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Abstract. Semigroup C*-algebras for right-angled Artin monoids
were introduced and studied by Crisp and Laca. In the paper at
hand, we are able to present the complete answer to their question of
when such C*-algebras are isomorphic. The answer to this question
is presented both in terms of properties of the graph defining the
Artin monoids as well as in terms of classification by K-theory, and
is obtained using recent results from classification of non-simple C*-
algebras. Moreover, we are able to answer another natural question:
Which of these semigroup C*-algebras for right-angled Artin monoids
are isomorphic to graph algebras? We give a complete answer, and
note the consequence that many of the C*-algebras under study are
semiprojective.
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1 Introduction

Semigroup C*-algebras for right-angled Artin monoids were introduced and
studied by Crisp and Laca in [CL02] and [CL07]. In [CL07], the authors ask
how to classify these semigroup C*-algebras up to *-isomorphism. We now
present the complete answer to their question.
The Artin monoids studied here are given by countable, symmetric and antire-
flexive graphs Γ = (V,E) as

A+
Γ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉+ .
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The corresponding right-angled Artin groups, defined by the same generators
and relations, are special cases of Artin groups, which form an important class
of examples of groups. We refer the reader to [CL02, CL07] and the references
therein for more details.
Semigroup C*-algebras of left cancellative semigroups, generated by the left
regular representation of the semigroup, have been studied for a long time.
Recently, there has been a renewed interest in this topic (see [Li12, Li13] and the
references therein). By [CL02], the semigroup C*-algebras C∗(A+

Γ ) attached to
right-angled Artin monoids are given as the universal C*-algebras for

〈
{sv: v ∈ V }

∣∣∣∣
[sv, sw] = [sv, s

∗
w] = 0 if (v, w) ∈ E

s∗vsw = δv,w if (v, w) 6∈ E

〉

We answer the question of when two graphs Γ,Λ produce C*-algebras that
are isomorphic. Although we emphasize that our results cover the full range
of such graphs, it is instructive to state our main results in the case of finite
graphs. This is a specialization of the combination of Theorems 4.2 and 5.2.

Theorem 1.1 Let Γ and Λ be finite undirected graphs with no loops. The
following are equivalent

1. C∗(A+
Γ )

∼= C∗(A+
Λ )

2. (a) t(Γ) = t(Λ)

(b) Nk(Γ) +N−k(Γ) = Nk(Λ) +N−k(Λ) for all k ∈ Z

(c) N0(Γ) > 0 or

∑

k>0

N−k(Γ) ≡
∑

k>0

N−k(Λ) mod 2

3. [FK+(C
∗(A+

Γ )), [1C∗(A+

Γ
)]]

∼= [FK+(C
∗(A+

Λ )), [1C∗(A+

Λ
)]]

In this result, the invariant mentioned in (3) is the standard ordered filtered
K-theory – implicitly containing the primitive ideal space – which has been
conjectured in [ERR10] to be a complete invariant for a large and important
class of C*-algebras. This conjecture is still open, but has been confirmed in
a multitude of situations partially overlapping with the case at hand. But the
main strength of our result is in fact that the ad hoc invariant of (2) is extremely
easy to compute for Γ and Λ. Indeed, as we shall detail below, the numbers t(Γ)
and Nk(Γ) are obtained by dividing Γ into co-irreducible components and then
counting how many of these are singletons, yielding t(Γ), and counting how
many of the remaining co-irreducible components have Euler characteristic k,
yielding Nk(Γ). In Figure 1 this process has been completed for all 34 graphs
with five vertices, and we conclude that they define 18 different C*-algebras.
When the number of vertices increase, it is possible for two graphs to have dif-
ferent sets of invariants, yet define the same C*-algebra. For instance, defining
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N−4=1 N−3=1 N−2=1 N−2=1 N−2=1 N−1=1 N−1=1

N−1=1 N−1=1 N−1=1 N−1=1 N−1=1 N0=1 N0=1

N0=1 N0=1 N0=1 N0=1 N0=1 N1=1 N1=1

N−3=1 N−2=1 N−2=1 N−1=2 N−1=1 N−1=1 N−1=1

t=1 N−1=1 t=1 t=1 t=1 t=1

N0=1 N−2=1 N−1=2 N−1=1 N−1=1 t=5

t=1 t=2 t=1 t=2 t=3

Figure 1: Invariants for all graphs with 5 vertices. Any quantity not mentioned
equals zero.
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a graph Γ′ with 10 vertices having its co-irreducible components chosen among
those given in Figure 1 so that

N−1(Γ
′) = 2

and Λ′ similarly defined so that

N1(Λ
′) = 2,

then C∗(A+
Γ′ ) and C∗(A+

Λ′) will be isomorphic. Similarly, we may define Γ′′

and Λ′′ with 15 vertices each so that

N−1(Γ
′′) = 1, N0(Γ

′′) = 1, N1(Γ
′′) = 1

N−1(Λ
′′) = 2, N0(Λ

′′) = 1

obtaining that C∗(A+
Γ′′ ) ∼= C∗(A+

Λ′′ ).
In the general case of possibly infinite graphs, an additional quantity o(Γ) must
be introduced to count those co-irreducible components which have an infinite
number of vertices, and to address the possibility of having an infinite number
of co-irreducible components, but the necessary condition replacing (2) in this
general case is not much more complicated than the one given above.
We note that the C*-algebras associated via semigroups to undirected and
loop-free graphs are not always graph C*-algebras in the usual sense, not only
because graph C*-algebras are defined using directed graphs. We provide a
complete description of when C∗(A+

Γ ) is in fact a graph C*-algebra, and note
that there is a rather complicated relation between Γ and the GΓ when in fact
C∗(A+

Γ )
∼= C∗(GΓ). In this case, GΓ is not unique.

Our results have surprising consequences for the issue of stable relations (cf.
[Lor97]) among sets of isometries of separable Hilbert spaces, subject to commu-
tativity or orthogonality relations as given by the graph Γ, or, which is nearly
the same, for the issue of semiprojectivity (cf. [Bla85]) of the C*-algebras
C∗(A+

Γ ). Indeed, it is easy to see by spectral theory that C∗(A+
Γ ) is semipro-

jective when Γ is a finite graph with no edges, corresponding to a family of
isometries having orthogonal range projections. Similarly, it follows e.g. from
considering the celebrated Voiculescu matrices ([Voi83],[EL91]) that when Γ is a
complete graph with more than one vertex, C∗(A+

Γ ) cannot have this property.
It is a question attracting a lot of attention (see e.g. [Bla04]) to what extent
it is possible to obtain stable relations for commuting sets of stable relations,
or to what extent tensor products of semiprojective C*-algebras can them-
selves be semiprojective. In fact, it was only established recently ([End15])
that O3 ⊗O3 is semiprojective, as a consequence of Enders’ sweeping solution
to the semiprojectivity problem for Kirchberg algebras. In our setting, because
we have found that many settings in which some isometries are required to
be orthogonal, and others to commute, give the same C*-algebras as the ones
where all are required to be orthogonal, we immediately see that many such
settings — for instance the first 12 listed in Figure 1 — provide for stable
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relations. Involving the notion of graph algebras as outlined above, we will
show in Theorem 6.9 semiprojectivity and nonsemiprojectivity for many of the
C*-algebras under study, and it follows from our results that exactly those
C*-algebras arising from the graphs in Figure 1 in the non-shaded entries are
semiprojective. We have not been able to resolve the issue completely as En-
ders’ methods do not apply directly, the first open case having six vertices and
two co-irreducible components each with Euler characteristic −2.
All authors acknowledge support by the Danish National Research Foundation
through the Centre for Symmetry and Deformation (DNRF92), and thank the
Department of Mathematical Sciences at the University of Copenhagen, where
the initial phases of this work were carried out, for providing excellent facilities.
The first named author gratefully acknowledges support from the VILLUM
Foundation, and the third named author gratefully acknowledges support from
the Simons Foundation (#279369 to Efren Ruiz).

2 Preliminaries

2.1 Semigroup C*-algebras for right-angled Artin monoids

Let Γ be a countable graph. Γ = (V,E) is given by a countable set of vertices
V and a set of edges E. We only consider unoriented edges, and given two
vertices, there is at most one edge joining these two vertices. In other words,
we can think of E as a symmetric subset of V × V not containing elements of
the diagonal.
Given such a graph Γ = (V,E), the right-angled Artin group AΓ is defined as
follows:

AΓ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉 .

Similarly, the right-angled Artin monoid A+
Γ is defined as follows:

A+
Γ := 〈{σv: v ∈ V } |σvσw = σwσv if (v, w) ∈ E〉+ .

It turns out that the canonical semigroup homomorphismA+
Γ → AΓ is injective,

see [Par02]. Moreover, it is shown in [CL02] that A+
Γ ⊆ AΓ is quasi-lattice

ordered. This means that for every g in AΓ, either (gA+
Γ ) ∩ A

+
Γ = ∅ or there

exists p ∈ A+
Γ with (gA+

Γ ) ∩ A
+
Γ = pA+

Γ .
The (left) reduced semigroup C*-algebra of A+

Γ is given by

C∗
λ(A

+
Γ ) = C∗ 〈{Sv: v ∈ V }〉 ⊆ L(ℓ2(A+

Γ )),

where Svex = eσvx with {ex} the canonical orthonormal basis. The full semi-
group C*-algebra of A+

Γ is defined as

C∗(A+
Γ ) = C∗

univ

〈
{sv: v ∈ V }

∣∣∣∣
[sv, sw] = [sv, s

∗
w] = 0 if (v, w) ∈ E

s∗vsw = δv,w if (v, w) 6∈ E

〉

The canonical homomorphism C∗(A+
Γ ) → C∗

λ(A
+
Γ ) is an isomorphism by

[CL02]. Hence we do not distinguish between reduced and full versions and
simply write C∗(A+

Γ ) for the semigroup C*-algebra of A+
Γ .
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2.2 Co-irreducible components

The graph Γ is called co-reducible if there exist non-empty subsets V1 and V2
of V with V = V1 ⊔ V2 such that V1 × V2 ⊆ E. Γ is called co-irreducible if Γ
is not co-reducible. In general, we can always decompose Γ into co-irreducible
components. This means that there exist co-irreducible graphs Γi = (Vi, Ei)
such that A+

Γ
∼=
⊕

iA
+
Γi

(and also AΓ
∼=
⊕

iAΓi
). As explained in [CL07],

these co-irreducible components are found by looking at the opposite graph of
Γ. For the semigroup C*-algebra, we get C∗(A+

Γ )
∼=
⊗

i C
∗(A+

Γi
). Note that

if there are (necessarily countably) infinitely many co-irreducible components,
the tensor product is defined as an inductive limit of finite tensor products with
respect to the canonical unital embeddings as tensor factors.
It is shown in [CL07] that for a co-irreducible graph Γ = (V,E) with 1 < |V | <
∞, C∗(A+

Γ ) has a unique non-trivial ideal isomorphic to the compact opera-
tors. It is easy to see the compact operators in the description of C∗(A+

Γ ) as a
concrete C*-algebra on ℓ2(A+

Γ ): We just have to observe that 1 −
∨
v∈V SvS

∗
v

is the orthogonal projection onto the one-dimensional subspace of ℓ2(A+
Γ ) cor-

responding to the identity element of A+
Γ . This projection then generates the

ideal of compact operators. The corresponding quotient C∗
Q(A

+
Γ ) is a (unital)

Kirchberg algebra satisfying the UCT. However, if our co-irreducible graph has
infinitely many vertices, then C∗(A+

Γ ) itself is a (unital) Kirchberg algebra sat-
isfying the UCT. That we obtain UCT Kirchberg algebras follows also from
[Li13, Corollary 7.23]. The case where Γ consists of only one vertex is easy
to understand; in that case, C∗(A+

Γ ) is canonically isomorphic to the Toeplitz
algebra T .

