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Abstract. We extend the theory of Kisin modules and crystalline
representations to allow more general coefficient fields and lifts of
Frobenius. In particular, for a finite and totally ramified extension
F/Qp, and an arbitrary finite extension K/F , we construct a gen-
eral class of infinite and totally wildly ramified extensions K∞/K so
that the functor V 7→ V |GK∞

is fully-faithfull on the category of F -
crystalline representations V . We also establish a new classification
of F -Barsotti-Tate groups via Kisin modules of height 1 which allows
more general lifts of Frobenius.
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1. Introduction

Let k be a perfect field of characteristic p with ring of Witt vectorsW :=W (k),
writeK0 :=W [1/p] and letK/K0 be a finite and totally ramified extension. We
fix an algebraic closure K of K and set GK := Gal(K/K). The theory of Kisin

modules and its variants, pioneered by Breuil in [Bre98] and later developed by
Kisin [Kis06], provides a powerful set of tools for understanding Galois-stable
Zp-lattices in Qp-valued semistable GK-representations, and has been a key in-
gredient in many recent advances (e.g. [Kis08], [Kis09a], [Kis09b]). Throughout
this theory, the non-Galois “Kummer” extension K∞/K—obtained by adjoin-
ing to K a compatible system of choices {πn}n≥1 of p

n-th roots of a uniformizer
π0 in K—plays central role. The theory of Kisin modules closely parallels
Berger’s work [Ber02], in which the cyclotomic extension of K replaces K∞,
and can be thought of as a “K∞-analogue” of the theory of Wach modules
developed by Wach [Wac96], Colmez [Col99] and Berger [Ber04]. Along these

1The second author is partially supported by a Sloan fellowship and NSF grant DMS-
1406926.
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lines, Kisin and Ren [KR09] generalized the theory of Wach modules to al-
low the cyclotomic extension of K to be replaced by an arbitrary Lubin–Tate
extension.

This paper grew out of a desire to better understand the role of K∞ in the
theories of Breuil and Kisin and related work, and is an attempt to realize
Kisin modules and the modules of Wach and Kisin–Ren as “specializations” of
a more general theory. To describe our main results, we first fix some notation.

Let F ⊆ K be a subfield which is finite over Qp with residue field kF of
cardinality q = ps. Choose a power series

f(u) := a1u+ a2u
2 + · · · ∈ OF [[u]]

with f(u) ≡ uq mod mF and a uniformizer π of K with monic minimal poly-
nomial E := E(u) over F0 := K0 · F . We set π0 := π and we choose
π := {πn}n≥1 with πn ∈ K satisfying f(πn) = πn−1 for n ≥ 1. The ex-
tension Kπ :=

⋃
n≥0K(πn) (called a Frobenius iterate extension in [CD15]) is

an infinite and totally wildly ramified extension of K which need not be Galois.
We set Gπ := Gal(K/Kπ).

Define S :=W [[u]] and put SF = OF ⊗W (kF ) S = OF0
[[u]]. We equip SF with

the (unique continuous) Frobenius endomorphism ϕ which acts on W (k) by
the canonical q-power Witt-vector Frobenius, acts as the identity on OF , and
sends u to f(u). A Kisin module of E-height r is a finite free SF -module M
endowed with ϕ-semilinear endomorphism ϕM : M → M whose linearization
1⊗ ϕ : ϕ∗M→M has cokernel killed by Er.

When F = Qp and f(u) = up (which we refer to as the classical situation in
the following), Kisin’s theory [Kis06] attaches to any GK∞

-stable Zp-lattice T
in a semistable GK -representation V with Hodge–Tate weights in {0, . . . , r}
a unique Kisin module M of height r satisfying T ≃ TS(M) (see §3.3 for
the definition of TS). Using this association, Kisin proves that the restriction
functor V → V |GK∞

is fully faithful when restricted to the category of crys-
talline representations, and that the category of Barsotti–Tate groups over OK
is anti-equivalent to the category of Kisin modules of height 1.

In this paper, we extend much of the framework of [Kis06] to allow general
F and f(u), though for simplicity we will restrict ourselves to the case that
q = p, or equivalently that F/Qp is totally ramified, and that f(u) is a monic
degree-p polynomial. When we extend our coefficients from Qp to F , we must
further restrict ourselves to studying F -crystalline representations, which are
defined following ([KR09]): Let V be a finite dimensional F -vector space with
continuous F -linear action of GK . If V is crystalline (when viewed as a Qp-
representation) then DdR(V ) is naturally an F ⊗Qp K-module and one has
a decomposition DdR(V ) =

∏
mDdR(V )m, with m running over the maximal

ideals of F ⊗Qp K. We say that V is F -crystalline if the induced filtration on
DdR(V )m is trivial unless m corresponds to the canonical inclusion F ⊂ K.
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Theorem 1.0.1. Let V be an F -crystalline representation with Hodge-Tate

weights in {0, . . . , r} and T ⊂ V a Gπ-stable OF -lattice. Then there exists a

Kisin module M of E-height r satisfying TS(M) ≃ T .

Writing vF for the normalized valuation of K with vF (F ) = Z, apart from the
classical situation f(u) = up of Kisin, the above theorem is also known when
vF (a1) = 1, which corresponds to the Lubin–Tate cases covered by the work
of [KR09]. An important point of our formalism is that M may in general not
be unique for a fixed lattice T : our general construction produces as special
cases the ϕ-modules overSF which occur in the theory of Wach modules and its
generalizations [KR09], so without the additional action of a Lubin–Tate group
Γ, one indeed does not expect these Kisin modules to be uniquely determined;
(cf. Example 3.3.7). This is of course quite different from the classical situation.
Nonetheless, we prove the following version of Kisin’s “full-faithfulness” result.

Writing RepF -cris,r
F (G) for the category of F -crystalline representations with

Hodge-Tate weights in {0, . . . , r} and RepF (Gπ) for the category of F -linear
representations of Gπ , we prove:

Theorem 1.0.2. Assume that ϕn(f(u)/u) is not a power of E for all n ≥ 0
and that vF (a1) > r, where f(u) = a1u + a2u

2 + · · · . Then the restriction

functor RepF -cris,r
F (G) RepF (Gπ) induced by V 7→ V |Gπ is fully faithfull.

Although Beilinson and Tavares Ribeiro [BTR13] have given an almost elemen-
tary proof of Theorem 1.0.2 in the classical situation F = Qp and f(u) = up,
their argument relies crucially on an explicit description of the Galois closure
of K∞/K. For more general F and f , we have no idea what the Galois closure
of Kπ/K looks like, and describing it in any explicit way seems to be rather
difficult in general.

It is natural to ask when two different choices f and f ′ of p-power Frobenius lifts
and corresponding compatible sequences π = {πn}n and π′ = {π′

n} in K yield
the same subfield Kπ = Kπ′ of K. We prove that this is rare in the following
precise sense: ifKπ = Kπ′ , then the lowest degree terms of f and f ′ coincide, up
to multiplication by a unit in OF ; see Proposition 3.1.3. It follows that there are
infinitely many distinct Kπ for which Theorem 1.0.2 applies. We also remark
that any Frobenius–iterate extension Kπ as above is an infinite and totally
wildly ramified strictly APF extension in the sense of Wintenberger [Win83].
We therefore think of Theorem 1.0.2 as confirmation of the philosophy that
“crystalline p-adic representations are the p-adic analogue of unramified ℓ-adic
representations2,” since Theorem 1.0.2 is obvious if “crystalline” is replaced
with “unramified” throughout (or equivalently in the special case r = 0). More
generally, given F and r ≥ 0, it is natural to ask for a characterization of
all infinite and totally wildly ramified strictly APF extensions L/K for which

2This philosophy is perhaps best evinced by the p-adic analogue of the good reduction
theorem of Néron–Ogg–Shafarevich, which asserts that an abelian variety A over a p-adic field
K has good reduction if and only if its p-adic Tate module VpA is a crystalline representation

of GK [CI99, Theorem 1].
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restriction of F -crystalline representations of GK with Hodge–Tate weights in
{0, . . . , r} to GL is fully–faithful. We believe that there should be a deep and
rather general phenomenon which deserves further study.

While the condition that vF (a1) > r is really essential in Theorem 1.0.2 (see
Example 4.5.9), we suspect the conclusion is still valid if we remove the as-
sumption that ϕn(f(u)/u) is not a power of E for all n ≥ 0. However, we
have only successfully removed this assumption when r = 1, thus generalizing
Kisin’s classification of Barsotti–Tate groups:

Theorem 1.0.3. Assume vF (a1) > 1. Then the category of Kisin modules of

height 1 is equivalent to the category of F -Barsotti-Tate groups over OK .

Here, an F -Barsotti-Tate group is a Bartotti–Tate group H over OK with the
property that the p-adic Tate module Vp(H) = Qp⊗ZpTp(H) is an F -crystalline
representation. We note that when F = Qp, Theorem 1.0.3 is proved (by
different methods) in [CL14].

Besides providing a natural generalization of Kisin’s work and its variants as
well as a deeper understanding of some of the finer properties of crystalline p-
adic Galois representations, we expect that our theory will have applications to
the study of potentially Barsotti–Tate representations. More precisely, suppose
that T is a finite free OF -linear representation of GK with the property that
T |GK′ is Barsotti-Tate for some finite extension K ′/K. If K ′/K is not tamely
ramified then it is well-known that it is in general difficult to construct “descent
data” for the Kisin module M associated to T |GK′

in order to study T (see the
involved computations in [BCDT01]). However, suppose that we can select
f(u) and π0 such that K ′ ⊆ K(πn) for some n. Then, as in the theory of
Kisin–Ren [KR09] (see also [BB10]), we expect the appropriate descent data
on M to be much easier to construct in this “adapted” situation, and we hope
this idea can be used to study the reduction of T .

Now let us sketch the ideas involved in proving the above theorems and outline
the organization of this paper. For any Zp-algebra A, we set AF := A⊗Zp OF .
In order to connect SF to Galois representations, we must first embed SF as a
Frobenius-stable subring of W (R)F , which we do in §2.1 following [CD15]. In
the following subsection, we collect some useful properties of this embedding
and study some “big rings” inside B+

cris,F . Contrary to the classical situation,
the Galois closure of Kπ appears in general to be rather mysterious. Nonethe-
less, in §2.3 we are able to establish some basic results on the GK-conjugates
of u ∈ SF ⊆ W (R)F which are just barely sufficient for the development of
our theory. Following Fontaine [Fon90], and making use of the main result
of [CD15], in §3 we establish a classification of Gπ-representations via étale
ϕ-modules and Kisin modules. In the end of §3, we apply these considera-
tions to prove that the functor TS is fully faithful under the assumption that
ϕn(f(u)/u) is not a power of E for any n.

The technical heart of this paper is §4. In §4.1, we define F -crystalline represen-
tations and attach to each F -crystalline representation V a filtered ϕ-module
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Dcris,F (V ) (we warn the reader that the filtration of Dcris,F (V ) is slightly dif-
ferent from that of Dcris(V )). Following [Kis06], in §4.2 we then associate to
D = Dcris(V ) a ϕ-module M(D) over O (here we use O for the analogue of
O—the ring of rigid-analytic functions on the open unit disk—in Kisin’s work).
A shortcoming in our situation is that we do not in general know how to define
a reasonable differential operator N∇, even at the level of the ring O. Conse-
quently, ourM(D) only has a Frobenius structure, in contrast to the classical
(and Lubin–Tate) situation in which M(D) is also equipped with a natural
N∇-structure. Without such an N∇-structure, there is no way to follow Kisin’s
(or Berger’s) original strategy to prove that the scalar extension of M(D) to
the Robba ring is pure of slope zero, which is key to showing that there exists
a Kisin module M such that O ⊗SF M ≃ M(D). We bypass this difficulty
by appealing to the fact that M(D) is known to be pure of slope zero in the
classical situation of Kisin as follows: letting a superscript of “c” denote the
data in the classical situation and using the fact that bothM(D) andMc(D)

come from the same D, we prove that B̃α ⊗OM(D) ≃ B̃α ⊗Oc Mc(D) as ϕ-

modules for a certain period ring B̃α that contains the ring B̃+
rig,F . It turns out

that this isomorphism can be descended to B̃+
rig,F . Since Kedlaya’s theory of

the slope filtration is unaffected by base change from the Robba ring to B̃+
rig,F ,

it follows that M(D) is of pure slope 0 as this is the case for Mc(D) thanks
to [Kis06]. With this crucial fact in established, we are then able to prove
Theorem 1.0.1 along the same lines as [Kis06]. If our modules came equipped
with a natural N∇-structure, the full faithfulness of the functor V 7→ V |Gπ

would follow easily from the full faithfulness of TS. But without such a struc-
ture, we must instead rely heavily on the existence of a unique ϕ-equivariant
section ξ : D(M)→ Oα ⊗ ϕ∗M to the projection ϕ∗M։ ϕ∗M/uϕ∗M, where
D(M) = (ϕ∗M/uϕ∗M)[1/p]. The hypothesis vF (a1) > r of Theorem 1.0.2
guarantees the existence and uniqueness of such a section ξ. With these prepa-
rations, we finally prove Theorem 1.0.2 in §4.5.

In §5, we establish Theorem 1.0.3: the equivalence between the category of
Kisin modules of height 1 and the category of F -Barsotti-Tate groups over OK .
Here we adapt the ideas of [Liu13b] to prove that the functor M 7→ TS(M) is
an equivalence between the category of Kisin module of height 1 and the cate-
gory of GK-stable OF -lattices in F -crystalline representations with Hodge-Tate
weights in {0, 1}. The key difficulty is to extend the Gπ-action on TS(M) to a
GK-action which gives TS(M)[1/p] the structure of an F -crystalline represen-
tation. In the classical situation, this is done using the (unique) monodromy
operator N on S ⊗S ϕ∗M (see §2.2 in [Liu13b]). Here again, we are able to
sidestep the existence of a monodromy operator to construct a (unique) GK-
action on W (R)F ⊗SF M which is compatible with the additional structures
(see Lemma 5.1.1), and this is enough for us to extend the given Gπ-action to
a GK -action on TS(M). As this paper establishes analogues of many of the
results of [Kis06] in our more general context, it is natural ask to what extent
the entire theory of [Kis06] can be developed in this setting. To that end, we
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list several interesting (some quite promising) questions for this program in the
last section.

Acknowledgements: It is pleasure to thank Laurent Berger, Kiran Kedlaya
and Ruochuan Liu for very helpful conversations and correspondence.

Notation. Throughout this paper, we reserve ϕ for the Frobenius operator,
adding appropriate subscripts as needed for clarity: for example, ϕM denotes
the Frobenius map onM. We will always drop these subscripts when there is no
danger of confusion. Let S be a ring endowed with a Frobenius lift ϕS and M
an S-module. We always write ϕ∗M := S⊗ϕS,SM . Note that if ϕM :M →M
is a ϕS-semilinear endomorphism, then 1⊗ϕM : ϕ∗M →M is an S-linear map.
We reserve f(u) = up + ap−1u + · · · + a1u ≡ up mod mF for the polynomial
over OF giving our Frobenius lift ϕ(u) := f(u) as in the introduction. For
any discretely valued subfield E ⊆ K, we write vE for the normalized p-adic
valuation ofK with vE(E) = Z, and for convenience will simply write v := vQp .
If A is a Zp-module, we set AF := A ⊗Zp OF and A[1/p] := A ⊗Zp Qp. For

simplicity, we put G = GK := Gal(K/K) and Gπ := Gal(K/Kπ). We write
Md(S) for the ring of d×d-matrices over S and Id for the d×d-identity matrix.

2. Period rings

In this section, we introduce and study the various “period rings” which will
play a central role in the development of our theory.

As in the introduction, we fix a perfect field k of characteristic p with ring of
Witt vectors W := W (k), as well as a finite and totally ramified extension K
of K0 :=W [1/p]. Let F be a subfield of K, which is finite and totally ramified
over Qp, and put F0 := K0F ⊂ K. Choose uniformizers π of OK and ̟ of OF ,
and let E := E(u) ∈ OF0

[u] be the monic minimal polynomial of π over F0. We
set e := [K : K0], and put e0 := [K : F0] and eF := [F : Qp]. Fix a polynomial
f(u) = up + ap−1u

p−1 + · · · + a1u ∈ OF [u] satisfying f(u) ≡ up mod ̟, and

recursively choose πn ∈ K with f(πn) = πn−1 for n ≥ 1 where π0 := π. Set
Kπ :=

⋃
n≥0K(πn) and Gπ := Gal(K/Kπ), and recall that for convenience we

write G = GK := Gal(K/K).

Recall that S = W [[u]], and that we equip the scalar extension SF with the
semilinear Frobenius endomorphism ϕ : SF → SF which acts on W as the
unique lift of the p-power Frobenius map on k, acts trivially on OF , and sends u
to f(u). The first step in our classification of F -crystalline GK-representations
by Kisin modules over SF is to realize this ring as a Frobenius stable subring
of W (R)F , which we do in the following subsection.

2.1. SF as a subring of W (R)F . As usual, we put R := lim←−
x→xp

OK/(p),

equipped with its natural coordinate-wise action of G. It is well-known that
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the natural reduction map

lim
←−
x→xp

OK/(p)→ lim
←−
x→xp

OK/(̟)

is an isomorphism, so {πn mod ̟}n≥0 defines an element π ∈ R. Furthermore,

writing CK for the completion of K, reduction modulo p yields a multiplicative
bijection lim

←−x→xp
OCK ≃ R, and for any x ∈ R we write (x(n))n≥0 for the

p-power compatible sequence in lim
←−x→xp

OCK corresponding to x under this

identification. We write [x] ∈ W (R) for the Techmüller lift of x ∈ R, and
denote by θ : W (R) → OCK the unique lift of the projection R ։ OCK/(p)
which sends

∑
n p

n[xn] to
∑

n p
nx(0). By definition, B+

dR is the Ker(θ)-adic

completion of W (R)[1/p], so θ naturally extends to B+
dR. For any subring

B ⊂ B+
dR, we define FiliB := (Kerθ)i ∩B.

