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Abstract. We study various generalisations of rationally connected
varieties, allowing the connecting curves to be of higher genus. The
main focus will be on free curves f : C → X with large unobstructed
deformation space as originally defined by Kollár, but we also give
definitions and basic properties of varieties X covered by a family of
curves of a fixed genus g so that through any two general points of
X there passes the image of a curve in the family. We prove that the
existence of a free curve of genus g ≥ 1 implies the variety is rationally
connected in characteristic zero and initiate a study of the problem
in positive characteristic.
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1. Introduction

Let k be an algebraically closed field. A smooth projective rationally connected
variety, originally defined in [Cam92] and [KMM92], is a variety such that
through every two general points there passes the image of a rational curve. In
characteristic zero this is equivalent to the notion of a separably rationally con-
nected variety, given by the existence of a rational curve f : P1 → X such that
f∗TX is ample. In characteristic p, however, one has to distinguish between
these two notions. Deformations of a morphism f : P1 → X are controlled
by the sheaf f∗TX , hence studying positivity conditions of this bundle is in-
timately tied to deformation theory and the existence of many rational curves
on X . Rationally connected varieties have especially nice properties and an
introduction to the theory is contained in [Kol96] and [Deb01]. Note in partic-
ular the important theorem of Graber-Harris-Starr [GHS03] (and de Jong-Starr
[dJS03] in positive characteristic) which we will make repeated use of through-
out this paper, which says that a separably rationally connected fibration over
a curve admits a section. An equivalent statement in characteristic zero is that
the maximal rationally connected (MRC) quotient R(X) is not uniruled (see
[Kol96, IV.5.6.3]), although this can fail in positive characteristic.
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In this paper we study various ways in which a variety can be connected by
higher genus curves. After an introductory section with auxiliary results on
vector bundles on curves and Frobenius, we consider first varieties which admit
a morphism from a family of curves of fixed arithmetic genus g whose prod-
uct with itself dominates the product of the variety with itself and call these
varieties “genus g connected”, generalising the notion of there being a ratio-
nal curve through two general points. We also consider C-connected varieties,
where there exists a family C×U → X of a single smooth genus g curve C such
that C × C × U → X ×X is dominant. Mori’s Bend and Break result allows
us to produce rational curves going through a fixed point given a higher genus
curve which has large enough deformation space. For example, in Proposition
3.6 as an easy corollary, we show that over any characteristic, if for any two
general points of a smooth projective variety X with dimX ≥ 3 there passes
the image of a morphism from a fixed curve C of genus g, then X is uniruled.
This fails for surfaces, where an example is provided.

A stronger condition than the aforementioned is the existence of a morphism
from a curve which deforms a lot without obstructions, as discussed for separa-
bly rationally connected varieties above. Namely, for f : C → X a morphism to
a variety X where C is of any genus g, Kollár [Kol96] defines f to be free if f∗TX

is globally generated as a vector bundle on C and also H1(C, f∗TX) = 0. In
the case of genus g = 0 one must distinguish between free and very free curves.
Geometrically, the former implies that f : P1 → X deforms so that its image
covers all points in X (hence X is uniruled) whereas the latter that it can do
so even fixing a point x ∈ X (X rationally connected). If g ≥ 1, however,
after defining an r-free curve to be one which deforms keeping any r points
fixed, we show that the notions of the existence of a free (0-free) and very free
(1-free) curve coincide and in fact are equivalent with the existence of a curve
f : C → X such that f∗TX is ample.

Theorem. (see 5.5) Let X be a smooth projective variety and C a smooth
projective curve of genus g ≥ 1 over an algebraically closed field k. Then for
any r ≥ 0, there exists an f : C → X which is r-free if and only if there exists
a morphism f ′ : C → X such that f ′∗TX is ample.

Work of Bogomolov-McQuillan (see [BM01], [KSCT07]) on foliations which re-
strict to an ample bundle on a smooth curve sitting inside a complex variety X
shows that the leaves of such a foliation are not only algebraic but in fact have
rationally connected closures. From the above, one deduces this result in the
case of the foliation F = TX , complementing the currently known connections
between existence of curves with large deformation space and rationally con-
nected varieties (cf. the uniruledness criterion of Miyaoka [Miy87]). Our proof
emphasises the use of free curves and C-connected varieties, in particular with
a view towards similar results in positive characteristic.
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Theorem. (see 5.2) Let X be a smooth projective variety over an algebraically
closed field of characteristic zero and let f : C → X be a smooth projective curve
of genus g ≥ 1 such that f∗TX is globally generated and H1(C, f∗TX) = 0.
Then X is rationally connected.

In the sixth section we study the particular case of elliptically connected vari-
eties (i.e. genus one connected varieties) where, even allowing a covering family
of genus 1 curves to vary in moduli, one can prove the following theorem.

Theorem. (Theorem 6.2) Let X be a smooth projective variety over an alge-
braically closed field of characteristic zero. Then the following two statements
are equivalent

(1) There exists C → U a flat projective family of irreducible genus 1 curves
with a map C → X such that C ×U C → X ×X is dominant.

(2) X is either rationally connected or a rationally connected fibration over
a curve of genus one.

In positive characteristic, at this point we have not been able to prove that
the existence of a higher genus free curve implies the existence of a very free
rational curve (which would mean that X is separably rationally connected).
We work however in this direction, establishing this result in dimensions two
(with a short discussion about dimension three) and furthermore by studying
algebraic implications of the existence of a free higher genus curve, such as the
vanishing of pluricanonical forms and triviality of the Albanese variety. In the
final section we give an example of a threefold in characteristic p whose MRC
quotient is rationally connected and which has infinite fundamental group.

The study of rational curves on varieties is an important and active area of
research, and shedding light on the existence of rational curves coming from
the deformation theory of higher genus curves is a theme explored in a variety
of sources, for example the minimal model program or [BDPP13]. Aside from
the unresolved difficulties arising in positive characteristic, the author expects
uniruledness and rational connected results of the type presented in this article
to be of use in moduli theory.
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C-connected. The anonymous referee’s numerous suggestions and corrections
also significantly improved this paper. This research was completed under the
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2. Ample vector bundles and Frobenius

We begin with some results concerning positivity of vector bundles on curves.
Recall that a locally free sheaf E on a scheme X is called ample if OP(E )(1) has
this property. Equivalent definitions involving global generation of F ⊗Sn(E )
for F a coherent sheaf and n large enough, and also cohomological vanishing
criteria can be found in [Har66]. Ampleness on curves can be checked using
various criteria such as the following.

