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1 INTRODUCTION

1.1

Lifts from two elliptic modular forms to Siegel modular form of half-
integral weight of degree two have been conjectured by Ibukiyama and the
author[H-I.05]. In the present article we will give a partial answer for the
conjecture in [H-I.05] and shall generalize these lifts as lifts from two ellip-
tic modular forms to Siegel modular forms of half-integral weight of any even
degree (Theorem B3)).

The construction of the lift can be regarded as a half-integral weight ver-
sion of the Miyawaki-Ikeda lift. The Miyawaki-Tkeda lift has been shown by
Ikeda [Tk 06]. In the present article we will give a proof to the fact that con-
structed Siegel modular forms of half-integral weight are eigenforms, if it does
not identically vanish. Moreover, we will compute the L-function of the con-
structed Siegel modular forms of half-integral weight. The key ingredient of
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126 S.HAYASHIDA

the proof of the lift in the present article is to introduce a generalized Maass
relation for Siegel modular forms of half-integral weight (Theorem [T.6] B.2]).
Generalized Maass relations are relations among Fourier-Jacobi coefficients of
Siegel modular forms and are regarded as relations among Fourier coefficients.
Theorem is a generalization of the Maass relation for generalized Cohen-
Eisenstein series, which is a Siegel modular form of half-integral weight of
general degree. And Theorem is a generalization of the Maass relation for
Siegel cusp forms of half-integral weight of odd degree.

1.2

We explain our results more precisely.
We denote by Ml;tl(l“(()") (4)) the generalized plus-space of weight k — 1 of

degree n, which is a subspace of Siegel modular forms of half-integral weight
and is a generalization of the Kohnen plus-space (see [Ib 92] or §4.3] for the

definition of generalized plus-space). Let F' € M ]:r_l (I’g") (4)) be an eigenform
2

for any Hecke operators. We put

n

Qrp(z) = [ = mip2)d = pip2),

=0

where complex numbers {ufp} are p-parameters of F' introduced in [Zh 84] if
p is an odd prime. If p = 2, then we define {ui} by using the isomorphism
between generalized plus-space and the space of Jacobi forms of index 1. We
denote the modified Zhuravlev L-function by

L(s,F) = [[Qrpr~=%).
p

The Zhuravlev L-function is originally introduced in [Zh 84] without the Euler
2-factor, which is a generalization of the L-function of elliptic modular forms

of half-integral weight introduced in [Sh_73].

We denote by S;:ﬁl (F(()") (4)) the space of Siegel cusp forms in M;j,; (I‘én) (4)).
2 2

The following theorem is the main result of this article.

THEOREM [B3l Let k be an even integer and n be an integer greater than 1.
Let h € S;inJr%(F(()l)(él)) and g € S]: (I‘él)(él)) be eigenforms for all Hecke

1
2
operators. Then there exists a Fp 4 € S;r_l(l’é%ﬂ)). Under the assumption
2
that Fh.g is not identically zero, then Fy, 4 is an eigenform with the L-function
which satisfies

2n—3

L(s,Fng) = L(s,9) H L(s —i,h).
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By numerical computations of Fourier coefficients of F3, ; we checked that Fj, 4
does not identically vanish for some (n, k). (See §9l for the detail).

Remark that the above theorem was first conjectured by Ibukiyama and the
author [H-1'05] in the case of n = 2 not only for even integer k, but also for
odd integer k.

The construction of Fj 4 was suggested by T. lkeda to the author, which is
given by a composition of three maps and an inner product. These three maps
are a Ikeda lift (Duke-Imamoglu-Ibukiyama-Tkeda lift), a map of the Fourier-
Jacobi expansion and an isomorphism between Jacobi forms of index 1 and
Siegel modular forms of half-integral weight. In §8 we will explain the detail of
the construction of Fj, 4.

To prove Theorem B3] we use a generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem [[.6]). Once we obtain Theorem [T.0] it is not
so hard to show Theorem 8.3l The most part of this article is devoted to show
Theorem We now explain the generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem [7.6)).

Let k be an even integer and 7—[1(;1";1) be the generalized Cohen-Eisenstein series
2

of degree n+ 1 of weight k — % (see § A for the definition of generalized Cohen-

Eisenstein series). The form Hénfll) is a Siegel modular form of weight k — %
2

of degree n + 1.
(n)

k_1 ., the m-th Fourier-Jacobi coefficient of
2

For integer m, we denote by e

(n+1),
Y-

+1 T =z T/ —1mw
chné)<<tz w)) - Z e;ﬁ%ym(Taz)GQ V-1 ) (11)

m>0
m=0,3 mod 4

where 7 € £, and w € 1, and where $),, denotes the Siegel upper half space
of degree n. We denote by Jlii)l ., the space of Jacobi forms of degree n of
ot

weight k — 3 of index m (cf. §2.6) and denote by J]gri);m (cf. §24) a subspace
of J]in)l . Then, the above form e(n)l belongs to J(n)f . Because "H(ntl)
—3,m k—5,m k—35,m k—3
belongs to the generalized plus-space M]: i (I‘én+1)(4)), we can show that the
2

(n)

k—1m
We denote by My (T',,+2) the space of Siegel modular forms of weight & of degree

form e is identically zero unless m = 0, 3 mod 4.

n + 2 and denote by J,SLIH) the space of Jacobi forms of weight k& of index 1
of degree n + 1. We denote by El(cn) € My(T,,) the Siegel-Eisenstein series of
weight k of degree n (cf. (32)) in §3) and by E,(cnl) € J,gtll) the Jacobi-Eisenstein
series of weight k of index 1 of degree n (cf. (BI) in §3). The form "Hgigl) is
o

constructed from F 1 - The diagram of the above correspondence is
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E;in+2) € My(Tny2)

|

B e Y ——— " e M (05 (4))
{ (n)1 m} J(fi)z -
m= o@nod a7
In §2.7 (for any odd prime p) and in §47 (for p = 2) we will introduce index-shift
maps f/a,n_a(p2) (o =0,...,n), which are linear maps from J]gri);m to the space
of holomorphic functions on §,, x CcD), If p is odd then Vayn,a(pQ) is a linear
map from J(n) m L0 J;ii); 2 These maps Va,n_a(p2) are generalizations of
the V;-map in [E Z 85| p.43] for half-integral weight of general degrees. For any
XS Jéi)%’m and for any integer a we define (¢|U,)(7, 2) := ¢(7, az).
The following theorem is a generalization of the Maass relation for the gener-
alized Cohen-Eisenstein series, where we use the symbol

eyl Vo (), Vit (07), e Vo (07)
= ey Vo @)y Vi1 (0?)s el [Vao(0?)).

THEOREM [.6l Let e(") 1 . be the m-th Fourier-Jacobi coefficient of generalized

Cohen-FEisenstein series H H) (See (I))). Then we obtain

ey Vom0, Vi1 (%), ey Vo (0%))

k—%,m
— pk(n—l L(n?+5n-5) ( (n) U.- e(”)i7 |Up, e(") )

z k—1 mp?
0 p2k73
_ _ _ _n+t2 1 .
x [ pF=2 p* 2(7’”> A’Q’,nﬂ(pk 2 2) diag(1,p*/?, -+ ,p"/?).
0 1

n+2

Here A%, ., (p’“T‘%) is a 2 x (n + 1) matriz which is introduced in the

beginning of 7 and the both sides of the above identity are vectors of forms

(n)

For any prime p we regard e, Z1,m 08 z€TO, if 5 5z s mot an integer or 2 Z 0,
2
P

3 mod 4. The symbol (;) denotes the Legendre symbol for odd prime p, and
(%) :=0,1,—1 accordingly as a is even, a = +1 mod 8 or a = £3 mod 8.

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 129

Theorem[T.6] gives also a relation among Fourier coefficients of Siegel-Eisenstein
series of integral weight. The Fourier coefficients of Ikeda lifts satisfy similar
relations to the ones of the Fourier coefficients of Siegel-Eisenstein series (see
Theorem for the detail). We call these relations of Fourier coefficients of
Ikeda lifts also the generalized Maass relations. The generalized Maass relation
among Fourier coefficients of the Ikeda lift I5,(h) of h gives a fact that Fj 4
in Theorem B3] is an eigenform for all Hecke operators, since the form Fj 4
is constructed from Iy,(h) (and g). Moreover, the eigenvalues of Fj , are
calculated from the generalized Maass relations of Fourier coefficients of I, (h).
This is the reason why we need Theorem to show Theorem B3l For the
detail of the proof of Theorem B3] see §8l

1.3 ABOUT GENERALIZED COHEN-EISENSTEIN SERIES

We remark that the generalized Cohen-Eisenstein series has been introduced by
Arakawa [Ar 98]. These series are Siegel modular forms of half-integral weight.
The Cohen-Eisenstein series were originally introduced by Cohen [Co 75| as
one variable functions. In the case of degree one, it is known that the Cohen-
Eisenstein series correspond to the Eisenstein series with respect to SL(2,Z) by
the Shimura correspondence. The generalized Cohen-Eisenstein series is defined
from the Jacobi-Eisenstein series of index 1 through the isomorphism between
Jacobi forms of index 1 and Siegel modular forms of half-integral weight.

1.4 ABOUT GENERALIZED MAASS RELATIONS

As for generalizations of the Maass relation, Yamazaki [Yk 86) [Yk 89] obtained
some relations among Fourier-Jacobi coefficients of Siegel-Eisenstein series of
arbitrary degree of integral weight of integer indices. For our purpose we gen-
eralize some results in [Yk 86, [Yk 89] on Fourier-Jacobi coefficients of Siegel-
Eisenstein series of integer indices to indices of half-integral symmetric matrix
of size 2. Here the right-lower part or the left-upper part of these matrices
of the index is 1. We need to introduce index-shift maps on Jacobi forms of
indices of such matrix (cf. §2.7). To calculate the action of index-shift maps on
Fourier-Jacobi coefficients of Siegel-Eisenstein series, we use a relation between
Fourier-Jacobi coefficients of Siegel-Eisenstein series and Jacobi-Eisenstein se-
ries (cf. Proposition B3]). This relation has been shown by Boecherer [Bo 83|
Satz7]. We also need to show a identity relation between Jacobi forms of in-
tegral weight of 2 x 2 matrix index and Jacobi forms of half-integral weight of
integer index (Lemmald2]). Moreover, we need to show a compatibility between
this identity relation and index-shift maps (cf. Proposition [4.3] F4]).

Through these relations we can show that the generalized Maass relation of
generalized Cohen-Eisenstein series (Theorem [T6]) are equivalent to relations
among Jacobi-Eisenstein series of integral weight of indices of matrix of size 2
(Proposition [[4). Finally, to obtain the generalized Maass relation in Theo-
rem[7.6] we need to calculate the action of index-shift maps on Jacobi-Eisenstein
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series of integral weight of indices of matrix of size 2 (cf. §H]).

Remark 1.1

In his paper [Ko 02] Kohnen gives a generalization of the Maass relation for
Siegel modular forms of even degree 2n. His result is different from our gen-
eralization, since his result is concerned with the Fourier-Jacobi coefficients
with (2n —1) x (2n — 1) matrix index. We remark that some characterizations
of the Tkeda lift by using generalized Maass relation in [Ko 02] are obtained
by Kohnen-Kojima [KK 05] and by Yamana [Yn 10]. The characterization of
the Ikeda lift by using the generalized Maass relation in Theorem is open
problem.

Remark 1.2

In his paper [Ta 86, §5] Tanigawa has obtained the same identity in Theo-
rem for Siegel-Eisenstein series of half-integral weight of degree two with
arbitrary level N which satisfies 4|N. He showed the identity by using the
formula of local densities under the assumption p /N. In our case we treat the
generalized Cohen-FEisenstein series of arbitrary degree, which has essentially
level 1. Hence our result contains the relation also for p = 2. Moreover, our
result is valid for any general degree.

Remark 1.3
To show the generalized Maass relations in Theorem [7.6] 2] we treat the
following four things:

1. Fourier-Jacobi expansion of Jacobi forms (cf. §4.1)),

2. Fourier-Jacobi expansion of Siegel modular forms of half-integral weight

(cf. 52,

3. An isomorphism between Jacobi forms of matrix index of integral weight
and Jacobi forms of integer index of half-integral weight (cf. §4.3))

4. Exchange relations between the Siegel ®-operator for Jacobi forms and
the index-shift map for Jacobi forms of matrix index or of half-integral
weight (cf. §6)). This is an analogue of the result shown by Krieg [Kr 80]
in the case of Siegel modular forms of integral weight.

1.5

This paper is organized as follows: in Sect. 2, the necessary notation and defi-
nitions are reviewed. In Sect. 3, the relation among Fourier-Jacobi coefficients
of the Siegel-Eisenstein series and the Jacobi-Eisenstein series is derived, which
is a modification of the result given by Boecherer [Bo 83| for special cases. In
Sect. 4, a map from a subspace of Jacobi forms of integral weight of matrix

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 131

index to a subspace of Jacobi forms of half-integral weight of integer index is de-
fined. Moreover, the compatibility of this map with index-shift maps is studied.
In Sect. 5, we calculate the action of index-shift maps on the Jacobi-Eisenstein
series. We express these functions as summations of exponential functions with
generalized Gauss sums. In Sect. 6, a commutativity between index-shift maps
on Jacobi forms and Siegel ®-operators is derived. In Sect. 7, a generalized
Maass relation for generalized Cohen-Eisenstein series (Theorem [.6]) will be
proved, while we will give a generalized Maass relation for Siegel cusp forms of
half-integral weight and the proof of the main result (Theorem B3)) in Sect. 8.
We shall explain some numerical examples of the non-vanishing of the lift in
Sect. 9.

Acknowledgement. The construction of the lift in this article was suggested by
Professor Tamotsu Ikeda to the author at the Hakuba Autumn Workshop 2001.
The author wishes to express his hearty gratitude to Professor Ikeda for the
suggestion. The author also would like to express his sincere gratitude to Pro-
fessor Tomoyoshi Ibukiyama for continuous encouragement. The author thanks
very much to the referee, whose advice was helpful in improving the original
version of the manuscript. This work was supported by JSPS KAKENHI Grant
Number 23740018 and 80597766.

2 NOTATION AND DEFINITIONS

R* : the set of all positive real numbers

R(™™) . the set of n x m matrices with entries in a commutative ring R
Sym;}, : the set of all half-integral symmetric matrices of size n

Sym: : all positive definite matrices in Sym.,

!B : the transpose of a matrix B

A[B] := *BAB for two matrices A € R™™ and B € R(™™)

1, (resp. 0y) : identity matrix (resp. zero matrix) of size n

tr(S) : the trace of a square matrix S

e(S) 1= e2™V=1(S) for a square matrix S

rank, () : the rank of matrix € Z(™™) over the finite field Z/pZ

ay
diag(ay, ...,an) : the diagonal matrix ( ) for square matrices a1, ...,
An

an
(%) : the Legendre symbol for odd prime p

(%) := 0,1, —1 accordingly as a is even, a = 1 mod 8 or ¢ = +3 mod 8

M4 (Fén)(él)) : the space of Siegel modular forms of weight k — 3 of degree n
M, (D§V(4)) + the plus-space of M1 (I (4)) (cf. [[H92)).
2
), : the Siegel upper half space of degree n
0(S) :=1 or 0 accordingly as the statement S is true or false.
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132 S.HAYASHIDA

For any function F' and operators 11, Ts, ... , T, we put

F|(T1,T2,...,Tn) = (F|T1,F|T2,,F|Tn)

2.1 JACOBI GROUP

For a positive integer n we define the following groups:

GSpy (R):={g € RO g (0 Th) tg = n(g) ($1 1)

for some n( € R"’}

Spn(R) = {g€GSp,;(R =1},
I, := Sp,(R)N Z<2” 2”>,
A B
() . _
riMa) = {(é‘ g) €r,|C=0 mod 4}.

For a matrix g € GSp;' (R), the number n(g) in the above definition of GSp;' (R)
is called the similitude of the matrix g.
For positive integers n and r, we define a subgroup Gj, . C GSp;f,(R) by

A B 1n I
U ]\l Dt
G;{,r = C D 1Z li)\ € Gsp:;—i-r (R) ’
V 1,

. A B + U o0 n
where the matrices runs over (C D) € GSp, (R), (0 V) € GSp, (R),

A€ R and gk =tk € RO,

1, —X

(5@ Do)

We remark that two matrices (4 B) and (§ ) in the above notation have the
same similitude. We will often write

(2 5) 1wnm)

4 B) x 1oy, [(A\, ), K]) for simplicity. We remark that the
i), k]) belongs to Sp,, ,,.(R). Similarly, an element

1, I A B
A1t PAptre U
1, =\ C D
1.. 1%
T
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Lo ¥))

will be abbreviated as

(10w, (2 D)

and we will abbreviate it as ([()\ u) k), (&
We set a subgroup I‘;{yr of G;{’

X

)) for the case U =V =1,

T = {00 )R] € G,

wezn) .

ny

2.2 Groups GSp; (R) AND éZ1

We denote by GSp;" (R) the group which consists of pairs (M, (7)), where M

is a matrix M = (4 5) € GSp,’ (R), and where ¢ is any holomorphic function

on $), such that |o(7)[> = det(M)~2|det(C7 + D)|. The group operation on

GSp,; (R) is given by (M, o(1))(M', /(1)) := (MM', o(M'7)¢' (1)).

