary 7.6. Let g be of type B, C or D. If h is a maximal non-semisimple
subalgebra of g, then h is Lie(P ) for P a maximal parabolic of G. In particular,
if h is any non-semisimple subalgebra of g, it is an R-subalgebra.

Proof. Assume otherwise. Then h fixes no singular subspace on V . Suppose h

preserves a decomposition V = V1 ⊥ V2 ⊥ · · · ⊥ Vn on V with n as large as
possible, with the Vi all non-degenerate. Then h ≤ g1 = so(V1)× · · · × so(Vn)
or h ≤ g1 = sp(V1)× · · · × sp(Vn). Since h is non-semisimple, the projection h1
of h in so(V1) or sp(V1), say, is non-semisimple. Then Proposition 7.1 shows
that h acts reducibly on V1. Since h stabilises no singular subspace, the proof
of Proposition 7.4 shows that h stabilises a decomposition of V1 into two non-
degenerate subspaces, a contradiction of the maximality of n.

Let h be a restricted Lie algebra, I ≤ h an abelian ideal and V an h-module. Let
λ ∈ I∗. Recall from [SF88, §5.7] that hλ = {x ∈ h|λ([x, y]) = 0 for all y ∈ I}
and V λ = {v ∈ V |x.v = λ(x)v for all x ∈ I}.

Proposition 7.7. Let h be a non-semisimple subalgebra of sl(V ) with V irre-
ducible for h. Then p| dimV .

Proof. Let h be as described and let I be a nonzero abelian ideal of h. If hp
denotes the closure of h under the p-mapping, then by [SF88, 2.1.3(2),(4)], Ip
is an abelian p-ideal of hp. Thus Radhp 6= 0 and hp is non-semisimple. Hence
we may assume from the outset that h = hp is restricted with nonzero abelian
ideal I.
Since h acts irreducibly on V , by [SF88, Corollary 5.7.6(2)] there exist S ∈ h∗,
λ ∈ I∗ such that

V ∼= Indh
hλ(V

λ, S).

If λ is identically 0 on I then V λ is an h-submodule. We cannot have V λ = 0
(or else V = 0) so V λ = V and I acts trivially on V , a contradiction since
I ≤ sl(V ).
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Hence λ(x) 6= 0 for some x ∈ I. Suppose V λ = V . Then as x ∈ sl(V ), we have
trV (x) = dimV · λ(x) = 0 and thus p| dimV and we are done. If dim V λ <

dimV , then by [SF88, Prop. 5.6.2] we have dimV = pdimL/Lλ

· dimV λ. Thus
again p| dimV , proving the theorem.

Corollary 7.8. If p ∤ dimV then any non-semisimple subalgebra h of sl(V )
acts reducibly on V . Hence it is contained in Lie(P ) for P a maximal parabolic
of SL(V ). In particular h is an R-subalgebra.

Putting together Corollaries 7.6 and 7.8, this completes the proof of Theorem
C.
As a first application, the following lemma uses Theorem C to show that p-
reductive implies strongly p-reductive. Recall that a restricted Lie algebra is
strongly p-reductive if it is the direct sum of a central torus and a semisimple
ideal.

Lemma 7.9. Let h ⊆ gln be a subalgebra and let p > n. If h is p-reductive, it
is strongly p-reductive.

Proof. Take p = l + q a minimal parabolic subalgebra with h ≤ p. Set hl
to be the image of h under the projection π : p → l. Since p > n, we have
l ∼= gl(W1) × · · · × gl(Ws) ∼= sl(W1) × . . . sl(Ws) × z, where z is a torus. Let
si be the projection of hl to sl(Wi), and let z′ be the projection of hl to z. If
the projection of Rad(hl) to sl(Wi) is non-trivial, then si is not semisimple.
By Theorem C, Wi is not irreducible for si. Thus p is not minimal subject to
containing h, a contradiction, proving that all the si are semisimple. Moreover,
z′ = Z(hl), as the projection of z to each sl(Wi) must vanish. This forces
hl ⊆ s1 × · · · × ss × Z(hl) to be strongly p-reductive. As h is p-reductive, we
have that π is injective on h, and hence h ∼= hl is strongly p-reductive.

8 Complete reducibility and low-degree cohomology for classi-
cal Lie algebras: Proof of Theorem D

Let G be a connected reductive algebraic group with root system R and let
Gr ⊳ G be the rth Frobenius kernel for any r ≥ 1. It is well-known that the
representation theory of G1 and g are very closely related. In this section we re-
call results on the cohomology of small Gr-modules and use a number of results
of Bendel, Nakano and Pillen to prove that small Gr-modules are completely
reducible with essentially one class of exceptions. We do this by examining
Ext1Gr

(L(λ), L(µ)) for two simple modules L(λ) and L(µ) of bounded dimen-
sion or weight. While we are at it, we also get information about H2(G1, L(λ)).
In a further subsection, we then go on to use this to prove the analogous
statements for g-modules. One crucial difference we notice is with central ex-
tensions: H2(g, k) tends to be zero, whereas H2(G1, k) is almost always not;
c.f. Corollary 8.2 and Theorem 8.9.
All the notation in this section is as in [Jan03, List of Notations, p. 569]: In
particular, for a fixed maximal torus T ≤ G, we denote by R the corresponding
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root system, by R+ a choice of positive roots with corresponding simple roots
S ⊆ R+, by X(T )+ ⊆ X(T ) the dominant weights inside the character lattice,
by L(λ) the simple G-module of highest weight λ ∈ X(T )+, by H0(λ) the
module induced from λ with socle L(λ), by CZ (resp. C̄Z) the dominant weights
inside the lowest alcove (respectively, in the closure of the lowest alcove). If
G is simply connected, we write ωi ∈ X(T )+ for the fundamental dominant
weight corresponding to αi ∈ S = {α1, . . . , αl}.
Let us recall some results from [McN02] which show the interplay between the
conditions that, relative to p, (i) modules are of small dimension; (ii) their high
weights are small; and (iii) the Coxeter number is small.

Proposition 8.1 ([McN02, Prop. 5.1]). Let G be simple and simply connected,
let L be a simple non-trivial restricted G-module with highest weight λ ∈ X(T )+
and suppose that dimL ≤ p. Then

(i) We have λ ∈ C̄Z.

(ii) We have λ ∈ CZ if and only if dimL < p.

(iii) We have p ≥ h. If moreover dimL < p then p > h.

(iv) If R is not of type A and dimL = p then p > h. If p = h and dimL = p
then R = Ap−1 and λ = ωi with i ∈ {1, p− 1}.

8.1 Cohomology and complete reducibility for small G1-modules

We need values of Hi(G1, H
0(µ)) for µ ∈ C̄Z and i = 1 or 2. Thus H0(µ) =

L(µ).

Proposition 8.2. Let G be simple and simply connected and suppose L = L(µ)
with µ ∈ C̄Z and p ≥ 3. Then:
(i) we have H1(G1, L) = 0 unless G is of type A1, L = L(p − 2) and in that
case H1(G1, L)

[−1] ∼= L(1);
(ii) suppose p > h. Then we have H2(G1, L) = 0 unless: L = k and
H2(G1, k)

[−1] ∼= g∗; or G = SL3, with H2(G1, L(p − 3, 0))[−1] ∼= L(0, 1) and
H2(G1, L(0, p− 3))[−1] ∼= L(1, 0).