2.3 Primitive ideal space

We can now describe the primitive ideal space of C∗(A+
Γ ) for arbitrary Γ.

Let Γi = (Vi, Ei) be the co-irreducible components of Γ. Then by [Bla77,
Theorem 4.9], we have an identification

Prim (C∗(A+
Γ ))

∼=
∏

i

Prim (C∗(A+
Γi
)).

Under this identification, an element (Ii) of the space on the right hand side
corresponds to the primitive ideal I of C∗(A+

Γ ) which is generated by {
⊗

j Jij}i,

where Jij = C∗(A+
Γj
) if j 6= i and Jii = Ii. Since each of the Γi is co-irreducible,

the primitive ideal space Prim (C∗(A+
Γi
)) is easy to describe because of the

results summarized above:

• If Γi just consists of one point, then Prim (C∗(A+
Γi
)) is homeomorphic to

the primitive ideal space of the Toeplitz algebra. This means that as a
set, Prim (C∗(A+

Γi
)) is the disjoint union of a point and a circle, and the

non-empty open sets are given by unions of the point and open subsets
in the usual topology of the circle.
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• If Γi has more than one, but finitely many vertices, Prim (C∗(A+
Γi
)) con-

sists of two points, one of which is closed (the corresponding primitive
ideal is the ideal of compact operators) and the other one is dense.

• If Γi has infinitely many vertices, then Prim (C∗(A+
Γi
)) consists of only

one point.

2.4 K-theory

K-theory for C∗(A+
Γ ) and the quotients C∗

Q(A
+
Γ ) has been computed in [Iva10]

in an ad hoc way, and can also be computed using [CEL13]. Let us explain the
computation via the latter route. First of all, we need the Euler characteristic
of a graph Γ. We view Γ as a simplicial complex by defining for every n =
0, 1, 2, . . . the set of n-simplices by

Kn := {{v0, . . . , vn} ⊆ V : (vi, vj) ∈ E for all i, j ∈ {0, . . . , n} , i 6= j} .

Then we set for a graph Γ with finitely many vertices χ(Γ) := 1 −∑∞
n=0(−1)n|Kn|.

Remark 2.1 It is easy to see that there are co-irreducible graphs attaining any
integer as its Euler characteristic. Indeed, letting Γ−m denote the graph with
m+ 1 vertices and no edges, we clearly have

χ(Γ−m) = −m.

Systematically generating positive characteristics is harder; one option is to let
Γn2−1 denote the graph with 2n+2 vertices obtained by deleting one edge from
the complete bipartite graph Kn+1,n+1 and note that

χ(Γn2−1) = n2 − 1

To obtain positive characteristics in {(n− 1)2, . . . , n2 − 1} one may simply add
a suitable number of isolated vertices to Γn2−1.

Now, by [CEL13, Theorem 5.2], we know that we always have K∗(C
∗(A+

Γ ))
∼=

K∗(C), and K0(C
∗(A+

Γ ))
∼= Z is generated by the class of the unit [1]. Here we

use that right-angled Artin groups satisfy the Baum-Connes conjecture with
coefficients because these groups have the Haagerup property (see [NR97], and
also [AD]). To compute K-theory for the quotient C∗

Q(A
+
Γ ) in the case that Γ

has (more than one and) finitely many vertices, we consider the short exact
sequence 0 → K → C∗(A+

Γ ) → C∗
Q(A

+
Γ ) → 0 and its six term exact sequence in

K-theory:

K0(K) // K0(C
∗(A+

Γ ))
// K0(C

∗
Q(A

+
Γ ))

��

K1(C
∗
Q(A

+
Γ ))

OO

K1(C
∗(A+

Γ ))
oo K1(K)oo

(1)
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Since both K1(K) and K1(C
∗(A+

Γ )) vanish, all we have to do is to compute
the homomorphism K0(K) ∼= Z → Z ∼= K0(C

∗(A+
Γ )). K0(K) ∼= Z is generated

by the class of any minimal projection. So we can take e = 1 −
∨
v∈V SvS

∗
v .

It is easy to see that in K0, [e] ∈ K0(K) is sent to χ(Γ)[1] ∈ K0(C
∗(A+

Γ )).
Therefore, by exactness of (1), we conclude that K0(C

∗
Q(A

+
Γ ))

∼= Z/|χ(Γ)|Z
and

K1(C
∗
Q(A

+
Γ ))

∼=

{
{0} if χ(Γ) 6= 0

Z if χ(Γ) = 0
.

3 Extension algebras

We now discuss the C*-algebras associated to co-irreducible graphs and see
how they are all isomorphic to either the Toeplitz algebra, the Cuntz algebra
O∞, or an extension algebra as specified below.

Theorem 3.1 Consider the following properties for a unital C*-algebra A:

(1) A contains K as an ideal, and A/K is a Kirchberg algebra satisfying the
UCT,

(2) K0(A) = Z with [1A] = 1.

For each k ∈ Z\{0} there is a unique C*-algebra satisfying (1), (2) and

(3) The six-term exact sequence for K and A is given by

Z
k

// Z // Z/kZ

��

0

OO

0oo 0oo

There is also a unique C*-algebra satisfying (1), (2) and

(3’) The six-term exact sequence for K and A is given by

Z
0

// Z Z

��

Z 0oo 0oo

Proof: Note that K is an essential ideal of A (i.e., every nonzero ideal of A has a
nontrivial intersection with K) since A is unital and A/K is simple. Uniqueness
follows from [ERR, Corollary 4.22]. For existence, we note that when Γ is a
finite and co-irreducible graph with |Γ| > 1 and χ(Γ) = k, all properties are
met as noted in Section 2. ✷

When specifying the mapK0(K) → K0(A) above we let the unit of the leftmost
copy of Z denote the class of a minimal projection of Z.

Documenta Mathematica 21 (2016) 309–343



The Isomorphism Problem for Semigroup C∗-Algebras 317

Definition 3.2 The unique C*-algebras satisfying (1),(2) and (3) are denoted

E
sgn(k)
|k|+1 . The unique C*-algebra satisfying (1),(2) and (3’) is denoted E0

1 . The

quotient E0
1/K is denoted O1.

Our notation has been chosen to fit the notation Ekn for the extension algebras
of On studied in [FL07]. With our name O1 for the appropriately chosen
Kirchberg algebra, we have

0 // K
ι

// Ekn
π

// On
// 0

for any k ∈ {−1, 0, 1} and n ∈ N, provided k = 0 precisely when n = 1.

Lemma 3.3 Ekn
∼= Ek

′

n′ only when n = n′ and k = k′. Ekn ⊗ K ∼= Ek
′

n′ ⊗ K
precisely when n = n′.

Proof: Since the six-term exact sequences are as specified in (3) or (3’) of
Theorem 3.1, stable isomorphism can only occur if n = n′, and hence we only
need to check that for n > 0, we have E1

n 6∼= E−1
n , yet E1

n ⊗K ∼= E−1
n ⊗K.

We note that the only two options for an isomorphism among the six-term
exact sequences in this case are given as

Z
n

//

±1

��

Z //

∓1

��

Z/nZ

��

Z
−n

// Z // Z/nZ

and that we must choose +1 as the left most isomorphism to preserve the
positive cone of K0(K). Thus, an isomorphism is ruled out as it would fail to
send the class of the unit of E1

n to the unit of E−1
n , but an isomorphism after

stabilization is guaranteed by, e.g., [ERR09]. ✷

The following result follows directly from § 2.2, § 2.4 and Theorem 3.1.

Theorem 3.4 When Γ is a co-irreducible graph, C∗(A+
Γ ) is one of the C*-

algebras T , Ekn,O∞ according to

1. If |Γ| = 1, C∗(A+
Γ )

∼= T

2. If 1 < |Γ| <∞, C∗(A+
Γ )

∼= E
sgnχ(Γ)
1+|χ(Γ)|

3. If |Γ| = ∞, C∗(A+
Γ )

∼= O∞

We note that by the information already noted on the ideal structures in com-
bination with Lemma 3.3, the C*-algebras appearing are not mutually isomor-
phic, and hence we have a complete classification by the cardinality of Γ and
the Euler characteristic in the co-irreducible case.
In preparation for the general case we now study isomorphisms between various
tensor products amongst the relevant extension algebras and some of their
quotients. For this, we will need:
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Theorem 3.5 Let Ai, i = 1, 2, be unital C*-algebras whose proper ideals are
precisely given by (0), Ii, Ji and Ii ⊕ Ji. We assume that Ii and Ji are UCT
Kirchberg algebras, and the quotients Ai/(Ii ⊕ Ji) are also UCT Kirchberg al-
gebras.
Let αI : K∗(I1) ∼= K∗(I2), αJ : K∗(J1) ∼= K∗(J2), αI⊕J : K∗(I1 ⊕ J1) ∼=
K∗(I2 ⊕ J2), β : K∗(A1) ∼= K∗(A2), γI : K∗(A/I1) ∼= K∗(A/I2), γJ :
K∗(A/J1) ∼= K∗(A/J2), and γI⊕J : K∗(A1/(I1 ⊕ J1)) ∼= K∗(A2/(I2 ⊕ J2)) be
isomorphisms, with β preserving the K0-classes of the units and αI⊕J = αI⊕αJ
(under the canonical isomorphism K∗(Ii ⊕ Ji) ∼= K∗(Ii)⊕K∗(Ji)).
Furthermore, we assume that these isomorphism are compatible with the K-
theoretic six term exact sequences attached to

0 → Ii → Ai → Ai/Ii → 0, 0 → Ji → Ai → Ai/Ji → 0,

0 → Ii ⊕ Ji → Ai → Ai/(Ii ⊕ Ji) → 0, 0 → Ji → Ai/Ii → Ai/(Ii ⊕ Ji) → 0

and
0 → Ii → Ai/Ji → Ai/(Ii ⊕ Ji) → 0.

Then there exists an isomorphism ϕ : A1
∼= A2 which induces αI , αJ , αI⊕J ,

β, γI , γJ and γI⊕J in K-theory.

Proof: Combine [Kir00, Folgerung 4.3] and [BK, Theorem 1.3] with [RR07,
Theorem 2.1] or [ERR, Theorem 3.3]. ✷

Lemma 3.6 For every n ≥ 2, we have O∞ ⊗ E+1
n

∼= O∞ ⊗ E−1
n .