There is a canonical section K →֒ B+
dR, so we may view F as a subring of

B+
dR, and in this way we obtain embeddings W (R)F →֒ B+

cris,F →֒ B+
dR. Define

θF := θ|W (R)F . One checks that W (R)F is ̟-adically complete and that every
element ofW (R)F has the form

∑
n≥0[an]̟

n with an ∈ R. The map θF carries
∑

n≥0[an]̟
n to

∑
n≥0 a

(0)
n ̟n ∈ OCK (see Def. 3.8 and Prop. 3.9 of [CD15]).

Lemma 2.1.1. There is a unique set-theoretic section {·}f : R → W (R)F to

the reduction modulo ̟ map which satisfies ϕ({x}f ) = f({x}f) for all x ∈ R.

Proof. This is3 [Col02, Lemme 9.3]. Using the fact that f(u) ≡ up mod ̟, one
checks that the endomorphism f ◦ ϕ−1 of W (R)F is a ̟-adic contraction, so
that for any lift x̃ ∈W (R) of x ∈ R, the limit

{x}f := lim
n→∞

(f ◦ ϕ−1)(n)(x̃)

exists in W (R)F and is the unique fixed point of f ◦ ϕ−1, which uniquely
characterizes it independent of our choice of x̃. �

From Lemma 2.1.1 we obtain a unique continuous embedding ι : SF →֒W (R)F
of OF -algebras with ι(u) := {π}f . Via ι, we henceforth identify SF with a ϕ-
stable OF -subalgebra of W (R)F on which we have ϕ(u) = f(u).

Example 2.1.2 (Cyclotomic case). Let {ζpn}n≥0 be a compatible system of
primitive pn-th roots of unity. LetK = Qp(ζp) with π = ζp−1 and take F = Qp
with f(u) = (u+1)p− 1. Choosing πn = ζpn+1 − 1, we obtain Kπ := Qp(µp∞).
It is obvious that ǫ1 := (ζpn)n≥1 ∈ R. In this case, ι(u) = [ǫ1]− 1 ∈ W (R).

Recall that R has the structure of a valuation ring via vR(x) := v(x(0)), where
v is the normalized p-adic valuation of CK with v(Zp) = Z.

Lemma 2.1.3. We have θF (u) = π and E generates Ker(θF ) = Fil1W (R)F .

3In the version of Colmez’s article available from his website, it is Lemme 8.3.
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Proof. The first assertion is [Col02, Lemme 9.3]. To compute θF ({π}f), we
first choose [π] as our lift of π to W (R), and compute

θF ({π}f ) = θF

(
lim
n→∞

f (n)ϕ(−n)([π])
)
= lim

n→∞
f (n)θF ([π

p−n

]) = lim
n→∞

f (n)(π(n))

But π(n) ≡ πn mod ̟, so

f (n)(π(n)) ≡ f (n)(πn) ≡ π mod ̟n+1,

which gives the claim. Now certainly θF (E(u)) = E(π) = 0, so E = E(u) lies

in Fil1W (R)F . Since E ≡ πe0 mod ̟, we conclude that

vR(E mod ̟) = e0vR(π) = e0v(π) = v(̟),

whence E generates Ker(θF ) = Fil1W (R)F thanks to [Col02, Prop. 8.3]. �

Now let us recall the construction of B+
max and B̃

+
rig from Berger’s paper [Ber02].

Let ξ be a generator of Fil1W (R). By definition,

B+
max :=




∑

n≥0

an
ξn

pn
∈ B+

dR

∣∣∣ an ∈ W (R)[1/p] and lim
n→∞

an = 0



 .

and B̃+
rig :=

⋂
n≥1 ϕ

n(B+
max).

Write u := [π]. The discussion before Proposition 8.14 in [Col02] shows:

Lemma 2.1.4.

B+
max,F =




∑

n≥0

an
En

̟n
∈ B+

dR

∣∣∣ an ∈W (R)F [1/p] and lim
n→∞

an = 0





=




∑

n≥0

an
ue0n

̟n
∈ B+

dR

∣∣∣ an ∈ W (R)F [1/p] and lim
n→∞

an = 0



 .

We can now prove the following result, which will be important in §4.4:

Lemma 2.1.5. Let x ∈ B+
max,F , and suppose that xEr = ϕm(y) holds for some

y ∈ B+
max,F . Then x = ϕm(y′) with y′ ∈ B+

max,F .

Proof. By Lemma 2.1.4, we may write y =
∑

n bn
ue0n

̟n with bn ∈ W (R)F [1/p]
converging to 0. Write E = E(u) = ue0 +̟z with z ∈W (R)F . We then have

ϕm(y) =

∞∑

n=0

ϕm(bn)
ue0p

mn

̟n
=

∞∑

n=0

ϕm(bn)
(E −̟z)p

mn

̟n
=

∞∑

n=0

cn
Ep

mn

̟n

with cn ∈ W (R)F [1/p] converging to 0. By Lemma 2.1.3, E is a generator of

Fil1W (R)F , so definining s := 1+max{n | pmn < r}, it follows that
s−1∑
n=0

cn
Epmn

̟n

Documenta Mathematica 21 (2016) 223–270



On F -Crystalline Representations 231

is divisible by Er inW (R)F [1/p] so we may write
s−1∑
n=0

cn
Epmn

̟n = Erx0 for some

x0 ∈W (R)[1/p]. Without loss of generality, replacing x by x− x0, gives

x =

∞∑

n=s

cn
Ep

mn−r

̟n
=

∞∑

n=s

dn−s
Ep

m(n−s)

̟n−s
=

∞∑

n=0

dn
Ep

mn

̟n

with dn−s = cn
Epms−r

̟s . Using again the equality E = ue0 + ̟z, we then

obtain x =
∞∑
n=0

en
ue0pmn

̟n with en ∈W (R)F [1/p] converging to 0. We now have

x = ϕm(y′) for y′ :=
∞∑
n=0

fn
ue0n

̟n with fn = ϕ−m(en). As fn ∈ W (R)F [1/p]

converges to 0, we conclude that y′ ∈ B+
max,F , as desired. �

2.2. Some subrings of B+
cris,F . For a subinterval I ⊂ [0, 1), we write OI

for the subring of F0((u)) consisting of those Laurent series which converge
for those x ∈ CK with |x| ∈ I, and we will simply write O = O[0,1). Let

B̃α := W (R)F [[
Ep

̟ ]][1/p] ⊂ B+
cris,F . We claim that FilnB̃α = EnB̃α. To see

this, set c = ⌈np ⌉ and n = pc− s with 0 ≤ s < p. For any x ∈ FilnB̃α, we write

x =
∞∑
i=0

ai
Epi

̟i with ai ∈ W (R)F [1/p] converging to 0 in W (R)F [1/p]. Since

x ∈ FilnB+
dR,

c−1∑
i=0

ai
Epi

̟i = Enx0 with x0 ∈ W (R)F [1/p]. It suffices to show

that x− x0 = Eny with y ∈ B̃α. Now

y =

∞∑

i≥c

ai
Epi−n

̟i
=

∞∑

i≥c

aiE
s̟−c

(
Ep(i−c)

̟i−c

)
∈ B+

dR.

As ai converges to 0 in W (R)F [1/p], so does aiE
s̟−c, whence y lies in B̃α.

Lemma 2.2.1. There are canonical inclusions of rings O ⊂ B̃+
rig,F ⊂ B̃α.

Proof. We first show that O ⊂ B̃+
rig,F . For any h(u) =

∞∑
n=0

anu
n ∈ O, we have

to show that hm(u) =
∞∑
n=0

ϕ−m(anu
n) is in B+

max,F for all m ≥ 0. Writing

u = u +̟z with u = [π] and z ∈ W (R)F , we have ϕ−m(u) = up
−m

+ ̟z(m)

with z(m) = ϕ−m(z) ∈ W (R)F . Setting a
(m)
n := ϕ−m(an) ∈ F0, we then have

hm(u) = h(u
1

pm +̟z(m)) =

∞∑

k=0

h(k)(u
1

pm )

k!
(̟z(m))k,
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for h(k) the k-th derivative of h̃(X) :=
∞∑
n=0

a
(m)
n Xn. Therefore,

hm(u) =
∞∑

n=0

(
∞∑

k=0

(
k + n

k

)
a
(m)
n+k(̟z

(m))k

)
u

n
pm .

Since h(u) ∈ O[0,1), we have lim
n→∞

|a
(m)
n |rn = 0 for any r < 1. It follows that

the inner sum
∞∑
k=0

(
k+n
k

)
a
(m)
n+k(̟z

(m))k converges to bn ∈ W (R)F [1/p]. Since

lim
n→∞

|a
(m)
n |rn = 0 for r = |̟

1
e0pm | ≥ |̟|, for any ǫ > 0, there exists N so that

|a
(m)
n+k̟

n
e0pm̟k| < ǫ for any n > N and k ≥ 0. This implies that bn̟

n
e0pm

converges to 0 in W (R)F . We may therefore write

hm(u) =

∞∑

n=0

bnu
n

pm =

∞∑

n=0

bn̟
n

e0pm
(ue0)

n
e0pm

̟
n

e0pm
,

and Lemma 2.1.4 implies that hm(u) ∈ B+
max,F , so O ⊂ B̃+

rig,F as desired.

To show that B̃+
rig,F ⊂ B̃α, we first observe that

(2.2.1) B̃α =W (R)F [[
ue0p

̟
]][1/p] =W (R)F [[

ue0p

̟
]][1/p].

For any x ∈ B̃+
rig,F , we may write x = ϕ(y) with y =

∞∑
n=0

an
ue0n

̟n ∈ B
+
max,F , and

we see that x =
∞∑
n=0

ϕ(an)
ue0pn

̟n indeed lies in B̃α by (2.2.1). �

Finally let us record the following technical lemma: recall that our Frobenius
lift onSF is determined by ϕ(u) := f(u), with f(u) = up+ap−1u

p−1+· · ·+a1u.

We define Oα := SF [[
ue0p

̟ ]][1/p] ⊂ B̃α.

Lemma 2.2.2. Suppose that ̟r+1|a1 in OF . Then there exists h
(n)
i (u) ∈ OF [u]

such that

f (n)(u) =

n∑

i=0

h
(n)
n−i(u)u

2n−i

̟(r+1)i.

In particular, ϕn(u)/̟rn converges to 0 in Oα.

Proof. We proceed by induction on m = n. When m = 1, we may write

(2.2.2) f(u) = up+ap−1u
p1 + · · ·+a1u = u2h(u)+b0̟

r+1u with b0 ∈ OF .
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Supposing that the assertion holds for m = n and using (2.2.2) we compute

f (n+1)(u) =
n∑

i=0

h
(n)
n−i(f(u))f(u)

2n−i

̟(r+1)i

=

n∑

i=0

h
(n)
n−i(f(u))(u

2h(u) + b0̟
r+1u)2

n−i

̟(r+1)i

=

n∑

i=0

h
(n)
n−i(f(u))




2n−i∑

k=0

(
2n−i

k

)
(u2h(u))2

n−i−k(b0̟
r+1u)k


̟(r+1)i

=
n∑

i=0

2n−i∑

k=0

(
h
(n)
n−i(f(u))

(
2n−i

k

)
h(u)2

n−i−kbk0

)
u2

n+1−i−k̟(r+1)(i+k)

To complete the inductive step, it therefore suffices to show that whenever
i + k ≤ n + 1, we have 2n+1−i − k ≥ 2n+1−i−k. Equivalently, and writing
j := n+ 1− i− k, we must show that 2j+k − k ≥ 2j for all j ≥ 0, which holds
as 2k ≥ k + 1 for all k ≥ 0. �

2.3. The action of G on u. In this subsection, we study the action of G on
the element u ∈W (R)F corresponding to our choice of f -compatible sequence
{πn}n inK and our Frobenius lift determined by f . From the very construction
of the embedding SF →֒ W (R)F in Lemma 2.1.1, the action of Gπ on u is
trivial. However, for arbitrary g ∈ G \ Gπ, in contrast to the classical case,
we know almost nothing about the shape of g(u); cf. the discussion in §3.1.
Fortunately, we are nonetheless able to prove the following facts, which are
sufficient for our applications.

Define

I
[1]
F := {x ∈ W (R)F | ϕ

n(x) ∈ Fil1W (R)F , ∀n ≥ 0}.

Recall that eF := [F : Qp], and for x ∈ W (R)F write x̄ := x mod ̟ ∈ R.
Thanks to Example 3.3.2, there exists tF ∈ W (R)F satisfying ϕ(tF ) = EtF .

As E ∈ Fil1W (R)F , it is easy to see that ϕ(tF ) ∈ I [1]W (R)F , and since

t̄pF = ue0 t̄F , we have vR(ϕ(tF )) =
p

eF (p−1) .

Lemma 2.3.1. The ideal I
[1]
F is principal. Moreover, x ∈ I

[1]
F is a generator of

I
[1]
F if and only if vR(x̄) =

p
eF (p−1) .

Proof. When F = Qp, this follows immediately from [Fon94a, Proposition
5.1.3] with r = 1. The general case follows from a slight modification of this

argument, as follows: For y ∈ I
[1]
F , we first claim that vR(ȳ) ≥

p
eF (p−1) . To

see this, we write y =
∞∑
n=0

̟n[yi] with yi ∈ R given by the p-power compatible
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sequence yi = (α
(n)
i )n≥0 for α

(n)
i ∈ OCK . Then

0 = θF (ϕ
m(y)) =

∞∑

n=0

̟n(α
(0)
i )p

m

.

By induction on n and m, it is not difficult to show that

v(α
(0)
i ) ≥

1

eF
p−i(1 + p−1 · · ·+ p−j)

for all j ≥ 0. In particular, vR(ȳ) = v(α
(0)
0 ) ≥ p

eF (p−1) .

Now pick a x ∈ I
[1]
F with vR(x̄) =

p
eF (p−1) (take, for example, x = ϕ(tF )). Since

vR(y) ≥ vR(x), we may write y = ax + ̟z with a, z ∈ W (R)F . One checks

that z ∈ I
[1]
F and hence that z ∈ (̟, x). An easy induction argument then

shows that y =
∞∑
n=0

̟nanx, and it follows that I
[1]
F is generated by x. �

It follows at once from Lemma 2.3.1 that ϕ(tF ) is a generator of I
[1]
F . Write I+

for the kernel of the canonical projection ρ :W (R)F →W (k̄)F induced by the
projection R → k̄. Using the very construction of u, one checks that u ∈ I+:
Indeed, writing u = [π] as before, we obviously have u ∈ I+, and it follows from
the proof of Lemma 2.1.1 that u = limn→∞ f (n) ◦ ϕ−n(u) lies in I+ as well.

Lemma 2.3.2. Let g ∈ G be arbitrary. Then g(u) − u lies in I [1]W (R)F .

Moreover, if ̟2|a1 in OF then
g(u)−u
ϕ(tF ) lies in I+.

Proof. As before, writing f (n) = f ◦ · · · ◦ f for the n-fold composition of f with
itself, we have θF (ϕ

n(u)) = f (n)(π) ∈ K, from which it follows that g(u) − u

is in I
[1]
F . By Lemma 2.3.1, we conclude that z := g(u)−u

ϕ(tF ) lies in W (R)F . It

remains to show that z ∈ I+ when ̟2|a1. We first observe that

ϕ(z) =
f((g(u))− f(u)

ϕ2(tF )
=

p∑
i=1

ai
(
(g(u))i − ui

)

ϕ(E)ϕ(tF )
.

For each i, we may write (g(u))i−ui = (g(u)−u)hi(g(u), u) = ϕ(tF )zhi(g(u), u)
for some bivariate degree i − 1 homogeneous polynomials hi with coefficients
in W (R)F . We therefore have

(2.3.1) ϕ(E)ϕ(z) =

p∑

i=1

ai (zhi(g(u), u)) .

Reducing modulo I+ and noting that both u and g(u) lie in I+, we conclude
from (2.3.1) that̟ϕ(ρ(z)) = a1ρ(z), where ρ :W (R)F →W (k̄)F is the natural
projection as above. Using the fact that v(ϕ(ρ(z))) = v(ρ(z)), our assumption
that v(a1) > v(̟) then implies that ρ(z) = 0. That is, z ∈ I+ as desired. �
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Example 2.3.3. The following example shows that the condition ̟2|a1 in OF
is genuinely necessary for the conclusion of Lemma 2.3.2 to hold. Recall the
situation of Example 2.1.2, with K = Qp(ζp), π = ζp − 1, f(u) = (u + 1)p − 1
and u = [ǫ1] − 1, where ǫ1 = (ζpn)n≥1 ∈ R. We may choose g ∈ G with

g(ǫ1) = ǫ1+p1 . We then have g(u) − u = [ǫ1]([ǫ1]
p − 1). Now it is well-known

that [ǫ1]
p − 1 is a generator of I

[1]
Qp

(or one can appeal to Lemma 2.3.1). Then

z = (g(u)− u)/ϕ(tF ) is a unit in W (R) and does not lie in I+.

We conclude this discussion with the following lemma, needed in §5.1:

Lemma 2.3.4. The ideal tF I
+ ⊂ W (R)F is stable under the canonical action

of G: that is, g(tF I
+) ⊂ tF I

+ for all g ∈ G.

Proof. It is clear that I+ is G-stable, so it suffices to show that g(tF ) = xtF
for some x ∈ W (R)F . Since ϕ(tF ) is a generator of I [1], which is obviously
G-stable from the definition, we see that g(ϕ(tF )) = yϕ(tF ) with y ∈ W (R)F .
Hence g(tF ) = ϕ−1(y)tF . �

3. Étale ϕ-modules and Kisin modules

In this section, following Fontaine, we establish a classification of Gπ-
representations by étale ϕ-modules and Kisin modules. To do this, we must
first show that Kπ/K is strictly Arithmetically Profinite, or APF, in the sense
of Fontaine–Wintenberger [Win83], so that the theory of norm fields applies.

