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ABSTRACT. We extend the theory of Kisin modules and crystalline
representations to allow more general coefficient fields and lifts of
Frobenius. In particular, for a finite and totally ramified extension
F/Qp, and an arbitrary finite extension K/F, we construct a gen-
eral class of infinite and totally wildly ramified extensions K /K so
that the functor V' Vg, _ is fully-faithfull on the category of F-
crystalline representations V. We also establish a new classification
of F-Barsotti-Tate groups via Kisin modules of height 1 which allows
more general lifts of Frobenius.
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1. INTRODUCTION

Let k be a perfect field of characteristic p with ring of Witt vectors W := W (k),
write K¢ := W[1/p] and let K/Kj be a finite and totally ramified extension. We
fix an algebraic closure K of K and set Gk := Gal(K /K). The theory of Kisin
modules and its variants, pioneered by Breuil in [Bre98] and later developed by
Kisin [Kis06], provides a powerful set of tools for understanding Galois-stable
Zy,-lattices in Q,-valued semistable G k-representations, and has been a key in-
gredient in many recent advances (e.g. [Kis08], [Kis09al, [Kis09b]). Throughout
this theory, the non-Galois “Kummer” extension K, /K—obtained by adjoin-
ing to K a compatible system of choices {7, },>1 of p"-th roots of a uniformizer
mo in K—plays central role. The theory of Kisin modules closely parallels
Berger’s work [Ber(2], in which the cyclotomic extension of K replaces Ko,
and can be thought of as a “K..-analogue” of the theory of Wach modules

developed by Wach [Wac96], Colmez [Col99] and Berger [Ber04]. Along these

IThe second author is partially supported by a Sloan fellowship and NSF grant DMS-
1406926.
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lines, Kisin and Ren [KR09] generalized the theory of Wach modules to al-
low the cyclotomic extension of K to be replaced by an arbitrary Lubin—Tate
extension.

This paper grew out of a desire to better understand the role of K, in the
theories of Breuil and Kisin and related work, and is an attempt to realize
Kisin modules and the modules of Wach and Kisin—Ren as “specializations” of
a more general theory. To describe our main results, we first fix some notation.
Let FF C K be a subfield which is finite over Q, with residue field kr of
cardinality ¢ = p®. Choose a power series

f(u) :== a1u + agu® + - - € Op[u]

with f(u) = u? mod mp and a uniformizer 7w of K with monic minimal poly-
nomial F := FE(u) over Fy := Ky - F. We set mp := 7 and we choose
= {mp}n>1 with 7, € K satisfying f(m,) = m,—1 for n > 1. The ex-
tension Ky = J,,~o K (mn) (called a Frobenius iterate extension in [CD15]) is
an infinite and totally wildly ramified extension of K which need not be Galois.
We set G := Gal(K/K,).

Define & := W[u] and put &r = Or @w (k) & = Of,[u]. We equip & with
the (unique continuous) Frobenius endomorphism ¢ which acts on W (k) by
the canonical g-power Witt-vector Frobenius, acts as the identity on Op, and
sends w to f(u). A Kisin module of E-height r is a finite free & p-module I
endowed with ¢-semilinear endomorphism gy : 97 — 91 whose linearization
1 ® @ @*N — 9N has cokernel killed by E".

When F = Q, and f(u) = uP (which we refer to as the classical situation in
the following), Kisin’s theory [KisO6] attaches to any Gk__-stable Z,-lattice T
in a semistable G g-representation V' with Hodge-Tate weights in {0,...,r}
a unique Kisin module 9 of height r satisfying T ~ Te (M) (see §33 for
the definition of T). Using this association, Kisin proves that the restriction
functor V' — Vg, is fully faithful when restricted to the category of crys-
talline representations, and that the category of Barsotti—Tate groups over O
is anti-equivalent to the category of Kisin modules of height 1.

In this paper, we extend much of the framework of [Kis06] to allow general
F and f(u), though for simplicity we will restrict ourselves to the case that
g = p, or equivalently that F'/Q, is totally ramified, and that f(u) is a monic
degree-p polynomial. When we extend our coefficients from Q, to F', we must
further restrict ourselves to studying F'-crystalline representations, which are
defined following ([KR09]): Let V be a finite dimensional F-vector space with
continuous F-linear action of Gx. If V' is crystalline (when viewed as a Q-
representation) then Dggr (V) is naturally an F' ®g, K-module and one has
a decomposition Dgr(V) = [[,, Dar(V)m, with m running over the maximal
ideals of I' ®q, K. We say that V is F'-crystalline if the induced filtration on
Dar (V) is trivial unless m corresponds to the canonical inclusion F C K.
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THEOREM 1.0.1. Let V' be an F-crystalline representation with Hodge-Tate
weights in {0,...,r} and T CV a Gr-stable Op-lattice. Then there exists a
Kisin module MM of E-height r satisfying Te(ON) ~T.

Writing vg for the normalized valuation of K with vp(F) = Z, apart from the
classical situation f(u) = uP of Kisin, the above theorem is also known when
vp(a;) = 1, which corresponds to the Lubin—Tate cases covered by the work
of [KR09]. An important point of our formalism is that 9 may in general not
be unique for a fixed lattice T: our general construction produces as special
cases the p-modules over G which occur in the theory of Wach modules and its
generalizations [KR09)], so without the additional action of a Lubin—Tate group
I', one indeed does not expect these Kisin modules to be uniquely determined;
(cf. ExampleB.3.7). This is of course quite different from the classical situation.
Nonetheless, we prove the following version of Kisin’s “full-faithfulness” result.
Writing RepF cris, "(G) for the category of F-crystalline representations with
Hodge-Tate weights in {0,...,r} and Repp(Gx) for the category of F-linear
representations of G, we prove:

THEOREM 1.0.2. Assume that ¢ (f(u)/u) is not a power of E for all n > 0
and that vp(a1) > r, where f(u) = aju + asu?® + ---. Then the restriction
Junctor RepF TST(G) ~s Repp(Gy) induced by V Vg, is fully faithfull.

Although Beilinson and Tavares Ribeiro [BTRI3] have given an almost elemen-
tary proof of Theorem in the classical situation F' = Q, and f(u) = u?,
their argument relies crucially on an explicit description of the Galois closure
of Koo/K. For more general F' and f, we have no idea what the Galois closure
of K /K looks like, and describing it in any explicit way seems to be rather
difficult in general.
It is natural to ask when two different choices f and f’ of p-power Frobenius lifts
and corresponding compatible sequences = {7, }, and 7’ = {7}, } in K yield
the same subfield K, - of K. We prove that this is rare in the following
precise sense: if K K,rr, then the lowest degree terms of f and f’ coincide, up
to multiplication by a unit in Op; see ProposMon_ It follows that there are
infinitely many distinct K for which Theorem [[.L0.2] applies. We also remark
that any Frobenius-iterate extension K, as above is an infinite and totally
wildly ramified strictly APF extenswn in the sense of Wintenberger [Win83].
We therefore think of Theorem [] as confirmation of the philosophy that
“crystalline p-adic representations are the p-adic analogue of unramified ¢-adic
representatlonsﬁ ” since Theorem is obvious if “crystalline” is replaced
with “unramified” throughout (or equlvalently in the special case r = 0). More
generally, given I’ and r > 0, it is natural to ask for a characterization of
all infinite and totally wildly ramified strictly APF extensions L/K for which

2This philosophy is perhaps best evinced by the p-adic analogue of the good reduction
theorem of Néron-Ogg—Shafarevich, which asserts that an abelian variety A over a p-adic field
K has good reduction if and only if its p-adic Tate module V}, A is a crystalline representation

of G [CI99, Theorem 1].

DOCUMENTA MATHEMATICA 21 (2016) 223-270



226 BRYDEN Cails, ToONG Liu

restriction of F-crystalline representations of G with Hodge-Tate weights in
{0,...,r} to G, is fully—faithful. We believe that there should be a deep and
rather general phenomenon which deserves further study.

While the condition that vp(ai) > r is really essential in Theorem (see
Example [£5.9]), we suspect the conclusion is still valid if we remove the as-
sumption that ¢"(f(u)/u) is not a power of E for all n > 0. However, we
have only successfully removed this assumption when r = 1, thus generalizing
Kisin’s classification of Barsotti-Tate groups:

THEOREM 1.0.3. Assume vp(a1) > 1. Then the category of Kisin modules of
height 1 is equivalent to the category of F-Barsotti-Tate groups over Ok .

Here, an F'-Barsotti- Tate group is a Bartotti—Tate group H over Ok with the
property that the p-adic Tate module V,,(H) = Q,®z,T,(H) is an F-crystalline
representation. We note that when F' = Q,, Theorem is proved (by
different methods) in [CL14].

Besides providing a natural generalization of Kisin’s work and its variants as
well as a deeper understanding of some of the finer properties of crystalline p-
adic Galois representations, we expect that our theory will have applications to
the study of potentially Barsotti—Tate representations. More precisely, suppose
that T is a finite free Op-linear representation of G with the property that
T|a,. is Barsotti-Tate for some finite extension K'/K. If K'/K is not tamely
ramified then it is well-known that it is in general difficult to construct “descent
data” for the Kisin module 90 associated to T'|¢,., in order to study 1" (see the
involved computations in [BCDTO0I]). However, suppose that we can select
f(u) and 7y such that K’ C K(m,) for some n. Then, as in the theory of
Kisin-Ren [KR09] (see also [BBI0]), we expect the appropriate descent data
on M to be much easier to construct in this “adapted” situation, and we hope
this idea can be used to study the reduction of T

Now let us sketch the ideas involved in proving the above theorems and outline
the organization of this paper. For any Z,-algebra A, we set Ap := A®z, OF.
In order to connect & to Galois representations, we must first embed G as a
Frobenius-stable subring of W(R)r, which we do in §2.1 following [CDI5]. In
the following subsection, we collect some useful properties of this embedding
and study some “big rings” inside Bctis - Contrary to the classical situation,
the Galois closure of K appears in gerferal to be rather mysterious. Nonethe-
less, in §2.3] we are able to establish some basic results on the Gx-conjugates
of u € & C W(R)p which are just barely sufficient for the development of
our theory. Following Fontaine [Fon90], and making use of the main result
of [CDI5H], in 43l we establish a classification of G, -representations via étale
p-modules and Kisin modules. In the end of §8] we apply these considera-
tions to prove that the functor T is fully faithful under the assumption that
©"(f(u)/u) is not a power of E for any n.

The technical heart of this paper is §4l In §4.7] we define F-crystalline represen-
tations and attach to each F-crystalline representation V a filtered p-module
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Deyis, (V) (we warn the reader that the filtration of Deyis p(V) is slightly dif-
ferent from that of Deys(V)). Following [Kis06], in §4.2 we then associate to
D = D¢is(V) a p-module M(D) over O (here we use O for the analogue of
O—the ring of rigid-analytic functions on the open unit disk—in Kisin’s work).
A shortcoming in our situation is that we do not in general know how to define
a reasonable differential operator Ny, even at the level of the ring . Conse-
quently, our M(D) only has a Frobenius structure, in contrast to the classical
(and Lubin—Tate) situation in which M(D) is also equipped with a natural
Ny-structure. Without such an Ny-structure, there is no way to follow Kisin’s
(or Berger’s) original strategy to prove that the scalar extension of M(D) to
the Robba ring is pure of slope zero, which is key to showing that there exists
a Kisin module 9 such that © ®g, M ~ M(D). We bypass this difficulty
by appealing to the fact that M(D) is known to be pure of slope zero in the
classical situation of Kisin as follows: letting a superscript of “c” denote the
data in the classical situation and using the fact that both M (D) and M¢(D)
come from the same D, we prove that By ®9 M(D) ~ B, ®pe MS(D) as ¢-
modules for a certain period ring B, that contains the ring Ej;g’ - It turns out

+

that this isomorphism can be descended to Eng IR

Since Kedlaya’s theory of

the slope filtration is unaffected by base change from the Robba ring to Eji_g, I

it follows that M (D) is of pure slope 0 as this is the case for M¢(D) thanks
to [Kis06]. With this crucial fact in established, we are then able to prove
Theorem [LOT] along the same lines as [Kis06]. If our modules came equipped
with a natural Ny-structure, the full faithfulness of the functor V — V|q,
would follow easily from the full faithfulness of Ts. But without such a struc-
ture, we must instead rely heavily on the existence of a unique p-equivariant
section & : D(M) — O, @ ©*M to the projection @*M — *M /up*M, where
D) = (*M/up*M)[1/p]. The hypothesis vp(a;) > r of Theorem [[T.2]
guarantees the existence and uniqueness of such a section £&. With these prepa-
rations, we finally prove Theorem [[L0.2] in §4.5]

In §5, we establish Theorem the equivalence between the category of
Kisin modules of height 1 and the category of F-Barsotti-Tate groups over Ok .
Here we adapt the ideas of [Liul3b] to prove that the functor 9 — T (M) is
an equivalence between the category of Kisin module of height 1 and the cate-
gory of G-stable Op-lattices in F-crystalline representations with Hodge-Tate
weights in {0, 1}. The key difficulty is to extend the G -action on T (9M) to a
G-action which gives T (91)[1/p] the structure of an F-crystalline represen-
tation. In the classical situation, this is done using the (unique) monodromy
operator N on S ®g @*M (see §2.2 in [Liul3b]). Here again, we are able to
sidestep the existence of a monodromy operator to construct a (unique) Gg-
action on W(R)r ®g, MM which is compatible with the additional structures
(see Lemma [5.1.T]), and this is enough for us to extend the given G -action to
a G-action on T (9M). As this paper establishes analogues of many of the
results of [KisO6] in our more general context, it is natural ask to what extent
the entire theory of [Kis06] can be developed in this setting. To that end, we
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list several interesting (some quite promising) questions for this program in the
last section.

ACKNOWLEDGEMENTS: It is pleasure to thank Laurent Berger, Kiran Kedlaya
and Ruochuan Liu for very helpful conversations and correspondence.

NoTATION. Throughout this paper, we reserve ¢ for the Frobenius operator,
adding appropriate subscripts as needed for clarity: for example, pon denotes
the Frobenius map on 91. We will always drop these subscripts when there is no
danger of confusion. Let S be a ring endowed with a Frobenius lift ¢s and M
an S-module. We always write ¢*M := S®,4 g M. Note that if ppr : M — M
is a pg-semilinear endomorphism, then 1®¢as : ¢*M — M is an S-linear map.
We reserve f(u) = u? 4+ ap—1u+ -+ + agu = v mod mp for the polynomial
over Op giving our Frobenius lift ¢(u) := f(u) as in the introduction. For
any discretely valued subfield E C ?, we write vp for the normalized p-adic
valuation of K with vg(E) = Z, and for convenience will simply write v := vg, .
If Ais a Zy-module, we set Ap := A®z, Op and A[l/p] :== A ®z, Q,. For
simplicity, we put G = G = Gal(K/K) and G, := Gal(K/K,). We write
M,(S) for the ring of d x d-matrices over S and I for the d x d-identity matrix.

2. PERIOD RINGS

In this section, we introduce and study the various “period rings” which will
play a central role in the development of our theory.

As in the introduction, we fix a perfect field k of characteristic p with ring of
Witt vectors W := W(k), as well as a finite and totally ramified extension K
of Ko := WJ1/p]. Let F be a subfield of K, which is finite and totally ramified
over Qp,, and put Fy := KoF C K. Choose uniformizers 7 of O and w of O,
and let F := FE(u) € Op,[u] be the monic minimal polynomial of 7 over Fy. We
set e := [K : Ko], and put eg := [K : Fy] and ep := [F : Q). Fix a polynomial
fu) = uP + ap_quP~' + - + aju € Op[u] satisfying f(u) = u? mod w, and
recursively choose 7, € K with f(mn) = mp—1 for n > 1 where 7y := 7. Set
K=, K(m,) and G := Gal(K /K), and recall that for convenience we
write G = Gg = Gal(?/K).