Proof: Both O∞⊗E+1
n and O∞⊗E−1

n are unital C*-algebras with unique ideal
isomorphic to O∞ ⊗K and corresponding quotient isomorphic to O∞ ⊗On

∼=
On. The K-theoretic six term exact sequences for 0 → O∞⊗K → O∞⊗E+1

n →
On → 0 and 0 → O∞ ⊗K → O∞ ⊗ E−1

n → On → 0 look as follows:

Z // Z // Z/(n− 1)Z

��

0

OO

0oo 0oo

where Z ∼= K0(O∞ ⊗K) is generated by [1⊗ e] for a minimal projection e ∈ K
and the unit 1 of O∞, and Z ∼= K0(O∞ ⊗E±1

n ) is generated by the class of the
unit. The only difference is that for E+1

n , the homomorphism Z → Z is given by
z[1⊗ e] 7→ (n− 1)z[1], whereas for E−1

n , the homomorphism Z → Z is given by
z[1⊗e] 7→ −(n−1)z[1] (for z ∈ Z). We now apply [RR07, Theorem 2.2] to Ii =
O∞⊗K, A1 = O∞⊗E+1

n , A2 = O∞⊗E−1
n , Qi = On and the homomorphisms

α = −idK0(O∞⊗K), β : K0(O∞ ⊗ E+1
n ) → K0(O∞ ⊗ E−1

n ), z[1] 7→ z[1] (for
z ∈ Z), γ = idK0(On). It is then obvious that all the assumptions in [RR07] are
satisfied, and we conclude that O∞ ⊗ E+1

n
∼= O∞ ⊗ E−1

n . ✷

Now recall that we have introduced the extension algebra E0
1 in Theorem 3.1.

The C*-algebra E0
1 ⊗ E+1

n (n ≥ 2) contains the ideal K ⊗ K ∼= K, and we
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denote the corresponding quotient by Q+. Obviously, the primitive ideals of
Q+ are given by K ⊗ On, O1 ⊗ K and K ⊗ On ⊕ O1 ⊗ K. From the six term
exact sequence in K-theory for 0 → K → E0

1 ⊗ E+1
n → Q+ → 0, we obtain

K0(Q
+) ∼= Z ∼= K1(Q

+), where K0(Q
+) is generated by [1Q+ ]. All this also

holds for the quotient Q− of E0
1 ⊗ E−1

n by the ideal K ⊗K ∼= K.

Lemma 3.7 Q+ and Q− are isomorphic. Moreover, there exists an automor-
phism of Q+ which induces idZ on K0 and −idZ on K1.

Proof: The first statement is an application of Theorem 3.5 to A1 = Q+,
A2 = Q−, I1 = K ⊗ On ⊳ Q+, J1 = O1 ⊗ K ⊳ Q+, I2 = K ⊗ On ⊳ Q−,
J2 = O1 ⊗K ⊳ Q−. Namely, it is straightforward to check that it is possible
to choose αI , αJ , αI⊕J , β, γI , γJ , and γI⊕J with all the desired properties in
Theorem 3.5.
The second statement follows in a similar way by applying Theorem 3.5 to
A1 = A2 = Q+, I1 = I2 = K ⊗On ⊳ Q+, J1 = J2 = O1 ⊗K ⊳ Q+. ✷

Lemma 3.8 For every n ≥ 2, we have E0
1 ⊗ E+1

n
∼= E0

1 ⊗ E−1
n .

Proof: By the previous lemma, we can identify Q+ and Q− (we use the same
notation as in the previous lemma) so that we can view E0

1⊗E
+1
n and E0

1⊗E
−1
n

as extensions of Q+:

0 → K → E0
1 ⊗ E+1

n → Q+ → 0 (2)

0 → K → E0
1 ⊗ E−1

n → Q+ → 0. (3)

Again by the previous lemma, we can choose the identificationQ+ ∼= Q− in such
a way that for a fixed choice of isomorphisms K1(Q

+) ∼= Z, K0(K) ∼= Z, the
index maps for both extensions (2) and (3) coincide. Now [BD96, Theorem 2]
implies that (2) and (3) give the same class in Exts(Q

+). The reason is that
Ext(K0(Q

+), [1Q+ ]) is the trivial group asK0(Q
+) ∼= Z and [1Q+ ] is a generator

of K0(Q
+) ∼= Z. So the short exact sequence in [BD96, Theorem 2] tells us

that two extensions of Q+ by K give the same class in Exts(Q
+) if their index

maps coincide. But this is the case for (2) and (3) by construction. Hence
E0

1 ⊗ E+1
n

∼= E0
1 ⊗ E−1

n by [JT91, § 3.2]. ✷

For m,n ≥ 2, the C*-algebra E+1
m ⊗E−1

n contains the ideal K⊗K ∼= K, and we
denote the corresponding quotient by Q+−. Obviously, the primitive ideals of
Q+− are given by K⊗On, Om ⊗K and K⊗On ⊕Om⊗K. From the six term
exact sequence in K-theory for 0 → K → E+1

m ⊗ E−1
n → Q+− → 0, we obtain

K0(Q
+−) ∼= Z/(m − 1)(n − 1)Z, with the class of the unit being a generator,

and K1(Q
+−) ∼= {0}. All this also holds for the quotient Q−+ of E−1

m ⊗ E+1
n

by the ideal K ⊗K ∼= K.

Lemma 3.9 Q+− and Q−+ are isomorphic.

Proof: As Lemma 3.7, this is an application of Theorem 3.5 to A1 = Q+−,
A2 = Q−+, I1 = K ⊗On ⊳ Q+−, J1 = Om ⊗K ⊳ Q+−, I2 = K ⊗On ⊳ Q−+,
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J2 = Om⊗K ⊳ Q−+. Namely, it is straightforward to check that it is possible
to choose αI , αJ , αI⊕J , β, γI , γJ , and γI⊕J with all the desired properties in
Theorem 3.5. ✷

Lemma 3.10 We have E+1
m ⊗ E−1

n
∼= E−1

m ⊗ E+1
n .

Proof: By the previous lemma, we can identify Q+− and Q−+ (using the
same notation as in the previous lemma) so that we can view E+1

m ⊗ E−1
n and

E−1
m ⊗ E+1

n as extensions of Q+−:

0 → K → E+1
m ⊗ E−1

n → Q+− → 0 (4)

0 → K → E−1
m ⊗ E+1

n → Q+− → 0. (5)

Since Hom(K1(Q
+−),Z) = {0}, [BD96, Theorem 2] yields

Ext((K0(Q
+−), [1]),Z) ∼= Exts(Q

+−). Hence (2) and (3) give the same
class in Exts(Q

+−). The reason is that the exact sequences in K0 for (4)
and (5) clearly give rise to the same class in Ext((K0(Q

+−), [1]),Z). Hence
E+1
m ⊗ E−1

n
∼= E−1

m ⊗ E+1
n by [JT91, § 3.2]. ✷

In an entirely analogous way, we get

Lemma 3.11 For all m,n ≥ 2, we have E+1
m ⊗ E+1

n
∼= E−1

m ⊗ E−1
n .

4 Classification of semigroup C*-algebras

We are now ready to address the general classification problem for C*-algebras
of the form C∗(A+

Γ ). We begin with notation:

Definition 4.1 Let Γ be a graph with co-irreducible components Γi = (Vi, Ei).
We set

t(Γ) = # {Γi: |Vi| = 1}

o(Γ) = # {Γi: |Vi| = ∞} ,

and for every n ∈ Z

Nn(Γ) = # {Γi: 1 < |Vi| <∞, χ(Γi) = n} .

Theorem 4.2 Let Γ and Λ be two graphs. The semigroup C*-algebras C∗(A+
Γ )

and C∗(A+
Λ ) of the Artin monoids for Γ and Λ are stably isomorphic if and only

if the following conditions hold:

(i) t(Γ) = t(Λ);

(ii) N−n(Γ) +Nn(Γ) = N−n(Λ) +Nn(Λ) for any n ∈ Z;

(iii)
∑
n∈Z

Nn(Γ) = ∞ or min(o(Γ), 1) = min(o(Λ), 1).

They are isomorphic if and only if further

Documenta Mathematica 21 (2016) 309–343



The Isomorphism Problem for Semigroup C∗-Algebras 321

(iv) If
∑

n∈Z
Nn(Γ) <∞, o(Γ) = 0 and N0(Γ) = 0, then

∞∑

n=1

N−n(Γ) ≡
∞∑

n=1

N−n(Λ) mod 2

holds.

Remark 4.3 Note that when (ii) holds, all the conditions in (iii) are symmetric
in Γ and Λ. Similarly, when (ii) and (iii) hold, so are the conditions in (iv).

For the proof of Theorem 4.2, we need some preparation. Given a graph
Γ with co-irreducible components Γi = (Vi, Ei), let Γ′ be the graph we get
from Γ by removing all the co-irreducible components Γi with |Vi| = 1 and
the corresponding edges. We then have a canonical isomorphism C∗(A+

Γ′) ∼=⊗
{Γi: |Vi|>1} C

∗(A+
Γi
).

Lemma 4.4 There is a primitive ideal I ′ of C∗(A+
Γ ) such that

Prim (C∗(A+
Γ )/I

′) does not continuously surject onto Prim (T ) and which
is minimal among all the primitive ideals having this property, and we have

C∗(A+
Γ )/I

′ ∼= C∗(A+
Γ′ ).

Proof: Let I be a primitive ideal of C∗(A+
Γ ). As seen in Section 2, we know that

I is generated by
{⊗

j Jij

}

i
, where Jij = C∗(A+

Γj
) for i 6= j and Jii = Ii for

primitive ideals Ii of C
∗(A+

Γi
). It follows that C∗(A+

Γ )/I
∼=
⊗

i C
∗(A+

Γi
)/Ii, and

hence Prim (C∗(A+
Γ )/I)

∼=
∏
i Prim (C∗(A+

Γi
)/Ii). We now claim that there ex-

ists a continuous surjection Prim (C∗(A+
Γ )/I) ։ PrimT if and only if there ex-

ists a co-irreducible component Γi of Γ with |Vi| = 1 and Ii = (0). The direction
“⇐” is obvious. For “⇒”, assume that for every co-irreducible component Γi
of Γ with |Vi| = 1, Ii is a maximal ideal of C∗(A+

Γi
) such that C∗(A+

Γi
)/Ii ∼= C.

Then Prim (C∗(A+
Γ )/I)

∼=
∏
kXk where Xk = {xk, yk} and the open subsets of

Xk are given by ∅, {xk} and Xk. This means that {xk} = Xk and {yk} = {yk}.
Furthermore, we know that Prim (T ) = {•} ⊔ T, where {•} = Prim (T ). Let
f :
∏
kXk → Prim (T ) be a continuous map. We want to show that f cannot

be surjective. Let y = (yk)k and f(y) = z. For arbitrary x ∈
∏
kXk, we always

have y ∈ {x}. As f−1({f(x)}) is closed and contains x, it must also contain
y. Hence z = f(y) lies in {f(x)}. This implies that f(x) = z or f(x) = •.
But this holds for every x in

∏
kXk. Hence the image of f contains at most 2

points, and thus f cannot be surjective. This shows our claim.
Therefore, a primitive ideal I ′ of C∗(A+

Γ ) such that Prim (C∗(A+
Γ )/I

′) does
not continuously surject onto Prim (T ) and which is minimal among all the

primitive ideals with this property is generated by
{⊗

j Jij

}

i
, where for a co-

irreducible component Γi with |Vi| = 1, Jii = Ii is a maximal ideal of C∗(A+
Γi
)

with C∗(A+
Γi
)/Ii ∼= C, and for a co-irreducible component Γi with |Vi| > 1,

Jii = (0). We conclude that C∗(A+
Γ )/I

′ ∼= C∗(A+
Γ′). ✷
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Lemma 4.5 Let Γ and Λ be two graphs.

