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ABSTRACT. We show that the multivariate additive higher Chow
groups of a smooth affine k-scheme Spec (R) essentially of finite type
over a perfect field k of characteristic # 2 form a differential graded
module over the big de Rham-Witt complex W,,,{2%,. In the univariate
case, we show that additive higher Chow groups of Spec (R) form
a Witt-complex over R. We use these structures to prove an étale
descent for multivariate additive higher Chow groups.
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1. INTRODUCTION

The additive higher Chow groups TCHY(X,n;m) emerged originally in [5] in
part as an attempt to understand certain relative higher algebraic K-groups of
schemes in terms of algebraic cycles. Since then, several papers [16], [I7], [I8],
[19], [26], [27], [28] have studied various aspects of these groups. But lack of
a suitable moving lemma for smooth affine varieties has been a hindrance in
studies of their local behaviors. Its projective sibling was known by [I7]. During
the period of stagnation, the subject has evolved into the notion of ‘cycles
with modulus’ CHY(X|D, n) by Binda-Kerz-Saito in [I], [I5] associated to pairs
(X, D) of schemes and effective Cartier divisors D, setting a more flexible
ground, while this desired moving lemma for the affine case was obtained by
W. Kai [14] (See Theorem [A.T]).

The above developments now propel the authors to continue their program
of realizing the relative K-theory K, (X x Speck[t]/(t™T1),(¢)) in terms of
additive higher Chow groups. More specifically, one of the aims in the program
considered in this paper is to understand via additive higher Chow groups,
the part of the above relative K-groups which was proven in [2] to give the
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crystalline cohomology. This part turned out to be isomorphic to the de Rham-
Witt complexes as seen in [12]. This article is the first of the authors’ papers
that relate the additive higher Chow groups to the big de Rham-Witt complexes
W,,Q%, of [8] and to the crystalline cohomology theory. This gives a motivic
description of the latter two objects.

While the general notion of cycles with modulus for (X, D) provides a wider
picture, the additive higher Chow groups still have a non-trivial operation
not shared by the general case. One such is an analogue of the Pontryagin
product on homology groups of Lie groups, which turns the additive higher
Chow groups into a differential graded algebra (DGA). This product is induced
by the structure of algebraic groups on A! and G,,, and their action on X x A" =:
X|[r] for r > 1.

The usefulness of such a product was already observed in the earliest papers
on additive 0O-cycles by Bloch-Esnault [5] and Riilling [28]. This product on
higher dimensional additive higher Chow cycles was given in [19] for smooth
projective varieties. In §hl of this paper, we extend this product structure in
two directions: (1) toward multivariate additive higher Chow groups and (2)
on smooth affine varieties. In doing so, we generalize some of the necessary
tools, such as the following normalization theorem, proven as Theorem
Necessary definitions are recalled in §2

THEOREM 1.1. Let X be a smooth scheme which is either quasi-projective or
essentially of finite type over a field k. Let D be an effective Cartier divisor on
X. Then each cycle class in CHY(X|D,n) has a representative, all of whose
codimension 1 faces are trivial.

The above theorem for ordinary higher Chow groups was proven by Bloch and
has been a useful tool in dealing with algebraic cycles. In this paper, we use
the above theorem to construct the following structure of differential graded
algebra and differential graded modules on the multivariate additive higher
Chow groups, where Theorem is proven in Theorems [1l [Z10 and [Z.11]
while Theorem is proven in Theorem

THEOREM 1.2. Let X be a smooth scheme which is either affine essentially of
finite type or projective over a perfect field k of characteristic # 2

(1) The additive higher Chow groups {TCH?(X,n;m)}qn.men has a func-
torial structure of a restricted Witt-complex over k.

(2) If X = Spec (R) is affine, then {TCHY(X,n;m)}q n,men has a structure
of a restricted Witt-complex over R.

(3) For X as in (2), there is a natural map of restricted Witt-complezes
Tk . WmQ%_l — TCH" (R, n;m).

n,m

THEOREM 1.3. Letr > 1. For a smooth scheme X which is either affine essen-
tially of finite type or projective over a perfect field k of characteristic # 2, the
multivariate additive higher Chow groups {CHY(X[r]|Dm, n)}qn>0 with modu-
lus m = (mq,--- ,m,), where m; > 1, form a differential graded module over
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the DGA {TCHY(X,n;|m| — 1)}¢n>1, where |m| = >.._, m;. In particular,
each CHY(X[r]| Dy, n) is a W (|pm)—1)(R)-module, when X = Spec (R) is affine.

The above structures on the univariate and multivariate additive higher Chow
groups suggest an expectation that these groups may describe the algebraic
K-theory relative to nilpotent thickenings of the coordinate axes in an affine
space over a smooth scheme. The calculations of such relative K-theory by
Hesselholt in [9] and [I0] show that any potential motivic cohomology which
describes the above relative K-theory may have such a structure.

As part of our program of connecting the additive higher Chow groups with the
relative K-theory, we show in [22] that the above map Tfjm is an isomorphism
when X is semi-local in addition, and we show how one deduces crystalline
cohomology from additive higher Chow groups. The results of this paper form
a crucial part in the process.

Recall that the higher Chow groups of Bloch and algebraic K-theory do not sat-
isfy étale descent with integral coefficients. As an application of Theorem [L3]
we show that the étale descent is actually true for the multivariate additive
higher Chow groups in the following setting:

THEOREM 1.4. Let r > 1 and let X be a smooth scheme which is either affine
essentially of finite type or projective over a perfect field k of characteristic # 2.
Let G be a finite group of order prime to char(k), acting freely on X with the
quotient f: X — X/G. Then for all g,n > 0 and and m = (mq,--- ,m,) with
m; > 1 for 1 <i <r, the pull-back map f* induces an isomorphism

CHY(X/G[r]|Dpm,n) = H*(G,CHY(X[r])| Dy, 1))

Note that the quotient X/G exists under the hypothesis on X. Since the
corresponding descent is not yet known for the relative K-theory of nilpotent
thickenings of the coordinate axes in an affine space over a smooth scheme, the
above theorem suggests that this descent could be indeed true for the relative
K-theory.

CONVENTIONS. In this paper, k£ will denote the base field which will be assumed
to be perfect after §41 A k-scheme is a separated scheme of finite type over
k. A k-variety is a reduced k-scheme. The product X X Y means usually
X X Y, unless said otherwise. We let Schy be the category of k-schemes,
Smy, of smooth k-schemes, and SmAff; of smooth affine k-schemes. A scheme
essentially of finite type is a scheme obtained by localizing at a finite subset
(including () of a finite type k-scheme. For C = Schg, Smy, SmAffy, we let
C*® be the extension of the category C obtained by localizing at a finite subset
(including @) of objects in C. We let SmLocy, be the category of smooth semi-
local k-schemes essentially of finite type over k. So, SmAff;™ = SmAff, U
SmLocy for the objects. When we say a semi-local k-scheme, we always mean
one that is essentially of finite type over k. Let SmProj, be the category of
smooth projective k-schemes.
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2. RECOLLECTION OF BASIC DEFINITIONS

For P! = Proj,,(k[so, 51]), we let y = s1/s¢ its coordinate. Let (I := P*\{1}. For
n > 1,1et (y1, -+ ,yn) € 0" be the coordinates. A face F' C 0" means a closed
subscheme defined by the set of equations of the form {y;, = €1, - ,y;, = €5}
for an increasing sequence {i;|1 < j < s} C {1,--- ,n} and ¢; € {0,00}. We
allow s = 0, in which case F = 0" Let O := P!. A face of 0" is the closure
of a face in J". For 1 < i < n, let F%J- c T" be the closed subscheme given
by {yi = 1}. Let F, := >_"" | F, ;, which is the cycle associated to the closed

subscheme 0" \ O Let 0% = 0 .= Spec (k). Let ty . : 0"t < O be the
inclusion (y1,- -+ ,yn—1) = (Y1, ,¥i-1,6Yis ** ,Yn—1)-

2.1. CYCLES WITH MODULUS. Let X € Schy™. Recall ([21, §2]) that for ef-
fective Cartier divisors D1 and Ds on X, we say D1 < D5 if D1 + D = Dy
for some effective Cartier divisor D on X. A scheme with an effective divisor
(sed) is a pair (X, D), where X € Sch}™ and D an effective Cartier divisor. A
morphism f : (Y, E) — (X, D) of seds is a morphism f : ¥ — X in Schi>® such
that f*(D) is defined as a Cartier divisor on Y and f*(D) < E. In particular,
YD) C E. If f: Y — X is a morphism of k-schemes, and (X, D) is a sed
such that f=1(D) =0, then f: (Y,0) — (X, D) is a morphism of seds.

DeriNiTION 2.1 ([1], [I5]). Let (X, D) and (Y, E) be schemes with effective
divisors. Let Y =Y \ E. Let V C X x Y be an integral closed subscheme with
closure V.C X x Y. We say V has modulus D (relative to E) if vi;(D x Y) <

v, (X x E) on VN, where vy : 7" ¥V < X x Y is the normalization followed
by the closed immersion.

Recall the following containment lemma from [2I], Proposition 2.4] (see also [I
Lemma 2.1] and [I7] Proposition 2.4]):

PROPOSITION 2.2. Let (X, D) and (Y, E) be schemes with effective divisors
andY =Y\ E. If V. C X XY is a closed subscheme with modulus D relative
to E, then any closed subscheme W C V also has modulus D relative to E.

DEerFINITION 2.3 ([1], [I5]). Let (X, D) be a scheme with an effective divisor.
For s € Z and n > 0, let z,(X|D, n) be the free abelian group on integral closed
subschemes V' C X x 0" of dimension s+ n satisfying the following conditions:

(1) (Face condition) for each face F' C 0", V intersects X x F properly.
(2) (Modulus condition) V has modulus D relative to F! on X x O".

We usually drop the phrase “relative to F!” for simplicity. A cycle in
2,(X|D,n) is called an admissible cycle with modulus D. One checks that
(n — z,(X|D,n)) is a cubical abelian group. In particular, the groups
z,(X|D,n) form a complex with the boundary map 9 = > | (—1)"(97° — 8?),
where 0§ = ¢}

n,i,e*

DerINITION 2.4 ([I], [15]). The complex (z5(X|D,e),0) is the nonde-
generate complex associated to (n +— 2,(X|D,n)), ie., 2z (X|D,n) :=
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2,(X|D,n)/z,(X|D,n)degn. The homology CH(X|D,n) := H,(2:(X|D,e))
for n > 0 is called higher Chow group of X with modulus D. If X is equidi-
mensional of dimension d, for ¢ > 0, we write CHY(X|D, n) = CHy—4(X|D,n).

Here is a special case from [21]:

DEFINITION 2.5. Let X € Sch}®. For r > 1, let X[r] := X x A". When
(t1,--- ,t,) € A" are the coordinates, and my,--- ,m, > 1 are integers, let D,
be the divisor on X[r] given by the equation {¢t*!---t7* = 0}. The groups
CHY(X [r]| Dy, n) are called multivariate additive higher Chow groups of X. For
simplicity, we often say “a cycle with modulus m” for “a cycle with modulus
Dy, For an r-tuple of integers m = (my,--- ,m,), we write [m| = >_;_; m;.
We shall say that m > p if m; > p for each 1.

When r = 1, we obtain additive higher Chow groups, and as in [I9], we often use
the older notations Tz?(X,n + 1;m — 1) for 29(X[1]|Dy,, n) and TCH?!(X, n +
1;m — 1) for CHY(X[1]|Dm,n). In such cases, note that the modulus m is
shifted by 1 from the above sense.

DEFINITION 2.6. Let W be a finite set of locally closed subsets of X and
let e : W — Zxo be a set function. Let zj, (X|D,n) be the subgroup
generated by integral cycles Z € z%(X|D,n) such that for each W € W
and each face F' C O", we have codimwxp(Z N (W x F)) > q¢ — e(W).
They form a subcomplex zj,, (X|D,e) of 29(X|D,s). Modding out by de-
generate cycles, we obtain the subcomplex zy,, (X|D,e) C 2z¢(X|D,s). We
write 2y, (X|D, ®) := 27y, ((X|D, ). For additive higher Chow cycles, we write
Tz}, (X, n;m) for g‘{/v[l] (X[1]|Dmt1,n — 1), where W[1] = {W[1] | W € W}.

Here are some basic lemmas used in the paper:

LEMMA 2.7 (21l Lemma 2.2]). Let f : Y — X be a dominant map of normal
integral k-schemes. Let D be a Cartier divisor on X such that the generic
points of Supp(D) are contained in f(Y'). Suppose that f*(D) >0 onY. Then
D>0onX.

LEMMA 2.8 ([21, Lemma 2.9]). Let f : Y — X be a proper morphism of quasi-
projective k-varieties. Let D C X be an effective Cartier divisor such that
fY) ¢ D. Let Z € z9(Y|f*(D),n) be an irreducible cycle. Let W = f(Z) on
X x O™ Then W € 25(X|D,n), where s = codim y yn (W).

LEMMA 2.9. Let X be a k-scheme, and let {U;};er be an open cover of X.
Let Z € 29X x O") and let Zy, be the flat pull-back to U; x O". Then
7Z € z9X|D,n) if and only if for each i € I, we have Zy, € z9(U;|Dy,,n),
where Dy, is the restriction of D on U;.

Proof. The direction (=) is obvious since flat pull-backs respect admissibility
of cycles with modulus by [2I, Proposition 2.12]. For the direction (<), we

may assume Z is irreducible. In this case, it is easily checked that the face and
the modulus conditions are both local on the base X. O

2.2. DE RHAM-WITT COMPLEXES.
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2.2.1. Ring of big Witt-vectors. Let R be a commutative ring with unit. We
recall the definition of the ring of big Witt-vectors of R (see [11] §4] or [28|
Appendix Al). A truncation set S C N is a non-empty subset such that if
s € S and t|s, then t € S. As a set, let Wg(R) := R® and define the map
w : Ws(R) — RS by sending a = (as)ses to w(a) = (w(a)s)ses, where
w(a)s ==y taf/t. When RS on the target of w is given the component-wise
ring structure, it is known that there is a unique functorial ring structure on
Ws(R) such that w is a ring homomorphism (see [1I, Proposition 1.2]). When
S={1,---,m}, we write W,,(R) := Wg(R).

There is another description. Let W(R) := Wy(R). Consider the multiplicative
group (1 + tR([[t]])*, where ¢ is an indeterminate. Then there is a natural
bijection W(R) ~ (1+tR][[t]])*, where the addition in W(R) corresponds to the
multiplication of formal power series. For a truncation set S, we can describe
Ws(R) as the quotient of (1+¢R[[t]])* by a suitable subgroup Is. See [28, A.7]
for details. In case S = {1,--- ,m}, we can write W,,(R) = (1 +tR[[t]])*/(1+
tmTLR[[t]])* as an additive group.

For a € R, the Teichmiiller lift [a] € Wg(R) corresponds to the image of
1—at € (1 +tR[[t]])*. This yields a multiplicative map [—] : R — Wg(R).
The additive identity element of W,,(R) corresponds to the unit polynomial 1
and the multiplicative identity element corresponds to the polynomial 1 — ¢.