Proof. Part (i) is immediate from [BNP02, Corollary 5.4 B(i)]. The A1 result
is well known. Part (ii) requires some argument. If H2(G1, H

0(µ)) 6= 0 then
since p > h we may assume µ ∈ CZ. Now, the values of H2(G1, H

0(µ))[−1] are
known from [BNP07, Theorem 6.2]. It suffices to find those that are non-zero
for which µ ∈ CZ \ {0}. All of these have the form µ = w.0 + pλ for l(w) = 2
and λ ∈ X(T )+. Now, if l(w) = 2, we have −w.0 = α + β for two distinct
roots α, β ∈ R+ (cf. [BNP07, p. 166]). To have w.0 + pλ in the lowest alcove,
one needs 〈w.0 + pλ + ρ, α∨

0 〉 < p. Now 〈pλ, α∨
0 〉 ≥ p so 〈w.0 + ρ, α∨

0 〉 < 0.
Thus m := 〈α + β, α∨

0 〉 > h − 1. Now one simply considers the various cases.
If G is simply-laced, then the biggest value of 〈α, α∨

0 〉 is 2, when α = α0 and
1 otherwise, thus m > h − 1 implies h ≤ 3. Thus we get G = SL3, and this

Documenta Mathematica 21 (2016) 1–37



On the Smoothness of Normalisers. . . 19

case is calculated in [Ste12, Prop. 2.5]. If G = G2 we have m at most 5, giving
h at most 5, a contradiction. If G is type B, C or F , then m is at most 4, so
G = Sp4, p ≥ 5 and this is calculated in [Ibr12, Prop. 4.1]. One checks that all
µ such that H2(G1, L(µ)) 6= 0 have µ 6∈ CZ.

Remark 8.3. All the values of H2(Gr , H
0(λ))[−1] are known for all λ by [BNP07,

Theorem 6.2] (p ≥ 3) and [Wri11] (p = 2). For example, H2(G1, k)
[−1] ∼= g∗

also when G is of type A1 and p = 2. Even for λ = 0 there are quite a
few exceptional cases when p = 2: see [Wri11, C.1.4]. There are also two
exceptional cases for p = 3, for A2 and G2, see [BNP07, Theorem 6.2].

One can go further in the case of 1-cohomology to include extensions between
simple modules:

Lemma 8.4 ([BNP02, Corollary 5.4 B(i)]). Let G be a simple, simply connected
algebraic group not of type A1. If p > 2 then Ext1Gr

(L(λ), L(µ)) = 0 for all
λ, µ ∈ C̄Z.

We will use the above result to show that small Gr-modules are completely
reducible, but we must first slightly soup it up before we use it.

Lemma 8.5. Let G be a simple, simply connected algebraic group not of type
A1 and p > 2.
(i) We have Ext1Gr

(L(λ)[s], L(µ)[t]) = 0 for all λ, µ ∈ C̄Z and s, t ≥ 0.
(ii) For λ, µ ∈ Xr(T ), let λ = λ0 + pλ1 + · · ·+ pr−1λr−1 and µ = µ0 + pµ1 +
· · · + pr−1µr−1 be their p-adic expansions. Suppose we have λi, µi ∈ C̄Z for
each i. Then Ext1Gr

(L(λ), L(µ)) = 0.

Proof. (i) Clearly we may assume s, t < r. When r = 1 the result follows from
Lemma 8.4. So assume r > 1. Without loss of generality (dualising if necessary)
we may assume s ≤ t. Suppose s > 0 and consider the following subsequence
of the five-term exact sequence of the LHS spectral sequence applied to Gs ⊳Gr

(see [Jan03, I.6.10]):

0 → Ext1Gr−s
(L(λ), L(µ)[t−s]) → Ext1Gr

(L(λ)[s], L(µ)[t])

→ HomGr−s
(L(λ),Ext1Gs

(k, k)[−s] ⊗ L(µ)[t−s]) → 0.

Since Ext1Gs
(k, k) = 0, we have

Ext1Gr−s
(L(λ), L(µ)[t−s]) ∼= Ext1Gr

(L(λ)[s], L(µ)[t]),

and the left-hand side vanishes by induction, so we may assume s = 0. There
is another exact sequence

0 → Ext1Gr−1
(k,HomG1

(L(λ), L(µ)[t])[−1]) → Ext1Gr
(L(λ), L(µ)[t])

→ HomGr−1
(k,Ext1G1

(L(λ), L(µ)[t])[−1]) = 0,
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where the last term vanishes by induction. If t = 0 then as λ 6= µ, the first
term of the sequence vanishes and we are done. So we may assume t > 0. Now
we can rewrite the first term as Ext1Gr−1

(k,HomG1
(L(λ), k)[−1] ⊗L(µ)[t−1]). If

this expression is non-trivial we have λ = 0 and Ext1Gr−1
(k, L(µ)[t−1]) vanishes

by induction, which completes the proof.
(ii) Suppose i is the first time either λi−1 or µi−1 is non-zero. Without loss of
generality, λi−1 6= 0. Write λ = λi + piλ′ and take a similar expression for µ.
Then there is an exact sequence

0 → Ext1Gr−i
(L(λ′),HomGi

(L(λi), L(µi))[−i] ⊗ L(µ′)) → Ext1Gr
(L(λ), L(µ))

→ HomGr−i
(L(λ′),Ext1Gi

(L(λi), L(µi))[−i] ⊗ L(µ′)).

We have L(λi) = L(λi−1)
[i−1] and L(µi) = L(µi−1)

[i−1]. Hence the right-hand
term vanishes by part (i). The left-hand term is non-zero only if λi = µi

and then we get Ext1Gr−i
(L(λ′), L(µ′)) ∼= Ext1Gr

(L(λ), L(µ)). Thus the result
follows by induction on r.

We put these results together to arrive at an analogue of Jantzen’s well-known
result [Jan97] that G-modules for which dimV ≤ p are completely reducible.

Proposition 8.6. Let G be a simple, simply connected algebraic group and let
dimV ≤ p be a Gr-module. Then exactly one of the following holds:
(i) V is a semisimple Gr-module;
(ii) G is of type A1, p > 2, r = 1, dim V = p and V is uniserial, with
composition factors L(p− 2− s) and L(s) with 0 ≤ s ≤ p− 2;
(iii) G is of type Cn with n ≥ 1, p = 2 and V is uniserial with two trivial
composition factors.

Proof. Assume V has only trivial composition factors. We have Ext1Gr
(k, k) 6= 0

if and only if p = 2 and G is of type Cn, in which case Ext1Gr
(k, k)[−r] ∼= L(ω1);

[Jan03, II.12.2]. This is case (iii).
Otherwise, p > 2 and Ext1Gr

(L(λ), L(λ)) = 0 for all λ ∈ Xr(T ) by [Jan03,
II.12.9].
Assume G is not of type A1. By assumption, V has a non-trivial composition
factor with dimV ≤ p. Then p > 2 and the hypotheses of Lemma 8.4 hold.
Since dimV ≤ p, by Proposition 8.1 any Gr-composition factor L(λ) of V has
a p-adic expansion λ = λ0 + · · · + pr−1λr with each λi ∈ C̄Z. If there were
a non-split extension 0 → L(λ) → V → V/L(λ) → 0 then there would be a
non-split extension of L(λ) by L(µ) for L(µ) a composition factor of V , also of
the same form. But by Lemma 8.5(ii) we have Ext1Gr

(L(λ), L(µ)) = 0, hence
this is impossible and L(λ) splits off as a direct summand. Induction on the
direct complement completes the proof in this case.
If G is of type A1 then the Gr-extensions of simple modules are well known. If
r > 1 with λ, µ ∈ Xr(T ) then dimExt1Gr

(L(λ), L(µ)) = dimExt1G(L(λ), L(µ))
and this must vanish whenever dimL(λ)+dimL(µ) ≤ p. If r = 1, then the only
pairs of G1-linked weights are s and p− 2− s with Ext1G1

(L(s), L(p− 2− s)) ∼=
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L(1)[1] as G-modules. Here we have dimL(s) + dimL(p − s − 2) = p giving
case (ii).