Lemma 2.1. Let C be a smooth projective curve of genus g ≥ 2 over an alge-
braically closed field of characteristic zero and E a locally free sheaf on C such
that H1(C, E ) = 0. It follows that E is ample.

Proof. From [Har71, Theorem 2.4], it suffices to show that every non-trivial
quotient locally free sheaf of E has positive degree. Let E → E ′ → 0 be a
quotient. From the long exact sequence in cohomology we see that H1(C, E ′)
is also 0. From the Riemann-Roch formula deg E ′ = h0(C, E ′) + (rkE ′)(g − 1)
and since g ≥ 2 we deduce that deg E ′ > 0. �

Note that Hartshorne’s ampleness criterion only works in characteristic zero.
More generally, over any characteristic if we further assume that our locally
free sheaf is globally generated then the same result holds so long as the genus
is at least one.

Proposition 2.2. Let C be a smooth projective curve of genus g ≥ 1 over an
algebraically closed field k and E a globally generated locally free sheaf on C
such that H1(C, E ) = 0. Then E is ample.

Proof. Since E is globally generated, there exists a positive integer n such
that O

⊕n
C → E → 0 is exact. This gives (see [Har77, ex. II.3.12]) a closed

immersion of the respective projective bundles P(E ) →֒ Pn−1
C . By projecting

onto the first factor we have the following diagram

P(E ) �
� i

//

π

%%❑
❑❑

❑❑
❑❑

❑❑
❑

Pn−1 × C

pr2

��

pr1
// Pn−1

C

and from [Har77, II.5.12] we have pr∗1 OPn−1(1) = O
P
n−1
C

(1). Also, since i is

a closed immersion it follows that i∗O
P
n−1
C

(1) = O
P
n−1
C

(1)|P(E ) = OP(E )(1)

which concludes that i∗ pr∗1 OPn−1(1) = OP(E )(1). To show that E is an ample
locally free sheaf on C it is enough to show that this invertible sheaf is ample.
Since we know that OPn−1(1) is ample though, it is sufficient to show that
i ◦ pr1 is a finite morphism. Since it is projective, we need only show that it
is quasi-finite. Hence assuming that the fibre of i ◦ pr1 over a general point
p ∈ Pn−1 is not finite, it must be the whole of C. We now embed this fibre
j : C → P(E ) as a section to π and pull back the surjection π∗E → OP(E )(1)
via j, obtaining j∗OP(E )(1) as a quotient of j∗π∗E = E (see [Har77, II.7.12]).
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However pr1 ◦i ◦ j : C → Pn−1 is a constant map so j∗OP(E )(1) = OC . Taking
cohomology of the corresponding short exact sequence given by this quotient,
we obtain a contradiction since H1(C, E ) = 0 whereas H1(C,OC) is not trivial
for g ≥ 1. �

In Proposition 2.4 below we will prove that given an ample bundle on a curve
in positive characteristic, then after pulling back by Frobenius, we can make
this bundle be globally generated and have vanishing first cohomology.

Lemma 2.3. Let C be a smooth projective curve over an algebraically closed
field k, d ≥ 0 an integer and E a locally free sheaf on C. If H1(C, E (−D)) = 0
for all effective divisors D of fixed degree d then for d′ < d it follows that
H1(C, E (−D′)) = 0 and E (−D′) is globally generated for all effective divisors
D′ of degree d′.

Proof. The first result follows from the short exact sequence

0 → E (−D′ −R) → E (−D′) → E (−D′)|R → 0

where R is an effective divisor of degree d − d′. For the second, let p ∈ C.
From the first part we have H1(C, E (−D′ − p)) = 0 since D′ + p is an effective
divisor of degree d′ + 1 ≤ d so the following sequence is exact

0 → H0(C, E (−D′ − p)) → H0(C, E (−D′)) → E (−D′)⊗ k(p) → 0.

Hence E (−D′) is globally generated at p and the result follows. �

A partial converse to Proposition 2.2 in characteristic p is given in [KSCT07,
Proposition 9], using Q-twisted vector bundles as in [Laz04, II.6.4]. We prove
the following different version of this result.

Proposition 2.4. Let C be a smooth projective curve of genus g over an
algebraically closed field k of characteristic p and let E be an ample locally
free sheaf on C. Let B ⊂ C be a closed subscheme of length b and ideal sheaf
IB. Then there exists a positive integer n such that H1(C(n), F ∗

nE ⊗ IB) = 0
and F ∗

nE ⊗ IB is globally generated on C(n) where Fn : C(n) → C the n-fold
composition of the k-linear Frobenius morphism.

Proof. We proceed by induction. First, assume we can write E as an extension

0 → M → E → Q → 0

where M is an ample line bundle. If Q is not torsion free, consider the sat-
uration of M in E instead and take Q as that quotient. Since E is ample,
so is its quotient Q. Note also that the rank of Q is one less than that of E

and that if we can prove the result for Q then we will have it for E too by
considering cohomology of the appropriate exact sequences. We thus reduce
to the case of E = L an invertible sheaf of positive degree (since it is am-
ple). An invertible sheaf L pulls back under the n-fold composition of the
linear Frobenius morphism to an invertible sheaf F ∗

nL of degree pn degL .
To show that H1(C(n), F ∗

nL ⊗ IB) = 0, it is equivalent by Serre duality to
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show that HomC(n)(F ∗
nL ,OC(n)(B) ⊗ ωC(n)) = 0. Since the invertible sheaf

OC(n)(B)⊗ ωC(n) has degree b+ 2g − 2 and by picking n large enough, we can
ensure pn degL > b+ 2g − 2 from which we obtain H1(C(n), F ∗

nL ⊗IB) = 0
and hence H1(C(n), F ∗

nE ⊗ IB) = 0 for a locally free sheaf of any rank.

To show that F ∗
nE⊗IB is globally generated, pick a point q ∈ C. Then IB⊗Iq

has length b + 1 and from the discussion above H1(C(n), F ∗
nE ⊗ IB ⊗ Iq)

vanishes when pn degL > b+ 1+ 2g − 2 so we can just pick n large enough to
fit this condition. Now, by taking the long exact sequence in cohomology of

0 → F ∗

nE ⊗ IB ⊗ Iq → F ∗

nE ⊗ IB → (F ∗

nE ⊗ IB)⊗ k(q) → 0

we conclude that F ∗
nE ⊗ IB is globally generated.