2.2.2. de Rham-Witt complex. Let p be an odd prime and R be a Z(p)—algebraﬂ
For each truncation set S, there is a differential graded algebra WgQ2%, called
the big de Rham-Witt complex over R. This defines a contravariant functor
on the category of truncation sets. This is an initial object in the category of
V-complexes and in the category of Witt-complexes over R. For details, see [g]
and [28] §1]. When S'is a finite truncation set, we have WsQy, = Q) 7/N3,
where Ng is the differential graded ideal given by some generators ([28, Propo-
sition 1.2]). In case S = {1,2,---,m}, we write W,,Q%, for this object.
Here is another relevant object for this paper from [8 Definition 1.1.1];
a restricted Witt-complexr over R is a pro-system of differential graded Z-
algebras ((Em)men, R : Emt1 — Ep), with homomorphisms of graded rings
(Fr : Ermar—1 = Em)m,ren called the Frobenius maps, and homomorphisms
of graded groups (V, : Eyy = Eppmgr—1)mren called the Verschiebung maps,
satisfying the following relations for all n,r, s € N:

(i) RE = ER RV, = VR 1 =Vi =1d, . Fs = Frs, V. Vs = Vig;

(ii)) F. V. =r. When (r,s) =1, F.V, = ViF, on Epppyro1;

(iii) Vi(Fr(x)y) = 2Vi(y) for all © € Eppir—1 and y € E; (projection

formula)
(iv) F.dV, =d, where d is the differential of the DGAs.

Furthermore, we require that there is a homomorphism of pro-rings (A :
W, (R) = E2)men that commutes with F,. and V., satisfying

LA definition of Witt-complex over a more general ring R can be found in [II, Defini-
tion 4.1].

DOCUMENTA MATHEMATICA 21 (2016) 49-89



ON ADDITIVE HIGHER CHOW GROUPS OF AFFINE SCHEMES 55

(v) F.d)\([a]) = X([a]""1)dA([a)]) for all @ € R and r € N.
The pro-system {W,,Q%}mn>1 is the initial object in the category of restricted
Witt-complexes over R (See [28, Proposition 1.15]).

3. NORMALIZATION THEOREM

Let k be any field. The aim of this section is to prove Theorem Such
results were known when D = (@, or when X is replaced by X x Al with
D = {tmt1 = 0} for t € Al. We generalize it to higher Chow groups with
modulus.

DEFINITION 3.1. Let (X,D) be a scheme with an effective divisor. Let
2%, (X|D,n) be the subgroup of cycles a € 29(X|D, n) such that 8?(a) = 0 for
alll <i < nand 9 () = 0 for 2 <4 < n. One checks that 95°005° = 0. Writ-
ing 95° as %, we obtain a subcomplex ¢ : (2%(X|D,e),0N) < (29(X|D, e),0).

€ss

THEOREM 3.2. Let X € Smy” and let D C X be an effective Cartier divisor.
Then v : z3%;(X|D,e) = z9(X|D, ®) is a quasi-isomorphism. In particular, every
cycle class in CHY(X|D,n) can be represented by a cycle a such that 0f(a) =0
forall1 <i<mn ande=0,00.

Let CUBE be the standard category of cubes (see [24, §1]) so that a cubical
abelian group is a functor CUBE®®? — (Ab). Recall also from loc.cit. that an
extended cubical abelian is a functor ECUBE®? — (Ab), where ECUBE is the
smallest symmetric monoidal subcategory of SETS containing CUBE and the
morphism g : 2 — 1. The essential point of the proof of Theorem is

THEOREM 3.3. Let X € Smy>® and D C X be an effective Cartier divisor.
Then (n— 29(X|D;n)) is an extended cubical abelian group.

If Theorem holds, then [24, Lemma 1.6] implies Theorem B2l We suppose
(X, D) is as in Theorem B2 in what follows. The idea is similar to that of [19]
Appendix].

Let q1 : 0% — O be the morphism (y1,y2) — y1 + y2 — y1y2 if y1,y2 # oo,
and (y1,y2) — oo if y1 or yo = co. Under the identification 1 : (0 ~ A! given
by y — 1/(1 —y) (which sends {oco0,0} to {0,1}), this map ¢ is equivalent
to g1y @ A2 — Al given by (y1,y2) — y1y2. For our convenience, we use
this Oy = (A',{0,1}) and cycles on X x 0. The boundary operator is
9 =" (=1)(8) — 8}), and we replace F, ; by Fy5 = {y; = oo}. We write
Fpo =31 F5S. We write Oy = (P, {0,1}). The group of admissible cycles is
23,(X|D,n). Consider g,y : X X DZ)’H — X x O} given by (z,y1,*+ ,Ynt1) =
(:Ea Y10 Yn—1, ynyn—i-l)-

PROPOSITION 3.4. For Z € zj(X|D,n), we have q;, ,(Z) € z}(X|D,n+1).

The delicacy of its proof lies in that the product map g1, : A% — A does not
extend to a morphism (P*)2 — P! of varieties so that checking the modulus
condition becomes nontrivial. We use a correspondence instead. For n > 1, let
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in: Wp — X X D:;‘H X ﬁjp be the closed subscheme defined by the equation
UOYnYn+1 = U1, where (Y1, ,Ynt1) € DZH and (uo;u1) € E}b are the coordi-
nates. Let y := u /up. Its Zariski closure W,, < X XEZH xﬁ; is given by the
equation Uoln 1Unt+1,1 = U1lUn,0Un+1,0, Where (U1,0,u1,1), 5 (Un+1,05 Unt1,1)
are the homogeneous coordinates of EZH with y; = u; 1/u 0.

Consider 6, : X x DZ“ X 511/) — X x O} given by (2,91, ,Yn+1, (wo; u1)) =
(T, 91, , Yn—1,YnYn+1), and let m, := 6,|w,. To extend this 7, to a mor-
phism 7,, on W,,, we use the projection 6,, : X XEZH xﬁll/) - X ><ﬁ$71 xﬁjp,
that drops the coordinates (un,0; tn,1) and (Un+1,0; Unt+1,1), and the projection
pp o X X DZ)’H X ﬁllp — X x D:;H, that drops the last coordinate (ug;u1).

LEMMA 3.5. (1) W, N{ug = 0} = 0, so that W,, C X x O x Oy, (2)
Onlw, = mn. Thus, we define T, := 9”|Wn’ which extends 7,,. (3) The varieties
W, and W,, are smooth. (4) Both m, and T, are surjective flat morphisms of
relative dimension 1.

Proof. Tts proof is almost identical to that of [I9, Lemma A.5]. Part (1) follows
from the defining equation of W,,, and (2) holds by definition. Let p,, := pn|w,, :
W, — X x Dzﬂ. Since X is smooth, using Jacobian criterion we check that W,
is smooth. Furthermore, p,, is an isomorphism with the obvious inverse. Under
this identification, the morphism 7, can also be regarded as the projection
(91, ,Yn,y) = (T, ¥1,"* ,Yn—1,y) that drops y,. In particular, 7, is a
smooth and surjective of relative dimension 1. To check that W, is smooth,
one can do it locally on each open set where each of uy, ;, tn11,i, 4; is nonzero for
i =0, 1. In each such open set, the equation for W, takes the same form as for
Wy, so that it is smooth again by Jacobian criterion. Similarly as for m,, one
sees T, is of relative dimension 1. Since 6, is projective and m, is surjective,
the morphism 7, is projective and surjective. So, since W, is smooth, the map
Ty, is flat by [7, Exercise I1I-10.9, p.276]. Thus, we have (3) and (4). O

LEMMA 3.6. Letn>1andlet Z C X x DZ be a closed subscheme with modulus
D. Then Z' := (in)«(7%(Z)) also has modulus D.

Proof. Let Z and 7' be the Zariski closures of Z and Z’ in X x EZ and
X x EZH, respectively. By Lemma and the projectivity of ,,, we see that

0,.(Z) = Z. Consider the commutative diagram

Vzl
/__E\ —n —
(3.1) 7N LS W, X x DwH X D;
lf T len
7N B X x Oy,
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where f is induced by the surjection §n|7/ 7 = Z, the maps ¢ and vy
are normalizations of Z and Z composed with the closed immersions, and
vy = i 0g. By the definition of 8,, we have 0. L (D x Dd)) = D x DZH,
9n(Ffj°n) = F%5 42, while 6, (F° o) = Py, for 1 < i < n—1 By the
defining equation of W, we have T, = anﬁ27n+2 =i {u = 0} <
i ({tin,0 = 0} + {unt1,0 = 0}) = 0, (Fr3a, + Flons)-
Thus, Vil S B = S Ve Py + T ES < S va Pt +
(ngQ ntESs, n+1) St VZ, 0 < SR uE F 9o (Incasen =1,
we just ignore the terms with > 1 in the above.)
That Z has modulus D means Z/Z(D X Dw) <3 vEFESS. Applying f* and
using (31)), we have v}, (D wa ) =50, (D wa) < VZ,9 Yo which

is bounded by Z"+12 vy %o ; as we saw above. This means Z’ has modulus
D. O

’I’IZ’

DEFINITION 3.7. For any closed subscheme Z C X x 0%, we define W,,(Z) :=
Drsbnsmk(Z), which is closed in X X DZH.

LEMMA 3.8. Letn > 1. If a closed subscheme Z C X x LI intersects all faces

properly, then W,,(Z) intersects all faces of X x DZJFI properly.

Proof. Our W, is equal to 7*7,5 7,5, WX, where W;¥ is that of [23, Lemma 4.1],
and T, Ty, Th4+1 are the involutions (z — 1 — x) for y, y,, yn+1, respectively. So,
the lemma is a special case of loc.cit. O

Proof of Proposition [3.f] Consider the commutative diagram

W X x 00+ x Oy

n=Pn | Whn
Tn DPn

X x Oy " X s Ot

By Lemma[3.5, p,, is an isomorphism so that py.iypj, = Id. Hence, ¢}, ,(Z) =
Pt Prtr (2) =1 Pt (Z) = Prsinam(Z) = Wy (Z), where t, T are due to
commutativity. So, we have reduced to showing that W, (2) € 2, (X|D,n+1).
But, by Lemmas 3.6 and B8] we have i,.7}(Z) € ziH(X x PHD x PL,n+1).
Now, for the projection p,, by Lemma .8 we have W,,(Z) = ppsin.m(Z) €
z;i (X|D,n+ 1). This proves Proposition B4l O

Proof of Theorem[3.3. Since we know that (n — 2%(X|D;n)) is a cubical
abelian group, every morphism h : r — s in CUBE induces a morphism
h : 0" — [O° which gives a homomorphism h* : 29(X|D,s) — 24(X|D,r).
Furthermore, the morphism z : 2 — 1 induces the morphism ¢; : 0% — O!
of varieties, and for each Z € 29(X|D, 1), we have ¢j(Z) € 29(X|D,2). In-
deed, under the isomorphism 1 : 0 ~ Al y +— 1/(1 — y), this is equivalent to
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show that iy sends admissible cycles to admissible cycles, which we know by
Proposition [3.41

So, it only remains to show the following “stability under products”: if h; : r; —
Si, © = 1,2, are morphisms in ECUBE such that the corresponding morphisms
h; : 0" — O% induce homomorphisms h} : 24(X|D, s;) — 29(X|D,r;), for
i = 1,2 and all ¢ > 0, then h := hy X ho : O 2 — [O%7%2 induces a
homomorphism h* : 29(X|D,s) — z4(X|D,r) for all ¢ > 0, where r = 71 + 12
and s = 51 + $o.

Since h = hy X ha = (Id;, X h2) o (hy x Id,,), we reduce to prove it when h
is either Id,, X ho or hy x Id,,. But the statement obviously holds for these
cases. O

4. ON MOVING LEMMAS

Let k& be any field. In this section, we discuss some of moving lemmas on
algebraic cycles with modulus conditions. By a ‘moving lemma’, we ask whether
the inclusion z{,,(Y'|D,e) C 29(Y|D, e) in Definition 26lis a quasi-isomorphism.
It is known when Y is smooth quasi-projective and D = 0 (by [4]), and when
Y = X x A!, with X smooth projective, D = X x {t™*! = 0}, and W consists
of W x Al for finitely many locally closed subsets W C X (by [17]). Recently,
W. Kai [14] proved it when Y is smooth affine with a suitable condition. Kai’s
cases include the above case of Y = X x Al, where X is this time smooth affine.
His proof applies to more general cases, possibly after Nisnevich sheafifications.
In §47] we sketch the argument of Kai in the case of multivariate additive
higher Chow groups of smooth affine k-variety. In §42 we generalize the
moving lemma of [I7] in the case of pairs (X x S, X x D) where X is smooth
projective. In §4.3] and [£4] we discuss the standard pull-back property and its
consequences. In L5 we discuss a moving lemma for additive higher Chow
groups of smooth semi-local k-schemes essentially of finite type.

4.1. KAI'S AFFINE METHOD FOR MULTIVARIATE ADDITIVE HIGHER CHOW
GROUPS. The moving lemma of W. Kai [I4] is the first moving result that
applies to cycle groups with a mon-zero modulus over a smooth affine scheme.
Since the work loc. cit. is at present not yet refereed, we give a detailed sketch
the proof of the following special case on multivariate additive higher Chow
groups. But, we emphasize that the most crucial part is due to Kai. Following
Definition 25 we write X[r] := X x A".

THEOREM 4.1 (W. Kai). Let X be a smooth affine variety over any field k.
Let W be a finite set of locally closed subsets of X. Let W[r| := {W([r] | W €
Wt} Let m = (mq,---,my) > 1. Then the inclusion Z%[T](X[T”Dm, o) —
29X [r]| D, ®) is a quasi-isomorphism.

First recall some preparatory results:

LEMMA 4.2 ([I7, Lemma 4.5]). Let f : X — Y be a dominant morphism of
normal varieties. Suppose that'Y is integral with the generic pointn € 'Y, and
let Xy, be the fiber over n, with the inclusion j, : X;) — X. Let D be a Weil
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divisor on X such that j;;(D) > 0. Then there exists a non-empty open subset
U CY such that ji;(D) > 0, where jy : f~*(U) < X s the inclusion.

The following generalizes [I7, Proposition 4.7]:

PROPOSITION 4.3 (Spreading lemma). Let k C K be a purely transcendental
extension. Let (X, D) be a smooth quasi-projective k-scheme with an effective
Cartier divisor, and let VW be a finite collection of locally closed subsets of X.
Let (Xk,Dk) and Wi be the base changes via Spec (K) — Spec (k). Let
Pr/k + XK — Xy be the base change map. Then the pull-back map
. z9(X|D,e) 29(Xk|Dk, o)
Pk/k - —q — g
2 (XD, o) 2y, (XK |Dik s @)

is injective on homology.

Proof. Tt is similar to [I'7, Proposition 4.7]. We sketch its proof for the reader’s
convenience. If k is finite, then we can use the standard pro-f-extension ar-
gument to reduce the proof to the case when k is infinite, which we assume
from now. We may also assume that tr.deg, K < oo and furthermore that
tr.deg, K = 1, by induction. So, we have K = k(A}).