We embed F(()n) (4) into the group GSp;' (R) via M — (M, 0 (M) 0™ (1)~1),

where (") (1) := Z e(7[p]) is the theta constant. We denote by Fén)(él)*
pEZ(n:1)

the image of T’ (4) in GSp;" (R) by this embedding.

We define a Heisenberg group

Hua(®) = {12, [(A ). #]) € Sppia (R) [ A p € ROV, € R}

If there is no confusion, we will write [(A, 1), k] for the element (1o, [(A, 1), ])
for simplicity.
We define a group

G"7 = GSpg(R) x Hp1(R)

= {OL 100D | 3T € GSOTE). () 4] € Hua(®)].

Here the group operation on Gg,l is given by
(My, (M1, 1), k1)) - (Mo, [(A2, p2), k2]) == (MyMa, [(X, 1), K'])

for (M;, [(Mi, i), ki) € CEZJI (1 =1,2), and where [(X, 1'), k'] € Hy,1(R) is the
matrix determined through the identity

(M (MG 0) [ ) w1 ]) (M2 x (MR D) L [(Ae, ), i2])
= (M My x ("M 0) [V, 1), /)

in Gi,l' Here n(M;) is the similitude of M;.
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2.3 ACTION OF THE JACOBI GROUP

The group G . acts on §,, x C»") by

n,r

ve(rz) = ((é g)-T,t(CT—i—D)_l(z—i—T)\—i—u)tU)

forany vy = ((A B) x (Y %), [\ pn),&]) € G;{yr and for any (7, z) € $,, x C(»7),

Here <él, g) -7 := (AT + B)(C1 + D)~! is the usual transformation.

The group ézl acts on ), x C1 through the projection éT — G;;l. It

n,1

means Gg,l acts on $), x C™1 by

’?-(T,Z) = (MX(n((]y)(l))v[()‘vu)a’i])'(ﬂz)

for ¥ = ((M, ), [(\, 1), K]) € G;L1 and for (1,2) € §, x C™Y. Here n(M) is
the similitude of M € GSp;! (R).

2.4 FACTORS OF AUTOMORPHY

G;{’T we define a factor of automorphy

Jk,M (7; (Ta Z))
= det(V)* det(C1 + D)* (VMU (((CT 4+ D)1C) [z + 7A + 1))
xe(=VTEMUANA + 120 + Nz + Tud + " + k).

We define a slash operator |, a by
(¢|k,M7)(Tvz) = ‘]kyM(’ya (Taz))ilqs(fy : (Ta Z))
for any function ¢ on $,, x C(™") and for any ~ € G;{’T. We remark that

‘]kyM (71727 (7_7 Z)) = ‘]kyM (717 Y2 - (7_7 Z))Jk,V;lMUl (727 (7_7 Z))v

Plemmnrz = @lemy)le v mo, V2

for any v; = (M; x (5 v, ), [Ny ), i) € Gyt (= 1,2).
Let k and m be integers. We define a slash operator |,_1 ,, for any function ¢

on 9, x C»1 by
B ymd = Sy (D)6 - (7,2)
for any 7 = (M, ), [(A\, p), K]) € (?751. Here we define a factor of automorphy
Tee1m(3:(1,2)) = o(r)*Le(n(M)m(((CT + D)1 O)[z + A + p]))
xe(=n(M)mAA + 12X + Xz + ud + A+ kK)),
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where n(M) is the similitude of M. We remark that

Jeeim(NV2,(1,2)) = Jeo 1 (V1,72 (7, 2)) Ikt naryym (25 (75 2))

¢|k7%,m’)71f}72 = (¢|k7%,m’)71)|k7%,n(M1)m72
for any i = ((Mi, i), [(Ni, ), i) € Gy 1 (i =1,2).

2.5 JACOBI FORMS OF MATRIX INDEX
We quote the definition of Jacobi form of matrix index from [Zi 89).

DEFINITION 1. For an integer k and for an matric M € Sym,", a C-valued
holomorphic function ¢ on $, x C™") is called a Jacobi form of weight k of
index M of degree n, if ¢ satisfies the following two conditions:

1. the transformation formula ¢|x pmy = ¢ for any v € F;{w

2. ¢ has the Fourier expansion: ¢(7,z) = Z c(N,R)e(NT)e(*Rz).

NeSym},Rez(™")
AN—RM~'R>0

We remark that the second condition follows from the Koecher principle
(cf. [Z189 Lemma 1.6]) if n > 1. In the condition (2), if ¢ satisfies ¢(N, R) =0
unless 4N — RM~1'R > 0, then ¢ is called a Jacobi cusp form.

We denote by J,gn/z,[ the C-vector space of Jacobi forms of weight &k of index M
of degree n.

2.6 JACOBI FORMS OF HALF-INTEGRAL WEIGHT

We set a subgroup F;{fl of é;’jl by
ol = {0 O] € Gl M e T0V () A e 20 ke 2
> TV (4)* x Hya(Z),

where we put H, 1(Z) := H, 1(R) NZ2"+227+2)_ Here the group I (4)* was
defined in §2.2

DEFINITION 2. For an integer k and for an integer m, a holomorphic function
¢ on $, x CY s called a Jacobi form of weight k—% of index m, if ¢ satisfies
the following two conditions:

1. the transformation formula ¢|k7%’m'y* = ¢ for any v* € Fg:"l,
2. ¢*|2k—1.2m7 has the Fourier expansion for any vy € F;{’l:
1
(¢ lar-1.2m7) (1,2) = S R 6<ENT) e('R2).
NeSym?,Rez™Y

ANm—hR'R>0
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was defined in

with a integer h > 0, and where the slash operator |k_%’m

24

In the condition (2), for any 7 if ¢ satisfies C (N, R) = 0 unless 4Nm — hR'R >

0, then ¢ is called a Jacobi cusp form.

We denote by J;Si); ., the C-vector space of Jacobi forms of weight k — % of
3

index m of degree n.

2.7 INDEX-SHIFT MAPS OF JACOBI FORMS

In this subsection we introduce two kinds of maps. The both maps shift the
index of Jacobi forms and these are generalizations of the V;-map in the sense
of Eichler-Zagier [E-Z 85].

We define two groups GSp;' (Z) := GSp; (R) N Z(™?") and

CSpL(Z) = {(M, 2) € GSpL (R) \ Me GSp,t(Z)} |

First we define index-shift maps for Jacobi forms of integral weight of matrix
inder. Let M = (%7) € Symg. Let X € GSp,(Z) be a matrix such that the

similitude of X is n(X) = p? with a prime p. For any ¢ € Jlgn/z/l we define the
map

oIV (X)

p2 000
= > Y bl (M x (8 ggg) ,[«o,u),(o,v)),og]) ,
000p

u,we(Z/pZ)(mH) Mel,\I'y XT',

where (0,u),(0,v) € (Z/pZ)™? and where 05 is the zero matrix of size 2.
p2 000

See §2.11 for the symbol of the matrix | M x ( 02001, 1((0,u),(0,v)), 0]

000p
The above summations are finite sums and do not depend on the choice of the

representatives u, v and M. A straightforward calculation shows that ¢|V (X)

belongs to Jlin)

. Namely V(X) is a map:
sy Tl VA iy

V(X) ke, M T k,M[({)’?)]
For the sake of simplicity we set

Va,nfa(pQ) = V(diag(laap]-nfa;p2]-aap]-n7a))

for any prime p and for any « (0 < o < n).
Next we shall define index-shift maps for Jacobi forms of half-integral weight of
integer inder. We assume that p is an odd prime. Let m be a positive integer.
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Let Y = (X, ¢) € GSp;H (Z) with n(X) = p?, where t is a positive integer. For
P e J,i’i); ., We define
PR

YV(Y) = (X)) 3 U1 (M, 1(0,0),0)),

Mer{™ @)s\r{™ (4)*yT§™ (4)*

where the above summation is a finite sum and does not depend on the choice

of the representatives M. A direct computation shows that 1|V (Y') belongs to
J]iri)% ,mp3t"
For the sake of simplicity we set

Va,nfa(pQ) = V((diag(laaplnfa;pQ]-aap]-nfa)apa/Q))
for any odd prime p and for any o (0 < a < n). As for p = 2, we will introduce

index-shift maps V, ,,_«(4) in §477, which are maps from a subspace Jéi)l* ., of
3
(n) (n)
Jo 1m to J,,

1 .
—5,4m

2.8 HECKE OPERATORS FOR SIEGEL MODULAR FORMS OF HALF-INTEGRAL
WEIGHT

The Hecke theory for Siegel modular forms was first introduced by Shimura
[Sh-73] for degree n = 1 and by Zhuravlev [Zh 83 [Zh 84] for degree n > 1. We
quote the definition of Hecke operator from [Zh 83| [Zh 84]. Let Y = (X, ¢) €

GSp,i (Z). Let ¢ € My (Fén) (4)). We define

~ n(2k—1) _n(ntl) ~
GT(Y) = n(x)=5 = 3 Ol I,

Mer{™ (4)-\r{ (4)*y 1§ (4)

where (¢|k7%M)(T) = (1) "2 G(M - 1) for M = (M, ) and n(X) is the
similitude of X. For the sake of simplicity we set

Ta,n—a(p2) = T((diag(la;pln—av p21om pln—a)apa/Q))

for any odd prime p and for any a (0 < a < n).

2.9 L-FUNCTION OF SIEGEL MODULAR FORMS OF HALF-INTEGRAL WEIGHT

In this subsection we review the Hecke theory for Siegel modular forms of
half-integral weight which has been introduced by Zhuravlev [Zh 83| [Zh 84]
and quote the definition of L-function of a Siegel modular form of half-integral
weight.

Let 7:[:;1) be the local Hecke ring generated by double cosets

K™ =T (4)* (diag(La, plin—as 2 Loy plua), p I (4)* (0 < a < m)
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-1
and Kém) over C. If p is an odd prime, then it is shown in [Zh 83| [Zh 84]

that the local Hecke ring 7:[;21) is commutative and there exists the isomorphism
map

v, : 7:11(:;) — R,

where the symbol R,, denotes R,, := (CW2[in, zfc, e z,ﬂ, and where the sub-
: Wal + =+ + + & + . . .

ring C [zo ST s zm} of C [20 ST s zm] consists of all Wa-invariant poly-

nomials. Here W5 is the Weyl group of a symplectic group and the action of
Wy on C [zoi, e zi] is generated by all permutations of {z1, ..., 2, } and by the

maps

o 20 = 20%i, zi%zfl, zj =z (j #1)
for i = 1,...,m. The isomorphism ¥, is defined as follows: Let

T o= Y al{™ @) (X, )
[

be a decomposition of T' € 7:[;?), where a; € C and (X;, ;) € GSp,'(Z). We

can assume that X; is an upper-triangular matrix X; = (pé"thl b ) with

0
di 1 * *
Di=| g .
0 0 dim

and ¢; is a constant function. It is known that |p;|~!

Then ¥,,(T) is given by

; is a forth root of unity.

with a fixed integer k. For the explicit decomposition of generators K&m) by
left I’ém) (4)*-cosets, see [Zh 83 Prop.7.1].
We define v; € (C[zit, . 2E] (j =0, ...,2m) through the identity

Z’ijj = H{(l—ziX)(l—zle)}.
§=0 i=1

Here v; (j = 0,...,2m) is a Wh-invariant. There exists 7;, € 7:[;7;) (i =
0,...,2m) which satisfies ¥,,(¥;p) = 7 € Rm. We remark that %, = Fom—ip

and Jo, = Kém).

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 139

For p = 2 we will introduce in §£3]the Hecke operators Ta,m,a(él) (a=0,..,m)
through the isomorphism between Siegel modular forms of half-integral weight
and Jacobi forms of index 1 (see [@2]) in §43)). We remark that the Hecke
operators Ta7m_a(4) (a = 0,...,m) are defined for the generalized plus-space,

which is a subspace of M;._1 (F(()m) (4)). Through the definition of ¥; ,, for odd
prime p, we define 7; 2 in the same formula by using Ta,m_a(él) (a=0,...,m)
as in the case of odd primes. by replacing p by 2.

Let F € M]:_%(F(()m) (4)) be an eigenform for any Hecke operator T, m—o(p?)
(0 < a < m) and for any prime p. Here M]:;% (F(()m) (4)) denotes the generalized
plus-space which is a subspace of M, k_%(I’ém) (4)) (see [Ib-92] or §43 for the
definition of M]: (Fém) (4))). We define the Euler p-factor of F' by

Qrp(2): = Z)\F(:Yj,p)zja

where Ap(%,,,) is the eigenvalue of F' with respect to 7;,. There exists a set of
complex numbers {4 ,,, 5 ~.pi ,} which satisfies

1,p°
Qrp(z) = JT{0 —pip2) (1= piy2)}
i=1
and
“gmﬂl,p iy = pMERTD/2mmmA)/2

since Yom—j =75 (1 =0,....,m—1), Qrp(z71) = 272mQp,(2) and Qr,(0) =
1 # 0. Following Zhuravlev [Zh 84] we call the set {ug,p,ufp, ...,ufmp} the
p-parameters of F. The L-function of F' is defined by

L(s,F) = [[Qrpp—st%2)1
p

3 FOURIER-JACOBI EXPANSION OF SIEGEL-EISENSTEIN SERIES WITH MA-
TRIX INDEX

In this section we assume that k is an even integer.
Let r be a non-negative integer. For M € Sym;" and for an even integer k we
define the Jacobi-Eisenstein series of weight k of index M of degree n by

EMy = > Y kam(((A,0),0,],M). (3.1)

MeTEI\T,, AEZ™)
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The above sum converges for k > n+r + 1 (cf. [Z189]). The Siegel-Eisenstein
series E,i") of weight k of degree n is defined by

EM(Z) = > det(CZ+ D)7, (3.2)

(& 5)ersnr,

where Z € §,,. We denote by e(" ") the M-th Fourier-Jacobi coefficient of
E,in), it means that

BN = Y el (1) e(Mw) (3.3)
MeSym?
is a Fourier-Jacobi expansion of the Siegel-Eisenstein series El(cn) of weight k
of degree n, where 7 € ,,_,, w € $, and z € C"~"")_ The explicit formula
for the Fourier-Jacobi expansion of Siegel-Eisenstein series is given in [Bo 83|
Satz 7] for arbitrary degree.

The purpose of this section is to express the Fourier-Jacobi coefficient eé";f)

for M = (*%) € SymJ as a summation of Jacobi-Eisenstein series of matrix
index (Proposmon B3).
We first obtain the following lemma.

LEMMA 3.1. For any M € Sym;" and for any A € GL.(Z) we have

B (r,2) = Eyan(n2'A)
and
m(m2) = e Ay (T 21 A),

Proof. The first identity follows directly from the definition. The transforma-

tion formula E,(CnJrT) ((1n A) (tZ j) (1n tA)) - E(nJrT) (( z j))
O

gives the second identity.

Let m be a positive integer. We denote by Dy the discriminant of Q(v/—m),
and we put f := ﬁ. We note that f is a positive integer if —m = 0,1

mod 4.
We denote by hk__( ) the m-th Fourier coefficient of the Cohen-Eisenstein

series of weight k — 3 (cf. Cohen [Co75]). The following formula is known
(cf. [Co 75, [E-Z 85]):

m

hy_ 1
2
{ ko1 (Do) m* =% 0, u(d) (Bp) &' Fos o (4) if —m=0,1mod 4,
0

otherwise,
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where we define o, (b) := Z d® and p is the Mobis function.

dlb
We assume —m = 0,1 mod 4. Let Dy and f be as above. For the sake of
simplicity we define

gi(m) =Y u(d) by (55) -

We will use the following lemma for the proof of Proposition

LEMMA 3.2. Let m be a natural number such that —m = 0, 1 mod 4. Then
for any prime p we have

gr(*m) = (192’“_3 — (%) p’“‘Q) gr.(m).