Recall that & = W]u], and that we equip the scalar extension & with the
semilinear Frobenius endomorphism ¢ : & — & which acts on W as the
unique lift of the p-power Frobenius map on k, acts trivially on O, and sends u
to f(u). The first step in our classification of F-crystalline G g-representations
by Kisin modules over G is to realize this ring as a Frobenius stable subring
of W(R)p, which we do in the following subsection.

2.1. & AS A SUBRING OF W(R)p. As usual, we put R := Hm O%/(p),
—axP

xr
equipped with its natural coordinate-wise action of G. It is well-known that
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the natural reduction map

lw Oz/(p) > in O/ (=)

r—xP r—xP
is an isomorphism, so {m, mod w},>o defines an element = € R. Furthermore,
writing Cx for the completion of K, reduction modulo p yields a multiplicative
bijection lim Oc, ~ R, and for any z € R we write (2(™),,>0 for the
p-power compatible sequence in limxﬁxp Oc, corresponding to x under this
identification. We write [x] € W(R) for the Techmiiller lift of x € R, and
denote by 0 : W(R) — Oc, the unique lift of the projection R — Oc, /(p)
which sends 3°, p"[z,] to 3, p"z(®). By definition, BJ; is the Ker(6)-adic
completion of W(R)[1/p], so 0 naturally extends to Bjy. For any subring
B C Bjy, we define Fil'B := (Kerf)’ N B.
There is a canonical section K < BCJ{R, so we may view F' as a subring of
Bj:, and in this way we obtain embeddings W (R)p < B:;is’F < Bj;. Define
Or := 0w (r),. One checks that W (R)F is w-adically complete and that every
element of W(R)F has the form )~ - la,]w™ with a,, € R. The map 0 carries

> onsolan]@™ to 37,50 al'@" € Oc,, (see Def. 3.8 and Prop. 3.9 of [CDIH).

LEMMA 2.1.1. There is a unique set-theoretic section {-}; : R — W(R)p to
the reduction modulo w map which satisfies o({x} ;) = f({z}y) for all x € R.

Proof. This if] [C0l02, Lemme 9.3]. Using the fact that f(u) = u? mod w, one
checks that the endomorphism f o o~ of W(R)F is a w-adic contraction, so
that for any lift € W(R) of 2 € R, the limit

{z}s = lim (fo™) (@)

exists in W(R)r and is the unique fixed point of f o ¢ ~!, which uniquely
characterizes it independent of our choice of Z. 0

1

From Lemma 2Tl we obtain a unique continuous embedding ¢ : Sp — W(R)p
of Op-algebras with ¢(u) := {z};. Via ¢, we henceforth identify Sp with a ¢-
stable Op-subalgebra of W(R)p on which we have ¢(u) = f(u).

ExAMPLE 2.1.2 (Cyclotomic case). Let {(pn}n>0 be a compatible system of
primitive p"-th roots of unity. Let K’ = Q,((,) with 7 = (,—1 and take F' = Q,
with f(u) = (u+1)? — 1. Choosing 7, = (,n+1 — 1, we obtain Kz := Qp(ppe-).
It is obvious that €; := ((yn)n>1 € R. In this case, t(u) = [¢;] — 1 € W(R).

Recall that R has the structure of a valuation ring via vg(z) := v(2(?)), where
v is the normalized p-adic valuation of Cx with v(Z,) = Z.

LEMMA 2.1.3. We have Op(u) = 7 and E generates Ker(0p) = Fil' W (R) .
3In the version of Colmez’s article available from his website, it is Lemme 8.3.
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Proof. The first assertion is [Col02l Lemme 9.3]. To compute Op({x}s), we
first choose [x] as our lift of & to W(R), and compute

0r({z}y) = 0r (lim O ([)) = lim f0p( ")) = tim [0 (z)

n—oo n—oo
But 7 = 7,, mod w, so
f™@ @My = fM™(r,) = 7 mod w" !,

which gives the claim. Now certainly 0z (E(u)) = E(7) =0, so E = E(u) lies
in FillW(R)F. Since E = 7 mod w, we conclude that

vr(F mod @) = egvgr(m) = epu(n) = v(w),

whence E generates Ker(fr) = Fil'W(R)r thanks to [Col02, Prop. 8.3]. O

Now let us recall the construction of By and E;irg from Berger’s paper [Ber(2].
Let € be a generator of Fil'W(R). By definition,

Bl = Zan per € Biy | an € W(R)[1/p] and 1i_>m an =0

n>0
and Eri - mn>1 ¥ (Bmax)
Write u := [r]. The discussion before Proposition 8.14 in [Col02] shows:
LEMMA 2.1.4.
+ BT :
Bl or = Zan — ‘ an € W(R)r[1/p] and nlglgoanzo
n>0
= Zan } an € W(R)r[1/p] and lim a, =0
’n/ n—oo
n>0

We can now prove the following result, which will be important in §4.4t

LEMMA 2.1.5. Let x € Bmax s and suppose that xE™ = @™ (y) holds for some
y € Bt Then x = ™ (y') with y' € B}

max, " max, "

Proof. By Lemma 214 we may write y = > bn‘iﬂ—(’: with b, € W(R)p[1/p]
converging to 0. Write F = E(u) = u® + wz with z € W(R)pr. We then have

oo n

» :i(pm(bn ueop™n _Z(p EL chEpn
n=0

with ¢, € W(R)p[1/p] converging to 0. By Lemma [ZT3] E is a generator of

s—1 my,
Fil'W (R) r, so definining s := 1+max{n | p™n < r}, it follows that an;—n
n=0
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s—1 m,
is divisible by E" in W(R)r[1/p] so we may write > an;—n = E"x for some
n=0

xo € W(R)[1/p]. Without loss of generality, replacing = by & — xq, gives

o0 (oo} WL oo WL
Ep n—r ’n,*S n
=D e - Zdn ) DL
n=s n=0
with dp,—s = ¢, Epwzfr. Using again the equality £ = u® 4 wz, we then
S Mn
obtain z = Y. e, " with e, € W(R)r[1/p] converging to 0. We now have
n=0

ueon

wn with f,, = (p_m(en)' As fn € W(R)F[l/p]
as desired. O

= "(y') for y E fntm

converges to 0, we conclude that 3/ € Bmax I

2.2. SOME SUBRINGS OF BCJ;SF For a subinterval I C [0,1), we write O;
for the subring of Fy((u)) consisting of those Laurent series which converge
for those © € Cgx with |z| € I, and we will simply wr1te O = D[O - Let

B, = W(R)r[Z][1/p] C Bl p- We claim that Fil"B, = E"B,. To sce

n

this, set ¢ = [5] and n = pc— s with 0 < s < p. For any = € Filnéa, we write

r =3 aiEw—T with a; € W(R)p[1/p] converging to 0 in W(R)r[1/p]. Since
i=0

z € Fil"Blg, Z a;Zr = E"xo with 29 € W(R)p[1/p]. It suffices to show

that z — zg = E”y with y € Ea. Now

y—iazEPZ_n_ialEé C(E:D(z :))GB;‘R
i>c i>c

c

As a; converges to 0 in W (R)z[1/p], so does a; E*w ¢, whence y lies in Ba.

LEMMA 2.2.1. There are canonical inclusions of rings O C E:irg rC Ea.

Proof. We first show that O C E:irg,F' For any h(u) = > a,u™ € O, we have

n=0

to show that hp,(u) = . ¢ ™(a,u™) is in BT for all m > 0. Writing
n=0

max,F’

u = u+ wz with u = [x] and z € W(R)p, we have o™ (u) = u?" " + wz(™)
with 2(™) = ™™ (2) € W(R)p. Setting a™ = ©~™(ay) € Fy, we then have

1 ) (7
) = B 4+ 2m) = Y BB oo,
k=0 ’
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for h(®) the k-th derivative of A(X) := 3 a{™ X™. Therefore,
n=0

S (G 1o

Since h(u) € Op,1), we have lim |a51m)|r" = 0 for any r < 1. It follows that
n— o0

the inner sum Z (k+") (nfr)k(wz(m))k converges to b, € W(R)p[l/p]. Since

lim |a )|r =0 forr = |w€0p’" | > |ow|, for any € > 0, there exists N so that
n—>

|an+kw o wh| < e for any n > N and k > 0. This implies that bnweopm
converges to 0 in W(R)pr. We may therefore write

[e'e} oo eo s
n u €opr
hom (u) = g bpur™ = E by,wo cor™ (%)
n=0 n=0 @ cor™

and Lemma T4 implies that hy,(u) € Bf,, p, s0 O C B;lrg  as desired.

To show that Br FC Ba, we first observe that

~ ucop
(21) B W (R[]
For any = € Brlg #, We may write z = p(y) with y = Z an w: € B;{lax’F, and
we see that z = Z olay) “zsn indeed lies in B, by (ZZI). O
n=0

Finally let us record the following technical lemma: recall that our Frobenius
lift on S is determined by ¢(u) := f(u), with f(u) = uP+a,_1uP~ '+ 4aju.
We define O, := Gp[[“;op]][l/p] C Ba.

LEMMA 2.2.2. Suppose that w" |a; in Op. Then there exists hz(-") (u) € Oplul
such that

)(u) = Zhgi)i(u)uﬂﬁw(”l)i.
=0
In particular, ¢"(u)/w"™ converges to 0 in Og.

Proof. We proceed by induction on m = n. When m = 1, we may write
(2.2.2) f(u) =uP +ap_1u”' +- - +aju = u?h(u)+byw"T'u with by € Op.
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Supposing that the assertion holds for m = n and using (Z2Z2)) we compute

P ) = D 1@ S
=0

n

- Z R (f(w)) (WPh(u) + by u)?" T

1=0
n 2" ? 2n—i )
=S | 3 (%, )ttt | st
1=0 k=0
n 2"* 2n7i w T1-i .
=303 (W () Jh g ) e

To complete the inductive step, it therefore suffices to show that whenever
i+k < n+1, we have 2"H1—% — k > 2ntl—i=k  EFquivalently, and writing
7 :=n-+1—1i—k, we must show that 27tk _ | > 97 for all 5 > 0, which holds
as 2% >k +1 for all k > 0. O

2.3. THE ACTION OF G ON wu. In this subsection, we study the action of G on
the element u € W(R)p corresponding to our choice of f-compatible sequence
{7n}n in K and our Frobenius lift determined by f. From the very construction
of the embedding & — W(R)p in Lemma 2T1] the action of G on w is
trivial. However, for arbitrary g € G \ Gy, in contrast to the classical case,
we know almost nothing about the shape of g(u); ¢f. the discussion in §311
Fortunately, we are nonetheless able to prove the following facts, which are
sufficient for our applications.

Define
1M = {2 e WR)F | ¢"(x) € Fil'W(R)r,Vn > 0}.

Recall that ep = [F : Q,], and for x € W(R)p write Z := z mod w € R.
Thanks to Example B:32 there exists tp € W(R)p satisfying ¢(tp) = FEtp.
As F € FﬂlW(R)F, it is easy to see that ¢(tp) € I[l]W(R)F7 and since
th, = utp, we have vr(p(tr)) =

p
er(p—1)°

LEMMA 2.3.1. The ideal I}” is principal. Moreover, x € I}” is a generator of
II[JI] if and only if vr(ZT) = ﬁ.

Proof. When F' = Q,, this follows immediately from [Fon94al, Proposition
5.1.3] with » = 1. The general case follows from a slight modification of this

argument, as follows: For y € I}H, we first claim that vg(g) > ﬁ. To
o0

see this, we write y = > @"[y;] with y; € R given by the p-power compatible
n=0

DOCUMENTA MATHEMATICA 21 (2016) 223-270



234 BRYDEN Cails, ToONG Liu
sequence y; = (a{™),50 for o{™ € O¢,. Then
0= 0e(e™ () = 3 =" (V)"
n=0
By induction on n and m, it is not difficult to show that

1 ) .
v(a!”) > o +p o pTI)

for all j > 0. In particular, vg(y) = U(ago)) 2 oD

Now pick a x € 11[71} with vp(Z) = ﬁ (take, for example, x = p(tF)). Since
vr(y) > vg(x), we may write y = ax + wz with a,z € W(R)p. One checks
that z € 1 1[?1] and hence that z € (w,z). An easy induction argument then

shows that y = > w"a,z, and it follows that I g] is generated by z. O

n=0

It follows at once from Lemma 23Tl that ¢(tp) is a generator of T 1[?1 J Write I+
for the kernel of the canonical projection p : W(R)r — W (k)r induced by the
projection R — k. Using the very construction of u, one checks that u € I:
Indeed, writing u = [x] as before, we obviously have u € It and it follows from

the proof of Lemma Tl that u = lim,, o (™ 0 ™" (u) lies in It as well.

LEMMA 2.3.2. Let g € G be arbitrary. Then g(u) — u lies in MW (R)p.
g(w)—u

) lies in IT.

Moreover, if w?|ay in O then

Proof. As before, writing f(™ = fo-.-o f for the n-fold composition of f with

itself, we have 0p(¢"(u)) = f(™(r) € K, from which it follows that g(u) — u
is in Iz[rl]- By Lemma B3] we conclude that z := gggz;)u lies in W(R)p. It
remains to show that z € I when w?|a;. We first observe that

; a; ((g(u)) — ')
©%(tr) B o(E)p(tr)

For each i, we may write (g(u))'—u’ = (g(u)—u)hi(g(u),u) = @(tr)zhi(g(u),u)
for some bivariate degree ¢« — 1 homogeneous polynomials h; with coefficients
in W(R)r. We therefore have

p

(2.3.1) P(E)p(z) = Y ai (zhi(g(u),u)) .

=1

Reducing modulo I* and noting that both u and g(u) lie in I, we conclude
from 237) that we(p(2)) = a1p(z), where p : W(R)rp — W (k)p is the natural
projection as above. Using the fact that v(¢o(p(z))) = v(p(z)), our assumption

that v(a1) > v(w) then implies that p(z) = 0. That is, z € I as desired. [
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ExaMmpPLE 2.3.3. The following example shows that the condition w2|a1 in Op
is genuinely necessary for the conclusion of Lemma to hold. Recall the
situation of Example ZT.2 with K = Q,((,), 7= — 1, f(u) = (u+1)P -1
and u = [¢;] — 1, where ¢ = ({pn)n>1 € R. We may choose g € G with
gle;) = €, 7. We then have g(u) — u = [¢,]([e;]” — 1). Now it is well-known
that [¢;]? — 1 is a generator of I(Sj (or one can appeal to Lemma [Z31]). Then

2= (g(u) —u)/p(tr) is a unit in W (R) and does not lie in .
We conclude this discussion with the following lemma, needed in §5.1t

LEMMA 2.3.4. The ideal tpI™ C W(R)F is stable under the canonical action
of G: that is, g(tpI™) C tpl™ for all g € G.

Proof. Tt is clear that It is G-stable, so it suffices to show that g(tp) = xtp
for some x € W(R)p. Since ¢(tr) is a generator of I'*, which is obviously
G-stable from the definition, we see that g(¢(tr)) = yo(tr) with y € W(R)p.
Hence g(tr) = ¢~ (y)tr. O

3. ETALE ¢-MODULES AND KISIN MODULES

In this section, following Fontaine, we establish a classification of Gj-
representations by étale p-modules and Kisin modules. To do this, we must
first show that K /K is strictly Arithmetically Profinite, or APF, in the sense
of Fontaine-Wintenberger [Win83], so that the theory of norm fields applies.