That E can not be written as an extension of M an ample line bundle and a
quotient locally free sheaf Q is equivalent to H0(C, E ⊗ M−1) = 0. However
there exists a positive integer m and an ample line bundle MC(m) on C(m) for
which H0(C(m), (F ∗

mE )⊗M
−1
C(m)) 6= 0 and we proceed as before with the sheaf

(F ∗
mE ). �

3. Definition of curve connectedness: Covering families

We now define various ways in which a variety can be covered by curves, gen-
eralising the notion of a rationally connected varieties (see [Kol96, IV]).

Definition 3.1. We say that a variety X over a field k is connected by genus
g ≥ 0 curves (resp. chain connected by genus g curves) if there exists a proper
flat morphism C → Y , for a variety Y , whose geometric fibres are irreducible
genus g curves (resp. connected genus g curves) such that there is a morphism
u : C → X making the induced morphism u(2) : C ×Y C → X ×k X dominant.

We say X is separably (chain) connected by genus g curves if u(2) is smooth
at the generic point. Note that the notion of separability is redundant in
characteristic zero due to generic smoothness. A genus zero connected variety
is rationally connected. A variety which is connected by genus one curves will
be called (with a slight abuse of notation) elliptically connected. The relevant
moduli spaces which we will be considering are the following. Let π : C → S be
a flat projective curve over an irreducible scheme S and let B ⊂ C be a closed
subscheme that is flat and finite over S. Let p : X → S be a smooth quasi-
projective scheme and g : B → X an S-morphism. The space (see [Kol96,
II.1.5] and [Mor79]) HomS(C, X, g) parametrises S-morphisms from C to X
keeping the points given by g fixed. Restricting to the case where S is the
spectrum of an algebraically closed field k we fix some notation of the following
evaluation morphisms to be used in later sections

F : C ×Hom(C,X, g) → X

φ(p, f) : H0(C, f∗
TX ⊗ IB) → f∗

TX ⊗ k(p)
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and similarly the double evaluation morphisms F (2) and φ(2)(p, q, f) as in
[Kol96, II.3.3]. Secondly we consider the relative moduli space of genus g
degree d stable curves with base point t : P → X , denoted by Mg(X/S, d, t)
as in [AK03] (originally [FP97]). By Bertini, we can always find a genus g such
that a projective X is genus g connected, the minimal such g however is an
interesting invariant of the variety. Finding higher genus covering families is
an easy operation.

Lemma 3.2. Let X be a genus g (chain) connected smooth projective variety
over an algebraically closed field k. Then if g′ ≥ 2g − 1, X is also genus g′

(chain) connected.

Proof. Let C/Y → X be a family making X a genus g (chain) connected
variety. From [AK03, Theorem 50] we have a projective algebraic space
Y ′ = M

′

g(C/Y, d) of finite type over Y parametrising stable families of degree
d curves of genus g′ over C → Y . The condition g′ ≥ 2g − 1 coming from the
Riemann-Hurwitz formula ensures that this moduli space is non-empty. From
[ACG11, 12.9.2] there exists a normal scheme Z finite and surjective over Y ′

and a flat and proper family X → Z of stable genus g curves of degree d.
Restricting to a suitable open subset W ⊂ Z parametrising irreducible curves
we compose the family X|W → W with the evaluation morphism to X and the
result follows. �

An example of an elliptically connected variety over a non-algebraically closed
field is given after the proof of Theorem 6.2. A much stronger condition is the
existence of a family of curves which is constant in moduli.

Definition 3.3. We say that a variety X over a field k is C-connected for a
curve C if there exists a variety Y and a map u : C × Y → X such that the
induced map u(2) : C ×C × Y → X ×X is dominant. If u(2) is also smooth at
the generic point, then we say that X is separably C-connected.

Projective space is C-connected for every smooth projective curve C whereas
an example of a C-connected variety which is not rationally connected is C×Pn

where g(C) ≥ 1. To see this let (c1, x1), (c2, x2) be any two points in C × Pn

and let f : C → Pn a morphism which sends ci 7→ xi. Considering the graph
of f in C ×Pn we have found a curve isomorphic to C which goes through our
two points. Using parts (3) and (4) from Lemma 3.4 below, the result follows.
More generally, examples can also be constructed from Proposition 3.5 below.
The following are mostly straight forward generalisations of various results in
[Kol96, IV.3].

Lemma 3.4. The following statements hold for a variety X over a field k and
C a smooth projective curve.

(1) If X is genus g connected and X 99K Y a dominant rational map to a
proper variety Y , then Y is also genus g connected. The same holds if
X is C-connected.
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(2) A variety X is C-connected if and only if there is a variety W , closed
in Hom(C,X) such that u(2) : C × C ×W → X ×X is dominant.

(3) If X is defined over a field k and K/k is an extension of fields, then
XK := X ×k K is C-connected if and only if Xk is.

(4) A variety X over an uncountable algebraically closed field is C-
connected if and only if for all very general x1, x2 ∈ X there exists
a morphism C → X which passes through x1, x2.

(5) A variety X over an uncountable algebraically closed field is genus g
connected if and only if for all very general x1, x2 ∈ X there exists a
smooth irreducible genus g curve containing them.

(6) Being rationally or elliptically connected is closed under connected finite
étale covers of varieties.

Proof. To prove (1), let u : C/M → X be a family making X genus g
connected and denote by u′ : C/M 99K Y the composition. Restricting u′ to
the generic fibre Ck(M) we have a rational map φ : Ck(M) 99K Y . Since Y is
proper, by the valuative criterion of properness we can extend φ to a morphism
φ : Ck(M) → Y . By spreading out to an open subset M ′ ⊆ M (see [DG67, IV3

8.10.5] for properness and 11.2.6 for flatness of the family) we obtain a family
C|M ′ → M ′ which makes Y also genus g connected.

Since being C-connected or connected by genus g curves is a birational prop-
erty, we may assume by compactifying that X is projective. For (2), consider
Hom(C,X) = ∪Ri the decomposition into irreducible components. One direc-
tion of the statement is obvious, whereas for the other let C×W → W be a fam-
ily which makes X a C-connected variety. If ui : C×Ri → X is the evaluation
morphism, then for some i there is a morphism h : W → Ri such that h(w) =

[Cw → X ] for general w ∈ W . This implies that u(2)
i : C ×C ×Ri → X ×X is

also dominant. For one direction of (3), pullback by SpecK → Spec k. For the
other, if XK is CK -connected then from (2) there is a positive integer d such
that the evaluation morphism evdK : CK×CK×Homd(CK , XK) → XK×XK is
dominant. Because of the universal property of the Hom-scheme, we have that
Hom(C,X)×k K = Hom(CK , XK) and (evd)K = evdK so evd is also dominant.