Proof. Let Dy, f be as above. By using the formula of hk_% (m) we obtain

ey 0m) = (DoDIDl*E TT fomata') = (22) ¢ Fomata'* ™)}

alf 9

where g runs over all primes which divide f, and Where we put Iy := ord,(f).

In particular, the function hy,_ 1 (m)(hy_ 1 (|Dol) )| Do|F~ %)~ is multiplicative as
function of f. Hence, for any prime ¢, we have

hy—1 (|1Dolg?®) — hy_1 (| Dolg?1~2)
= hy_1(|Do|)|D |k—5 @e-3), _ (Do k-2+@r-3)1,-1)
= k-3 0 0 q q ,

q

Thus

hy—y (&)
gk(m) = hy_1(|Do])|Dol*"% Y u(d : :
dzhe: hi— 3 (|Dol)| Dol 2

s v Pe_1(|Dolg*7) — hy_1 (| Do|g*'a=2)

_3 k k
= hy_1(|Do])|Dol* 2 II : N
hi—3 (| Do[) | Dol*~%

alf
_3 _ Dy _ 3yl —
_ hk7%(|DO|)|DO|k 5 H (q(2k ANlg (7) qk 24+(2k—3)(lq 1))'
alf

The lemma follows from this identity, since (%) =0 if p|f; (%) = (%)
if pff. O

By using the function gi(m), we obtain the following proposition.
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PROPOSITION 3.3. For M = (I ;) € Symd we put m = det(2M). Let Dy,
f be as above, which depend on the integer m. If k > n+ 1, then
n—2 m n—2
e,(cyM )(T, z) = ng (ﬁ) E£7M[3/Vd,1] (1, 2' W),
dlf

where we chose a matric Wy € GLa(Q) N Z32) for each d which satisfies
the conditions det(Wy) = d, W, MW € Sym3 and W, MW =

<: >1k> Remark that the matriz Wy is not uniquely determined, but the above

summation does not depend on the choice of Wy.
Proof. We use the terminology and the Satz 7 in [Bo 83| for this proof. For

M’ € Sym) we denote by ak(M’) the M’-th Fourier coefficient of Siegel-
Eisenstein series of weight k of degree 2. We put

ME(Z)* = {N € Z? | det(N) # 0 and there exists V = (N *) € GLn(Z)} :

A matrix N € Z(™?) is called primitive if there exists a matrix V € GL,(Z)
such that V = (N ). From [Bo 83| Satz 7] we have

2 -1
e;cilM)(T7Z) = Z ag(M[tNl ]) Z f(MaN15N3;T7Z)7
N,eMZ(Z)* /GL2(Z) N3ez(m=2:2)
NflMtN171€Sym§r (%;):primitive
where

= > det(Cr + D)~k

(& B)er&=™h\r,»
x e(M{="2(CT+ D) 'Cz+"2(Ct+ D) 'NsN; '
+tN171tN3t(CT + D)1z
+ENy Ny (AT + B) (O + D)*1N3N;1}) .

For any positive integer [ such that [?|m, we chose a matrix W; € Z(2:2)
which satisfies three conditions det(W;) = I, th_lMVVfl € Sym;r and

th_lMVVfl = (: T) By virtue of these conditions, W; has the form

W, = <3Zc (1)> with some x € Z. The set 'W; GL3(Z) is uniquely determined
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for each positive integer [ such that [2|m. If Ny ='W, = ((l) {f), then

> FMNi,Ngi72) = Y pla) > f(M,Ni,Ns(§9);m,

NSEZ(”_Q ,2) all N3€Z(n—2,2)
(%1) :primitive
Thus
65:;42)(7,2)
= > aEMWT) Y pa) D FMTWL N (3957, 2)
1 all NseZ(n—2.2)
2]
= ak(MW D ula)
l a
12|m !
Xy FMT (D)) Le, N 2 W (59) .
N3€Z(n—=2,2)
Therefore

e;"/\f) (1, z)

= 5 ) S0 E o (W ()

1 all
1%|m

= 2 Bty W) 32wy ab MW (7)),
d2|m ik

Here we have af(M') = hy,— 1 (det(2M”)) for any M" = (171) € Symj .
over, if m # 0,3 mod 4, then hk_%(m) = 0. Hence

e](chQ) ZE (7, 2'Wy) Z u(a) hk—%(agjiz) )

a
a\g

Therefore this proposition follows.

143

More-

O

4 RELATION BETWEEN JACOBI FORMS OF HALF-INTEGRAL WEIGHT OF IN-
TEGER INDEX AND JACOBI FORMS OF INTEGRAL WEIGHT OF MATRIX IN-

DEX

In this section we fix a positive definite half-integral symmetric matrix M €

1
SymJ, and we assume that M has the form M = <1Z7° 2{) with integers [
2

and r.

DOCUMENTA MATHEMATICA 21 (2016) 125-196



144 S.HAYASHIDA

The purpose of this section is to give a map tq which is a linear map from a
subspace of holomorphic functions on £, x C(™2) to a subspace of holomorphic
functions on £, x C™1. A restriction of 1y gives a map from a subspace

(n)* (n) (n)* (n)
Iy Of Ji pq to a subspace kaé,det(QM) of kaé,det(QM) (cf. Lemma [A2).
Moreover, we shall show a compatibility between the map ¢t and index-shift

maps (cf. Proposition 3] and Proposition [f4). Furthermore, we define index-
shift maps V. n_a(p?) for J,gi);det(QM)
..

By virtue of the map 1t and by the results in this section, we can translate
some relations among Jacobi forms of half-integral weight of integer index to
relations among Jacobi forms of integral weight of matriz indez.

at p = 2 through the map tpq (cf.

4.1 AN EXPANSION OF JACOBI FORMS OF INTEGER INDEX

In this subsection we consider an expansion of Jacobi forms of integer index
and shall introduce a subspace J,g"/z: C J,i"/z/l

The symbol J,gfllﬂ) denotes the space of Jacobi forms of weight k of index 1 of
degree n + 1 (cf. §2.1).

Let ¢1(7,2) € J,gfllﬂ) be a Jacobi form. We regard ¢ (7, z) e(w) as a holomor-
phic function on $,42, where 7 € $,41, z € C*11 and w € $; such that

(7, 2) € Hnq2. We have an expansion

$i(r2)e(w) = Y bs(,2)e(Sw),
SESymz+
s=(x1)

where 7/ € $,,, 2/ € C(™?) and w’ € §, which satisfy (7, 7)) = (IZ/, f)ﬁ) € Nnta-

Because the group I';] 5 (cf. §21)) is a subgroup of 'y | ;, the form ¢ belongs
to J,ing We denote this map by FJ; s, it means that we have a map

Flis: J0 — g0,

By an abuse of language, we call the map FJ; s the Fourier-Jacobi expansion
with respect to S.

The C-vector subspace J,g"/z: of J,i"/z/l denotes the image of []12"14‘1) by FJi,m,
where M is a half-integral symmetric matrix of size 2.

4.2 FOURIER-JACOBI EXPANSION OF SIEGEL MODULAR FORMS OF HALF-
INTEGRAL WEIGHT

The purpose of this subsection is to show the following lemma.
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LEMMA 4.1. Let F ((<, J)) = >_,,cz &m(7, 2)e(mw) be a Fourier-Jacobi expan-
sion of F € Mk_%(l“énﬂ)(él)), where T € Hp, w € H1 and z € C™V . Then

Om € J;Si); ., Jor any natural number m.
ol
Proof. Due to the definition of J (n)l , we only need to show the identity
k—3,m

Oy (L 2NO((L L) = 6((AB) )M ()

for any v = (2 5).[(\, n),x]) € I';) , and for any () € Hn41 such that
T € Hn, w € H1. Here 0T and () are the theta constants (cf. §2.2)).
For any M = (4, B)) € T (4) it is known that

2 —4
g+ (M - Z) 0+ (7 *1) — det(C'Z+ D) [ —
(001 - 2640 (2) et(C'Z+ D) (1 )
where Z € $,,+1. Here (deID,) is the quadratic symbol and it is known the

detD
identity (3=%) = (1) . Hence, for any v = (4 B),[(\, n), 6]) € T} 4,
we obtain

2 —4
(9(n+1) (’}/ . Z) 9(n+1) (Z)il) = det(CT + D) (m) s

where Z = ( ) € Hp+1 with 7 € 9,,. In particular, the holomorphic function

% does not depend on the choice of z € C) and of w € $H1. We
substitute z = 0 into %&YZZ)) and a straightforward calculation gives
0ty (58) _ 0™M((EB)-7)
o tI((52)) om(r)
Hence we conclude this lemma. O

4.3 THE MAP o AND THE HECKE OPERATOR Tayn,a(pQ)

In this subsection we review the isomorphism between the space of Jacobi
forms of index 1 and a subspace of Siegel modular forms of half-integral
weight, which has been shown by Eichler-Zagier[E-Z 85| for degree one and
by Ibukiyamal[Ib 92] for general degree.

Let M;j, 1 (F(()") (4)) be the generalized plus-space introduced in [Ib 92, page

112], which is a generalization of the Kohnen plus-space for higher degrees:
the coefficients A(N) = 0 unless

M (P§V(4) =< F e M,_ (r<"> (4)) N+ (=1)*R!R € 4Sym”
: for some R € Z(m1)
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A form F € M, (F(()") (4)) is called a Siegel cusp form if F? is a Siegel cusp

1
2
form of weight 2k — 1. We denote by S;r_l (an) (4)) the space of all Siegel cusp
2
forms in M]: (I‘én) (4)).

1
3
For any even integer k, the isomorphism between .J, ]gnl) (the space of Jacobi forms

of weight k of index 1 of degree n) and M]:l(l“(()") (4)) is shown in [E-Z 85|

Theorem 5.4 for n = 1 and in [Ib 92| Theorem 1] for n > 1. We call this iso-

morphism the Fichler-Zagier-Ibukiyama correspondence and denote this linear

map by o which is a bijection from J(Tll) to M]:r_% (Fén)(él)) as modules over the

ring of Hecke operators. By the map o the space S;j,; (F(()") (4)) is isomorphic
2
to the space of Jacobi cusp forms J,gfll) ““SP The map
o - M, (M (4))

is given as follows: if

o(r,2) = Z C(N,R)e(NT + R'2)
NeSym;, Rez(™V
AN—R'R>0

is a Jacobi form which belongs to J,gll), then o(¢) € M;i (F(()") (4)) is defined

1
2

a(¢)(r) = > 3" C(N,R)e((4N - R'R)7).
R mod (22)(»D  NeSym;,
Rez(™Y AN—R'R>0

For the double coset I'diag(1la,pla—a;P?la;Pln—a)ln and for ¢ € J,gfll), the
Hecke operator T/ (p?) is defined by

AT, o) = D D lea (M x (57),[(\w),0]).
M\ u€e(Z/pZ)yn M

Here, in the second summation of the RHS, the matrix M runs over all rep-
resentatives of I',\I',, diag(la, pln—a,p*la, Pla_a)ln. Let Tayn,a(pQ) be the
Hecke operator introduced in §2.§ for odd prime p, which acts on the space
M4 (T (4)). For any odd prime p the identity

0( ) Tan—a(p®) = pH/HHECHD=CAONRo(G T (7). (4.1)

has been obtained in [Ib 92].

Through the identity @I) the Hecke operator Th.,_q(4) for M;j,; (F(()") (4)) is
2

defined. It means that we define

0($)Tan—a(d) = 20/ZHRCHD=CHINEo(gITI (1) (4.2)

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 147

4.4 A GENERALIZATION OF COHEN-EISENSTEIN SERIES AND THE SUBSPACE

(n)*
Jk711/2

In this subsection we will introduce a subspace J (")f cJ (")1 for any integer
k—3,m k—3,m
n. Moreover, we will introduce a generalized Cohen-Eisenstein series ’Hl(gitl)
2

and will consider the Fourier-Jacobi expansion of H]in_tl) for any integer n.
2

Let e,g";r Y be the first Fourier-Jacobi coefficient of Siegel-Eisenstein series

E,(cn”) (see B3) in §3] for the definition of egffrl)). It is known that 65:1“)
coincides with the Jacobi-Eisenstein series E,(:lﬂ) of weight k£ of index 1 of
degree n+ 1 (cf. [Bo 83, Satz 7]. See (B]) in §3lfor the definition of E,(:frl)).
We define the generalized Cohen-FEisenstein series Hgi?) of weight k — % of
degree n + 1 by

n+1 n+1
”H]i_% )= U(E,i1 )).
Because E,(JIH) € J,gTrl), we have 7-11(:_—21) € M]:r_% (Fén+1)(4)) for any integer
n.
For any integer m we denote by FJ,, the linear map from M, _1 (F(()"H) (4)) to

2

J lii)l ,, obtained by the Fourier-Jacobi expansion with respect to the index m.
ol

It means that if G € M,_1 (I‘én'irl)(él))7 then G has the expansion

6((7 2)) = X omtroetma)

meZ

and we define F‘jm(G) = ¢m. We remark ¢, € Jé@l ., due to Lemma [1.T]
3
We denote by J;i);m the image of M]j_% (Fénﬂ)(él)) by the map FJ,,.
We denote by el(:_) 1, the m-th Fourier-Jacobi coefficient of the generalized
PR
Cohen-Eisenstein series 7-[,81—21) (see (L) in g1l for the definition of 6;:,)1 )
2 20

(n)

We remark €kt m € Jk*%,m for any integer n.

4.5 THE MAP 1
We recall M = (Tj2 T{2) € Sym; In this subsection we shall introduce a map

im : HY — Hol($,, x C™Y - ©),

where H/(\Z) is a subspace of holomorphic functions on $,, x C(*?) which will
be defined below, and where Hol($),, x ch C) denotes the space of all

DOCUMENTA MATHEMATICA 21 (2016) 125-196



148 S.HAYASHIDA

holomorphic functions on $),, X C(™1) | We will show that the restriction of ¢ M
gives a linear isomorphism between Jénﬁ and J;i);m (cf. Lemma F2).

Let 1) be a holomorphic function on $, x C(™2). We assume that ¢ has a
Fourier expansion

U(r,2) = > A(N,R)e(NT +' Rz)
NeSym} ,Rez™V)
AN—RM™*R>0

for (7,2) € H, X C(™?) | and assume that 1 satisfies the following condition on
the Fourier coefficients: if

< : %R) < i %R/> Kl" )}
1t = 1t s t

with some 7' = (0, A) € Z(™?) and some A € Z(™V, then A(N, R) = A(N',R').
The symbol Hﬁ) denotes the C-vector space consists of all holomorphic func-
tions which satisfy the above condition.

We remark J,gn/t; - J,g% C H/(\Z) for any even integer k.

Now we shall define a map trq. For o (7, 2") = >, A(N, R)e(NT'+R!2') € H/(\Z)
we define a holomorphic function ¢4 (%) on £, x C™1) by

() (r,2) = > C(M,S)e(Mt + Stz)

MeSym?, Sez(™V

n?

4Mm—StS>0

for (1,2) € $, x C™V where we define C(M,S) := A(N, R) if there exist
matrices N € Sym} and R = (Ry, Rz) € Z™?) (Ry, Ry € Z(™Y) which satisfy

M 1S - N OIRN (R
(%ts det(2/\/l)) = 4(531 l)_(r ("B,

C(M,S) := 0 otherwise. We remark that the identity

0
1 :

N iR R\ B N iR " :
4<§R1 l><r (for) = 44 0
0---0 1

7%tR2 7%7’

holds and remark that the coefficient C(M,.S) does not depend on the choice
of the matrices N and R. The proof of these facts are as follows. The first fact
of the identity follows from a straightforward calculation. As for the second
fact, if

N 1R, R N LR R!
1, 1) (F)emen = aiy 70) = () (),

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 149

then 4N — Ry'Ry = 4N’ — R)'R,. Hence Ry'Ry = R,'R, mod 4. Thus
there exists a matrix A € Z1) such that R, = Ry + 2\. Therefore, by
straightforward calculation we have

N 3R\ (N R\[(l, 0
'r M) — \U'rR M) I\T 1
Ry) and R’ = (R'1, R'2). Because ¢ belongs to

with T = (0,)), R = (R,
= A(N', R’). Hence the above definition of C'(M, S) is

H/(vt)a we have A( ,R)
well-defined.

LEMMA 4.2. Let k be an even integer. We put m = det(2M). Then we have
the commutative diagram:

J(n+1) L} M;j,% (FénJrl) (4))

k,1
FJl,Ml l’FT]
k,M ’ k—%.m’

where two maps FJy y and FJ,, have been introduced in §3.1) and §§4. More-
over, the restriction of the linear map tapq on J,i  gives the bqectzon between

,m

Proof. Let 1) € J,gfllﬂ) be a Jacobi form. Due to the definition of o (cf. §43)

and ¢, it is not difficult to check the identity tar(FJiam(¥)) = Flo(o(¥)).
Namely, we have the above commutative diagram.