3.1. ARITHMETIC OF f-ITERATE EXTENSIONS. We keep the notation and con-
ventions of §21 Recall that our choice of an f-compatible sequence {m,}, (in
the sense that f(m,) = m,—1 with 7y = 7 a uniformizer of K) determines an
element 7 := {m, mod w}, of R. It also determines an infinite, totally wildly
ramified extension K, := U,>1 K (m,) of K, and we write G, = Gal(K /K,).

LEMMA 3.1.1. The extension K, /K is strictly APF in the sense of [Win83]; in
particular, the associated norm field Ex_,x is canonically identified with the

subfield k(x)) of Fr(R).

Proof. That K./K is strictly APF follows immediately from [CD15], which
handles a more general situation. In the present setting with f(u) = «” mod w,
we can give a short proof as follows. As before, let us write

f(w) = aru+ agu® + -+ + ap_1uP " + ayuP,

with a; € wOp for1 <i <p—landa,:=1. Foreachn > 1,set f,, :== f—m,_1
and put K, := K(m,_1). We compute the “ramification polynomial”

p—1
gn ‘= 7fn(7rn’l;+ﬂ'n) B Zbluza
i=0
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with coefficients b; given by

P .
bij_;lajﬂ%(i‘f'l) for 0<i<p-—1.

For ease of notation, put v, := vk, ,, and denote by e, := v,(w) the ram-
ification index of K, 1/F and by e := vp(p) the absolute ramification index
of F. Since Kn+1/_Kn is totally ramified of degree p, we have e, = p"eq; in
particular, v, (a; (Zfrl)ﬂﬁl) = jmod p". It follows that v, (b,—1) = p, and for
0 <i<p-—2we have
v, (b)) = min{e,e +p, eyvp(a;)+7 : i+1<j<p-—1}

It is easy to see that for n > 1 the lower convex hull of these points is the
straight line with endpoints (0, v, (b)) and (p — 1, p). In other words, defining
(3.1.1) imin ;= min{i : ordg(a;) <e, 1 <i<p}.

the Newton polygon of g, is a single line segment with slope the negative of
en (VF(Qipyy) + [imin/PJ€) + imin — p

p—1 '
In particular, for n > 1 the extension K, 1/K, is elementary of level i,, in the
sense of [Wing3| 1.3.1]; concretely, this condition means that
(3.1.3) Un (T, — 0mp) = ip + 1

for every K,-embedding o : K,,41 < K. It follows from this and [Win83} 1.4.2]
that K /K is APF. Now let ¢(K /K be the constant defined in [Win83| 1.2.1].

Then by [Win83] §1.4]

(3.1.2) ip =

in
Ky/K)=inf —"
(Kx/K) = Il =

so from (BII) we deduce

C(KW/K) — inf €n (UF (aimin) + I_imin/pje) + imin — P
= n>0 p(p—1)

€0 . P — tmin

O (0 (010) + Limin/pJe) — 22
since p — imin > 0, so the above infimum occurs when n = 1. As ipi, > 1,
the above constant is visibly positive, so by the very definition [Wing&3| 1.2.1],

K, /K is strictly APF.

The canonical embedding of the norm field of K /K into Fr(R) is described
in [Win83| §4.2]; that the image of this embedding coincides with k((z)) is a
consequence of [Win83, 2.2.4, 2.3.1]. O

Remark 3.1.2. Observe that if the coefficient a1 of the linear term of f(u) has
v(a1) < 1, then we have i, = 1 and

0
oKz K) = ~Lvp(an) .
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In this situation, vg(a;)—which plays an important role in our theory—is
encoded in the ramification structure of K,/K.

It is natural to ask when two given polynomials f and f’ with corresponding
compatible choices r and 7’ give rise to the same iterate extension. Let us write
f@)=a? +ap 12~ +---+ayz and f'(x) = 2P +a),_ 2P~ 4 -+ djx, with
a;,a, € Op and a; = a;, =0mod w for 1 <i < p. Let {m,} (respectively {n/ })
be an f (resp. f’) compatible sequence of elements in K. Set K, := K(m,_1)
(resp. K, = K(x!,_,)) and let a,u® and a/,u® be the lowest degree terms of
f(u) and f'(u) respectively.

ProprOSITION 3.1.3. If K = Ky as subfields of K, then K, = K] foralln >1
and there exists an invertible power series £(x) € Op[x] with £(z) = pox + - - -
and pig € OF such that

fE(@)) = &(f' ().

In particular, s = s’ and v(as) = v(a

1) are numerical invariants of Ky = K.

Conversely, if f and [’ are given with s = s and v(as) = v(dl,), then we

have as; = ,utlfsa’S for a unique py € OF and there is a unique power series
&(x) € Flz] with £(z) = pox mod 22 satisfying f(&(z)) = &£(f'(x)) as formal
power series in Fxz]. If £(x) lies in Op[x], then for any choice {w]}, of
f'-compatible sequence with ), a uniformizer of K, the sequence defined by
T, = &(x)) is f-compatible with my = &(w))) a uniformizer of K and K, = K.
Furthermore, if v(as) = v(al,) = v(w), then &(z) always lies in Oplx].

Proof. Suppose first that K, = K/, and write simply K., for this common,
strictly APF extension of K in K. It follows from the proof of Lemma [T I that
K,+1 and K,’L_|r1 are both the n-th elementary subextension of K..; i.e. the
fixed field of Gl;? Gk, where b, is the n-th break in the ramification filtration
GY%Gk..; see [Win83| 1.4]. In particular, K, 1 = K/, | for all n > 0. Now

let W (o) be the functor of w-Witt vectors; it is the unique functor from
Op-algebras to Op-algebras satisfying

(1) For any Op-algebra A, we have W (o) = [[,50® =: o™ as functors
from Op-algebras to sets.
(2) The ghost map W, (e) — N given by
(ag,a1,as,...) — (ag,al + way,al + wal + w?as,...)

is a natural transformation of functors from Op-algebras to Op-
algebras.

We remark that W, (e) exists and depends only on o, and is equipped with
a unique natural transformation ¢ : W, (e) — W, (e) which on ghost compo-
nents has the effect (ag, ay,...) — (a1, as,...); see [CDIH, §2].

Define the ring
A}w/K ={(z;)i € @Ww((?f(w) : x, € Wg(Ok, ) for all n},
©
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which depends only on F, @, and K,/K. The main theorem of [CD15], implies
that A;}m K is a w-adically complete and separated O p-algebra equipped with
a Frobenius endomorphism ¢, which is canonically a Frobenius-stable subring
of W(R)F that is closed under the weak topology on W(R)p. Giving A;F(OO/K
the subspace topology, the proof of [CDI5, Prop. 7.13] then shows that the
f (respectively f’)-compatible sequence m (respectively 7’) determine isomor-
phisms of topological Op-algebras

nn' : Opla] —= A%/

characterized by the requirement that the ghost components of (),

(vesp. (1)n) are (mn, f(mn), fP) (m0),...) (vesp. (mp, f/(m0,), £/ (), 0);
here we give Op[z] the (w,z)-adic topology. These isomorphisms moreover
satisfy

n(f(@) =¢Mm) and 7' (f'(2) =@ (2)).

We therefore obtain a continuous automorphism £ : Op[z] — Op[x] satisfying

(3.1.4) fE(@)) = &(f' ().

Since ¢ is a continuous automorphism of Op[z], we have that & preserves the
maximal ideal (co,z). This implies that £(z) = poz mod z? with po € OF.
Then BI) forces asujz® = al, pox® which implies s = s and v(a,) = v(al).
Conversely, suppose given f and f/ with s = ¢ and v(as) = v(a)) and let
o € OF be the unique unit with as = p§~ *al; note that this exists because
s —1 < p. We inductively construct degree i polynomials &;(x) = Z;:1 pjad
so that f(&(x)) = &(f/(x)) mod 5. As pdas = poal,, we may clearly take
& (x) = pox. If & () has been constructed, we write &1 (2) = & (x)+ pip1 21
and f(&(x)) — &(f'(x)) = A mod 51 and seek to solve

(3.1.5) f&ir1(2) = &1 (f (z) mod 2 T+,
As f(&i1(x) = f(&(x)) + %(&(z))(uiﬂz”l) + -+, we see that BLT) is

equivalent to
(3.1.6) A= piv1(ar — a’1i+1) ifs=1, and \= ui+1sasu3_1 ifs>1

which admits a unique solution p;+1 € F. We set {(z) = lim; &(z) € F[z],
which by construction satisfies the desired intertwining relation (BL4). If & lies
in Op[x], it is clear that any f’-compatible sequence 7/, with 7(, a uniformizer

of K yields an f-compatible sequence m, := &(n],) with 7y a uniformizer of
K and K,, := K(mp—1) = K(n],_;) = K], for all n > 1. Finally, since we

have f(x) = f/(x) = 2P mod w, it follows that f(&(x)) —&(f'(x)) = 0 mod w,
i.e. A = 0 mod w in the above construction. When v(as) = v(a.) = v(w), it
then follows from [BI0) that p;41 € Op, and £(z) € Op[z] as claimed. O

As an immediate consequence of Proposition (BI3]), one sees that there are
infinitely many distinct f-iterate extensions K, inside of K.
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3.2. ETALE ¢-MODULES. Let Og be the p-adic completion of &p[l/u],
equipped with the unique continuous extension of ¢. Our fixed embedding
Sr — W(R) determined by f and & uniquely extends to a p-equivariant em-
bedding ¢ : Og — W (Fr R), and we identify Og with its image in W(Fr R)p.
We note that Og¢ is a complete discrete valuation ring with uniformizer @ and
residue field k((z)), which, as a subfield of Fr R, coincides with the norm field
of K/K thanks to Lemma BTl As FrR is algebraically closed, there is a
unique separable closure k((x))**® of k((x)) in Fr R, and the maximal unrami-
fied extension (i.e. strict Henselization) Oguw of Og with residue field k((z))%P
is uniquely determined up to unique isomorphism. The universal property
of strict Henselization guarantees that ¢ uniquely extends to an embedding
Ogur — W(Fr R)p, which moreover realizes Ogur as a @-stable subring. We
write Og,, for the p-adic completion of Ogur, which is again a ¢-stable subring
of W(Fr R)p. Again using the universal property of strict Henselization, one
sees that each of Og, Ogur and Ogur are Gr-stable subrings of W (Fr R) p, with
G acting trivially on Og. As suggested by the notation, we write £, £"", and
EW for the fraction fields of O¢, Oguwr and Og,,, respectively. Finally, we define
&% = W(R)r N Ogy,-

LEMMA 3.2.1. With notation as above:

1) The natural action of G on Oz, induces an isomorphism of profinite
fud 13
groups

Gr = Gal(K/Ky) ~ Aut(Og,, /Og) = Gal(E™ /).

(2) The inclusions Op — (O
phisms.

2u)?t and O — (0z..)%= are isomor-

Proof. By the very construction of Og,, and the fact that the residue field of
Og is identified with the norm field Ex_,x by Lemma .11 we have an iso-
morphism of topological groups Gal(Ei?:/K/EKL/K) ~ Aut(Og. /O¢) by the
theory of unramified extensions of local fields. On the other hand, the theory of
norm fields [Win83), 3.2.2] provides a natural isomorphism of topological groups
Gr ™~ Gal(ES;Z/K/EKL/K), giving ().

To prove (2)), note that the maps in question are local maps of w-adically
separated and complete local rings, so by a standard successive approximation
argument it suffices to prove that these maps are surjective modulo w. Now
left-exactness of p-invariants (respectively Gr-invariants) gives an F,-linear
(respectively Ef_,, -linear) injection

(0gu)?™ /(@) = (BRY )¢ =Fp = O/ (w),

respectively
(0gu)=/(w) = (EX? )= = Ek,,,. = O¢/(w)
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which must be an isomorphism of vector spaces over F,, (respectively Ex_, )
as the source is nonzero and the target is 1-dimensional. We conclude that
Or < (0z.,)¢=" (respectively Og < (Oz..)9x) is surjective modulo @, and

therefore an isomorphism as desired. 0

Denote by Modg,, (resp. Modé’;or) the category of pairs (M, pyr), where M
is a finite free Og-module (resp. a finite Og-module killed by a power of @)
and pp 0 M — M is a ¢-semilinear and additive map whose linearization
1®epm @ "M — M is an isomorphism. In each case, morphisms are -
equivarant Og-module homomorphisms. Let Repy, (Gx) (resp. Repgh (Gx))
be the category of finite, free Op-modules (resp. finite O p-modules killed by a
power of w) that are equipped with a continuous and Op-linear action of Gy.

For M in Mod¥,  or in Mod%"", we define
£ &
V(M) = (Oz. ®0. M)?=",

which is an Op-module with a continuous action of G. For V' in Repg,.(Gx)
or in RepSt (Gr), we define

M(V) = (Op. ®0, V)=,

which is an Og-module with a ¢-semilinear endomorphism ¢ := po,,, @ 1.

THEOREM 3.2.2. The functors V. and M are quasi-inverse equivalences be-
tween the exact tensor categories Modp, — (resp. Modé’;or) and Repp,.(Gx)

(resp. Repy, (Gx))-

Proof. As in the proof of [KR09, Theorem 1.6], the original arguments of
Fontaine [Fon90, A1.2.6] carry over to the present situation. Indeed, by stan-
dard arguments with inverse limits, it is enough to prove the Theorem for
w-power torsion objects. To do so, one first proves that M is exact, which
by (faithful) flatness of the inclusion Og < Oguw: amounts to the vanishing
of H'(Gy,-) on the category of finite length Ogu-modules with a continuous
semilinear G-action. By a standard dévissage, such vanishing is reduced to
the case of modules killed by wo, where it follows from Hilbert’s Theorem 90 and
Lemma 321l One then checks that for any torsion V', the natural comparison
map M(V) ®p, Ogur = V @0, Ogur induced by multiplication in Ogur is an
Ogur-linear, ¢, and Gr-compatible isomorphism by dévissage (using the settled
exactness of M) to the case that V is w-torsion, where it again follows from
Hilbert Theorem 90. Passing to submodules on which ¢ acts as the identity
and using Lemma B.2.T(2) then gives a natural isomorphism V o M ~ id.

In a similar fashion, the exactness of V and the fact that the comparison map

induced by multiplication in Ogur is an isomorphism for general w-power tor-
sion modules M follows by dévissage from the the truth of these claims in the
case of M killed by w. In this situation, the comparison map [B.2.1)) is shown
to be injective by checking that any F,-linearly independent set of vectors in
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V(M) remains Ei?i’o/}(—linearly independent in Ei?i/}( ®r, V.(M), which is ac-
complished by a standard argument using the Frobenius endomorphism and
Lemma B.2.TJ2). To check surjectivity is then a matter of showing that both
sides of (B2I)) have the same Ei?i/}(—dimension, i.e. that the F-vector space

V(M) has dimension d := dimEKx/K M. Equivalently, we must prove that
V(M) has p? elements. Identifying M with ECII(W/K by a choice of E__, -basis
and writing (¢;;) for the resulting matrix of ¢, one (noncanonically) realizes
V(M) as the set of Ei?i’o/l{—solutions to the system of d-equations ¥ = >~ ¢;x;
in d-unknowns, which has exactly p? solutions as ¢ is étale, so the matrix (c;;)
is inwvertible. 0

In what follows, we will need a contravariant version of Theorem B.2.2] which
follows from it by a standard duality argument (e.g. [Fon90, §1.2.7]). For any
M € Modp,_ (respectively M € Modg’;m), we define

T(M) := Homo, (M, Og,), respectively T'(M):= Homo, (M, gur/Ogur),

which is naturally an Op-module with a continuous action of G.