The following two corollaries are immediate, in the first case, the passage from
G being simple to being reductive is trivial (consider the cover of G by the
product of the radical and the simply connected cover of the derived group).

Corollary 8.7. Let G be a connected reductive algebraic group and let V be
a Gr-module with p > dimV . Then V is semisimple.

Corollary 8.8. Let G be connected reductive and Gr ≤ GL(V ) with dimV ≤
p. Then either Gr is completely reducible on V or dim V = p, G is of type A1,
r = 1 and Gr is in a maximal parabolic of GL(V ) acting indecomposably on V
as described in case (ii) of Proposition 8.6.
Moreover, if g is a p-reductive subalgebra of GL(V ) with dim V < p then g acts
semisimply on V .

Proof. If G is not simple, it can be written as HK with H and K non-trivial
mutually centralising connected reductive subgroups with maximal tori S and
T say. The Frobenius kernels H1,K1 ≤ G1 ≤ Gr are also mutually centralising,
so that H1 is in the centraliser of T1. Now the centraliser of T1 is a proper
Levi subgroup of GL(V ), hence restriction of V to Hr has at least one trivial
direct factor, with direct complement W say, dimW < p. Thus by Corollary
8.7, W is completely reducible for Hr and by symmetry, for Kr. Thus W is
completely reducible for KrHr = Gr.
Otherwise, G is simple and Proposition 8.6 gives the result (note that case (iii)
does not occur due to dimension restrictions).
For the last part, Lemma 7.9 implies that g is the direct sum of a semisimple
ideal and a torus, and we may hence assume that g is a semisimple restricted
subalgebra of gl(V ). If g is not irreducible on V , then by Theorem 2.3 there
exists a semisimple group G with g = Lie(G). Now the result follows from the
case G1 above.

8.2 Cohomology and complete reducibility for small g-modules

We now transfer our results to the ordinary Lie algebra cohomology for g.
Recall the exact sequence [Jan03, I.9.19(1)]:

0 → H1(G1, L) → H1(g, L) → Homs(g, Lg)

→ H2(G1, L) → H2(g, L) → Homs(g,H1(g, L)) (1)

The following theorem is the major result of this section.

Theorem 8.9. Let g = Lie(G) be semisimple. Then:

(a) If p > h with µ ∈ C̄Z then either H2(g, L(µ)) = 0, or one of the following
holds: (i) g contains a factor sl3 and L(µ) contains a tensor factor of
L(p−3, 0) or L(0, p−3) for this sl3; (ii) g contains a factor sl2 and L(µ)
has a tensor factor L(p− 2) for this sl2.
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(b) If p > 2 is very good for G then H2(g, k) = 0.

(c) If p > 2 is very good for G and λ, µ ∈ C̄Z we have Ext1g(L(λ), L(µ)) = 0,
or G contains a factor of type A1, L(λ) and L(µ) are simple mod-
ules for that factor, λ = s < p − 1, µ = p − 2 − s and we have
Ext1g(L(λ), L(µ))

[−1] ∼= L(1).

Proof. We may assume that G is simply connected, since the condition on p
implies that g = g1 × g2 · · · × gs. Now one can reduce to the case that G is
simple using a Künneth formula. To begin with, any simple module L(λ) for
g = g1 × g2 × · · · × gs is a tensor product of simple modules L(λ1) ⊗ · · · ⊗
L(λs) for the factors. Then by the Künneth formula dimExt1g(L(λ), L(µ)) 6= 0

implies that λi = µi for all i 6= j, some 1 ≤ j ≤ s and Ext1g(L(λ), L(µ))
∼=

Ext1gj
(L(λj), L(µj)). This means we may assume G to be simple in (c). For

H2(g, L(λ)) to be non-zero one must have all λi = 0 for all i 6= j, k some
1 ≤ j < k ≤ s and then

H2(g, L(λ)) = H2(gj , L(λj))⊗H0(gk, L(λk))⊕H1(gj , L(λj))⊗H1(gk, L(λk))

⊕H0(gj , L(λj))⊗H2(gk, L(λk)).

Now first suppose that both λj and λk are non-trivial. Then only the second
direct summand in H2(g, L(λ)) survives, and by (1) it coincides with the tensor
product of the 1-cohomology groups of the corresponding Frobenius kernels. By
Proposition 8.2, non-vanishing would force λj = p− 2 = λk and gj = gk = sl2
giving one exceptional case.

Next we treat the case λk = 0 and λj non-trivial. Again by (1) and Proposition
8.2, we obtain H2(g, L(λ)) = H2(gj , L(λj)), and we are in the case where G is
simple and L(λ) non-trivial. In case g = sl2, the result follows from [Dzh92].
So suppose g 6= sl2. Setting L = L(µ) in (1) we see that if µ 6= 0 we have
H1(g, L) ∼= H1(G1, L) and the right-hand side is zero by Lemma 8.4. Thus we
also have H2(g, L) ∼= H2(G1, L) and the latter is zero by Proposition 8.2 unless
g = sl3 and the exception is as in the statement of the Theorem, since we have
excluded the A1 case.

Finally, the case λj = λk = 0 reduces by the above to the case G simple, L = k
and the claim that H2(g, k) = 0. Here we have H1(g, k) ∼= (g/[g, g])∗ and this is
zero since p is very good and g is semisimple. We also have H2(G1, k)

[−1] ∼= g∗.
The injective map Homs(g, Lg) → H2(G1, L) is hence an isomorphism, which
forces H2(g, k) = 0 in the sequence (1). This also proves (b).

