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Abstract. Milne’s correcting factor is a numerical invariant playing
an important role in formulas for special values of zeta functions of
varieties over finite fields. We show that Milne’s factor is simply the
Euler characteristic of the derived de Rham complex (relative to Z)
modulo the Hodge filtration.
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A result of Milne ([9] Theorem 0.1) describes the special values of the zeta
function of a smooth projective variety X over a finite field satisfying the Tate
conjecture. A very natural reformulation of this result was given by Lichten-
baum and Geisser (see [2], [7], [8] and [10]) using Weil-étale cohomology of
motivic complexes. They conjecture that

(1) limt→q−nZ(X, t) · (1− qnt)ρn = ±χ(H∗
W (X,Z(n)),∪e) · qχ(X/Fq,OX ,n)

and show that (1) holds whenever the groups Hi
W (X,Z(n)) are finitely gen-

erated. Here H∗
W (X,Z(n)) denotes Weil-étale motivic cohomology, e ∈

H1(WFq
,Z) is a fundamental class and χ(H∗

W (X,Z(n)), e) is the Euler charac-
teristic of the complex

(2) · · ·
∪e
−→ Hi

W (X,Z(n))
∪e
−→ Hi+1

W (X,Z(n))
∪e
−→ · · ·

More precisely, the cohomology groups of the complex (2) are finite and
χ(H∗

W (X,Z(n)),∪e) is the alternating product of their orders. Finally, Milne’s

correcting factor qχ(X/Fq,O,n) was defined in [9] by the formula

χ(X/Fq,OX , n) =
∑

i≤n,j

(−1)i+j · (n− i) · dimFq
Hj(X,Ωi

X/Fq
).

The author was supported by ANR-12-BS01-0002 and ANR-12-JS01-0007.
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It is possible to generalize (1) in order to give a conjectural description of
special values of zeta functions of all separated schemes of finite type over Fq

(see [3] Conjecture 1.4), and even of all motivic complexes over Fq (see [11]
Conjecture 1.2). The statement of those more general conjectures is in any
case very similar to formula (1). The present note is motivated by the hope for
a further generalization, which would apply to zeta functions of all algebraic
schemes over Spec(Z). As briefly explained below, the special-value conjecture
for (flat) schemes over Spec(Z) must take a rather different form than formula
(1). Going back to the special case of smooth projective varieties over finite
fields, this leads to a slightly different restatement of formula (1).
Let X be a regular scheme proper over Spec(Z). The "fundamental line"

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn

should be a well defined invertible Z-module endowed with a canonical trivial-
ization

R
∼
−→ ∆(X/Z, n) ⊗Z R.

involving a fundamental class θ ∈ H1(R,R) = ”H1(WF1
,R)” analogous

to e ∈ H1(WFq
,Z). Here RΓW,c(X ,Z(n)) denotes Weil-étale cohomology

with compact support. However, there is no natural trivialization R
∼
→

detZRΓW,c(X ,Z(n)) ⊗Z R. Consequently, it is not possible to define an Euler
characteristic generalizing χ(H∗

W (X,Z(n)),∪e), neither to define a correcting
factor generalizing Milne’s correcting factor: one is forced to consider the fun-
damental line as a whole. Let us go back to the case of smooth projective
varieties X/Fq, which we now see as schemes over Z. Accordingly, we replace
Z(X, t) with ζ(X, s) = Z(X, q−s), the fundamental class e with θ and the
cotangent sheaf Ω1

X/Fq
≃ LX/Fq

with the cotangent complex LX/Z. Assuming

that Hi
W (X,Z(n)) is finitely generated for all i, the fundamental line

(3) ∆(X/Z, n) := detZRΓW (X,Z(n)) ⊗Z detZRΓ(X,LΩ∗
X/Z/F

n)

is well defined and cup-product with θ gives a trivialization

λ : R
∼
−→ ∆(X/Z, n)⊗Z R.

Here LΩ∗
X/Z/F

n is Illusie’s derived de Rham complex modulo the Hodge filtra-

tion (see [6] VIII.2.1). The aim of this note is to show that the Euler character-
istic of RΓ(X,LΩ∗

X/Z/F
n) equals qχ(X/Fq ,OX ,n), hence that Milne’s correcting

factor is naturally part of the fundamental line. We denote by ζ∗(X,n) the
leading coefficient in the Taylor development of ζ(X, s) near s = n.