COROLLARY 3.2.3. The contravariant functor T induces an anti-equivalence
between Modg, . (resp. Mod‘é’zor) and Repy,, (Gx) ( resp. Repgt (Gx)).

3.3. KISIN MODULES AND REPRESENTATIONS OF FINITE E-HEIGHT. For an
integer r > 0, we write Mod‘é’; for the category of finite-type & gp-modules 9t
equipped with a ¢g ,-semilinear endomorphism gy : 9T — 9 satisfying

e the cokernel of the linearization 1 ® ¢ : ™9 — M is killed by E;

e the natural map M — O¢ ®g, M is injective.
One checks that together these conditions guarantee that the scalar extension
O¢ ®g, M is an object of Mod‘ég when 9T is torsion free, and an object
of 1\/[od2'5’£mr if 9 is killed by a power of w. Morphisms in 'Modg’ are -
compatible & p-module homomorphisms. By definition, the category of Kisin
modules of E-height r, denoted Modg', is the full subcategory of 'Modg’
consisting of those objects which are finite and free over Gr. For any such
Kisin module MM € Modg", we define

Ts (M) := Home ., (M, &%),
with &% := W(R)r N Og,. as above Lemma B.2.T} this is naturally an Op-
module with a linear action of G.
PROPOSITION 3.3.1. Let 9 € Mod‘é’; and write M = Og @, M for the
corresponding object of Modfgg.

(1) There is a canonical Op-linear and Gg-equivariant isomorphism
Ts(IM) ~ T(M). In particular, Te(IN) is an object of Repy,. (Gr)
and ranko, (Te (M) = ranke . (IM).

(2) The inclusion &% — W(R)r induces a natural isomorphism of
Or[Gz]-modules T (9M) ~ Home . (M, W(R)F).
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Proof. As in the proofs of [Kis06, 2.1.2, 2.1.4] and [KR09, 3.2.1], the Lemma
follows from B1.4.2 and B1.8.3 of [Fon90] (¢f. B1.8.6), using [Fon90, A1.2]
and noting that Fontaine’s arguments—which are strictly speaking only for
F = Qp,——carry over mutatis mutandis to our more general situation. (]

EXAMPLE 3.3.2. Let 9 be a Kisin module of rank 1 over G . Choosing a basis
¢ of M1 and identifying 91 = G - ¢, it follows from Weierstrass preparation that
we must have ¢(¢e) = pE™e for some p € &5. Consider the particular case
that ¢(e) = Ee, which is a rank-1 Kisin module of E-height 1. Proposition
B3J) then shows that T (M) gives an Op-valued character of G and that
there exists t € W(R)p satisfying ¢(t) = Et and t mod @w # 0 inside R. We
will see in §5] that the character of G, furnished by T (9) can be extended to
a Lubin-Tate character of G if we assume that w2|a1 in Op, where a; is the
linear coefficient of f(z) € Oplx].

Let Repp(Gy ) denote the category of continuous, F-linear representations of
Gr. An object V of Repp(Gy) is of E-height r if there exists a Kisin module
M € Mod& with V =~ Te, (IM)[1/p], and V is of finite E-height if there exists
an integer r such that V' is of E-height r. As E = E(u) is fixed throughout the
paper, we will simply say that V' is of (finite) height r.

For M an arbitrary object of Modg", we write Vis (M) := T (9M)[1/p] for the
associated height-r representation of G;. We will need the following general-
ization of [Kis06, Lemma 2.1.15] (or [Lin07, Corollary 2.3.9]):

PROPOSITION 3.3.3. If V' € Repp(Gy) is of height r then for any G r-stable Op-

lattice L C 'V, there exists 0 € Mod&" such that Te(N) ~ L in Repe, (Gx).

The proof of Proposition will make use of the following key lemma:

LEMMA 3.3.4. Let 9 be an object of "Modg that is torsion-free. Then the
intersection M’ := M[1/p] N (Og s, M), taken inside of £ R, M, is an
object in Mod‘é’; and there are canonical inclusions M C M C O¢ Rg, M.

Proof. The proof of Lemma 2.3.7 in [Liu(07] carries over mutatis mutandis to
the present situation. O

Proof of Proposition 333 As the proof is a simple adaptation of that of Corol-
lary 2.3.9 in [Liu07], we simply sketch the highlights. Let V € Repp(Gx) be
of height 7, and select M € Modg’ with V' ~ Vs(IM). Put T := T (M),
which is a Gr-stable Op-lattice in V, and let L C V' be an arbitrary G-stable
Op-lattice. Put M := Og ®g, M and let N € Mod,_ be the object of Mod,,
corresponding to L via Corollary B.2.3] so T(N) ~ L in Repp, (Gxr). Without
loss of generality, we may assume that N C M. Writing f: M — M/N for the
natural projection, it is easy to check that f(90) is an object of 'Mod&". Tt
then follows from Proposition [Fon90, B 1.3.5] that 91 := ker(ﬂm) C N is an
object of 'Modg. Writing 91 := 9V'[1/p] N N, we have that 91 is an object of
Mod‘é’; thanks to Lemma [3334], and by construction we have Og ®g, N~ N,
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so that Tg(M) ~ L as Op[Gr]-modules thanks to Proposition B3] and the
choice of N. g

PROPOSITION 3.3.5. Assume that ©"(f(u)/u) is not power of E = E(u) for
any n > 0. Then the functor Tg : Modé’; ~ Repp, (Gx) is fully faithful.

Proof. We use an idea of Caruso [Carl Proposition 3.1]. Fix 90,9 € Modg” .
Using Corollary and Lemma [331] we easily reduce the proof of Propo-
sition to that of the following assertion: if f: O¢ ®g, M — O Vs, M
is a morphism in Modg_ then §(9%) C 9. By applying Lemma B34 to
F(O) + 9, we may further reduce the proof to that of the following statement:
it M C M C O @, M then M = M. Writing d := rke,. (M) = rkg,. ()
and applying A, we may reduce to the case d = 1, and now calculate with
bases. Let e (resp. €¢/) be an Gp-basis of M (resp. M), and let a € Gp
be the unique element with e = ae’. Since O¢ Rg, M = O¢ Rg, M, by
Weierstrass preparation, we may modify our choices of e and e’ to assume that
a=A(u) =u®+ Co 1S 4 - 4 cqu + ¢ with ¢; € wOpr,. As in Example
B32] we may suppose that ¢(e') = v/ E™e’ and ¢(e) = ~vE™ e with v,~' € Sk.
Then

YE" A(u)e’ = vE" e = p(e) = p(A(u))p(e') = p(A(u))y E"e’

which necessitates yA(u)E" = +/¢(A(u))E™. Reducing modulo @ and com-
paring u-degrees, we see easily that n’ > n. We therefore have

(3.3.1) YAW)E™ " = p(A(u)) for v =7(y)"" €S}

As 70 is a unit, it follows from (F30) that A(u)E™ =" and ¢(A(u)) must have
the same roots. Since A(u), ¢(A(u)) and E are monic polynomials with roots
either 0 or with positive valuation, we conclude that A(u)E™ " = @(A(u)).
Let us put A(u) = u'Ag(u) with Ag(0) # 0 and m = n’ — n. Then (B30)
simplifies to

(3.3.2) Ao(w)E™ = (f(u)/u)'¢(Ao(u)).

We first treat the case [ = 0 (so A = Ap); we will then reduce the general
case to this one. Put A%(u) = u® + @(cs_1)u*"t + -+ + p(c1)u + ¢(co).
There is then a bijection between the roots of A¥(u) and the roots of A(u)
which preserves valuation. Let xg be a nonzero root of A(u) which achieves
the maximal valuation. Then A(u)E™ = ¢(A(u)) implies that x¢ is root of
©(A(u)) = A?(f(u)). That is f(zo) is a root of A?(u). If f(zo) # 0, then since
f(u) = uP mod w and x has positive valuation, we have v(f(zg)) > v(zg), so
there exists a root of A(u) with valuation strictly greater than v(xg), which
contradicts our choice of xy. We must therefore have that f(xg) = 0 is root of
A% (u), which contradicts our assumption that A(0) # 0 (I = 0). We conclude
that A(u) = Ag(u) has degree zero, and hence that 9t = M’ as desired.

Now suppose that [ > 0 and let 1 > 0 be the unique integer satisfying
(f(u)/u)t = E™hi(u) for some unique monic hy € &p with E { hy(u).
Comparing u-degrees in B3.2) gives 1 < m, so hi(u)|Ag(u) and we have
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Ap(u) = hq(u)Aq(u) for a unique monic polynomial A; and mq :=m —r; > 0.
Equation [3.3.2) then becomes

Ay () E™ = p(h1(u))p(Ar (w)-

Now let 3 > 0 be the unique integer with ¢(hy(u)) = E™ha(u) for he a monic
polynomial with E { ha(u), and write Ay (u) = ha(u)As(u) with Ay monic and
me : = mq — 19 > 0. We then have

Ag(u) E™ = @(ha(u))p(Az(u))-

We continue in this manner, constructing nonnegative integers r,, m, with
Mpt1 := My — 7, and monic A, hy, € Sp with Et by, hy E™ = @(hy—1) and
An—1 = hp A, satisfying the equation

(3.3.3) An(W)E™" = o(hn(u))@(An(u).

So long as h,, and A,, are non-constant, we have deg A,, < deg A,,_1, which can
not continue indefinitely. We conclude that there is some n > 1 with either h,,
or A, constant, which forces h,, =1 or A,, = 1 by monicity. In the latter case,
B33) implies that h,41 = 1, so in any case there is some n > 0 with h,, = 1.
By the construction of the h,,, we then have

n
(33.4) N (OYNDE | It

m=1,r,,7#0
We claim that in fact there is only one m with 7, # 0. Indeed, if there exist
my > meg with r,,, # 0 for ¢ = 1,2, then writing fo(u) = f(u)/u, we see
that fo(f()(n)) = 0 for i = 1,2. Since f(u) = fo(u)u, this implies that
fm2+1) (1) = 0. Then

0= fo(f'™)(m)) = fo(fim=m2=(fm=t0 (1)) = fo(fIm=m271(0)) = fo(0),

which implies that u|fo(u). But this contradicts [B3.2]) because u { Ag(u). We
conclude that there is a unique m such that r,,, # 0, and it follows from (B34)
that there exists n > 0 such that ¢™(f(u)/u) is a power of E(u), contradicting
our hypothesis. We must therefore in fact have [ = 0, whence 9t = M’ as we
showed above. g

Remark 3.3.6. The assumption that o™ (f(u)/u) is not a power of E for any
n > 0 is satisfied in many cases of interest. For example, it is always satisfied
when a; = 0 (which includes the classical situation f(u) = u?), as then f(u)/u
has no constant term while any power of F = F(u) has nonzero constant term.

EXAMPLE 3.3.7. The hypothesis of Proposition B35 that ™) (f(u)/u) is not
a power of F for any n > 0 is necessary, as the following examples show:

(1) Fix r, let 0 < I < r be an integer and suppose that we have
¢ (f(u)/u) = E'. Setting A(u) == f(u) - o(f(u)/u)- " (f(u)/u)
if n > 0 and A(u) = u if n = 0, we have AE' = ¢(A). In particular,
definining M = A(u)Sr and M := Sp, we have M C M’ and both
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O and M are objects of Mod! with height I <. However, It # 90V
and it follows that the conclusion of Proposition B.3.5] does not hold.

(2) Concretely, recall the situation in Example where K = Q,(¢p),
F=Q, 7= —1and ¢(u) = (u+1)? — 1. In this case, E = ¢(u)/u,
and the Kisin modules 9 := & and M := uSp are both of height 1
and are non-isomorphic, but Te (M) ~ T ().

(3) As a less familiar variant, we can take p(u) = (u — p)P~lu and let
E = ¢(u) — p. Then ¢(f(u)/u) = EP~1, and the construction of ()
provides a counterexample.

COROLLARY 3.3.8. Suppose that ©™(f(u)/u) is not a power of E for anyn > 0
and v : V' — V is a morphism of height-r representations. Then there are
eract sequences

0 £ m N 0, and O N om’ n 0

in Modg" which correspond via V() to the evact sequences in Repp(Gr):

0 (V) 14 V/ip(V')——=0,

and

0—>ker(1) —V'—2

(V') 0.

Proof. We may and do select Gr-stable Op-lattices T C V and 77 C V' with
Y(T") C T and T/4(T") torsion-free. Thanks to Proposition B33 there exist
M and M in Modg with T' = Te(M) and 7" = Te(M'), and we define
M = O Rg, M and M’ := O¢ ®g, M and write f : M — M’ for the
unique morphism in Mod_ with T'(f) = ¢|7/. Let N' := M'/f(M) and write
g: M’ — N’ for the natural projection. Writing N := §(M) = ker g, we then
have exact sequences in Modg,_

TN 0

0 ker(f) M

and

g

0 N M’ N’ 0

which correspond, via I'(-), to the exact sequences in Repy,. (Gr)

0 (1) T T/(T")—=0,

and
P

0—=ker(¢)) —=T"—2 =) (T") —=0.

Since N’ corresponds to T'/1 (1), which is torsion-free, it follows that N is also
torsion free and hence finite and free as an Og-module. Define 91 := ker(g)NMY,
the intersection taken inside of M’. We claim that 91 is an object in Modg .
First note that by [Fon90, B 1.3.5], the fact that 9 has height r implies that
both g(9M') and N have height r, and we need only show that 91 is free over
S . To do this, it suffices by Lemma B3 to prove that 91 = 91[1/p]N N inside
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E®o, N, or equivalently that M[1/p]|NN C N. For any = € N[1/p]NN, we have
by the very definition of 9 that z € M'[1/p] N M’ = M'. As 2 € N = kerg,
we then have x € ker g N9 = N’ as desired. A similar argument shows that
£ :=ker(f) N M is a Kisin module in Modg" as well.

Again using Lemma B3] both 91 := FOM)[1/p]NN and N := g(M')[1/p| NN’

are objects of Modg”. As Of ®s, M = N = O¢ @, N, it follows from
Proposition [3.3.5] that 91 = M. We therefore have exact sequences

0 — £[1/p] = M[1/p] - N[1/p] — 0,
and

0 — 9N[1/p] — M'[1/p] = N [1/p] = 0.