Now we prove the statement (c) under the assumption that G is simple. We
have an isomorphism Ext1g(L(λ), L(µ))

∼= H1(g, L(µ)⊗L(λ)∗). Let M = L(µ)⊗
L(λ)∗. If λ 6= µ, then applying the exact sequence (1) to M yields H1(g,M) ∼=
H1(G1,M) and the latter is zero by Lemma 8.4 if G is not of type A1 and
well-known if G is of type A1. Hence we may assume λ = µ. The assignation
of L to the sequence (1) is functorial, thus, associated to the G-map k → M ∼=
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Homk(L,L), there is a commutative diagram

0 −−−−→ H1(g, k) = 0 −−−−→ Homs(g, kg) ∼= (g∗)[1]
∼=

−−−−→ H2(G1, k)


y ∼=



y θ



y

0 −−−−→ H1(g,M) −−−−→ Homs(g,Mg) ∼= (g∗)[1]
ζ

−−−−→ H2(G1,M)

,

where the natural isomorphism kg → Mg induces the middle isomorphism and
the top right isomorphism has been discussed already. We want to show that ζ
is injective, since then it would follow that H1(g,M) = 0. To do this it suffices
to show that θ is an injection (g∗)[1] → H2(G1,M) and for this, it suffices
to show that the simple G-module (g∗)[1] does not appear as a submodule of
H1(G1,M/k). Now since λ ∈ C̄Z we have L(λ) ∼= H0(λ) and so by [Jan03,
II.4.21], M has a good filtration. The socle of any module H0(µ) with µ ∈ X+

is simple. Thus the submodule k ≤ M constitutes a section of this good
filtration, with M/k also having a good filtration.
The G-modules H1(G1, H

0(µ)) have been well-studied by Jantzen [Jan91] and
others. In order to have (g∗)[1] a composition factor of H1(G1, H

0(µ)), we
would need g ∼= g∗ ∼= H0(ωα) where µ = pωα − α and α is a simple root
with ω the corresponding fundamental dominant weight; [BNP04, Theorem
3.1(A,B)]. Now for type An, with p 6 |n + 1, we have g = L(2ω1) if n = 1 and
g = L(ω1 + ωn) else; and for type B2, we have g = L(2ω2), ruling these cases
out. For the remaining types, we have

Type Bn,Cn Dn E6 E7 E8 F4 G2

g ∼= L(ωα) for ωα = ω2 ω2 ω2 ω1 ω8 ω1 ω2

〈pωα − α, α∨
0 〉 2p 2p 2p− 1 2p− 1 2p− 1 2p 3p

On the other hand, since λ ∈ C̄Z it satisfies 〈λ + ρ, α∨
0 〉 ≤ p, i.e. 〈λ, α∨

0 〉 ≤
p−h+1. Hence any high weight µ of M = L⊗L∗ satisfies 〈µ, α∨

0 〉 ≤ 2p−2h+2.
Looking at the above table, it is easily seen that this is a contradiction. Thus
(g∗)[1] is not a composition factor of H1(G1,M/k) and the result follows.

Remarks 8.10. (i) When λ 6= µ in the proof of the above proposition, one also
sees that there is an isomorphism Ext2G1

(L(λ), L(µ)) ∼= Ext2g(L(λ), L(µ)) but
we do not use this fact in the sequel.
(ii) The conclusion of the theorem is incorrect if G is reductive but not semisim-
ple. For example, if G is a torus, then g is an abelian Lie algebra, and H1(g, k)
is non-trivial. For instance the two-dimensional non-abelian Lie algebra is a
non-direct extension of k by k. One also has H2(k × k, k) 6= 0 by the Künneth
formula: for example the Heisenberg Lie algebra is a non-split extension of k
by k × k.
(iii) When p = 3 and G = SL3, then H2(G1, k)

[−1] ∼= g∗ ⊕ L(ω1) ⊕ L(ω2),
by [BNP07, Theorem 6.2]. Thus the same argument shows that H2(g, k) ∼=
L(ω1) ⊕ L(ω2). It follows from the Künneth formula that if G is a direct
product of n copies of SL3 then H2(g, k) ∼= [L(ω1)⊕ L(ω2)]

⊕n.
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(iv) In part (a) of the theorem, one can be more specific. If g = sl2 then
[Dzh92] shows that H2(g, L(p− 2)) is isomorphic to L(1)[1] as a G-module. If
g = sl2 × · · · × sl2

︸ ︷︷ ︸

n times

×h then one can show moreover that H2(g, L(µ)) is non-zero

only if
L(µ) ∼= L(µ1)⊗ · · · ⊗ L(µn)⊗ L(µn+1)

with each µi ∈ {0, p−2} and µn+1 = 0. Let r be the number of times µi = p−2.
Then, the Künneth formula shows that

dimH2(g, L(µ)) =







0 if r = 0;

2 if r = 1;

4 if r = 2;

0 otherwise.

We use the theorem above to get analogues of Corollary 8.8 for Lie algebra
representations.

Proposition 8.11. Let G be a simple algebraic group with g = [g, g] and let
dimV ≤ p be a g-module. Then exactly one of the following holds:
(i) V is a semisimple g-module;
(ii) G is of type A1, dim V = p and V is uniserial, with composition factors
L(p− 2− s) and L(s).

Proof. The proof is similar to Proposition 8.6. Since dimV ≤ p, any com-
position factor of V is a restricted simple g-module, or V is simple. Since
Ext1g(k, k) = H1(g, k) ∼= (g/[g, g])∗ = 0, if V consists only of trivial compo-
sition factors then V is semisimple. Thus we may assume that g contains a
non-trivial composition factor L. Then either dimL = p and V is simple, or
p > h by Lemma 8.1(iii). By the condition on V , any two distinct composition
factors, L(λ) and L(µ) satisfy λ, µ ∈ CZ by Lemma 8.1(ii). If G is not of type
A1, then Ext1g(L(λ), L(µ)) = 0 by Theorem 8.9 and the exceptional case, where
G = A1, is well known.

As before there is a corollary:

Corollary 8.12. Let G be a semisimple algebraic group and let V be a g-
module with p > dimV . Assume that g = [g, g]. Then V is semisimple.

The next corollary uses a famous result of Serre on the semisimplicity of tensor
products to extend our results a little further. This result will be crucial for
showing the splitting of certain non-semisimple Lie algebras.

Corollary 8.13. Let g be a Lie algebra and V , W two semisimple g-modules
with dimV + dimW < p+ 2. Then V ⊗W is semisimple.
Furthermore, let g = Lie(G) for G a semisimple algebraic group with p > 2 and
p very good. Then H2(g, V ⊗W ) = 0 unless g contains a factor sl2 and V ⊗W
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contains a composition factor of the sl2-module L(p−2). Also H1(g, V⊗W ) = 0,
unless one of V and W is isomorphic to k and we are in one of the exceptional
case of Theorem 8.9.

Proof. For the first statement, we begin with some reductions as in [Ser94]. If
W = 0 or k there is nothing to prove. If W is at least 2-dimensional, then
either p = 2 and V is trivial (so that the result holds), or both dimV and
dimW < p. We may assume that both V and W are simple. Further, we may
replace g by the restricted algebra generated by its image in gl(V ⊕ W ). As
V ⊕ W is a semisimple module, we may thus assume g is p-reductive. Now
g ⊆ gl(V ) × gl(W ) = sl(V ) × sl(W ) × z, where z is a torus, and where the
projections of g onto the first two factors are irreducible, hence semisimple by
Theorem B. We thus may assume g ⊆ sl(V )× sl(W ) is a semisimple restricted
subalgebra.
By Theorem 2.3, either (i) g has a factorW1, the first Witt algebra and V is the
(p − 1)-dimensional irreducible module for W1; or (ii) g is Lie(G) for a direct
product of simple algebraic groups, and V and W are (the differentials of) p-
restricted modules for G. In case (i), as p > 2, we would haveW ∼= k⊕k for W1

and the result holds. So we may assume that (ii) holds. Now [Ser94, Prop. 7]
implies that V ⊗ W is the direct sum of simple modules with restricted high
weights λ satisfying λ ∈ CZ. Since each of these composition factors is simple
also for g, V ⊗W is semisimple with those same composition factors.
For the remaining statements, let h be the image of g in gl(V ⊕ W ), so that
g = h ⊕ s with s acting trivially. Let h be the coxeter number of h. Now
if W = k, say, then since p is very good for g we can have p = dim V by
Proposition 8.1 only for p > h, so otherwise dim V < p. And if dimW > 1
then dimV < p also. Now dimV < p also implies by Proposition 8.1 that
p > h. Also a summand L(λ) of V ⊗W has λ ∈ CZ. Now Theorem 8.9 implies
that H1(g, V ⊗W ) = H2(g, V ⊗W ) = 0, unless we are in the exceptional cases
described. However, if g = sl3 then the module L(p − 3, 0) or its dual has
dimension (p − 1)(p − 2)(p− 3)/2 > ((p + 1)/2)2 hence it cannot appear as a
composition factor of V ⊗W .