3.1. Arithmetic of f -iterate extensions. We keep the notation and con-
ventions of §2. Recall that our choice of an f -compatible sequence {πn}n (in
the sense that f(πn) = πn−1 with π0 = π a uniformizer of K) determines an
element π := {πn mod ̟}n of R. It also determines an infinite, totally wildly
ramified extension Kπ := ∪n≥1K(πn) of K, and we write Gπ = Gal(K/Kπ).

Lemma 3.1.1. The extension Kπ/K is strictly APF in the sense of [Win83]; in
particular, the associated norm field EKπ/K is canonically identified with the

subfield k((π)) of Fr(R).

Proof. That Kπ/K is strictly APF follows immediately from [CD15], which
handles a more general situation. In the present setting with f(u) ≡ up mod ̟,
we can give a short proof as follows. As before, let us write

f(u) = a1u+ a2u
2 + · · ·+ ap−1u

p−1 + apu
p,

with ai ∈ ̟OF for 1 ≤ i ≤ p−1 and ap := 1. For each n ≥ 1, set fn := f−πn−1

and put Kn := K(πn−1). We compute the “ramification polynomial”

gn :=
fn(πnu+ πn)

u
=

p−1∑

i=0

biu
i,
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with coefficients bi given by

bi =

p∑

j=i+1

ajπ
j
n

(
j

i+ 1

)
for 0 ≤ i ≤ p− 1.

For ease of notation, put vn := vKn+1
, and denote by en := vn(̟) the ram-

ification index of Kn+1/F and by e := vF (p) the absolute ramification index
of F . Since Kn+1/Kn is totally ramified of degree p, we have en = pne0; in

particular, vn(aj
(
j
i+1

)
πjn) ≡ j mod pn. It follows that vn(bp−1) = p, and for

0 ≤ i ≤ p− 2 we have

vn(bi) = min{ene+ p, envF (aj) + j : i+ 1 ≤ j ≤ p− 1}.

It is easy to see that for n ≥ 1 the lower convex hull of these points is the
straight line with endpoints (0, vn(b0)) and (p− 1, p). In other words, defining

(3.1.1) imin := min
i
{i : ord̟(ai) ≤ e, 1 ≤ i ≤ p}.

the Newton polygon of gn is a single line segment with slope the negative of

(3.1.2) in :=
en (vF (aimin

) + ⌊imin/p⌋e) + imin − p

p− 1
.

In particular, for n ≥ 1 the extension Kn+1/Kn is elementary of level in in the
sense of [Win83, 1.3.1]; concretely, this condition means that

(3.1.3) vn(πn − σπn) = in + 1

for every Kn-embedding σ : Kn+1 →֒ K. It follows from this and [Win83, 1.4.2]
thatKπ/K is APF. Now let c(Kπ/K) be the constant defined in [Win83, 1.2.1].
Then by [Win83, §1.4]

c(Kπ/K) = inf
n>0

in
[Kn+1 : K]

,

so from (3.1.1) we deduce

c(Kπ/K) = inf
n>0

en (vF (aimin
) + ⌊imin/p⌋e) + imin − p

pn(p− 1)

=
e0
p− 1

(vF (aimin
) + ⌊imin/p⌋e)−

p− imin

p(p− 1)

since p − imin ≥ 0, so the above infimum occurs when n = 1. As imin ≥ 1,
the above constant is visibly positive, so by the very definition [Win83, 1.2.1],
Kπ/K is strictly APF.

The canonical embedding of the norm field of Kπ/K into Fr(R) is described
in [Win83, §4.2]; that the image of this embedding coincides with k((π)) is a
consequence of [Win83, 2.2.4, 2.3.1]. �

Remark 3.1.2. Observe that if the coefficient a1 of the linear term of f(u) has
v(a1) ≤ 1, then we have imin = 1 and

c(Kπ/K) =
e0
p− 1

vF (a1)−
1

p
.
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In this situation, vF (a1)—which plays an important role in our theory—is
encoded in the ramification structure of Kπ/K.

It is natural to ask when two given polynomials f and f ′ with corresponding
compatible choices π and π′ give rise to the same iterate extension. Let us write
f(x) = xp + ap−1x

p−1 + · · ·+ a1x and f ′(x) = xp + a′p−1x
p−1 + · · ·+ a′1x, with

ai, a
′
i ∈ OF and ai ≡ a′i ≡ 0 mod ̟ for 1 ≤ i < p. Let {πn} (respectively {π′

n})
be an f (resp. f ′) compatible sequence of elements in K. Set Kn := K(πn−1)

(resp. K ′
n = K(π′

n−1)) and let asu
s and a′s′u

s′ be the lowest degree terms of
f(u) and f ′(u) respectively.

Proposition 3.1.3. If Kπ = Kπ′ as subfields of K, then Kn = K ′
n for all n ≥ 1

and there exists an invertible power series ξ(x) ∈ OF [[x]] with ξ(x) = µ0x+ · · ·
and µ0 ∈ O

×
F such that

f(ξ(x)) = ξ(f ′(x)).

In particular, s = s′ and v(as) = v(a′s) are numerical invariants of Kπ = Kπ′ .

Conversely, if f and f ′ are given with s = s′ and v(as) = v(a′s), then we

have as = µ1−s
0 a′s for a unique µ0 ∈ O

×
F and there is a unique power series

ξ(x) ∈ F [[x]] with ξ(x) ≡ µ0x mod x2 satisfying f(ξ(x)) = ξ(f ′(x)) as formal

power series in F [[x]]. If ξ(x) lies in OF [[x]], then for any choice {π′
n}n of

f ′-compatible sequence with π′
0 a uniformizer of K, the sequence defined by

πn := ξ(π′
n) is f -compatible with π0 = ξ(π′

0) a uniformizer of K and Kπ = Kπ′ .

Furthermore, if v(as) = v(a′s) = v(̟), then ξ(x) always lies in OF [[x]].

Proof. Suppose first that Kπ = Kπ′ , and write simply K∞ for this common,

strictly APF extension ofK inK. It follows from the proof of Lemma 3.1.1 that
Kn+1 and K ′

n+1 are both the n-th elementary subextension of K∞; i.e. the

fixed field of GbnKGK∞
, where bn is the n-th break in the ramification filtration

GuKGK∞
; see [Win83, 1.4]. In particular, Kn+1 = K ′

n+1 for all n ≥ 0. Now
let W̟(•) be the functor of ̟-Witt vectors; it is the unique functor from
OF -algebras to OF -algebras satisfying

(1) For any OF -algebra A, we have W̟(•) =
∏
n≥0 • =: •N as functors

from OF -algebras to sets.
(2) The ghost map W̟(•)→ •N given by

(a0, a1, a2, . . .) 7→ (a0, a
p
0 +̟a1, a

p2

0 +̟ap1 +̟2a2, . . .)

is a natural transformation of functors from OF -algebras to OF -
algebras.

We remark that W̟(•) exists and depends only on ̟, and is equipped with
a unique natural transformation ϕ : W̟(•) → W̟(•) which on ghost compo-
nents has the effect (a0, a1, . . .) 7→ (a1, a2, . . .); see [CD15, §2].

Define the ring

A+
K∞/K

:= {(xi)i ∈ lim
←−
ϕ

W̟(OK̂∞
) : xn ∈W̟(OKn+1

) for all n},
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which depends only on F,̟, andK∞/K. The main theorem of [CD15], implies
that A+

K∞/K is a ̟-adically complete and separated OF -algebra equipped with

a Frobenius endomorphism ϕ, which is canonically a Frobenius-stable subring
of W (R)F that is closed under the weak topology on W (R)F . Giving A+

K∞/K

the subspace topology, the proof of [CD15, Prop. 7.13] then shows that the
f (respectively f ′)-compatible sequence π (respectively π′) determine isomor-
phisms of topological OF -algebras

η, η′ : OF [[x]] // A+
K∞/K

characterized by the requirement that the ghost components of (η)n
(resp. (η′)n) are (πn, f(πn), f

(2)(πn), . . .) (resp. (π′
n, f

′(π′
n), f

′(2)(π′
n), . . .));

here we give OF [[x]] the (̟, x)-adic topology. These isomorphisms moreover
satisfy

η(f(x)) = ϕ(η(x)) and η′(f ′(x)) = ϕ(η′(x)).

We therefore obtain a continuous automorphism ξ : OF [[x]]→ OF [[x]] satisfying

(3.1.4) f(ξ(x)) = ξ(f ′(x)).

Since ξ is a continuous automorphism of OF [[x]], we have that ξ preserves the
maximal ideal (̟, x). This implies that ξ(x) ≡ µ0x mod x2 with µ0 ∈ O

×
F .

Then (3.1.4) forces asµ
s
0x
s = a′s′µ0x

s′ which implies s = s′ and v(as) = v(a′s).

Conversely, suppose given f and f ′ with s = s′ and v(as) = v(a′s) and let
µ0 ∈ O

×
F be the unique unit with as = µ1−s

0 a′s; note that this exists because

s − 1 < p. We inductively construct degree i polynomials ξi(x) =
∑i

j=1 µjx
j

so that f(ξi(x)) ≡ ξi(f
′(x)) mod xi+s. As µs0as = µ0a

′
s, we may clearly take

ξ1(x) = µ0x. If ξi(x) has been constructed, we write ξi+1(x) = ξi(x)+µi+1x
i+1

and f(ξi(x)) − ξi(f ′(x)) ≡ λxi+s mod xi+s+1 and seek to solve

(3.1.5) f(ξi+1(x)) ≡ ξi+1(f
′(x)) mod xi+s+1.

As f(ξi+1(x)) = f(ξi(x)) +
df
dx(ξi(x))(µi+1x

i+1) + · · · , we see that (3.1.5) is
equivalent to

(3.1.6) λ = µi+1(a1 − a
′
1
i+1

) if s = 1, and λ = µi+1sasµ
s−1
0 if s > 1

which admits a unique solution µi+1 ∈ F . We set ξ(x) = limi ξi(x) ∈ F [[x]],
which by construction satisfies the desired intertwining relation (3.1.4). If ξ lies
in OF [[x]], it is clear that any f ′-compatible sequence π′

n with π′
0 a uniformizer

of K yields an f -compatible sequence πn := ξ(π′
n) with π0 a uniformizer of

K and Kn := K(πn−1) = K(π′
n−1) = K ′

n for all n ≥ 1. Finally, since we
have f(x) = f ′(x) ≡ xp mod ̟, it follows that f(ξi(x))− ξi(f ′(x)) ≡ 0 mod ̟,
i.e. λ ≡ 0 mod ̟ in the above construction. When v(as) = v(a′s) = v(̟), it
then follows from (3.1.6) that µi+1 ∈ OF , and ξ(x) ∈ OF [[x]] as claimed. �

As an immediate consequence of Proposition (3.1.3), one sees that there are
infinitely many distinct f -iterate extensions Kπ inside of K.
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3.2. Étale ϕ-modules. Let OE be the p-adic completion of SF [1/u],
equipped with the unique continuous extension of ϕ. Our fixed embedding
SF →֒W (R) determined by f and π uniquely extends to a ϕ-equivariant em-
bedding ι : OE →֒ W (FrR)F , and we identify OE with its image in W (FrR)F .
We note that OE is a complete discrete valuation ring with uniformizer ̟ and
residue field k((π)), which, as a subfield of FrR, coincides with the norm field
of Kπ/K thanks to Lemma 3.1.1. As FrR is algebraically closed, there is a
unique separable closure k((π))sep of k((π)) in FrR, and the maximal unrami-
fied extension (i.e. strict Henselization) OEur of OE with residue field k((π))sep

is uniquely determined up to unique isomorphism. The universal property
of strict Henselization guarantees that ι uniquely extends to an embedding
OEur →֒ W (FrR)F , which moreover realizes OEur as a ϕ-stable subring. We
write OÊur for the p-adic completion of OEur , which is again a ϕ-stable subring
of W (FrR)F . Again using the universal property of strict Henselization, one
sees that each of OE ,OEur and OÊur are Gπ-stable subrings of W (FrR)F , with
Gπ acting trivially on OE . As suggested by the notation, we write E , Eur, and

Êur for the fraction fields of OE ,OEur and OÊur , respectively. Finally, we define
Sur
F :=W (R)F ∩ OÊur .

Lemma 3.2.1. With notation as above:

(1) The natural action of Gπ on OÊur induces an isomorphism of profinite

groups

Gπ := Gal(K/Kπ) ≃ Aut(OÊur/OE) = Gal(Êur/E).

(2) The inclusions OF →֒ (OÊur)
ϕ=1 and OE →֒ (OÊur)

Gπ are isomor-

phisms.

Proof. By the very construction of OÊur and the fact that the residue field of
OE is identified with the norm field EKπ/K by Lemma 3.1.1, we have an iso-

morphism of topological groups Gal(Esep
Kπ/K

/EKπ/K) ≃ Aut(OÊur/OE) by the

theory of unramified extensions of local fields. On the other hand, the theory of
norm fields [Win83, 3.2.2] provides a natural isomorphism of topological groups
Gπ ≃ Gal(Esep

Kπ/K
/EKπ/K), giving (1).

To prove (2), note that the maps in question are local maps of ̟-adically
separated and complete local rings, so by a standard successive approximation
argument it suffices to prove that these maps are surjective modulo ̟. Now
left-exactness of ϕ-invariants (respectively Gπ-invariants) gives an Fp-linear
(respectively EKπ/K

-linear) injection

(OÊur)
ϕ=1/(̟) →֒ (Esep

Kπ/K
)ϕ=1 = Fp = OF /(̟),

respectively

(OÊur)
Gπ/(̟) →֒ (Esep

Kπ/K
)Gπ = EKπ/K

= OE/(̟)
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which must be an isomorphism of vector spaces over Fp (respectively EKπ/K
)

as the source is nonzero and the target is 1-dimensional. We conclude that
OF →֒ (OÊur)

ϕ=1 (respectively OE →֒ (OÊur)
Gπ) is surjective modulo ̟, and

therefore an isomorphism as desired. �

Denote by ModϕOE
(resp. Modϕ,torOE

) the category of pairs (M,ϕM ), where M
is a finite free OE -module (resp. a finite OE -module killed by a power of ̟)
and ϕM : M → M is a ϕ-semilinear and additive map whose linearization
1 ⊗ ϕM : ϕ∗M → M is an isomorphism. In each case, morphisms are ϕ-
equivarant OE -module homomorphisms. Let RepOF

(Gπ) (resp. ReptorOF
(Gπ))

be the category of finite, free OF -modules (resp. finite OF -modules killed by a
power of ̟) that are equipped with a continuous and OF -linear action of Gπ .

For M in ModϕOE
or in Modϕ,torOE

, we define

V (M) := (OÊur ⊗OE
M)ϕ=1,

which is an OF -module with a continuous action of Gπ. For V in RepOF
(Gπ)

or in ReptorOF
(Gπ), we define

M(V ) = (OÊur ⊗OF V )Gπ ,

which is an OE-module with a ϕ-semilinear endomorphism ϕM := ϕO
Êur
⊗ 1.

Theorem 3.2.2. The functors V and M are quasi-inverse equivalences be-

tween the exact tensor categories ModϕOE
(resp. Modϕ,torOE

) and RepOF
(Gπ)

(resp. ReptorOF
(Gπ)).

Proof. As in the proof of [KR09, Theorem 1.6], the original arguments of
Fontaine [Fon90, A1.2.6] carry over to the present situation. Indeed, by stan-
dard arguments with inverse limits, it is enough to prove the Theorem for
̟-power torsion objects. To do so, one first proves that M is exact, which
by (faithful) flatness of the inclusion OE →֒ OEur amounts to the vanishing
of H1(Gπ, ·) on the category of finite length OEur -modules with a continuous
semilinear Gπ-action. By a standard dévissage, such vanishing is reduced to
the case of modules killed by̟, where it follows from Hilbert’s Theorem 90 and
Lemma 3.2.1. One then checks that for any torsion V , the natural comparison
map M(V )⊗OE

OEur → V ⊗OF OEur induced by multiplication in OEur is an
OEur -linear, ϕ, and Gπ-compatible isomorphism by dévissage (using the settled
exactness of M) to the case that V is ̟-torsion, where it again follows from
Hilbert Theorem 90. Passing to submodules on which ϕ acts as the identity
and using Lemma 3.2.1(2) then gives a natural isomorphism V ◦M ≃ id.

In a similar fashion, the exactness of V and the fact that the comparison map

(3.2.1) V (M)⊗OF OEur // M ⊗OE
OEur

induced by multiplication in OEur is an isomorphism for general ̟-power tor-
sion modules M follows by dévissage from the the truth of these claims in the
case of M killed by ̟. In this situation, the comparison map (3.2.1) is shown
to be injective by checking that any Fp-linearly independent set of vectors in
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V (M) remains Esep
K∞/K

-linearly independent in E
sep
K∞/K

⊗Fp V (M), which is ac-

complished by a standard argument using the Frobenius endomorphism and
Lemma 3.2.1(2). To check surjectivity is then a matter of showing that both
sides of (3.2.1) have the same E

sep
K∞/K

-dimension, i.e. that the Fp-vector space

V (M) has dimension d := dimEK
∞/K

M . Equivalently, we must prove that

V (M) has pd elements. IdentifyingM with EdK∞/K
by a choice of EK∞/K

-basis

and writing (cij) for the resulting matrix of ϕ, one (noncanonically) realizes
V (M) as the set of Esep

K∞/K
-solutions to the system of d-equations xpi =

∑
cijxj

in d-unknowns, which has exactly pd solutions as ϕ is étale, so the matrix (cij)
is invertible. �

In what follows, we will need a contravariant version of Theorem 3.2.2, which
follows from it by a standard duality argument (e.g. [Fon90, §1.2.7]). For any
M ∈ModϕOE

(respectively M ∈Modϕ,torOE
), we define

T (M) := HomOE ,ϕ(M,OÊur), respectively T (M) := HomOE ,ϕ(M, Êur/OÊur),

which is naturally an OF -module with a continuous action of Gπ.