Suppose Z € z9(X|D,n) is a cycle that satisfies 0Z € z},(X|D,n — 1),
and Zg = 8(BK) + Vi for some Bg € Zq(XK|DK,TL + 1) and Vg €
2y, (XK |Dr,n). Consider the inclusion 29(Xg|Dy,e) — 29(Xk,e). Then
there is a non-empty open U’ C A} such that Bx = By, Vk = Virly,
ZxU" = 8(By+)+Vy- for some By: € z4(XxU’,n+1), Vi € 23y, (X XU’ n),
where 7 is the generic point of U’. Let j, : X x 7 — X x U’ be the inclusion,
which is flat.

Since B, Vi satisfy the modulus condition, we have j (X xU’'xF, ; —DxU’x

ﬁnﬂ) >0 on EIA([ and similarly for VIA([. Furthermore, Eg/ — U’,V][}[, — U’

are dominant. Thus by Lemma 2] there is a non-empty open U C U’ such
that jj; (X x U’ x Fh ., — D x U’ x EnJrl) >0 on FJJ and similarly for V][}[,
for juy : X x U — X x U’. This proves that By and Vi have modulus D x U.
Hence, By € 2%(X x U|D x U,n+1) and Vi € 2y, (X x U|D x U,n) with
Z x U= 8(BU) + V.

Since k is infinite, the set U(k) — U is dense. We claim the following;:
Cra: There is a point u € U(k) such that the pull-backs of By and Vy
under the inclusion i, : X X {u} < X x U are both defined in z1(X,n+1) and
20, (X, n), respectively.

Its proof requires the following elementary fact:

LEMMA: Let Y be any k-scheme. Let B € z9(Y x U) be a cycle. Then there
exists a nonempty open subset U” C U such that for each uw € U"(k), the
closed subscheme Y x {u} intersects B properly on'Y x U, thus it defines a
cycle i¥(B) € zU(Y), where Y is identified with Y x {u}.

Note that for each u € U(k), the subscheme Y x {u} C Y x U is an effective
divisor, so its proper intersection with B is equivalent to that ¥ x {u} does
not contain any irreducible component of B. If there exists a point u; € U(k)
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such that ¥ x {u;} contains an irreducible component B; of B, then for any
other uw € U(k) \ {w;}, we have (Y x {u}) N B; = . So, for every irreducible
component B; of B, there exists at most one u; € U(k) such that ¥ x {u;}
contains B;. Let S be the union of such points w;, if they exist. There are only
finitely many irreducible components of B, so |S| < co. Taking U” :=U \ S,
we have LEMMA.

We now prove CLAIM. Let F' C (O"*! be any face, including the case F' = [J"+1.
Since By € z4(X x U,n+1), by definition X xU x F and By intersect properly
on X x U x O™ 50 their intersection gives a cycle By p € 29(X x U x F).
By LEMMA with Y = X x F', there exists a nonempty open subset Ur C U
such that By p defines a cycle in 29(X x {u} x F) for every u € Up(k). Let
Ui := (g Ur, where the intersection is taken over all faces F' of On+!. This is
a nonempty open subset of U. Similarly, let ' C 0" be any face, including the
case ' =0". Here, Viy € z},,,.;(X x U,n), and repeating the above argument
involving LEMMA with Y = W x F for W € W, we get a nonempty open subset
Uw,r C U such that we have an induced cycle in z9(W x {u} x F) for every
u € Uw (k). Let Us = ﬂW,F Uw,r, where the intersection is taken over all
pairs (W, F'), with W € W and a face F C O". Taking U := U; N Uz, which is
a nonempty open subset of U, we now obtain CLAIM for every u € U(k).
Finally, for such a point u as in CLAIM, by the containment lemma (Proposition
2.2), i (By) and %, (V) have modulus D. Hence, i (By) € z4(X|D,n+1) and
in(Vu) € 27,,(X|D,n). This finishes the proof. O

Sketch of the proof of Theorem[{.1 STEP 1. We first show it when X = Ag.
Let K = k(A¢) and let € X be the generic point. To facilitate the proof,
as we did previously in §3| using the automorphism y +— 1/(1 — y) of P! we
replace (O, {00, 0}) by (A!,{0,1}), and write J = A'. We use the homogeneous
coordinates (u; o;u; 1) € 0 = P!, where y; = u;1/u; 0, then the divisor F,;in
the modulus condition is replaced by Fy$ = {y; = co} and F2° = 37" | F5.
For any g € A? and an integer s > 0, define ¢, s : Az(g) (7] Xk(g) D}C(g) —
Az(g) [r] by ¢g.s(x,t,y) = (x + y{7™---t")%g,t), where k(g) is the residue
field of g. (N.B. In terms of W. Kai’s homotopy, our g € A? corresponds to his
v = (g,0,---,0) € Al[r] = A*".) For any cycle V € 24(X[r]|Dyn,n), define
H; (V) = (¢g,s X Ian)*pZ(g)/k (V), where py(gy/k AZ(g) [r]xO" — Ad[r]xO"
is the base change.

Using [3, Lemma 1.2], one checks that H (V) preserves the face condition
for V. Moreover, if V' € z},,(X[r],n), then so does H} (V). When g = 7,
another application of [3, Lemma 1.2] shows that Hy (V) intersects with all
Wr] x F properly, where W € W and a F' C O" is a face. The argument for
proving these face conditions follows the same steps as that of the proof of [I7,
Lemma 5.5, Case 2] though the present case is slightly different so that we use
[3 Lemma 1.2] instead of [3} Lemma 1.1] (see [I4] Lemma 3.5] for more detail).

On the other hand, we have the following crucial and central assertion due to
W. Kai (¢f. [14] Proposition 3.3]):
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CLAIM: For each irreducible V € z9(A4[r]|Dp,n), there is s(V) € Z>q such
that for any s > s(V) and for any g € A9, the cycle H;S(V) has modulus Dy, .
Once it is proven, call the smallest such integer s(V'), the threshold of V', for
simplicity. Here, instead of translations by ¢ € A% used in usual higher Chow
groups of A? (which correspond to s = 0), Kai uses adjusted translations as in
the definition of ¢, s, so that near the divisors {¢; = 0}, the effect of adjusted
translation is also small, while away from the divisors {t; = 0}, the effect of
adjusted translation gets larger, so that for a sufficiently large s, this imbues
the desired modulus condition into cycles. Note the following elementary FACT
(¢f. |14, Lemma 3.2]), which amounts to rewriting the definitions: Let A be
a commutative ring with unity, p C A a prime ideal, ( € A, and u € A\ p.
Then the element (/u of k(p) is integral over A/p if and only if there is a
homogeneous polynomial E(a,b) € Ala,b], which is monic in the variable a,
with E(¢,b) € p in A.

For each I C {1,---,n}, consider the open subset Uy C A¢ x 0" given by the
conditions u; o # 0 for ¢ € I and u; ;1 # 0 for ¢ ¢ I. For i ¢ I, we let y;, =
wio/uin = y; *. Hence, Ur = Spec (Ry), where Ry := klz,t, {yi}ic1, {Fi }ig1],
where z = (21, ,24) and £ = (t1,--- ,t,). On Uy, the divisor F;>° used in
the definition of the modulus condition is given by the polynomial Hz‘g 1 Vs
For an irreducible V € 29(A¢[r]| Dy, n), let V be its Zariski closure in A¢[r] x
0", For a given I, the restriction V N (A%[r] x U;) is given by an ideal of Ry,
say, generated by a finite set of polynomials f{(z,t, {y;}ier, {¥;}igr) € Rr for
A€ AL

By the above FACT and the assumption that V' has the modulus condition,
there is a polynomial E;(a,b) = Er(z,t, {vi}tier, {U; }ier, a,b) € Rr[a, b], homo-
geneous in a, b and monic in a, satisfying the condition inside the ring R;:

(4.1) EI(Hyi,tﬂ) € Z (ff), where 7 = ¢7"* ... ¢,
gl AEA;

If necessary, by multiplying a power of a to E;, we may assume deg E; >
deg, f{, where deg is the homogeneous degree of E; in the variables a,b and
deg; is the total degree with respect to . In doing so, we may further assume
that deg E; is the same for all subset I C {1,--- ,n}. For this choice of degrees,
we let (V) =deg E;. If V is not irreducible, then take the maximum of s(V;)
over all irreducible components V; of V' to define s(V). The heart of the proof
is to show that this number satisfies the assertions of CLAIM, which we do now.
We may assume V is irreducible. For any fixed s > s(V) and g € A%, let V'

be an irreducible component of H; (V) and let V' be its Zariski closure in

Adlr] x Enﬂ, where k = k(g). We use the coordinates (y,y1, -+ ,yn) € ﬁnﬂ,

and for the first 0 = P!, use the homogeneous coordinate (uo;u;) so that
—N
y = ui/ug and ¥ := up/u; = y~ 1. Let v : V" — V be the normalization.
—IN
Note that whether a divisor is effective or not on V' is a Zariski local question

—N —
onV (thus on V/), so we may check the modulus condition Zariski locally
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near any point P € V. Fix a point P. Let I C {1,---,n} be the set points
i such that P does not map to oo € PL of the (i + 1)-th projection vV o<
Al x T 5 O, = PL.

There are two possibilities. In the first case P € A[r] x Al xd", i.e. P does not
map to oo € P! for the first projection to O, the morphism Pk 0 (0g,s x1d[)
A2[r]x At x O™ — A{[r] xO" extends uniquely to A%[r]x A xT" — Ad[r]xO".
Thus, by pulling-back the relation (@I, we obtain in the ring R;[y],

(4'2) E; (2 + y(tﬂ)sga t, {yi}iefa {yi}igfa Hyz’ tﬂ) €
gl
€ (H@+yt™ gt {yitier, {Ti}igr))-

AEAT

Here, the polynomials f1(z + y(t™)°g, {y: ier, {U; }igr) over A € A define the
underlying closed subscheme of the Zariski closure of H; (V') restricted on the
region Spec (R[y]). Due to the choice of the degrees of E; and f{, the relation
([@.2) implies that the rational function [ [, 7;/t™ is integral using FACT. In
particular, V' satisfies the modulus condition in a neighborhood of P.

In the remaining case P ¢ A%[r] x Al x 0", i.e. P does map to oo € P!
for the first projection to O, we use the affine open chart Spec (R;[]) where
uy # 0. The defining ideal of V' N Spec (Rr[¥)) in the ring R;[y] contains the
polynomials ¢§ (£5 L Y, {yi}i€la {yz}igl) = fAI(i =+ %(tm>sgv L {yi}iGIa {yzj”gI) '
yaee=(f i), where A € A;. By expanding the definition of ¢4, we see that it is of
the form

(4.3) oh = 725UV (.t {yiYier, {T; bigr) + (2)°h,  h € R;[g).

Express @) as Er([[;¢; Vi, t™) = Xsen, bafi for some by € Ry. Let ¢y =
gs(v)fdega(fi) -bx (which is in Ry because s(V) > deg,(f1)). Then from (#3),

(4.4) > adh =7V B[] ) + (),

AEAT i1

where (keep in mind that s > s(V)) the right hand side becomes
@1 L 7)Y + @ [Lig )"V 712 + -+ (a7 Y) + (#m)(V)h) -
(tm)s(V) | which we write as E'(Y1ligs Yirt™) for a polynomial E'(a,b) €
Ri[7][a, b], homogeneous in a,b and monic in a. Thus @) is Y\, A% =
E' (Y] Ligr i» t™), which implies that the rational function ][, y;/t™ is in-
tegral on V' N Spec (Rr[y]) using FACT. Thus V' also satisfies the modulus
condition near P. Combining these two cases, we have now proven CLAIM.

Now consider the subgroup 23\/[7“] SX[r]| Dy, n)=* C 23\/[7“] JX[r]|Dm,n) for
s > 0, consisting of cycles V with its threshold s(V) < s (cf. [14, §3.4]). We
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deduce <
Z&V[T],e(X[T”Dmv n) . ing\/[r],e(X[T”Dm’ TL)*S
X[ Dmon) — =5 20y (X [F][Dy, n) <5
Then one has the induced map from H:;VS,
o WX D, )= 2 (XK [ Dy + 1)

s — ,
75 2 (X [P D, )< i) (XE[r][ Dm0+ 1)

which gives a homotopy between the base change pj, Ik and H:;,s|y:1- How-
ever, Hf7‘15|y:1 is zero on the quotient, while pj(/k is injective on homology by
Proposition 3] after taking s — oo, so that the map p*K/k is in fact zero on
homology. This means, the quotient ZgV[r],e(X [7]| Dy, m)/ zf,vm (X [r]| D, n) is
acyclic, proving the moving lemma for X = Az.

STEP 2. If X is a general smooth affine k-variety of dimension d, we use
the standard generic linear projection trick. We choose a closed immersion
X — AY for some N > d and run the steps of §6 of [I7] (with P" replaced by
AN everywhere) mutatis mutandis to conclude the proof of the moving lemma
for X from that of affine spaces. We leave the details for the reader. |

4.2. PROJECTIVE METHOD FOR MULTIVARIATE ADDITIVE HIGHER CHOW
GROUPS. The following theorem generalizes the moving lemma for additive
higher Chow groups of smooth projective schemes [I7, Theorem 4.1] to a gen-
eral setting which includes the multivariate additive higher Chow groups.

THEOREM 4.4. Let (S, D) be a smooth quasi-projective k-variety with an effec-
tive Cartier divisor. Let X be a smooth projective k-variety. Let VW be a finite
collection of locally closed subsets of X. We let W x S := {W x S|W €
W}, Then the inclusion z,, (X %X S|X x D,e) — z9(X X S|X x D,e)
is a quasi-isomorphism. In particular, when m = (mq,---,m,) > 1, and
(S,D) = (A", Dy,), the moving lemma holds for multivariate additive higher
Chow groups of smooth projective varieties over k.

Proof. Most arguments of [17, Theorem 4.1] work with minor changes, so we
sketch the proof.

STEP 1. We first prove the theorem when X = P{. The algebraic group
SLgt+1,r acts on P4 Let K = kE(SL441,%). Then there is a K-morphism
¢ : O — SLgi1 i such that ¢(0) = Id, and ¢(c0) = n, where 7 is the generic
point of SLg11 k. See [I7, Lemma 5.4]. For such ¢, consider the composition
H,, of morphisms

P4 x § x OB 2 pd s § % O 2K P g % O P P xS x O,

where ji(z, 5,51, »Ynt1) = (B(H1)L, 5,91, »Yns1), DUl I8 the projection
dropping y1, and pk/y, is the base change. We claim that H}, carries zf,VXs(IP’d X
S[P? x D,n) to 2, (P4 x S|P% x D,n + 1), ie., for an irreducible cycle
Z € 2, (P x S|P?x S, n), we show that Z' := H}(Z) € zh,, 5(P% x S|P% x
D,n+1).
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To do so, we first claim that Z’ intersects with W x S x Fy properly for each
W € W and each face F' C O"*1,

(1) In case F = {0} x F”’ for some face F’ C (0", because ¢(0) = Id, we have
ZIQ(WXSXFK) ’ZZKQ(WXSXFII() Note that dlm(WXSXFK) =
dim(W x S x FJ;). Hence, codimpy xsx i (Z'N(W x S x F)) = dim(W x S x
Fr)—dim(Z'N(W xSx Fg)) = dim(W x S x Fj. ) —dim(Zg N(W x S x F}.)) =
dim(W xSx F")—=dim(ZN(W x Sx F')) = codimw xsx p (ZN(W x Sx F')) > ¢,
because Z € 2y, (P4 x S|P? x D, n).