Remark 8.14. If g = W1 the conclusion of the second part is false, since
H1(g, V ) 6= 0 when V is the irreducible (p− 1)-dimensional module for g.

Proof of Theorem D:. We must just give references for the statements made.
For (a), see Proposition 8.6; for (b), see Proposition 8.11; for (c), see Theorem
8.9; for (d), see Corollary 8.13. This completes the proof of Theorem D.

9 Decomposability: the existence of Levi factors

Let h be a restricted subalgebra of gl(V ) with p > dimV . In this section
we show, in Theorem 9.2, a strong version of the Borel–Tits Theorem in this
context.
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Let G be connected reductive. Recall, say from [ABS90] that if p = l + q is
a parabolic subalgebra of g = LieG then q has a central filtration such that
successive quotients have the structure of l-modules. We record a specific case:

Lemma 9.1. In case G = GLn, a parabolic subalgebra p = l+q has the property
that l is a direct product gl(V1)×gl(V2)×· · ·×gl(Vr) and q has a central filtration
with successive factors being modules of the form Vi⊗V ∗

j , each factor occurring
exactly once.

Theorem 9.2. Let h be a restricted Lie subalgebra of gl(V ) with dimV < p,
and let r = Radp(h) (= RadV (h)).
Then there is a parabolic subalgebra p = l + q, with r ≤ q and containing a
complement s to r in h, with s ≤ l and h = s + r as a semidirect product.
Furthermore, s acts completely reducibly on V and is the direct sum of a torus
and a semisimple ideal.

Proof. As in the proof of Lemma 7.9 we take a minimal parabolic subgroup
P = LQ so that its Lie algebra p = l+ q contains h and so that the projection
hl := π(h) of h to the Levi subalgebra l is strongly p-reductive and we may
write hl = hs ⊕ z where hs is semisimple and z = Z(hl). We also have r ≤ q,
since hl is p-reductive.
Now by Theorem 2.3, either hs = W1, h = hl, p = l = gl(V ) and we are done;
or hl is isomorphic to a direct product of classical Lie algebras si and z.
We first lift z to h. Let π′ : h → z be the composition of π with the projection
onto z. By [SF88, Lemma 2.4.4(2)], there is a torus z′ ≤ Z(l) + q so that
h = z′+ker(π′). Now since z′ is a torus, it is linearly reductive, we may replace
h by a conjugate by Q so that z′ ⊆ Z(l). Let us rewrite z = z′ and identify z

with its image in l under π.
Next we construct a complement to r in h. Let π′′ : h → hs be the composition
of π with the projection onto hs and let h′ ⊆ h be a vector space complement
to ker(π′′). Then r+ h′ ≤ h is a subalgebra, and we have an exact sequence

0 → r → r+ h′
π′′

→ hs → 0.

We show this sequence is split. By Lemma 9.1, the nilpotent radical q of l
has a filtration q = q1 ⊇ q2 ⊇ · · · ⊇ qm = 0 with each qi/qi+1 having the
structure of an l-module Mi ⊗Ni with Mi and Ni irreducible modules for the
projections of hl to distinct factors of the Levi. Since dimMi + dimNi < p,
we have by Corollary 8.13 that Mi ⊗Ni is a direct sum of irreducible modules
for hs with H2(hs,Mi ⊗ Ni) = 0. By intersecting with r, we get a filtration
r = r1 ⊇ r2 ⊇ · · · ⊇ rm = 0 by hs-modules so that each ri/ri+1 is a submodule
of Mi ⊗ Ni, hence also a semisimple module with H2(hs, ri/ri+1) = 0. By an
obvious induction on the length m of the filtration {ri} we now see that the
sequence

0 → r → r+ h′ → hs → 0

is split. Thus we may set h′s a complement to r in h′ + r.
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We would like to set s = h′s + z, however this vector space may not be a
subalgebra of g. Write q = cq(z) + [q, z]. (This can be done, for instance
by [SF88, Lemma 2.4.4(1)].) Any element h of h′s can be written as h1+q1+q2
for h1 ∈ l, q1 in cq(z) and q2 ∈ [q, z]. As h is stable under ad z, with z centralising
h1 and q1, we conclude that q2 ∈ h. Thus we have the element h′ = h1+q1 ∈ h.
Thus we may form the subspace h′′s ≤ h with h′′s ≤ l+ cq(z).
Using that h′s ≤ h is a subalgebra, that cq(z) is l = cgl(V )(z)-invariant and that
[q, z] is an ideal in q, one checks that h′′s is indeed a subalgebra,4 with h′′s also
a complement to r in h′s + r. Now we have guaranteed that s = h′′s + z is a
subalgebra of h, a complement to r in h.
Now, by Corollary 8.12, h′′s acts completely reducibly. Also, since z is a torus,
z is linearly reductive on restricted representations, hence also acts completely
reducibly. Thus s is completely reducible on V . In particular, we may replace
l with a Levi subalgebra of p that contains s, which finishes the proof.

10 Proof of Theorem B(i)

Proof. We first prove the statement in the case that G = GL(V ), so we assume
p > dimV + 1. By assumption, h is a restricted subalgebra of g.
Let n = ng(h). By Theorem 9.2 we may decompose both n and h. Let n =
nl + nq ≤ p = l+ q with nl ≤ l and nq ≤ q, with nl = ns + z, z a torus and ns is
by Theorem 2.3 isomorphic to a direct product of classical Lie algebras acting
completely reducibly on V ; also set hq = h ∩ q and hl = π(h) the projection to
l. Since n is generated by nilpotent elements we have z = 0 and hl = hs. Since
the complement to hq in h obtained by Theorem 9.2 is completely reducible on
V and hence conjugate to a subalgebra of l, we may assume that h = hq + hl
is this splitting. Furthermore, hl ≤ nl is an ideal of a direct product of simple
subalgebras, hence is a direct product of some subset of those simples.
Since V has dimension less than p, V |nl

is a restricted module for nl. Hence
there is a connected algebraic group Nl with LieNl

∼= nl, Nl ≤ GL(V ) and
V |Lie(Nl)

∼= V |nl
. Hence, replacing Nl by a conjugate if necessary, we have

Lie(Nl) = nl. Moreover if L is a Levi subgroup of GL(V ) chosen so that
Lie(L) = l then we may produce Nl ≤ L. Clearly Nl normalises any direct
factor of nl, in particular, hl.
Now, since the l-composition factors of q are all of the form W1 ⊗ W2 for
dimW1 + dimW2 < p and W1, W2 irreducible for ns, [Ser94, Prop. 7] implies
that q is a restricted semisimple module for Nl and nl. Since nl normalises
hq = h∩q, this space also appears as anNl-submodule in q, hence Nl normalises
hq.