(1) If C∗(A+
Γ ) and C

∗(A+
Λ ) are isomorphic, then t(Γ) = t(Λ) and C∗(A+

Γ′) ∼=
C∗(A+

Λ′ ).

(2) If C∗(A+
Γ ) ⊗ K and C∗(A+

Λ) ⊗ K are isomorphic, then t(Γ) = t(Λ) and
C∗(A+

Γ′)⊗K ∼= C∗(A+
Λ′)⊗K.

Proof: We first prove (1). Since an isomorphism C∗(A+
Γ )

∼= C∗(A+
Λ ) sends the

primitive ideal I to a primitive ideal of C∗(A+
Λ ) with the analogous property, we

conclude that every isomorphism C∗(A+
Γ )

∼= C∗(A+
Λ) induces an isomorphism

C∗(A+
Γ′) ∼= C∗(A+

Λ′ ). To prove that t(Γ) = t(Λ), we observe that the primitive
ideals of C∗(A+

Γ ) which are contained in I are in one-to-one correspondence with
the subsets of {Γi: |Vi| = 1}. Again, as an isomorphism C∗(A+

Γ )
∼= C∗(A+

Λ )
sends the primitive ideal I to a primitive ideal of C∗(A+

Λ) with the analogous
property, we conclude that the power sets of {Γi: |Vi| = 1} and {Λj : |Wj | = 1}
have the same cardinality. Hence also {Γi: |Vi| = 1} and {Λj : |Wj | = 1} must
have the same cardinality (which is either finite or countably infinite). This
proves (1).
(2) is proved in a similar way as (1) using the observation that every primitive
ideal of B ⊗K is of the form I ⊗K, where I is a primitive ideal of B. ✷

Lemma 4.6 Let Ai, i = 1, 2, . . . , be a countably infinite family of properly
infinite unital C*-algebras. Then A =

⊗∞
i=1 Ai is purely infinite.

Proof: We have to show that every non-zero positive element a of A is properly
infinite. By [KR02, Lemma 3.3], it suffices to find for every ε > 0 a properly
infinite, positive element b ∈ A with ‖a− b‖ < ε and b - a. Since A =⊗∞

i=1 Ai, there exists a (sufficiently large) natural number n and a positive
element x ∈

⊗n
i=1Ai with ‖a− x⊗ 1‖ < ε

2 . By [KR02, Lemma 2.2], we have
that b := (x− ε

2 )+ ⊗ 1 = (x⊗ 1− ε
2 )+ satisfies b - a. Also, we have ‖b− a‖ ≤

‖b− x⊗ 1‖+ ‖x⊗ 1− a‖ < ε. So it suffices to show that b is properly infinite.
By construction, b is of the form c⊗ 1 for some positive element c ∈

⊗n
i=1 Ai.

Since the unit 1 ∈ An+1 is properly infinite, we can find isometries s and t in
An+1 with ss

∗ ⊥ tt∗. So b = c⊗1 = (c1/2⊗s)∗(c1/2⊗s) ≈ (c1/2⊗s)(c1/2⊗s)∗ =
c ⊗ ss∗. Similarly, b ≈ c ⊗ tt∗. But since (c ⊗ ss∗)(c ⊗ tt∗) = 0, we conclude
that b⊕ b ≈ (c⊗ ss∗)⊕ (c⊗ tt∗) ≈ c⊗ (ss∗ + tt∗) ≤ c⊗ 1 = b. ✷

Lemma 4.7 Let Γ be a graph with (countably) infinitely many co-irreducible
components Γi = (Vi, Ei), i = 1, 2, . . . . Assume that 1 < |Vi| < ∞ for all i.
Then C∗(A+

Γ ) is strongly purely infinite, i.e., C∗(A+
Γ )

∼= C∗(A+
Γ )⊗O∞.

Proof: By [CL07, Theorem 8.3], we know that C∗(A+
Γ ) has the ideal property

(the definition can be found in [PR07, Remark 2.1]). Moreover, we know that
C∗(A+

Γ )
∼=
⊗∞

i=1 C
∗(A+

Γi
), and each of the C∗(A+

Γi
) is a properly infinite unital

C*-algebra. Hence by the previous lemma, we know that C∗(A+
Γ ) is purely

infinite. Therefore, [PR07, Proposition 2.14] tells us that C∗(A+
Γ ) is strongly
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purely infinite. And finally, if C∗(A+
Γ ) is strongly purely infinite, then [KR02,

Theorem 9.1] implies that C∗(A+
Γ )

∼= C∗(A+
Γ )⊗O∞ because C∗(A+

Γ ) is nuclear
and unital. ✷

Finally, we are ready for the proof of Theorem 4.2. Proof:[Proof of Theorem 4.2]
Let us first of all show that if C∗(A+

Γ )⊗K ∼= C∗(A+
Λ)⊗K holds, then conditions

(i), (ii) and (iii) must be satisfied. By Lemma 4.5 condition (i) holds and that
C∗(A+

Γ′)⊗K ∼= C∗(A+
Λ′ )⊗K. Hence we may assume that all the co-irreducible

components of Γ and Λ have more than one vertex.
To prove (ii), we observe that the minimal non-zero primitive ideals of C∗(A+

Γ )
are of the form Ii = ⊗jJij , where Jij = C∗(A+

Γj
) if j 6= i, and Jii = K⊳C∗(A+

Γi
)

(Γi consists of only finitely many vertices). For the corresponding quo-
tient, we get C∗(A+

Γ )/Ii
∼=
⊗

j Qij , where Qij = C∗(A+
Γj
) if j 6= i, and

Qii = C∗(A+
Γi
)/K. Since K0(C

∗(A+
Γi
)/K) ∼= Z/|χ(Γi)|Z, it follows that

K0(C
∗(A+

Γ )/Ii)
∼= Z/|χ(Γi)|Z. Hence, we have shown that N0(Γ) is the number

of minimal non-zero primitive ideals I ⊗ K of C∗(A+
Γ ) ⊗ K with the property

that K0(C
∗(A+

Γ )/I)
∼= Z, and that for every n = 1, 2, . . . , N−n(Γ) + Nn(Γ) is

the number of minimal non-zero primitive ideals I⊗K of C∗(A+
Γ )⊗K with the

property that K0(C
∗(A+

Γ )/I)
∼= Z/nZ. Since these descriptions are invariant

under stable isomorphisms of C*-algebras, we conclude that (ii) must hold.
Let us now prove (iii) under the assumption of stable isomorphism. If∑
Nn(Γ) = ∞ we are done, so suppose the contrary and note that in this

case, C∗(A+
Γ ) is strongly purely infinite if and only if o(Γ) > 0. The direction

“⇒” is clear, since o(Γ) > 0 implies that C∗(A+
Γ ) has O∞ as a tensor factor.

To prove “⇐”, we observe that if o(Γ) = 0, then C∗(A+
Γ ) contains the algebra

of compact operators as an ideal, hence cannot be strongly purely infinite. As
a consequence, C∗(A+

Γ ) ⊗ K ∼= C∗(A+
Λ ) ⊗ K implies that either both o(Γ) > 0

and o(Λ) > 0, or o(Γ) = o(Λ) = 0, as desired.
Finally, we assume that C∗(A+

Γ )
∼= C∗(A+

Λ ) and that
∑
Nn(Γ) < ∞, that

N0(Γ) = 0 and that o(Γ) = 0. The algebra K of compact operators
sits inside C∗(A+

Γ ) as the (unique) minimal non-zero ideal. The inclusion
K →֒ C∗(A+

Γ ) sends in K-theory the K0-class of a minimal projection to
(
∏
i χ(Γi)) · [1], where (

∏
i χ(Γi)) is the product over all co-irreducible com-

ponents of Γ (there are only finitely many by assumption) of the Euler char-
acteristics. As N0(Γ) = 0, (

∏
i χ(Γi)) is a non-zero number, and it is positive

if and only if
∑∞
n=1N−n(Γ) ≡ 0 mod 2. Since C∗(A+

Γ )
∼= C∗(A+

Λ ), we must
have

∑∞
n=1N−n(Γ) ≡

∑∞
n=1N−n(Λ) mod 2. Therefore, all in all, condition

(iv) follows when the C*-algebras are isomorphic.
In the opposite direction, we know from Sections 2 and 3 that

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗O⊗o(Γ)
∞ ⊗

∞⊗

n=0

⊗

{i: |χ(Γi)|=n}

E
sgn(χ(Γi))
1+n

and

C∗(A+
Λ )

∼= T ⊗t(Λ) ⊗O⊗o(Λ)
∞ ⊗

∞⊗

n=0

⊗

{i: |χ(Λi)|=n}

E
sgn(χ(Λi))
1+n
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We note from the outset that whenever o(Γ) > 0 or N0(Γ) > 0 then by re-
peated application of either Lemma 3.6 or Lemma 3.8 we may simplify these
expressions to

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗O⊗o(Γ)
∞ ⊗ (E0

1)
⊗N0(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ)). (6)

Assume that (i), (ii) and (iii) hold. We begin by noting that in the case∑
Nn(Γ) < ∞ if either o(Γ) > 0 or N0(Γ) > 0, we also have either o(Λ) > 0

or N0(Λ) > 0, and we get C∗(A+
Γ )

∼= C∗(A+
Λ ) by reducing to the form given in

(6) and applying (i) and (ii).

When
∑
Nn(Γ) = ∞ then we have by (ii) and Lemma 4.7 that both C∗(A+

Γ )
and C∗(A+

Λ ) are strongly purely infinite, and hence we have

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗O∞ ⊗ (E0
1)

⊗N0(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ))

= T ⊗t(Λ) ⊗O∞ ⊗ (E0
1)

⊗N0(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ))

∼= C∗(A+
Λ ),

since Lemma 3.6 may be applied as above.

It remains to treat the case that o(Γ) = N0(Γ) = 0 and
∑
Nn(Γ) <∞. Again,

by (ii) and (iii), we must have o(Λ) = N0(Λ) = 0 and
∑
Nn(Λ) < ∞ as well,

and we get

C∗(A+
Γ )⊗K ∼= T ⊗t(Γ) ⊗

∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ)) ⊗K

= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ)) ⊗K

∼= C∗(A+
Λ )⊗K

this time appealing to the second half of Lemma 3.3.

Assuming further (iv), we now aim for exact isomorphism, noting that we have
already established it when o(Γ) > 0, N0(Γ) > 0 or

∑
Nn(Γ) = ∞. We hence

assume that o(Γ) = N0(Γ) = 0 and note that also o(Λ) = N0(Λ) = 0
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Consider first the case where both
∑∞
n=1N−n(Γ) and

∑∞
n=1N−n(Λ) are even.