If through every two very general points there passes the image of C under some
morphism, then the map u(2) : C×C×Hom(C,X) → X×X is dominant. Since
Hom(C,X) has at most countably many irreducible components the restriction
of u(2) to at least one of the components Ri must be dominant, which proves
(4). Similarly for (5) working instead with the Kontsevich moduli of curves
Mg,1(X) → Mg,0(X) the result follows. For (6), the proof for rationally
connected varieties is contained in [Deb01, 4.4.(5)]. Let C → U be a family
which makes X elliptically connected and let X ′ → X be a connected finite
étale cover. Consider the pullback diagram and C′ → U ′ → U the Stein
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factorisation

C′ = C ×X X ′

xxrr
rr
rr
rr
rr
r

//

��

X ′

��

U ′

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ C

��

// X

U.

After possibly restricting U ′ to the open subset of curves in C′ which are
irreducible, the family C′ → U ′ makes X ′ elliptically connected. �

Proposition 3.5. Let X be a smooth projective variety over an algebraically
closed field k and f : X → C a flat morphism to a smooth projective curve
whose geometric generic fibre is separably rationally connected. Then X is
C-connected.

Proof. From [dJS03], there is a section σ : C → X to f . Now from [KMM92,
Theorem 2.13] we can find a section to f passing through any two points in
different smooth fibres over C, hence we can find a copy of C passing through
two general points. The result now follows from Lemma 3.4 parts (4) and (5)
above after possibly passing to an uncountable extension K/k. �

We now come to the main theme of this paper, which is that varieties covered by
higher genus curves in a strong sense are also covered by rational curves. This
is illustrated in the following proposition, and continues in the next sections.

Proposition 3.6. Let X be a C-connected variety of dimension at least 3 over
an algebraically closed field k. Then X is uniruled.

Proof. We may assume X is projective. Let u : C × Y → X be a family such
that u(2) : C×C×Y → X×X is dominant. We have dimY +2 ≥ 2 dimX and
so if dimX ≥ 3 we obtain dimY ≥ 4. Now, pick general points x ∈ X, c ∈ C
and denote by Z ⊂ Y the locus of curves uz : Cz → X such that x = uz(c)
for all z ∈ Z. We have that dimZ ≥ dimY − (dimX − 1) − 1 and so for
dimX ≥ 3, dimZ ≥ 1. Since any two general points in X can be connected by
the image of a Cy, it follows that Z does not get contracted to a point when
mapped to Hom(C,X ; c 7→ x). From Bend and Break (see [Deb01, Prop. 3.1])
we obtain a rational curve through x and hence through every general point.
After possibly an extension to an uncountable algebraically closed field this
implies that X is uniruled (see [Deb01, Remark 4.2(5)]). �

If C has genus one, the above result is also proved in Section 6, even allowing
the curve C to vary in moduli and with the dimension of X assumed greater
or equal to two. On the other hand, a C-connected surface does not have to be
uniruled when C has genus at least two. Consider C ⊂ A a curve in an abelian
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surface such that C contains the identity 0 of A and the genus of C is at least
two. Consider the map φ : C × C → X sending (p, q) to p− q. If the image is
one dimensional, it has to be isomorphic to C since it has to be irreducible and
contains the image of C × {0}. On the other hand, the image will be closed
under the group operation, hence would have to be abelian itself, which is a
contradiction. Hence φ is surjective, and we obtain that for any x ∈ A, there is
a (p, q) 7→ x, hence a morphism C ∼= C×{q} → X passing through x and 0 (for
(q, q)). Take any two points x, y ∈ A, and consider the image of a morphism
from C through 0 and the point x− y that we just constructed. Translate this
curve by y and obtain an image of C through x, y.

Denoting by X 99K R(X) the maximal rationally chain connected (MRC) fi-
bration, we let R0(X) = X , Ri(X) = R(Ri−1X) and obtain a tower of MRC
fibrations

X 99K R1(X) 99K · · · 99K Rn(X).

This tower eventually stabilises, and if Ri(X) is uniruled then dimRi+1(X) <
dimRi(X). In characteristic zero, we in fact have R(X) = . . . = Rn(X) (see
discussion below). In positive characteristic it can be that the tower has length
greater than one - see the example given in the last section of this paper.

Proposition 3.7. Let X be a normal and proper C-connected variety over
an algebraically closed field where C is a smooth projective curve. Then the
tower X 99K R1(X) 99K · · · 99K Rn(X) of MRC quotients terminates in either
a point, a curve or a surface.

Proof. Let C × Y → X be a family which makes X a C-connected variety.
From Lemma 3.4 part (1) it follows that Ri(X) are also C-connected. From
Proposition 3.6 we obtain that Ri(X) is uniruled if dimRi(X) ≥ 3. This
implies that Ri+1(X) must have dimension strictly less than Ri(X) and so the
result follows. �

Note that if k is algebraically closed of characteristic zero then we know from
[GHS03] that the MRC quotient R(X) is not uniruled, so if X is C-connected of
dimension at least three, R(X) must be a surface, curve or point, in which case
X is respectively a rationally connected fibration over a surface or curve, or a
point (and so X is rationally connected). From Proposition 3.5 the converse
holds too for a fibration over a curve.

Remark 3.8. As observed in [Occ06, Remark 4], if the MRC quotient of
a smooth complex projective variety X is a curve, then the MRC fibration
extends to the whole variety and coincides with the Albanese map.

4. Definition of curve connectedness: Free morphisms

In this section we define ways in which a morphism from a curve C to a variety
X can deform enough to give a large family of morphisms from C so as to
cover X . A notion studied extensively by Hartshorne [Har70] is that of a (local
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complete intersection) subvariety Y in a smooth projective variety X such that
the normal bundle NY/X is ample. Hartshorne proved in [Har70, III.4] that for
some g ≥ 0 there exists a curve C ⊂ X of genus g such that NC/X is ample.
Alternatively, Ottem [Ott12] defines an ample closed subscheme Y ⊂ X of
codimension r to be one where the exceptional divisor O(E) of the blowup
BlY X of X along Y is an (r− 1)-ample line bundle in the sense that for every
coherent sheaf F there is an integer m0 > 0 such that Hi(X,F ⊗O(E)m) = 0
for all m > m0 and i > r− 1. One can then prove that if Y is a local complete
intersection subscheme of X which is ample, then the normal bundle NY/X is
an ample bundle. We impose the following stronger positivity condition.