Corollary 3.2.3. The contravariant functor T induces an anti-equivalence

between ModϕOE
(resp. Modϕ,torOE

) and RepOF
(Gπ) ( resp. Rep

tor
OF

(Gπ)).

3.3. Kisin modules and Representations of finite E-height. For an
integer r ≥ 0, we write ′Modϕ,rSF

for the category of finite-type SF -modules M
equipped with a ϕSF -semilinear endomorphism ϕM : M→M satisfying

• the cokernel of the linearization 1⊗ ϕ : ϕ∗M→M is killed by Er;
• the natural map M→ OE ⊗SF M is injective.

One checks that together these conditions guarantee that the scalar extension
OE ⊗SF M is an object of ModϕOE

when M is torsion free, and an object

of Modϕ,torOE
if M is killed by a power of ̟. Morphisms in ′Modϕ,rSF

are ϕ-
compatible SF -module homomorphisms. By definition, the category of Kisin

modules of E-height r, denoted Modϕ,rSF
, is the full subcategory of ′Modϕ,rSF

consisting of those objects which are finite and free over SF . For any such
Kisin module M ∈Modϕ,rSF

, we define

TS(M) := HomSF ,ϕ(M,Sur
F ),

with Sur
F := W (R)F ∩ OÊur as above Lemma 3.2.1; this is naturally an OF -

module with a linear action of Gπ.

Proposition 3.3.1. Let M ∈ Modϕ,rSF
and write M = OE ⊗SF M for the

corresponding object of ModϕOE
.

(1) There is a canonical OF -linear and Gπ-equivariant isomorphism

TS(M) ≃ T (M). In particular, TS(M) is an object of RepOF
(Gπ)

and rankOF (TS(M)) = rankSF (M).
(2) The inclusion Sur

F →֒ W (R)F induces a natural isomorphism of

OF [Gπ ]-modules TS(M) ≃ HomSF ,ϕ(M,W (R)F ).
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Proof. As in the proofs of [Kis06, 2.1.2, 2.1.4] and [KR09, 3.2.1], the Lemma
follows from B1.4.2 and B1.8.3 of [Fon90] (cf. B1.8.6), using [Fon90, A1.2]
and noting that Fontaine’s arguments—which are strictly speaking only for
F = Qp—carry over mutatis mutandis to our more general situation. �

Example 3.3.2. Let M be a Kisin module of rank 1 over SF . Choosing a basis
e of M and identifying M = SF ·e, it follows from Weierstrass preparation that
we must have ϕ(e) = µEme for some µ ∈ S×

F . Consider the particular case
that ϕ(e) = Ee, which is a rank-1 Kisin module of E-height 1. Proposition
(3.3.1) then shows that TS(M) gives an OF -valued character of Gπ and that
there exists t ∈ W (R)F satisfying ϕ(t) = Et and t mod ̟ 6= 0 inside R. We
will see in §5 that the character of Gπ furnished by TS(M) can be extended to
a Lubin-Tate character of G if we assume that ̟2|a1 in OF , where a1 is the
linear coefficient of f(x) ∈ OF [x].

Let RepF (Gπ) denote the category of continuous, F -linear representations of
Gπ . An object V of RepF (Gπ) is of E-height r if there exists a Kisin module
M ∈ Modϕ,rSF

with V ≃ TSF (M)[1/p], and V is of finite E-height if there exists

an integer r such that V is of E-height r. As E = E(u) is fixed throughout the
paper, we will simply say that V is of (finite) height r.

For M an arbitrary object of Modϕ,rSF
, we write VS(M) := TS(M)[1/p] for the

associated height-r representation of Gπ. We will need the following general-
ization of [Kis06, Lemma 2.1.15] (or [Liu07, Corollary 2.3.9]):

Proposition 3.3.3. If V ∈ RepF (Gπ) is of height r then for any Gπ-stable OF -
lattice L ⊂ V , there exists N ∈Modϕ,rSF

such that TS(N) ≃ L in RepOF
(Gπ).

The proof of Proposition 3.3.3 will make use of the following key lemma:

Lemma 3.3.4. Let M be an object of ′Modϕ,rSF
that is torsion-free. Then the

intersection M′ := M[1/p] ∩ (OE ⊗SF M), taken inside of E ⊗SF M, is an

object in Modϕ,rSF
and there are canonical inclusions M ⊂M′ ⊂ OE ⊗SF M.

Proof. The proof of Lemma 2.3.7 in [Liu07] carries over mutatis mutandis to
the present situation. �

Proof of Proposition 3.3.3. As the proof is a simple adaptation of that of Corol-
lary 2.3.9 in [Liu07], we simply sketch the highlights. Let V ∈ RepF (Gπ) be
of height r, and select M ∈ Modϕ,rSF

with V ≃ VS(M). Put T := TS(M),
which is a Gπ-stable OF -lattice in V , and let L ⊂ V be an arbitrary Gπ-stable
OF -lattice. Put M := OE ⊗SF M and let N ∈ModϕOE

be the object of ModϕOE

corresponding to L via Corollary 3.2.3, so T (N) ≃ L in RepOF
(Gπ). Without

loss of generality, we may assume that N ⊂M . Writing f :M →M/N for the
natural projection, it is easy to check that f(M) is an object of ′Modϕ,rSF

. It

then follows from Proposition [Fon90, B 1.3.5] that N′ := ker(f
∣∣
M
) ⊂ N is an

object of ′Modϕ,rSF
. Writing N := N′[1/p] ∩N , we have that N is an object of

Modϕ,rSF
thanks to Lemma 3.3.4, and by construction we have OE ⊗SF N ≃ N ,
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so that TS(N) ≃ L as OF [Gπ]-modules thanks to Proposition 3.3.1 and the
choice of N . �

Proposition 3.3.5. Assume that ϕn(f(u)/u) is not power of E = E(u) for

any n ≥ 0. Then the functor TS : Modϕ,rSF
 RepOF

(Gπ) is fully faithful.

Proof. We use an idea of Caruso [Car, Proposition 3.1]. Fix M,M′ ∈ Modϕ,rSF
.

Using Corollary 3.2.3 and Lemma 3.3.1, we easily reduce the proof of Propo-
sition 3.3.5 to that of the following assertion: if f : OE ⊗SF M→ OE ⊗SF M′

is a morphism in ModϕOE
then f(M) ⊂ M′. By applying Lemma 3.3.4 to

f(M)+M′, we may further reduce the proof to that of the following statement:
if M ⊂ M′ ⊂ OE ⊗SF M then M = M′. Writing d := rkSF (M) = rkSF (M

′)
and applying ∧d, we may reduce to the case d = 1, and now calculate with
bases. Let e (resp. e′) be an SF -basis of M (resp. M′), and let a ∈ SF

be the unique element with e = ae′. Since OE ⊗SF M = OE ⊗SF M′, by
Weierstrass preparation, we may modify our choices of e and e′ to assume that
a = A(u) = us + cs−1u

s−1 + · · · + c1u + c0 with ci ∈ ̟OF0
. As in Example

3.3.2, we may suppose that ϕ(e′) = γ′Ene′ and ϕ(e) = γEn
′

e with γ, γ′ ∈ S×
F .

Then

γEn
′

A(u)e′ = γEn
′

e = ϕ(e) = ϕ(A(u))ϕ(e′) = ϕ(A(u))γ′Ene′

which necessitates γA(u)En
′

= γ′ϕ(A(u))En. Reducing modulo ̟ and com-
paring u-degrees, we see easily that n′ ≥ n. We therefore have

(3.3.1) γ0A(u)E
n′−n = ϕ(A(u)) for γ0 = γ(γ′)−1 ∈ S×

F .

As γ0 is a unit, it follows from (3.3.1) that A(u)En
′−n and ϕ(A(u)) must have

the same roots. Since A(u), ϕ(A(u)) and E are monic polynomials with roots

either 0 or with positive valuation, we conclude that A(u)En
′−n = ϕ(A(u)).

Let us put A(u) = ulA0(u) with A0(0) 6= 0 and m = n′ − n. Then (3.3.1)
simplifies to

(3.3.2) A0(u)E
m = (f(u)/u)lϕ(A0(u)).

We first treat the case l = 0 (so A = A0); we will then reduce the general
case to this one. Put Aϕ(u) := us + ϕ(cs−1)u

s−1 + · · · + ϕ(c1)u + ϕ(c0).
There is then a bijection between the roots of Aϕ(u) and the roots of A(u)
which preserves valuation. Let x0 be a nonzero root of A(u) which achieves
the maximal valuation. Then A(u)Em = ϕ(A(u)) implies that x0 is root of
ϕ(A(u)) = Aϕ(f(u)). That is f(x0) is a root of Aϕ(u). If f(x0) 6= 0, then since
f(u) ≡ up mod ̟ and x0 has positive valuation, we have v(f(x0)) > v(x0), so
there exists a root of A(u) with valuation strictly greater than v(x0), which
contradicts our choice of x0. We must therefore have that f(x0) = 0 is root of
Aϕ(u), which contradicts our assumption that A(0) 6= 0 (l = 0). We conclude
that A(u) = A0(u) has degree zero, and hence that M = M′ as desired.

Now suppose that l > 0 and let r1 ≥ 0 be the unique integer satisfying
(f(u)/u)l = Er1h1(u) for some unique monic h1 ∈ SF with E ∤ h1(u).
Comparing u-degrees in (3.3.2) gives r1 ≤ m, so h1(u)|A0(u) and we have
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A0(u) = h1(u)A1(u) for a unique monic polynomial A1 and m1 := m− r1 ≥ 0.
Equation (3.3.2) then becomes

A1(u)E
m1 = ϕ(h1(u))ϕ(A1(u)).

Now let r2 ≥ 0 be the unique integer with ϕ(h1(u)) = Er2h2(u) for h2 a monic
polynomial with E ∤ h2(u), and write A1(u) = h2(u)A2(u) with A2 monic and
m2 := m1 − r2 ≥ 0. We then have

A2(u)E
m2 = ϕ(h2(u))ϕ(A2(u)).

We continue in this manner, constructing nonnegative integers rn,mn with
mn+1 := mn − rn and monic An, hn ∈ SF with E ∤ hn, hnE

rn = ϕ(hn−1) and
An−1 = hnAn satisfying the equation

(3.3.3) An(u)E
mn = ϕ(hn(u))ϕ(An(u)).

So long as hn and An are non-constant, we have degAn < degAn−1, which can
not continue indefinitely. We conclude that there is some n ≥ 1 with either hn
or An constant, which forces hn = 1 or An = 1 by monicity. In the latter case,
(3.3.3) implies that hn+1 = 1, so in any case there is some n > 0 with hn = 1.
By the construction of the hm, we then have

(3.3.4) ϕn−1((f(u)/u)l) =

n∏

m=1,rm 6=0

ϕn−m(Erm).

We claim that in fact there is only one m with rm 6= 0. Indeed, if there exist
m1 > m2 with rmi 6= 0 for i = 1, 2, then writing f0(u) = f(u)/u, we see
that f0(f

(mi)(π)) = 0 for i = 1, 2. Since f(u) = f0(u)u, this implies that
f (m2+1)(π) = 0. Then

0 = f0(f
(m1)(π)) = f0(f

(m1−m2−1)(f (m2+1)(π))) = f0(f
(m1−m2−1)(0)) =f0(0),

which implies that u|f0(u). But this contradicts (3.3.2) because u ∤ A0(u). We
conclude that there is a unique m such that rm 6= 0, and it follows from (3.3.4)
that there exists n ≥ 0 such that ϕn(f(u)/u) is a power of E(u), contradicting
our hypothesis. We must therefore in fact have l = 0, whence M = M′ as we
showed above. �

Remark 3.3.6. The assumption that ϕ(n)(f(u)/u) is not a power of E for any
n ≥ 0 is satisfied in many cases of interest. For example, it is always satisfied
when a1 = 0 (which includes the classical situation f(u) = up), as then f(u)/u
has no constant term while any power of E = E(u) has nonzero constant term.

Example 3.3.7. The hypothesis of Proposition 3.3.5 that ϕ(n)(f(u)/u) is not
a power of E for any n ≥ 0 is necessary, as the following examples show:

(1) Fix r, let 0 ≤ l ≤ r be an integer and suppose that we have
ϕ(n)(f(u)/u) = El. Setting A(u) := f(u) · ϕ(f(u)/u) · · ·ϕn−1(f(u)/u)
if n > 0 and A(u) = u if n = 0, we have AEl = ϕ(A). In particular,
definining M = A(u)SF and M′ := SF , we have M ⊆ M′ and both
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M and M′ are objects of Modϕ,rSF
with height l ≤ r. However, M 6= M′

and it follows that the conclusion of Proposition 3.3.5 does not hold.
(2) Concretely, recall the situation in Example 2.1.2 where K = Qp(ζp),

F = Qp, π = ζp− 1 and ϕ(u) = (u+1)p− 1. In this case, E = ϕ(u)/u,
and the Kisin modules M′ := SF and M := uSF are both of height 1
and are non-isomorphic, but TS(M) ≃ TS(M′).

(3) As a less familiar variant, we can take ϕ(u) = (u − p)p−1u and let
E = ϕ(u) − p. Then ϕ(f(u)/u) = Ep−1, and the construction of (1)
provides a counterexample.

Corollary 3.3.8. Suppose that ϕn(f(u)/u) is not a power of E for any n ≥ 0
and ψ : V ′ → V is a morphism of height-r representations. Then there are

exact sequences

0 //L //M //N //0, and 0 //N //M′ //N′ //0

in Modϕ,rSF
which correspond via VS(·) to the exact sequences in RepF (Gπ):

0 //ψ(V ′) //V //V/ψ(V ′) //0 ,

and

0 //ker(ψ) //V ′ ψ //ψ(V ′) //0.

Proof. We may and do select Gπ-stable OF -lattices T ⊆ V and T ′ ⊆ V ′ with
ψ(T ′) ⊆ T and T/ψ(T ′) torsion-free. Thanks to Proposition 3.3.3, there exist
M and M′ in Modϕ,rSF

with T = TS(M) and T ′ = TS(M
′), and we define

M := OE ⊗SF M and M ′ := OE ⊗SF M′ and write f : M → M ′ for the
unique morphism in ModϕOE

with T (f) = ψ|T ′ . Let N ′ := M ′/f(M) and write
g : M ′ → N ′ for the natural projection. Writing N := f(M) = ker g, we then
have exact sequences in ModϕOE

0 //ker(f) //M
f //N //0

and

0 //N //M ′ g //N ′ //0

which correspond, via T (·), to the exact sequences in RepOF
(Gπ)

0 //ψ(T ′) //T //T/ψ(T ′) //0 ,

and

0 //ker(ψ) //T ′ ψ //ψ(T ′) //0.

Since N ′ corresponds to T/ψ(T ′), which is torsion-free, it follows that N ′ is also
torsion free and hence finite and free as anOE -module. DefineN := ker(g)∩M′,
the intersection taken inside of M ′. We claim that N is an object in Modϕ,rSF

.

First note that by [Fon90, B 1.3.5], the fact that M′ has height r implies that
both g(M′) and N have height r, and we need only show that N is free over
SF . To do this, it suffices by Lemma 3.3.4 to prove that N = N[1/p]∩N inside
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E⊗OE
N , or equivalently that N[1/p]∩N ⊆ N. For any x ∈ N[1/p]∩N , we have

by the very definition of N that x ∈ M′[1/p] ∩M ′ = M′. As x ∈ N = ker g,
we then have x ∈ ker g ∩M′ = N′ as desired. A similar argument shows that
L := ker(f) ∩M is a Kisin module in Modϕ,rSF

as well.

Again using Lemma 3.3.4, both Ñ := f(M)[1/p]∩N and N′ := g(M′)[1/p]∩N ′

are objects of Modϕ,rSF
. As OE ⊗SF Ñ = N = OE ⊗SF N, it follows from

Proposition 3.3.5 that Ñ = N. We therefore have exact sequences

0 // L[1/p] // M[1/p]
f // N[1/p] // 0,

and

0 // N[1/p] // M′[1/p]
g // N′[1/p] // 0 .

Unfortunately, it need not be true in general that f(M) = N or g(M′) = N′.
To remedy this defect, we modify M and M′ as follows. Using the inclu-
sion N ⊆ M′ and the above exact sequences, we may select an SF [1/p]-basis
e1, . . . , es, es+1, . . . , ed ofM[1/p] with the property that e1, . . . , es is anSF -basis
of L and e′s+1 := f(es+1), . . . , e

′
d := f(ed) is an SF -basis of N. We may further

complete e′s+1, . . . , e
′
d to an SF [1/p]-basis e

′
s+1, . . . , e

′
d, e

′
d+1, . . . , e

′
d′ of M

′ with
the property that e′d+1, . . . , e

′
d′ projects via g to an SF -basis of N′. We then

have matrix equations

ϕ(e1, . . . , ed) = (e1, . . . , ed)

(
A C
0 A′

)

and

ϕ(e′s+1, . . . , e
′
d, e

′
d+1, . . . , e

′
d′) = (e′s+1, . . . , e

′
d, e

′
d+1, . . . , e

′
d′)

(
B D
0 B′

)
,

where the entries of A,A′, B,B′ are in SF , while the entries of C and D
are in SF [1/p]. Let m ≥ 0 be such that pmC and pmD have all entries in
SF . Replacing M by the SF -submodule of M[1/p] generated over SF by
p−me1, . . . , p

−mes, es+1, . . . , ed, and M′ by the SF -submodule of M′[1/p] gen-
erated by (e′s+1, . . . , e

′
d, p

me′d+1, . . . , p
me′d′) does the trick. �

4. Constructing Kisin modules from F -crystalline
representations

In this section, we associate to any F -crystalline representation a Kisin module
in the sense of §3.3 and employ our construction to prove Theorems 1.0.1 and
1.0.2. Throughout, and especially in §4.2, we make free use of many of the
ideas of [Kis06] and [KR09]. To surmount the difficulty that we do not in
general have a natural N∇-structure (see the introduction), we will compare
our modules over the Robba ring to those of Kisin’s classical setting in in §4.4,
which will allow us to descend these modules to the desired Kisin modules.
The proofs of our main results (Theorems 1.0.1 and 1.0.2) occupies §4.5.
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4.1. Generalities on F -crystalline representations. Let V be an F -
linear representation of G = GK or of Gπ. We write V ∨ for the F -linear dual of
V with its natural G or Gπ-action. We warn the reader at the outset that our
notational conventions regarding Fontaine’s functors are dual to the standard
ones; we have chosen to depart from tradition here as it will be more convenient
to deal with the integral theory.