Theorem. Let X be a smooth proper scheme over Fq and let n ∈ Z be an
integer. Then we have

∏

i∈Z

| Hi(X,LΩ∗
X/Z/F

n) |(−1)i = qχ(X/Fq ,OX,n).
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Assume moreover that X is projective and that the groups Hi
W (X,Z(n)) are

finitely generated for all i. Then one has

∆(X/Z, n) = Z · λ
(

log(q)ρn · χ(H∗
W (X,Z(n)),∪e)−1 · q−χ(X/Fq ,OX ,n)

)

= Z · λ
(

ζ∗(X,n)−1
)

where ρn := −ords=nζ(X, s) is the order of the pole of ζ(X, s) at s = n.

Before giving the proof, we need to fix some notations. For an object C in the
derived category of abelian groups such that Hi(C) is finitely generated for all
i and Hi(C) = 0 for almost all i, we set

detZ(C) :=
⊗

i∈Z

det
(−1)i

Z Hi(C).

If Hi(C) is moreover finite for all i, then we call the following isomorphism

detZ(C)⊗Z Q
∼
→
⊗

i∈Z

det
(−1)i

Q

(

Hi(C) ⊗Z Q
) ∼
→
⊗

i∈Z

det
(−1)i

Q (0)
∼
→ Q

the canonical Q-trivialization of detZ(C). Let A be a finite abelian group,
which we see as a complex concentrated in degree 0. Then the canonical Q-
trivialization detZ(A) ⊗Z Q ≃ Q identifies detZ(A) with |A|−1 · Z ⊂ Q, where
|A| denotes the order of A.
Given a ring R and an R-module M , we denote by ΓR(M) the universal divided
power R-algebra of M , and by Γi

R(M) its submodule of homogeneous elements
of degree i. We refer to ([1] Appendix A) for the definition of ΓR(M) and
its main properties. There is a canonical map γi : M → Γi

R(M), such that

composition with γi induces a bijection HomR(Γ
i
R(M), N)

∼
→ P i(M,N), where

P i(M,N) is the set of "homogeneous polynomial functions of degree i". The
functor Γi

R sends free modules of finite type to free modules of finite type.
Moreover Γi

R commutes with filtered colimits, hence sends flat modules to flat
modules. If M is free of rank one, then so is Γi

R(M). If (T,R) is a ringed topos
and M an R-module, then ΓR(M) is the sheafification of U 7→ ΓR(U)(M(U)).

We also denote by Λi
R the (non-additive) exterior power functor and by LΛi

R

its left derived functor (see [5] I.4.2). We often omit the subscript R and simply
write ΓiM , ΛiM and LΛiM .
Let X be a scheme. The notation RΓ(X,−) refers to hypercohomology with
respect to the Zariski topology.

Proof. Since Milne’s correcting factor is insensitive to restriction of scalars (i.e.
qχ(X/Fq ,OX ,n) = pχ(X/Fp,OX ,n)), we may consider X over Fp. We need the
following

Lemma 1. Let E∗,∗
∗ = (Ep,q

r , dp,qr )p,qr be a cohomological spectral sequence of
abelian groups with abutment H∗. Assume that there exists an index r0 such
that Ep,q

r0 is finite for all (p, q) ∈ Z2 and Ep,q
r0 = 0 for all but finitely many
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(p, q). Then we have a canonical isomorphism

ι :
⊗

p,q

det
(−1)p+q

Z Ep,q
r0

∼
−→

⊗

n

det
(−1)n

Z Hn

such that the square of isomorphisms
(

⊗

p,q det
(−1)p+q

Z Ep,q
r0

)

⊗Q
ι⊗Q

//

��

(

⊗

n det
(−1)n

Z Hn
)

⊗Q

��

Q
Id

// Q

commutes, where the vertical maps are the canonical Q-trivializations.