Definition 4.1. ([Kol96, II.3.1]) Let C be a smooth proper curve and X a
smooth variety over a field k. Let f : C → X a morphism and B ⊂ C a closed
subscheme with ideal sheaf IB and g = f |B. The morphism f is called free
over g if it is non-constant and one of the following two equivalent conditions
is satisfied:

(1) for every p ∈ C we have H1(C, f∗TX ⊗ IB(−p)) = 0 or,
(2) H1(C, f∗TX⊗IB) = 0 and f∗TX⊗IB is generated by global sections.

Note that there is also a relative version of the above definition discussed in
[KSCT07].

Definition 4.2. We say that a curve f : C → X is r-free if for all effective
divisors D of degree r ≥ 0, H1(C, f∗TX ⊗OC(−D)) = 0 and f∗TX ⊗OC(−D)
is generated by global sections. A 0-free curve is called free whereas a 1-free
curve is called very free.

The condition of r-freeness makes formal the notion that the curve C deforms in
X while keeping any general r points fixed. The following follows immediately
from Lemma 2.3.

Lemma 4.3. If f : C → X is an r-free curve then f is r′-free for all r′ ≤ r.

In the case of C = P1, f∗TX = ⊕n
i=1OP1(ai) with a1 ≤ . . . ≤ an so it follows

that f : P1 → X is r-free if and only if a1 ≥ r.

Remark 4.4. We should remark at this point that there do not exist complete
intersection curves of large enough degree which are free on a general smooth
hypersurface. For example, let X be a degree d smooth hypersurface in Pn.
Assume d ≤ n since otherwise X will be of general type or Calabi-Yau and will
not have any free curves. Let Yi be n− 2 suitably general hypersurfaces in Pn

all of degree e and let C = X ∩n−2
i=1 Yi be the resulting curve. The degree of C

is den−2 and the normal bundle is

NC/X = ⊕n−2
i=1 OPn(Yi)|C = ⊕n−2

i=1 OPn(e)|C .

By adjunction, we compute

degTC = − degωC = −d(−n− 1 + d+

n−2∑

i=1

e).
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Even setting e = 1 to make degTC as large as possible, and taking into account
that degNC/X = e(n− 2), we see that degTX |C = degTC + degNC/X is not
going to be positive for large values of d and n. Positivity of the degree of TX |C
would be necessary for any ampleness conditions. See [Gou14] for a discussion
on separable rational connectedness of Fano complete intersections.

A result of Kollár ([Kol96, II.1.8]) implies that if the dimension of X is at least
3, a general deformation of a 2-free morphism is an embedding into X . We will
see (Theorem 5.5) that if the genus of C is at least one, this holds for any free
morphism too. From [Kol96, II.3.2], if a family of curves mapping to a variety
has a member which is free over g, then the locus of all such curves in this
family is open.

Lemma 4.5. Let X be a smooth variety over an algebraically closed field k,
D ⊂ X a divisor and f : C → X a free morphism. If p ∈ C then there exists a
deformation f ′ : C → X with f ′(p) /∈ D.

Proof. By semicontinuity let U ⊂ Hom(C,X) be a connected open neigh-
bourhood of [f ] such that H1(C, f∗

t TX) = 0 for all [ft] ∈ U . From [Mor79] it
follows that the dimension of U is h0(C, f∗TX). Denote by Ip the ideal sheaf
on C of the closed subscheme with unique point p. Since f is free, we have
H1(C, f∗

t TX ⊗ Ip) = 0 for all [ft] ∈ U and so by fixing a point x ∈ X such
that p 7→ x, we have

dim(Hom(C,X ; p 7→ x) ∩ U) = h0(C, f∗
TX ⊗ Ip)

= h0(C, f∗
TX)− dimX

= dimU − dimX.

Next, denote by

V = {[ft] ∈ U | ft(p) ∈ D} =
⋃

x∈D

{[ft] ∈ U | ft(p) = x}

the subspace of all morphisms in U which send p to a point in the divisor D.
It follows that

codim(V, U) ≥ dimU − dimV

= h0(C, f∗
TX)− (h0(C, f∗

TX)− dimX + dimX − 1) = 1

and hence there exists an [f ′] ∈ U \ V such that f ′(p) /∈ D. �

Proposition 4.6. Let X be a smooth variety over an algebraically closed field
k and f : C → X a smooth projective curve which is free over B ⊂ C a
closed subscheme with ideal sheaf IB. Let g : X 99K Y be a generically smooth
dominant rational map to a smooth proper variety Y . Then it follows that
f ′ := g ◦ f : C 99K Y can be deformed to a morphism free over B.

Proof. Deform f : C → X so that it misses the codimension 2 exceptional
locus of g (from [Kol96, II.3.7]) so we can assume that the composition g ◦ f :
C 99K Y is in fact a non-constant morphism. Starting with the standard exact
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sequence of tangent bundles on X and applying f∗ and tensoring with IB we
obtain

0 → f∗
TX/Y ⊗ IB → f∗

TX ⊗ IB → (g ◦ f)∗TY ⊗ IB.(4.1)

From [Liu02, Ex. 6.2.10] this is exact on the right and we conclude. �

In the case of higher genus curves there exist genus g connected varieties which
do not have a free or very free curve for all g ≥ 1, for example consider E × P1

where E is an elliptic curve. As pointed out after Definition 3.3, E × P1 is
E-connected yet it is not possible that there exists a morphism f : C → E×P1

from a curve C such that f∗TE×P1 is ample since this bundle is isomorphic to
OC ⊕ OC(2) which has a non-ample quotient OC . One can however prove the
following proposition.

Proposition 4.7. Let X be a smooth variety over an algebraically closed field
and f : C → X a very free morphism for some smooth projective curve C.
Then X is separably C-connected.