Since the restriction of the map FJ,, on M;ﬁl(FénH)(ZL)) is surjective, and
2
since o is an isomorphism and since tpr (FJ1,m(0)) = Fln(o()), the restricted
map LM|J(n)* : J,g"/z: — J]i")f is surjective. The injectivity of the restricted
k, M ’ —32,m

map (| s follows directly from the definition of the map ¢ . a

4.6 COMPATIBILITY BETWEEN INDEX-SHIFT MAPS AND LM

In this subsection we shall show a compatibility between the map ta¢ and some
index-shift maps.
For function ¢ on §, x C™2) and for L € Z(2?) we define the function Y|UL
on 9, X Cc(n2) by

(¢|UL)(7—;Z) = 1/)(7, ZtL)
It is not difficult to check that if i belongs to J,i?jz,[, then ¥|UL belongs to
J(n)

k,MIL]
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For function ¢ on £, x C™1 and for integer a we define the function ¢|U, on
9, x C»1) by

(¢|Ua)(7-a Z) = ¢(Ta az).

We have ¢|U, € J,gi); a2 L @€ J;iri); m
2 2

PROPOSITION 4.3. For any v € Jénﬁ and for any L = (¢ 1) € Z32) we obtain
em(WIUL) = em(¥)|Ua.

In particular, for any prime p we have (P )] (l/f ‘U(p 1)) = pm()|Up.

Proof. We put m = det(2M). Let (7, 2") = Z A(N,R)e(NT + R")

NeSym;,, Rez™?
AN—RM™*R>0
be a Fourier expansion of 1. Let

@) (rz) = Y C(M,S)e(Mr+ S'2),
MeSym;,, sez(m1
4Mm—StS>0

e @WUL) (T, 2) = Z Cy(M,S)e(MT + S'z)
MeSym;,, Sez(m1
4Mma?®—-5tS>0

and

(m@)|Ua)(r,2) = Y Co(M,S)e(Mr+ S'z)

MeSym?*, Sez(™V

n?

4Mma®?—-S5tS>0

be Fourier expansions. It is enough to show Cy (M, S) = C2(M, 5).
We have C3(M,S) = C(M,a='S). Moreover, we obtain C;(M,S) =
A(N,RL™") with N € Sym* and R € Z(™?) which satisfy

0

1 1 ]-n :

1S ma?) iR MIL] 0o (1)
t
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For the above matrices N, R, M and S we have

M %a‘ls
%a‘lts m

0
_ 4( N 3R In 1n
a 3'R ML 0.0 (1) 0
- 0---0 a?
~JR() —dra-b
[ 0
1pr—1 1 :
= 4(115(&—1) 5% > 0
2
0---0 1
\-4(R (D) 4
[ 0
1 —1 1n
_ 4 N sRL
O GRLT) M 0
0---0 1
\-3RL () 4
Thus C2(M, S) = C(M, a_lS) = A(N, RL7Y) = C1(M,S). O

PRrROPOSITION 4.4. For odd prime p and for 0 < a < n, let Vayn,a(pQ) and

Va,n—a(p?) be indez-shift maps defined in §2.73 Then, for any 1 € J,g"/zfl we
have

(@) Van-a(p?) = pHEFDTOEDER L (Voo (p?)(43)

Proof. The proof is similar to the case of Jacobi forms of index 1 (cf. [Ib 92l
Theorem 2]). However, we remark that the maps V.o (p?) and Va.n_a(p?)
in the present article change the indices of Jacobi forms.

To prove this proposition, we compare the Fourier coefficients of the both sides

of @3). Let
U(r,2) = Y AN, R)e(NT+ R'Y),
N,R
(Y| Van—a(@®))(1,2) = ZAg(N,R)@(NT—i—RtZ'),
N,R
m@W)(r,2) = ZCl(M,S)e(MT—i—Stz)
M,S

and

(Mm@ Van—a®@))(r,2) = > Ca(M,S)e(Mr+ S'z)
M,S
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be Fourier expansions, where 7 € $),,, 2’ € C™?2) and z € C™V). For the sake

of simplicity we put U = (1’2 p). Then

wlva,n—a(p2)

= 2 2

p2tD B\ A2,u2€(Z/pZ) (™Y
0, D

o (707 B) % (Y pur )+ 1000.22), (0, 12)), 021)

- Y Y Yawn

p2tD~ B\ A2.u2€(2/pZ)™ V) N.R
0, D

xe(Nr+ B2 (727 8) x (V-1 ) 100,20, (0, 12)), 0] )

2t y—1 .
where (1’ oD g) runs over a set of all representatives of

n

L \Tdiag(La, plo—a, 2 las Pla—a)n,

and where the slash operator | ¢ is defined in §2.41
We put A = (0, \2), = (0, u2) € Z{™2), then we obtain

o7+ B2k (727 5) % (7 01 ) o [O ). 0]
=p *det(D) *e(N7+ R'z2+ NBD™' 4+ RU'uD™Y),

where
N _ 1
N = p:DIN'D 1+D*1RUU+EAUMUM
and
. . 2
R = D RUJrF)\UMU.
Thus
N = Lp((xv-tasn +3(R —2X0)!(Ry — 2)\2) ) 'D
R q i e 7\ 2 2 2
and

R = D <R %AUMU) U,
p
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where Ry = R(?) Hence, for any N € Sym, and for any R € Z(™?  we have

Ay(N,R)
=pF > det(D)F M > A(N,R)
(pztpfl B> M2 €(Z/pL)"™ D) p2€(Z/pZ) ™)
On D

x e(NBD™ ' 4+ RU'(0, u2) D™ 1)

=p Mt 3" det(D)" Y A(N,R)e(NBD™),
(p”D*I B> X2 €(2/pZ) ("D
0, D
where N and R are the same symbols as above, which are determined by N , R

2t y—1 .
and Ao, and where (” oD g) runs over a complete set of representatives of
n

T \Lpdiag(La, pla—a, P*lay Plna)Ta.

On the RHS of the above first identity the matrix D~'RU belongs to Z(™?2),
since R € Z(™?, We remark that A;(N,R) = 0 unless N € Sym’ and R €
7,(n:2)

Due to the definition of 1o, for N € Sym? and R € Z(™?) we have the identity

A1(N,R) = Ci(AN —R(9)" (R(9)),4R(}) —2rR(9)).
Here
AN —R(DUR(9)) = %D(ALN—RQtRQ)fD
and
AR(L)—2rR(9) = ]%D(Zl]%(é)f%"pﬁg).

Hence we have
= p ki Z det(D)*
2t H—1
(" 8)
l T D.tp \t i D (1Y _ »
x O 2D 4N — Ry'R> ) ' D, 2D(4R(O) 2rpR3)
p p
]. A ]. St t ]- 7 tr P t
xe(F <N — ZRQ Rg) DB) §e<4—pQ(R2 —2X2)"(Re —2X2)'DB |,

where Ay runs over a complete set of representatives of (Z/ pZ)("’l) such that

L2
D (R — P(O,AQ)UMU) Ut ez,
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1o
Let &, be a complete set of representative of I',\I', Pln—e 01 ) T,.
Pln—o

Now we quote a complete set of representatives &, from [Zh 84]. We put
5i,j = diag(liapljfia[ﬂ]-nfj)

for 0 <i < j <n. We set

2 —1 t —1
.f P05 5 bo u 0.\ . .
6a = {< On 51_7]') ( On u Za]7b07u )

where ¢ and j run over all non-negative integers such that j —i —n +a > 0,
and where u runs over a complete set of representatives of (J;_ leLn (Z)6;,; N
GL,(Z))\GLy(Z), and by runs over all matrices in the set

s (%0 0N b @pmino b=t @ppzomin,
= 1 1 i S
0 thy by )|BT tay € (Z/pZ)I=79) rank,(a;) =j —i—n+a
. 2p~' B 25,70 b\ (tut 0 .
For a matrix g = (p 0, D) = (p 6: 5:j %n 17 € &, with a
Oi 0 0 rankp(al)/Q det a’
matrix bp = | 0 a1 pby | € T, we define (g) := (%) (Tl>’
0 by by

where a} € GL;_;_n+q(Z/pZ) is a matrix such that a; = (“01 0n07a> [v] mod p
with some v € GL;_;(Z). Under the assumption

1 » » n
FD(ZLR(%) —2rpRy) € Z™Y),

the condition D(R — 2p~2(0, A)UMU)U ' € Z(™? is equivalent to the con-
dition

u(Ry — 2)s) € ("5% L0 )zwvl).

n—i

Hence the last summation in (@4 is

Ze(4—;2(}%2 —2X0) (Ry — 2A2)tDB)

A2

) 1
— pn—] 6(—t)\la )\/)
2. el Nm

)\’G(Z/pZ)(j*ivl)

ranky(ai)/2 ’
—i—rank,(a —4 ’ deta
= pn kp(a1) < >p> ( 1>
p p

. ranky(a
g Tankp(a1)

= p 2 £

g
— pn—i-(n—i—j—a)/QE(g).
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Thus ([@4) is
Ay (N, R)
— 2 Zp—k(2n—i—j)+(n—i—j—a)/25(9) e(p_2 (4N _ RQtRQ) tDB>
g

x O (p_2D(4N — Ry'Ro)'D, p 2D(AR(}) — 2rp1%2)) :
2t y—1 2¢ —1 t, 1
_(p D B (P 5i,j bo u 0y, .
where g = ( 0, D> = < 0, 5i 0, M runs over all ele

ments in the set G,,.

Now we shall express Co(M, S) as a linear combination of Fourier coefficients
C1(M, S) of ar(¢). For Y = (diag(la, pla—a,p*Las Pln—a),p*/?) € GSp,! (Z)
a complete set of representatives of I‘én) (4)*\F(()")(4)*YFén) (4)* is given by el-
ements

—~

7 = (g.e(9)p"=9/%) € GSp/(2),

where g runs over all elements in the set &, and (g) is defined as above (cf.
[Zh 84] Lemma 3.2]). Hence

(em(¥) |Va,n—a (p2))(7', z)

_ pn(2k—1)/2—n(n+1) Z Zp(—k+1/2)(n—i—j)€(g) o} (M, S)
M,S §

X e(M(thD_lr +B)D™' +p*St2D™)
= p"(2k—1)/2—"(n+1) Z Z p(—k+1/2)(n—i—j)5(g) Cy (p_2DMtD,p_2DS')
M,3 9ESq
x e(Mt + Stz +p 2M'DB).
Thus
Co(M, S)
= Zpfn(nﬂ)ﬂk*l/m(”j)E(g) Ci (prDMtD,p*QDS) e(p*QMtDB).
g

Now we put M = 4N — Ry'Ry and S = 4R (}) — 2rpRy, then
CQ(4N — RQtRQ, 4R((1)) — QTPRQ) = p2nk+kfn27%n+%aA2(N, R)

The proposition follows from this identity. a

4.7 INDEX-SHIFT MAPS AT p = 2

For p = 2 we define the map

f/a,n_a(él) : J]i’i);m N HOl(.ﬁn % (C(n,l) —>(C)
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through an analogue of the identity (@3], it means that we define
¥ L k(2n+1)7n(n+z)+la
W Van—a(d) = 2 2z LM[(Q ») (Y Va,n—a(4))

tm(¥) = ¢. Here the map Vy —q(4) is defined in §27 and the map caq is
defined in §4.5

for any ¢ € Jlgn)f e and where ¢ € Jénﬁ is the Jacobi form which satisfies
27 ’

5 ACTION OF INDEX-SHIFT MAPS ON JACOBI-EISENSTEIN SERIES

In this section we fix a positive definite half-integral symmetric matrix M €
SymJ and we assume that the right-lower part of M is 1, it means M =

% %
x 1)/
(n)

The purpose of this section is to show that the form E}"|Va,n—a(p®) is writ-

ten as a linear combination of three forms E(tl) KPO)], Eli"/)w|U(€ ?) and

01
El(cn/)\/t [Xil (p 0 ) 71] |U<p 0)X(” 0) , where E,(cn/)w is the Jacobi-Eisenstein series

01 01 01

of index M (cf. §3)), and where V,, ,,—o(p?) and U<p 0) are index-shift maps
01

(cf. 27 and §L0). Here X = (19) is a matrix.

First we will calculate functions Kf ; (cf. Lemma [52) which appear in an
expression of El(cn,/)\/l Vo n—a (p?), and after that, we will express El(cn,/)\/l Voen—a(p?)
as a summation of functions f(f ; (cf. Proposition B.3)).

The calculation in this section is an analogue to the one given in [Yk 89] for the
case of index M = 1. However, we need to modify his calculation for Jacobi-
Eisenstein series El(cnl) of index 1 to our case for E,(cn) with M = (¥7) € Symj .
This calculation is not obvious, since we need to calculate the action of the
matrices of type [((0,u2), (0,v2)), 02].

5.1 THE FUNCTION Kfj

The purpose of this subsection is to introduce a function Kf ; and to express

E,gn)\A|Va,n,a(p2) as a summation over Kfj. Moreover, we shall calculate Kf]
explicitly (cf. Lemma [(52)).

We put 4;; = diag(l;,plj—i,p°1l,—j). For z 1= diag(0;, 2", 0,,—;—;) with

.
o' =tz € ZUTH ) we set §;,(z) = (p gi’j (;E ) and I'(6;(x)) :=
i,

I',N (51',]‘ (x)_lFéz)ém (I)

For z = diag(0;,2’,0,,—;—;) and for y = diag(0;,y’, 0,—;—;) with 2’ ="'2/,y' =
ty' € ZU=4=9  following [Yk 89] we say that = and y are equivalent, if there
exists a matrix u € GL,(Z) N 5i7jGLn(Z)5;j1 which has a form u = (u*l u x )

* % U3
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satisfying @’ = uzy' ‘ug mod p, where upy € ZU=%=9 ;€ Z0Y and uz €
7, (n=jn—j)

We denote by [z] the equivalence class of x. We quote the following lemma
from [Yk 89].

LEMMA 5.1. The double coset Ty, diag(1a, pln—os P?Llas pla—o)ly is written as
a disjoint union

1o
ln—a n
Fn< T e )rn = U Urls @r.,
Pln—a

2 []
0<i<j<n

where [z] Tuns over all equivalence classes which satisfy rank,(x) =j—i—n+
a>0.

Proof. The reader is referred to [Yk 89 Corollary 2.2]. O
2
We put U := (% 2) . By the definition of index-shift map V,, ,_(p?) and of

the Jacobi-Eisenstein series E,i"/)\/l, we have

B Vain—a(0?)

= 2 2. 2 X

u,0€Z(m 1) M’ €l \I'ndiag(la,pln—a,P?la,pln—a)ln prep{\T, ACZM2)

% 1 ([(A,0), 05], MM x (gng,l))|k7M[(€$)][((o,u), (0,0)), 0]

= 2 2 2

w,vEZM D MeT N\, diag(la,pln—a:p?la,plo—a)Tn AELM2)

X 1ian([(1,0), 02, M x (o0 ))|,€,M[(g 0),1((0, ), (0,v)), 0.
Hence, due to Lemma 5.1 we have

El(gtl/)vl|va,nfa(p2)

D IEEDY 2 >, X

u,veZ(™ 1) ,J [] Mer(og)\(; () AEZ(n,2)
0<i<j<n rank,(z)=j—i—nta o "

X 1ian([(1,0), 02, M x (o0 ))|W[<€ 0),[((0,10), (0,0)),02

= 2 X 2 > 2

w,weZ( D dj [x] METL (65,5 (x))\I'n A€Z(:2)
0<i<i<n rank,(z)=j—i—n+a

X a0, 0),02], 855 ()M x (1 20+ ))|W[(g o), [((0, ), (0.0)), 02
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For g < j — i we define a function

B
K;; (1,2)

= KELM@(T’ z)

= 2 2.

2] MEeT (6, (x))\Tn
rank,(z)=8

< D0 {000, 02], 80, @M x (201 ))} (7, 2)

A€Z(n,2)

Then we obtain

B WVam—a®) = 3. Y Kﬁ;i*”“lk,w(p0)}[(<0,u),<0,v)),02]-
i, u,veZ™1) 01
0<i<j<n
We define

L1 (NN | A€ 02)0D Ny € 207D N5 € (pmiz)(n D)
1T B Me U 2 2 Mg € 2G| A MENy € Z—ind) -

Moreover, we define a subgroup I'(d; ;) of & by

A B
F(éi,j) = {(0 tAl) (S Fgg)

LEMMA 5.2. Let Kfj be as above. We obtain

Ae 5i7jGLn(Z)6.1} .