Proof. For any t ≥ r0, consider the bounded cochain complex C∗
t of finite

abelian groups:

· · · −→
⊕

p+q=n−1

Ep,q
t −→

⊕

p+q=n

Ep,q
t

⊕dp,q
t−→

⊕

p+q=n+1

Ep,q
t −→ · · ·

The fact that the cohomology of C∗
t is given by Hn(C∗

t ) =
⊕

p+q=n E
p,q
t+1 gives

an isomorphism
⊗

p,q

det
(−1)p+q

Z Ep,q
t

∼
−→

⊗

p,q

det
(−1)p+q

Z Ep,q
t+1

compatible with the canonical Q-trivializations. By assumption, there exists
an index r1 ≥ r0 such that the spectral sequence degenerates at the r1-page, i.e.
E∗,∗

r1 = E∗,∗
∞ . The induced filtration on each Hn is such that grpHn = Ep,n−p

∞ .
We obtain isomorphisms
⊗

p,q

det
(−1)p+q

Z Ep,q
r0

∼
→
⊗

p,q

det
(−1)p+q

Z Ep,q
∞

∼
→

∼
→
⊗

n

⊗

p

det
(−1)n

Z Ep,n−p
∞

∼
→
⊗

n

det
(−1)n

Z Hn

compatible with the canonical Q-trivializations. �

Consider the Hodge filtration F ∗ on the derived de Rham complex LΩ∗
X/Z. By

([6] VIII.2.1.1.5) we have

gr(LΩ∗
X/Z) ≃

⊕

p≥0

LΛpLX/Z[−p].

This gives a (convergent) spectral sequence

Ep,q
1 = Hq(X,LΛp<nLX/Z) =⇒ Hp+q(X,LΩ∗

X/Z/F
n)

where LΛp<nLX/Z := LΛpLX/Z for p < n and LΛp<nLX/Z := 0 otherwise. The
scheme X is proper and LΛpLX/Z is isomorphic, in the derived category D(OX)
of OX -modules, to a bounded complex of coherent sheaves (see (6) below). It

Documenta Mathematica 21 (2016) 39–48



Milne’s Correcting Factor and . . . 43

follows that Ep,q
1 is a finite dimensional Fp-vector space for all (p, q) vanishing

for almost all (p, q). By Lemma 1, this yields isomorphisms

detZRΓ(X,LΩ∗
X/Z/F

n)
∼
−→

⊗

i

det
(−1)i

Z Hi(X,LΩ∗
X/Z/F

n)

∼
−→

⊗

p<n,q

det
(−1)p+q

Z Hq(X,LΛpLX/Z)

∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛpLX/Z)

which are compatible with the canonical Q-trivializations. The transitivity

triangle (see [5] II.2.1) for the composite map X
f
→ Spec(Fp) → Spec(Z) reads

as follows (using [5] III.3.1.2 and [5] III.3.2.4(iii)):

(4) Lf∗(pZ/p2Z)[1] → LX/Z → Ω1
X/Fp

[0]
ω
→ Lf∗(pZ/p2Z)[2].

We set L := Lf∗(pZ/p2Z), a trivial invertible OX -module. By ([5] Théorème
III.2.1.7), the class

ω ∈ Ext2OX
(Ω1

X/Fp
,L) ≃ H2(X,TX/Fp

)

is the obstruction to the existence of a lifting of X over Z/p2Z. If such a lifting
does exist then we have ω = 0, in which case the following lemma is superfluous.
For an object C of D(OX) with bounded cohomology, we set

grτC :=
⊕

i∈Z

Hi(C)[−i].

Lemma 2. We have an isomorphism

detZRΓ(X,LΛpLX/Z) ≃ detZRΓ(X,LΛp(grτLX/Z))

compatible with the canonical Q-trivializations.

Proof. The map X → Spec(Z) is a local complete intersection, hence the com-
plex LX/Z has perfect amplitude ⊂ [−1, 0] (see [5] III.3.2.6). In other words,
LX/Z is locally isomorphic in D(OX) to a complex of free modules of finite
type concentrated in degrees −1 and 0. By ([4] 2.2.7.1) and ([4] 2.2.8), LX/Z

is globally isomorphic to such a complex, i.e. there exists an isomorphism
LX/Z ≃ [M → N ] in D(OX), where M and N are finitely generated locally
free OX -modules put in degrees −1 and 0 respectively. Consider the exact
sequences

(5) 0 → L → M → F → 0 and 0 → F → N → Ω → 0

where L := Lf∗(pZ/p2Z) and Ω := Ω1
X/Fp

are finitely generated and locally

free. It follows that F is also finitely generated and locally free. One has an
isomorphism in D(OX)