We have

C∗(A+
Γ )

∼= T ⊗t(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗
∞⊗

n=1

(E−1
1+n)

⊗N−n(Γ)

∼= T ⊗t(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗N−n(Γ)

∼= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Γ)+Nn(Γ))

= T ⊗t(Λ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗(N−n(Λ)+Nn(Λ)) ∼= C∗(A+
Λ)

by Lemma 3.11. Now assume both
∑∞

n=1N−n(Γ) and
∑∞

n=1N−n(Λ) are odd.
If there exists χ < 0 such that there are co-irreducible components Γk and Λl
with χ(Γk) = χ = χ(Λl), then we deduce from the previous case that

C∗(A+
Γ )

∼=



⊗

Γi 6=Γk

C∗(A+
Γi
)


 ⊗ C∗(A+

Γk
)

∼=



⊗

Γi 6=Γk

C∗(A+
Γi
)


 ⊗ E−1

1+|χ|

∼=



⊗

Λj 6=Λl

C∗(A+
Λj
)


⊗ C∗(A+

Λl
) ∼= C∗(A+

Λ ).

If there exists no such χ, then by (ii) there must be χ < 0, ψ < 0 and co-
irreducible components Γk− , Γk+ , Λl− , Λl+ with χ(Γk−) = χ, χ(Λl+) = −χ,
χ(Γk+) = −ψ and χ(Λl−) = ψ. Hence

C∗(A+
Γ )

∼=




⊗

Γi 6=Γk+
,Γk

−

C∗(A+
Γi
)


 ⊗ C∗(A+

Γk+

)⊗ C∗(A+
Γk

−

)

∼=




⊗

Γi 6=Γk+
,Γk

−

E
sgn(χ(Γi))
1+|χ(Γi)|



⊗ E+1
1+|ψ| ⊗ E−1

1+|χ|

∼=




⊗

Γi 6=Γk+
,Γk

−

E
sgn(χ(Γi))
1+|χ(Γi)|


⊗ E−1

1+|ψ| ⊗ E+1
1+|χ|

∼=




⊗

Γi 6=Γk+
,Γk

−

C∗(A+
Γi
)


 ⊗ C∗(A+

Λl
−

)⊗ C∗(A+
Λl+

) ∼= C∗(A+
Λ ).
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In the third step, we used Lemma 3.10, and in the fourth step, we used our
argument in the previous case. ✷

5 The isomorphism problem from the perspective of classification

of non-simple C*-algebras

We give an interpretation of Theorem 4.2 from the point of view of classifying
non-simple C*-algebras.
We let O(Prim(A)) denote the set of open subsets in Prim(A), and I(A) the
lattice of ideals.
A lattice map ψA : O(Prim(A)) → I(A) given by ψA(U) =

⋂
ρ/∈U ρ is then a

lattice isomorphism which preserves arbitrary suprema and finite infima. We
denote ψA(U) by A[U ]. For every C*-algebra A, we denote the pair

(
Prim(A), {K+

six(A/A[U ];A[V ]/A[U ])}V,U∈O(Prim(A))
U⊆V

)

by F(A), where K+
six(B, J) denotes the standard six-term exact sequence asso-

ciated to an ideal J of a C*-algebraB, considering eachK0-group as an ordered
group.
An isomorphism from F(A) to F(B) thus consists of a homeomorphism

φ : Prim(A) → Prim(B)

and isomorphisms

αU,V : K∗(A[V ]/A[U ]) → K∗(B[φ(V )]/B[φ(U)])

for each U, V ∈ O(Prim(A)) with U ⊆ V , such that (αU,V , αX,U , αX,V ) is an
isomorphism from K+

six(A/A[U ];A[V ]/A[U ]) to

K+
six(B/B[φ(U)];B[φ(V )]/B[φ(U)])

in the sense that it makes all squares commute and is an order isomorphism on
all even parts of the K-theory.
If A and B are unital, we write (F(A), [1A]) ∼= (F(B), [1B ]) if F(A) ∼= F(B) in
such a way that the isomorphism αX,∅ sends [1A] in K0(A) to [1B] in K0(B).
Note that if φ : Prim(A) → Prim(B) is a homeomorphism, there exists a lattice
isomorphism from I(A) to I(B) given by I 7→ ψB(φ(ψ

−1
A (I))). Hence, if A and

B are separable and φ : Prim(A) → Prim(B) is a homeomorphism, then for all
U ∈ O(Prim(A)), we have that A[U ] is a primitive ideal of A if and only if
B[φ(U)] is a primitive ideal of B (because primitive ideals are precisely given
by prime ideals for separable C*-algebras).
The following easy observation is left to the reader.

Lemma 5.1 Let A and B be separable C*-algebras. Let U ∈ O(Prim(A)).
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(1) If F(A) ∼= F(B) via a homeomorphism φ : Prim(A) → Prim(B), then

F(A/A[U ]) ∼= F(B/B[φ(U)]).

(2) If A and B are unital C*-algebras and (F(A), [1A]) ∼= (F(B), [1B]) via a
homeomorphism φ : Prim(A) → Prim(B), then

(
F(A/A[U ]), [1A/A[U ]]

)
∼=
(
F(B/B[φ(U)]), [1B/B[φ(U)]]

)
.

Theorem 5.2 Let Γ and Λ be two (countable) graphs, and let Γi = (Vi, Ei)
be the co-irreducible components of Γ, Λj = (Wj , Fj) the co-irreducible compo-
nents of Λ. Then C∗(A+

Γ )
∼= C∗(A+

Λ) if and only if (F(C∗(A+
Γ )), [1C∗(A+

Γ
)])

∼=

(F(C∗(A+
Λ )), [1C∗(A+

Λ
)]).

Proof: The direction “⇒” is obvious. To prove “⇐”, we show that

(F(C∗(A+
Γ )), [1C∗(A+

Γ
)])

∼= (F(C∗(A+
Λ)), [1C∗(A+

Λ
)])

implies (i), (ii), (iii) and (iv) from Theorem 4.2, using the notations from
Lemma 4.5. The first step is to prove that (F(C∗(A+

Γ )), [1C∗(A+

Γ
)])

∼=

(F(C∗(A+
Λ )), [1C∗(A+

Λ
)]) implies t(Γ) = t(Λ) and (F(C∗(A+

Γ′)), [1C∗(A+

Γ′
)])

∼=

(F(C∗(A+
Λ′ )), [1C∗(A+

Λ′
)]). t(Γ) = t(Λ) follows by Lemma 4.4, because we only

use the primitive ideal space and the lattice structure of the set of ideals in
this proof. To see that (F(C∗(A+

Γ′)), [1C∗(A+

Γ′
)])

∼= (F(C∗(A+
Λ′ )), [1C∗(A+

Λ′
)]),

let I ′ be a primitive ideal of C∗(A+
Γ ) stipulated in Lemma 4.4, and let

U be an open set of Prim (C∗(A+
Γ )) such that C∗(A+

Γ )[U ] = I ′. Then
C∗(A+

Λ)[φ(U)] is an ideal with the analogous property. In the proof of
Lemma 4.5, we have seen that C∗(A+

Γ )/C
∗(A+

Γ )[U ] ∼= C∗(A+
Γ′). Similarly, we

have C∗(A+
Λ )/C

∗(A+
Λ )[U ] ∼= C∗(A+

Λ′ ). Therefore, (2) from the previous lemma
tells us that (F(C∗(A+

Γ′)), [1C∗(A+

Γ′
)])

∼= (F(C∗(A+
Λ′)), [1C∗(A+

Λ′
)]), as desired.

In particular, this implies (i), and we may assume as in the proof of Theorem 4.2
that all the co-irreducible components of Γ and Λ have more than one vertex.
Then (ii) follows in exactly the same way as in the proof of Theorem 4.2 because
we only use primitive ideal spaces, lattice structures of sets of ideals and K0 in
this proof. All this can be extracted from the invariant F. Let us prove (iii).
As we have seen in the proof of Theorem 4.2, o(Γ) = 0 implies that K is an
ideal of C∗(A+

Γ ), whereas o(Γ) > 0 implies that C∗(A+
Γ ) (and hence also every

non-zero ideal) is strongly purely infinite. These two cases can be distinguished
by the order on K0. Therefore, we see as in the proof of Theorem 4.2 that if
(F(C∗(A+

Γ )), [1C∗(A+

Γ
)])

∼= (F(C∗(A+
Λ )), [1C∗(A+

Λ
)]), then either o(Γ) > 0 and

o(Λ) > 0 or o(Γ) = 0 and o(Λ) = 0. The proof of (iv) then follows the proof of
Theorem 4.2, where we only use lattice structures of sets of ideals, K0 and the
K0-classes of the units. All this can be extracted from the invariant F together
with the position of the K0-class of the unit. ✷
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6 Graph algebras and the semiprojectivity question

Apart from semigroup C*-algebras we discussed above, there is another - more
traditional - way of constructing a C*-algebra out of a directed graph, possibly
allowing for loops. Now we would like to discuss the overlap of these two con-
structions. In other words, we are interested in the question: Which semigroup
C*-algebras for right-angled Artin monoids are isomorphic to graph algebras?
We can provide a complete answer to this question.

6.1 Extensions of C*-algebras

We first establish some facts about absorbing extensions and the C*-algebras
associated to these extensions. To each injective Busby map τ : A → Q(B),
where Q(B) = M(B)/B with M(B) the multiplier algebra of B, associate as
usual the extension

e : 0 // B
�

�

// E
ψ

//

��

A //

τ

��

0

0 // B
�

�

// M(B)
π

// Q(B) // 0

with E = π−1(τ(A)) and ψ(x) = τ−1(π(x)). Note that ψ is a homomorphism
since τ is injective.
We call τ (and e) unital if A is unital and τ is a unital homomorphism, or,
equivalently, if E is a unital C*-algebra. If τ = π ◦ α for some homomorphism
α : A→ M(B), then τ is called a trivial extension. If A is unital and τ = π ◦α
for some unital homomorphism α : A→ M(B), then τ is called strongly unital.
Not all unital trivial extensions are strongly unital.
Assume that B is stable. The sum τ ⊕ τ ′ of two extensions τ, τ ′ : A→ Q(B) is
defined as follows. Since B is stable, there exist isometries s1, s2 ∈ M(B) with
1M(B) = s1s

∗
1 + s2s

∗
2. Set

(τ ⊕ τ ′)(a) = π(s1)τ(a)π(s
∗
1) + π(s2)τ

′(a)π(s∗2)

for all a ∈ A.
Two extensions τ, τ ′ : A→ Q(B) are said to be unitarily equivalent, denoted by
τ ∼u τ ′, if there exists a unitary u ∈ M(B) such that π(u)τ(a)π(u)∗ = τ ′(a) for
all a ∈ A. Then two extensions τ1, τ2 : A → Q(B) define the same element in
Ext(A,B) if there exists a unitary u ∈ M(B) and there exist trivial extensions
τ ′1, τ

′
2 : A→ Q(B) such that τ1⊕τ ′1 ∼u τ2⊕τ ′2. If τ1 and τ2 are unital extensions,

then τ ′1 and τ ′2 can be chosen to be unital extensions (see [Ror97, Section 5]).