(2) In case F' = {oo} x F' for some face F' C 0", dim(W x S x Fg) =
dim(WxSx Fj) and Z'N(WxSx Fk) ~n-(Zx )N(W xSx F}.), where SLgy1
acts on P4 x S x F', naturally on P¢ and trivially on S x F’. Let A := W xS x F’
and B := ZN (P! x S x F'). Thus, codimyxsxry (Z' N (W x S x Fg)) =
dim(W xS x Fg)—dim(Z'N(W x Sx Fi)) = dim(W x S x Fj,) —dim(n-(Zx)N
(W x Sx Fy.)) =" dim(Ax) —dim(n- Bk NAk) = codim,. (n- Bk NAf), where
T holds because ZN A = BN A. By applying [3, Lemma 1.1] to G = SLg11 .,
and the above A, B on X := P% x § x F’ there is a non-empty open subset
U C G such that for all g € U, the intersection (g - A) N B is proper on X. By
shrinking U, we may assume U is invariant under inverse map, sog =n~! € U.
Thus, codima, ((n- Brx) N Ag) > codimuy, (- Bx). Since codimy, (- Bx) =
codimy, By and codimy,, Bx = ¢, we get codimy xsx r (Z'N(W xSX Fk)) =
codimg, ((n- Bx) N Agk) > codimy, Bx = q.

(3) In case F' = O x F’ for some face F’ C ", the projection Z' N (W x
S x O x Fj) — Ok is flat, being a dominant map to a curve, so dim(Z’ N
(W x SxOx Fi)) =dim(Z' N (W xS x {0} x Ff)) + 1. We also have
dim(W x S x O x Fj,) = dim(W x S x {o0} x Fj )+ 1. Hence, we deduce
codimpy x sx Fi (Z' N (W x S X Fg)) = dim(W x S x O x Fg) —dim(Z' N(W x
S x O x Fi)) = codimyy y sx (oo} x Fy, (2" N (W x S x {00} x Ff)) > g, where
1 follows from case (2). This shows Z’ intersects all faces properly.

Now we show that Z’ has modulus P? x D. We drop all exchange of the
factors, for simplicity. For p : P4 — Spec (k), we take V = p(Z) on S x O".
Because Z C p~'(p(Z)) = P" x V, we have 2’ = pi(0f x Z) C pj(P* x
Ok x V) =P x Ok x V:=Z;. By Lemma[Z8, V is admissible on S x (™.
So, p*[V] = P4 x V is admissible on P? x S x [0". In particular, P4 x V has
modulus P? x D. Hence, Z; = P4 x Ok x V also has modulus P4 x D. Now,
7' C Z; shows that Z’' has modulus P¢ x D by Proposition Thus, we
proved Z' € 2}, (P4 x S|PL x D,n +1).

Going back to the proof, one checks that H} : 24(P? x S|P? x D, e) — 29(P% x
S|P? x D,e + 1) is a chain homotopy satisfying 0H*(Z) + H*0(Z) = Zx —
7+ (Zk), and the same holds for zyyx s by a straightforward computation (see
[I7, Lemma 5.6]). Furthermore, for each admissible Z, we have n - Zx €
z{kaxs(]P’C}( x S|P% x D,n), by the above proof of proper intersection of Z’
with W x S x Fg, where F = {oo} x F’ for a face F' C O". Hence, the
base change pj , : 24(P{ x S|P x D, 8)/zy,, o(P§ x S|P x D, o) — 29(P§ x

S|P x D,e)/z},  s(P% x S|P% x D, e) is homotopic to 7 * Pi¢/x> which is
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zero on the quotient. That is, pj, /k Oon the above quotient complex is zero
on homology. However, by the spreading argument (Proposition d.3), pj, n is
injective on homology. (N.B. We used here an elementary fact that k(SLg+1 1)
is purely transcendental over k. To check this fact, first note that by definition
E[SLgy1,k] ~ k{Ti ;11 < 4,5 < d+ 1}]/(det(M) — 1) for the (d + 1,d + 1)-
matrix M = [T};] consisting of indeterminates T; ; for 1 < ,5 < d+ 1. Here
by Cramer’s rule we can write det(M) — 1 = aTy41,4+41 — S — 1, where o =
det(Mgt1.4+1), 8= Zl<j<d(—1)d+1+j det(Mg41,;) and M;; is the (4, j)-minor
of M. Here both a and § do not have Tat1,d+1- Hence k[SLgi1 k] ~ E[{T;;]1 <
i,j <d+1,(i,5) # (d+1,d+1)}, 2], Thus, k(SLay1k) ~ k({Tj;]1 <i,5 <
d+1,(i,5) # (d+1,d + 1)}), which is purely transcendental over k.) Hence,
the quotient complex z7(P? x S|P? x D, e)/z},,. (P4 x S|P% x D, e) is acyclic,
i.e., the moving lemma holds for (P4 x S,P% x D), finishing Step 1.

STEP 2. Now let X be a general smooth projective variety of dimension d. In
this case, we choose a closed immersion X < PY for some N > d. We now run
the linear projection argument of [I7, §6] again without any extra argument
to deduce the proof of the moving lemma for X from that of the projective
spaces. We leave out the details. ([

4.3. CONTRAVARIANT FUNCTORIALITY. The following contravariant functori-
ality of multivariate additive higher Chow groups is an immediate application
of the moving lemma and the proof is identical to that of [I7, Theorem 7.1].

THEOREM 4.5. Let f : X — Y be a morphism of k-varieties, with Y smooth
affine or smooth projective. Let r > 1 and m = (mq,--- ,m,) > 1. Then there
exists a pull-back f* : CHY(Y[r]|Dm,n) — CHYX[r]| Dy, n).

If g 1Y — Z is another morphism with Z smooth affine or smooth projective,
then we have (go f)* = f*o g*.

Remark 4.6. As a special case, when r = 1, we have the pull-back map f* :
TCHY(Y,n;m) — TCHY(X, n;m).

4.4. THE PRESHEAF TCH. For the rest of the section, we concentrate on
additive higher Chow groups. Let m > 0. By Theorem EJ we see that
Ty, = TCH?(—,n;m) is a presheaf of abelian groups on the category
SmAff;, but we do not know if it is a presheaf on the categories Smy or
Schy,. However, we can exploit Theorem further to define a new presheaf
on Smy and Schy. The idea of this detour occurred to the authors while
working on [20]. We do it for somewhat more general circumstances.

Let C be a category and D be a full subcategory. Let F' be a presheaf of
abelian groups on D, i.e. F : D°° — (AB) is a functor to the category of
abelian groups. For each object X € C, let (X | D) be the category whose
objects are the morphisms X — A in C, with A € D, and a morphism from
hy: X — Ato hy: X — B, with A, B € D, is given by a morphism g: A — B
in C such that g o hy = he. The functor F' : D°® — (AB) induces the functor
(X { D)°P — (AB) given by (X LN A) — F(A), also denoted by F.
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DEFINITION 4.7. Suppose that for each X € C, the category (X | D) is cofil-

tered. Then define F(X) := colim F.
(X{D)er

In particular, when C = Schy and D = SmAff;, one checks that (X |
SmAff) is cofiltered, and for X € Schyg, we define TCHI(X,n;m) =

colim

q
(X|SmAfF,)or

PROPOSITION 4.8. Let C be a category and D be a full subcategory such that for
each X € C, the category (X | D) is cofiltered. Let F be a presheaf of abelian
groups on D and let F be as in Definition [{.7

Let f: X — Y be a morphism in C. Then for X € C, the association X —
F(X) satisfies the following properties:

(1) There is a canonical homomorphism ax : F(X) — F(X).

(2) If X € D, then ax is an isomorphism, and o : F — F defines an
isomorphism of presheaves on D.

(3) There is a canonical pull-back f*: F(Y) — F(X). Ifg: Y — Z is an-
other morphism in C, then we have (gof)* = f*og*. So, F is a presheaf
of abelian groups on C. In particular, TCHY(—,n;m) is a presheaf
of abelian groups on Schy, which is isomorphic to TCHY(—,n;m) on
SmAfT;.

Proof. (1) Let (X LN A) € (X | D)°P. By the given assumption, we have
the pull-back h* : F(A) — F(X). Regarding F'(X) as a constant functor on
(X | D)°P, this gives a morphism of functors F' — F(X). Taking the colimits
over all h, we obtain F(X) — F(X), where ax = colimj, h*.

(2) When X € D, the category (X | D)°P has the terminal object Idx : X —
X. Hence, the colimit F(X) is just F'(X).

(3) A morphism f: X — Y in C defines a functor f*: (Y | D)°P — (X | D)°P
given by (Y A A)— (X Ly™ A). Thus, taking the colimits of the functors
induced by F', we obtain f* : F(Y) — F(X). For another morphismg:Y — Z,
that (go f)* = f* og* can be checked easily using the universal property of the
colimits.

In the special case when C = Schy, and D = SmAff;, with F' = TCH?(—, n;m),
by Theorem 5 we know that F' is a presheaf on SmAff,. So, the above general
discussion holds. |

Remark 4.9. Since additive higher Chow groups have pull-backs for flat maps
(see [16, Lemma 4.7]), it follows that for X € Smy, a(_) defines a map of
presheaves TCHY(—,n;m) — TCH?(—,n;m) on the small Zariski site Xz,, of
X. Proposition [£.8(2) says that this map is an isomorphism for affine open
subsets of X. Thus, this map of presheaves on Xz, induces an isomorphism
of their Zariski sheafifications.

4.5. MOVING LEMMA FOR SMOOTH SEMI-LOCAL SCHEMES. One remaining ob-
jective in Section Ml is to prove the following semi-local variation of Theorem

AT
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THEOREM 4.10. Let Y € SmLocy. Let W be a finite set of locally closed
subsets of Y. Then the inclusion Tz, (Y,e;m) — Tz(Y,e;m) is a quasi-
isomorphism.

We begin with some basic results related to cycles over semi-local schemes.
Recall that when A is aring and ¥ = {p1,--- ,pn} is a finite subset of Spec (A),
the localization at X is the localization A — S~1A, where S = ﬂf.vzl(A \ pi)-
For a quasi-projective k-scheme X and a finite subset ¥ of (not necessarily
closed) points of X, the localization Xy is defined by reducing it to the case
when X is affine by the following elementary fact (see [25, Proposition 3.3.36])
that we use often.

LEMMA 4.11. Let X be a quasi-projective k-scheme. Given any finite subset
> C X and an open subset U C X containing %, there exists an affine open
subset V.C U containing X..

For X € Schy and a point € X, the open neighborhoods of x form a cofiltered
category and we have functorial flat pull-back maps (j})* : Tz%(V,n;m) —
Tz%(U,n;m) for ji; : U < V in this category.

LEMMA 4.12. Let X € Schy and let x € X be a scheme point. Let Y =
Spec (Ox ). Then we have colim,ey Tz?(U, n;m) — Tz(Y,n;m), where the
colimit is taken over all open neighborhoods U of x.

Proof. Replacing x by an affine open neighborhood of z € X, we may assume
that X is affine and write X = Spec (A). Let p, C A be the prime ideal that
corresponds to the point z and let S := A\ p,, so that Y = Spec (S~1A). To
facilitate our proof, using the automorphism y ~ 1/(1 —y) of P!, we identify
O with A! and take {0,1} C A! as the faces. So, X x B,, = X x Al x A"~! =
Spec (A[ta Y1, ayn—l])'

Let o € Tz(Y,n; m). We need to find an open subset U C X containing x such
that the closure of o in U x A! x A"~! is admissible. For this, we may assume
a is irreducible, i.e., it is a closed irreducible subscheme Z C Y x Al x A”~1,
Let Z be its Zariski closure in X x A! x A"~ Let p be the prime ideal of
B := Alt,y1, -+ ,Yn—1] such that V(p) = Z.

For the proper intersection with faces, let ¢ C B be the prime ideal (y;, —
€1, ,Yi, —€s), where 1 <i; <--- <iy<n—1ande; €{0,1}. Let P be a
minimal prime of p 4+ q. One checks immediately from the behavior of prime
ideals under localizations that there is a € S such that either BBla~!] = Bla™!]
or ht(PBla~']) > g + s. This means, over Uy := Spec (A[a"!]), either the
intersection of 7Uq with V' (q) is empty, or has codimension > g + s. Applying
this argument to all faces, we can take U; := ﬂq Uy. Then Zy, intersects all
faces of Uy x Al x A"~1 properly.

For the modulus condition, let v : ZV — Z < X x P! x (P)"~! be the nor-
malization composed with the closed immersion of the further Zariski closure
Z of Z. Let F* = """y, = oo} be the divisor at infinity. For an open
set j : U = X, the modulus condition of Zyy means (m + 1)[j*v*{t = 0}] <
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[7*v*(F2°)] on 2{}’ . Note that there exist only finitely many prime Weil divi-
sors Py, -+, Py on ZN such that ordp, (v* (E°)—(m+1)v*{t =0}) < 0. Their
images @; under the normalization map ZN - 7 are still irreducible proper
closed subsets of Z, thus of X x P! x (P1)"!. Since Z = Zy has the modulus
condition on Y x B, by the given assumption, we have (Y x En) nNQ; =0
for each 1 < i < {. Thus, there is an affine open subset Uy C X containing x
such that (Uz x En) NQ; = 0 for each 1 < i < £. Now, by construction, 7U2
on U, x B, satisfies the modulus condition. So, taking an affine open subset
U C Uy NUy containing =, we have Zy € Tz%(U,n;m). That (Zy)y = Z is
obvious. |

We can extend this colimit description to semi-local schemes:

LEMMA 4.13. Let Y be a semi-local k-scheme obtained by localizing at a finite
set X of scheme points of a quasi-projective k-variety X. For a cycle Z on
Y x B, let Z be its Zariski closure in X x B,.

Then Z € Tz (Y, n;m) if and only if there exists an affine open subset U C X
containing ¥, such that Zy € T2z%(U, n;m), where Zy is the pull-back of Z via
the open immersion U — X.

Proof. The direction (<) is obvious by pulling back via the flat morphism
Y < U. For the direction (=), by Lemma I2] for each z € ¥ we have an
affine open neighborhood U, C X of z such that Zy, € Tz%(U,,n;m). Take
W = Ugex; Uz. This is an open subset of X containing ¥. By Lemma 2.9 we
have Zy € Tz?(W,n;m). On the other hand, by Lemma EIT] there exists an
affine open subset U C W containing Y. By taking the flat pull-back via the
open immersion U — W, we get Zy € Tz (U, n;m). |

LEMMA 4.14. Let' Y be a semi-local integral k-scheme obtained by localizing at
a finite set X2 of scheme points of an integral quasi-projective k-scheme X . Let
Z € T24(Y,n;m), W € Tz4(Y,n+1;m), and let Z, W be their Zariski closures
i X X B, and X x B,41, respectively. For every open subset U C X, the
subscript U means the pull-back to U. Then we have the following:

(1) If 0Z =0, we can find an affine open subset U C X containing ¥ such
that Zyy € Tz9(U,n;m) and 0Zy = 0.