4The calculation is as follows: if h1 + q1 + q2 and h′

1 + q′1 + q′2 are two elements of h′
s
then

[h1 + q1 + q2, h
′

1 + q′1 + q′2] = [h1, h2]
︸ ︷︷ ︸

∈hl

+ [h1, q
′

1] + [q1, h
′

1] + [q1, q
′

1]
︸ ︷︷ ︸

∈cq(z)

+x,

where x ∈ [q, z] by the Jacobi identity. But projecting to h′′
s
one simply deletes q2, q′2 and x

to get the analagous calculation.
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It remains to construct a unipotent algebraic group Nq such that LieNq = nq

withNq normalising h. For this we use Corollary 4.4. LetNq = 〈expx : x ∈ nq〉.
Then Nq is a closed subgroup, which by Corollary 4.4 consists of elements
normalising h. By Lemma 4.5, nq ≤ Lie(Nq).
Let N be the smooth algebraic group given by N = 〈Nl, Nq〉. We have shown
that N normalises h and that n ⊆ LieN . Since also LieN ⊆ n we are done for
the case G = GL(V ).
To prove the remaining part, we appeal to Proposition E again.
Let G be a simple algebraic group with minimal dimensional representation V .
Then since p > dimV , (GL(V ), G) is a reductive pair. Indeed, the assumption
on p guarantees that the trace form associated to V is non-zero, see [Gar09, Fact
4.4]. This implies the reductive pair property (cf. the proof of [Gar09, Prop.
8.1]). The theorem now follows by invoking Proposition E.

11 Examples

In this section we mainly collect, in a number of statements, examples which
demonstrate the tightness of some of our bounds. First let us just point out
that there are some rather general situations in which smooth normalisers can
be found.

Example 11.1 ( [MT09, Theorem B]). Suppose G is a quasi-split reductive
group over a field k of very good characteristic. Then the normaliser N =
NG(C) of the centraliser C = CG(e) of a regular nilpotent element e of g =
Lie(G) is smooth.

Example 11.2 ([HS16, Proof of Lem. 3.1]). Suppose G is reductive over an
algebraically closed field k of very good characteristic and e is a nilpotent
element of g = Lie(G), then the normaliser NG(〈e〉) of the 1-space 〈e〉 of g is
smooth.

We will first give the promised example discussed after the statement of The-
orem A. For this, we will need a lemma.

Lemma 11.3. Let B = TU be a Borel subgroup of a reductive algebraic group
G containing a maximal torus T with unipotent radical U . Suppose NB(h) is
smooth and s ∈ t = Lie(T ) an element normalising a subspace h of u = Lie(U).
Then 〈s〉 = Lie(χ(Gm)) for a cocharacter χ : Gm → NB(h), such that χ(Gm)
is conjugate by an element of CU (s) to a cocharacter with image in T .

Proof. Since NB(h) is smooth, we may, by [Hum67, Thm. 13.3], write any
maximal torus s of nb(h) as Lie(S) for S a maximal torus of NB(h). By [Die52,
Prop. 2], for any semisimple element s ∈ s we may write 〈s〉 = Lie(S1) for
S1 ⊆ S. Defining an appropriate isomorphism Gm → S1, we may even write
s = d

dt

∣
∣
t=1

χ(t) for χ a cocharacter of NB(h).
As the maximal tori of B are conjugate by elements of U , we have that S
is conjugate to its projection to T , say via u ∈ U ; in particular, uχ(t)u−1 ∈
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T . Since projection to T is B-equivariant, we have on differentiating, that
d
dt

∣
∣
t=1

(uχ(t)u−1) = s, so that usu−1 = s, i.e. that u ∈ CU (s).

Example 11.4. Let n ≥ 4. This example depends on three fixed parameters
λ1, λ2, λ3 together with variables {ai}1≤i≤n, {bi}1≤i≤n−1, c, d, and e, each
taking values in k = F̄p.
Let us define the following matrices:

A :=























0 a1 a2 ∗ ∗ ∗ . . . ∗ ∗ ∗
0 a1 β2 ∗ ∗ . . . ∗ ∗ ∗

0 a2 β3 ∗ . . . ∗ ∗ ∗

0 a3 β4
. . .

...
...

...

0 a4
. . . ∗ ∗ ∗

0
. . . βn−2 c e+ λ1βn−2

. . . an−2 βn−1 (1 + λ1)an−2 + d
0 an−1 bn−1

0 an
0























,

with βi = ai+1 + bi−1 for i = 2, . . . , n− 1,

B :=















0 a1 b1 ∗ . . . ∗

0 a2 b2
. . .

...

0 a3
. . . ∗

0
. . . bn−1

. . . an
0















,

C :=









0 an−3 an−1 + bn−3 c e+ λ2(an−1 + bn−3)
0 an−2 an + bn−2 (1 + λ2)an−2 + d

0 an−1 bn−1

0 an
0









,

D :=







0 an−2 an + bn−2 d+ λ3an−2

0 an−1 bn−1

0 an
0






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Then the reader may check that for each choice of λ1, λ2 and λ3, the following
set defines a subalgebra h of the strictly upper triangular matrices:













A ∗ ∗ ∗
0 B ∗ ∗
0 0 C ∗
0 0 0 D







: ai ∈ k, bj ∈ k, c, d, e ∈ k







.

Let Fi denote the ith Fibonacci number, so that F0 = F1 = 1 and F2 = 2 and
suppose that r is chosen so that Fr+1 = p is the prime characteristic of k, and
let us suppose that NG(h) is smooth. Since every entry of the superdiagonal
is non-zero for some element in h, it is easy to check that NG(h) ⊆ B. Thus
NG(h) = NB(h) and we may employ Lemma 11.3.
Suppose s = diag(s1, . . . , s2n+12) is an arbitrary element of the diagonal torus
t = Lie(T ). Then one can calculate the dimension of nt(h) by enumerating the
linear conditions amongst the ti necessary to normalise h. For example, setting
all indeterminates in a general matrix of h to be zero, except for a1 = 1 gives a
matrix M , which spans a 1-space 〈M〉 of h. One can see by inspection that s
will normalise h only if it normalises 〈M〉. However, calculating [s,M ], we see
that to normalise 〈M〉 implies the following condition must hold:

s1 − s2 = s2 − s3 = s2n+4 − s2n+5.