For a C*-algebra C, we let C̃ be the unitization of C (adding a new unit if C

is a unital C*-algebra) and let ιC : C → C̃ be the embedding of C into C̃ as an
ideal.
Recall that an ideal I of a C*-algebra A is an essential ideal if every nonzero
ideal of A has a nontrivial intersection with I. An extension 0 → I

ι
→ A →
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B → 0 is essential if ι(I) is an essential ideal of A. It is a well-known fact that
an extension 0 → I → A → B → 0 is an essential extension if and only if the
Busby invariant of the extension is injective. We now prove in the following
proposition that every essential extension 0 → B → E → A→ 0 with A a non-
unital, separable, nuclear C*-algebra and B a C*-algebra that is isomorphic to
either K or a nuclear, purely infinite simple C*-algebra is absorbing.

Before proving the proposition, we show that any absorbing extension must be
an essential extension. Hence, the assumption that the extension is essential is
necessary. Note that if τ or τ ′ is injective, then the sum τ⊕τ ′ is injective. Since
B is stable, there exists a unital embedding from O2 to M(B) which induces a
unital embedding from O2 to Q(B). Nuclearity of A gives us an embedding of A
into O2, thus the composition gives a trivial essential extension τ0 : A→ Q(B).
Therefore, an absorbing extension τ is an essential extension since τ is unitarily
equivalent to τ ⊕ τ0.

Proposition 6.1 Let A be a non-unital, separable, nuclear C*-algebra and let
B be a separable C*-algebra that is isomorphic to either K or a nuclear, purely
infinite simple C*-algebra. If τ : A→ Q(B) is an essential extension, then for
every trivial extension τ0 : A→ Q(B) we have that τ ∼u τ ⊕ τ0. Consequently,
if ei : 0 → B → Ei → A → 0 is an essential extension for i = 1, 2 and
[τe1 ] = [τe2 ] in Ext(A,B), then E1

∼= E2.

Proof: Let α0 : A → M(B) be a homomorphism with τ0 = π ◦ α0. Extend τ

and α0 to the unitization of Ã, and denote these extensions by τ̃ : Ã → Q(B)

and α̃0 : Ã→ M(B) respectively.

We claim that τ̃ is injective. Let y ∈ ker (τ̃ ). Then τ(yx) = τ̃ (y)τ̃ (ιA(x)) = 0
and τ(xy) = τ̃(ιA(x))τ̃ (y) = 0 for all x ∈ A. Since τ is injective, we have that

yx = xy = 0 for all x ∈ A. Since A is non-unital, A is an essential ideal of Ã.
Hence, y = 0. Thus, proving our claim.

Set E = π−1(τ̃ (Ã)) ⊆ M(B). Since τ̃ is injective, we may define a surjective

homomorphism ψ : E → Ã by ψ(x) = τ̃−1(π(x)). Define η : E → M(B) by
η(x) = α̃0 ◦ ψ(x). Then η is a unital homomorphism such that η(E ∩ B) =
{0}. Let s1 and s2 be isometries such that 1M(B) = s1s

∗
1 + s2s

∗
2. By [Arv77,

Corollary 2] and [Kir, Proposition 7], there exists a unitary u ∈ M(B) such
that u(s1xs

∗
1 + s2η(x)s

∗
2)u

∗ − x ∈ B for all x ∈ E.

We claim u implements a unitary equivalence between τ and τ ⊕τ0. Let a ∈ A.
Choose x ∈ E such that π(x) = (τ̃ ◦ ιA)(a). Note that

π ◦ η(x) = π ◦ α̃0 ◦ ψ(x) = (π ◦ α̃0)(τ̃
−1(π(x))) = (π ◦ α̃0 ◦ ιA)(a).
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Then

π(u) (τ(a) ⊕ τ0(a)) π(u)
∗

= π(u) (π(s1)τ̃ (ιA(a))π(s
∗
1) + π(s2)(π ◦ α̃0 ◦ ιA)(a)π(s2)

∗)π(u)∗

= π(u(s1xs
∗
1 + s2η(x)s

∗
2)u

∗)

= π(x)

= (τ̃ ◦ ιA)(a)

= τ(a).

Hence, τ ⊕ τ0 ∼u τ , proving the first part of the proposition.
Suppose ei : 0 → B → Ei → A → 0 is an essential extension for i = 1, 2 and
[τe1 ] = [τe2 ] in Ext(A,B). By the discussion before the proposition, there exist
trivial extensions τ ′1, τ

′
2 : A → Q(B) such that τe1 ⊕ τ ′1 ∼u τe2 ⊕ τ ′2. By the

first part of the proposition, we have that τe1 ∼u τe1 ⊕ τ ′1 and τe2 ⊕ τ ′2 ∼u τ ′e2 .
Therefore, τe1 ∼u τe2 . By [JT91, § 3.2], E1

∼= E2. ✷

6.2 Corners of graph algebras

We also need some results involving corners of graph algebras. The general
case will be worked out in [AGR]. For the convenience of the reader, we will
prove the case that will suit our purposes (see Proposition 6.2).
Recall that if E = (E0, E1, r, s) is a graph, the C*-algebra C∗(E) associated
to E is the universal C*-algebra generated by {pv : v ∈ E0} ⊔ {se : e ∈ E1}
subject to the relations

(i) pvpw = δv,wpv for all v, w ∈ E0;

(ii) s∗esf = δe,fpr(e) for all e, f ∈ E1;

(iii) ses
∗
e ≤ ps(e) for all e ∈ E1; and

(iv) pv =
∑
e∈s−1(v) ses

∗
e for all v ∈ E0 with 0 < |s−1(v)| <∞.

A loop in E is a path α = e1 · · · en with s(e1) = s(en) and we say that s(e1)
is the base point of α. A simple loop in E is a loop α = e1 · · · en such that
s(ei) 6= s(ej) for i 6= j. We say that E satisfies Condition (K) if every vertex
is either the base point of at least two simple loops or is not the base point
of a loop. It is well-known that if A is a Cuntz-Krieger algebra, then A is
isomorphic to C∗(E), where E is a finite graph with no sinks. If, in addition,
A is purely infinite, then E will also satisfy Condition (K).

Proposition 6.2 Let E be a graph with finitely many vertices. Suppose there
exists a vertex w in E such that

(i) {w} is a hereditary and saturated subset of E0;

(ii) |{e ∈ E1 : s(e) = w}| is either equal to 0 or ∞;

Documenta Mathematica 21 (2016) 309–343



The Isomorphism Problem for Semigroup C∗-Algebras 331

(iii) for every v ∈ E0 \ {w}, there are finitely many edges from v to w and
there exists at least one v ∈ E0 \ {w} such that there exists an edge from
v to w; and

(iv) every vertex v ∈ E0 \ {w} emits finitely many edges and is the base point
of at least two loops of length one.

Then for every full projection p ∈ C∗(E)⊗ K, we have that p(C∗(E) ⊗K)p is
isomorphic to a graph algebra. Consequently, if A is a unital C*-algebra such
that A⊗K ∼= C∗(E)⊗K, then A is isomorphic to a graph algebra.

Proof: Let {eij} be a system of matrix units for K. Throughout the proof, if

p is a projection in C∗(E) and n ∈ N, then set np =

n︷ ︸︸ ︷
p⊕ · · · ⊕ p in C∗(E)⊗K.

Let {pv, se : v ∈ E0, e ∈ E1} be a Cuntz-Krieger E-family generating C∗(E).
Since the only vertex in E that is a singular vertex, i.e., emits no edges or
infinitely many edges, is w, by [HL+14, Theorem 3.4 and Corollary 3.5],

p ∼

(
⊕

v∈S

nvpv

)
⊕ n1

(
pw −

∑

e∈T1

ses
∗
e

)
⊕ · · · ⊕ nk

(
pw −

∑

e∈Tk

ses
∗
e

)
, (7)

where nv > 0 for all v ∈ S, ni ≥ 0 for all i, S ⊆ E0\{w}, and Ti is a finite (pos-
sibly empty) subset of s−1(w) for all i. Arguing as in [AR15, Lemma 4.6], we
have that the projection on the right hand side of (7) is Murray-von Neumann
equivalent to

q =
⊕

v∈E0

mvpv

where mv > 0 for all v ∈ E0. We use the fact that if S is a finite subset of
s−1(w), then

|S|pw ⊕

(
pw −

∑

e∈S

ses
∗
e

)
∼

(
∑

e∈S

ses
∗
e

)
⊕

(
pw −

∑

e∈S

ses
∗
e

)
∼ pw

and the fact that if v0 ∈ E0 \ {w} with s−1(v0) ∩ r−1(w) 6= ∅, then for any
n, we have that pv0 ∼ npw ⊕ pv0 ⊕

(⊕
v∈E0 m′

vpv
)
for m′

v ≥ 0. Now, arguing
as in [AR15, Proposition 4.7], we have that q(C∗(E) ⊗ K)q is isomorphic to a
graph algebra. Since p ∼ q, we have that p(C∗(E) ⊗ K)p ∼= q(C∗(E) ⊗ K)q.
Therefore, p(C∗(E)⊗K)p is isomorphic to a graph algebra.

For the last part of the proposition note that A ∼= p(C∗(E) ⊗ K)p, where p is
the projection given by the image of 1A ⊗ e11 under some isomorphism from
A⊗K to C∗(E)⊗K. Since 1A ⊗ e11 is full in A⊗K, we have that p is full in
C∗(E)⊗K. ✷
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6.3 Semigroup C*-algebras and graph algebras

We now determine when a C*-algebra associated to an Artin monoid is isomor-
phic to a graph algebra. To do this, we need to determine when an extension
of two graph algebras is isomorphic to a graph algebra. In spite of substantial
effort the extension problem for graph algebras has not be completely resolved
even for the single non-trivial ideal case. Moreover, the results in the literature
are not sufficient for our purposes. The following ad hoc result will give us
what we need.

Lemma 6.3 For each i, let Ai be a separable, nuclear C*-algebra with an es-
sential ideal Ii such that Ii is isomorphic to either K or a purely infinite
simple C*-algebra with trivial K1 group, Ai/Ii satisfies the Universal Coef-
ficient Theorem, and K1(Ai/Ii) = {0} or K0(Ai/Ii) is a free group (possibly
K0(Ai/Ii) = {0}). Suppose there exist isomorphisms β : I1 ⊗ K → I2 ⊗ K,
α : (A1/I1) ⊗ K → (A2/I2) ⊗ K, and η∗ : K∗(A1 ⊗ K) → K∗(A2 ⊗ K) such
that (K∗(β), η∗,K∗(α)) : Ksix(A1 ⊗ K; I ⊗ K) → Ksix(A2 ⊗ K; I2 ⊗ K) is an
isomorphism. Then A1 ⊗K ∼= A2 ⊗K.

Proof: Let e1 : 0 → I2⊗K → B1 → (A1/I1)⊗K → 0 be the extension obtained
by pushing forward the extension 0 → I1 ⊗ K → A1 ⊗ K → (A1/I1) ⊗ K → 0
via the isomorphism β and let e2 : 0 → I2 ⊗ K → B2 → (A1/I1) ⊗ K → 0
be the extension obtained by pulling back the extension 0 → I2 ⊗ K →
A2 ⊗ K → (A2/I2) ⊗ K → 0 via the isomorphism α. Note that there
exist isomorphisms φ1 : A1 ⊗ K → B1 and φ2 : B2 → A2 ⊗ K such that
(K∗(β),K∗(φ1),K∗(id(A1/I1)⊗K)) : Ksix(A1 ⊗ K; I1 ⊗ K) → Ksix(B1; I2 ⊗ K)
and (K∗(idI2⊗K),K∗(φ2),K∗(α)) : Ksix(B2; I2⊗K) → Ksix(A2⊗K; I2⊗K) are
isomorphisms. Then (K∗(idI2⊗K),K∗(φ

−1
2 ) ◦ η∗ ◦K∗(φ

−1
1 ),K∗(id(A1/I1)⊗K)) is

an isomorphism from Ksix(B1; I2 ⊗K) to Ksix(B2; I2 ⊗K).