Unfortunately, it need not be true in general that f(91) = 90 or g(M’) = 9.
To remedy this defect, we modify 9t and 9’ as follows. Using the inclu-
sion 91 C M and the above exact sequences, we may select an & p[1/p]-basis
€1y - 85, C5q1,-- -, eq Of M[1/p] with the property that eq,. .., es is an & p-basis
of £and ¢ | = f(esy1),...,¢; = f(eq) is an &p-basis of M. We may further
complete e ,...,¢; to an Gp[l/p]-basis e} q,... ¢4 ¢ ..., ¢y of M with
the property that e ,,..., ¢, projects via g to an &p-basis of 9. We then
have matrix equations

A C
go(el,...,ed):(el,...,ed)(0 A’)

and
B D
/ / / / / / / /
@(eerlv'-'7edved+1a"-aed’) = (eerlv'-'7edaed+17'-'aed’) (0 Bl )

where the entries of A, A’, B, B’ are in &, while the entries of C' and D
are in Gp[1/p]. Let m > 0 be such that p™C and p™D have all entries in
Sr. Replacing M by the &p-submodule of M[1/p| generated over S by
pT™er, .., T e, €51,y - - -, €q, and M by the & p-submodule of M'[1/p] gen-
erated by (el q,...,¢5, P 1, .., p"ey) does the trick. O

4. CONSTRUCTING KISIN MODULES FROM F-CRYSTALLINE
REPRESENTATIONS

In this section, we associate to any F-crystalline representation a Kisin module
in the sense of §3.3] and employ our construction to prove Theorems [LO.1] and
Throughout, and especially in §4.2]1 we make free use of many of the
ideas of [Kis06] and [KR09]. To surmount the difficulty that we do not in
general have a natural Ny-structure (see the introduction), we will compare
our modules over the Robba ring to those of Kisin’s classical setting in in §4.4]
which will allow us to descend these modules to the desired Kisin modules.
The proofs of our main results (Theorems [[LOT] and [LO.2) occupies 4.5
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4.1. GENERALITIES ON F-CRYSTALLINE REPRESENTATIONS. Let V be an F-
linear representation of G = G or of G;. We write V" for the F-linear dual of
V' with its natural G or Gr-action. We warn the reader at the outset that our
notational conventions regarding Fontaine’s functors are dual to the standard
ones; we have chosen to depart from tradition here as it will be more convenient
to deal with the integral theory.

Let V be an object of Rep(G). Then Dar (V) := (V¥ ®q, Bar)® is naturally
a module over the semilocal ring Kr := K ®q, I, so we have a decomposition

Dar(V) = H Dar(V)m

with the product running over all maximal ideals of K. We give each Dgg(V )m
the filtration induced from that of Dgr(V'), and we denote by mg the kernel of
the natural map K ®q, F' — K coming from the given inclusion I/ — K and
multiplication. Following [KR09], we define:

DEFINITION 4.1.1. We say that V € Repp(G) is F-crystalline if it is crys-
talline (as a Q-linear G-representation) and the filtration on Dqg(V )m is triv-
ial (Fil! Dgr(V)m = 0 if j > 0 and Fil’ Dgr(V)m = Dar(V)m) when m # mo.
We write Repf (@) for the category of F-crystalline F-representations of G.
We now wish to describe the category of F-crystalline G-representations in
terms of filtered p-modules. To do this, we define:

DEFINITION 4.1.2. Let MFY, , be the category of triples (D, ¢, Fil’ D, x)
where D is a finite dimensional Fy-vector space, ¢ : D — D is a semilinear
(over the F-linear extension ¢ of the p-power Frobenius map Ky — Kj) en-
domorphism whose linearization is an Fy-linear isomorphism, and Fil/ D Fo,K 1S
a separated and exhaustive descending filtration by K-subspaces on the scalar
extension Dr, x := D ®p, K. Morphisms in this category are ¢-compatible
Fy-linear maps D — D’ which are filtration-compatible after applying ®@ g, K.

Let V be an F-crystalline G-representation with F-dimension d. Then
D := Dcris(v) = (Vv Rdq, Bcris)G

is naturally a module over F' ®q, Ko, equipped with a semilinear (over 1 ® o
for o the p-power Frobenius automorphism of Kj) Frobenius endomorphism
@ : D — D which linearizes to an isomorphism. By our assumption that
KoNF = Qp, the natural multiplication map I' ®q, Ko — F'Kq =: Ip is
an isomorphism, so D is an Fy-vector space which, as V is crystalline as a
Qp-representation, has Ky-dimension d[F : Q,], so must have Fy-dimension d.

The natural injective map
D @y K = Dexis(V) @ K = Dar(V) = (V" ®g, Bar)®

is necessarily an isomorphism of Fi := F' ®q, K-modules, so since V is F-
crystalline we have a direct sum decomposition of filtered K-vector spaces
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D ®k, K = @,, Dx,m, with Dk n having trivial filtration unless m = my.
Noting the canonical identification

Dk me =D ®@F, K =: Dp, K,
we therefore obtain a filtration on Dp, x. In this way we obtain an object
Devis,r (V) := (D, ¢, Fil! Dp, i)
of MFZ, r.
Conversely, if D is any object of MF}@m x» we define

Veris,r (D) := Homp, (D, BX,. ) N Hompg pie (D, i, By, @k K)

cris, F’

with the intersection taken inside of Homg (D, i, BL. ®k, K), via the map

Homp, ,(D, B, )~ Homg(Dp, 1, Bl @k, K)

cris, F
that sends an Fy-linear h: D — BctiS’F to its linear extension along Fy — K.
PROPOSITION 4.1.3. Let V € Repp ™*(G). Then Veyis p(Deris,pr(V)) =~ V.
Proof. Set D = Dais(V) :== (VY ®q, Bt

Tis)¢ and put D == K ®g, D. As it
is well-known (e.g. [Fon94bl §5.3.7]) that V ~ V(D) as F[G]-modules, for

Veris(D) = Hompg, (D, BX.) NHomg ri(Dr, BE,, @k, K),

cris
it is enough to prove that Veis(D) > Veis, r (D) as F[G]-modules. We will first
construct an F-linear isomorphism

(4.1.1) v : Homy, (D, B}, ) — Hompg, (D, BL.. ).

cris » “eris, F

Writing Dp, = D ®g, Fy, which is an Fy ®g, Fo-module, we note that
Fy ~ Fy ®p, Fo is a subfield of Fy ®k, Fo, so we may and do regard
D ~ D ®p, Fop as an Fy-subspace of Dp,. Thus, restricting homomor-
phisms from Dpg, to the subspace D gives a natural map of F-vector spaces
V' : Homp,(Dp,, Bfi ) — Hompg, (D, B, ). As Homg, (D, BY,) is cas-

ily checked to be an F-subspace of Homp, (DFO’Bctis,F
Homp, (D, BE..) then gives the desired map ([@II).

cris

), restriction of ¢/ to

To check that (@I is an isomorphism, we explicitly compute with bases: Let
e1,...,eq be an Fy-basis of D and f1,..., B, a Ko-basis of Fy. Any x € D
can then be uniquely expressed as a linear combination x = Zij ai;Bje; for
some a;; € Ko, while any y € Dp, admits a unique representation of the
form y = Zm,l aiiBje; ® By with a;; € Ko. The natural F-linear inclusion
D — Dp, induced by Fy ®p, Fo C Fy @k, Fo carries x € D above to

T = Zaijﬁjei ® ﬁj S DFO-
ij

In particular, if h € Homp, (D, BL,,), then h is uniquely determined by the

matrix {c;;} with ¢;; := h(Bje;) € B, and it follows from definitions that

cris?
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Uf)(x) = 32, aijeij @ Bj as an element of Bf.. ®k, Fo. From this explicit
description of ¢, one checks easily that ¢ is indeed an isomorphism.
From the very definition of (£I1]), one checks that ¢ induces an isomorphism

HOIHKO <P(D B HOIDFO 4P(D BCI‘IS F)

CI‘IS)

so to complete the proof it remains to show that for any h € Homy, (D, B, ),
the scalar extension h®1 : D@, K — B, @, K is compatible with filtrations
if and only if this is true of t(h)® 1: D ®p, K — B:;is,F ®p, K. Observe that
the construction of the map (@I gives the following commutative diagram,

h®Ky1
D ———— Bcrls XK, K

(4.1.2) J H
L(h)@po

+
Dpy,x ——— Bis.r @1 K

where we make the identification Bl @, K = Bctis’F ®p, K. As V is F-

crystalline, we have Fil'Dy = Fil'D Fy,Kk for ¢ > 1 by definition, and it follows
from this and ([@I.2]) that

(h®1)(F111DK)cF11zB+ ®K = (L(h);@l)(FiliDpo x) C Fil’ msF@K,
0

Cl'ls

which completes that proof of Veyis (D) =~ Veyis(D) ~ V' as F[G]-modules. O

Let V be an F-linear representation of G. For each field embedding 7 : F — K,
we define the set 7-Hodge-Tate weights of V:

HT (V) :={i € Z | (V @pr Cx(=))“ # {0}},
where Cg is the p-adic completion of K. It is easy to see that V' is F-crystalline
if and only if V is crystalline and HT (V) = {0} unless 7 is the trivial embed-
ding 79 : F C K C K. For the remainder of this paper, we will fiz a nonneg-
ative integer r with the property that HT, (V) C {0,...,r}, or equivalently,

Fil"™ D, x = {0}. We denote by Repj ™" (G) the category of F-crystalline
representations V' of G with HT (V) C {0,...,r}.

4.2. ¢-MODULES OVER . Recall that we equip Fy((u)) with the Frobenius
endomorphism ¢ : Fy((u)) = Fyp((w)) which acts as the canonical Frobenius on
Ky, acts trivially on F', and sends u to f(u). For any sub-interval I C [0, 1), we
write Oy for the subring of Fy((u)) consisting of those elements which converge
for all z € K with |z| € I. For ease of notation, we put O = O 1) and as before
we set K,, = K(m,—1). We denote by @ the completion of K,, 11 ®p, & at the
maximal ideal (u—,). Equip &, with its (u— -y )-adic filtration, which extends
to a filtration on the quotient field Fr &,, = &,,[1/(u — )] Note that for any
n we have natural maps of Fy-algebras Sp[l/p] — O — &, given by sending
u to u, where the first map has dense image. We will write oy : &p — S for
the Op[u]-linear map which acts on W (k) via the canonical lift of Frobenius,
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and by pg/w : 6 — G the Op,-linear map which sends u to f(u). Let
co = E(0) € Fy and set

A= [ " (E@)/co) € O.
n=0

A p-module over O is a finite free D-module M equipped with a semilinear
endomorphism prg : M — M. We say that M is of finite E-height if the
cokernel of the O-linear map 1 ® g @ * M — M is killed by E” for some 7,
and we write Mod2" for the category of g-modules over O of E-height r. Scalar
extension along the inclusion & < O gives a functor Modg — ModZ" from
height-r Kisin modules to ¢-modules over 9 of E-height r.

Now let V' € Reph ™" (@) be any F-crystalline representation of G, and write
D := Dyis,r (V) for the corresponding filtered ¢-module. We functorially as-
sociate to D an 9D-module M (D) as follows: For each nonnegative integer n,
let ¢, be the composite map:

Lpa/n®w5n

(42.1) O®p D O®p D —> 6, ®p, D=6, @k Dp, i,

where the second morphism is induced by the canonical inclusion ¥ — &,,.
We again write ¢,, for the canonical extension

it O[1/A ®p, D — Fr&, @k Dg, k.

and we define
M(D) := {:c € O[1/AN ® D | 1, (x) € Fil° (Fr S, ® DFO’K) , Vn > 0} .
Fo K
PROPOSITION 4.2.1. M(D) is a w-module over O of E-height r.

Proof. This is Lemma 1.2.2 in [Kis06] (also see Lemma (2.2.1) in [KR09]) with
the following minor modifications: first note that we only discuss crystalline
representation here, so we do not need the “logarithm element” ¢,, which occurs
in Kisin’s classical setting (strictly speaking, we do not know how to construct
¢, in our general setting). Likewise, we may replace Dy := (O[l,] @, D)V =°
in the proof of [Kis06 1.2.2] with Dy = O ®p, D throughout. In the classical
setting, Kisin showed that M (D) also has an Ny-structure, which we entirely
ignore here (once again, we do not know how to construct Ny in general). This
is of no harm, as the proof of Lemma 1.2.2 does not use the Ny-structure of
O in any way. Finally, we note that Lemma 1.1.4 of [Kis06], which plays an
important role in the proof of [KisO6, 1.2.2], is well-known for O-modules in
our more general context (|

4Indeed, Kisin’s proof of [KisO6, 1.1.4] relies on §4 of Berger’s paper [Ber(02] as well as
results of Lazard [Laz62, §7-8] and Lemma 2.4.1 of [Ked04], while the required facts in
[Ber02] build on Lazard’s work in a natural way. But [Laz62] already deals in the generality
we need, as does Kedlaya [Ked04]. Thus, one checks that all the proofs of the results needed
to establish [Kis06} 1.1.4] (as well as Kisin’s argument itself) carry over mutatis mutandis to
our more general situation.
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As above, let us write Dy := O ®p, D. We record here the following useful
facts, which arise out of (our adaptation of) Kisin’s proof of Proposition 2.1t

(1) Dy C M C A "Dy.

(2) ¢p induces an isomorphism of Gp-modules

~ N  ia . B i 1

S M(D) ~ Z(u ™) /G0 O Fil Dpy i = ZE 76 ©Fil' D i

j=0 j>0

Consider now the obvious inclusions D < Dy C M(D). As Frobenius induces
a linear isomorphism ¢*D ~ D, we obtain a linear isomorphism ¢*Dy ~ D
and hence an injection ¢ : Dy — ¢*(M(D)). Defining O, := Sr[Z][1/p], one
checks that 9, = G [“=][1/p] and that O € O, C O\0,[x|1/7)-

w

LEMMA 4.2.2. The map &, = D0 R0 & : D0 @, D — Oy Qp 9* M(D) is an
isomorphism.

Proof. Using the containments Dy C M(D) C A\~ "Dy and Dy ~ ¢*Dy, we see
that Dy C p*(M(D)) C ©(A)""Dy. Tt is easy to check that ¢(\) is a unit in
D, and it follows that £, is an isomorphism. O

For an object M € Mod®", we define a decreasing filtration on ¢*M by:
(4.2.2) Fil'(p* M) :={z € oM | (1@ p)(z) € E'M}.
On the other hand, using the evident inclusions 9, C D[wal/p) - @0 we

obtain a canonical injection O, ®p, D — @0 ® K D, ik, which allows us to
equip O, ®o Dy with the natural subspace filtration, using the tensor product
filtration on &y ®x DFy k-

LEMMA 4.2.3. The inverse isomorphism
5(/1 14 X9 SQ*M(D) # Oa X F, D
of Lemmald.2.2 is compatible with filtrations and Frobenius.

Proof. Clearly, £, is compatible with Frobenius. To prove that &/, is filtration
compatible, we use the two facts recorded after Proposition 21l As noted
above, p(\) is a unit in (A‘SO, so the first fact implies that the injective map
& : Dy ~ ¢*Dy — ¢*M(D) is an isomorphism after tensoring with So. Put

~

230 = 6y ®p Dy and define an auxillary filtration on ﬁo by
Fil Dy := Do N E* (S ®0 M(D)).
From the very definition (Z2.2), it is clear that 1 ® ¢ : Do ~ Sy @0 ©*M(D)

carries P/‘\iJlleo isomorphically onto Fili(@o ®p p*M(D)). On the other hand,
the second fact above implies that an element d € Dy lies in E*(Go ®o M (D))

if and only if 1(d) € Fil'(So ®x Dp,.x), from which Fil Dy = Fil'Dy follows.
Hence ¢/, is indeed compatible with filtrations. 0
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For simplicity, let us put M := M(D). It follows from Lemma that
the isomorphism &/, specializes to give a natural identification of ¢-modules
D ~ ¢o* M /up* M as well as a natural identification of filtered K-vector spaces
Dp, k ~ ¢*M/Ep* M. Writing ¢, for the composite mapping

VYr "M — QD*M/ESD*M = DFOaK’
we therefore obtain:

COROLLARY 4.2.4. The map ¢ : o*M(D) — Dpg, i is filtration compatible.