Proof. Let [f ] ∈ Y ⊂ Hom(C,X) be an open and smooth neighbourhood
with cycle map u : C × Y → X . We first show that the evaluation map

φ(2)(p, q, f) : H0(C, f∗
TX) → f∗

TX ⊗ k(p)⊕ f∗
TX ⊗ k(q)

is surjective for p 6= q general points in C. Consider the following exact se-
quences of sheaves

0 → f∗
TX(−p− q) → f∗

TX → (f∗
TX ⊗ k(p))⊕ (f∗

TX ⊗ k(q)) → 0

0 → f∗
TX(−p− q) → f∗

TX(−p) → f∗
TX(−p)⊗ k(q) → 0

and note that by taking the long exact sequence in cohomology of
the first, to show that φ(2)(p, q, f) is surjective, we need to show that
H1(C, f∗TX(−p − q)) = 0. Since f is very free we have from the
second sequence that H0(C, f∗TX(−p)) → f∗TX(−p) ⊗ k(q) is surjec-
tive and also that H1(C, f∗TX(−p)) = 0 from which it follows that
H1(C, f∗TX(−p − q)) = 0. Since φ(2)(p, q, f) is surjective, it follows from
[Kol96, II.3.5] that u(2) : C × C × Y → X × X is smooth at (p, q, [f ]). We
conclude that X is separably C-connected and thus also separably connected
by genus g curves. �

Remark 4.8. It follows that in the setting above that a very free curve (or in
fact even a C such that X is C-connected) has the property that it intersects
non-trivially all but a finite number of divisors. This follows from the fact
that we can cover an open subset by images of C, whose complement will be a
proper closed subset of X and so contains a finite number of divisors.

5. Proving uniruledness and rational connectedness

In this section we prove that the existence of a free curve of genus g ≥ 1 is
equivalent to the existence of an r-free curve of genus g for all r ≥ 1, and that in
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characteristic zero this is also equivalent to the existence of a very free rational
curve. This is in stark contrast to rational curves, where uniruled varieties
(possessing free rational curves) are not always rationally connected (possessing
very free rational curves). We begin by noting that there is another type of
positive curve one can consider for a smooth projective variety X , namely
f : C → X such that f∗TX is ample. Note that such a curve automatically has
NC/X ample. Such curves have traditionally been studied in terms of foliations
(cf. Theorem 5.3). We will also prove that the existence of a curve such that
f∗TX is ample is in fact equivalent to the existence of a free curve of the same
genus.

Proposition 5.1. Let X be a smooth projective variety over an algebraically
closed field k and f : C → X a morphism from a smooth projective curve of
genus g such that f∗TX ample. Then X is uniruled.

Proof. The proof follows the usual Mori argument so we present only a sketch
(cf. Theorem 5.3). Note that if X is a curve, then since a bundle is ample if and
only if its pullback under a finite morphism is ample, we obtain that X = P1.
In characteristic zero, after spreading out over a finitely generated extension
SpecS of SpecZ, one can reduce to any closed prime and consider the equiva-
lent set-up in positive characteristic. After pulling back by Frobenius, Lemma
2.4 implies that there is a morphism f

(n)
p : Cp → Xp such that (f

(n)
p )∗TXp

is
very free (or r-free even), where fp : Cp → Xp the reduction of f : C → X .
Bend and Break now produces a rational curve passing through a general
point, of bounded degree independent of p (see [Deb01, Prop. 3.5]). These are
points in fibres over SpecS of a finite type relative moduli Homd

S(P
1
S ,X/S, s),

for s : SpecS → X a section specifying the general point the rational curve
goes through. Hence by Chevalley’s Theorem the generic fibre over SpecS
is also non-empty, and there is a rational curve through a general point of X . �

Theorem 5.2. Let X be a smooth projective variety over an algebraically closed
field k and f : C → X a morphism from a smooth projective curve of genus g
such that f∗TX is ample.

(1) If the characteristic p of k is zero, then X is rationally connected.
(2) If p > 0 then the tower of MRC fibrations terminates with a point.

Proof. From 5.1, we conclude that X is uniruled, regardless of the charac-
teristic. Denote by π : X → R(X) the MRC fibration (R(X) is defined up
to birational transformation so we may assume π is a morphism). In charac-
teristic zero, the composition g : C → X → R(X) again has g∗TR(X) ample,
since from the proof of 4.6 the quotient of an ample bundle is ample. So by
the Graber-Harris-Starr Theorem, since R(X) is uniruled by Proposition 5.1,
it must be a point. In positive characteristic, it may not be the case that the
composition g : X → R(X) is generically smooth, in which case g∗TR(X) might
not be ample. From Lemma 2.4 however there is a morphism h : C′ → X such
that h∗TX is very free (here C′ is a Frobenius pullback of C so has the same
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genus). From 4.7, X is separably C′-connected, and so by 3.7 we do obtain
that the tower of MRC quotients X → R(X) → · · ·Rn(X) ends in a point,
curve or surface. If π : X → T where T := Rn(X) is a smooth projective
curve, then by Lemma 4.5, for a point p ∈ C′, we can deform h so that the
image of p misses the inverse image under π of π(h(p)). Hence Hom(C′, T )
is at least one dimensional and from de Franchis’ Theorem [ACG11, 8.27] it
follows that T has genus zero or one. One excludes the case where C′, T both
of genus one, by using the fact that there are only countably many isogenies
between two elliptic curves. Also, T cannot be rational since we have assumed
the tower is maximal. If now Rn(X) = S is a smooth projective surface, we
may assume by pulling back by Frobenius from 2.4 and deforming, that there
is an at least one dimensional family of morphisms sending a fixed point on
C to a fixed point on S. Hence by Bend and Break [Deb01, Prop. 3.1] the
surface would have to be uniruled and we are reduced to the case of a point
again. �

Assuming ampleness and regularity of a foliation on a smooth curve in charac-
teristic zero, results of this type have been demonstrated in the work of various
people, starting with Miyaoka’s uniruledness criterion [Miy87, Theorem 8.5].
A short summary of recent results follows.

Theorem 5.3. ([BM01, Theorem 0.1], [KSCT07, Theorem 1]) Let X be a
normal complex projective variety and C ⊂ X a complete curve in the smooth
locus of X. Assume that F ⊂ TX is a foliation regular along C and such that
F |C is ample. If x ∈ C is any point, the leaf through x is algebraic and if
x ∈ C is general then the closure of the leaf is also rationally connected.

Using [BDPP13, Corollary 0.3], Peternell proved a weaker version of Mumford’s
conjecture on numerical characterisation of rationally connected varieties from
which one can deduce the following theorem.

Theorem 5.4. ([Pet06, 5.4, 5.5]) Let X/C be a projective manifold and C ⊂ X
a possibly singular curve. If TX |C is ample then X is rationally connected. If
TX |C is nef and −KX .C > 0 then X is uniruled.

The precise relation between r-free morphisms and morphisms f : C → X such
that f∗TX is ample is given in the following.

Theorem 5.5. Let X be a smooth projective variety over an algebraically closed
field k and r ≥ 0 any integer. Then there exists a morphism f : C → X from
a smooth projective genus g ≥ 1 curve C such that f∗TX is ample if and only
if there is an r-free morphism h : C′ → X from a genus g smooth projective
curve C′.