We claim that [τe1 ] = [τe2 ] in Ext((A1/I1)⊗K, I2⊗K). Since A1/I1 satisfies the
Universal Coefficient Theorem, we may identify Ext((A1/I1)⊗K, I2 ⊗K) with
KK1((A1/I1)⊗K, I2⊗K). Note that Ext1Z(K1((A1/I1)⊗K),K1(I2⊗K)) = {0}
since K1(I2) = {0}. Suppose K1(A1/I1) = {0}. Then K1(τei) = {0}.
Since K1(I2) = {0}, we have that K0(τei ) = {0}. Hence, K∗(τei) = {0}.
By the Universal Coefficient Theorem, [τei ] can be identified with the ele-
ment in Ext1Z(K0((A1/I1) ⊗ K),K0(I2 ⊗ K)) given by Ksix(Bi; I2 ⊗ K). Since
(K∗(idI2⊗K),K∗(φ

−1
2 ) ◦ η∗ ◦K∗(φ

−1
1 ),K∗(id(A1/I1)⊗K)) is an isomorphism from

Ksix(B1; I2 ⊗ K) to Ksix(B2; I2 ⊗ K) we have that Ksix(B1; I2 ⊗ K) and
Ksix(B2; I2⊗K) induce the same element in Ext1Z(K0((A1/I1)⊗K),K0(I2⊗K)).
Hence, [τe1 ] = [τe2 ] in Ext((A1/I1) ⊗ K, I2 ⊗ K). Suppose K0(A1/I1)
is a free group (possibly the zero group). By the Universal Coefficient,
[τei ] is completely determined by K∗(τei). Since (K∗(idI2⊗K),K∗(φ

−1
2 ) ◦

η∗ ◦ K∗(φ
−1
1 ),K∗(id(A1/I1)⊗K)) is an isomorphism from Ksix(B1; I2 ⊗ K) to

Ksix(B2; I2 ⊗ K), we have that K∗(τe1) = K∗(τe2 ). Hence, [τe1 ] = [τe2 ] in
Ext((A1/I1)⊗K, I2 ⊗K).
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In both cases, we have shown that [τe1 ] = [τe2 ] in Ext((A1/I1) ⊗ K, I2 ⊗ K),
proving our claim. By Proposition 6.1, we have that B1

∼= B2. Therefore,
A1 ⊗K ∼= A2 ⊗K. ✷

Lemma 6.4 Let A be a unital, separable, nuclear C*-algebra with an essential
ideal I such that I ∼= K or I ∼= O∞ ⊗ K and A/I is isomorphic to a purely
infinite Cuntz-Krieger algebra. If K1(A/I) = {0} or K0(A/I) is a free group
(possibly K0(A/I) = {0}), then A is isomorphic to a graph algebra.

Proof: By [ABK14, Theorem 4.4] and [Res06, Proposition 8.3], there exists
a finite graph F such that each vertex of F is the base point of at least two
loop of length one and there exists an isomorphism φ : C∗(F )⊗K → A/I ⊗K.
Let ψ : C∗(G) ⊗ K → I be an isomorphism such that K∗(ψ) = id, where G
is the graph {v} with one vertex and no edges if I ∼= K and G is the graph
with one vertex {v} with infinitely many edges when I ∼= O∞⊗K. By [EKTW,
Lemma 5.2(r1) and Proposition 5.5], there exists a graph E with the properties
that

(1) E0 = G0 ⊔ F 0,

(2) E1 is the union of G1 and F 1 together with a finite nonzero number of
edges from each w ∈ F 0 to v, and

(3) there exist an isomorphism α∗ : K∗(C
∗(E)) → K∗(A) with the prop-

erty that (K∗(ψ), α∗,K∗(φ)) is an isomorphism from Ksix(C
∗(E); I{v})

to Ksix(A; I).

Note that I{v}⊗K is an essential ideal of C∗(E)⊗K and there exist an isomor-
phism α∗ : K∗(C

∗(E) ⊗ K) → K∗(A ⊗K) such that (K∗(ψ ⊗ idK), α∗,K∗(φ ⊗
idK)) is an isomorphism from Ksix(C

∗(E)⊗K; I{v}⊗K) to Ksix(A⊗K; I ⊗K).
Also, note that I ∼= I{v} = K or I ∼= I{v} ∼= O∞ ⊗ K . By Lemma 6.3,
A⊗K ∼= C∗(E)⊗K. Therefore, A is isomorphic to a graph algebra by Propo-
sition 6.2. ✷

Lemma 6.5 For each m ∈ N, for each n ≥ 0, the smallest nonzero ideal I of
E±1
m ⊗

⊗n
k=1 E

rk
2 is isomorphic to K and (E±1

m ⊗
⊗n

k=1 E
rk
2 )/I is isomorphic

to a Cuntz-Krieger algebra with vanishing K1-group.
Consequently, E±1

m ⊗
⊗n

k=1 E
rk
2 and E±1

m ⊗
⊗n

k=1E
rk
2 ⊗O∞ are isomorphic to

graph algebras.

Proof: Note that for each m ∈ N, by [EKTW, Theorem 7.2], E+1
m , E−1

m ,
E+1
m ⊗O∞, andE−1

m ⊗O∞ are graph algebras with E±1
m /K and (E±1

m ⊗O∞)/(K⊗
O∞) ∼= (E±1

m /K)⊗O∞ are isomorphic to purely infinite Cuntz-Krieger algebras.
Therefore, we may assume that n ≥ 1.
For notational convenience, set A = E±1

m ⊗
⊗n

k=1 E
rk
2 . Note that I =

⊗n+1
k=1 K.

Let J = K⊗
⊗n

k=1 E
rk
2 . Then J is a primitive ideal and A/J ∼= Om⊗

⊗n
k=1E

rk
2 .

We will show that J/I is stably isomorphic to an O2-absorbing Cuntz-Krieger
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algebra, A/J is isomorphic to a Cuntz-Krieger algebra with vanishing boundary
maps, and the boundary maps in K-theory induced by the extension 0 →
J/I → A/I → A/J → 0 are zero.
We will first prove that J/I is O2-absorbing. Note that it is enough
to show that (

⊗n
k=1 E

rk
2 ) / (

⊗n
k=1 K) is O2-absorbing since J/I ∼= K ⊗

(
⊗n

k=1E
rk
2 ) / (

⊗n
k=1 K). Since E±

2 /K
∼= O2 which is O2-absorbing by [KP00,

Theorem 3.8], we have that (
⊗n

k=1 E
rk
2 ) / (

⊗n
k=1 K) is O2-absorbing for n = 1.

Suppose (
⊗m

k=1 E
rk
2 ) / (

⊗m
k=1 K) is O2-absorbing for 1 ≤ m < n. Consider the

extension

0 → (Er12 ⊗
⊗n

k=2 K) / (
⊗n

k=1 K) →

→ (
⊗n

k=1E
rk
2 ) / (

⊗n
k=1 K) → (

⊗n
k=1 E

rk
2 ) / (Er12 ⊗

⊗n
k=2 K) → 0

Now, (Er12 ⊗
⊗n

k=2 K)/(⊗nk=1K) ∼= (Er12 /K)⊗
⊗n

k=2 K
∼= O2⊗

⊗n
k=2 K which is

O2-absorbing by [KP00, Theorem 3.8]. Since (
⊗n

k=1E
rk
2 )/(Er12 ⊗

⊗n
k=2 K) ∼=

Er12 ⊗ ((
⊗n

k=2 E
rk
2 ) / (

⊗n
k=2 K)) and because of the inductive hypothesis, we

have that (⊗nk=1E
rk
2 )/(Er12 ⊗

⊗n
k=2 K) is O2-absorbing. Hence, by [KP00, The-

orem 3.8] and [TW07, Corollary 4.3], (
⊗n

k=1 E
rk
2 ) / (

⊗n
k=1 K) is O2-absorbing.

This proves our claim.
Since J/I is O2-absorbing and J/I has finitely many ideals, by [Kir00], J/I is
stably isomorphic to a Cuntz-Krieger algebra with vanishing boundary maps.
This is because for any finite T0-space X , there exists an O2-absorbing Cuntz-
Krieger algebra with primitive ideal space X . We also note that the boundary
maps in K-theory induced by the extension 0 → J/I → A/I → A/J → 0 are
zero since K∗(J/I) = {0}.
We now show that A/J is isomorphic to a Cuntz-Krieger algebra with vanishing
boundary maps. Recall that A/J ∼= Om ⊗

⊗n
k=1E

rk
2 . Hence, every simple

sub-quotient of A/J is isomorphic to Om ⊗ (I2/I1) where I1, I2 are ideals of⊗n
k=1 E

rk
2 with I1 ⊆ I2 and I2/I1 simple. Note that if I1, I2 are ideals of⊗n

k=1 E
rk
2 with I1 ⊆ I2 and I2/I1 simple, then I2/I1 ∼=

⊗n
k=1Bk where Bk is

a simple sub-quotient of Erk2 . Hence, every simple sub-quotient of
⊗n

k=1E
rk
2

is either isomorphic to
⊗n

k=1 K or is O2-absorbing. Hence, every simple sub-
quotient of Om⊗

⊗n
k=1 E

rk
2 is either stably isomorphic to Om or O2. So every

simple sub-quotient of A/J is stably isomorphic to a Cuntz-Krieger algebra.
Consider the extension e : 0 → Om⊗I1 → Om⊗I2 → Om⊗ (I2/I1) → 0 with
I2/I1 simple. If I1 = {0} and I2 =

⊗n
k=1 K, then Om⊗I1 = {0} which implies

that e has vanishing boundary maps. If I2/I1 is O2-absorbing, then K∗(Om⊗
(I2/I1)) = {0} which also implies that e has vanishing boundary maps. By
[Ben14, Corollary 3.6], we have that A/J ∼= Om ⊗

⊗n
k=1 E

rk
2 has vanishing

boundary maps. Therefore, by [Ben14, Corollary 8.2], A/J is isomorphic to a
Cuntz-Krieger algebra with vanishing boundary maps. This finishes the proof
of the above claim.
The above claim shows that all the assumptions in [Ben14, Proposition 3.7,
Proposition 3.10, and Corollary 8.4] are satisfied. Thus, A/I is isomorphic to
a purely infinite Cuntz-Krieger algebra.
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We now show that K1((E
±1
m ⊗

⊗n
k=1E

rk
2 )/I) ∼= {0}. Since 0 → J/I →

A/I → A/J → 0 has vanishing boundary maps and the fact that J/I is O2-
absorbing, we have that the surjective map A/I → A/J induces an injective
map K1(A/I) → K1(A/J). Since every simple sub-quotient of A/J is stably
isomorphic to Om or O2 and since A/J has finitely many ideals, one can show
that K1(A/J) = {0}. Therefore, K1(A/I) = {0}.
Lemma 6.4 implies that E±1

m ⊗
⊗n

k=1 E
rk
mk

and E±1
m ⊗

⊗n
k=1 E

rk
mk

⊗ O∞ are
isomorphic to graph algebras. ✷

Lemma 6.6 Let m1,m2, . . .mn ∈ N. Then

(1)
⊗n

k=1 E
±1
mk

is stably isomorphic to unital graph algebra if and only if
whenever there exists an i such that mi ∈ {1}⊔Z≥3, we have that mj = 2
for all j 6= i.