(6) LΛpLX/Z ≃ [ΓpM → Γp−1M ⊗N → · · · → M ⊗ Λp−1N → ΛpN ]
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where the right hand side sits in degrees [−p, 0] (see [6] VIII.2.1.2 and [5]
I.4.3.2.1). Moreover, in view of (4) we may choose an isomorphism

grτLX/Z ≃ [L
0
→ Ω]

in D(OX), the right hand side being concentrated in degrees [−1, 0]. Hence the
complex LΛp(grτLX/Z) ∈ D(OX) is represented by a complex of the form

LΛp(grτLX/Z) ≃ LΛp([L → Ω]) ≃(7)

≃ [ΓpL → Γp−1L ⊗ Ω → · · · → L ⊗ Λp−1Ω → ΛpΩ]

where the right hand side sits in degrees [−p, 0]. Lemma 1 and (6) give an
isomorphism

(8) detZRΓ(X,LΛpLX/Z) ≃
⊗

0≤q≤p

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛqN)

compatible with the Q-trivializations. The second exact sequence in (5) endows
ΛqN with a finite decreasing filtration Fil∗ such that griFil(Λ

qN) = ΛiF ⊗
Λq−iΩ. Since Γp−qM is flat, Fil∗ induces a similar filtration on Γp−qM ⊗ΛqN
such that

griFil(Γ
p−qM ⊗ ΛqN) = Γp−qM ⊗ ΛiF ⊗ Λq−iΩ.

This filtration induces an isomorphism

(9) detZRΓ(X,Γp−qM ⊗ ΛqN) ≃
⊗

0≤i≤q

detZRΓ(X,Γp−qM ⊗ ΛiF ⊗ Λq−iΩ)

compatible with the Q-trivializations. Lemma 1 and (7) give an isomorphism

(10) detZRΓ(X,LΛp(grτLX/Z)) ≃
⊗

0≤i≤p

det
(−1)p−i

Z RΓ(X,Γp−iL ⊗ ΛiΩ)

compatible with the Q-trivializations. Moreover, we have an isomorphism (see
[5] I.4.3.1.7)

Γp−iL ≃ [Γp−iM → Γp−i−1M ⊗ F → · · · → M ⊗ Λp−i−1F → Λp−iF ]

where the right hand side sits in degrees [0, p − i]. Since ΛiΩ is flat, we have
an isomorphism between Γp−iL ⊗ ΛiΩ and

[Γp−iM ⊗ ΛiΩ → Γp−i−1M ⊗ F ⊗ ΛiΩ → · · ·

· · · → M ⊗ Λp−i−1F ⊗ ΛiΩ → Λp−iF ⊗ ΛiΩ].

By Lemma 1, we have
(11)

detZRΓ(X,Γp−iL ⊗ ΛiΩ) ≃
⊗

0≤j≤p−i

det
(−1)j

Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ).
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Putting (10), (11), (9) and (8) together, we obtain isomorphisms

detZRΓ(X,LΛp(grτLX/Z)) ≃

≃
⊗

0≤i≤p

det
(−1)p−i

Z RΓ(X,Γp−iL ⊗ ΛiΩ)

≃
⊗

0≤i≤p





⊗

0≤j≤p−i

det
(−1)p−i−j

Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ)





=
⊗

0≤q≤p





⊗

0≤i,j ; i+j=q

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛjF ⊗ ΛiΩ)





≃
⊗

0≤q≤p

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛqN)

≃ detZRΓ(X,LΛpLX/Z)

compatible with the canonical Q-trivializations. �

Recall from (7) that the complex LΛp(grτLX/Z) is isomorphic in D(OX) to a
complex of the form

0 → ΓpL → Γp−1L ⊗ Ω1
X/Fp

→ · · · → Γ1L ⊗ Ωp−1
X/Fp

→ Ωp
X/Fp

→ 0

put in degrees [−p, 0]. An isomorphism of Fp-vector spaces Fp ≃ pZ/p2Z
induces an identification OX ≃ L, and more generally OX ≃ ΓiL for any i ≥ 0.
Hence (LΛp(grτLX/Z))[−p] ∈ D(OX) is represented by a complex of the form

(12) 0 → OX → Ω1
X/Fp

→ · · · → Ωp
X/Fp

→ 0

sitting in degrees [0, p]. We obtain a spectral sequence

Ei,j
1 = Hj(X,Ωi≤p

X/Fp
) =⇒ Hi+j(X, (LΛp(grτLX/Z))[−p])

where Ωi≤p := Ωi for i ≤ p and Ωi≤p := 0 for i > p. By Lemma 1 again, we
get an identification

⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)
∼
−→ detZRΓ(X, (LΛp(grτLX/Z))[−p])

∼
−→ det

(−1)p

Z RΓ(X,LΛp(grτLX/Z)).