Remark 4.2.5. In the classical situation where F' = Q, and f(u) = u?, to

any object M of Mod2", Kisin functorially associates a filtered ¢-module via

D(M) = ¢*M/up*M with Fil'(D(M)k) = ¢(Fil'p*M). That this is

possible rests crucially on the existence of a unique g-equivariant isomorphism
604 : Doz ®F0 D(M) ~ Doz (95) (P*M

reducing modulo u to the given identification D(M) = ¢* M /up* M, which is

Lemma 1.2.6 of [Kis06]. For more general F' and f(u) = u? + - -+ + aju, we are

only able to construct such a map &, under the restriction @"™ta; in Op; see
Lemma [4.5.0]

To conclude this section, we record the following further consequence of Lemma
Setting B, = W(R)[[%p]] [1/p] C BctisﬁF,
filtration {Fil" B, }, coincides with the filtration {E"Ba},. As &p C W(R)p,
we have a canonical inclusion O, C Ea, and the map &, of LemmalL£2.2induces
a natural isomorphism

(4.2.3) €- : Bo ®o 9" M~ By ®p, D.

one checks that the subspace

As the inclusion (A‘SO C B;{R is compatible with filtrations, we deduce:

COROLLARY 4.2.6. The map (£2Z3) is compatible with Frobenius and filtrations.

4.3. THE CLASSICAL SETTING. For future reference, we now recall the main
results in Kisin’s classical situation, where F' = Q, and f(u) = w?. In this
subsection only, we fix a choice m := {m,}, of p-power compatible roots of
a fixed uniformizer 7 = 7y in K, and set Ko := K; and G = G;. The
following summarizes the main results in this setting:

THEOREM 4.3.1 ([Kis06]). Let V' be a Qp-valued crystalline representation of
G with Hodge-Tate weights in {0,...,r} and T C V a G-stable Z,-lattice.
Then:

(1) There exists a unique Kisin module M so that T (M) ~ T as Z,[Goo]-
modules.

(2) If D = Dgis(V) s the associated filtered p-module, then one has
M(D) =~ O @ M as p-modules.

Proof. These are the main results of [KisOf] restricted to crystalline represen-
tations. |
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Now let F' be an arbitrary extension of @, contained in K and let V' be an
F-crystalline representation and 7' a G-stable Op-lattice in V. Viewing V
as a crystalline Qp-valued representation and 7" as a G-stable Z,-module,
by Theorem [L3T] there is a unique (classical) Kisin module 9 attached to T,
which is of finite E‘-height, for E := E(u) the minimal polynomial of 7 over K
(we write E to distinguish this polynomial from our fixed E, which by definition
is the minimal polynomial of 7 over Fy = F'Kj). The additional Op-structure
on T is reflected on the classical Kisin module in the following way:

COROLLARY 4.3.2. The classical Kisin module 9 is naturally a finite and free
S r-module and as such has E-height r.

Proof. Proposition 3.4 of [GLSI4] shows that 91 is naturally a finite and free
S p-module (see also the proof of [Kis08, Prop. 1.6.4]). Factor E in Op,[u] as
E = E;---E., with Fy, = E, and for each ¢ write @E for the completion of
the localization of G at the ideal (E;). We must prove that the injective map
1® @ *M — M has cokernel killed by a power of F = FE;. To do this, it
suffices to prove that the scalar extension

19(18¢) ~
(—‘QGEi D, M

(4.3.1) o S, Qs "M
of 1®p along S — @E is an isomorphism when ¢ > 1. Writing M := M(D),
we recall that the map ¥, : ¢* M — Dg is compatible with filtrations thanks
to Corollary [£2.4] from which it follows that the map

U M —— *M/Ep*IM— Dy

oo - P
is also filtration-compatible. As V is F-crystalline, for any i > 1 we have
FﬂjDK,mi = 0 for all j > 1, where m; is the maximal ideal of I' ®q, K
corresponding to E;, and it follows that Fil'¢*0 € E;p*90 for all i > 1. We
then claim that for i > 1 the map 1 ® ¢ : *IM/E;*M — M/ EHM induced
from 1 ® ¢ by reduction modulo E; is injective. To see this, observe that if
x € ¢*M has (1@ ¢)(x) = Eym for m € M, then writing y := [[,,; By,
we have (1 ® ¢)(y) = Em so that y € Fil'¢*9 by the very definition of the
filtration on *M. By what we have seen above, we then have y € E;p*IM, so
since F; is coprime to Hj# Ej, we obtain x € E;0*0 as claimed. Now both
©*M and M are S p-free of the same rank, so as 1 ® ¢ is injective, we see that
Qp ®z, 1® ¢ is an isomorphism for i > 1. But this map coincides with the

map @5 obtained from (£3.1)) by reduction modulo F;, so it follows that <pg is
an isomorphism as well, as desired. 0

4.4. COMPARING CONSTRUCTIONS. Let us first recall some standard facts
about the Robba ring as in [KisO6]. For finer details of the Robba ring R
and its subring R?, we refer to §2 (in particular §2.3) of [Ked04], noting that
several different notations are commonly used (in particular, we advise the
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reader that R = £ = Th{{) [1/p]). The Robba ring is defined as
R := lim D(s,l)
s—1—

and comes equipped with a Frobenius endomorphism, which is induced by the
canonical maps ¢ : O (s 1) — D(41/p 7). Writing Dl(’s 1y C O (s,1) for the subring
of functions which are bounded, we also define the bounded Robba ring:
b._ 15 b
R’ := lim D(s,l)’

s—1—

which is naturally a Frobenius-stable subring of R. Finally, we put

Opb = {Zanu" eR’ ‘ an € OF, VnEZ};

nez

this is a Henselian discrete valuation ring with uniformizer w and residue field
k((u)). One checks that the fraction field of Ogs is R, justifying our notation;
in particular, R® is a field. Note that © is canonically a Frobenius-stable
subring of R.

By definition, a @-module over R is a finite free R-module M equipped with
a p-semilinear map ¢prq : M — M whose linearization 1 ® ¢ : p*M — M
is an isomorphism. One checks that E(u) € O is a unit in R, so that scalar
extension along O — R gives a functor from ¢-modules over O to p-modules
over R. A ¢-module M over R is étale if M admits a basis with the property
that the corresponding matrix of @ lies in GL4(Ogs); by a slight abuse of
terminology, we will say that a p-module over O is étale if its scalar extension
to R is. Our main result of this subsection is the following;:

THEOREM 4.4.1. Let V € Repf{cris’r(G) and write D := Deyis, (V) for the
corresponding filtered p-module. If M(D) is the p-module over O attached to
D as in 42 we have:

(1) M(D) is étale;
(2) There eists a Kisin module 9 € Modg! such that O®e, M ~ M(D).

First note that there is a canonical inclusion & — Ogs, so that (2) implies
(1). Tt follows that the above theorem is true in the classical setting of Kisin
by Theorem 3Tl In what follows, we will reduce the general case of Theorem
4T to the known instance of it in the classical setting. To ease notation,
we will adorn various objects with a superscript of “c” to signify that they
are objects in the classical setting. We likewise abbreviate M := M(D) and
M := M°(D). We note that 9% C B,, as E(u¢) is another generator of
Fil'W(R)r so E(u®) = pE(u) for some u € W(R)} thanks to Lemma T3

By Corollary 426 the B,-linear isomorphism §;§ : By ®9p M =~ B, ®p, D
is Frobenius and filtration compatible. The key poaint is that the Frobenius and
filtration on B, ® r, D are canonical (recall that the filtration on B, ® r, D is
induced by the inclusion Ea ®Rp, D — B;{R ®K Dr,, k) and are independent of
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the choice of p(u) = f(u). We therefore have a natural isomorphism
(4.4.1) €: Ba®p ¢"M ~ By ®pc 0" MC,
that is Frobenius and filtration compatible.

LEMMA 4.4.2. There is a Ea-linear and Frobenius-compatible isomorphism
U:EQ(X)DMZEa@DcMC.

Proof. Choose an O-basis ej,...,eq of M, and let A € My(9) be the cor-
responding matrix of Frobenius, so (¢(e1),...,o(eq)) = (e1,...,eq)A. We
write ¢; := 1 ® e; € * M for the induced basis of * M. Using the defini-
tion of Fil'* M, it is not difficult to see that there is a matrix B € Mgy(D)
satisfying AB = BA = E"I; and with the property that Fil"p*M is gen-
erated by (a1,...,aq) = (e1,...,eq)B. As promised, we denote by ef, A°,
etc. the objects in the classical setting corresponding to a choice ef, ..., e5 of

D¢ basis of M°. Let X € GL4(By) be the matrix determined by the require-

ment §(e1,...,eq) = (ef,...,¢5)X. As £ is compatible with both Frobenius and
filtrations, we find that

Eopler, ... eq) = (ef,...,e5) Xp(A) = pol(er,...,eq) = (¢5...,¢5)p(A%)p(X)
and there exists a matrix Y € GLd(Ea) with

Elag,...,aq) = (af,...,aQ)Y.
We conclude that X¢(A) = p(A%)p(X) and XB = B°Y. Since B, is an
integral domain, the facts that B = E(u)" A~ and B¢ = E(u°)"(A¢)~" imply
that A°XFE(u)" = E(u®)"YA. Due to Lemma ZT.3 both E(u) and E(u¢)
are generators of Fil'W(R)r, so p := F(u¢)/E(u) is a unit in W(R)p. We
therefore have the relation A°X = p"Y A. Combining this with the equality
Xp(A) = p(A%)p(X) yields X = o(u"Y), and we deduce A°p(u"Y) = pu"Y A.

Defining a B,-linear map
n: Ea X9 M—>§a ®pe M¢

by the requirement (n(e1),...,n(eq)) = (e5,...,e5)u"Y, one then checks that
n provides the claimed Frobenius-compatible isomorphism. 0

Recall that Lemma [Z2.T] gives inclusions O C E:irg rC B,.

COROLLARY 4.4.3. The isomorphism n of Lemmald.42 descends to a E:irg,p'
linear and Frobenius-compatible isomorphism

Thig * B:i_g,F Ko M ~ B:i_g,F Reoe ME.

Proof. We will use the notation of the proof of Lemma Let us put
Z = u'Y € GLd(Ea), so that n(ey,...,eq) = (e1,...,e4)Z, and note that
A°p(Z) = ZA as n is compatible with Frobenius. To prove the corollary, it
suffices to show that both Z and Z~! have entries in E;’i’g, - We will show that
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Z e Md(Brlg #); the proof of the corresponding fact for Z~! is similar and is
left to the reader. By the definition of Bt
there exists Z,, € My(B7

max, F

rig, 7o 16 suffices to show that for any m,

) with ¢ (Z,,) = Z, which we prove by induction

on m. The base case m = 0 is obvious, as B - B:rrlaxF Now suppose
that Z,, exists, and note that from the equality A°p(Z) = ZA we obtain
E(u)"Z = A°p(Z)B. We may write A° = ¢"™1(A,,11) and B = o™ "(B,,41)
thanks to Lemma Z2] and we then have F(u)"Z = "™ (A1 ZmBmi1).-
Finally, Lemma [ZTHl implies the existence of Z,,11. O

We can now prove Theorem 4Tt

Proof of Theorem 41l We first prove that M is étale, and to do so we will
freely use the results and notation of [Ked04]. By the main theorem of [Ked04],
M is étale if and only if M is pure of slope 0. Hence M€ is pure of slope 0
thanks Theorem 3.1l and our remarks immediately following Theorem LZ.T1
Since the slope filtration of M does not change after tensoring with the ring
rale  constructed in [Ked04], it is enough to show that

an,con
alg ~ Talg c
Fan con ®o M =~ Fan,con Xoe ME.

as @—modules over '8 and to do this it is enough thanks to Lemma [4.4.2]to

an,con?

prove that Brl » CT2E . But this follows from Berger’s construction [Ber02,
§2.3] (strictly speakmg, [Ber02, §2.3] deals only with the case F' = Q,, but see
the last paragraph of [Ber14, §3] for the general case. We also warn the readers
that Berger use BT to denote B rig, 0 this paper, while his B rig, F IN€ANS 2
different ring from ours) as he proves that Brl r C Brlg r= Bilg = Fjlngcon
(see the table over [Ber(8, Prop. 1.1.12] for a helpful comparison of the various

notations used by different authors). It follows that M is étale.

Now the proof that M := M(D) admits a descent to a Kisin module 9 is
exactly the same as the proof of Lemma 1.3.13 in [Kis06], so we just sketch
the highlights. As M is étale, there exists a finite free Oxs-module N with
Frobenius endomorphism s satisfying

(4.4.2) R®0, N 2R@o M= Mgr

Proposition 6.5 in [Ked04] shows that it is possible to select an R-basis of Mz
whose R’-span is exactly N[1/p] and whose O-span is M via the identifications
[EZ2). Define M® C M to be the Gg[1/p]-span of this basis. The equality
G&r[1/p] = R* N O provides the intrinsic description M® = M N N[1/p]; in
particular, M? is p-stable and of E-height r. Let 9 := M® NN and put
M := (Ops @a, M) NM[1/p] C N[1/p]. Then M is a finite and ¢-stable
& p-submodule of AV[1/p]. Tt follows from the structure theorem of finite & p-
modules [Fon90, Proposition 1.2.4] that 9 is in fact finite and free over S . To
see that 9% has E-height r, it suffices to check that det(¢om) = E*w for some
we Sy, But M[1/p] = Mb and M is of finite E-height, so det(pon) = p™ E*w
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for some w € &; as M is pure of slope 0 (equivalently, det(pom) € Og,), we
must in fact have m = 0. 0

F-cris,r

4.5. FULL-FAITHFULNESS OF RESTRICTION. Fix an object V' of Repj (@),
and let M be a Kisin module associated to V' via Theorem 4] (2).

PROPOSITION 4.5.1. There exists a natural Op-linear injection
L Te, (M) = V o~ Vs, (D)

that is moreover G -equivariant. In particular, Vg (M) ~V as F[Gx|-modules.

Proof. Set M := M(D). As M ~ O ®g, M, we have a natural injection
V' Te, (M) = Home . ,(M, &) — Homp o, ri(¢* M, BL 1),

cris, F

uniquely determined by the requirement that for any h : 9t — G, the value
of //(h) on any simple tensor s @ m € O @, s, M =~ p* M is given by

V(h)(s @ m) = se(h(m)).

Using the fact that F € FillW(R) r, one checks that this really does define a
filtration-compatible O-linear homomorphism ¢/ (k) : p* M — BT

cris, F'*
On the other hand, the isomorphism &, : O, ®p, D — O, ®o ¢* M of Lemma
[4.2.2] induces, thanks to Lemma [£2.3] a natural injection

h—1®h
:;is,F)(—> Homo,, o, ril(Da @0 ¢*M, BE, 1)

» “eris, F

Homgﬁ%pﬂ(ga*./\/l, B
zlhb—moga

Homgm%pil(Da ®r, D, BT )

cris, F’

and we claim that Homg, o rit(Oa ®F, D, Bt ) = Veris.r(D). By definition,

cris, F'

Veris,r (D) = Homp, (D, BL. ) N Homg ri(Dry i, BJR),

cris, F

and it is clear that Homy (D0 ® g, D, Bctis’F) = Homp, (D, B:;is’F). Since

the injection O, ®o D — @0 ® D, k is compatible with filtrations by the
very construction of the filtration on O, ®, D, we conclude that

HOmFU(D,B+ ) ﬁHOmDmFi](Da XF, D,B+ )

cris, F' cris, F'
~ + . +
~ }IOIT(IF0 (D, Bcris,F) n HOHlK7F11(DFO7K, BdR)’
which gives our claim.