Let V be an object of RepF (G). Then DdR(V ) := (V ∨⊗Qp BdR)
G is naturally

a module over the semilocal ring KF := K ⊗Qp F , so we have a decomposition

DdR(V ) =
∏

m

DdR(V )m

with the product running over all maximal ideals ofKF . We give eachDdR(V )m
the filtration induced from that of DdR(V ), and we denote by m0 the kernel of
the natural map K ⊗Qp F → K coming from the given inclusion F →֒ K and
multiplication. Following [KR09], we define:

Definition 4.1.1. We say that V ∈ RepF (G) is F -crystalline if it is crys-
talline (as a Qp-linear G-representation) and the filtration on DdR(V )m is triv-

ial (FiljDdR(V )m = 0 if j > 0 and Fil0DdR(V )m = DdR(V )m) when m 6= m0.

We write RepF -cris
F (G) for the category of F -crystalline F -representations of G.

We now wish to describe the category of F -crystalline G-representations in
terms of filtered ϕ-modules. To do this, we define:

Definition 4.1.2. Let MFϕF0,K
be the category of triples (D,ϕ,FiljDF0,K)

where D is a finite dimensional F0-vector space, ϕ : D → D is a semilinear
(over the F -linear extension ϕ of the p-power Frobenius map K0 → K0) en-

domorphism whose linearization is an F0-linear isomorphism, and FiljDF0,K is
a separated and exhaustive descending filtration by K-subspaces on the scalar
extension DF0,K := D ⊗F0

K. Morphisms in this category are ϕ-compatible
F0-linear maps D → D′ which are filtration-compatible after applying ⊗F0

K.

Let V be an F -crystalline G-representation with F -dimension d. Then

D := Dcris(V ) := (V ∨ ⊗Qp Bcris)
G

is naturally a module over F ⊗Qp K0, equipped with a semilinear (over 1 ⊗ σ
for σ the p-power Frobenius automorphism of K0) Frobenius endomorphism
ϕ : D → D which linearizes to an isomorphism. By our assumption that
K0 ∩ F = Qp, the natural multiplication map F ⊗Qp K0 → FK0 =: F0 is
an isomorphism, so D is an F0-vector space which, as V is crystalline as a
Qp-representation, has K0-dimension d[F : Qp], so must have F0-dimension d.

The natural injective map

D ⊗K0
K = Dcris(V )⊗K0

K →֒ DdR(V ) := (V ∨ ⊗Qp BdR)
G

is necessarily an isomorphism of FK := F ⊗Qp K-modules, so since V is F -
crystalline we have a direct sum decomposition of filtered K-vector spaces
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D ⊗K0
K =

⊕
mDK,m, with DK,m having trivial filtration unless m = m0.

Noting the canonical identification

DK,m0
= D ⊗F0

K =: DF0,K ,

we therefore obtain a filtration on DF0,K . In this way we obtain an object

Dcris,F (V ) := (D,ϕ,FiljDF0,K)

of MFϕF0,K
.

Conversely, if D is any object of MFϕF0,K
, we define

Vcris,F (D) := HomF0,ϕ(D,B
+
cris,F ) ∩ HomK,Fil•(DF0,K , B

+
cris ⊗K0

K)

with the intersection taken inside of HomK(DF0,K , B
+
cris ⊗K0

K), via the map

HomF0,ϕ(D,B
+
cris,F )

� � // HomK(DF0,K , B
+
cris ⊗K0

K)

that sends an F0-linear h : D → B+
cris,F to its linear extension along F0 → K.

Proposition 4.1.3. Let V ∈ RepF -cris
F (G). Then Vcris,F (Dcris,F (V )) ≃ V .

Proof. Set D = Dcris(V ) := (V ∨ ⊗Qp B
+
cris)

G and put DK := K ⊗K0
D. As it

is well-known (e.g. [Fon94b, §5.3.7]) that V ≃ Vcris(D) as F [G]-modules, for

Vcris(D) = HomK0,ϕ(D,B
+
cris) ∩HomK,Fil(DK , B

+
cris ⊗K0

K),

it is enough to prove that Vcris(D) ≃ Vcris,F (D) as F [G]-modules. We will first
construct an F -linear isomorphism

(4.1.1) ι : HomK0
(D,B+

cris)
≃ // HomF0

(D,B+
cris,F ).

Writing DF0
= D ⊗K0

F0, which is an F0 ⊗K0
F0-module, we note that

F0 ≃ F0 ⊗F0
F0 is a subfield of F0 ⊗K0

F0, so we may and do regard
D ≃ D ⊗F0

F0 as an F0-subspace of DF0
. Thus, restricting homomor-

phisms from DF0
to the subspace D gives a natural map of F -vector spaces

ι′ : HomF0
(DF0

, B+
cris,F ) → HomF0

(D,B+
cris,F ). As HomK0

(D,B+
cris) is eas-

ily checked to be an F -subspace of HomF0
(DF0

, B+
cris,F ), restriction of ι′ to

HomK0
(D,B+

cris) then gives the desired map (4.1.1).

To check that (4.1.1) is an isomorphism, we explicitly compute with bases: Let
e1, . . . , ed be an F0-basis of D and β1, . . . , βeF a K0-basis of F0. Any x ∈ D
can then be uniquely expressed as a linear combination x =

∑
ij aijβjei for

some aij ∈ K0, while any y ∈ DF0
admits a unique representation of the

form y =
∑

i,j,l aijlβjei ⊗ βl with aijl ∈ K0. The natural F -linear inclusion
D →֒ DF0

induced by F0 ⊗F0
F0 ⊂ F0 ⊗K0

F0 carries x ∈ D above to

x =
∑

ij

aijβjei ⊗ βj ∈ DF0
.

In particular, if h ∈ HomK0
(D,B+

cris), then h is uniquely determined by the
matrix {cij} with cij := h(βjei) ∈ B

+
cris, and it follows from definitions that
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ι(f)(x) =
∑

ij aijcij ⊗ βj as an element of B+
cris ⊗K0

F0. From this explicit
description of ι, one checks easily that ι is indeed an isomorphism.

From the very definition of (4.1.1), one checks that ι induces an isomorphism

HomK0,ϕ(D,B
+
cris) ≃ HomF0,ϕ(D,B

+
cris,F ),

so to complete the proof it remains to show that for any h ∈ HomK0
(D,B+

cris),
the scalar extension h⊗1 : D⊗K0

K → B+
cris⊗K0

K is compatible with filtrations

if and only if this is true of ι(h)⊗ 1 : D⊗F0
K → B+

cris,F ⊗F0
K. Observe that

the construction of the map (4.1.1) gives the following commutative diagram,

DK

h⊗K0
1

// B+
cris ⊗K0

K

DF0,K

?�

OO

ι(h)⊗F0
1
// B+

cris,F ⊗F0
K

(4.1.2)

where we make the identification B+
cris ⊗K0

K = B+
cris,F ⊗F0

K. As V is F -

crystalline, we have FiliDK = FiliDF0,K for i ≥ 1 by definition, and it follows
from this and (4.1.2) that

(h⊗
K0

1)(FiliDK) ⊂ FiliB+
cris⊗

K0

K ⇐⇒ (ι(h)⊗
F0

1)(FiliDF0,K) ⊂ FiliB+
cris,F ⊗

F0

K,

which completes that proof of Vcris,F (D) ≃ Vcris(D) ≃ V as F [G]-modules. �

Let V be an F -linear representation of G. For each field embedding τ : F → K,
we define the set τ-Hodge-Tate weights of V :

HTτ (V ) := {i ∈ Z | (V ⊗F,τ CK(−i))G 6= {0}},

where CK is the p-adic completion ofK. It is easy to see that V is F -crystalline
if and only if V is crystalline and HTτ (V ) = {0} unless τ is the trivial embed-
ding τ0 : F ⊂ K ⊂ K. For the remainder of this paper, we will fix a nonneg-
ative integer r with the property that HTτ0(V ) ⊂ {0, . . . , r}, or equivalently,

Filr+1DF0,K = {0}. We denote by RepF -cris,r
F (G) the category of F -crystalline

representations V of G with HTτ0(V ) ⊂ {0, . . . , r}.

4.2. ϕ-modules over O. Recall that we equip F0((u)) with the Frobenius
endomorphism ϕ : F0((u)) → F0((u)) which acts as the canonical Frobenius on
K0, acts trivially on F , and sends u to f(u). For any sub-interval I ⊂ [0, 1), we
write OI for the subring of F0((u)) consisting of those elements which converge
for all x ∈ K with |x| ∈ I. For ease of notation, we put O = O[0,1) and as before

we setKn = K(πn−1). We denote by Ŝn the completion of Kn+1⊗F0
SF at the

maximal ideal (u−πn). Equip Ŝn with its (u−πn)-adic filtration, which extends

to a filtration on the quotient field Fr Ŝn = Ŝn[1/(u− πn)]. Note that for any

n we have natural maps of F0-algebras SF [1/p] →֒ O →֒ Ŝn given by sending
u to u, where the first map has dense image. We will write ϕW : SF → SF for
the OF [[u]]-linear map which acts on W (k) via the canonical lift of Frobenius,
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and by ϕS/W : SF → SF the OF0
-linear map which sends u to f(u). Let

c0 = E(0) ∈ F0 and set

λ :=

∞∏

n=0

ϕn(E(u)/c0) ∈ O.

A ϕ-module over O is a finite free O-module M equipped with a semilinear
endomorphism ϕM : M → M. We say that M is of finite E-height if the
cokernel of the O-linear map 1⊗ ϕM : ϕ∗M→M is killed by Er for some r,
and we write Modϕ,rO for the category of ϕ-modules overO of E-height r. Scalar
extension along the inclusion SF →֒ O gives a functor Modϕ,rSF

→ Modϕ,rO from
height-r Kisin modules to ϕ-modules over O of E-height r.

Now let V ∈ RepF -cris,r
F (G) be any F -crystalline representation of G, and write

D := Dcris,F (V ) for the corresponding filtered ϕ-module. We functorially as-
sociate to D an O-module M(D) as follows: For each nonnegative integer n,
let ιn be the composite map:

(4.2.1) O⊗F0
D
ϕ−n

W ⊗ϕ−n
D // O⊗F0

D // Ŝn ⊗F0
D = Ŝn ⊗K DF0,K ,

where the second morphism is induced by the canonical inclusion O → Ŝn.
We again write ιn for the canonical extension

ιn : O[1/λ]⊗F0
D −→ Fr Ŝn ⊗K DF0,K ,

and we define

M(D) :=

{
x ∈ O[1/λ] ⊗

F0

D
∣∣∣ ιn(x) ∈ Fil0

(
Fr Ŝn ⊗

K
DF0,K

)
, ∀n ≥ 0

}
.

Proposition 4.2.1. M(D) is a ϕ-module over O of E-height r.

Proof. This is Lemma 1.2.2 in [Kis06] (also see Lemma (2.2.1) in [KR09]) with
the following minor modifications: first note that we only discuss crystalline
representation here, so we do not need the “logarithm element” ℓn which occurs
in Kisin’s classical setting (strictly speaking, we do not know how to construct
ℓn in our general setting). Likewise, we may replace D0 := (O[ℓn]⊗K0

D)N=0

in the proof of [Kis06, 1.2.2] with D0 = O⊗F0
D throughout. In the classical

setting, Kisin showed thatM(D) also has an N∇-structure, which we entirely
ignore here (once again, we do not know how to construct N∇ in general). This
is of no harm, as the proof of Lemma 1.2.2 does not use the N∇-structure of
O in any way. Finally, we note that Lemma 1.1.4 of [Kis06], which plays an
important role in the proof of [Kis06, 1.2.2], is well-known for O-modules in
our more general context.4 �

4Indeed, Kisin’s proof of [Kis06, 1.1.4] relies on §4 of Berger’s paper [Ber02] as well as
results of Lazard [Laz62, §7–8] and Lemma 2.4.1 of [Ked04], while the required facts in
[Ber02] build on Lazard’s work in a natural way. But [Laz62] already deals in the generality
we need, as does Kedlaya [Ked04]. Thus, one checks that all the proofs of the results needed
to establish [Kis06, 1.1.4] (as well as Kisin’s argument itself) carry over mutatis mutandis to
our more general situation.
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As above, let us write D0 := O ⊗F0
D. We record here the following useful

facts, which arise out of (our adaptation of) Kisin’s proof of Proposition 4.2.1:

(1) D0 ⊂M ⊂ λ−rD0.

(2) ι0 induces an isomorphism of Ŝ0-modules

Ŝ0 ⊗
O
M(D) ≃

∑

j≥0

(u− π)−jŜ0 ⊗
K
FiljDF0,K =

∑

j≥0

E−jŜ0 ⊗
K
FiljDF0,K .

Consider now the obvious inclusions D →֒ D0 ⊂M(D). As Frobenius induces
a linear isomorphism ϕ∗D ≃ D, we obtain a linear isomorphism ϕ∗D0 ≃ D0

and hence an injection ξ : D0 → ϕ∗(M(D)). Defining Oα := SF [[
Ep

̟ ]][1/p], one

checks that Oα = SF [[
ue0p

̟ ]][1/p] and that O ⊂ Oα ⊂ O[0,|π|1/p).

Lemma 4.2.2. The map ξα := Oα ⊗O ξ : Oα ⊗F0
D → Oα ⊗O ϕ∗M(D) is an

isomorphism.

Proof. Using the containments D0 ⊂ M(D) ⊂ λ−rD0 and D0 ≃ ϕ∗D0, we see
that D0 ⊂ ϕ∗(M(D)) ⊂ ϕ(λ)−rD0. It is easy to check that ϕ(λ) is a unit in
Oα, and it follows that ξα is an isomorphism. �

For an objectM ∈Modϕ,rO , we define a decreasing filtration on ϕ∗M by:

(4.2.2) Fili(ϕ∗M) := {x ∈ ϕ∗M | (1⊗ ϕ)(x) ∈ EiM}.

On the other hand, using the evident inclusions Oα ⊂ O[0,|π|1/p) ⊂ Ŝ0 we

obtain a canonical injection Oα ⊗F0
D →֒ Ŝ0 ⊗K DF0,K , which allows us to

equip Oα⊗OD0 with the natural subspace filtration, using the tensor product

filtration on Ŝ0 ⊗K DF0,K .

Lemma 4.2.3. The inverse isomorphism

ξ′α : Oα ⊗O ϕ∗M(D)
≃

(ξα)−1

// Oα ⊗F0
D

of Lemma 4.2.2 is compatible with filtrations and Frobenius.

Proof. Clearly, ξ′α is compatible with Frobenius. To prove that ξ′α is filtration
compatible, we use the two facts recorded after Proposition 4.2.1. As noted

above, ϕ(λ) is a unit in Ŝ0, so the first fact implies that the injective map

ξ : D0 ≃ ϕ∗D0 →֒ ϕ∗M(D) is an isomorphism after tensoring with Ŝ0. Put

D̂0 := Ŝ0 ⊗O D0 and define an auxillary filtration on D̂0 by

F̃il
i
D̂0 := D̂0 ∩ E

i(Ŝ0 ⊗OM(D)).

From the very definition (4.2.2), it is clear that 1 ⊗ ξ : D̂0 ≃ Ŝ0 ⊗O ϕ∗M(D)

carries F̃il
i
D̂0 isomorphically onto Fili(Ŝ0 ⊗O ϕ∗M(D)). On the other hand,

the second fact above implies that an element d ∈ D̂0 lies in Ei(Ŝ0⊗OM(D))

if and only if ι0(d) ∈ Fili(Ŝ0 ⊗K DF0,K), from which F̃il
i
D̂0 = FiliD̂0 follows.

Hence ξ′α is indeed compatible with filtrations. �

Documenta Mathematica 21 (2016) 223–270



252 Bryden Cais, Tong Liu

For simplicity, let us put M := M(D). It follows from Lemma 4.2.3 that
the isomorphism ξ′α specializes to give a natural identification of ϕ-modules
D ≃ ϕ∗M/uϕ∗M as well as a natural identification of filtered K-vector spaces
DF0,K ≃ ϕ

∗M/Eϕ∗M. Writing ψπ for the composite mapping

ψπ : ϕ∗M։ ϕ∗M/Eϕ∗M≃ DF0,K ,

we therefore obtain:

Corollary 4.2.4. The map ψπ : ϕ∗M(D)→ DF0,K is filtration compatible.

Remark 4.2.5. In the classical situation where F = Qp and f(u) = up, to
any objectM of Modϕ,rO , Kisin functorially associates a filtered ϕ-module via

D(M) := ϕ∗M/uϕ∗M with Fili(D(M)K) := ψπ(Fil
iϕ∗M). That this is

possible rests crucially on the existence of a unique ϕ-equivariant isomorphism

ξα : Oα ⊗F0
D(M) ≃ Oα ⊗O ϕ∗M

reducing modulo u to the given identification D(M) = ϕ∗M/uϕ∗M, which is
Lemma 1.2.6 of [Kis06]. For more general F and f(u) = up+ · · ·+ a1u, we are
only able to construct such a map ξα under the restriction ̟r+1|a1 in OF ; see
Lemma 4.5.6.