)

B
Ki,j(TaZ)
_ ks Do) 3O
MeT(6; ;)\I'n
1
<3 (00,01 M)z (39) YD e(y—)Mt)\xA),
AELi; e='ze(2/pz)™™

z=diag(0;,2",0n—j)
ranky(z')=p

where x runs over a complete set of representatives of (Z/pZ)(”V") such that
x =tx, ranky(z) = B and v = diag(0;,2',0,_;) with some z' € (Z/pZ)I=HI=9),

Proof. We proceed as in [Yk 89 Proposition 3.2]. The inside of the last sum-
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mation of the definition of Kfj (1,2) is

(thrre(1(A0), 021,615 @)M x (201 ))) (7.2)
= det(p?U ) "* det (5, ;)"
2
ty (251 -1 tys—1, (P
x (e(M( A6, T + )0, A+ 2P0 z( p)))lk,M[(g?)]M) (1,2)
—k(2n—i—j+1)

=D

< ((haatlor 20,01 (5 7)) BN sy M) ()

_ i _ 1 T
=p k(2n—i—j+1) (1|k7M([(2)(52_7],1)\70),02]7 (0 p . ) M)) (T,z (g ?))
Here we used the identity §; ;o = §; ;diag(0;,2’,0,—;) = pz. Thus

K/ (r,2) = phnmimith R 3

[x] MET (8,5 (2))\T'n
ranky(xz)=p3
_ 1 pla
X Z 1|k7M ([(p(si,jl)‘ao)vOQ]v (0 P 1 ) M) (T7Z (g ?))

AEZL™

We put

s=tse Z("’”)} .

Then the set

Y= {<t1>: 1Sn>

is a complete set of representatives of I'(d; ;(z))\I'(d;,;(x))U. Therefore

0.0 0 v v o
s=(0 0 52 ), spe(@/pm) 0=, sy="sse(@/pm) D)
Ot52 S3

Kfj (1,2)
_ pfk(2n7ifj+1) Z Z Z Z
7] MEMGL @O ACEED (15 ) ey
ranky(x)=0 0 1

<t n00 (5 70T () a0 (3)
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Hence
I SN VIR VD »
[z] Me(T'(65,5 (2))U)\I'n AeZ(:2)
ranky(z)=0

1 5-12,0),00, (7 7Y v po
X |k7M([(p IR A )7 2]a 0 1, )(T,Z (0 1))
XY e (pPPMING S0 N
(6 1,)ev
The last summation of the RHS of the above identity is

> e (PPMING )56, 1)
(g 13, )ev

B {p(nj)(niﬂ) if AsM*A3 =0 mod p? and 223 My =0 mod p,

0 otherwise,

A . o ,
where A = (/\;) € 22 with A, € Z(2) Xy € ZU~52) and \g € Z("—7:2).

A3
Thus

B _ o —k@n—i—jt1)+(n—j)(n—it+1

Kl (r,z) = pH@nmimitDteopmicn  §° 3
[ Me(T(i; (@)U

ranky(xz)=p3
L
<37 Akl [0,0),02], (% 77 ) M)z (59)):

AEL; ;

Now I'(d; j(z))U is a subgroup of I'(d; ;). For any (OA ,,AB,l ) € I'(d; ;) we have

1

Lk,m([(A,0),02], (éz ”Inl) (OA B ) M)
= 1|, m([(A,0),02], (O‘: tAB_l) ((1):, p_lA_lix‘A’1> M)

= Uwn((CAN B, 0], (3 774747 ) )

n n

_ 1|k,M([(tA>"O)7O2]’ (éz P‘lA—l?E‘A*I ) M)a

171

41
x))U\IL'(d;,5), then A1zt A™" runs over
(cf. [Yk 89, proof of Proposition 3.2]).

A B .
and "AL; ; = L;;. Moreover, when (0 ‘ ) runs over all elements in a
n

complete set of representatives of I'(;_; (
all elements in the equivalence class [z]
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Therefore we have

Kf,j('raz)

—_ p—k(2n—i—j+1)+(n—j)(n—i+1) Z Z

mtae(@/pZ) "™ MET g\
z=diag(0;,z",0n—;)
ranky(z’)=p

30 Tea(((0,0),02], (5 7,17 ) M) 2 (59))
AEL; ;
—k(2n—i—j+1)+(n—j7)(n—i+1) Z

MEF(&-J)\F"

1
< 3 o100 M) (72 (59) Y e(-th).
AE€L; a::tzG(Z/pZ)("’") p
z=diag(0;,x’,0n_;)
rank,(z’')=p

=D

5.2 THE FUNCTION f(fj

The purpose of this subsection is to introduce a function K f ; and to express

E,(gn/)vl |Vion—a(p?) as a summation of f{fj Moreover, we shall show that f{fj is
a summation of exponential functions with generalized Gauss sums (cf. Propo-

sition 5.3).

We define
L;‘,j = L;‘,j,./\/l,p
A .
= { (i;) S LiJ‘ 23 M ((1)) c Z(n_J’l)}
3
; M () €209, 3y e 7002
= A —1z)(m2) —17y(n—j,2) t (j—i,n—j)
2 G(p ) )\36(17 Z) , 20 M3 €7Z
A3 AaMNg € Z=im=0)  2x; M (9) € Z(n=i-)

and define a generalized Gauss sum

- 1
G.j,\/l ’l(>\2) = Z e <]—)Mt>\21‘/>\2>
w/ztl‘/e(z/pz)(g‘—i,j—i)
ranky(z')=j—i—l

for Ay € ZU=42)  We define
KJ (r2) =K,y ,(7.2)

= X (Ko (00 0.0),00) ()

u,0€(Z/pZ)(m:1)
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PROPOSITION 5.3. Let the notation be as above. Then we obtain

(E,E?}Alva,nfa(pQ)) () = > Ky (),
0<ij<n
Jj—izn—a
where
Re57mi(r,2) = ph@noizit D+ n=it1)t2n—j
. ST (e ([(X,0),00), M)} (7,2 (89))
MET(6; ;)\ M
A:<A2>GL;,~
A3

X Z Gj',\;i’nia()\g + (O,UQ)).

U € (2/pZ) i =41)

Proof. From the definition of K f ; and Lemma we obtain

(5.1)
RiojjiiinJrj (Ta Z)
= prRCn ) 3 S @)
MeT(6;,;)\T'n (Al )
A={ X |E€Li,
A3

X Z (1|k,/\4([()‘7 O)a 02]7 M)(T7 z (g ?))) |k,M[(€ ?)][((O,U), (O,U)) ) 02]7

u,0€(Z/pZ)(m:1)

) o . A
where Ay € 202 Xy € ZU=42) and A3 € Z("52) satisfy <§;) € L;;, and

3

A
where the n x 2 matrix A = (:\\2) runs over the set L; ;.
3

By a straightforward calculation we have
(1|k7M ([()‘a 0)7 02]a M))(Ta z (g ?))

— 0)~1
= (o (g oy (O (501010 ) 1.2),
Thus the last summation of (5.)) is

5 b 1000).0a1 A5 (3 D)y (g0, (000, 0.00) 02 7.2

u,v€(Z/pz)(n1) ol

- ¥

w,v€(Z/pZ)(n:1)

L eoa (52 (A (B2 010100, 0, 1000, 0.0)) 0 7.2)
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Z {1|k,M[(g (1))]([()\ (g ?)71 + (O,U/), (O,Ul)),OQLM)} (T, Z)

u’,v’E(Z/pZ)("vl)

Z {1|k,M([(/\ + (O,M/), (07 U,))702]7M)} (T,Z (g ?))

u! v’ €(Z/p) (1)

Z {1|k,M([()\ + (0, u'),O),Og],M)} (1,2 (g (IJ)) Z e(QMt)\(O,v/)),

u/ €(z/pz)(n:1) v €(Z/pZ) (1)

where, in the second identity, we used
(Ma [((Oa ’U,), (Oa ”U)), 02]) = ([((07 u/)v (Oa U/))a 02]7 M)

, A
with (%) = (5 C) (%) for M= (4B)€eT,. For A= (:\\;> € L; ; we now
3

have

noo: 0 Z(nfj,l)
S eeMIA0,Y) = {p 2 M(Y) € :

0  otherwise.
v’ G(Z/pZ)("’l)

Therefore
K27 (1, 2)
_ pfk(2n7ifj+1)+(n7j)(n7i+1)+n Z Z Gj/\;i,nfa()\Q)
MeT(6;,;)\T'n ()\1>
A= Ao ELi’j
A3

xg (D) ezns0

x> {1m([A+ (0,1),0),00], M)} (7,2 (5 9)).

u€(Z/pZ) 1)
Thus
[ra—i—n+j
K (1, 2)
— p @it D)= (n—it ) 4n Z Z

MeT(6;,;)\T'n A1
A= A2 EL;J.

X {1|k,M([()‘a0)702]7M)} (T,Z (g ?))

xp' YT G e+ (0,u2),
uz€(Z/pZ)I—41)

where L7 ; is defined as before. O

We put
a . .
gp(ma) = [[{e 7" -1 -1}
j=1
It is not difficult to see g,(n,n — a) = gp(n, a).
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LEMMA 5.4. For any A = (A1, A2) € Z"2) and for any prime p, we have

Y G+ (0,u)
uz€(Z/pZ) (1)
p%(n—a—1)2+%(n—a—1)+a+n (ﬂ)

P
2 ifn—a=1 mod?2

-1 and \1 Z0 mod p,

n—oa—
xgp(n —1,a)

j=1
j:odd
= ifn—a=1 mod?2

and Ay =0 mod p,
n—a—1

1 2 1 y

pi(n—a) +5(”—“)+“gp(n,a) H (P -1) ifn—a=0 mod 2.

Jj=1
j:odd

Here m = det(2M) and we regard the product H (p? —1) as 1, if ¢ is less
=1
]] odd

than 1.

Proof. This calculation is similar to the calculation of

1
Z e (—mt)\l x)\l)
z="2€(Z/pZ)" p
ranky,r=n—a

for A\; € Z(™Y) and for m € Z which is in [Yk 89, Lemma 3.1].
If p is an odd prime and if \; #0 mod p, then

S G+ (0,u2))

un € (Z/pZ)(m D)
1
- Z Z € <—Mt()\1,UQ)£L'/(>\1,u2))
us €(Z/pL)m V) o' =ty €(2/pT) ™ p
ranky(z')=n—a

By diagonalizing the matrices ' we have
Y. GO+ (0,u)
u2€(Z/pZ)™
= > 0" GLa(Z/p2)] |O(z:)|

i=0,1

1
YR (M),
u2€(Z/pZ)(n:1) nG(Z/pZ)("’l)
n#Z0 mod p
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where x; = (yo 8) e 2™ yo =10, y1 = (1"*0‘“1 2) € 2(n—n=a) and ~

is an integer such that (%) = —1. Here O(x;) is the orthogonal group of z;:

O(z;) = {g€GL,(Z/pZ)|gui'g=w;}.

If we diagonalize the matrix M as M =X (7 9) X mod p with X = (19),
then

Z Gx;la()‘ + (07u2))

w2 €(Z/pZ) (1)

= Z PV |GL—1 (Z/pZ)] |0 (a)|

i=0,1

<Y e (% (' + uatus) x) |

uz€(2/pZ)™ Y ne(z/pz) ™V
n#Z0 mod p

The rest of the calculation is an analogue to [Yk 89, Lemma 3.1]. For the case
of p =2 or A\y = 0 mod p, the calculation is similar. If p = 2, we need to

calculate the case that M =*tX (Tz/ % ) X, but it is not difficult. We leave the
2
detail to the reader. O
We set
0= Y GR((0,u))

us€(Z/pL)(™1)

1
0

SHOEEDS GM<<<>>>
u2€(Z/pZ)(™) 0

Due to Lemma 5.4 we have that Z G (A +(0,uz)) equals S (0)
wz € (Z/p) )

or S (1), according as A € 72 (8 (1)) or A ¢ Z(?) (g (1))

and

PROPOSITION 5.5. The form E,(fn/)w|Va,n,a(p2) is a linear combination of three

M(B T k,M[X*l(:S 01/)*\o1

the indez-shift map Uy, is defined in §7.0, and X = (19) is a matriz in Z(>?
such that M = 'X (™1 1)X if p = 2 and w =3 mod4, or M =
EX (m9)X mod p otherwise, and where m = det(2M).

forms E;in/)vt[(” 0)]; Elinj)\ﬂU(g(l)) and B (1))71] |U<p O)X(p 0)- Here
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Proof. By virtue of Proposition 53] we only need to show that the form
K jﬂ*"ﬂ (1, 2) is a linear combination of the above three forms.

Because of the conditions A3Mt\3 € Z("=5m=1) and 2A\3M (9) € Z(=31) in
the definition of L} ;, we obtain

(n.2)
A
Ly, = {(xi) e<lz)

, 2 »

for the case p|f, and

A €Z02 (2O) Ny € ZU—82),
Nt X €z (vt 0) (5:2)

A1 ; i—1 1
L;j _ {(:\\2) c Z(n,Q) |)\1 c Z(z,2) (g (1)) ,)\2 c Z(J*z,2), )\3 c Z(n],Ql}?))

3

for the case p[f. Here f is a natural number such that Dof? = — det(2M)
and Dy is a fundamental discriminant, and where the matrix X is stated in
this proposition.

We now assume p|f. If p is an odd prime, then the matrix X = (1) € Z(2:2)
satisfies M =X (7 9) X mod p and p?lm. If p = 2, then the matrix X =
(19) € Z2¥ satisfies M =X ('3 9) X with 4|m, or M =X (™' 1) X with

4|m’. We remark that M {X*I (’O’ ?)71} is a half-integral symmetric matrix.

We put
o= {(}) emimezHan}
and set
L, = {(i) ‘ M€z (70), xy € 20T (59) 2y € Z("”)}.

By using the identity

{1k, m([(A, 0),02], M)} (1,2 (579))
= {1 e mx-—([(AX,0),00], M) } (7,2 (59) " X)

{1
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we have

G ()
_ p—k(2n—i—j+1)+(n—j)(n—i+1)+2n—j

< 3 {sﬂ/v”a(O)Z{1|k,M([(A,0),02LM)}(nz(‘5?))

MEer(s; j)\T'n A\eLg

AEL

+ s S {1|k,M([(/\,O),02],M)}(772(g?))}

_ pfk(2n7i7j+1)+(nfj)(n7i+1)+2n7j Z { (Sjvfli,nfa(o) o Sj\;i,nfa(l))

MEeT(6;,;)\I'n

% A;[) {1|k,M{Xl(g?)1]([(AtX (59) ,0),02],M)} (r,2(20)X (29))
+Su (W)

XZ {1|k,M[X—1(g(1J)1]([()‘tX (g(l)) 70)702]7M)} (T7Z(gg)tx(€?))}

AELT,

_ p—k(2n—i—j+1)+(n—j)(n—i+1)+2n—j Z { (S'j/'\/—[i,n—a(o) _ S;’V—li,n—a(l))
MeT(8;,7)\n

X Z {1|k,M{X_1(p 0)—1] ([()‘70)702]7M)} (T7Z (g (1)) tX (g
+S’j/'v—[i,yn—a(1)

X Z {1|k,M{X1(p O)—l]([(/\ro)702]7M)} (T7Z(€?)tX(€

!’
AELL;

=]

)

o}

= o

We now calculate the sum

Z Z {1|k,M[X‘1<g?)l} ([()‘ao)702]aM)} (T,Z (S(l))tX (8(1)))

MET(8i,;)\I'n AELY ;
We set
Hi; :=6:;GL(Z) 51,*7],1 N GL,,(Z).

If {A;}; is a complete set of representatives of H; ;\GLy(Z), then one can

A 0
say that the set {( !

0 A _1)} is a complete set of representatives of
! !
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(6, )\I'Y. Thus

Z Z {1|k,M([()‘a0)702]7M)} (T,Z)

MET(8; j)\T'n AEL',

- > > ST {1lem(((0,0),00], (40 20) M)} (7. 2)

Mert\r, A€H; \GL,(Z) XEL), ;

= > ST Y {Uem(((FAN0),05], M)} (7, 2).

Mert\r, A€H; j\GL,(Z) XEL), ;

If B()) is a function on A € Z(™2). Then

> > B('AN

A€H; ;\GLn(Z) XeL] ;

= [Hj;:Higl Y > B('AN

A€H; \GLn(Z) Xe L', ;

=[H;;:Hij]| ao Z B(A) 4+ a4 Z B()\(S?))Jrag Z B()\(1702(1)>)

A€Z(n:2) Ae€Z(n.2) A€Z(n,2)

with numbers ag, a; and as under the assumption that the summations con-
verges absolutely. The values ag, a; and as are independent of the choice of
the function B. For the exact values of ag, of a; and of as the reader is referred
to [H 13, Lemma 3.7].