Repeating over other 1-spaces leads to a collection of relations which can be
expressed by a system of linear equations Rs = 0 for some matrix R and
the vector s = (s1, . . . , s2n+12). The kernel of R modulo p then determines
the dimension of nt(h). To determine the dimension of NT (h), one searches for
cocharacters χ(t) = diag(tk1 , tk2 , . . . , tk2n+12) which normalise h by conjugation.
This leads to an identical set of relations on the entries of the vector k =
(k1, . . . , k2n+12), so that the equation Rk = 0 must be solved over the integers.
Then the dimension of NT (h) is the nullity of R.
The nullities of R over Z and over Z/p are identical if and only if s can be lifted
to a diagonal cocharacter χ(t) so that d/dt|t=1χ(t) = s. By explicit calculation
of R in our particular case, one sees its elementary divisors are 04, 12n+7, Fr+1.
Thus since p = Fr+1 the nullity of R modulo p is bigger than over Z. Thus
there is a toral element s, which cannot be lifted to a diagonal cocharacter. In
our case, h has an obvious centraliser whose elements are:

diag(s1, . . . , s1
︸ ︷︷ ︸

r+2

, s2, . . . , s2
︸ ︷︷ ︸

r+1

, s3, . . . , s3
︸ ︷︷ ︸

5

, s4, . . . , s4
︸ ︷︷ ︸

4

)

which accounts also for the four-dimensional kernel over the integers.
One also checks that the subalgebra h is normalised by the toral element

s :=diag(1, 2, 3, 5, 8, . . . , Fr, Fr+1, Fr+2)

⊕ diag(F2 + 4 = 6, F3 + 4 = 7, . . . , Fr + 4, Fr+1 + 4, Fr+2 + 4 = Fr + 4)

⊕ diag(Fr−2 + 1, Fr−1 + 1, Fr + 1, Fr+1 + 1, Fr+2 + 1)

⊕ diag(Fr−1 + 2, Fr + 2, Fr+1 + 2, Fr+2 + 2),
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where for the direct sum A⊕B of two square matrices A and B we mean the
block diagonal matrix having A and B on the diagonal. Note the congruence
amongst the entries in t, Fr = Fr+2 mod p. Thus on each line, the last
and pen-penultimate entries are the same modulo p. Furthermore, since this
element does not centralise h, it can have no lift to a diagonal cocharacter.
By assumption, NG(h) = NB(h) is smooth. Thus 〈s〉 lifts to the image of
a cocharacter χ′ which, by Lemma 11.3 is conjugate by CU (s) to a diagonal
cocharacer χ. Since by inspection, only five entries of s are the same, s is a
regular toral element of ng(h) and one checks

CU (s) = 〈1 + ter,r+2, 1 + te2r+1,2r+3, 1 + te2r+6,2r+8, 1 + te2r+10,2r+12 : t ∈ k〉.

The action of the second listed element in turn normalises h and the first, third
and fourth simply change the values of λ1, λ2, λ3. Thus if g ∈ CU (s) then one
computes a new relation matrix R′ computing the normaliser nt(h

g) which, by
virtue of being independent of the values of λi, is identical to R. In particular,
〈s〉 still normalises h but there is still no lift to a diagonal cocharacter. This
contradicts the conclusion of Lemma 11.3, hence NG(h) is not smooth.

The next example will show the necessity of the bound in Theorem 3.2. We
first collect some miscellaneous auxiliary results in the following lemma. Recall
that a subgroup H of a connected reductive group G is called G-irreducible if
it is in no proper parabolic subgroup of G.

Lemma 11.5. Suppose G is a connected reductive algebraic group and H is a
(possibly disconnected) closed reductive subgroup of G.
(i) We have NG(H)◦red = H◦CG(H)◦red.
(ii) If H is G-irreducible, then CG(H)◦red = Rad(G), where Rad(G) = Z(G)◦red.
(iii) Suppose H ≤ M ≤ G is an intermediate reductive subgroup with Rad(G) ≤
Rad(M) and that H is G-irreducible. Write Z(M)◦ = Rad(M) × µM for an
infinitesimal subgroup scheme µM . Then either µM ≤ Z(H) or NG(H) is
non-smooth.

Proof. (i) and (ii) follow from [Mar03, Lemmas 6.2 and 6.8].
For (iii), clearly µM ≤ Z(M) ≤ NG(H). If NG(H) is smooth, then by parts
(i) and (ii) we have µM ≤ Z(M)◦ ≤ H◦CG(H)◦red = H◦ Rad(G). This forces
µM ≤ H◦.

Examples 11.6. Lemma 11.5 can be used to produce reductive subgroupsH of
G with non-smooth normalisers in bad characteristic. We use [Her13, Example
4.1], in which the first author constructs examples of non-smooth centralisers
for each reductive group over a field of characteristic p for which p is not a
very good prime for G. All the subgroups constructed in loc. cit. are maximal
rank reductive subgroups M such that CG(M) = Z(M) is non-smooth, hence
µM 6= 1 in Lemma 11.5(iii) above. In many cases, we may take a further
connected, reductive G-irreducible subgroup H of M such that p is pretty
good for H . Thus its centre is in fact smooth, and being finite, cannot contain
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µM . Thus by Lemma 11.5(iii) the normaliser NG(H) is non-smooth. Let us
list some triples (G, p,M,H) which work for this process. By Vn we denote a
natural module of dimension n for the classical group M ; by M̃1 we mean a
subgroup of type M1 corresponding to short roots.

G p M H
G2 3 A2 A1 →֒ M ; V3|H = L(2)
F4 2 A4

1 A1 →֒ M ; x 7→ (x, x2, x4, x16)

F4 3 A2Ã2 (A1, A1) →֒ M ; (V3, V3)|H = (L(2), L(2))
E8 5 A2

4 A2
1 →֒ M ; (V5, V5)|H = (L(4), L(4))

SLp p > 2 SLp A1 →֒ M ; Vp|H = L(p− 1).

Remark 11.7. A complete list of conjugacy classes of simple G-irreducible sub-
groups of exceptional groups has been compiled by A. Thomas, see [Tho15]
for the cases of rank at least 2 and [Tho16] for the rank 1 case. For the G2

example one may consult [Ste10, Theorem 1, Corollary 3].

The next example shows the promised tightness of Theorem B(i) as stated in
Remark 1.2(a).

Lemma 11.8. Let G = GL(V ) with dimV ≥ p− 1 ≥ 3 and take any subspace
W ≤ V with dimW = p− 1. Then if W1 ≤ gl(W ) is the first Witt algebra in
its p− 1-dimensional representation we have NG(W1) is not smooth.

Proof. Since W1 is irreducible onW , the normaliser ngl(V )(W1) = nsl(W )(W1)⊕
z⊕gl(U) for V = W⊕U and z the centre of gl(W ). Moreover asW1 is irreducible
on W , so is n = nsl(W )(W1). By Theorem C, n is semisimple, hence, as W1 is
simple, it must be a direct factor of n, say n = W1 ⊕ h. But now the action of
ad h on W is a W1-module homomorphism, hence is a scalar by Schur’s lemma.
Thus h ≤ z(sl(W )) = 0. It follows that n = W1.
Now NG(W1) sends W to another W1-invariant subspace of the same dimen-
sion, hence NG(W1) ≤ GL(W ) × GL(U). Since W1 is self-normalising, if
NG(W1) were smooth we would have LieNG(W1) = ng(W1) = W1 ⊕ gl(U).
This shows that W1 is algebraic, a contradiction.

We now justify the remark after Theorem B that the bound in Theorem B(i)
is tight for G = Sp2n.

Lemma 11.9. The p-dimensional Witt algebra W1 is a maximal subalgebra of
spp−1. Furthermore, its normaliser in any Spp−1-Levi of Sp2n with 2n ≥ p− 1
is non-smooth.