To conclude this section, we record the following further consequence of Lemma

4.2.3: Setting B̃α := W (R)[[E
p

̟ ]][1/p] ⊂ B+
cris,F , one checks that the subspace

filtration {FilnB̃α}n coincides with the filtration {EnB̃α}n. As SF ⊂W (R)F ,

we have a canonical inclusionOα ⊂ B̃α, and the map ξα of Lemma 4.2.2 induces
a natural isomorphism

(4.2.3) ξ′
B̃α

: B̃α ⊗O ϕ∗M≃ B̃α ⊗F0
D.

As the inclusion Ŝ0 ⊂ B
+
dR is compatible with filtrations, we deduce:

Corollary 4.2.6. The map (4.2.3) is compatible with Frobenius and filtrations.

4.3. The classical setting. For future reference, we now recall the main
results in Kisin’s classical situation, where F = Qp and f(u) = up. In this
subsection only, we fix a choice π := {πn}n of p-power compatible roots of
a fixed uniformizer π = π0 in K, and set K∞ := Kπ and G∞ := Gπ. The
following summarizes the main results in this setting:

Theorem 4.3.1 ([Kis06]). Let V be a Qp-valued crystalline representation of

G with Hodge-Tate weights in {0, . . . , r} and T ⊂ V a G∞-stable Zp-lattice.
Then:

(1) There exists a unique Kisin module M so that TS(M) ≃ T as Zp[G∞]-
modules.

(2) If D = Dcris(V ) is the associated filtered ϕ-module, then one has

M(D) ≃ O⊗S M as ϕ-modules.

Proof. These are the main results of [Kis06] restricted to crystalline represen-
tations. �
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Now let F be an arbitrary extension of Qp contained in K and let V be an
F -crystalline representation and T a G∞-stable OF -lattice in V . Viewing V
as a crystalline Qp-valued representation and T as a G∞-stable Zp-module,
by Theorem 4.3.1 there is a unique (classical) Kisin module M attached to T ,

which is of finite Ẽ-height, for Ẽ := Ẽ(u) the minimal polynomial of π over K0

(we write Ẽ to distinguish this polynomial from our fixed E, which by definition
is the minimal polynomial of π over F0 = FK0). The additional OF -structure
on T is reflected on the classical Kisin module in the following way:

Corollary 4.3.2. The classical Kisin module M is naturally a finite and free

SF -module and as such has E-height r.

Proof. Proposition 3.4 of [GLS14] shows that M is naturally a finite and free

SF -module (see also the proof of [Kis08, Prop. 1.6.4]). Factor Ẽ in OF0
[u] as

Ẽ = E1 · · ·EeF with E1 = E, and for each i write ŜEi for the completion of
the localization of SF at the ideal (Ei). We must prove that the injective map
1 ⊗ ϕ : ϕ∗M → M has cokernel killed by a power of E = E1. To do this, it
suffices to prove that the scalar extension

(4.3.1) ϕ♯i : ŜEi ⊗SF ϕ
∗M

1⊗(1⊗ϕ) // ŜEi ⊗SF M

of 1⊗ϕ along SF → ŜEi is an isomorphism when i > 1. WritingM :=M(D),
we recall that the map ψπ : ϕ∗M→ DK is compatible with filtrations thanks
to Corollary 4.2.4, from which it follows that the map

ψπ
∣∣
ϕ∗M

: ϕ∗M // ϕ∗M/Ẽϕ∗M
� � // DK

is also filtration-compatible. As V is F -crystalline, for any i > 1 we have
FiljDK,mi = 0 for all j ≥ 1, where mi is the maximal ideal of F ⊗Qp K

corresponding to Ei, and it follows that Fil1ϕ∗M ⊂ Eiϕ
∗M for all i > 1. We

then claim that for i > 1 the map 1⊗ ϕ : ϕ∗M/Eiϕ
∗M → M/EiM induced

from 1 ⊗ ϕ by reduction modulo Ei is injective. To see this, observe that if
x ∈ ϕ∗M has (1 ⊗ ϕ)(x) = Eim for m ∈ M, then writing y :=

∏
j 6=i Ejx,

we have (1 ⊗ ϕ)(y) = Ẽm so that y ∈ Fil1ϕ∗M by the very definition of the
filtration on ϕ∗M. By what we have seen above, we then have y ∈ Eiϕ

∗M, so
since Ei is coprime to

∏
j 6=i Ej , we obtain x ∈ Eiϕ∗M as claimed. Now both

ϕ∗M and M are SF -free of the same rank, so as 1⊗ ϕ is injective, we see that
Qp ⊗Zp 1⊗ ϕ is an isomorphism for i > 1. But this map coincides with the

map ϕ♯i obtained from (4.3.1) by reduction modulo Ei, so it follows that ϕ♯i is
an isomorphism as well, as desired. �

4.4. Comparing constructions. Let us first recall some standard facts
about the Robba ring as in [Kis06]. For finer details of the Robba ring R
and its subring Rb, we refer to §2 (in particular §2.3) of [Ked04], noting that
several different notations are commonly used (in particular, we advise the
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reader that Rb = E† = Γ
k((t))
con [1/p]). The Robba ring is defined as

R := lim
s→1−

O(s,1)

and comes equipped with a Frobenius endomorphism, which is induced by the
canonical maps ϕ : O(s,1) → O(s1/p,1). Writing Ob

(s,1) ⊂ O(s,1) for the subring

of functions which are bounded, we also define the bounded Robba ring:

Rb := lim
s→1−

Ob
(s,1),

which is naturally a Frobenius-stable subring of R. Finally, we put

ORb :=

{
∑

n∈Z

anu
n ∈ Rb

∣∣∣ an ∈ OF0
∀n ∈ Z

}
;

this is a Henselian discrete valuation ring with uniformizer ̟ and residue field
k((u)). One checks that the fraction field of ORb is Rb, justifying our notation;
in particular, Rb is a field. Note that O is canonically a Frobenius-stable
subring of R.

By definition, a ϕ-module over R is a finite free R-module M equipped with
a ϕ-semilinear map ϕM : M → M whose linearization 1 ⊗ ϕ : ϕ∗M → M
is an isomorphism. One checks that E(u) ∈ O is a unit in R, so that scalar
extension along O →֒ R gives a functor from ϕ-modules over O to ϕ-modules
over R. A ϕ-moduleM over R is étale ifM admits a basis with the property
that the corresponding matrix of ϕM lies in GLd(ORb); by a slight abuse of
terminology, we will say that a ϕ-module over O is étale if its scalar extension
to R is. Our main result of this subsection is the following:

Theorem 4.4.1. Let V ∈ RepF -cris,r
F (G) and write D := Dcris,F (V ) for the

corresponding filtered ϕ-module. If M(D) is the ϕ-module over O attached to

D as in §4.2, we have:

(1) M(D) is étale;

(2) There exists a Kisin module M ∈Modϕ,rSF
such that O⊗SF M ≃M(D).

First note that there is a canonical inclusion SF →֒ ORb , so that (2) implies
(1). It follows that the above theorem is true in the classical setting of Kisin
by Theorem 4.3.1. In what follows, we will reduce the general case of Theorem
4.4.1 to the known instance of it in the classical setting. To ease notation,
we will adorn various objects with a superscript of “c” to signify that they
are objects in the classical setting. We likewise abbreviate M :=M(D) and

Mc := Mc(D). We note that Oc
α ⊂ B̃α, as E(uc) is another generator of

Fil1W (R)F so E(uc) = µE(u) for some µ ∈ W (R)×F thanks to Lemma 2.1.3.

By Corollary 4.2.6, the B̃α-linear isomorphism ξ′
B̃α

: B̃α ⊗O ϕ∗M≃ B̃α ⊗F0
D

is Frobenius and filtration compatible. The key point is that the Frobenius and

filtration on B̃α ⊗F0
D are canonical (recall that the filtration on B̃α ⊗F0

D is

induced by the inclusion B̃α ⊗F0
D →֒ B+

dR ⊗K DF0,K) and are independent of
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the choice of ϕ(u) = f(u). We therefore have a natural isomorphism

(4.4.1) ξ̃ : B̃α ⊗O ϕ∗M≃ B̃α ⊗Oc ϕ∗Mc,

that is Frobenius and filtration compatible.

Lemma 4.4.2. There is a B̃α-linear and Frobenius-compatible isomorphism

η : B̃α ⊗OM≃ B̃α ⊗Oc Mc.

Proof. Choose an O-basis e1, . . . , ed of M, and let A ∈ Md(O) be the cor-
responding matrix of Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. We
write ei := 1 ⊗ ei ∈ ϕ∗M for the induced basis of ϕ∗M. Using the defini-
tion of Filiϕ∗M, it is not difficult to see that there is a matrix B ∈ Md(O)
satisfying AB = BA = ErId and with the property that Filrϕ∗M is gen-
erated by (α1, . . . , αd) := (e1, . . . , ed)B. As promised, we denote by eci , A

c,
etc. the objects in the classical setting corresponding to a choice ec1, . . . , e

c
d of

Oc-basis ofMc. Let X ∈ GLd(B̃α) be the matrix determined by the require-

ment ξ̃(e1, . . . , ed) = (ec1, . . . , e
c
d)X. As ξ̃ is compatible with both Frobenius and

filtrations, we find that

ξ̃◦ϕ(e1, . . . , ed) = (ec1, . . . , e
c
d)Xϕ(A) = ϕ◦ ξ̃(e1, . . . , ed) = (ec1 . . . , e

c
d)ϕ(A

c)ϕ(X)

and there exists a matrix Y ∈ GLd(B̃α) with

ξ̃(α1, . . . , αd) = (αc1, . . . , α
c
d)Y.

We conclude that Xϕ(A) = ϕ(Ac)ϕ(X) and XB = BcY . Since B̃α is an

integral domain, the facts that B = E(u)rA−1 and Bc = E(uc)r(Ac)−1 imply
that AcXE(u)r = E(uc)rY A. Due to Lemma 2.1.3, both E(u) and E(uc)

are generators of Fil1W (R)F , so µ := E(uc)/E(u) is a unit in W (R)F . We
therefore have the relation AcX = µrY A. Combining this with the equality
Xϕ(A) = ϕ(Ac)ϕ(X) yields X = ϕ(µrY ), and we deduce Acϕ(µrY ) = µrY A.

Defining a B̃α-linear map

η : B̃α ⊗OM //B̃α ⊗Oc Mc

by the requirement (η(e1), . . . , η(ed)) = (ec1, . . . , e
c
d)µ

rY , one then checks that
η provides the claimed Frobenius-compatible isomorphism. �

Recall that Lemma 2.2.1 gives inclusions O ⊂ B̃+
rig,F ⊂ B̃α.

Corollary 4.4.3. The isomorphism η of Lemma 4.4.2 descends to a B̃+
rig,F -

linear and Frobenius-compatible isomorphism

ηrig : B̃+
rig,F ⊗OM≃ B̃

+
rig,F ⊗Oc Mc.

Proof. We will use the notation of the proof of Lemma 4.4.2. Let us put

Z := µrY ∈ GLd(B̃α), so that η(e1, . . . , ed) = (e1, . . . , ed)Z, and note that
Acϕ(Z) = ZA as η is compatible with Frobenius. To prove the corollary, it

suffices to show that both Z and Z−1 have entries in B̃+
rig,F . We will show that
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Z ∈ Md(B̃
+
rig,F ); the proof of the corresponding fact for Z−1 is similar and is

left to the reader. By the definition of B̃+
rig,F , it suffices to show that for any m,

there exists Zm ∈Md(B
+
max,F ) with ϕ

m(Zm) = Z, which we prove by induction

on m. The base case m = 0 is obvious, as B̃α ⊂ B+
max,F . Now suppose

that Zm exists, and note that from the equality Acϕ(Z) = ZA we obtain
E(u)rZ = Acϕ(Z)B. We may write Ac = ϕm+1(Am+1) and B = ϕm+1(Bm+1)
thanks to Lemma 2.2.1, and we then have E(u)rZ = ϕm+1(Am+1ZmBm+1).
Finally, Lemma 2.1.5 implies the existence of Zm+1. �

We can now prove Theorem 4.4.1:

Proof of Theorem 4.4.1. We first prove that M is étale, and to do so we will
freely use the results and notation of [Ked04]. By the main theorem of [Ked04],
M is étale if and only if M is pure of slope 0. Hence Mc is pure of slope 0
thanks Theorem 4.3.1 and our remarks immediately following Theorem 4.4.1.
Since the slope filtration of M does not change after tensoring with the ring
Γalg
an,con constructed in [Ked04], it is enough to show that

Γalg
an,con ⊗OM≃ Γalg

an,con ⊗Oc Mc.

as ϕ-modules over Γalg
an,con, and to do this it is enough thanks to Lemma 4.4.2 to

prove that B̃+
rig,F ⊂ Γalg

an,con. But this follows from Berger’s construction [Ber02,

§2.3] (strictly speaking, [Ber02, §2.3] deals only with the case F = Qp, but see
the last paragraph of [Ber14, §3] for the general case. We also warn the readers

that Berger use B̃
†
rig to denote B̃†

rig,F in this paper, while his B̃
†
rig,F means a

different ring from ours), as he proves that B̃+
rig,F ⊂ B†

rig,F = B̃
†
rig = Γalg

an,con

(see the table over [Ber08, Prop. 1.1.12] for a helpful comparison of the various
notations used by different authors). It follows thatM is étale.

Now the proof that M := M(D) admits a descent to a Kisin module M is
exactly the same as the proof of Lemma 1.3.13 in [Kis06], so we just sketch
the highlights. As M is étale, there exists a finite free ORb -module N with
Frobenius endomorphism ϕN satisfying

(4.4.2) R⊗O
Rb
N ≃ R⊗OM =:MR

Proposition 6.5 in [Ked04] shows that it is possible to select an R-basis ofMR

whose Rb-span is exactly N [1/p] and whose O-span isM via the identifications
(4.4.2). Define Mb ⊆ M to be the SF [1/p]-span of this basis. The equality
SF [1/p] = R

b ∩ O provides the intrinsic description Mb = M∩ N [1/p]; in
particular, Mb is ϕ-stable and of E-height r. Let M′ := Mb ∩ N and put
M := (ORb ⊗SF M′) ∩M′[1/p] ⊂ N [1/p]. Then M is a finite and ϕ-stable
SF -submodule of N [1/p]. It follows from the structure theorem of finite SF -
modules [Fon90, Proposition 1.2.4] that M is in fact finite and free overSF . To
see that M has E-height r, it suffices to check that det(ϕM) = Esw for some
w ∈ S×

F . ButM[1/p] =Mb andMb is of finite E-height, so det(ϕM) = pmEsw
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for some w ∈ S×
F ; asM is pure of slope 0 (equivalently, det(ϕM) ∈ O×

Rb), we
must in fact have m = 0. �

4.5. Full-faithfulness of restriction. Fix an object V of RepF -cris,r
F (G),

and let M be a Kisin module associated to V via Theorem 4.4.1 (2).

Proposition 4.5.1. There exists a natural OF -linear injection

ι : TSF (M) →֒ V ≃ Vcris,F (D)

that is moreover Gπ-equivariant. In particular, VS(M) ≃ V as F [Gπ]-modules.

Proof. SetM :=M(D). AsM≃ O⊗SF M, we have a natural injection

ι′ : TSF (M) = HomSF ,ϕ(M,Sur
F ) →֒ HomO,ϕ,Fil(ϕ

∗M, B+
cris,F ),

uniquely determined by the requirement that for any h : M → Sur
F , the value

of ι′(h) on any simple tensor s⊗m ∈ O⊗ϕ,SF M ≃ ϕ∗M is given by

ι′(h)(s⊗m) = sϕ(h(m)).

Using the fact that E ∈ Fil1W (R)F , one checks that this really does define a
filtration-compatible O-linear homomorphism ι′(h) : ϕ∗M→ B+

cris,F .

On the other hand, the isomorphism ξα : Oα⊗F0
D

∼
−→ Oα⊗Oϕ

∗M of Lemma
4.2.2 induces, thanks to Lemma 4.2.3, a natural injection

HomO,ϕ,Fil(ϕ
∗M, B+

cris,F )
� �h 7→1⊗h // HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+

cris,F )

≃ h 7→h◦ξα

��
HomOα,ϕ,Fil(Oα ⊗F0

D,B+
cris,F )

and we claim that HomOα,ϕ,Fil(Oα⊗F0
D,B+

cris,F ) = Vcris,F (D). By definition,

Vcris,F (D) = HomF0,ϕ(D,B
+
cris,F ) ∩ HomK,Fil(DF0,K , B

+
dR),

and it is clear that HomOα,ϕ(Oα ⊗F0
D,B+

cris,F ) = HomF0,ϕ(D,B
+
cris,F ). Since

the injection Oα ⊗O D →֒ Ŝ0 ⊗ DF0,K is compatible with filtrations by the
very construction of the filtration on Oα ⊗F0

D, we conclude that

HomF0
(D,B+

cris,F ) ∩ HomOα,Fil(Oα ⊗F0
D,B+

cris,F )

≃ HomF0
(D,B+

cris,F ) ∩ HomK,Fil(DF0,K , B
+
dR),

which gives our claim.

We thus obtain a natural injection ι : TSF (M) →֒ Vcris,F (D) which is visibly
compatible with the given Gπ-actions. �

Combining Theorem 4.4.1 and Proposition 3.3.3, we deduce Theorem 1.0.1:

Corollary 4.5.2. Let V be an object of RepF -cris,r
F (G) and T ⊂ V a Gπ-stable

OF -lattice. Then there is a Kisin module M of E-height r with TSF (M) ≃ T .
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Remark 4.5.3. It is an important point that in our general setup, the Kisin
module M may not be unique for a given T , contrary to the classical situation.
Indeed, the “cyclotomic case” of Example 2.1.2 is a prototypical instance of
such non-uniqueness: let T be the trivial character, M = SF the trivial rank-1
Kisin module, and M′ = uSF ⊂M. Since ϕ(u) = E(u)u, one sees that M′ is
also a Kisin module and TSF (M) = TSF (M

′) = T .