Hence we have

=]

Z Z {1|k,M{X_1(€(1))1] ([(A70)702]7M)} (T7z(gg)tX (g ))

METD(8; ;)\ AEL/,

= [Hj;:Higl >

Mer{\r,
X <ao Z {1|k,M[X1(5?)_1]([()\70)702]’]‘4)} (772(8(1))tx(€(1)))
rez(n:2)
fr 3 {1y (O GD-010530 (2 (51) X (500
Aez(n:2)
+az Z
rez(n:2)

x {uk,M{X_l(g?)l]([(A (%) ,0>,02LM>} (m(s?)tX(e“?)))
= [Hj;:Higl >

Mer{\r,
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< ) {uk,M[xl(gg)1]<[<A,o>,021,M>}(nz(s?)tX(sﬁ))

Acz(n,2)

+ar Y {1em(((A,0),02], M)} (1,2 (579))

Aez(n:2)

+az Y {1|k,M[(g?)]([(A,o),og],M)}(T,z)>

Aez(n-2)

— H..:H (n)
= [Hj;: Hij <aoEk7M [1(39)

,1](772(8?)%(8?))
+a1EI(cT,L/)\A(Tvz (g (1))) + GQE,(:/)M[(g (1))}(7'7 Z))

Similarly, the summation

> 3 gy @000 s ) G

MET(8; j)\I'n AEL] ;

. . . . (n) 0\t 0

is a linear combination of Ek,M [X*l(g (1))71] (1,2 (g 1) X (g 1)),
(n) 0 (n)

EkyM(T,Z (’O’ 1)) and Ek,M[(ZO’ (1))] (1, 2).

Therefore, if p|f, then the form f{gj_i_"“(ﬂ z) is a linear combination of the
above three forms.
The proof for the case p/f is similar to the case p|f. If pff, then

f{ia’;i*"H(T,z) is a linear combination of two forms E,in/)\/l(T,z (29)) and

g™ »0y7(7,2). We omit the detail of the calculation here. O
em(E7)]

6 COMMUTATIVITY WITH THE SIEGEL OPERATORS

In [Kr 86] an explicit commutative relation between the generators of Hecke
operators for Siegel modular forms and Siegel ®-operator has been given. In
this section we shall give a similar relation in the frameworks of Jacobi forms
of matrix index and of Jacobi forms of half-integral weight.

T
Let M = (i %) be a 2 x 2 matrix and put m = det(2M) as before.
2

For any Jacobi form ¢ € J,i"/z/l, or ¢ € J]i")l we define the Siegel ®-operator
5 —3,m

e(R)(r',2) = tiiinoﬂ«g ¢0_1t><%)>

for (7/,2') € $H,_1 x C»=12) or for (7/,2") € $,,_1 x C®~ LD, This Siegel ®-
operator is a map from J,g% to J,gflj\jll), or from J ,i’i); ., toJ Igiélzn, respectively.

2
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ProrosITION 6.1. For any Jacobi form ¢ € J,i"/z/l and for any prime p, we
have

®(9|Va,n—a (p2)) = 2(¢9)|Van-a (p2)*a

where Vo n—a(p?)* is a map Vo n—a(p?)* : J]gan) — J( b » 0y given by
eM[(57)]

Va,nfa(pQ)* = pa+2 kVa n—a— 1(p2)
+p(1 +p2n+1 2k)Va—1,n—oz(p2)
+(p2n—2oz+2 o 1)pa_kva72,n7a+1(p2)~

Proof. We shall first show that there exists a linear combination of index-shift

map Va,n,a(p2)* which satisfies <I>(¢|Va,n,a(p2)) = <I>(¢))|Va7n,a(p2)*.
2

We set U = (p O). Let
0 p

o(r,2) = ZAl (N, R)e(NT + R'z),

(DIVam—a(@))(1,2) = ZAQ (N,R)e(NT + R2)

QtD'_l
J

n

be the Fourier expansions. Let {(p B(j"l))} be a complete set
(4,0

of representatives of [\ ndiag(la, Pla—as P?la; pla—o)ln. Then the Fourier
coefficients A3(N, R) have been calculated in the proof of Proposition [£4t

Ap(N,R) = p ¥ > det(D;)™* Y A(N,R) Y e(NB,pM)
J A2 €(Z/pZ) (1) l
Here N and R are determined by
1 o Lan L5 P t
N = ]?D] N — ZRQ Ry | + Z(RQ — 2)\2) (R2 — 2)\2) Dj, (62)
A2

R = Dy <R FAUMU) vt

where we put Ry = R(?) and )\ (0 Xo) € Z(™2),

By the definition of Vayn «(p?) there exists {’yl}z such that @|Vy n—a(p?) =
Zi ¢l m7vi- We can take 7; as a form

*p;,~' B Uu 0
3= vmn = (70 P0) k(5 i) (0 2.0 )00 )

B*,- bl D* * * .
where By = (00 7)o Dy = (T 0) de = (3) i = (%) with

2t * —1 *
<”0D1‘1 Bg;“) € GSp;_,(Z), \*, p* € Z=LV | and d;, As, ps € Z. We
Wy D
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set

. . 2p:~t B U o . .
st = (V07 550) < (o, i) @) 0.0 )

By the definition of Siegel ®-operator we have

P (Z ¢|k,M%‘) (7%,27)

¢(¢|Va,n—a(p2))(7'*a Z")

> Ag(N, R)e(N*7* + R*'2%),
N,R

where 7% € $,_1, 2* € C(*12) N — (1%* 8) € Sym;, N* e Sym)_, R =
(&) € z™? and R* € Z(~ 12,

Hence we need to calculate Ay(N, R) for N = (1\6 0) and R= (%* ) € 22,
From the identity (6] we need to calculate

D det(Dy)7F YT ANN,R) Y e(NB(Dj ). (6.3)
J l

A2 €(Z/pZ)(n:1)

We remark that the value A; (N, R) depends on the choice of N R D; and Az.

Under the conditions N € Sym” and R € Z(™? and by the identity ([{.2) we
can assume dA3 € pZ, since A;1(N, R) = 0 unless N € Sym,. It is known that
the value A;(N, R) depends only on 4N — RM~!'R and on R mod 2M. We

now have

1 - . .
AN-RMR = =D, (4N—p2RU—1M—1U—”R) ‘D,
We set
/ _ ) A 2 —1 g 0 0
R = D (R]—)(O A)MU | U +p 0 dis M
and
N/ _ LD'<4N*]72RU71M71U7“5R) tD'+lR/M71tR/.
4p2 Y 7y

We remark that the last row of R’ is zero, and the last row and the last column
of N’ are also zero. Because 4N — RM~1*R = 4N’ — R"-M~'*R’ and because
R—R €2Z"=1DM, we have A, (N, R) = A;(N', R'). We write N’ = (N )
with N"* € Sym;,_,;

We have

R = D; <R - % (0 XQ)MU> Ut
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where \, = (/\*_DQIDM) € QY. Now we will show )\*—D]*-_IO)\g YA
if ), e(NB(j,l)Djfl) # 0 in the sum (@3

We remark d; = 1, p or p%. Because pQDj_1 e Z("") we have pQD;-‘*lde_1
Z(=1Y_ 1f d; = 1, then we can take 0 = 0 € Z("1Y as a representative. If
dj = p?, then D;le € Z"=1Y. We now assume d; = p. Then pD;-‘*lO €
Z(=1D_ By using the identity B D; = 'D;B(; ;) we have

e(NB(j,l)Dj—l)

00
d;jAs — d;A3
— =g RG89 Bun Dy — = < ) RB;D;!

= e(N'BiyD;*
d2)3
N

* 7% x—1
e(N"B(;Dj )@(

(1) BynD;h)

d)\3

* x—1 t d]>\§
(R2 — 2\ Dj 0;)\3) bg € p2 2 | -
, djN3 )
Hence, if d; = p, then Z e p—2b2 is zero unless A3 =0 mod p. Thus,
bz mod p
for any d; € {1,p,p*}, we conclude Zle(NB(jJ)Dj_l) = 0 in the sum (G3)
unless D;_la)\g e 711 Hence \* — D;’-‘flb)\g € Z=1Y and X, € Z(™Y | if
> e(NByyD; ') #0.
Therefore there exists a set of complex numbers {C,,}; := {C4, kA }: Wwhich
satisfies

<I><Z¢|k,/\4%'> ZC () |k, M7,

By a well-known argument we have ), C.-yfy =, C\v/ for any v € rs 2
Hence there exists an index-shift map Vi n—o(p )* which satisfies the 1dent1ty
@(¢|Va,n—a(p2)) = ¢(¢)|Va,n—a(p2)*-
For a fixed o (0 < a < n) the index-shift map Vo, ,—o(p?)* is a linear combina-
tion of Vs ,—1-5(p?) (8 =0,...,n—1). We need to determine these coefficients
of the linear combination. This calculation is similar to the case of Siegel
modular forms [Kr 86, page 325]. We leave the details to the reader.

O

Now for integers [ (2 <1), 8 (0<8<Il—-1)and a (0 <« <), we put

(pHi-e — 7171+a)p% ff=a-2
.7 X+ x Yy ff=a-1
bga = bgap(X)= p—l+a+3 if 6=«
0 otherwise
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and set a matrix

b070 bO,l
Briv1(X) = (bga)p=0,..1-1 = : :
bl—l,O bl—l,l

with entries in C[X + X ~1]. For any ¢ € J&w due to Proposition B.1] we
obtain

()| (Vou(@*)*s- -+, Vio(®*)") (6.4)
= p M (0(0)| (Vo1 (%), Vier,0(p?))) Bris (0 172). '

Here ®(¢)|(Vo,1(p?)*, -+, Vi.,0(p*)*) denotes the row vector
()| (Vou(p*)*, -+, Vio@®)) == (2(D)Vou(0?)", ... ()| Vio (p*)") -

Let Jlii)z ., be the subspace of Jéi)l ., introduced in §4.41
2 2

s

COROLLARY 6.2. For any Jacobi form ¢ € Jmr m and for any prime p, we

k-1,
have
¢(¢|Va,n—a(p2)) = q)(¢)|f/a,n—a(p2)*;
Y/ LAY (7 Nk . p(n—1)* (n—1) .
where Vo n—a(p®)* is a map Van—a(p®)* : J,_1 — Jp 1 mpz given by
20 PR

~ . o B ~
Va,n—a(pQ) = pk "2 {p n+aVa,n—a—1(p2)
+(p—k+n+% +pk—n—%)‘7a_17n_a(p2)

+(pn+1—a - p_n_1+a)‘7a—2,n—a+1 (p2) } .

Proof. By a straightforward calculation we get the fact that toq and ® is com-
mutative. The rest of the proof of this corollary follows from Proposition [G.1]
and Proposition [£.4 O

Let 7-21(:;) be the local Hecke ring and let R, be the subring of a polynomial ring

both defined in §2.91 The isomorphism ¥, : 7-21()7;) =~ R,, has been obtained
in [Zh 83| [Zh 84] (see §20).
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PROPOSITION 6.3. Let p be an odd prime. For any m > 2, the image of
generators Kém) of ”HI()T) by U, are expressed as a vector

(T, (), 0 (R

I\?\»—A

_ 1
=p —3(m-1) Z 21 - Zm(p , Z1+Zl ( ) (6.5)

0 p
X {HBZ,I-H(ZZ)} diag(1,p?, ..., p
1=2

Here By j41(X) is the I x (I 4+ 1)-matriz introduced in above, and where

SH

).

m
H By +1(21) = Ba3(22)Bs,4(23) - - - Bmm+1(2m)

is a 2 x (m + 1) matriz with entries in C[z5, -+, 2E]. We remark that

U, (KS™) = pfwzgzl S 2
Proof. Let k be an even integer and let F' € M 1 (I‘(m)( 4)) be a Siegel mod-
ular form such that ®5(F) # 0. Here ®° denotes the Siegel ®-operator for
Siegel modular forms. Let T € H(m) and let fr(20,...,2m) = Y (T) € Rp.
Then fr(z0,...2m_1,pF "™ 2) € Rm 1 and U1 1(fT(zo,...,zm_l,pk_m_%)) €
f{;’?*”. It is known by Oh-Koo-Kim [OKK 89, Theorem 5.1] that

NFIT) = F(F)U,L (fr(20; s Zm1,p" "7 2)). (6.6)

Let ¢ € J;T)l , be a Jacobi form with index a € Z such that ®(¢) # 0. Here ¢

is the Siegel 2<i>—operautor. If k is large enough, then there exists such ¢. Due to
Corollary we have

@(¢|Va,mfa (p2)) = 9(¢) |Va,mfa (p2)*-

Let W : Jliib)l W M;j,; (I‘ém) (4)) be the Witt operator which is defined by
2 2

W(p)(r) := ¢(7,0)

for any ¢(7,2) € Jlir_n)l .- By a straightforward calculation, for any ¢ € JliT)_ "
29
we have
W(¢|Va,m—a(p2)) = W(¢)|Ta,m—a(p2)
and
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We set

~ y o B ~
Ta,m—a(pQ) = pk m 2{]? m+aTa,m—a—1(p2)

+(p—k+m+% + pk_m_%)fa—l,m—oé(pQ)
_"_(pm-i-l—oé — p_m_1+a)fa—2,m—a+1(p2)}'
If we put F' = W(9), then

@S(F|Ta,mfo¢(p2)) = (I)S(W(Mvaymfa(p%))

= W(@(¢|Va,m—a(p2)))
W(q)(ﬁb”f/a,m—a(pQ)*
(I)S(F”Ta,mfa(p%*'

)

Hence if we put T = T m—a(p?) in ([6.0)

we have
k—m—1 _ k—m—1 —m+tay, K(mfl)
fT(ZOa--mefl;p ) = P p mfl( a )
HphmE g ph ), (KY)

HE T =T, (KU 1))}'

Since this identity is true for infinitely many k, we have

‘I’m(Kém)) = fT(ZO;---aZm—th)
= zmn {pera\I/ml(K&ml))
-1 (m—1)
+(zm + 2, ) Um—1 (K1)

+(p - p—m-““)wml(Kémz”)}'

Hence
(o (™), W (™), -+ W (K1)
_ p—3/2

Zm (\I/m—l(Kémil))v lI/m—l(KYnil))a T ‘Ilm—l(KT(,@Wizl)))
x diag(1,p?,

m=1._ . 1 m
7p 2 ) 1Bm,’m+1(z’m) dlag(lapz 9 7p 2 )
Moreover, we have

Uy (Kél)) = pilzgzl,

vi(KV) = B0+
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by the definition of ¥;. This proposition follows from these identities and the
recursion with respect to m. a

7 MAASS RELATION FOR GENERALIZED COHEN-EISENSTEIN SERIES

We put a 2 X (n + 1)-matrix

“ nt2
Af (X)) = HBl,l+1(p = X))
1=2
n+2 n+2 nt+2_ .,
= DBoslp 2 2X)Bsalp 2 X)) Bpau(p 2z "X),

where B 4+1(X) is the I x (I + 1)-matrix introduced in §8
LEMMA 7.1. All components of the matriz A ,, (X)) belong to C[X + X ]

Proof. We assume p is an odd prime. Let R, be the symbol introduced in §2.9

Because \I/%_Q(Ké?"”)) belongs to Rs,_2 and because of Proposition [6.3] we

have relations By 11(z;) = Bl,l_H(zfl) (1=2,..,2n—2) and

B 3(22)Bs.4(23) - - Ban—2,2n—1(22n—2)

= Bs3(zon—2)B34(22n-3) - Ban—2.2n-1(22).

Hence

AD o 1(X) = Bas(p" ?X)Bsa(p" X))+ Ban-on-1(p "T?X)
= BQ,3(p_n+2X—1)33,4(p—n+3X—1) .. 'BQn—2,2n—1(pn_2X_1)
= BQ,3(pn_2X_1)B374(pn_3X_1) .. 'BQn—2,2n—1(p_n+2X_1)
= A12)72n71(X71)'

The relation A3,, ;(X) = A%, ,(X~') holds for infinitely many p.