(2) If Z = OW, we can find an affine open subset U C X containing ¥
such that Zy € Tz9(U,n;m), Wy € Tz9(U,n+1;m) and Zy = OWy.

Proof. Note that (1) is a special case of (2), so we prove (2) only. Let Z’ :=
Z — 0W € 29(X x B,). If Z'is 0 as a cycle, then take Uy = X. If not,
let Z7,---,Z. be the irreducible components of Z’. Since Z = W, each
component Z! has empty intersection with Y x B,,. So, each m((Z})°) is a non-
empty open subset of X containing 3, where 7 : X x B,, — X is the projection,
which is open. Take Uy = (;_, 7((Z])°).

On the other hand, Lemma [£.13] implies that there exist open sets Uy, Us C X
containing ¥ such that Zy, € Tz%(Uy,n;m) and Wy, € Tz9(Ug,n + 1;m).
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Choose an affine open subset U C Uy N U; N Uy containing ¥, using Lemma
11l Then part (2) holds over U by construction. O

Proof of Theorem[{.10L We show that the chain map Tzj,(Y,e;m) <
Tz4(Y, e;m) is a quasi-isomorphism. Let X be a smooth affine k-variety with
a finite subset ¥ C X such that Y = Spec (Ox x).

For surjectivity on homology, let Z € Tz(Y,n;m) be such that 9Z = 0.
Let Z be the Zariski closure of Z in X x B,,. Here, 9Z may not be zero,
but by Lemma [T4{(1), there exists an affine open subset U C X containing
¥ such that we have 0Zy = 0, where Zy is the pull-back of Z to U. Let
Wy = {Wy|W € W}, where Wy is the Zariski closure of W in U. Then
the quasi-isomorphism Tz?,vU (U,o;m) — Tz?(U, e;m) of Theorem [4.1] shows
that there are some C' € Tz?(U,n + 1;m) and Z;; € Tz, (U, n;m) such that
0C = Zy — Z};. Let v : Y < U be the inclusion. So, by applying the
flat pull-back ¢* (which is equivariant with respect to taking faces), we obtain
0(*C) = Z — v*Zy;, and here .*Z[; € Tz{,,(Y,n;m), i.e., Z is equivalent to a
member in Tz, (Y, n;m).

For injectivity on homology, let Z € Tzj,,(Y,n;m) be such that Z = 92’ for
some Z' € Tz4(Y,n + 1;m). Let Z and 7' be the Zariski closures of Z and Z’
on X x By, and X X By, 1, respectively. Then by Lemma [LT4Y(2), there exists a
nonempty open affine subset U C X containing ¥ such that Zy = 87IU. Then
the quasi-isomorphism Tz?,vU (U,o;m) — Tz?(U, e;m) of Theorem [4.1] shows
that there exists Z” € Tz}, (U,n + 1;m) such that Zy = 0Z". Pulling back
via ¢ : Y < U then shows Z = 9(.*Z"), with .*Z" € Tz},,(Y,n + 1;m). O

Using an argument identical to Theorem [.5] (see [I7, Theorem 7.1]), we get:

€ss

COROLLARY 4.15. Let f : Y1 — Y2 be a morphism in Schy~, where
Y2 € SmLocy. Then there is a natural pull-back f* : TCHY(Ya,n;m) —
TCHY(Y1,n;m).

5. THE PONTRYAGIN PRODUCT

Let R be a commutative ring and let (A,d4) be a differential graded algebra
over R. Recall that (left) differential graded module M over A is a left A-
module M with a grading M = ®,czM, and a differential dj; such that
A M, C Mpin, dy(M,) C Myt and das(az) = da(a)x + (—1)"adpy (2)
for a € A, and * € M. A homomorphism of differential graded modules
f:M — N over A is an A-module map which is compatible with gradings and
differentials.

In this section, we show that the multivariate additive higher Chow groups
have a product structure that resembles the Pontryagin product. We construct
a differential operator on these groups in the next section and show that the
product and the differential operator together turn multivariate additive higher
Chow groups groups into a differential graded module over W,,Q% for suitable
m, when X = Spec (R) is in SmAfF;™. This generalizes the DGA-structure on
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additive higher Chow groups of smooth projective varieties in [I9]. The base
field k is perfect in this section.

5.1. SOME CYCLE COMPUTATIONS. We generalize some of [19, §3.2.1, 3.2.2,
3.3]. Let (X, D) be a k-scheme with an effective divisor.

Recall that a permutation o € &,, acts naturally on 0" via o(y1, -+ ,¥Yn) :=
(Yo(1), "+ »Yo(ny)- This action extends to cycles on X x 0" and X x o".

Let n,r > 1 be given. Consider the finite morphism x, , : X xO" — X x O"
given by (z,y1, - ,Yn) — (x,9],y2, - ,yn). Given an irreducible cycle Z C
X x O, define Z{r} = (onr)a((2]) = [5(Z) = kCenn(Z))] - [nr(Z)]. We
extend it Z-linearly.

LEMMA 5.1. If Z is an admissible cycle with modulus D, then so is Z{r}.

Proof. The proof is almost identical to that of [19, Lemma 3.11], except that
the divisor (m + 1){t = 0} there should be replaced by D x T". We give its
argument for the reader’s convenience.

We may assume Z is irreducible. It is enough to show that x,, ,(Z) is admissible
with modulus D. We first check that it satisfies the face condition of Definition
2.3 When n = 1, the proper faces of [0 are of codimension 1, and for ¢ €
{0,000}, we have 95 (xn,r(Z)) = r0§(Z). When n > 2, for € € {0,000}, we have
05 (xXnr(2)) = r05(Z) and O (xn,r(Z)) = Xn-1,-(05(Z)) if i > 2. For faces
F c O of higher codimensions, we consequently have F-(x, »(Z)) = r(F-Z) if
F involves the equations {y1 = ¢}, and F- (xnr(Z)) = Xn-cr(F-Z), otherwise,
where c is the codimension of F. Since the intersection F'- Z is proper, so is
Xn—e,r(F + Z) by induction on the codimension of faces. This shows xy r(2)
satisfies the face condition.

To show that W := x,, (Z) has modulus D, consider the commutative diagram

VN7 x O

where 7, W are the Zariski closures of Z and W in X x [ and vy, vy are the
respective normalizations. The morphisms Xy r, X, , are the natural induced
maps, and Yflv, , is induced by the universal property of normalization. Since Z
has modulus D, we have the inequality

-

Il
—

(5.1) i (DO <Y Wiy =1}

K2

By the definition of X, ., we have x;; .(D x 0" = b x0O", Xy = 1} >
{y1 = 1}, and x;, . {yi = 1} = {y; = 1} for i > 2. Hence (E.) implies that
X (D x O] < S0 Wiy {yi = 1}]. By the commutativity of the
diagram, this implies that %, " (1, viy tiy v = 1} = vyeiy (D xT7)) 2 0.
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By Lemma 7 this implies Y7 vy el {yi = 1} — vy 3y (D x O") > 0, which
means W has modulus D. This completes the proof. O

Let n,i > 1. Suppose X is smooth quasi-projective essentially of finite type
over k. Let (z,y1, " ,Yn,y, A) be the coordinates of X x "%, Consider the
closed subschemes Vi on X x [0""2 given by the equation (1—y)(1—X\) = 1—y;
ifi=1and (1-y)(1-N) = L—y)A+yi+- 4y = AL+y +--+yi2)
if i > 2.

Let XA/)Z( be the Zariski closure of Vi in X x 0", Let m o X X [
X x T be the projection that drops yi, and let 7} := 7r1|V;'(. As in [19]
Lemma 3.12], one sees that 7] is proper surjective. For an irreducible cycle
Z C X x O, define (see [19, Definition 3.13]) 7% := 71, (VL - (Z x 0?)) as
an abstract algebraic cycle. One checks that it is also the Zariski closure of
v (Z x O), where v* : X x 0" x 0 — X x O is the rational map given by

Y=y

vy, Yns ) = (T,92,93, 5 Ynsy Y, ” yi,l). We extend the definition of
—9

%, Z-linearly.
LEMMA 5.2. Let Z € 29(X|D,n). Then ~% € 29(X|D,n + 1).

Proof. Once we have Lemma .1l the proof of Lemma is very similar to
that of [19, Lemma 3.15], except we replace (m + 1){t =0} by D x T We
give its argument for the reader’s convenience.
We may assume Z is irreducible. To keep track of n, we write 7271 =L, We
first check that it satisfies the face condition of Definition Let € € {0, 00}.
Let F C O""! be a face. If F involves the equation {y; = €} for j =n,n + 1,
then by direction computations, we see that d;(v%,,) = - Z,0),,1(7%,) =
o - (Z{i}) for the cyclic permutation o = (1,2,---,n), and 9;°(v},,) = 0,
%1 (7g.,) = 0 - (Z{i —1}). Since Z is admissible with modulus D, so are
Z{i} and Z{i — 1} by Lemma Bl In particular, all of o - Z,0 - (Z{i}), and
o - (Z{i—1}) intersect all faces properly. Hence 7}, intersects F' properly.
In case F' does not involve the equations {y; = €} for j = n,n + 1, we prove
it by induction on n > 1. By direction calculations, for j < n, we have
5(Vym) = 72,; Zn_1 SO that the dimension of 9%(v} ) is at least one less by
the induction hypothesis. Repeated applications of this argument for all other
defining equations of F' then give the result.
It remains to show that 4% has modulus D. Every irreducible component of
7% is of the form W’ = 7} (Z'), where Z' is an irreducible component of V¥ -
(Z x 0%). We prove W’ has modulus D. Consider the following commutative
diagram
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. - i - Y .
where vz is the normalization of the Zariski closure Z of Z’ in Vi, v is

the normalization of the Zariski closure W of W’ in X x ﬁn+1, and 7,
7 are the induced morphisms. We use (z,y1, " ,¥n, ¥y, A) € X X 0" and

(92, ,Yn,y,A) € X X """ as the coordinates. From the modulus D
condition of Z, we deduce

(5.2) vy (D X ﬁn+2) < ZV},L*{% =1}.
j=1

Note that the above does not involve the divisors {y = 1} and {\ = 1}. Since
Vi is an effective divisor on X x 00"*2 defined by the equation (1 — y1)(x) =
(1 —y)(1 — A) for some polynomial (%), we have [v5,*{y1 = 1}] < v {y =
]+ et (A = 1)1 *

Since the above diagram commutes, from ([5.2) we deduce 7 v*i},/ (D x
g < o (2?22 vy =1+ {y=11+{\ = 1}) Hence by Lemma

277, we deduce v*ify, (D x ﬁnH) <Y viupdyy =1 H{y =1+ {A =1},

which means W’ has modulus D. This finishes the proof. O

LEMMA 5.3. Let n > 2 and let Z € z9(X|D,n) such that 0(Z) = 0 for all
1<i<nande€ {0,00}. Let 0 € S,,. Then there exists vy € z9(X|D,n+1)
such that Z = (sgn(o))(o - Z) + 0(v%).

Proof. Tts proof is almost identical to that of [19) Lemma 3.16], except that
we use Lemma instead of [19, Lemma 3.15]. We give its argument for the
reader’s convenience.

First consider the case when o is the transposition 7 = (p,p + 1) for 1 <
p<n-—1 Wedo it for p = 1 only, i.e. 7 = (1,2). Other cases of 7 are
similar. Let & be the unique permutation such that & - (z,y1, - ,Ynt+1) =
(T, Yns Y1, Ynt1, Y2, »Yn—1). Consider the cycle 7% := £ - v}, where 7% is as

in Lemma[5.2] Being a permutation of an admissible cycle, so is this cycle ’yg.
Furthermore, by direction calculations, we have 95°(v%) = 0, (1) =7 - Z,
05°(v%) = 0 and 99(v%) = Z. On the other hand, for ¢ € {0,00}, 95(v%)
is a cycle obtained from 755( 7) by a permutation action. So, it is 0 because
05(Z) = 0 by the given assumptions. Similarly for j > 4, we have 95(v;) = 0.
Hence 0(v}) = Z + 7 - Z, as desired.

Now let 0 € G,, be any. By a basic result from group theory, we can express
0 = T Tr—1-+-TaT1, where each 7; is a transposition of the form (p,p + 1)
as considered before. Let o9 := Id and oy := 7yry_1---7 for 1 < £ < r.
For each such ¢, by the previous case considered, we have (—1)*"loy_; - Z +
(- o001 - Z = 8((71)4’172271_2). Since 7y - 0y_1 = 0y, by taking the
sum of the above equations over all 1 < ¢ < r, after cancellations, we obtain
Z+ (=10 Z = 9(v%), where 7§ := Y, (—1)""147¢ . Since (—1)" =
sgn(o), we obtain the desired result. O
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5.2. PONTRYAGIN PRODUCT. Let X € Sch;™ be an equidimensional scheme.
For m = (mq,--- ,m,) > 1, let CH(X[r]|Dp) := ®qnCHYX[r]|Dm,n). For
m > 1, we let TCH(X;m) = ®,,TCHY(X,n;m) = &, ,CHY(X[1]|Dpt1,n —
1). The objective of §5.2is to prove the following result which generalizes [19]
83].
THEOREM 5.4. Let k be a perfect field. Let m > 0 and let m = (mq,--- ,my) >
1. Let X,Y be both either in SmAfT® or in SmProj,. Then we have the
following:
(1) TCH(X;m) is a graded commutative algebra with respect to a product
Ax.
(2) CH(X[r]|Dm) is a graded module over TCH(X;|m| — 1).
(3) For f 'Y — X with d = dimY — dimX, f* : CH(X[r]|Dp) —
CH(Y[r)|Dw) and f. : CH(Y[r]|Dy) — CH(X[r]|Dwm)[—d] (if [ is
proper in addition) are morphisms of graded TCH(X; |m|—1)-modules.

The proof requires a series of results and will be over after Lemma [5.13]

LEMMA 5.5. Let X1, X5 € Schy®. Fori=1,2 andr; > 1, let V; be a cycle on
X; x A" x O™ with modulus m; = (M1, -+, M4y, ), Tespectively. Then Vi X Va,
regarded as a cycle on X1 x Xg x AT1772 x (™12 gfter q suitable exchange of
factors, has modulus (my,ms,).

Proof. We may assume that Vi and V5 are irreducible. It is enough to show
that each irreducible component W C V; x V4 has modulus (m,,m,). Let
1t Vi X; X AT x 0" be the Zariski closure of Vi, and let 2o Vﬁv — V., be
the normalization for ¢ = 1, 2. Since k is perfect, [16, Lemma 3.1] says that the
morphism v := Uy XUy, - Viv XV;V — V1xVsy =V; x Vs is the normalization.
Hence, the composite WN MWW SV, x V3, where W is the Zariski closure of
N N N __ — — J—

W and vy is the normalization of W, factors into wh S Viv X V;v L V1xVs,
where ¢V is the natural inclusion. .