We now prove Theorem 1.0.2:

Theorem 4.5.4. Assume that ϕn(f(u)/u) is not a power of E(u) for any n ≥ 0

and that vF (a1) > r. Then the restriction functor RepF -cris,r
F (G)→ RepF (Gπ)

given by V  V
∣∣
Gπ

is fully faithful.

Remark 4.5.5. We suspect that the theorem remains valid if we drop the as-
sumption that ϕn(f(u)/u) is not a power of E for any n ≥ 0. When r = 1, we
will show that this is indeed the case in the next section.

In order to prove Theorem 4.5.4, we prepare several preliminaries. In what
follows, we keep our running notation with f(u) = up + ap−1u

p−1 + · · ·+ a1u,
and we assume throughout that ̟r+1|a1 in OF .

Let M ∈ Modϕ,rSF
and set M := ϕ∗M/uϕ∗M.

Lemma 4.5.6. There exists a unique ϕ-equivariant isomorphism

ξα : Oα ⊗OF0
M

≃ // Oα ⊗SF ϕ
∗M

whose reduction modulo u is the identity on M .

Proof. The proof is similar to that of Proposition 2.4.1 in [Liu11], and
is motivated by the proof of Lemma 1.2.6 in [Kis06]. Choose an SF -
basis e1, . . . , ed of M and let A ∈ Md(SF ) be the resulting matrix of ϕ;
i.e. (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. Then ei := 1 ⊗ ei forms a basis of
ϕ∗M and we have (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)ϕ(A). Put A0 := A mod u
and ēi := ei mod u. Then we have (ϕ(ē1), . . . , ϕ(ēd)) = (ē1, . . . , ēd)ϕ(A0). If
the map ξα of the Lemma exists, then writing fi := ξα(ēi) ∈ Oα ⊗SF ϕ∗M
and denoting by Y ∈ GLd(Oα) the matrix with (f1, . . . , fd) = (e1, . . . , ed)Y ,
we necessarily have Y ≡ Id mod u and

(4.5.1) Y ϕ(A0) = ϕ(A)ϕ(Y ).

Conversely, if (4.5.1) has a solution Y ∈ GLd(Oα) satisfying Y ≡ Id mod u,
then we may define ξα by ξα(ē1, . . . , ēd) = (e1, . . . , ed)Y . Thus, it remains to
solve Equation (4.5.1). Put

(4.5.2) Yn := ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 ).

We claim that the sequence {Yn}n converges to a matrix Y ∈ Md(Oα). To
see this, note that there exists B0 ∈ GLd(Oα) with A0B0 = ̟rId since M has
height r. It follows that AA−1

0 = Id +
u
̟rZ for Z ∈ Md(SF ). Thus,

Yn = Yn−1 + ϕ(A) · · ·ϕn−1(A)
ϕn(u)

̟rn
ϕn(Z)ϕn−1(B0) . . . ϕ(B0),
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so to prove our claim it suffices to show that ϕn(u)/̟rn converges to 0 in Oα,
which is the content of Lemma 2.2.2.

To prove that Y is invertible, we compute its determinant. Put d := rankSF M,
and observe that since ∧dM has finite E-height, we have det(A) = γEm for

some γ ∈ S×
F . It follows that det(ϕ(A)ϕ(A

−1
0 )) = γ′(ϕ(E)

̟ )m for some γ′ ∈ S×
F .

One then checks that ϕ(E)/̟ is a unit in Oα, and hence that det(Y ) is a unit
in Oα so Y is invertible as desired.

Finally, we prove that the solution Y to (4.5.1) that we have constructed is
unique. Suppose that equation (4.5.1) admits two solutions Y , Y ′ satisfying
Y, Y ′ ≡ Id mod u. Then their difference is also a solution Y − Y ′ = uZ for
Z ∈Md(Oα). Equation (4.5.1) then implies that for all n we have

Y − Y ′ = ϕ(A)ϕ(Y )ϕ(A−1
0 ) = ϕ(A) · · ·ϕn(A)ϕn(Y )ϕn(A−1

0 ) · · ·ϕ(A−1
0 )

= ϕ(A) · · ·ϕn(A)
ϕn(u)

̟rn
ϕn(Z)ϕn(B0) · · ·ϕ(B0)

As ϕn(u)/̟rn converges to 0 in Oα, we conclude that Y = Y ′ as desired. �

For M ∈ Modϕ,rSF
, let us write D(M) = ξα(M [1/p]) ⊂ Oα ⊗SF ϕ∗M for the

image of M [1/p] under the map of Lemma 4.5.6. If M is a Kisin module
associated to some F -crystalline G-representation V with D := Dcris,F (V )
(i.e. O ⊗SF M ≃ M(D)), then by the very construction of M(D) there is a
natural ϕ-compatible inclusionD ≃ ϕ∗D →֒ ϕ∗M(D) which, thanks to Lemma
4.2.2, becomes an isomorphism after tensoring over O with Oα. Recalling that
Oα ⊗SF M ≃M(D), we therefore have a ϕ-equivariant inclusion

(4.5.3) D � � d 7→1⊗d // Oα ⊗F0
D

≃

4.2.2 // Oα ⊗O ϕ∗M(D) ≃ Oα ⊗SF ϕ
∗M

via which we view D as a ϕ-stable F0-subspace of Oα ⊗SF ϕ
∗M.

Corollary 4.5.7. Let V ∈ RepF -cris,r
F (G). If M ∈ Modϕ,rSF

is a Kisin module

attached to D := Dcris,F (V ), then D(M) = D inside Oα ⊗S ϕ∗M.

Proof. The reduction of (4.5.3) modulo u is the ϕ-compatible isomorphism

D ≃ (Oα ⊗SF ϕ
∗M) mod u ≃M [1/p].

Since the map ξα of Lemma 4.5.6 reduces to the identity modulo u, we conclude
that bothD and D(M) insideOα⊗SF ϕ

∗M are ϕ-equivariant liftings ofM [1/p];
the uniqueness aspect of Lemma 4.5.6 then forces D = D(M) as claimed. �

It follows from Corollary 4.5.7 that the map ξα of Lemma 4.5.6 coincides with
that of Lemma 4.2.2, which justifies our notation.

Recall that VS(M) = TS(M)[1/p] for M ∈ Modϕ,rSF
.

Lemma 4.5.8. Let f : M → M′ be any morphism of height-r Kisin modules,

and let fα be the scalar extension fα : Oα ⊗SF ϕ
∗M → Oα ⊗SF ϕ

∗M′ of ϕ∗f
along SF → Oα. Then fα(D(M)) ⊂ D(M′).
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Proof. Put V = VS(M) and V ′ = VS(M′) and denote by ψ = VS(f) : V ′ → V
the induced map. By Proposition 3.3.3, we can modify M and M′ (inside
M[1/p] and M′[1/p], respectively) so that f may be decomposed by two exact
sequences inside Modϕ,rSF

:

0 //L //M
f //N //0 and 0 //N //M′ //N′ //0 ,

where N = f(M). From the construction of ξα in Lemma 4.5.6 (in particular,
from the explicit construction of Y in (4.5.2)), we obtain the exact sequences

0 // D(L) // D(M)
fα // D(N) // 0

and

0 // D(N) // D(M′) // D(N′) // 0 ,

which shows that fα(D(M)) ⊂ D(M′) as claimed. �

Proof of Theorem 4.5.4. Let V ′, V be two objects of RepF -cris,r
F (G), and set

D = Dcris,F (V ) and D′ = Dcris,F (V
′). Suppose that there exists an F -linear

map h : Vcris,F (D
′) → Vcris,F (D) that is Gπ-equivariant. By Corollary 4.5.2,

there exist Gπ-stable OF -lattices T and T ′ inside Vcris,F (D) and Vcris,F (D
′),

respectively, with h(T ′) ⊆ T , and objects M and M′ of Modϕ,rSF
such that

TS(M) ≃ T and TS(M′) ≃ T ′ via the map ι of Proposition 4.5.1. By Propo-
sition 3.3.5, there exists a map f : M → M′ in Modϕ,rSF

with VSF (f) ≃ h. We
may therefore realize h as the composite

Vcris,F (D
′)

ι−1

∼
// VS(M′)[1/p]

VS(f) // VS(M)[ 1p ]
ι
∼

// Vcris,F (D) ,

where ι is constructed using the isomorphism ξ′α : Oα ⊗SF ϕ∗M ≃ Oα ⊗ D
of Lemma 4.2.3. Due to Lemma 4.5.8 and Corollary 4.5.7, we know that f
induces a map fα : Oα ⊗SF ϕ∗M → Oα ⊗SF ϕ∗M′ carrying D to D′, so for
a ∈ Vcris,F (D

′) ⊂ HomF0,ϕ(D,B
+
cris,F ) we have h(a) = a ◦ f̄ ∈ Vcris,F (D

′) ⊂

HomF0,ϕ(D
′, B+

cris,F ) where we write f̄ : D → D′ for the map fα|D. It follows
at once that h is compatible with the action of G = GK , as desired. �

We note that Theorem 4.5.4 is false if we replace “RepF -cris
F (G)” with

“Rep
Qp-cris
F (G),” as the following example shows:

Example 4.5.9. Consider again the setting of Example 2.1.2, withK = Qp(ζp),
π = ζp − 1 and ϕ(u) = f(u) = (1 + u)p − 1, and Kπ =

⋃
n≥1 Qp(ζpn). Let

F = Qp. Then the assumption of Theorem 4.5.4 is not satisfied as a1 = p,

and the restriction functor Rep
Qp-cris
F (G)→ RepF (G∞) induced by V  V

∣∣
Gπ

is visibly not fully faithful: letting χ denote the p-adic cyclotomic character,
we have χ

∣∣
Gπ

= 1
∣∣
Gπ

, but χ 6≃ 1 as G-representations. On the other hand,

if F = K then we easily check that the assumptions of Theorem 4.5.4 are
satisfied. Of course, there is no contradiction here as χ is not an F -crystalline
representation because HTτ (χ) = 1 for all τ .
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5. F -Barsotti-Tate groups

Recall that by an F -Barsotti–Tate group over OK , we mean a Barsotti–Tate
group over OK whose p-adic Tate module is an F -crystalline representation
of G := GK . In this section, we prove that the category of F -Barsotti–Tate
groups over OK is (anti)equivalent to the category of height-1 Kisin modules:

Theorem 5.0.10. Assume vF (a1) > 1. Then there is an (anti)equivalence of

categories between the category of Kisin modules of height 1 and the category

of F -Barsotti-Tate groups.

Using well-known results of Breuil, Kisin, Raynaud, and Tate, one shows as
in [Liu13b, Theorem 2.2.1] that the p-adic Tate module gives an equivalence
between thet category of F -Barsotti–Tate groups over OK and the category

RepF -cris,1
OF

(G) of G-stable OF -lattices inside F -crystalline representations with
Hodge-Tate weights in {0, 1}. Thus, to prove Theorem 5.0.10 we must construct

an (anti)equivalence between Modϕ,1SF
and RepF -cris,1

OF
(G). In what follows, we

show that for each M ∈ Modϕ,1SF
the natural Gπ-action on TS(M) can be

functorially extended to to a G-action such that TS(M) ∈ RepF -cris,1
OF

(G). This

construction will provide a contravariant functor TS : Modϕ,1SF
→ RepF -cris,1

OF
(G)

that we will then prove is an (anti)equivalence.

5.1. A natural G-action on TS(M). Fix a Kisin module M of height 1. In
this subsection, we will construct a natural G-action on TS(M) which extends
the given action of Gπ. The key input to this construction is:

Lemma 5.1.1. There exists a unique W (R)F -semilinear G-action on

W (R)F ⊗SF M that commutes with ϕ and satisfies

(1) If g ∈ Gπ and m ∈M then g(1⊗m) = 1⊗m;

(2) If m ∈M then 1⊗ (g(m)−m) ∈ tF I
+(W (R)F ⊗SF M).

Here, we remind the reader that tF ∈ W (R)F , constructed in Example 3.3.2,
satisfies ϕ(tF ) = EtF and tF 6≡ 0 mod ̟.

Proof. Fix an SF -basis e1, . . . , ed of M and let A be the resulting matrix of
Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A. Supposing that the required
G-action exists, for any g ∈ G we have a matrix Xg ∈ Md(W (R)F ) with
(ge1, . . . , ged) = (e1, . . . , ed)Xg, and the requirement that g and ϕ commute is
equivalent the matrix equation

(5.1.1) Xgg(A) = Aϕ(Xg).

We claim that for each g ∈ G, equation (5.1.1) has a unique solution Xg

satisfying the condition Xg − Id ∈Md(tF I
+). Granting this for a moment, it is

easy to see that the Lemma follows once we check that g 7→ Xg really defines
an action of G, which is equivalent to the cocycle condition Xσσ(Xτ ) = Xστ

for all σ, τ ∈ G. But it is clear that Xσσ(Xτ ) and Xστ are both solutions to
Xστ(A) = Aϕ(X), and the conditionX−Id ∈Md(tF I

+) holds forX = Xστ by
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our claim and for X = XσσXτ thanks to Lemma 2.3.4. Thus, the uniqueness
aspect of our claim gives Xσσ(Xτ ) = Xστ , as desired.

It remains to prove our claim. Let us first dispense with the uniqueness aspect.
Suppose that for some g ∈ G, equation (5.1.1) has two solutions X1, X2 satis-
fying Xi − Id ∈ Md(tF I

+) for i = 1, 2. Then their difference is a solution as
well, and has the form X1−X2 = tFZ for some Z ∈ Md(I

+). Equation (5.1.1)
then takes the shape

(5.1.2) tFZg(A) = Aϕ(tFZ),

and we will show that this forces Z = 0, giving uniqueness. First, writing
Z̄ := Z mod ̟ ∈Md(R), we note that it suffices to prove that Z̄ = 0: indeed, if
Z = ̟Z1 for some Z1 ∈Md(W (R)F ), then Z1 ∈ Md(I

+) is another solution to
(5.1.2), so boot-strapping the argument gives Z ∈ ∩n≥1̟

nW (R)F = {0}. Now
since M has height 1, there exists a matrix B ∈Md(SF ) with AB = EId. On
the other hand, we have ϕ(tF ) = EtF as noted above, so it follows from (5.1.2)
that there exists a matrix C ∈ Md(W (R)F ) with Z = Aϕ(Z)C. Reducing
modulo ̟ gives a matrix equation Z̄ = Āϕ(Z̄)C̄ in Md(R). If Z̄ 6= 0, then
there exists an entry z, say, of Z̄ which has minimal valuation. On the other
hand, as Z ∈ Md(I

+), we must have vR(z) > 0. But the minimal possible
valuation of entries in Āϕ(Z̄)C̄ is pvR(z) > vR(z), which is a contradiction.
Thus Z̄ = 0, settling uniqueness.

Finally, let us prove the existence of Xg solving (5.1.1) for each g ∈ G. For
ease of notation, put

Pn := Aϕ(A) · · ·ϕn(A) and Qn := ϕn(g(A−1)) · · ·ϕ(g(A−1))g(A−1)(5.1.3)

and define Xn := PnQn. It suffices to prove the following:

(1) Xn ∈Md(W (R)F ) for all n;
(2) Xn − Id ∈Md(tF I

+) for all n;
(3) Xn converges as n→∞.

For (1) and (2), we argue by induction on n. When n = 0, by definition we
have X0 = P0Q0 = Ag(A−1) = g(g−1(A)A−1). On the other hand, by Lemma
2.3.2, we may write g−1A = A+ ϕ(tF )C for some C ∈Md(I

+), which gives

g−1(A)A−1 = Id + ϕ(tF )CA
−1 = Id + tFCEA

−1 = Id + tFCB

thus proving (1) and (2) in the base case n = 0.

Now suppose we have proved Xn = Id + tFCn with Cn ∈ Md(I
+), and let us

show that Xn+1 satisfies the same equation for some Cn+1 ∈ Md(I
+). Writing

Ag(A−1) = Id + tFC0 with C0 ∈ Md(I
+), we have

Xn+1 = Xn + Pnϕ
n+1(tF )ϕ

n+1(C0)Qn

Now Eg(A−1) ∈ Md(W (R)F ) as g(E) = µgE for some unit µg ∈ W (R)F ,
and we have ϕn+1(tF ) = ϕn(E) · · ·ϕ(E)EtF . We conclude that the matrix

Q̃n := ϕn+1(tF )Qn lies in Md(tFW (R)F ), which gives Xn+1 ∈ Md(W (R)F )
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and Xn+1 − Id ∈ Md(tF I
+) as desired. By construction, we then have

Xn+1 −Xn = Pn · ϕ
n+1(C0) · Q̃n,

with Pn, Q̃n ∈ Md(W (R)F ) and since ϕn+1(C0) converges to 0 in W (R)F , we
conclude that Xn converges, which gives (3) and completes the proof. �

Corollary 5.1.2. The natural Gπ-action on TS(M) can be functorially ex-

tended to an action of G. In particular, TS extends to a contravariant functor

from Modϕ,1SF
to RepOF

(G).

Proof. By Lemma 3.3.1 (2), we have isomorphisms of OF [Gπ]-modules

TS(M) ≃ HomSF ,ϕ(M,W (R)F )

≃ HomW (R)F ,ϕ(W (R)F ⊗SF M,W (R)F ).
(5.1.4)

Thanks to Lemma 5.1.1, we have an action of G onW (R)F⊗SF M that extends
the given action of Gπ , so the final term in (5.1.4) has an action of G given by

(g◦h)(x) = g(h(g−1(x))), ∀g ∈ G, ∀h ∈ HomW (R)F ,ϕ(W (R)F⊗SF M,W (R)F )

and one checks easily that this action extends the given action of Gπ on TS(M).