Proof. Assuming the existence of h, we obtain from Lemma 2.3 that h is
also free, and so by Proposition 2.2, h∗TX is ample. If f∗TX is ample, one
needs to separate between characteristic p > 0 or equal to zero. In the former
case, as in the proof of 5.1 we get h : C′ → X (here again C′ is a Frobenius
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pullback of C so of genus g) which is r-free. When the characteristic is zero,
X will be rationally connected from 5.2. The idea now is to attach many very
free rational curves to C, apply standard smoothing of combs techniques and
prove that the resulting general smooth deformations of the comb will be r-free
genus g curves (cf [Kol96, II.7.10]). This proceeds as follows. Assemble a comb
D = C ∪ ∪m

i=1Ci with m rational teeth that are (r + 1)-free like in [Kol96,
II.7]. For m large enough, D is smoothable to a flat proper family Y → T
where the general fibre is isomorphic to C, the central fibre is a subcomb of
D with a large number of teeth depending on C ⊂ X and m, and there is a
morphism F : Y → X which extends D → X . To show that the general nearby
fibre ft : Yt → X is r-free, it suffices to show that H1(Yt, f

∗
t TX(−

∑r
i=0 pi))

for p0, p1, . . . , pr any points on Yt ⊂ X (see Definition 4.1). Pick sections
s0, s1, . . . , sr : T → Y with si(t) = pi. Let E = F ∗TX(−

∑r
i=1 si(T )). By

Riemann-Roch, for m large enough, we have that H1(C,M ⊗ E|C) = 0 for all
line bundles M of degree larger than m, and also that E|Ci

is ample since Ci

is (r + 1)-free. Now apply [Kol96, II.7.10.1] for m large enough. �

Using any of Theorems 5.3, 5.4 or 5.2, a smooth projective variety X over
an algebraically closed field of characteristic zero with a free genus g curve
f : C → X such that g ≥ 1 is automatically rationally connected.

Remark 5.6. At this point we cannot prove that in positive characteristic,
assuming that we have a free curve f : C → X of genus g ≥ 1 implies that
X is separably rationally connected or even rationally chain connected. It is
tempting to hope that both statements are true though. Jason Starr informs
us that his maximal free rational quotient (MFRC) [Sta06] gives a generically
(on the source) smooth morphism X → Rf (X) over any algebraically closed
field k, so if X contained a free rational curve f : P1 → X , then dimRf (X) <
dimX . Hence, if f : C → X a free curve of genus g ≥ 1 implied that we
have a free rational curve P1 → X (we do not know how to show this), taking
successive MFRC quotients and using Proposition 4.6 would reduce the tower
of MFRC quotients to a point. This does not mean that X will necessarily be
rationally connected, but since there is a free rational curve on X , it will at
least be separably uniruled. Even though Bend and Break arguments give us
the existence of many rational curves, the author does not know any general
techniques to construct free rational curves in positive characteristic. See the
last two sections for results in this direction.

6. Elliptically connected varieties

In this section we will study more carefully the case of genus one. Denoting
RC and EC to mean rationally and elliptically connected (genus one connected)
respectively, we have the following inclusions of sets of varieties

{rational} ( {unirational} ⊆ {RC} ( {EC} ( {uniruled}.

It is an open problem whether there exists a non-unirational rationally con-
nected variety but it is widely expected these do exist. The following result
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is in the spirit of 3.6. The following proof was suggested by the anonymous
referee.

Proposition 6.1. Let X be an elliptically connected smooth projective variety
of dimX ≥ 2 over an algebraically closed field k. Then X is uniruled.

Proof. Like in 3.6, for C → U a family of genus one curves mapping to X such
that C ×U C → X ×X is dominant, there is an at least one dimensional locus
Z ⊂ U parametrising curves which pass through a (general) point x ∈ X . In
fact, after fixing a general hyperplane H , we obtain a morphism Z → M1,2(X)
where for z ∈ Z, the two marked points are the point pz ∈ Cz sent to x, and
a point qz ∈ Cz which is sent to H . Denote also by C → Z the restriction of
the family from U . Consider now a compactification and the induced rational
map to X

C

π
��

f
//❴❴❴ X

Z

and let µ : Z → M1,2(X) be the moduli map. Since M1,2 contains no proper
subvarieties which do not get contracted when mapped to M1, either the
image of µ meets the boundary, which implies that there is a rational curve
through x, or µ is a contraction to a point. In the latter case, we thus have
that the family π is isotrivial, so after passing to a finite flat cover Z

′
of Z we

obtain C × Z
′
→ Z

′
, with f ′ : C × Z

′
99K X the induced morphism. From

the construction, we also obtain a point p ∈ C (mapped to each pz under the
map C × Z

′
→ C) such that f ′ contracts {p} × Z

′
to x. If f ′ were defined

everywhere, Mumford’s Rigidity Theorem would imply that all fibres {s} ×Z
′

are contracted, which contradicts the fact that images of our initial family
dominate H . Hence f ′ is not defined everywhere and like in Bend and Break,
we obtain a rational curve through x. �

Theorem 6.2. Let X be a smooth projective variety over an algebraically closed
field k of characteristic zero. Then X is elliptically connected if and only if it is
rationally connected or a rationally connected fibration over an elliptic curve.

Proof. Consider the MRC fibration π : X 99K R(X) where R(X) is elliptically
connected as π is dominant. Since R(X) is elliptically connected and not unir-
uled, it follows from Proposition 6.1 that it must be either of dimension 0 and
thus X is rationally connected, or of dimension 1 and so an elliptic curve E by
Riemann-Hurwitz. By Remark 3.8, the MRC fibration coincides with the map
to the Albanese and so fibres of X → E′ are rationally connected. Conversely,
we have seen that a rationally connected variety is elliptically connected in
Lemma 3.2. If on the other hand X is a rationally connected fibration over
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an elliptic curve E then from Proposition 3.5 we know that it is E-connected. �

If k is of positive characteristic, using the same methods as in Lemma 3.7 we
deduce that for an elliptically connected variety, the tower of MRC fibrations
terminates with a point or a curve.

Remark 6.3. Note that Bjorn Poonen [Poo10] has constructed non-trivial
examples over an arbitrary field, of elliptically connected threefolds which are
not rationally connected. These are Châtelet surface fibrations over an elliptic
curve.