Let (tla o atha /15 o ati‘gayla o ;yn1+n2) € AT1+T2 X Dn1+n2 be the coor-
dinates. Consider two divisors D' := > {y; = 1} — Y7L, my{t; =
0},D? = M2 fy; = 1} — 3272 my;{tj = 0}. By the modulus con-
ditions satisfied by V; and Vz, we have ((t1 x 1) o (v, x 1))*D' > 0 and
((1 x 12) o (1 x 147,))*D? > 0. Thus, we have v* (11 X 12)*(D' + D?) > 0 on
Viv XV;V so that (¢:™)*v* (11 x 12)*(D*+D?) > 0 on W, Since tovy =voiv,
this is equivalent to v, ¢* (11 X Lg)*(D1 + D2) > 0, which shows W has modulus
(my, my). O

DEFINITION 5.6. Let » > 1 be an integer and define pu : X7 x Al x O™ x
X2 x AT x O — X1 X X2 x AT x DnlJrnz by (ZL'l,t, {yj}) X (1‘2, {tz}, {y_;}> —>
($1, L2, {tti}a {yj}’ {y;})

The map p is flat, but not proper. But, the following generalization of [19]
Lemma 3.4] gives a way to take a push-forward:
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PROPOSITION 5.7. Let Vi € X1 x Al x O™ and Vo C Xo x A” x O™ be closed
subschemes with moduli m and m > 1, respectively. Then p|v, xv, is finite.

Proof. Since p is an affine morphism, the proposition is equivalent to show that
wlv, xv, 18 projective.

Set X = X1 x XoxOmtm2 Let I' & X7 x Xo x Al x A” x A" x Om+m2 =
X x A' x A" x A" denote the graph of the morphism p and let T' < X x
Pl x (P x (PYH)™ = X x Py x P, X P3 be its closure, where P; = P! and
Py = P3 = (PY)". Let p; be the projection of X x P! x (P1)" x (P!)" to X x P,
for 1 << 3. Set = p3 (X x A"). Then p3 : T & X x A" is projective.
Using the homogeneous coordinates of P; x P, x P3, one checks easily that
7 :=T°\T' ¢ EU(!_, E;) (the union is taken inside X x P, x Py x Ps), where
E=Xx{oo}x({0})"xA" and E; = X x {0} x ((P!)"~! x {oo} x (P1)"~%) x A".
Let V= V; x V5. Let I'y be the graph I restricted to V' and let Ty be its Zariski
closure in X x P; X P, x P3. Since p3 : TW = X x A" is projective, so is the
map f?, =Ty AT — X x A" So, if we show f?/ NZ=0,then V ~Ty = f?/
is projective over X x A", which is the assertion of the proposition.

To show f?/ N Z = 0, consider the projections X x P, x Pa x Py 23 X x Py &
X, x Py x 0", Since the closure V; has modulus m > 1 on X7 x P; x O™, we
have V1 N (X1 x {0} x O™) = . In particular, ['y N E; < (7 op1) 1 (V1N
(Xp x {0} xOm))=0for 1 <i<r.

To show that f?/ N E = 0, consider the projections X x P; x P, x P3 &3
X x P, BB Xy x P, x O"2. Since the closure Vs has modulus m > 1 on
Xy x Py x "2, we have Vo N (Xo x ({0})" x O0"2) = (). In particular, 'y NE —
(ma 0 p2)~H(Van (Xa x ({0})" x O"2)) = (). This finishes the proof. O

LEMMA 5.8. Let X € Schi™® and let V be a cycle on X x At x A" x 0" with
modulus (|m|,m), where m = (mq,--- ,m,) > 1. Suppose ul|y is finite. Then
the closed subscheme p(V) on X x A™ x O™ has modulus m.

Proof. This is a straightforward generalization of [I9, Proposition 3.8] and is a
simple application of Lemma[Z7l We skip the detail. We only remark that it is
crucial for the proof that the A'-component of the modulus is at least |m|. [

DEFINITION 5.9. For any irreducible closed subscheme V' C X x Al x A" x ("
such that p|y : V' — p(V) is finite, where y is as in Definition [5.6] define p. (V)
as the push-forward p. (V) = deg(p|v) - [4(V)]. Extend it Z-linearly.

If V; is a cycle on X7 x A! x O™ and V5 is a cycle on X» x A" x (1”2 such that
ivy xv, is finite, we define the external product Vi x, Vo := p (Vi x V). If
p; = dim V;, then dim(Vi x,, Vo) = p1 + pa2. If X1 X X5 is equidimensional and
if g; is the codimension of V;, then Vi x, V2 has codimension q; + ¢2 — 1.

LEMMA 5.10. Let Vi € 29 (X1[1]|Dm,n1) and Vo € 22(X3[r]|Dum,n2) with
X1, Xo € Schy™ and m,m > 1. Then Vi x, Vs intersects all faces of X; x
Xo x A" x O™ +t"2 properly.
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Proof. We may assume that V; and V5 are irreducible. Vi x V4 clearly intersects
all faces of X x X x Al x A” x O™ *72 properly. It follows from Proposition (.7
that p|v, xv, is finite. In this case, the proper intersection property of (V7 x,,
V4) follows exactly like that of the finite push-forwards of Bloch’s higher Chow
cycles. O

COROLLARY 5.11. Let X1, X2, X3 € Sch}™® be equidimensional and let m > 1.
Then there is a product

et 2 (X0 [1]| Dy 1) © 29 (Xo[r]| Dy iz) =
— qu+qz71((X1 X XQ)[THDﬂ, ny + 712)

which satisfies the relation 0(§ x, n) = 0(§) X, n+ (=1)™¢& x, 0(n). It
is associative in the sense that (a1 X, o) X, B = o1 X, (ag X, B) for
a; € 2%(X;[1]| D)), i) for i = 1,2 and B € 2% (X3[r]|Dm,n3). In particu-
lar, it induces operations x,, : CH" (X1[1]| D)y, n1) ® CH? (X3[r]| Dy, n2) —
CHq1+q2_1((X1 X XQ)[?"“Dﬂ,nl + 712).

Proof. The existence of x, on the level of cycle complexes follows from the
combination of Proposition[5.7] Lemma[5.8land Lemma 510l The associativity
follows from that of the Cartesian product x and the product p : A x Al — Al
By definition, one checks (€ xn) = 9(§) x n+ (—1)"1& x d(n). So, by applying
i+, we get the required relation. That X, descends to the homology follows. [

DEFINITION 5.12. Let m = (mq,---,m,) > 1 and let X be in SmAff;™
or in SmProj,. For cycle classes a; € CH”(X[1]|D|p),n1) and az €
CH® (X [r]|Dm, n2), define the internal product a1 Ax aa to be A% (a1 X, a2)
via the diagonal pull-back A% : CH®T2~ (X x X)[r]|Dp,n1 + na) —
CH? T~ (X[r]| Dy, n1 + n2). This map exists by Theorem and Corol-
lary .15

LEMMA 5.13. Ax is associative in the sense that (a1 Ax a2) Ax B = a1 Ax
(2 Ax B) for an,a0 € CH(X[1]|D)y,) and B € CH(X[r]|Dp). Ax is also
graded-commutative on CH(X[1]|D)p,).

Proof. The associativity holds by Corollary BTl For the graded-
commutativity, first note by Theorem that we can find representatives
a1 and as of the given cycle classes whose codimension 1 faces are all triv-
ial. Let o be the permutation that sends (1,---,n1,n; +1,--- ,n1 + n2) to
(n1 +1,---,n1 +na,1,--- ,n1) so that sgn(o) = (—1)"*"2. Tt follows from
Lemma B3] that oy Ax az = (=1)"T2a5 Ax oy + (W) for some admissible
cycle W, as desired. O

Proof of Theorem[5.J) The proof of (1) and (2) is just a combination
of the above discussion under the observation that TCHY(X,n;m) =
CHY(X[1]|Dpm+1,n —1) for m > 0 and n > 1. To prove (3) for f*, consider the
commutative diagram
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(5.3) Y[l xO"25 (¥ x YV)[r] x 0" <2 (Y x Y)[r +1] x O"

lf lfxf lfxf
X[r] x 07 23 (X x X)[r] x O" (X x X)[r + 1] x O".

There is a finite set W of locally closed subsets of X such that
[0 (X[ D) = 22(Y[1]|Djyy),e) and f* 0 205(X[r]|Dp,e) —
2%2(Y'[r]| Dy, ®) can be defined as taking cycles associated to the inverse images.
Moreover, it is enough to consider the product of cycles in z}5,(X[1]| D)y, ®)
and 205 (X[r]|Dm, ®) by the moving lemmas Theorems EI] and L4l For irre-
ducible cycles Vi € 29 (X[1]|Djpy,n1) and Vo € 2%(X[r]|Dp, n2), the map
py is finite when restricted to f*(V1) x f*(Va2) by Lemma 7l In particular,
iy (7 (V1) X f*(V2)) € 2054 1((Y X Y)[r]| Dy s + 1)

Since the right square in the diagram (B3] is transverse, it follows that
flux(Va x V2)) = uy (f*(V1) x f*(V2)) as cycles. The desired commuta-
tivity of the product with f* now follows from the commutativity of the left
square in (B3] and the composition law of Theorem

The proof of (3) for f, is just the projection formula, whose proof is identical to
the one given in [19, Theorem 3.19] in the case when X1, X2 € SmProj,. O

As applications, we obtain:

COROLLARY 5.14. Let X be in SmAfE® or in SmProj,. Then for ¢,n >0
and m > 1, the group CHY(X[r]|Dp,n) is a W (| —1)(k)-module.

Proof. Applying Theorem [5.4] to X and the structure map X — Spec (k),
it follows that CH(X[r]|Dy,) is a graded module over TCH(k;|m| — 1). By
Corollary .10} this yields a TCH'(k, 1;|m| — 1)-module structure on each
CHY(X[r]|Dm,n). The corollary now follows from the fact that there is a
ring isomorphism W,, (k) = TCH'(k,1;m) for every m > 1 by [28, Corol-
lary 3.7]. O

We can explain the homotopy invariance of the groups CHY(X,n) in terms of
additive higher Chow groups as follows.

COROLLARY 5.15. For X € Schy™® which is equidimensional and for g,n > 0,
we have CHY(X[1]|Dy,n) = 0.

Proof. By Corollary 11l we have a map x, : CH'(pt[l]|D1,0) ®
CHY(X[1]|Dy,n) — CHY(X[1]|D1,n) and it follows from the definition of x,
that [1] x, o = « for every a € CHY(X[1]|Dy,n), where [1] € CH'(pt[1]| Dy, 0)
is the cycle given by the closed point 1 € Al(k). It therefore suffices to show
that the homology class of 1 is zero. To do so, we may use the identification
(0,{0,0}) ~ (A',{0,1}) given by y — 1/(1 — y) again. Then the cycle
C C A? given by {(t,y) € A2|ty = 1} is an admissible cycle in z!(pt[1]|Dy,1)
such that 01 ([C]) = [1] and 9y([C]) = 0. O
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6. THE STRUCTURE OF DIFFERENTIAL GRADED MODULES

In this section, we construct a differential operator on the graded module of
g8l of multivariate additive higher Chow groups over the univariate additive
higher Chow groups, generalizing [19, §4]. We assume that k is perfect and
char(k) # 2.

6.1. DIFFERENTIAL. Let X be a smooth quasi-projective scheme essentially of
finite type over k. Let » > 1 and let m = (my,---,m,) > 1. Let (G],)* :=
{(t1, -+ ,t;) € GI, | t1---t, # 1}. Consider the morphism 6, : (G},)* x O™ —
Gl < O (b1, oty g1, s Yn) = (E1, o by ﬁ,yl, -+, Yn). It induces
8n: X x (GI)* x O™ — X x G, x O+

Recall a closed subscheme Z C X x A" x [1"™ with modulus m does not intersect
the divisor {¢1---t, = 0}. So, it is closed in X x G}, x O". For such Z, we
define Z* := Z|x x(cr,)x xOn-

LEMMA 6.1. For a closed subscheme Z C X x A" x (O™ with modulus m, the
image 8,(Z*) is closed in X x GI, x ("L,

Proof. 1t is enough to show that &, : X x (G7))* xO" — X xG7, x 0" isa
closed immersion. It reduces to show that the map (G7,)* — GT, x (P'\ {1})

given by (t1,--+,t.) — (1, ,tp, 1/(t1---t.)) is a closed immersion. This is
obvious because the image coincides with the closed subscheme given by the
equation t1 - - - t,y = 1, where (¢1,--- ,t,,y) € G, x O are the coordinates. O

DEFINITION 6.2 (¢f. [19, Definition 4.3]). For a closed subscheme Z C X X
A" x O™ with modulus m, we write 6,,(Z) := §,(Z*). If Z is a cycle, we define
0n(Z) by extending it Z-linearly. We may often write §(Z) if no confusion
arises.

LEMMA 6.3. Let Z be a cycle on X x A" x O™ with modulus m. Then 6,(2)
is a cycle on X x AT x O™ with modulus m.

Proof. We may suppose that Z is irreducible. Let V' = §,,(Z), which is a priori
closed in X x G7, x 0"+, If the closure V' of V in X x A” x (0"*! has modulus
m, then it does not intersect the divisor {t;---t, = 0} of X x A" x 0" so
V =V’ and V is closed in X x A" x O"*! with modulus m. So, we reduce to
show that V' has modulus m.

Let Z and V be the Zariski closures of Z and V/ in X x A" x O" and X x

A" x ﬁn—H, respectively. Observe that 4, extends to 8, : X x A” x 0" —

X x A" x ﬁn+1, which is induced from A7 5 A" x T "% A7 x O, where

I' is the graph morphism of the composite A”—A! < O of the product map
followed by the open inclusion, (t1,--- ,t.) — (t1---t.) — (t1---t;;1), while
o : 0 — Ois the antipodal automorphism (a; b) ~ (b; a), where (a;b) € O = P!
are the homogeneous coordinates. Since I' is a closed immersion and Id X o
is an isomorphism, the morphism §,, is projective. Hence, the dominant map
Snlzx + Z* = V induces 0| : Z — V. In particular, we have a commutative
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diagram
(6.1) 7V 7 x x A xO"
\Fn lt?nf lgn
TV ==V —5 X x AT <O,

where 1z, 1y are the closed immersions, vz, vy are normalizations, and gn is
given by the universal property of normalization for dominant maps.
By definition, §,{t; = 0} = {t; = 0} for 1 < j < r. First con-

sider the case n > 1. Then EZF,%H,I. = Fp, , for 2 < i < n+1l
SE k% +1 Tk +1
Now, 5anLV(Z?:1 Fﬁﬂ,i - Z;:1 m;{t; = 0}) > 6nVV[’V(Z?:2 Fﬁﬂ,i -
o 1
Zgzlmj{tj = 0}) = V}%%(Z?ﬁ F’r%Jrl,i - Zgzlmj{tj = 0} =

* % n+1 r [ n T
VZLZ(Zi:Q F%,z‘—1 - 23:1 mj{tj = 0}) = VZLZ(Zizl Fi,i - 23:1 mj{tj =
0}) >* 0, where 1 holds by the commutativity of (6.I) and { holds as Z has

modulus m. Using Lemma 2.7, we can drop §;;, i.e., V' has modulus m.