We thus obtain a natural injection ¢ : T, (M) < Veyis,p(D) which is visibly
compatible with the given Gr-actions. O

Combining Theorem 4.1l and Proposition B.3.3] we deduce Theorem [LO.Tt

COROLLARY 4.5.2. Let V' be an object ofRepII::'criS’T(G) andT C 'V a G,-stable
Op-lattice. Then there is a Kisin module M of E-height r with T, (M) ~ T
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Remark 4.5.3. It is an important point that in our general setup, the Kisin
module 9 may not be unique for a given 7', contrary to the classical situation.
Indeed, the “cyclotomic case” of Example is a prototypical instance of
such non-uniqueness: let T be the trivial character, 9 = G the trivial rank-1
Kisin module, and 9’ = uSr C M. Since p(u) = E(u)u, one sees that M’ is
also a Kisin module and Ts,, (M) = Te,. (M) = T.

We now prove Theorem
THEOREM 4.5.4. Assume that " (f(u)/u) is not a power of E(u) for anyn > 0

F-cris,r

and that vp(ar) > r. Then the restriction functor Repp (G) — Repp(Gr)
giwen by V ~~ V‘G is fully faithful.

Remark 4.5.5. We suspect that the theorem remains valid if we drop the as-
sumption that ¢™(f(u)/u) is not a power of E for any n > 0. When r = 1, we
will show that this is indeed the case in the next section.

In order to prove Theorem 5.4, we prepare several preliminaries. In what
follows, we keep our running notation with f(u) = u? + a,_1uP~! + -+ + aju,
and we assume throughout that wT+1|a1 in Op.
Let M € Modg and set M := ™M /up*IN.
LEMMA 4.5.6. There exists a unique @-equivariant isomorphism

SRR N ®0p, M —:>Da R, "M

whose reduction modulo u is the identity on M.

Proof. The proof is similar to that of Proposition 2.4.1 in [Liull], and
is motivated by the proof of Lemma 1.2.6 in [KisO6]. Choose an &p-
basis e1,...,¢eq of M and let A € My(Sp) be the resulting matrix of ¢;
ie. (p(e1),...,p0(eq)) = (e1,...,eq)A. Then e; := 1 ® ¢; forms a basis of

©*M and we have (p(e1),...,¢(eq)) = (e1,...,eq)p(A). Put Ag := Amod u
and &; := e; mod u. Then we have (p(€1),...,9(€4)) = (€1,...,84)p(Ag). If
the map &, of the Lemma exists, then writing f; := £,(&) € Do R, ©*M

and denoting by YV € GL4(9,) the matrix with (f1,..., fa) = (e1,...,eq)Y,
we necessarily have Y = I; mod u and

(4.5.1) Yio(Ao) = p(A)p(Y).

Conversely, if ([L50]) has a solution Y € GL4(D,) satisfying Y = I; mod u,
then we may define &, by &n(€1,...,84) = (e1,...,e4)Y. Thus, it remains to
solve Equation ({5.J). Put

(4.5.2) Yo = p(A) o™ (A)p"(Agh) - (A ).

We claim that the sequence {Y,,},, converges to a matrix ¥ € My(9D,). To
see this, note that there exists By € GL4(9,) with AgBy = w" Iy since M has
height r. It follows that AA;"' = I; + 2% Z for Z € My(SF). Thus,

Yo = Yoot + o(d) - " (ALY o ()01 (By) . p(Bo).

wrn
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so to prove our claim it suffices to show that ¢™(u)/w"™ converges to 0 in O,
which is the content of Lemma 2.2.2]

To prove that Y is invertible, we compute its determinant. Put d := ranke 901,
and observe that since A9 has finite E-height, we have det(A) = yE™ for
some v € &5 It follows that det(p(A)p(Ay1)) = 7’(@)’” for some 7' € G7.
One then checks that ¢(E)/w is a unit in O,, and hence that det(Y") is a unit
in O, so Y is invertible as desired.

Finally, we prove that the solution Y to (5.1 that we have constructed is
unique. Suppose that equation ([EEJ) admits two solutions Y, Y’ satisfying
Y, Y/ = I; mod u. Then their difference is also a solution Y — Y’ = uZ for
Z € My(94). Equation ([LEI) then implies that for all n we have

Y =Y = p(A)e(Y)p(45") P(A) - " (A" (V)™ (Ag ) - p(Agh)
= o)W 2y (By) - p(Bo)

wrn

As ¢™(u) /@™ converges to 0 in O, we conclude that Y =Y’ as desired. 0O

For 9 € Modg”, let us write D(OM) = £o(M[1/p]) C Do R, ¢*M for the
image of M|[1/p] under the map of Lemma If 91 is a Kisin module
associated to some F-crystalline G-representation V' with D := Deyis p(V)
(i.e. O @, M >~ M(D)), then by the very construction of M(D) there is a
natural ¢-compatible inclusion D ~ ¢*D < ¢* M(D) which, thanks to Lemma
22 becomes an isomorphism after tensoring over O with O,. Recalling that
D4 s, M~ M(D), we therefore have a p-equivariant inclusion

(45.3)  DUEL S wp D Dy ®o ¢*M(D) = D, ®s, "M
via which we view D as a ¢-stable Fy-subspace of O, ®@s, ¢*IMN.

COROLLARY 4.5.7. Let V € Repf{cris’r(G). If M € Modg" is a Kisin module
attached to D := Deyis, p(V), then D(ON) = D inside O, @ @M.

Proof. The reduction of (£5.3)) modulo w is the p-compatible isomorphism
D~ (D, ®a, " M) mod u ~ M[1/p).

Since the map &, of Lemma 5.6 reduces to the identity modulo u, we conclude
that both D and D(9M) inside O, ®s . p*M are p-equivariant liftings of M[1/p];
the uniqueness aspect of Lemma 5.0l then forces D = D(M) as claimed. O

It follows from Corollary 5.7 that the map &, of Lemma 5.6 coincides with
that of Lemma [£2.2] which justifies our notation.

Recall that Vg (9) = T (M)[1/p] for M € Modé’;.

LEMMA 4.5.8. Let f : M — M be any morphism of height-r Kisin modules,
and let §o be the scalar extension fo : Do R, @M — O Vs, @M of ¢*f
along Sp — O4. Then fo(D(IM)) C D(MV).
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Proof. Put V= Vg(M) and V' = Vs (M) and denote by ¢ = Vs (f) : V! - V
the induced map. By Proposition B33 we can modify 9t and 9 (inside
9M[1/p] and M'[1/p], respectively) so that f may be decomposed by two exact
sequences inside Modg :

0—f— M oM >0 and 0—>N— =M — >N 0,

where 91 = f(9). From the construction of &, in Lemma 5.0 (in particular,
from the explicit construction of YV in (#L5.2])), we obtain the exact sequences

0 — D(£) — D(M) 2% D(N) — 0
and
0—DMN)—DOM')— D) —0,

which shows that f,(D(9)) C D(9') as claimed. O

Proof of TheoremEE4L Let V', V be two objects of Reph " (G), and set
D = Deis p(V) and D’ = Deyis p(V'). Suppose that there exists an F-linear
map h : Vs, p(D') = Veris, p(D) that is Gr-equivariant. By Corollary 5.2]
there exist Gr-stable Op-lattices T' and T” inside Viyis, p(D) and Vs, p(D'),
respectively, with h(7") C T, and objects 9 and M’ of Modg" such that
Tes(M) ~ T and Tg(M') ~ T’ via the map ¢ of Proposition 5l By Propo-
sition 3.5 there exists a map §: M — M’ in Modg’ with Vi, (f) =~ h. We
may therefore realize h as the composite

Pt Ve (f) L
Veris, p(D') === Vig (M) [1/p] = Vi (M) (2] —= Veris #(D)
where ¢ is constructed using the isomorphism &, : O, ®s, "M ~ O, @ D
of Lemma Due to Lemma and Corollary 57 we know that f
induces a map fo : Do ®p "M = Do O, ™M carrying D to D', so for
a € Venis,r(D') C Homp, (D, B, ) we have h(a) = aof € Vens,p(D') C

cris, F'

Homp, (D', Bctis,F) where we write f : D — D’ for the map fo|p. It follows
at once that h is compatible with the action of G = G, as desired. 0

We note that Theorem E5A is false if we replace “Rephk ™™(G)” with
“Rep%p_ms(G),” as the following example shows:

EXAMPLE 4.5.9. Consider again the setting of Example2T.2] with K = Q,(¢p),
T=¢(—1and ¢(u) = f(u) = 1+ u)? -1, and K = U,,>; Qp({n). Let
F = Qp. Then the assumption of Theorem EE5.4] is not satisfied as a1 = p,
and the restriction functor Rep%p_ms(G) — Repp(Goo) induced by V' ~» V’G,,
is visibly not fully faithful: letting y denote the p-adic cyclotomic character,
we have x‘G” = IIGW, but x % 1 as G-representations. On the other hand,

if ' = K then we easily check that the assumptions of Theorem [£5.4] are
satisfied. Of course, there is no contradiction here as y is not an F-crystalline
representation because HT,(x) =1 for all 7.
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5. F-BARSOTTI-TATE GROUPS

Recall that by an F'-Barsotti-Tate group over Ok, we mean a Barsotti-Tate
group over Ok whose p-adic Tate module is an F-crystalline representation
of G := Gk. In this section, we prove that the category of F-Barsotti—Tate
groups over O is (anti)equivalent to the category of height-1 Kisin modules:

THEOREM 5.0.10. Assume vp(ai) > 1. Then there is an (anti)equivalence of
categories between the category of Kisin modules of height 1 and the category
of F-Barsotti-Tate groups.

Using well-known results of Breuil, Kisin, Raynaud, and Tate, one shows as
in [Liul3b, Theorem 2.2.1] that the p-adic Tate module gives an equivalence
between thet category of F-Barsotti-Tate groups over Ok and the category
Repgfris’l(G) of G-stable Op-lattices inside F-crystalline representations with
Hodge-Tate weights in {0, 1}. Thus, to prove Theorem[BE.0.T0 we must construct

an (anti)equivalence between Modé’; and Repgfris’l(G). In what follows, we

show that for each 9 € Modé’; the natural Gr-action on T (9M) can be
functorially extended to to a G-action such that Te (M) € Repy ™' (G). This

construction will provide a contravariant functor T : ModZ? — Repp, ™ (G)
Sr OF
that we will then prove is an (anti)equivalence.

5.1. A NATURAL G-ACTION ON T (91). Fix a Kisin module 9 of height 1. In
this subsection, we will construct a natural G-action on T (991) which extends
the given action of Gx. The key input to this construction is:

LEMMA 5.1.1. There exists a unique W (R)p-semilinear G-action on
W(R)r ®s, M that commutes with ¢ and satisfies

(1) If g€ Gz and m € M then g(L@m) =1Q@m;
(2) If m € M then 1 ® (g(m) —m) € tpl T (W(R)F Qg, MN).

Here, we remind the reader that tp € W(R)p, constructed in Example B.3.2]
satisfies ¢(tp) = Etp and tp Z 0 mod w.

Proof. Fix an Gp-basis eq1,...,¢q of 9 and let A be the resulting matrix of
Frobenius, so (p(e1),...,9(eq)) = (e1,...,eq)A. Supposing that the required
G-action exists, for any ¢ € G we have a matrix X, € My(W(R)p) with

(ge1,...,geq) = (e1,...,eq) Xy, and the requirement that g and ¢ commute is
equivalent the matrix equation
(5.1.1) Xg9(4) = Ap(Xy).

We claim that for each ¢ € G, equation (L) has a unique solution X,
satisfying the condition X, — I; € My(tpI™). Granting this for a moment, it is
easy to see that the Lemma follows once we check that g — X really defines
an action of G, which is equivalent to the cocycle condition X,0(X;) = X,
for all o,7 € G. But it is clear that X,0(X,;) and X,, are both solutions to
Xo7(A) = Ap(X), and the condition X —I; € My(tpI™) holds for X = X, by
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our claim and for X = X,0X, thanks to Lemma [Z34l Thus, the uniqueness
aspect of our claim gives X,0(X;) = X5, as desired.

It remains to prove our claim. Let us first dispense with the uniqueness aspect.
Suppose that for some g € G, equation (1)) has two solutions X7, Xo satis-
fying X; — I; € My(tpI1) for i = 1,2. Then their difference is a solution as
well, and has the form X; — X, = tpZ for some Z € My(I"). Equation (5.1
then takes the shape

(5.1.2) trZg(A) = Ap(tr2),

and we will show that this forces Z = 0, giving uniqueness. First, writing
Z := Z mod w € My(R), we note that it suffices to prove that Z = 0: indeed, if
Z = wZ for some Z; € My(W(R)p), then Z; € My(I™) is another solution to
(EI2), so boot-strapping the argument gives Z € N,>1w"W(R)r = {0}. Now
since 9 has height 1, there exists a matrix B € My(Sp) with AB = EI;. On
the other hand, we have p(tp) = Etp as noted above, so it follows from (E1.2])
that there exists a matrix C € Mg(W(R)p) with Z = Ap(Z)C. Reducing
modulo @ gives a matrix equation Z = Ap(Z)C in Mg(R). If Z # 0, then
there exists an entry z, say, of Z which has minimal valuation. On the other
hand, as Z € My(I1), we must have vg(z) > 0. But the minimal possible
valuation of entries in Ap(Z)C is pvg(z) > vr(2), which is a contradiction.
Thus Z = 0, settling uniqueness.

Finally, let us prove the existence of X, solving (GII)) for each g € G. For
ease of notation, put

(5.1.3) Py = Ap(A) - ¢"(A) and Qn = ¢"(9(A71)) - p(g(A™1)g(A™)
and define X,, := P,Q,. It suffices to prove the following:

(1) X,, € Mg(W(R)p) for all n;

(2) X, — Iz € My(tpI™) for all n;

(3) X, converges as n — 0.
For (1) and (2), we argue by induction on n. When n = 0, by definition we
have Xo = PyQo = Ag(A™1) = g(¢g 1 (A)A~1). On the other hand, by Lemma
232 we may write g71A = A + ¢(tz)C for some C € My(I"), which gives

g HAA =T+ o(tp)CA™ = [ + tpCEA™! = I, + tzCB

thus proving (1) and (2) in the base case n = 0.

Now suppose we have proved X,, = Iy + tpC, with C,, € My(IT), and let us
show that X,,4; satisfies the same equation for some Cj, 11 € Mg(I™). Writing
Ag(A™Y) = I+ tpCy with Cp € My(I), we have

Xn+1 = Xn + PnsanJrl(tF)sanJrl(CO)Q"

Now Eg(A™') € Mg(W(R)F) as g(E) = ugE for some unit u, € W(R)p,
and we have "t (tp) = p"(E) - @(E)Etr. We conclude that the matrix
Qn = " (tr)Q, lies in My(tpW (R)r), which gives X, 11 € My(W(R)F)
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and X, 11 — Ig € My(tpI™) as desired. By construction, we then have
XnJrl - Xn == Pn : SﬁnJrl(CO) : Qvn;

with P,, Q. € Mg(W(R)r) and since ¢"1(Cy) converges to 0 in W (R)p, we
conclude that X,, converges, which gives (3) and completes the proof. O

COROLLARY 5.1.2. The natural Gr-action on Te(9M) can be functorially ex-
tended to an action of G. In particular, Tg extends to a contravariant functor

from Mod‘é’; to Repy . (G).

Proof. By Lemma B3] (2), we have isomorphisms of Op[G]-modules

Ts(9M) ~ Homg,. ., (M, W(R) p)

5.1.4
( ) ~ Homyy (), (W(R)r @s, M, W(R)F).