7. Towards a positive characteristic analogue

From Remark 5.6 and the work preceding it, we would like to demonstrate
that the existence of a free higher genus curve implies the existence of a free
rational curve in positive characteristic, something which holds in characteristic
zero from Theorem 5.2. In this section we make the first steps in this direction.
If f : C → X is a very free morphism from a smooth projective curve of genus
g ≥ 2 to a smooth projective variety X , then KX .C = − deg f∗TX < 0 from
the ampleness of f∗TX . In fact, a Riemann-Roch calculation gives a better
bound of KX .C ≤ −n(g − 1) where n = dimX .

Proposition 7.1. Let X be a smooth projective surface over an algebraically
closed field k with f : C → X a free morphism from a smooth projective curve
C of genus g > 0 or a very free morphism of genus zero. It follows that X is
separably rationally connected.

Proof. If C is of genus zero then X is separably rationally connected by
definition. From the discussion above we have that KX is not nef. Also,
any surface Y which is birational to X admits a morphism C → Y from 4.6,
which is again free, so KY is also not nef. From the classification of surfaces
this means that X is either rational or ruled. If ruled, X would admit a
birational morphism to P1 × C. The free morphism f : C → X would give
a free morphism C → P1×C which would mean C is P1 and X was rational. �

Remark 7.2. Some remarks about the case of dimension three, where the
minimal model program is incomplete in positive characteristic. From the main
theorem in [Kol91], assuming X is smooth and that it admits a free morphism
from a curve, we can contract extremal rays in the cone of curves in arbitrary
characteristic, to obtain a Fano fibration over a curve, surface or point. In
the case where there exists a conic fibration X → S where S is a smooth
surface, Kollár proves that if the characteristic of k is not 2 then the general
fibre is smooth. From Proposition 4.6 it follows that the composition morphism
C → S is free and so from the above proposition for the case of surfaces, S
is a rational surface. Hence X is a conic bundle over a rational surface hence
separably rationally connected. If X → Y a Fano fibration over a curve, to
the author’s knowledge, it is not known whether the fibres of the del Pezzo
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surface fibration over Y obtained in this way must be smooth. Assuming for
the time being that they were, they would be separably rationally connected
and from the deformation theory argument in Theorem 5.2 and de Franchis’
Theorem [ACG11, 8.27], Y would be P1. From the de Jong-Starr Theorem we
would obtain sections P1 → X from which we could assemble combs with very
free teeth to be smoothed to very free rational curves in X , showing that X is
separably rationally connected. Finally, even though it is open whether Fano
threefolds are separably rationally connected (this result is not true in higher
dimensions however), Shepherd-Barron [SB97] proved that Fano threefolds of
Picard rank one are liftable to characteristic zero, hence admitting a very free
morphism implies they are separably rationally connected.

The following result is well known in the case of P1 (see [Deb01, 4.18]) and
easily extends to higher genus.

Proposition 7.3. Let f : C → X be a very free morphism from a smooth
projective curve C to a smooth projective variety X over an algebraically closed
field k. Then for all positive integers m, ℓ

H0(X, (Ωℓ
X)⊗m) = 0.

Proof. Since f : C → X is very free, from Proposition 4.7 there is a variety
U such that C × U → X makes X separably C-connected. Being very free is
an open property ([Kol96, II.3.2]) so we can assume that the general morphism
fu : Cu → X for u ∈ U is very free and also an immersion from [Kol96, II.1.8],
and so f∗

uTX is ample from Proposition 2.2 (and by definition of a very free
curve in the genus zero case). We conclude that for a general point x ∈ X
there is a morphism fu : Cu → X such that f∗

uTX is ample and whose image
passes through x. Hence since f∗

uΩ
1
X is negative, any section of (Ωℓ

X)⊗m must
vanish on the image f(Cu) hence on a dense open subset of X , and so on X .
�

Corollary 7.4. Let f : C → X as above. Then the Albanese variety AlbX
is trivial.

Proof. Note that we have that dimAlbX ≤ dimH1(X,OX) = h0,1.
In characteristic zero Hodge duality gives that h1,0 = h0,1 but more
generally over any algebraically closed field we have (see [Igu55]) that
dimAlbX ≤ h1,0 = h0(X,Ω1

X). The result follows from Proposition 7.3. �

The above also follows from the result in [Gou14], which says that in the above
situation H1(X,OX) = 0. See ibid. for a discussion around the vanishing of
Hi(X,OX) for separably rationally connected varieties in positive characteris-
tic. Note also that if X is C-connected, since any map C → AlbX must factor
through the Jacobian, and there are only countably many homomorphisms be-
tween abelian varieties, one concludes that the image of X in AlbX is either a
point or a curve.
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8. An example in positive characteristic

Let X be the Fermat quintic surface x5
0 + x5

1 + x5
2 + x5

3 = 0 in P3 over an
algebraically closed field of characteristic p. In [Shi74] it is proven that if p 6= 5
and p is not congruent to 1 modulo 5, then X is a unirational general type
surface and if we quotient by the action of the group G of 5-th roots of unity
xi 7→ ζixi, then we obtain a Godeaux surface which is again unirational but
has algebraic fundamental group πet

1 (X/G, y) ∼= Z/5Z. Note that in charac-
teristic zero, the notions of rationally chain connected, rationally connected,
freely rationally connected (see [She10]) and separably rationally connected all
coincide and it is known that each variety in this class is simply connected. In
positive characteristic however these notions are in decreasing generality and
can differ. A rationally chain connected variety always has finite fundamental
group (see [CL03]) whereas a freely rationally connected variety is simply con-
nected (see [She10]). Note that Shioda’s example above gives a unirational and
hence rationally connected variety over a characteristic p algebraically closed
field which is not simply connected.

We show there is a smooth projective variety in characteristic p which has
infinite étale fundamental group but after a finite number of MRC quotients
we terminate with a point. Let C be a smooth 5 to 1 cover of P1, with defining
affine equation of the form y5 = f(x) where f is a general polynomial of high
degree. We have an action of G = Z/5Z on C which we can extend to the
product X × C of the above Fermat quintic X with C. Projecting from the
quotient onto the second factor we have a morphism (X×C)/G → P1 where we
have identified C/G with P1. The general fibre of this morphism is isomorphic
to X . We have a short exact sequence

1 → πet
1 (X, x)× πet

1 (C, c) → πet
1 ((X × C)/G, z) → G → 1.

Hence we have constructed an example of a smooth projective variety over an
algebraically closed field of characteristic p whose fundamental group is infinite
yet whose tower of MRC quotients terminates with a point.
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