When n = 0, we have for 1 < j < r, é§vi i {t; = 0} = v} gg{tj =0} =
vyuy{t; = 0}, which is 0 because Z N {t; = 0} = 0. Hence, d5vi i (FI; —
doi—1my{t; = 0}) = ggy‘*,ﬁ{,Fil > 0. Dropping 0¢, we get V'’ has modulus
m. |

PROPOSITION 6.4. Let Z € z9(X|[r]|Dm,n). Then§(Z) € 247X [r]|Dm,n+1).
Furthermore, § and O satisfy the equality 60 + 95 = 0.

Proof. We may assume that Z is an irreducible cycle. Let 9y, ; be the boundary
given by the face Fy ; on X x A" x [J", for 1 <i <n and € = 0, c0.

Cram: For e = 0,00, (i) 0544106, = 0, (ii) 9541 ;00 = dp—100;,,_, for
2<i<n+1.

For (i), we show that §,(Z) N {y1 = €} = 0 for e = 0,00. Since §,(Z) C
V(ty1---try1 = 1), we have §,(Z) N{y1 = 0} = 0. On the other hand, if §,(Z)
intersects {y; = oo}, then some t; must be zero on Z, i.e., Z intersects {t; = 0}
for some 1 < ¢ < r. However, since Z has modulus m, this can not happen.
Thus, §,(Z) N {y1 = co} = P. This shows (i). For (ii), by the definition of d,,
the diagram

€
Li_

(Gy,)* x Ot —— (Gy,)* x O"

l&n 1 lén

Gr, x O — 5 @7, x On+!
is Cartesian. Thus, 6,—1((t;_1(Z)) = (:5)*(d,(Z)) by [0, Proposition 1.7], i.e.,
(ii) holds. This proves the claim.
By Lemma [6.3] we know 6,,(Z) has modulus m. Since Z intersects all faces
properly, so does d,,(Z) by applying (i) and (ii) of the above claim repeatedly.
For 95+80 = 0, note that 86,,(Z) = S_1 0 (=1)/(851 ;6,(2)— %1 16,(Z)) =1
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2?221(*1)i(5n71873?i71(z> - 571*18_2,1'71(2)) = 72?21(*1>i(5n7183?i(z> -
On-100 ;_1(Z)) = =0n-1 2y (=1)(075(Z) = ), ;(Z)) = —0p—10(Z), where
1 holds by the claim. O

Lemma and Corollary below, which generalize [19] §4.2], have much
simpler proofs than loc.cit.

LEMMA 6.5. Let Z € z9(X[r]|Dm,n) be such that 05(Z) =0 for 1 <i<n and
€ =0,00. Then 262(Z) is the boundary of an admissible cycle with modulus m.

Proof. Note that §%(Z) is an admissible cycle on X x A x ("2 with modulus
m, by Proposition[6.4l For the transposition 7 = (1,2) on the set {1,--- ,n+2},
we have 7 - §2(Z) = §?(Z), by the definition of §. On the other hand, we have
7-62(Z) = —6%(Z) + () for some admissible cycle v, by Lemma 5.3l Hence,
we have —0%(Z) + d(y) = 6%(Z), i.e., 26%(Z) = O(7), as desired. O

COROLLARY 6.6. Let k be a perfect field of characteristic # 2 and let X be in
SmAfF* or in SmProj,. Let m > 1. Then §° =0 on CHY(X[r]|Dp,n).

Proof. If r = m = 1, by Corollary [5.15] there is nothing to prove. So, suppose
either » > 2 or |m| > 2. But, if » > 2, then we automatically have |m| > 2, so
we just consider the latter case.

Given o € CHY(X[r]|Dy,n), by Theorem B2 we can find a representative
Z € z9(X|[r]|Dm,n) such that 95(Z) =0 for 1 <i <n and € = 0,00. Then by
Lemma [6.5] we have 262(a) = 0.

On the other hand, by Corollary [514] the group CHY(X[r]|Dy,n) is a
W (|m|-1)(k)-module. As |m| > 2 and char(k) # 2, it follows that 2 €
(W (jm|—1)(k))*. In particular, §%(e) = 0. O

6.2. LEIBNIZ RULE. We now discuss the Leibniz rule, generalizing [19] §4.3].
Let X € Schi™. Let (z,t,t1, -+ ,tr, Y1, ,Ynt2) € X X ATTL x 072 be the
coordinates. Let T C X x A" x (0"*2 be the closed subscheme defined by
the equation ty, 41 = Ynto(tt1 - trynt1 — 1).

DEFINITION 6.7 (¢f. [19, Definition 4.9]). Given a closed subscheme Z C
X x ATl x O", define Cz := T - (Z x 0?) on X x A" x O"F2 This is
extended Z-linearly to cycles.

LEMMA 6.8. Let Z be a cycle on X x A" x O" with modulus m =
(m1,-++ ,mpy1). Then Cz has modulus m on X x AT x (On+2,

Proof. We may assume Z is irreducible. We show that each irreducible com-
ponent V' C Cz has modulus m. Let Z and V be the Zariski closures of Z

and Vin X x A"t x 0" and X x A" x En+2, respectively. The projection

—n+2 = —2
pr: X x ATt x 07 & X x A" x T" that ignores the last two [I” is pro-
jective, while its restriction to X x A™t! x O"*2 maps V into Z. So, pr maps
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V to Z, giving a commutative diagram

(6.2) N T x o AT O

[ F” Jo

7V L7 x At x O,

where ¢y and ¢z are the closed immersions, vy and vz are normalizations, and
pr¥ is induced by the universal property of normalization for dominant maps.
The modulus condition for V' is now easily verified using the pull-back of the
modulus condition for Z on Z and the fact that pr*{t; = 0} = {t; = 0} for
all j and pr*Fﬁﬁi = F%er for all 7. U

COROLLARY 6.9. Let X1,Xo € Schy™. Let Vi C X; x Al x O™ and Vo C
Xo x A" x O™ be closed subschemes with moduli |m| and m, respectively with
m > 1.

Under the exchange of factors X1 x A x[™ x Xox A" x["2 ~ X x Xox AT x
0", where n = ny + na, consider the cycle Cy, xv, on X1 X Xa X AT Ont2,
Then plcy, v, is finite. In particular, p.«(Cv,xv,) as in Definition 5.9 is well-
defined, and has modulus m.

Proof. We set V = V; x V5. From the definition of u, the map pu: V x 0?2 —
X1 X Xo x A™ x O"*2 is of the form u|y x Idgz. By Proposition B.7) the map
|y is finite, thus so is ply x Idge : V x 02 — X7 x Xa x A™ x ("2, Hence,
its restriction to Cy = T' - (V x [J?) is also finite. The modulus condition for
w+(Cy ) follows from Lemmas 5.8 and 6.8 O

DEFINITION 6.10 (cf. [19, Definition 4.12]). Let Vi € 2% (X1[1]| D)y, n1) and
Vo € 2%2(X3[r]| D, ne) with Xq,Xs € Schy™. Let n = ny + ne and define
Vi v Va be the cycle o - 1 (Cyv, xv3 ), where 0 = (n+2,n+1,--- , 1) € &, 40.

LEMMA 6.11. Let V;,Va be as in Definition [6I0.  Then Vi x,y Vo €
Zq1+q2_1((X1 X XQ)[?"“Dﬂ,nl + no + 2)

Proof. By Corollary 629, the cycle p.(Cv, xv,) has modulus m, thus so does
W = Vi X, Va. It remains to prove that W intersects all faces properly. Let
On, = (n1+1,n1,---,1) € &,41. Then by direct calculations, we have
(6.3)
a?OW = On, (Vl X 5(‘/2)),(9?W = 0,8§°W = 5(‘/1 X VQ))
AW = (V1) x,, Va,
W — 05_o (Vi) X Va, for 3 <¢<mnq+2,
v Vi X 05 _o(Va), formy +3<i<n+2,

Since each V; is admissible, using ([6.3)), Lemma [5.10, Proposition and in-
duction on the codimension of faces, we deduce that W intersects all faces
properly. O
PROPOSITION 6.12. Let X1,Xy € Smy™. Let § € 29 (X [1]| D)y, n1) and
n € z92(Xs[r]|Dm,n2). Let n = n1 +ng and ¢ = ¢1 + q2. Suppose that

e € {0,00}.
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all codimension one faces of & and 1 vanish. Then in the group 29 1((X; x
X2)[r]|Dm,n+1), the cycle 6(€§ x,,m) — & xun— (—=1)"1& x,, 0n is the boundary
of an admissible cycle.

Proof. By ([@.3), for 3 < i < ni + 2, we have 95(§ x,»v 1) = 95_5(§) X1 =0,
while for ny +3 <4 < n+42, we have 05 (§ X, n) = EX,w O5_,, _o(n) = 0. Hence,

A(Exwm) = S (= 1) (077 =) (Ex ) = 8(Exum) —{om, (€% ,00) +E X um}
by (63) for ¢ = 1,2. Equivalently,

(6.4) (& xum) =06 Xum—0p, - (€ X, 0m) =0(& X,n).
But, for £ x,, 7, notice that

05 x,0m=0, forl<i<nyg,

(65) o€ ptn) = { T BT I SISm e (ool

We have 95(6n) = 0 when ¢ = ny + 1 by Claim (i) of Proposition [64] and
05, (0n) = 6(0;_,,,_1m) = 0(0) = 0 when n; +2 < i < n+ 1 by Claim
(ii) of Proposition Hence, & x,, 0n is a cycle with trivial codimension 1
faces, so, by Lemma [5.3] for some admissible cycle v, we have o, - (§ X, 6n) =
sgn(on, ) (€ X, 0n)+0(y) = (—1)™ ¢ x, 6n+0(7y). Putting this back in ([64), we
obtain 6(§ X, 1) —6& X, n—(—1)"E& X, 0n = 0(§ x,wn) —O(y), as desired. O

The above discussion summarizes as follows:

THEOREM 6.13. Let X be in SmAf;® or in SmProj,, over a perfect field k
with char(k) # 2. Letr > 1 and m = (mq,--- ,m,) > 1. Then the following
hold:

(1) (CH(X[1]| D), Ax,0) forms a commutative differential graded
W m|-1)$2},-algebra.

(2) (CH(X[r]|Dyw),d) forms a differential graded (CH(X[1]| D)), Ax,0)-
module.

In particular, (CH(X[r]|Dy,),0) is a differential graded W (|p|—1)S2p -module.

Proof. The commutative differential graded algebra structure on
CH(X[1]| D)) and the differential graded module structure on CH(X [r][D,,)
over CH(X[1]| D)) follows by combining Theorem [5.4] Corollary and
Proposition using Theorem

The structure map p : X — Spec(k) turns (CH(X[1]|Dy), Ax,0)
into a differential graded algebra over (CH(pt[1]|D|n|), Apt,0) via p*.
Since @nZOCH”H(pt[lHDm‘,n) forms a differential graded sub-algebra of
(CH(pt[1]| D), Apt, ). The map of commutative differential graded algebras
W (-1 — @n>oCH ! (pt[1]| D}y, n) (see [28]) finishes the proof of the
theorem. O

As a consequence of Theorem[6.13 (use CorollaryB.I5when |m| = 1), we obtain
the following property of multivariate additive higher Chow groups.
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COROLLARY 6.14. Let r > 1 and m > 1 and let X be in SmAT® or in
SmProj,. Then each CHY(X|[r]|Dp, n) is a k-vector space provided char(k) =
0.

7. WITT-COMPLEX STRUCTURE ON ADDITIVE HIGHER CHOW GROUPS

Let k be a perfect field of characteristic # 2. In this section, a smooth affine
k-scheme means an object in SmAF®, i.e., an object of either SmAff; or
SmLocy.

Riilling proved in [28] that the additive higher Chow groups of 0-cycles over
Spec (k) form a restricted Witt-complex over k. When X is a smooth projective
variety over k, it was proven in [19] that additive higher Chow groups of X
form a restricted Witt-complex over k. Our objective is to prove the stronger
assertion that the additive higher Chow groups of Spec (R) € SmAff;™® have
the structure of a restricted Witt-complex over R.

Since we exclusively use the case r = 1 only, we use the older no-
tations Tz?(X,n;m) and TCH?(X,n;m) instead of z%(X[1]|Dmt1,n — 1)
and CHY(X[1])|Dm+1,n — 1). For X € Sch}® we let TCH(X;m) :=
D TCHY (X, n;m) and TCHM (X;m) := @, TCH"(X,n;m). The super-
script M is for Milnor. Let TCH(X) := @,,TCH(X;m) and TCHY (X) :=
®m TCHM (X;m). We similarly define TCH(X;m), TCHM (X;m), TCH(X),
and TCHM (X) for X € Schy, using Definition E7

7.1. WITT-COMPLEX STRUCTURE OVER k. In this section, we show that the
additive higher Chow groups for an object of SmAff>® form a functorial re-
stricted Witt-complex over k. For r > 1,let ¢, : A' — A! be the morphism x
a2, which induces ¢, : Spec (R) X B, — Spec (R) x B,. By [19, §5.1, 5.2], we
have the Frobenius F,. : TCHY(R, n;rm+r—1) — TCH!(R,n; m) and the Ver-
schiebung V,. : TCHY(R,n;m) — TCHY(R, n;rm+r—1) given by F,. = ¢, and
V. = ¢¥. We also have a natural inclusion R : Tz(R, e;m+ 1) — Tz%(R, e;m)
for any m > 1, which induces & : TCHY(R,n;m + 1) — TCHY(R,n;m),
called the restriction. Finally, by Theorem [6.13] there is a differential
0 : TzY(R,e;m) — Tz%(R,e + 1;m), which induces § : TCHY(R,n;m) —
TCHY(R,n + 1;m).

THEOREM 7.1. Let X € SmAff}*® and m > 1. Then TCH(X;m) is a DGA
and TCHM (X;m) is its sub-DGA. Furthermore, with respect to the operations
8, R, F,,V, in the above together with X = f* : W, (k) = TCH'(k,1;m) —
TCH' (X, 1;m) for the structure morphism f : X — Spec (k), TCH(X) is a
restricted Witt-complex over k and TCH™ (X) is a restricted sub- Witt-complex
over k. These structures are functorial.