In summary, we have the following isomorphisms

detZRΓ(X,LΩ∗
X/Z/F

n)
∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛpLX/Z)(13)

∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛp(grτLX/Z))(14)

∼
−→

⊗

p<n





⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)



(15)
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such that the square

(

detZRΓ(X,LΩ∗
X/Z/F

n)
)

⊗Q //

γ

��





⊗

p<n

⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)



⊗Q

γ′

��

Q
Id

// Q

commutes, where the top horizontal map is induced by (15), and the verti-
cal isomorphisms are the canonical trivializations. The first assertion of the
theorem follows:

Z ·

(

∏

i∈Z

| Hi(X,LΩ∗
X/Z/F

n) |(−1)i

)−1

=

= γ
(

detZRΓ(X,LΩ∗
X/Z/F

n)
)

= γ′





⊗

p<n

⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)





= Z · p−χ(X/Fp,OX ,n).

We now explain why the second assertion of the theorem is a restatement of
([2] Theorem 1.3). We assume that Hi

W (X,Z(n)) is finitely generated for all
i ∈ Z (X and n being fixed). Recall from [2] that this assumption implies the
following: Hi

W (X,Z(n)) is in fact finite for i 6= 2n, 2n+1, the complex (2) has
finite cohomology groups and one has

ρn := −ords=nζ(X, s) = rankZH
2n
W (X,Z(n)).

In particular the complex

(16) · · ·
∪e
−→ Hi

W (X,Z(n))⊗Q
∪e
−→ Hi+1

W (X,Z(n)) ⊗Q
∪e
−→ · · ·

is acyclic. This gives a trivialization

β : Q
∼
−→

⊗

i

det
(−1)i

Q

(

Hi
W (X,Z(n))⊗Q

) ∼
−→

∼
−→

(

⊗

i

det
(−1)i

Z Hi
W (X,Z(n))

)

⊗Q

such that

Z · β
(

χ(H∗
W (X,Z(n)),∪e)−1

)

=
⊗

i

det
(−1)i

Z Hi
W (X,Z(n)).
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The class e ∈ H1(WFq
,Z) = Hom(WFq

,Z) maps the Frobenius Frob ∈ WFq
to

1 ∈ Z. We define the map

WFq
= Z · Frob −→ R =: WF1

as the map sending Frob to log(q), while θ ∈ H1(WF1
,R) = Hom(R,R) is the

identity map. It follows that the acyclic complex

· · ·
∪θ
−→ Hi

W (X,Z(n))⊗ R
∪θ
−→ Hi+1

W (X,Z(n))⊗ R
∪θ
−→ · · ·

induces a trivialization

α : R
∼
−→

⊗

i

det
(−1)i

R

(

Hi
W (X,Z(n))⊗ R

) ∼
−→

(

⊗

i

det
(−1)i

Z Hi
W (X,Z(n))

)

⊗R

such that

Z · α
(

χ(H∗
W (X,Z(n)),∪e)−1 · log(q)ρn

)

=
⊗

i

det
(−1)i

Z Hi
W (X,Z(n)).

The trivialization λ is the product of α with the canonical trivialization

R
∼
−→ detZRΓ(X,LΩ∗

X/Z/F
n)⊗Z R.

Hence we have

Z · λ
(

log(q)ρn · χ(H∗
W (X,Z(n)),∪e)−1 · q−χ(X,OX ,n)

)

= ∆(X/Z, n).

Moreover, formula (1) gives

ζ∗(X, s) = ±log(q)−ρn · χ(H∗
W (X,Z(n)),∪e) · qχ(X,OX ,n)

hence the result follows from ([2] Theorem 1.3). �

Acknowledgments. I would like to thank Matthias Flach, Stephen Lichten-
baum and Niranjan Ramachandran for their interest and comments.
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