It remains to prove that TS is a functor. So suppose that h : M→M′ is a map
in Modϕ,1SF

and let us check that the induced map TS(h) : TS(M
′)→ TS(M) is

indeed a map of OF [G]-modules. To do this, using (5.1.4), it suffices to show
that the map

1⊗ h :W (R)F ⊗SF M→W (R)F ⊗SF M′

is G-equivariant, i.e. that (1 ⊗ h) ◦ g = g ◦ (1 ⊗ h) for all g ∈ G. Choose SF -
bases e1, . . . , ed and e′1, . . . , e

′
d′ of M and M′, respectively, and let A and A′ be

the corresponding matrices of Frobenius, so (ϕ(e1), . . . , ϕ(ed)) = (e1, . . . , ed)A
and (ϕ(e′1), . . . , ϕ(e

′
d′)) = (e′1, . . . , e

′
d′)A

′. Letting Z be the d′ × d-matrix with
entries in SF determined by the relation h(e1, . . . , ed) = (e′1, . . . , e

′
d′)Z, we seek

to prove that g ◦ (1⊗h)(e1, . . . , ed) = (1⊗h) ◦ g(e1, . . . , ed), which is equivalent
to the matrix equation

X ′
gg(Z) = ZXg,

where Xg (resp. X ′
g) is the matrix constructed in the proof of Lemma 5.1.1

giving the action of g on M (resp. M′). By construction, Xg = lim
n→∞

Xn, and

similarly for X ′
g, so it suffices to check that X ′

ng(Z) = ZXn for all n. From the
very definition of Xn = PnQn and X ′

n = P ′
nQ

′
n via (5.1.3), this amounts to

P ′
nQ

′
ng(Z) = ZAPnQn.(5.1.5)

But as ϕ◦h = h◦ϕ, we have A′ϕ(Z) = ZA, or equivalently, A′−1
Z = ϕ(Z)A−1,

and the truth of equation (5.1.5) follows easily from the definition (5.1.3). �
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5.2. An equivalence of categories. In this subsection, we prove Theorem
5.0.10. Let us first recall the setup and some notation. For M ∈ Modϕ,1SF

, put

M := O⊗SF M and define a decreasing filtration on ϕ∗M as in (4.2.2). Since

M has height 1, we have Filiϕ∗M = Ei−1Fil1ϕ∗M for i ≥ 2. Recall that we
set M := ϕ∗M/uϕ∗M and let us put D := D(M) := ξα(M [1/p]), which is
naturally a ϕ-stable F0-subspace of Oα ⊗SF ϕ

∗M via the unique isomorphism
ξα constructed in Lemma 4.5.6. Since ξα : Oα ⊗F0

D → Oα ⊗ ϕ∗M is an
isomorphism, we may identify ϕ∗M/Eϕ∗M with DF0,K = K ⊗F0

D, and
we write ψπ : ϕ∗M → DF0,K for the natural projection. We then define

FiliDF0,K := ψπ(Fil
iϕ∗M), and note that since Fil2ϕ∗M ⊂ Eϕ∗M, we have

Fil2DF0,K = 0. In this way we obtain from M an object D = D(M) of MFϕF0,K
.

Suppose that M′ = SF · e is a rank-1 Kisin module with SF -basis e. Then we
have ϕ(e) = γEme with γ ∈ S×

F a unit thanks to Example 3.3.2, and we call
m the minimal height of M′.

Lemma 5.2.1. With notation as above,

(1) The natural injection

Oα ⊗O ϕ∗M
ξ′α // Oα ⊗F0

D � � // Ŝ0 ⊗DF0,K

is compatible with filtrations, where ξ′α = (ξα)
−1.

(2) Suppose M has rank d. Then the minimal height of ∧dM is

dimK0
Fil1DF0,K .

Proof. Since Filiϕ∗M = Ei−1Fil1ϕ∗M for i ≥ 2, to prove (1) it suffices to check

the given injection is compatible with Fil1. As E is a generator of Fil1Ŝ0, such
compatibility is equivalent to the condition that x ∈ Fil1ϕ∗M if and only if
ψπ(x) ∈ Fil1DF0,K . But this is clear as Eϕ∗M⊂ Fil1ϕ∗M.

We now prove (2). Fix an SF -basis e1, . . . , ed of M and let A ∈ Md(SF ) be
the corresponding matrix of Frobenius. Since M has height 1, there exists a
matrix B ∈ Md(SF ) with AB = EId. Defining ei = 1 ⊗ ei ∈ ϕ∗M, we easily
check that {ei} is an O-basis of ϕ∗M with (α1, . . . , αd) := (e1, . . . , ed)B an
O-basis of Fil1ϕ∗M.

Now the inclusion ϕ∗M/Fil1ϕ∗M ⊂ ϕ∗M/Eϕ∗M = DF0,K realizes

ϕ∗M/Fil1ϕ∗M as a K-subspace of DF0,K , so there exists a basis f1, . . . , fd
of ϕ∗M with the property that f1, . . . fs, Efs+1, . . . , Efd generates Fil1ϕ∗M.
Since Fil1DF0,K = ψπ(Fil

1ϕ∗M) we have dimK Fil1DF0,K = s. On the other

hand, since α1, . . . , αd also generates Fil1ϕ∗M, there exist invertible matrices
X,Y ∈ GLd(O) with

B = XΛY for Λ = diag(1, . . . , 1, E, . . . , E)

the diagonal matrix with s many 1’s and d − s many E’s along the diag-
onal. Thus, detB = Ed−sγ for γ ∈ O× a unit and since AB = EId we
then have det(A) = Esγ−1. It follows that the minimal height of ∧dM is
s = dimK Fil1DF0,K , as desired. �
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Recall that we have defined VS(M) := F ⊗OF TS(M).

Proposition 5.2.2. With notation as above, we have VS(M) ≃ Vcris,F (D(M))
as F [G]-modules. In particular, VS(M) is crystalline with Hodge-Tate weights

in {0, 1}.

Proof. The proof of Proposition 4.5.1 carries over mutatis mutandis to show
that there exists a natural injection of OF [Gπ]-modules

ι : TS(M) →֒ HomO,ϕ,Fil(ϕ
∗M, B+

cris,F ) →֒ HomOα,ϕ,Fil(Oα ⊗O ϕ∗M, B+
cris,F )

≃ HomOα,ϕ,Fil(Oα ⊗F0
D,B+

cris,F ) ≃ Vcris,F (D),

where instead of using Lemma 4.2.3, we must appeal to Lemma 4.5.6 and
Lemma 5.2.1 (note that a priori we know neither that M(D) ≃ M nor that
D is admissible). Since dimF0

(D) = rankSF M and ι is injective, we conclude
that D is admissible. In particular, Vcris,F (D) is crystalline with Hodge-Tate
weights in {0, 1}.

It remains to show that ι is compatible with the given actions of G = GK . By
construction, the G-action on TS(M) is induced from the identification

(5.2.1) TS(M) ≃ HomW (R)F ,ϕ(W (R)F ⊗SF M,W (R)F )

of (5.1.4) with G-action on the right side that of Lemma 5.1.1. Now the right
side of (5.2.1) is clearly naturally isomorphic as an OF [G]-module to

HomW (R)F ,ϕ,Fil(W (R)F ⊗SF ϕ
∗M,W (R)F ),

which is an OF -lattice in HomB+

cris,F ,ϕ,Fil
(B+

cris,F⊗F0
D,B+

cris,F ). Thus, to prove

that ι is G-equivariant, we must show that the G-action on B+
cris,F ⊗SF ϕ

∗M

deduced from Lemma 5.1.1 agrees with the G-action on B+
cris,F ⊗F0

D via the
map

B+
cris,F ⊗F0

D
≃ // B+

cris,F ⊗SF ϕ
∗M

deduced from (4.5.3) (which is an isomorphism thanks to Lemma 4.5.6); here,
G acts trivially on D. Equivalently, we must show that the G-action on
B+

cris,F ⊗SF ϕ∗M provided by Lemma 5.1.1 restricts to the trivial action on

D(M), viewed as a subspace of this tensor product again via (4.5.3).

As in the proofs of Lemma 4.5.6 and Lemma 5.1.1, let e1, . . . , ed be an SF -basis
of M and put {ei := 1⊗ ei}, which is then an SF -basis of ϕ

∗M. The proof of
Lemma 4.5.6 shows that (f1, . . . , fd) := (e1, . . . , ed)Y is a basis of D(M) for

Y = lim
n→∞

ϕ(A) · · ·ϕn(A)ϕn(A−1
0 ) · · ·ϕ(A−1

0 ).

Now for any g ∈ G, by the proof of Lemma 5.1.1 we have the equality
g(e1, . . . , ed) = (e1, . . . , ed)ϕ(Xg) with

ϕ(Xg) = lim
n→∞

ϕ(A) · · ·ϕn(A)ϕn(g(A−1)) · · ·ϕ(g(A−1)).
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Thus, g(f1, . . . , fd) = (e1, . . . , ed)ϕ(Xg)g(Y ) = (e1, . . . , ed) lim
n→∞

ϕ(Xn)g(Yn)

with

ϕ(Xn)g(Yn) =
(
ϕ(A) · · ·ϕn(A)ϕn(g(A−1)) · · ·ϕ(g(A−1))

)

×
(
ϕ(g(A)) · · ·ϕn(g(A))ϕn(g(A−1

0 )) · · ·ϕ(g(A−1
0 ))

)

= Yn

In other words, g(f1, . . . , fd) = (f1, . . . , fd), which completes the proof. �

Proof of Theorem 5.0.10. Thanks to Proposition 5.2.2 and Corollary 5.1.2, we

have a contravariant functor TS : Modϕ,1SF
→ RepF -cris,1

OF
(G), which it remains

to prove is fully faithful and essentially surjective.

For full-faithfulness, suppose given a map h : TS(M) → TS(M
′) of OF [G]-

modules. Restricting to Gπ gives a map h
∣∣
Gπ

: TS(M)
∣∣
Gπ
→ TSF (M

′)
∣∣
Gπ

,

and by Corollary 3.2.3 we obtain a morphism f : OE ⊗SF M′ → OE ⊗SF M
with TS(f) = h|Gπ . It then suffices to show that f(M′) ⊂M. Arguing as in the
proof of Proposition 3.3.5, it suffices to check that ifM ⊂M′ ⊂ OE⊗SF M then
M = M′. Applying ∧d, we then easily reduce to proving that ∧dM and ∧dM′

have the same minimal height. By our reductions are now in the situation
that TS(M) ≃ TS(M

′) as OF [G]-modules thanks to Corollary 5.1.2, so by
Proposition 5.2.2 we have D(M) ≃ D(M′) as filtered ϕ-modules. In particular,

Fil1D(M)F0,K ≃ Fil1D(M′)F0,K and the minimal heights of ∧dM and ∧dM′

are the same by Lemma 5.2.1 (2). Thus, TS is fully faithful.

We now show that TS is essentially surjective. Fix T ∈ RepF -cris,1
OF

(G), put
V := F ⊗OF T and let D := Dcris,F (V ) be the corresponding filtered ϕ-module.

By Corollary 4.5.2, there exists M ∈ Modϕ,1SF
with M(D) ≃ O ⊗SF M and

ι : TS(M)
≃
−→ T |Gπ . It suffices to show that ι is compatible with the ac-

tions of G on source and target, with the G-action on the source provided
by Corollary 5.1.2. Using Proposition 5.2.2, we obtain an isomorphism of
F [G]-modules ι′ : VS(M) ≃ Vcris,F (D(M)), which one verifies is compati-
ble with the identification ι. It therefore remains to check that D(M) ≃ D
as filtered ϕ-modules. Thanks to Lemma 4.2.2 and Lemma 4.5.6, we can
identify each of D and D(M) as the image of the unique ϕ-equivariant sec-
tion to projection ϕ∗M(D) ։ ϕ∗M(D)/uϕ∗M(D), which gives D ≃ D(M)

as ϕ-modules. Thus, it remains to prove that FiliDK = FiliD(M)K for all

i > 0, or equivalently that Fil1DF0,K = Fil1D(M)F0,K . Thanks to Corol-
lary 4.2.4, the projection ψπ : ϕ∗M(D) ։ ϕ∗M(D)/Eϕ∗M(D) ≃ DF0,K

is compatible with filtrations, and one checks using the very definition of
Fil1ϕ∗M(D) that x ∈ Fil1ϕ∗M(D) if and only if ψπ(x) ∈ Fil1DF0,K . Thus,

Fil1DF0,K = ψπ(Fil
1ϕ∗M(D)) = Fil1D(M)F0,K , as desired. �

Remark 5.2.3. In the classical situation, let S be the p-adic completion of the
divided-power envelope of the surjection W (k)[[u]] ։ OK sending u to π. If
M is the Kisin module attached to a Barsotti–Tate group H over OK , then
one can show ([Kis06, §2.2.3]) that there is a functorial isomorphism of Breuil

Documenta Mathematica 21 (2016) 223–270



On F -Crystalline Representations 267

modules ϕ∗M⊗S S ≃ D(H)S , where D(H) is the Dieudonné crystal attached
to H , which gives a geometric interpretation of M in terms of the crystalline
cohomology of H . It is natural to ask for such an interpretation in the general
case, for arbitrary F and f(u) as in the introduction of this paper. If F/Qp
is unramified, then this interpretation is provided by [CL14]. However, for F
ramified over Qp, things are more subtle as it is necessary to use the O-divided
powers of Faltings [Fal02]. For general F , A. Henniges has obtained the anal-
ogous relation with the Dieudonné crystal under the restriction vF (a1) = 1
(the so-called Lubin–Tate setting) in his Ph. D thesis. The general case re-
mains open, but we nonetheless conjecture that one has a natural isomorphism
Acris,F ⊗SF ϕ

∗M ≃ D(H)Acris
, and expect to be able to prove this conjecture

using the ideas of §6.3.

6. Further Questions

As Theorem 1.0.1 and Theorem 1.0.2 provide the foundations of the theory of

Kisin modules and its variants (e.g. the theory of (ϕ, Ĝ)-modules as in [Liu10]),
it is natural to ask to what extent we can extend these theories to accommodate
general F and f(u). In this section, we list some questions that are natural
next steps to consider in furthering the general theory we have laid out in this
paper.

6.1. The case q = ps. Recall the setup of the introduction: F/Qp is an
arbitrary finite extension with uniformizer ̟ and residue field kF of cardinality
q = ps, and f(u) ∈ OF [[u]] is any power series f(u) = a1u + · · · satisfying
f(u) ≡ uq mod ̟. We allowK to be any finite extension of F with uniformizer
π = π0 and residue field k ⊇ kF , and consider the Frobenius-iterate extension
Kπ formed by adjoing to K a choice of f -compatible system {πn}n in K with
f(πn) = πn−1. Such extensions and their associated norm fields are considered
in [CD15] and [CDL]. In this paper, we have restricted ourselves to q = p, or
what is the same, that F/Qp is totally ramified. Certainly this restriction is
unnecessary, and we are confident that the results of this paper can be adapted
to the general case of arbitrary F with minor modifications. In particular, in
this general case, for any W (k)-algebra A we set AF := A⊗W (kF ) OF , and we
equip SF with the “q-power Frobenius” ϕq which acts on F -trivially, acts on
W (k) via ϕsW (k) and sends u to f(u). We write F0 := K0F and again denote by

E ∈ OF0
[u] the minimal polynomial of π over F0. Then our theory should be

able to be adapted to functorially associate Kisin modules of finite E-height to
OF -lattices in F -crystalline G-representations. We note that such a theory is
already known in the “Lubin–Tate” case that vF (a1) = 1 and K ⊆ F̟ thanks
to the work of Kisin and Ren [KR09], but that there are many details in our
general setup that still need to be checked.

6.2. Semi-stable representations and Breuil theory. In the classical
situation, Theorem 4.4.1 includes semi-stable representations. This fact is one
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of the key inputs for Breuil’s classification of lattices in semistable representa-
tions via strongly divisible lattices over S (see [Liu08]). It is therefore natural to
ask if Theorem 4.4.1 remains valid for semi-stable representations and general
f(u). This appears to be a rather nontrivial question, as the case of semi-stable
representations requires a monodromy operator. But for general F and f , we
do not even know how to define a reasonable monodromy operator over SF

(i.e., one satisfying Nϕ = pϕN as in the classical situation). New ideas are
needed for this direction.

6.3. Comparison between different choices of f(u). For a fixed F -
crystalline representation V of G and a fixed uniformizer π ∈ K, we may select
different f(u). It is then natural to ask for the relationship between the associ-
ated Kisin modules attached to V and f(u), as f varies. Motivated by [Liu13a],
we conjecture that all such Kisin modules become isomorphic after base change
toW (R)F . Note that if true, this result provides a proof of the conjecture men-
tioned in Remark 5.2.3, because we know that Acris,F ⊗SF ϕ

∗M ≃ D(H)(Acris)
in the classical situation. To prove such comparison results, the key point is to
generalize [Liu07, Theorem 3.2.2] to allow general f(u). This is likely relatively
straightforward, as we have recovered many results of [Liu07] in §3 already.

6.4. Torsion theory. A major advantage of the theory of Kisin modules is
that it provides a powerful set of tools for dealing with torsion representations.
It is therefore natural to try and rebuild the torsion theory in our general
situation, and we hope that such a theory will have some striking applications,
for example, to the computation of the reduction of potentially crystalline
representations as discussed in the introduction. One obvious initial goal is to
establish the equivalence between torsion Kisin modules of height 1 and finite
flat group schemes over OK ; this would be achievable quickly once we know
the truth of the conjecture formulated in Remark 5.2.3.
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no. 223, 113–184, With an appendix by Pierre Colmez, Périodes p-
adiques (Bures-sur-Yvette, 1988).

[GLS14] Toby Gee, Tong Liu, and David Savitt, The Buzzard-Diamond-Jarvis

conjecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2,
389–435.

[Ked04] Kiran S. Kedlaya, A p-adic local monodromy theorem, Ann. of Math.
(2) 160 (2004), no. 1, 93–184.

[Kis06] Mark Kisin, Crystalline representations and F -crystals, Algebraic
geometry and number theory, Progr. Math., vol. 253, Birkhäuser
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