Hence if we regard that the components of the matrix A5, ,(X) are

Laurent-polynomials of variables X and p'/2, then we obtain Af o 1 (X) =
A 5, 1 (X71). Hence we have also A5 ,, (X)=A45,, (X ') forp=2. 0O

Let M, m, Dy and f be the symbols used in the previous sections, it means

1
is the discriminant of Q(v/—m) and f is a non-negative integer which satisfies
m = D0f2.

that M = (I *) is a 2 x 2 half-integral symmetric-matrix, m = det(2M), Dy
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For any prime p we set

177

p3k+d
0 if p| f,
ag,m,p,k p_k+1
a1,m,p,k = 0
42,m,p.k —3ktd | o —2k+2 (= .
p +p (Tm) if p ff.
pRL _ p2k2 (%)

LEMMA 7.2. For the Jacobi-FEisenstein series E,(;}Vl of weight k of index M of
degree 1, we have the identity

El(c,lj\/ll(VOJ(pQ)v Vio(p?)

_ | 0 0
k,M[X*l(gg) 1] (B)x (1) TRMET(B] kMKg(l))
0 ag,m,p,k
X\ 2722 armp |
0 a2 m,p,k
where X = (19) € ZZ? is a matriz such that M[X*I(g?)il] €
Sym3 . Here, if pff, there does not exist such matriz X and we regard

E(l) as zero.

b x=(59) ]
Proof. From Proposition B3] and due to (B2), (53) in the proof of Proposi-
tion 1.5 we have
1 .
BiplVoa(0”) = K3
- p_2k+1 Z Z {1|k7M([()‘270)50]5M)} (752(8(1)))

MET (50,1)\I'1 A2€L}

X Z G}\;}()\er(O,uz))

us€ZL/PZ

P ST ST (e[, 00,00, M)} (7,2 (£2))

Mer{\r; A2€2(?

- 1
= P 2k+2E1(g,3vl|U(p 0)-
01
From Proposition 5.3 we also have
1 ~ ~ ~
El(c,/)\/["/l,o(pQ) = KV, + K, + Koy
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K = p 0 Y ST {1a((M,0),0L, M)} (1,2 (89))

MGF(&l,l)\Fl AleLil

= p S Y {1m((M, 0,01 M)} (.2 (59))

Mer AT, MEPLXZ

= pikJrl Z Z {1|k,M([()‘(p1))0)70]7M)}(7_72(€?))

Mer\r, Azt
=Y (i (00130} 72
MerO\r,; A€z

7k+1E(1)

P bo((? 1)](7', z).

Now we shall calculate f(&l. First, due to Lemma [5:4] we have

{0 if A e 22 (
u2 €L/ pZ

p 0
01
(52)p iA¢ZO2(59)

for any A € Z(12). Thus

1
Ky

3 ST {em(((A2,0),00, M)} (7,2 (59))

MET(60,1)\I'1 A2€LF 4

xS G0+ (0,u))

ug €Z/pL

fpfw(?) Yoo > {them((A(59),0),0, M)} (72 (59))

]VIGF(;;)\FI xez(1,2)

2 () S (a0, 000} (75 (39))

Mer‘(l)\F Aez(1,2)

p
— k2 (T p() —2k+2 (ﬂ)E U .
p (p)mwwm+p b ) )

We shall calculate f(&o. Due to (B2) and due to (B3)) we have

= o () Blpy )+ () Bt 2)

L fzed () Thx T il
0,0 = 7,(1,2) if pff.
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Thus if p|f, then

Koo = p ™ > {kam([(4,0),01, M)} (1,2 (57))

MET(80,0)\I'1 3, c7(1,2) (g ?)*ltx—1

S VDS

Mer O\ Azezts 2)(

HO

)

x{lpixa(e ) (00X 1>,o>,o1,M>} (2 (") X ()

— —3k+4 (1) P\t P
= P Ek,M[X_l(pl)il]hnz( 1) X( 1))7

and if p Jf, then

K, = p ok Z Z {1k m([(X3,0),0], M)} (7,2 (57))

MEeT (60,0)\I'1 Az€Z(1:2)

P B (2 (1),

Hence we obtain the formula for R8,0~

Because E,(§13M|V1’0(p2) = f(RI + f(&l + f{g’O, we conclude the lemma. O

L 3. The th gY BN,
EMMA 7.3 e three forms k,M{X*l(é’?)fl]|U(zo)(1))x<10)(1)) |U( (1))

and E(IMKP 0)] are linearly independent.

01

Proof. We first assume that M € Sym;r is a positive-definite half-integral
symmetric matrix of size g. Let

El(clj)vt (r,2) = Z Ce,m(n, R) e(nt + R'z)
nezZ,Rez9)
4n—RM™1tR>0

be the Fourier expansion of the Jacobi-Eisenstein series E,(clj)w For any pair

n € Z and R € Z(19 which satisfy 4n — RM~™R > 0, we now show that
C,m(n, R) # 0. The Fourier coeflicients of Jacobi-Eisenstein series of degree 1
of integer index have been calculated in [E-Z 85, pp.17-22]. If dn— RM~1R >
0, by an argument similar to [E-Z 85] we have

Ck,M (na R) =

(~1)57F~% (4n — RMYR)F—5-1 e Na(Q)
2620 (k — §) det(M)? (kg lz_: ak=t’

where N, (Q) := ‘{)\ € (2/aZ)M? | AMIA+ R'A+n=0 mod a}‘. Hence
we conclude Cy amq(n, R) # 0.
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We now assume M = (; %) € Symj. The (n, R)-th Fourier coefficient of

two Jacobi forms ElS}\A|U(170) and E( ) [< 0)] are Cpm(n, R (D )*1) and
01

) =

)] (n, R), respectively. If R%Z(1 2 (20), then Cy, M(n R(29) !
are lin-
)]

Com[(?

0 and C ovi(n, R) # 0. Hence E U/p,0y\ and E
] (1)) SV () =9 E (g
early independent. The proof for the linear independence of the three forms of

the lemma is similar. We omitted the detail here. O

PROPOSITION 7.4. We obtain the identity
El(c il Von (@), Vao(p?))

= o) e ER G Bl

01
—20k+2 A0.mop. K (—k+4n+)(n—1) gp k—ni2 1
x| P 1m,pk | P 2 b1 (P 7)),
0 a2,m,p,k

where the 2 x (n + 1)-matriz A’2’7n+1(pk_nT+2_%) is introduced in the beginning

of this section.

Proof. Let ® be the Siegel ®-operator introduced in §8l From the definition of
Jacobi-Eisenstein series, we have <I>(E,(€l)M) = E,(flﬁ).
From the identity (€4) in §6 and from Lemma [[2] we obtain

" (B (Vo (), ooey Viro (0

)
(Bl (Vou (), Vio (™) <Hp’““+%> Baa(p"3) -+ Bua (07 72)

ket iyn—1)4 D _
pl DO (B (Von (), Vio (7)) ) 45 4 (p

= @ (1) (1)
- (EKM[Xl(g 9] Uz 0)x(z0) BradUs ?)’Ek,M[(g g)}) (7.1)

0 a0,m,p,k
m,p, 2 1
(—kt+3n+$)(n-1) [ —2k+2 P kg2 g
xXp 2 D atmpk | Ao (02 7 2).
0 a2,m,p,k

From Proposition [5.5 there exists a matrix M € C37+1) which satisfies
B (Vo (97); - Vo (p))
E™ U0\ 0V EvaalUp o E(") M.
(50)x(39) BV (ze) Bl (no))
(7.2)
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Thus

"B | (Voo (52, s Vo (02))

_ | pw

efxa (g0 GDXGY)

E,§1M|U( oy, EY M.

67) ke (59)]

From Lemma [7.3] the matrix M is uniquely determined. Therefore, by using
the identity (ZI]), we have

0 a
M = pkHintHn-1) [ -2k+2 Ompk AP [ S
= p p a1,m,p,k 2,n+1(p )
0 a2,m,p,k

Therefore we conclude that this Proposition follows from the identity (Z.2). O

We recall that the form e](:/)\/l is the M-th Fourier-Jacobi coefficient of Siegel-

2)

Eisenstein series ElinJr of weight k of degree n + 2.

ProproOSITION 7.5. We obtain the identity

el (Vo (8%), ooy Vi (02)
p(—k+an+8)(n-1)

S O T e R T N TR ()

0 p—k-i-l
x| p=2kt2 po2kt2 %) AL n+1(pk7n7+27%)-
0 p—3k+4 7

Proof. For any ¢ € Jlgn/z/l and for any L = (¢9) € 722 a straightforward
calculation gives the identity

(¢|UL)|Va,n—a(p2) = (¢|Va,n—a( )) |U<p ) L(p 0)~ (7.3)
0 01
We recall from Proposition the identity
egcn/)\/l - ng<d2) l(cn./)\/l[W (7,2'Wa)
dlf
_ (n
- dzl;g’f(tp)EkM[w 1lOwa

where Wy is a matrix such that M [W;° 1} € Symj . We choose the set of ma-
trices {Wy}q which satisfies M [ 1 (P (1)) } € Symy, if d|%. In particular,
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we choose Wpq = ({‘)’ ?) W, for d such that pd|f. By virtue of Lemma Bl and
of the identity Wpq = (’O’ ?) W4, we have

Bl P (z) = Py Ve O
For the sake of simplicity we write
Eo(d) = E](:/)M[W;dl] |UWM(€ 0y
Ei(d) = ESA)A[W;] |UWd(g 0): (7.5)
B = B gy O

We remark Fy(d) = E1(pd) and E1(d) = Ea(pd) due to the identity (T4).
From Proposition [l and due to identities (T3] and (T3 we get

<E1(:/)\4[W41]|UW4> | (Vo (P?), -+, Voo (0?))

0 ao, 7 p,k
_ 1 3 — -
= prHEEROD (By(d), B (d), Ba(d) | P72 arm
0 a2, 7 p.k
_n+2 1
X Ag’n+1(pk 2 2 )

Hence from Proposition we have
ehl (Vo (P2 s Vi (p)

- 2:%(g>(Egamhﬂm%)K%m@%wwWw@%)

dlf
k- lna3y(n— m
—  p—k+inti) 1)2%(?)
dlf
0 a0, 2 p.k B
_ _nt+2 1
X(EO(d)aEl(d)aEQ(d)) p 2kt al,%ﬁ”vk Ag,nJrl(pk 2 2)'
0 a2, 7 pk

On the RHS of the above identity we obtain

0
Z Ik (g> (Eo(d), E1(d), E2(d)) ]772()]“r2
d|f
S () B
d|f
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— k2 ( ) ol
2_9:( ) B U (9)
d|f
,2k+2e§:/)vl|U 0

1)

= P
By using Lemma [3.2] we now have
@0, 1% .p,k

ng (%) (Eo(d), E1(d), E2(d)) | a1,2% p,k

dlf Qg m

= ng(%) {5<p| )

d| f

o ()
n <p—k+1 _p2k? (—n;/dQ)) Eg(d)}

= ke Z gk(%)Eo(d)—&-p_%H (;1)()) Z gk(%)El(d)

p

Pk

L) o4 By a)
d
d

dlf dlf
£=0 (p) L=0 (p)
_ m
4p 3kt Z gk(ﬁ) B (d)
dlf
L£#0 (p)
—3k+4 m 2k—3 k-2 7m/d2
+p %gk(dg) (p p (—p Ex(d)
_ _ _ —m/(dp)? m
Y (p% 3_ph-t (%))g( dgpQ)E(J(d)
L
D m _ mp?
—2k+2 0 3k+4 4
+ = Ei(d) + <—)E d
pe (2 > a(@)m@er S oa(g) Boeo
L#0 (p) L#0 (p)
2
+p—3k+4zgk<n;_€) Ex(d)
dlf
= 8010 Yo i ) Bota) - 5 0015) (22)
d\f
d
- dz‘f: (dQ)E()(p)
L#0 (p)
d
_ D _ 2
Lokt <_0) S a(H) @t > gk<m§’)Ez(d)
p df d difp d
L#0 (p) L =0 (p)
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— m 2
+p 3k+4 Z gk(d—g) Eg(d)

d|fp
e =0 (p)
. - Do f?
= 0N Yo ) B+ (B S (B maca)
d?p P d
4 d|f
2
+p73k+429k<n;€ )Eg(d).
d|fp
Hence
m ao,%,p,k
> ox(55) (Bo(d). By(d), Ea(d)) | 1,5 9k
dlf a2, 2 pk
2
m m mp
= Z%(W) Eo(d), ng(ﬁ> Eq(d), ng(?) Ey(d)
s p d
< Lf dlfp
pkarl
—2k+2 (=
X |p Tm)
p3kF4
(n) (n) (n)
e _ U 0 0y, € U 0}, €
efx1 (07 GEDRGS) S hmn((39)]
p7k+1
—2k+2 (=
X |p T’”)
p3kt4
Therefore

| (Vo (8); ooy Vo (%)

. 0 a0, 2 p.k
1 3 —
= p DO N 0 () (Bo(d), Bu(d), Ba(d) | 27 ar g
dif 0 az,m p.k
_nt2_ 1
XAg,n-i-l(p 2 2)
= pktEntHn-1)
(n) (n) (n)
x |e 1 lUrpo oys e mlUrpoys €
e (301 EDRED EHUE) ] (30)]
0 p—k‘—‘rl
_ —m _nt2 1
x [ p2tz pr2 T) AL (P R,
0 p—3k+4

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 185

O

Proposition is a generalized Maass relation for matrix index of integral-
weight. The generalized Maass relation for integer index of half-integral weight
is as follows.

THEOREM 7.6. Let e(”)

1 b€ the m-th Fourier-Jacobi coefficient of generalized
Cohen-FEisenstein series H]Sitl). (See (I1). Then we obtain
2

e(n)l |(VO,n(p2)7‘71,n 1(]?2) Vn,O(p2))

k—3,m
k(n 1)—4(n?+5n-5) (n) (n) (n)
0
x | pF? Ay (P78 diag(1,p1 2,2,
0

Here A%, (p Ti?) is a 2 x (n + 1) matriz which is introduced in the

beginning of 7 and the both side of the above identity are vectors of forms.

Proof. From Lemma[£2] and from the definitions of e,(:l/)M and e(n)l ,» we have
9 _51

k
M(efgn/)vl) 6;(;1_)5,%
By using Proposition 4] we have
ey plVon-a®®) = (@ 3)Van—a(p?)

_ pk(2n+1)—n(n+%)+%aL
From Proposition [£3] we also have identities

o™
1 m
k 3

O = (D] e (01D )

0

1
(n) -
il = ugg) (Falig)

and

g Tt (39)] (6534[(53)])-

Because the map ¢ M [(p 0)] is a linear map, this theorem follows from Propo-
01
sition and from the above identities. O
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8 MAASS RELATION FOR SIEGEL CUSP FORMS OF HALF-INTEGRAL WEIGHT
AND LIFTS

In this section we shall prove Theorem
We denote by Si(T',) € Mi(Ty), S;r_l(r(()n) 4)) C M]:r_l(r(()n) (4)), ‘]linl) cusp —
2 2 E

J, ,in) and J 1571); ffp C Jlii)I .. the spaces of the cusp forms, respectively (cf §4.3
3

s

oL
944 925 and §2.0).

Let k£ be an even integer and f € Sy(;—,)(I'1) be an eigenform for all Hecke
operators. Let

h(r) = 3 c(N)e(NT) € S, (U5 (4)
NEeZ
N=0,3 mod 4, N>0

be a Hecke eigenform which corresponds to f by the Shimura correspondence.
We assume that the Fourier coefficient of f at e?™* is 1.
Let

Ln(h)(r) = > AT)e(Tr) € Si(Tan)

TGSym;n

be the Ikeda lift of h. For T' € Symj, the T-th Fourier coefficient A(T) of
Ign (h) is

AT) = De) " [ FulTay),

q:prime
qlfr

where D is the fundamental discriminant and fr is the natural number which
satisfy det(2T) = |Dr| f7, and where {aZ} is the set of Satake parameters of
f in the sense of Ikeda [[k01], it means that (o + a, ')¢" " "1/? is the ¢-th
Fourier coefficient of f. Here F,(T, X) € C[X + X '] is a Laurent polynomial.
For the detail of the definition of Fq (T, X) the reader is referred to [Ik 01l page
642].

Let

) (7 2)) = Lwtnoretas

be the Fourier-Jacobi expansion of Iz, (h), where 7 € $2,-1, w € $H; and
z € C2n=1L1)  Note that 1, € Jlf;kl)cuw is a Jacobi cusp form of weight k of
index a of degree 2n — 1.

By the Eichler-Zagier-Ibukiyama correspondence (see §4.3)) there exists a Siegel
cusp form F € Sl':_% (T?" 71 (4)) which corresponds to ¥ € J,flnfl) cusp,
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For g € 5;71/2(1“(()1)(4)) we put

_ 1 T 0\ k-3
Fhng(r) = 6/1“[()1)(4)\51}?((0 w))g(w)lm(w) dw

for 7 € $H2,—2. It is not difficult to show that the form Fj; , belongs to
S]:%(I‘é%_m(él)). The above construction of Fj 4 was suggested by T.Ikeda
to the author.