Thanks to Lemmal[5.T.], we have an action of G on W(R) p®g , M that extends
the given action of Gy, so the final term in (5.1.4]) has an action of G given by

(goh)(z) = g(h(g~'(x))), Yg € G, Vh € Homyy (g), (W (R)r®@e, M, W(R)F)

and one checks easily that this action extends the given action of G on Te (90).
It remains to prove that T is a functor. So suppose that A : 0T — M’ is a map
in Mod‘é’; and let us check that the induced map T (h) : Tes (M) — Te (M) is
indeed a map of Op[G]-modules. To do this, using (5.1.4), it suffices to show
that the map

1@h:W(R)F @g, M — W(R)F @g, M

is G-equivariant, i.e. that (1@ h)og=go (1 ®h) for all g € G. Choose & p-
bases ¢e1,...,¢q and ¢}, ..., ¢/, of M and NV, respectively, and let A and A’ be

the corresponding matrices of Frobenius, so (¢(e1),...,¢(eq)) = (e1,...,¢q4)A
and (¢(e}),...,0(e)) = (e,...,¢))A". Letting Z be the d’ x d-matrix with
entries in G determined by the relation h(eq,...,eq) = (e}, ..., ¢})Z, we seck

to prove that go (1®h)(e1,...,eq) = (1®h)og(e,...,eq), which is equivalent
to the matrix equation

X;g(Z )=2ZX,,
where X, (resp. X;) is the matrix constructed in the proof of Lemma B.TT]
giving the action of g on M (resp. M’). By construction, X, = lim X,,, and
n—o0
similarly for X/, so it suffices to check that X}, ¢(Z) = Z X, for all n. From the
very definition of X,, = P,Q,, and X/ = P/ Q! via (13]), this amounts to
(5.1.5) PLQg(Z) = ZAP,Qn.

But as woh = hogp, we have A'¢(Z) = ZA, or equivalently, A’ ' Z = p(Z)A™!,
and the truth of equation (B.LT) follows easily from the definition (EI13). O
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5.2. AN EQUIVALENCE OF CATEGORIES. In this subsection, we prove Theorem
Let us first recall the setup and some notation. For 9 € Modé’;, put
M = O R, M and define a decreasing filtration on ¢* M as in [@2.2]). Since
9 has height 1, we have Fil‘p* M = E'"1Fil'* M for i > 2. Recall that we
set M = @*M/up*M and let us put D := D(M) := &, (M[1/p]), which is
naturally a @p-stable Fy-subspace of O, ®g, ¢ 9 via the unique isomorphism
&, constructed in Lemma Since &y @ Do @, D — Oy ® ¢*M is an
isomorphism, we may identify ¢*M/Ep*M with Dp, x = K ®p, D, and
we write ¢ @ ¢*M — Dp, k for the natural projection. We then define
Fil'Dp, k= 1 (Fil'9* M), and note that since Fil>?¢* M C Ep* M, we have
Fil’ D, x = 0. In this way we obtain from 9t an object D = D(90) of MF7, .
Suppose that 9’ = Sp - ¢ is a rank-1 Kisin module with & p-basis e. Then we
have ¢(e) = yE™e with v € G5 a unit thanks to Example B:3.2] and we call
m the minimal height of M.

LEMMA 5.2.1. With notation as above,

(1) The natural injection

& ~
D0 Qo "M —— 9O, @p, D— 69 ® Dp, .k

is compatible with filtrations, where &, = (£,)71.
(2) Suppose 9 has rank d.  Then the minimal height of AN is
dimg, Fil' D, g .

Proof. Since Fil'¢* M = E*~'Fil'o* M for i > 2, to prove (1) it suffices to check
the given injection is compatible with Fil*. As F is a generator of Fﬂléo, such
compatibility is equivalent to the condition that z € Fil'¢* M if and only if
Ya(z) € FillDFU,K. But this is clear as Ep* M C Fillgo*/\/l.

We now prove (2). Fix an Gp-basis e1,...,¢eq of M and let A € My(Sp) be
the corresponding matrix of Frobenius. Since 20T has height 1, there exists a
matrix B € My(6p) with AB = El. Defining e; = 1 ® ¢; € ¢* M, we easily
check that {e;} is an O-basis of ¢*M with (aq,...,aq) = (e1,...,eq4)B an
O-basis of Fil'p* M.

Now the inclusion @*M/Fil'lo*M C @*M/E@*M = Dy, x realizes
ga*M/Fillcp*M as a K-subspace of Dp, g, so there exists a basis fi,..., fq
of ¢* M with the property that fi,... fs, Efsq1,. .., Efq generates Fil'¢* M.
Since FﬂlDFmK = wF(Fﬂl(p*M) we have dimg FillDFO,K = 5. On the other
hand, since oy, ..., aq also generates Fil'o* M, there exist invertible matrices
X,Y € GLy(9) with

B=XAY for A=dag{l,....1,E,... E)

the diagonal matrix with s many 1’s and d — s many E’s along the diag-
onal. Thus, det B = E9=%y for v € 9> a unit and since AB = FEl; we
then have det(A) = E®y~!. Tt follows that the minimal height of AN is
s = dimg FillDFmK, as desired. ]
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Recall that we have defined Vg (9) := F ®o, Ts(M).

PROPOSITION 5.2.2. With notation as above, we have Vg (M) =~ Veyis p(D(OMN))
as F|G]-modules. In particular, Vs (M) is crystalline with Hodge-Tate weights
in {0,1}.

Proof. The proof of Proposition [£5.1] carries over mutatis mutandis to show
that there exists a natural injection of Op|[Gx]-modules

v: Te (M) — Homp , pit(9* M, By, p) — Homp,, , ril(Da ®o ©* M, B, )

cris, F cris, F

~ Homo,, o, ril(Da @F, D, Bl 1) ~ Veris, p (D),

cris, F

where instead of using Lemma [£2.3] we must appeal to Lemma and
Lemma [B.2T] (note that a priori we know neither that M(D) ~ M nor that
D is admissible). Since dimpg, (D) = ranke, 9 and ¢ is injective, we conclude
that D is admissible. In particular, Ve, r(D) is crystalline with Hodge-Tate
weights in {0, 1}.

It remains to show that ¢ is compatible with the given actions of G = Gi. By
construction, the G-action on T (9M) is induced from the identification

(521) T@ (gﬁ) ~ HOmW(R)F#,(W(R)F ®GF gﬁ, W(R)F)

of (5.I4) with G-action on the right side that of Lemma [EI.1l Now the right
side of (5:ZT]) is clearly naturally isomorphic as an O [G]-module to

Homyy gy, o, it (W(R)F @, @M, W(R)F),

which is an Op-lattice in Hom 5+

+ +
T;S,pv%Fil(BCTist ®r, D, B ). Thus, to prove

cris, F
that ¢ is G-equivariant, we must show that the G-action on BC";iS’ P Osp oM

deduced from Lemma I agrees with the G-action on B, . ®p, D via the
map

B+

cris, F’

®r, D —— B:;is,F Qep "M

deduced from (53] (which is an isomorphism thanks to Lemma [5.6]); here,
G acts trivially on D. Equivalently, we must show that the G-action on
Bctis, r Qe @I provided by Lemma [B.11] restricts to the trivial action on
D(), viewed as a subspace of this tensor product again via ([@L53).

As in the proofs of Lemma [£5.6land Lemma[5.1.T] let ey, ..., eq be an & p-basis
of M and put {e; := 1 ® ¢;}, which is then an & p-basis of p*9. The proof of
Lemma 56 shows that (f1,..., fa) := (e1,...,eq)Y is a basis of D(O) for

Y = lim @A) " (A)g"(Ag") (A5 7).

Now for any g € G, by the proof of Lemma [T we have the equality
9(61; s ,€d> = (617 R ed)Sﬁ(Xg) with

P(Xg) = lim @(A)- " (A)e"(g(A7H)) -+ p(g(A™T)).
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Thus, g(fi,...,fa) = (e1,...,eq)p(Xg)g(Y) = (e1,...,eq) lim ¢(X,)g(Ys)

with A
P(Xn)g(Ya) = (p(4) " (A" (g(ATH) - p(9(A™)
x ((g(A) -+ " (g(A)e" (9(Ag 1) - 2l9(Ag 1))
=Y,
In other words, g(f1,..., fa) = (f1,.-., fa), which completes the proof. a

Proof of Theorem [L.0.10. Thanks to Proposition [5.2.2] and Corollary B.1.2] we
have a contravariant functor Tg : Mod‘g’i — Repg‘;ris’l(G), which it remains
to prove is fully faithful and essentially surjective.

For full-faithfulness, suppose given a map h : Tg(IM) — Te(M') of Op[G|-
modules. Restricting to G, gives a map h‘G,, : Tg(im)‘&r — T@F(Sﬁ’)‘gw,
and by Corollary B.2.3] we obtain a morphismif 2 O Q6. m — Of R p m
with T (f) = h|a, . It then suffices to show that f(9') C 9. Arguing as in the
proof of Proposition[3:3.5] it suffices to check that if M C M’ C O R, M then
M = M. Applying A¢, we then easily reduce to proving that At and AN
have the same minimal height. By our reductions are now in the situation
that Te(M) ~ Te(M') as Op|[G]-modules thanks to Corollary 1.2, so by
Proposition .22 we have D(9) ~ D (M) as filtered p-modules. In particular,
Fil' D) g, x =~ Fil' D(O) g, ;¢ and the minimal heights of A9 and A9
are the same by Lemma [3.2.1] (2). Thus, T is fully faithful.

We now show that Tg is essentially surjective. Fix T € Repg‘;ris’l(G), put

V= F®e, T and let D := D5 p(V) be the corresponding filtered ¢-module.
By Corollary 521 there exists 9 € Modé’; with M(D) ~ O ®g, MM and

L Ts(M) = Tlg,. It suffices to show that ¢ is compatible with the ac-
tions of G on source and target, with the G-action on the source provided
by Corollary Using Proposition B.2.2] we obtain an isomorphism of
F[G]-modules ¢ : Ve (M) =~ Veis,p(D(OM)), which one verifies is compati-
ble with the identification ¢. It therefore remains to check that D(9) ~ D
as filtered ¢-modules. Thanks to Lemma and Lemma 5.6 we can
identify each of D and D(90) as the image of the unique @-equivariant sec-
tion to projection p*M(D) — ¢*M(D)/up* M(D), which gives D ~ D(9)
as ¢-modules. Thus, it remains to prove that Fil'Dy = Fil'D(MM)x for all
i > 0, or equivalently that Fil' Dp, x = Fil' D(M) g, x. Thanks to Corol-
lary £2.4, the projection ¢, : p*M(D) — ©*M(D)/Ep*M(D) ~ Dp, i
is compatible with filtrations, and one checks using the very definition of
Fil'p* M(D) that = € Fil'¢* M(D) if and only if ¢, () € Fil' D, . Thus,
Fil' Dp, x = ¥ (Fil' o* M(D)) = Fil' D(9M) f, x, as desired. O
Remark 5.2.3. In the classical situation, let S be the p-adic completion of the
divided-power envelope of the surjection W (k)[u] — Ok sending u to 7. If

M is the Kisin module attached to a Barsotti-Tate group H over Ok, then
one can show ([Kis06l §2.2.3]) that there is a functorial isomorphism of Breuil
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modules "M g S ~ D(H)g, where D(H) is the Dieudonné crystal attached
to H, which gives a geometric interpretation of 9 in terms of the crystalline
cohomology of H. It is natural to ask for such an interpretation in the general
case, for arbitrary F' and f(u) as in the introduction of this paper. If F/Q,
is unramified, then this interpretation is provided by [CL14]. However, for F
ramified over @, things are more subtle as it is necessary to use the O-divided
powers of Faltings [Fal02]. For general F'; A. Henniges has obtained the anal-
ogous relation with the Dieudonné crystal under the restriction vp(ai) = 1
(the so-called Lubin—Tate setting) in his Ph. D thesis. The general case re-
mains open, but we nonetheless conjecture that one has a natural isomorphism
Acris,F @&, @M ~D(H)a and expect to be able to prove this conjecture
using the ideas of §6.3

cris )

6. FURTHER QUESTIONS

As Theorem [LOJ] and Theorem provide the foundations of the theory of
Kisin modules and its variants (e.g. the theory of (, G)-modules as in [Cinl0]),
it is natural to ask to what extent we can extend these theories to accommodate
general F' and f(u). In this section, we list some questions that are natural
next steps to consider in furthering the general theory we have laid out in this

paper.

6.1. THE CASE ¢ = p°. Recall the setup of the introduction: F/Q, is an
arbitrary finite extension with uniformizer w and residue field kr of cardinality
q = p®, and f(u) € Op[u] is any power series f(u) = ayju + --- satisfying
f(u) = u? mod w. We allow K to be any finite extension of F' with uniformizer
7 = my and residue field k£ O kg, and consider the Frobenius-iterate extension
K, formed by adjoing to K a choice of f-compatible system {m,}, in K with
f(mn) = mn—1. Such extensions and their associated norm fields are considered
in [CD15] and [CDL]. In this paper, we have restricted ourselves to ¢ = p, or
what is the same, that F/Q, is totally ramified. Certainly this restriction is
unnecessary, and we are confident that the results of this paper can be adapted
to the general case of arbitrary F' with minor modifications. In particular, in
this general case, for any W (k)-algebra A we set Ar := A @w (i) OF, and we
equip & with the “g-power Frobenius” ¢, which acts on F-trivially, acts on
W (k) via @iy (r) and sends u to f(u). We write Fy := KoF and again denote by
E € Op,[u] the minimal polynomial of = over Fy. Then our theory should be
able to be adapted to functorially associate Kisin modules of finite E-height to
Op-lattices in F-crystalline G-representations. We note that such a theory is
already known in the “Lubin-Tate” case that vp(a1) =1 and K C F, thanks
to the work of Kisin and Ren [KR09], but that there are many details in our
general setup that still need to be checked.

6.2. SEMI-STABLE REPRESENTATIONS AND BREUIL THEORY. In the classical
situation, Theorem [£.4T] includes semi-stable representations. This fact is one
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of the key inputs for Breuil’s classification of lattices in semistable representa-
tions via strongly divisible lattices over S (see [Liu08]). It is therefore natural to
ask if Theorem [£.4.T] remains valid for semi-stable representations and general
f(u). This appears to be a rather nontrivial question, as the case of semi-stable
representations requires a monodromy operator. But for general F' and f, we
do not even know how to define a reasonable monodromy operator over S
(i.e., one satisfying Ny = ppN as in the classical situation). New ideas are
needed for this direction.

6.3. COMPARISON BETWEEN DIFFERENT CHOICES OF f(u). For a fixed F-
crystalline representation V' of G and a fixed uniformizer m € K, we may select
different f(w). It is then natural to ask for the relationship between the associ-
ated Kisin modules attached to V and f(u), as f varies. Motivated by [Liul3al,
we conjecture that all such Kisin modules become isomorphic after base change
to W(R) . Note that if true, this result provides a proof of the conjecture men-
tioned in Remark 523 because we know that Aeis r @, @I ~ D(H ) (Acris)
in the classical situation. To prove such comparison results, the key point is to
generalize [Liu07, Theorem 3.2.2] to allow general f(u). This is likely relatively
straightforward, as we have recovered many results of [Liu07] in §3 already.

6.4. TORSION THEORY. A major advantage of the theory of Kisin modules is
that it provides a powerful set of tools for dealing with torsion representations.
It is therefore natural to try and rebuild the torsion theory in our general
situation, and we hope that such a theory will have some striking applications,
for example, to the computation of the reduction of potentially crystalline
representations as discussed in the introduction. One obvious initial goal is to
establish the equivalence between torsion Kisin modules of height 1 and finite
flat group schemes over Of; this would be achievable quickly once we know
the truth of the conjecture formulated in Remark .23
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