Proof. Since W1 stabilises the element

X∧Xp−1+
1

2
X2∧Xp−2+

1

3
X3∧Xp−3+· · ·+

2

p− 1
X(p−1)/2∧X(p+1)/2 ∈

∧2
V

we find that W1 is contained in spp−1, acting irreducibly on the p − 1-
dimensional module. Exponentiating a set of nilpotent generators of the
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Witt algebra as in the proof of Theorem B(ii) gives an irreducible subgroup
W ≤ Spp−1. We claim that we must have equality. From this claim it fol-
lows that W1 is in no proper classical algebraic subalgebra of spp−1, hence, by
Theorem 2.3, is maximal.
To prove the claim, suppose W is a proper subgroup of G = Spp−1. Since
W is irreducible on the p − 1-dimensional module, W is it no parabolic of G.
Thus it is in a connected reductive maximal subgroup M . We must have that
M is simple, or else W1 would be in a parabolic of G. Now since the lowest
dimensional non-trivial representation of W1 is p − 1, it follows that M can
have no lower-dimensional non-trivial representation. Since p > 2, Spp−1 has

no simple maximal rank subgroup. All classical groups of rank lower than p−1
2

have natural modules of smaller dimension than p− 1, so M is of exceptional
type. The lowest dimensional representations of the exceptional types are 6
(p = 2), 7, 25 (p = 3), 26, 27, 56 and 248. The only time one of these is p− 1
is when p = 57 and M = E7. But if p = 57 then p > 2h− 2 for E7, then by
Theorem B(ii) all maximal semisimple subalgebras are algebraic and so W1 is
not a subalgebra of E7. This proves the claim, hence gives the first part of the
lemma.
For the second, with 2n > p − 1, we have W1 ≤ spp−1 ⊕ sp2n−p+1 with W1

sitting in the first factor. Then its normaliser is evidently W1 ⊕ sp2n−p+1,
however this is not algebraic for p > 3, hence the normaliser NG(W1) cannot
be smooth. Thus we have shown that normalisers of all subalgebras of sp2n are
smooth only if p > h+ 1.

If n ≥ p there is a more straightforward example of a (non-restricted) subalge-
bra of gln whose normaliser in GLn is not smooth.

Example 11.10. Let g = gln, take Jp a Jordan block of size p and take the
abelian one-dimensional Lie algebra h = k(Ip + Jp) where Ip is an identity
block of size p. Then one can show with elementary matrix calculations that
the normaliser of NG(h) is non-smooth.

The next example shows that even the normalisers of smooth groups are not
smooth, even in GL(V ), and even when p is arbitrarily large.

Lemma 11.11. Let G = GL(V ) with dimV ≥ 3 and let W be a 3-dimensional
subspace. Let U ≤ GL(W ) be defined as the smooth subgroup whose k-points
are

U(k) =











1 0 t
0 1 tp

0 0 1



 : t ∈ k






.

Write V = W⊕W ′ for some complement W ′ to W and set H = U⊕GL(W ′) ≤
GL(V ). Then NG(H) is non-smooth.

Proof. From the reductivity of GL(W ′) it follows that NG(H) = NGL(W )(U)⊕
GL(W ′) so it suffices to show that NGL(W )(U) is non-smooth. This is a routine
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calculation. For example, if x is an element of a k-algebra A, with xp = 0 then
one checks that the matrix





1 x 0
0 1 0
0 0 1



 ∈ NGL(W )(U)(A).

Now, the normaliser of U of course normalises Lie(U). Since

Lie(U) = k





0 0 1
0 0 0
0 0 0



 ,

the normaliser of Lie(U) is the product of the centraliser of a certain (nilpo-
tent) element and the image of a cocharacter associated with that element. In
particular, the normaliser of Lie(U) is contained in the upper triangular Borel
subgroup.
Write V for the unipotent radical of that Borel subgroup, so V is 3-dimensional;
a typical element has the form





1 a b
0 1 c
0 0 1



 .

In fact, the condition ap = 0 defines the scheme-theoretic normaliser in V
of U , and the condition a = 0 defines the corresponding smooth subgoup of
V whose k-points form the group-theoretic normaliser of U(k) in V (k). The
lemma follows.

Now we show that normalisers of height two or more subgroup schemes are not
smooth.

Example 11.12. Let G be any connected reductive algebraic group over an
algebraically closed field k of characteristic p > 2 and set F : G → G to be the
Frobenius endomorphism. Let B = TU be a Borel subgroup of G with T an
F -stable maximal torus, and let U the non-trivial unipotent radical. Let Tr be
the kernel in T of F r and U1 the kernel in U of F . Finally set H = Tr ⋉ U1.
Then NG(H) = T ⋉ U1, hence is not smooth.

The next example shows that if p = dimV , then the normaliser of a smooth
connected solvable non-diagonalisable algebraic subgroup of GL(V ) can even
be irreducible on V , thus a fortiori it is not smooth. This also gives an example
for when p = 2 and dimV = 2 that the normalisers in SL(V ) and GL(V ) of
subalgebras of the respective Lie algebras are not smooth.

Example 11.13. By [Ten87, Lemma 3] the Lie algebra W1 +O1 formed as the
semidirect product of W1 and O1, where O1 acts on itself by multiplication,
is a maximal subalgebra of slp = sl(k[X ]/Xp). We imitate the embedding of
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O1 in glp by a solvable subgroup of GLp. Define the height ht(α) of a root α
to be the sum of the coefficients of the simple roots. Let U be the subgroup
〈
∏

α∈R−;ht(α)=i xα〉1≤i≤p−1. By construction U is connected and unipotent and
one can show that dimU = p− 1 and that LieH = O1, where H is the smooth
solvable subgroup Z(GLp)U . Now it can be shown that there is a subgroup
scheme W corresponding to W1 in GLp which normalises H and for which
W ⋉H is irreducible. It immediately follows that NG(H) cannot be smooth.

Finally we show that if p ≤ 2n − 1 the normalisers in GLn and SLn of sub-
spaces of their Lie algebras are not all smooth, even when these normalisers
are generated by nilpotent elements, showing that the bound in Theorem B(ii)
cannot be improved for general subspaces.

Lemma 11.14. If p < 2n− 1, normalisers of subspaces of gln (or sln) are not
necessarily smooth.

Proof. Let p = 2n− 3 and let h = sl2 = LieH with H = SL2 over a field k of
characteristic p. Then the action of H on the simple module L((p+1)/2) gives
an (irreducible) embedding H → GLn. Restricting the adjoint representation
of gln on itself to H gives a module

L((p+ 1)/2)⊗ L((p+ 1)/2)∗ ∼= T (p+ 1)⊕M,

where M is a direct sum of irreducibles for H (and h) and T (p+ 1) is a tilting
module, uniserial with successive composition factors L(p−3)|L(p+1)|L(p−3).
Now for the algebraic group H = SL2 we have L(p + 1) ∼= L(1) ⊗ L(1)[1] by
Steinberg’s tensor product formula. Restricting to h, L(p+1) is isomorphic to
L(1)⊕ L(1). Now it is easy to show the restriction map Ext1G(L(p+ 1), L(p−
3)) → Ext1g(L(1), L(p−3))⊕Ext1g(L(1), L(p−3)) is injective. Hence T (p+1)|g
contains a submodule M isomorphic to L(1)/L(p− 3).
Now, the Lie theoretic normaliser of M contains h but the scheme-theoretic
stabiliser does not contain H . It follows that the normaliser of this subspace is
not smooth.
Indeed, as h acts irreducibly on the n-dimensional natural representation
for gln, it is in no parabolic of gln (or sln). However, the set of k-points
NH(M)(k) = NGLn

(M)(k) ∩H is in a parabolic of H , hence in a parabolic of
GLn.
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