Proof. In [19, Theorem 1.1, Scholium 1.2], it was stated that TCH(X;m) and
TCHM(X;m) are DGAs, and that TCH(X) and TCH (X) are restricted
Witt-complexes over k with respect to the above d,R, F., V,., provided the
moving lemma holds for X. But this is now shown in Theorems [£.1] and
We give a very brief sketch of this structure and its functoriality.
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The functoriality of the restriction operator R recalled above, was stated in
[19, Corollary 5.19], which we easily check here: let f: X — Y be a morphism
in SmAff}® and consider the following commutative diagram:

Tz, (Y, e;m + 1) AN Tz4(X,e;m + 1)

Tzi,(Y, e;m) TN Tz (X, e;m),

where W is a finite set of locally closed subsets of Y, and the horizontal maps
are chain maps given by the inverse images as in the proof of Theorem and
Corollary .15l The diagram and Theorems[ZI]and Z.I0/imply that f*R = R f*
because the vertical inclusions induce R by definition.

For each r > 1, the Frobenius F;. and Verschiebung V,. recalled in the above
are functorial as proven in [19] Lemmas 5.4, 5.9], and that F,. is a graded ring
homomorphism is proven in [I9, Corollary 5.6].

Finally, the properties (i), (i), (iii), (iv), (v) in Section 22222 are all proven in
[19, Theorem 5.13], where none requires the projectivity assumption. g

COROLLARY 7.2. Let m > 1 be an integer. Then TCH(—;m) and
TCHM(—;m) define presheaves of DGAs on Schy, and the pro-systems
TCH(—) and TCHM (=) define presheaves of restricted Witt-complezes over
k on Schy,.

Proof. Let X € Schy. By definition, TCH(X;m) is the colimit over all
(X = A) € (X | SmASff;)°P of TCH(A;m). But the category of DGAs is
closed under filtered colimits (see [I3]) so that TCH(X;m) is a DGA. For each
morphism f : X — Y in Schy, one checks f*: TCH(Y;m) — TCH(X;m) is a
morphism of DGAs. The other assertions follow easily using Theorem [l [

Before we discuss Witt-complexes over R, we state the following behavior of
various operators under finite push-forward maps.

PROPOSITION 7.3. Let f : X — Y be a finite map in SmAML®. Then forr > 1,
we have: (a) fR = Rf.; (b) fu0 =0fs; (¢) fulr = Fofs; (d) £V =V, fu.

Proof. The item (a) is obvious and (b) and (c) follow at once from the fact
that these operators are defined as push-forward under closed immersion and
finite maps and they preserve the faces. For (d), we consider the commutative
diagram

1dX ¢,
(7.1) XxAlAXxAl

lfxld lfxld
I

dx ¢,
YXA1A>YXA1.

Since this diagram is Cartesian and f as well as ¢ preserve the faces, we con-
clude from [6, Proposition 1.7] that f. o ¢* = ¢* o f.. O
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7.2. WITT-COMPLEX STRUCTURE OVER R. Let X = Spec (R) € SmAff;™.
The objective of this section is to strengthen Theorem [Z.I] by showing that
TCH(X) is a restricted Witt-complex over R.

Let m > 1 be an integer. We first define a group homomorphism 75 : W,,,(R) —
TCH'(R, 1;m) for any k-algebra R. Recall that the underlying abelian group of
W, (R) identifies with the multiplicative group (1+tR[[t]])* /(1+t™TLR][[t]])*.
For each polynomial p(t) € (1 + R][t]])*, consider the closed subscheme of
Spec (R[t]) given by the ideal (p(t)), and let T'(,)) be its associated cycle.
By definition, F(p(t)) Nn{t =0} = ? so that F(p(t)) S Tzl(R, 1;m). We set
Fapn=T(_qmn) forn>1andac R.

LEMMA 7.4. Let f(t),g(t) be polynomials in R[t], and let h(t) € RJt] be the
unique polynomial such that (1—tf(t))(1—tg(t)) = 1—=th(t). Then T _tnhu)) =
Caa-tsv) + Do) in T2 (R, 1;m).

Proof. This is obvious by (1 —¢f(¢))(1 —tg(t)) =1 — th(t). O
LEMMA 7.5. For n>m+ 1, we have I'(1_ns4)) =0 in TCHY(R,1;m).

Proof. Consider the closed subscheme I' C X x A x (J given by y; = 1—t"f(t).
Letv:T" =T < X x Al x P! be the normalization of the Zariski closure T' in
X x A x PL. Since f(t)t" =1 —1y; on I, we see that nv*{t =0} < v*{y; = 1}
onT . Since n > m + 1, this shows that I" satisfies the modulus m condition.
Since 97°(I') = 0 and 9{(I") = I'(1_¢n p(4)) (which is of codimension 1), the cycle
I' is an admissible cycle in Tzl(R, 2;m) such that OI' = I'(; _yn ¢(4)). This shows
that I'(1_sn p(¢)) = 0 in TCH' (R, 1;m). a

PROPOSITION 7.6. Let R be a k-algebra. Then the map tr : (1 + tR[t]) —
Tz'(R,1;m) that sends a polynomial 1 — tf(t) to Ci—tf(1)), defines a group
homomorphism g : W,,(R) — TCH'(R, 1;m).

Proof. Every element p(t) € (1 + tR[[t]])* has a unique expression p(t) =
1,51 (1 — ant™) for a, € R. For any such p(t), set p="(t) =[], (1 — ant™).
We define 7r(p(t)) = L (p<m4))- It follows from Lemmas [T.4] and that this
map descends to a group homomorphism from W, (R). O

Recall from [28, Appendix A] that for each r» > 1, we have the Frobenius F, :
Wemtr—1(R) = W, (R) and the Verschiebung V,. : W,,(R) — W,,,1—1(R).
They are given by F,(1 —at™) = (1 — a*t+)%, where s = ged(r,n) and V,.(1 —
at™) =1 —at™. On the other hand, as seen in Section [Z.I] we have operations
F,. and V, on {TCH' (R, 1;m)}.men.

LEMMA 7.7. Let R be a k-algebra. Then the maps 7r : W, (R) —
TCH' (R, 1;m) of Proposition [7.6] commute with the F,. and V, operators on
both sides.
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Proof. That gV, = V,.7g, is easy: we have V,.(Tr(1—at™)) = V;:(Tan) = Ta.rn,
while TR(VT(I — at”)) = F(l_at'r‘n) = Fa,rn~

That 7rF, = F,.7gr, is slightly more involved. Recall that F,.(1 — at™) =
(1—a5t%)®, where s = ged(r,n). Write n = n’s and r = 7’s, where 1 = (', n’).
Hence, we have tpF,.(1 — at™) = sl"ag,1 = sVa (Fa§71) = sV (L 1) =2 &,
while F7r(1 — at®) = F,T4,, = F,V,(Ta1) = O.

First observe that when n =1, we have s =1, r =1r',n =n' = 1, and we have
O=F.(Tg1)=T4 1=, sothat 7rF.(1 — at) = F,7r(1 — at), indeed.

For a general n > 1, we have F.V,, = F. F,V;V,,y = F.oo(s-1d)o V, =
$F.Vy =1 sV, F.r, where 1 holds because (r',n’) = 1. Since F.(Ty1) = |
(by the first case), we have O = F,.V,,(Ty1) = sV Fr (Tg,1) = sV (Farfyl) =
&. This shows TrF,. = F,.7R. O

Remark 7.8. In the proof of Lemma [[77] we saw that for s = (r,n),
(7.2) Fr(Ton) = SFa§ ns Ve(Lon) =Tarn.

)

PROPOSITION 7.9. For X = Spec (R) € SmAf”, the maps 7 : W,,(R) —
TCHl(R, 1;m) form a morphism of pro-rings that commutes with F, and V,
forr >1.

Proof. Tt is clear from the definition of 7z in Proposition [Z.6] that it commutes
with R. We saw that 7z commutes with F;. and V, in Lemma [[C7l So, we
only need to show that 7 respects the products. By [2] Proposition (1.1)], it
is enough to prove that for a,b € R and u,v > 1,

(7.3) TouATpy=wl 2,4 ,, in TCH'(R,1;m),
where w = ged(u,v) and A = Ax is the product structure on the ring
TCH' (R, 1;m) as in Theorem [T1}

STEP 1. First, consider the case when v = v =1, d.e., we prove I'y 1 ALy 1 =

I'ap,1. Recall that A is defined as the composition A* o i, 0 X in
XxA'x X x AV 5 X x X x A & X x AL

Under the identification X x X ~ Spec (R Qx R), we have p.(Tg1 x T'p1) =
Caoaep),1, and A*(F(a®1)(1®b)71) = I'gp,1, because A is given by the multi-
plication R ®; R — R. This proves (73] for Step 1.

For the following remaining two steps, we use the projection formula: x A
Vs(y) = Vi(Fs(z) Ay), which we can use by Theorem [T.11

STEP 2. Consider the case when v = 1, but u > 1 is any integer. We apply the
projection formula to z =I'y; and y = I'y 1 with s = u. Since TCHI(R, 1;m)
is a commutative ring, by the projection formula, we get V,,(Tq1) ATp1 =
Vu(Ta1 A Fy(Tp1)). Here, the left hand side is T'g o, A T'p 1 by equ:FV identity,
while the right hand side is =1 V,,(T41 ATpu 1) =2 Viu(Capu 1) =2 Tapu u, where
=1 and =3 hold by (Z2) and =2 holds by Step 1. This proves (Z.3)) for Step 2.
STEP 3. Finally, let u,v > 1 be any integers. Let w = ged(u,v). We again
apply the projection formulato x = V,(T's.1), y =T'p1, s = v, so that V,,(I'q 1)A
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Vo(Tp1) = Vo (Fu(Vi(Ta1)) AT 1). Its left hand side coincides with that of (Z.3)
by (T2). Its right hand side is = V,,(F,(Tau) A Tp1) =2 Vo(wl 2 W ATp1),

where =" and = hold by (Z2). But, Step 2 says that T’ = , AT %a%b% u
so that V,(wl' 2 , ATp1) =wV,(l 2,2 ) ., where = 1 holds
by ([Z2)). This last expression is the right hand side of (Z3)). Thus, we obtain
the equality (Z3]) and this finishes the proof. a

gl

R
w ’

s 2|

=T wl' v u
awbw

5|

THEOREM 7.10. For Spec(R) € SmAff}™, TCH(R) is a restricted Witt-
complex over R, and its sub-pro-system TCHM (R) is a restricted sub- Witt-
complez over R.

Proof. As saw in the proof of Theorem [[I] we already have the restriction R,
the differential §, the Frobenius F,. and the Verschiebung V;. defined by the same
formulas. Furthermore, by Proposition [Z.9) now we have ring homomorphisms
A =71r: W, (R) = TCH'(R,1;m) for m > 1. The properties (i), (ii), (iii),
(iv) in Section are independent of the choice of the ring, so that what we
checked in Theorem [Tl still work. To prove the theorem, the only thing left
to be checked is the property (v) that for all a € R and r > 1,

(7.4) Fyorr((a]) = r([a]"~")oTr((a)),

where we have shrunk the product notation A and taken the ring homomor-
phism A to be 7. To check this, we identify W,,(R) with (1 + ¢R[[t]])* /(1 +
£ R[] <

If a = 0, then 7r([a]) = T'(1_0.+) = 0. So, both sides of (ZZ)) are zero.

If a = 1, then 7r([a]) = Tr(1 —t) = I'(1_y). But, in our definition of 4, to
compute it, we should first restrict the cycle I';_;y C Spec(R) x G,, onto
Spec (R) x (G, \ {1}), which becomes empty. Hence, 07r([a]) = 6T'(1_4) = 0,
so again both sides of (74 are zero.

Let a € R\ {0,1}. Then 7g([a]) = T(1_ar) C Spec(R) x A', and d7r([a]) is
given by the ideal (1 — at,1 — ty1) in R[t,y1]. Since ¢ is not a zero-divisor in
R[t,y1], we have (1 —at,1—1ty;) = (1 —at,y1 — a) as ideals. Hence, F.d7r([a])
is given by the ideal (1 — a"t,y1 — a) in R[t,y1]. On the other hand,
7r([a)"=)07r([a]) = T(1_qr—1¢) A Spec (M)

(1—at,y1—a)

(7.5) _ A+ (( (R®y R)[t,y1] ) =" Spec ((R%) )

1-(a"~1®1)(1®a),y1 —(1®a)) 1—a"t,y1—a)

where t holds because A is induced by the product homomorphism R®x R — R.
Hence, both hand sides of ([Z4) coincide. This completes the proof. a
THEOREM 7.11. For Spec(R) € SmAff® and n,m > 1, there is a unique
homomorphism Tﬁm : WmQ}l{l — TCH"(R,n;m) that defines a morphism of
restricted Witt-complexes over R, {7F, : W, Q3" — TCH*(R, ®;m)}, such
that Tfm =TR.

Proof. The theorem follows from Theorem [[.T0 and 28] Proposition 1.15]. We
have 7%, = 7 because the map A of §2.2.2is given by 7 in Theorem 10 [
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We have shown in Propositions and [Z.9] that 7 is a group homomorphism
for any k-algebra R and is a ring homomorphism if R is smooth. Here, we
provide the following information on 75.

THEOREM 7.12. Let R be an integral domain which is an essentially of finite
type k-algebra. Then TR is injective. It is an isomorphism if R is a UFD.

Proof. Let K := Frac(R) and ¢ : R — K be the inclusion. This induces a
commutative diagram

W, (R) —=Y s w,, (k)

TRl TK\LN
TCHY(R,1;m) —— TCHY (K, 1;m),

where the bottom map is the flat pull-back via Spec (K) — Spec (R), and 7x
is the isomorphism by [28, Corollary 3.7]. Since W,,(¢) is clearly injective (see
[28 Properties A.1.(i)]), it follows that 7 is injective, too.

Suppose now R is a UFD and V is an irreducible admissible cycle in
Tz'(R,1;m). Then we must have (I(V),t) = R[t], where I(V) is the ideal
of V. Since R[t] is a UFD, using basic commutative algebra, one checks that
I(V) = (1 —tf(t)) for some non-zero polynomial f(t) € R[t]. In particular, the
map TR is surjective and hence an isomorphism. O

7.3. ETALE DESCENT. Finally:

Proof of Theorem[I]} By Corollary G158 we can assume |m| > 2. We set
Y = X/G, A\ = |G| and consider the diagram

(7.6) Gx XX

| |

XTY,

where 7 is the action map and p is the projection. Since G acts freely on X,
this square is Cartesian and f is étale of degree \. By [0, Proposition 1.7], we
have f* o f. = p. oy* : CHY(X[r]| Dy, n) = CHY(X[r]|Dpm,n).

Since f is G-equivariant with respect to the trivial G-action on Y, we see that
f* induces a map f* : CHY(Y[r]|Dm,n) — CHY(X[r]|Dp,n). Moreover, it
follows from [21] Theorem 3.12] that f. o f* is multiplication by A.

On the other hand, it follows easily from the action map ~ that p. o v*(«) =
S g*(a). In particular, p, o y*(a) = X - a if @ € CHY(X[r]| Dy, n)€.

geG

Since A € k* and the Teichmiller map is multiplicative with |m| > 2, we
see that A € (W(|p—1)(k))*. We conclude from Theorem (.4(3) and Corol-

* —1
lary 514 that the composite CHY(Y [r]| Dy, 1) s CHY(X[r]|Dpa, )¢ 2L
CHY(Y [r]| Dy, n) yields the desired isomorphism. O
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