To show properties of Fj, 4 we consider the Fourier-Jacobi expansion of F'. Let

F((L2) = X snmaem

meEZ
m=0,3 mod 4

be the Fourier-Jacobi expansion of F', where 7 € $)9, 2, w € 1 and z €
C2n=21)_ Note that ¢, € Jﬁ";:z*cus” is a Jacobi cusp form of weight k — 3

of index m and of degree 2n — 2.
Let

(T, 2) = > Con (M, S) e(MT + S*z)
MGSym;n72, Sez(2n—2,1)
4AMm—StS>0

be the Fourier expansion of ¢,,, where 7 € 2,2 and z € C2n=21)  We have
the diagram

Ion(h) € Sp(T2n)

l/lst F-J
U € J,f{“% Fe SZ,% T (4))
Tkeda lift lF_ J

{¢m}m e ® J]iinl—i);cusp

3
m=0,3 mod 4

he s;_n% (T$(4)) =<— f € Sar_n)(T1).

LEMMA 8.1. The (M, S)-th Fourier coefficient Cp, (M, S) of ¢m, is

C(M,S) = c(IDr]) f5" 7% T FulT, ),
qlfr
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where T € Symd,, is the matriz which satisfies

N lR)
T - ( ?
3R 1
and N € Sym3, | and R € Z>"= 1Y are the matrices which satisfy
1
AN —R'R = (% 25) .
3 S m

Proof. The Fourier expansion of 17 is

i(r,2) = > A << ]tVR %f‘» e(NT+ R'z).

NGAS'yrr7,;r71717 Rez(n—1.1
AN—-R'R>0

And the Fourier expansion of F' is
N IR +
F(r) = Y A ((%tR ) )) e((4N — R'R)7).
4N—R!'R>0

Since ¢, is the m-th Fourier-Jacobi coefficient of F, the (M, S)-th Fourier
coefficient Cy, (M, S) of ¢, is A(T'), where T is in the statement of this lemma.
O

The following theorem is a generalization of the Maass relation for Siegel cusp
forms of half-integral weight.

THEOREM 8.2. Let ¢, be the m-th Fourier-Jacobi coefficient of F as above.
Then we obtain

¢m|(‘70,2n72(p2)a ‘71,27173(172)7 sy ‘727172,0(172))

0 p2k‘—3
_ o k(2n—3)-2n*—n+il U U k-2 k-2 (-—m
= P (b;% p2a¢m| [2) ¢mp2 D p P
0 1

. 1 _
><A’2’72n_1(ap) diag(1,p2,p,...,p" h

for any prime p, where the 2 X (n + 1)-matric A§72n71(ap) 1s introduced in the
beginning of {71

Proof. Let
(¢m|‘7a,2n_2_a(p2)> (r,2) = Z Cn(a; M, S) e(MT + S'z2).

MESym;,L,Q, Sezn-21
AMmp?—StS>0
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be the Fourier expansion of ¢m|f/a72n,2,a(p2). We first calculate the Fourier
coefficients C,(c; M, S). There exist matrices N € Z(Z»~1.2»=1) and R ¢

M 1is N iR
(2n—1,1) . : _ pt 2 _ 2
Z which satisfy 4N — R'R = (%tS me). We put 7 (%t R )

Due to Proposition 4] and due to the definition of Va’gn,Q,a(ll) in .7 we
can take N and R which satisfy
R )
0
61)]

N’ 1
T =
(%tR' M

with matrices N’ € Z(27=2.2n=2) and R’ € 7(3n=22),
We assume that p is an odd prime. Let

2tp.~t B
{((p gl gl) ,i p~ " (det D;) )}

be a complete set of the representatives of F(()") (4)*\I‘én)(4)*YF(()") (4)*, where
Y is Y = (diag(la,plon—2—a:p*la, Plan—2-a), p*/?) and v; is a root of unity
(see [Zh 83, Prop.7.1] or [Zh 84, Lemma 3.2] for the detail of these repre-
sentatives). Then by a straightforward calculation and from Lemma [B1] we
obtain

=

(o M, 8) = phen=842n=—tntnly(| Dy pr" (8.1)
o (1 -

foyi(detDi) "e(FNtDiBZ) II F.(Tiil. ey,
g ﬂﬁqu

where Drp is the fundamental discriminant and fr > 0 is the natural num-
ber which satisfy det(2T) = |Dr|fr?, and where Q; = diag(p~'*D;,p~ ', 1) €
Q72" The number ¢(|Dy|) is the |Dp|-th Fourier coefficient of h.

By virtue of the definition of Vy 2,_2_4(4) the identity (BI]) also holds for
p=2.

For any prime p the (M, S)-th Fourier coefficients of ¢ m |Up2, ¢ |Up and ¢y, 2
are Cm (M,p28), Cpp,(M,p~1S) and Cyp2 (M, S), respectively. These are

- — —n—1 k—n—1 ~
Coy (M,p7°S) = p ¢ De(Del)fp "2 [ Fo(Tocay),
q|frp=2
Cu(M,p7'8) = p~* " De(Dr)fr "2 [ Fy(Th0q)
q|frp=*
and
k—n—1 ~
Cmp2(M75) = C(|DT|)fT 2HFq(Ta04q)7
qlfr

DOCUMENTA MATHEMATICA 21 (2016) 125-196



190 S.HAYASHIDA

lap—2 0 O
respectively, where we put Tp = T {( 0 p2 0)} and T =
0 01

l2p,—2 0 O
T {( 0 p? 0)} Note that if p~1S € Z(7=21 then fr is divisible
0 o0 1
by p, and if p=28 € Z(27=21 then fr is divisible by p.
Note that the Fourier coeflicients of 6;2:1_2“704’2”,2704(])2), ;27";212
29 275

Uy,

622:1;2) |U, and 622:1;2) , have the same form of the above expressions by sub-
PR 2,MP

stituting o, = ¢"*~"~2 and by replacing ¢(|Dz|) by ¢hy_ny1(|Drl), where

P41 (|Dr|) is the [Dr|-th Fourier coefficient of the Cohen-Eisenstein series

’H](:_)n_ir% of weight k — n + 3, and where ¢ := ¢y 0, = 2"¢(1 — k)" [, C(1+

2i —2k)~1. On the other hand, Theorem [T.6]is valid for infinitely many integer
k. Therefore Theorem deduces not only the relation among the Fourier
(2n—2) (2n—2) d (2n—2)
k3,250 O gom A Cp g mpe
among the polynomials {FQ(T, X)}r of X. (cf. [Ik 01l Lemma 10.5 and page
665. line 2]. More precisely, we can conclude that the polynomial

coefficients of three forms e but also the relation

- 1 ~
pren=IH2n g —dn(=D) N (et D) %(FMDZ-BZ-) II Fo(riQil, x)
i Q\fT[Qi]

of X coincides with the (o + 1)-th component of the vector

pk(2n—3)—2n2—n+%

x |[p2(h—n=2) H Fy (Ty, X), p~k=n=3) H Fy (Ty, X)), HF‘J (T> X)

q|frp=2 qlfrp=? qlfr
0 ka—3
X pk72 pk72 (%) A12)72n71(X) dia’g(lapl/Qa ”"p(2n72)/2)'
0 1

Therefore Cp,(a; M, S) coincides the (o + 1)-th component of the vector

phen=3)=2ntnty (C (M,p~28), Cps(M,p~1S), Cyp2 (M, S))

m
P2

0 p2k=3
x [ ph=2 ph? (%) AB 1 (o) diag(1,p'/2, ... pn=2)/2),
0 1
Thus we conclude this theorem. O

Let Ta72n,2,a(p2) be the Hecke operator introduced in §2.8 and let L(s, F) be
the L-function for a Hecke eigenform F € S]j_ (I’gm) (4)) introduced in §2.91

1
2
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THEOREM 8.3. Let k be an even integer and n be an integer greater than 1.

Let h € S;_n+%(1’81)(4)) and g € SJ_%(FBU(AL)) be eigenforms for all Hecke
operators. Then there exists a Fp 4 € 5;7%(1“(()2”_2)). Under the assumption
that Fp. g is not identically zero, then Fy 4 is an eigenform with the L-function
which satisfies

2n—3

L(s,Fng) = L(s,9) [] L(s—1i.,h).

=1

Proof. The construction of Fj, 4 is stated in the above:

- 1 T 0 — k*%
Fio) = 5 [ 81)(4)\551F<(0 o) )T e

where F' € S;r_l(l“(()%_l)(él)) is constructed from h. By the definition of
- 2
Vi 2n—2-a(p?) and due to Theorem we have

Gm(7,0)] (T0,2n—2(p2)a s T2n—2,0(p2)>

= (¢m| (‘70,27172( 2),...,V2n 2,0(p2)>> (770)

+ =

prEn =2 (6 U2 ) (7,0, (GnlUp) (7,0), Gmpe(7.0))
0 p2k73

x | ph2 ph? (%) A3 on—1(0p) diag(1,p'/?, .- ,p®"=2/?)
0 1

_ pk(2n—3)—2n2—n+% ((z);i(ﬂo), Gm(T,0), Gpp2 (T, 0))

0 p2k—3

x [ P2 (22) | AR () ding(1,p12, - p2nm 22,
0 1

We remark

S (P on 0 () onln0) + be(n0) ) elm)

m
m=0,3 mod 4

(s )
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Thus

F ((6 g)) ‘ (Toon—2(?), s Ton2.00%))

_ 3 {gbm(f, 0)‘ (To,gn,g(pQ), Tgn,gyo(p%) } e(mw)

m
m=0,3 mod 4

_ pk(2n—3)—2n2—"+% Z { (¢:_2 (7’7 0), Dm (T; 0)7 ¢mp2 (T’ O))

m
m=0,3 mod 4

0 p2k73
x |2 (2 | emw) A, (ay) diag(1p2, o pn2/2)
0 1
= et (2 (00| (Taa). Tuat)
XAg,Qn—1(04p) diag(lvpl/Qa T 727(2”72)/2)-

Hence

Fial (To2n-2(p?), o Ton-2.0(p?))

/Fé“<4>\m (F((g 2)) (T‘W”—Q(Z’Q)’---’T2n—2,o(p2)))

xg(w) Im(w)*~ 2 dw
pk(2n—3)—2n2—n+%

S, (F((@ 2))] a0%) Trarh) ) s e

/2. p(en=2)/2)

T

XAg,2n—1 (ap) diag(l,pl

Let b(p) be the eigenvalue of g with respect to T1 o(p?). We remark that b(p)
is a real number. We have

Fh.gl (T0,2n72(p2)7 ~-~,T2n72,0(p2))
= prCn IR F 4 (7) (3:2)

X { (0", b)) AL 5, () ding (1,972, o pen=2/2) )

Therefore F}, 4 is an eigenform for any T%gn_g_a(pQ).
Let {8£} be the set of complex numbers which satisfy

1 — b(p)z +p2k—322 _ (1 o ﬂppk_g/QZ)(l - ﬂ;lpk_3/22)-

Let {uap, ufp, ...u2in72’p} be the p-parameters of Fy, 4 (see §2.01for the definition

of p-parameters). We remark ug 1+ flan—2p = p2(n=D(k=n)

DOCUMENTA MATHEMATICA 21 (2016) 125-196



LIFTING TO SIEGEL MODULAR FORMS ... 193

We now assume that p is an odd prime.
Let \Ilgn_g(K&2n72)) € Ran—2 be the Laurent polynomial of {z;}i=o, . 2n—2
introduced in §2.91 The explicit formula of tPgn,g(KéQn_Q)) was obtained in
Proposition The eigenvalue of Fj, 4 for Toon-2-a(p?) (@ =0,..,2n — 2)
is obtained by substituting z; = p; into \Ilgn,g(KéQn_Q)). We remark that the
eigenvalue of Fj, 4 for Toygnfg(pQ) is p(n—1(@k—dn+1)
From the identities (82)) and (6.5), we obtain

2n—2

PP (pm 2 1, H B i1 (p,p)
l2§—2

2_ p— — p—
:p2n 6n+5(p 1/2;6;0 + Bp 1) H Bz,z+1(pn lap).
=2

(8.3)

Here the components of the vectors in the above identity (83]) are eigenvalues
of Fy,q for

TO,2n—2(p2)_1Ta,2n—2—a(p2) (Oé = 0; ) 2n — 2)-
If we substitute 21 = £, and z; = p" ‘o, (i = 2,...,2n — 2) into the Laurent
polynomial (Wa, _o(KS7" ™))" Wy, o (K", then due to (83) this value is
the eigenvalue of Fy, ; for Ty on—2(p?) To.2n—2-(p?). Because Ra, s is gener-
ated by Way,_of &2n_2)) (¢ =0,...,2n—2) and \Ilgn,g(Ké%_m)*l and because
of the fact that the p-parameters are uniquely determined up to the action of
the Weyl group W5, we therefore can take the p-parameters {pfp, e ,MQin_Q,p}
of Fp.4 as )
{ﬂ;l:’pn72a::,pn73a;|;:’ T ,p7n+2a;)t} .
Hence the Euler p-factor Qz, , »(2) of Fy 4 for odd prime p is

Qrro(2) = T 40— pi2) (1 - pike)}
i=1 (8.4)

2n—3

= (=52 (1-57"2) ] {(1=amw2) (1= a2}

We now consider the case p = 2. The identity (82) is also valid for p = 2.
Because 7;,2 is defined in the same formula as in the case of odd primes, we
also obtain the identity ([84) for p = 2.
Thus we conclude

2n—2

L(s, Fn,g) = H H {(1 _Ni,pp_s+k_%> (1 _NZ;p_s+k_%>}
p i=1

2n—3

L(s,g) H L(s —i,h).

-1
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9 EXAMPLES OF NON-VANISHING

LEMMA 9.1. The form Fy, 4 in Theorem[83 is not identically zero, if (n, k)
(2,12), (2,14), (2,16), (2.18), (3,12), (3,14), (3,16), (3,18), (3.20), (4,1
(4,12), (4,14), (4,16), (4,18), (4,20), (5,14), (5,16), (5,18), (5,20), (6,1
(6,14), (6,16), (6,18) or (6, 20).

0,
) 2)7

Proof. Let h e SF ., (0{P@), F e S&, @ V) and Fy, €
2 2
S;r_l (FéQn*Q)(él)) be the same symbols in §8l We have
2

FO(T %) = ¥ Fu(ngw). 9.1)
0w )

Here in the summation g runs over a basis of S;j, 5 (F(()l)(él)) which consists of
2

Hecke eigenforms.
On the other hand, we have

F((g 2)) = > K(M,m)e(N7)e(mw), (9.2)

MeSym,, _,, meSymf
where

K(M,m) = > Cn(M,S)

SEZ(27L72,1)
4Mm—StS>0

S
computer algebraic system and Katsurada’s formula for Siegel series [Ka 99|,
we can compute the explicit values of Fourier coefficients C,, (M, S). Hence we
can also compute some Fourier coefficients K (M, m).
By virtue of the identities (@) and ([@.2]), we obtain

and where C,, (M, S) is the (f\i S;) -th Fourier coefficient of F'. By using a

KOMm) = 3 s A Almsg).

where A(M; Fp ) is the M-th Fourier coefficient of F}, ; and where A(m; g) is
the m-th Fourier coefficient of g. Here Fourier coefficients A(m;g) are calcu-
lated through the structure theorem of Kohnen plus space [Ko 80]. Therefore
we can calculate some Fourier coefficients A(M; F, 4).

For example, if (n,k) = (2,10), then k —1/2=19/2 and k —n+ 1/2 = 17/2.
We have dim S, ,(T6"(4)) = dim S}, ,(T§"(4)) = 1. Let g € Sf (5" (4))

and h € S /2 (F(()l)(él)) be Hecke eigenforms such that the Fourier coefficients

satisfy A(3;9) = A(1;h) = 1. We remark that all Fourier coefficients of g
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and h are real numbers. Let K(M,m) be the number defined in ([@.2]), where
F e ng/Q(F(()g) (4)) is the Siegel modular form constructed from h. Because
dim S, (F(()l)(él)) = 1, we need to check K(M,m) # 0 for a pair (M, m) €

19/2
3 1) and m = 3, then

Sym3, _o x Symi. We take M = (1 3

K(M,m)

b)) e (B)afe(3) e ()

Therefore F, 4 # 0 for (n, k) = (2,10).
Similarly, by using a computer algebraic system, we can also check F, , # 0
for any h and ¢ for other (n,k) in the lemma. O
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