(2)
⊗n

k=1 E
±1
mk

⊗O∞ is stably isomorphic to unital graph algebra if and only
if whenever there exists an i such that mi ∈ {1} ⊔ Z≥3, we have that
mj = 2 for all j 6= i.

Proof: We prove (1). (2) is proved in a similar way.
Suppose whenever there exists an i such that mi ∈ {1} ⊔ Z≥3, we have that
mj = 2 for all j 6= i. By Lemma 6.5,

⊗n
k=1 E

±1
mk

is isomorphic to a graph
algebra. So, also stably isomorphic to a unital graph algebra.
Suppose

⊗n
k=1 E

±1
mk

is stably isomorphic to graph algebra. Note that E±1
m ⊗K ∼=

E+1
m ⊗K for any m. Therefore, it is enough to prove the case

⊗n
k=1E

+1
mk

. Note
that

⊗n
k=1 E

+1
mk

has finitely many ideals. Since
⊗n

k=1 E
+1
mk

is stably isomor-
phic to a unital graph algebra C∗(E), we have that C∗(E) has finitely many
ideals. Therefore, every sub-quotient of C∗(E) is stably isomorphic to a unital
graph algebra with finitely many ideals. Consequently, every sub-quotient of⊗n

k=1 E
+1
mk

is stably isomorphic to a unital graph algebra with finitely many
ideals.
Suppose there exists i and j such that mi,mj ∈ {1} ⊔ Z≥3. Let I =

⊗n
k=1 Ik

be the ideal of
⊗n

k=1 E
+1
mk

where Ik = K if k /∈ {i, j}, Ii = E+1
mi

, and Ij = E+1
mj

.
From the above observation we must have that every sub-quotient of I is stably
isomorphic to a unital graph algebra with finitely many ideals. Note that I is
stably isomorphic to E+1

mi
⊗E+1

mj
and E+1

mi
⊗E+1

mj
has a quotient isomorphic to

Omi
⊗Omj

. Therefore, Omi
⊗Omj

is stably isomorphic to a graph algebra.
Let K ⊗ K be the smallest non-zero ideal of E+1

mi
⊗ E+1

mj
. By the Künneth

formula, K0(E
+1
mi

⊗ E+1
mj

) ∼= Z and K1(E
+1
mi

⊗ E+1
mj

) = {0}, and hence the

extension 0 → K ⊗ K → E+1
mi

⊗ E+1
mj

→ (E+1
mi

⊗ E+1
mj

)/(K ⊗ K) → 0 induces a
six-term exact sequence in K-theory of the form

Z // Z // K0((E
+1
mi

⊗ E+1
mj

)/(K ⊗K))

��

K1((E
+1
mi

⊗ E+1
mj

)/(K ⊗K))

OO

0oo 0.oo
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In particular, K0((E
+1
mi

⊗ E+1
mj

)/(K ⊗ K)) and K1((E
+1
mi

⊗ E+1
mj

)/(K ⊗ K)) are
cyclic groups.
Since (E+1

mi
⊗E+1

mj
)/(K⊗K) is stably isomorphic to a graph algebra with finitely

many ideals, (E+1
mi

⊗E+1
mj

)/(K⊗K) has real rank zero. Therefore, the quotient

of (E+1
mi

⊗ E+1
mj

)/(K ⊗K) by the ideal (K ⊗ E+1
mj

+ E+1
mi

⊗K)/(K ⊗K) induces
the following six-term exact sequence

K0(Omi
)⊕K0(Omj

) // K0((E
+1
mi

⊗ E+1
mj

)/(K ⊗K)) // K0(Omi
⊗Omj

)

0

��

K1(Omi
⊗Omj

)

OO

K1((E
+1
mi

⊗ E+1
mj

)/(K ⊗K))oo K1(Omi
)⊕K1(Omj

).oo

(8)

Using the Künneth formula, we get

K0(Omi
⊗Omj

) = K1(Omi
⊗Omj

) =






Zgcd(mi−1,mj−1) if mi,mj ≥ 3

K1(Omi
)⊕K0(Omi

) if mj = 1

K1(Omj
)⊕K0(Omj

) if mi = 1.

Since Omi
⊗ Omj

is stably isomorphic to a unital graph algebra, gcd(mi −
1,mj − 1) = 1 if mi,mj ≥ 3 and mi = 1 if and only if mj = 1.
Suppose mi,mj ≥ 3. The exactness of Diagram (8) implies that K0((E

+1
mi

⊗
E+1
mj

)/(K ⊗ K)) ∼= K0(Omi
) ⊕ K0(Omj

) ∼= Zmi−1 ⊕ Zmj−1 which contradicts

the fact that K0(E
+1
mi

⊗ E+1
mj

)/(K ⊗K)) is a cyclic group.
Suppose mi = 1. Then mj = 1. Then by the exactness of Diagram (8),
K1((E

+1
mi

⊗E+1
mj

)/(K⊗K)) has a sub-group isomorphic toK1(Omi
)⊕K1(Omj

) ∼=

Z⊕Z. This can not happen since K1((E
+1
mi

⊗E+1
mj

)/(K⊗K)) is a cyclic group.
✷

Let the notation be as in Definition 4.1.

Theorem 6.7 Let Γ be a countable graph. Then C∗(A+
Γ ) is isomorphic to a

graph algebra if and only if one of the following holds

1. t(Γ) = 1, o(Γ) = 0 and Nk(Γ) = 0 for all k

2. t(Γ) = 0, N−1(Γ) +N1(Γ) <∞ and
∑

|k|6=1

Nk(Γ) ≤ 1

Proof: Suppose there exists an isomorphism ψ : C∗(A+
Γ ) → C∗(E) for some

countable directed graph E. Since C∗(A+
Γ ) is unital, C∗(E) is unital. Let

Γi = (Vi, Ei) be the co-irreducible components of Γ. To prove (1), let I be the
ideal of C∗(A+

Γ ) generated by {
⊗

j Jij}i where Jij = C∗(A+
Γj
) if j 6= i and

Jii =

{
K if 1 < |Vi| <∞

0 otherwise.
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Then C∗(A+
Γ )/I

∼=
⊗

iC
∗(A+

Γi
)/Jii where C

∗(A+
Γi
)/Jii is a Kirchberg algebra

if |Vi| ≥ 2 and C∗(A+
Γi
)/Jii ∼= T otherwise. In particular,

Prim(C∗(A+
Γ )/I)

∼=

{∏t(Γ)
k=1 Prim(T ) if there exists i with |Vi| = 1

{•} otherwise.

Note that I is generated by projections. Therefore, ψ(I) is generated by pro-
jections and hence is a gauge-invariant ideal of C∗(E). Hence, by [BPRS00,
Corollary 3.5 and Theorem 3.6], C∗(E)/ψ(I) is isomorphic to a graph algebra.
Since C∗(A+

Γ )/I
∼= C∗(E)/ψ(I), we have that C∗(A+

Γ )/I is isomorphic to a
unital graph algebra. Note that C∗(A+

Γ )/I is O∞-absorbing (if there exists i

such that |Vi| ≥ 2) or C∗(A+
Γ )/I

∼=
⊗t(Γ)

k=1 T .

Suppose C∗(A+
Γ )/I is O∞-absorbing. Since any unital O∞-absorbing graph

algebra has a finite primitive ideal space, we must have that t(Γ) = 0. Sup-

pose C∗(A+
Γ )/I is not O∞-absorbing. Then C∗(A+

Γ )/I
∼=
⊗t(Γ)

k=1 T . Let J be
the ideal generated by {

⊗
j Jij}i where Jij = T if j 6= i and Jii = K, then

J is an ideal generated by projections such that
(⊗t(Γ)

k=1 T
)
/J ∼= C(Tt(Γ)).

Since C∗(A+
Γ )/I is isomorphic to a graph algebra and every ideal generated by

projections in a graph algebra is gauge invariant, by [BPRS00, Corollary 3.5
and Theorem 3.6] every quotient of C∗(A+

Γ )/I by an ideal generated by pro-

jections is isomorphic to a graph algebra. Hence, C(Tt(Γ)) ∼=
(⊗t(Γ)

k=1 T
)
/J

is isomorphic to a unital graph algebra. Since the only unital commutative
graph algebra is isomorphic to finite direct sums of C and T, we must have
that t(Γ) = 1.

In both cases, we have shown that t(Γ) ≤ 1. Suppose o(Γ) 6= 0 or Nk(Γ) 6= 0
for some k, then there exists an i such that C∗(A+

Γi
)/Jii is a Kirchberg alge-

bra. Hence, by [KP00, Theorem 3.15] and [TW07, Corollary 3.4] C∗(A+
Γ )/I

∼=⊗
i C

∗(A+
Γi
)/Jii is an O∞-absorbing C*-algebra. Since every unital graph al-

gebra that is O∞-absorbing must have finitely many ideals and since

Prim(C∗(A+
Γ )/I)

∼=

{∏t(Γ)
k=1 Prim(T ) if there exists i with |Vi| = 1

{•} otherwise,

we have that t(Γ) = 0. Hence, we only get a graph algebra in the case t(Γ) = 1
when all other data vanish.

Suppose t(Γ) = 0. Note that 1 < |Vi| for all i. Thus, C∗(A+
Γi
) is a unital

properly infinite C*-algebra, and Prim(C∗(A+
Γi
)) = {xi, yi} with open sets

{∅, {xi}, {xi, yi}} when |Vi| <∞ and Prim(C∗(A+
Γi
)) ∼= {•} when |Vi| = ∞.

We claim that | {k: Nk(Γ) 6= 0} | < ∞ and Nk(Γ) < ∞ for all k. Suppose
first | {k: Nk(Γ) 6= 0} | = ∞ or Nk(Γ) = ∞ for some k. Then C∗(A+

Γ )
∼=⊗∞

i=1 C
∗(A+

Γi
) and C∗(A+

Γ ) has infinitely many ideals. By Lemma 4.7 , C∗(A+
Γ )

is O∞-absorbing. Again, using the fact that a unital graph algebra that is
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O∞-absorbing has finitely many ideals, we have a contradiction. Therefore,
| {k: Nk(Γ) 6= 0} | <∞ and Nk(Γ) <∞ for all k, proving the claims in (2).
Note that

C∗(A+
Γ )

∼= (E0
1)

⊗N0(Γ) ⊗
∞⊗

n=1

(E−1
1+n)

⊗N−n(Γ) ⊗
∞⊗

n=1

(E+1
1+n)

⊗Nn(Γ) ⊗ (O∞)⊗o(Γ)

By Lemma 6.6, (1) and (2) hold.
In the other direction, we have in the case (1) that C∗(A+

Γ )
∼= T which is

isomorphic to a graph algebra. And in case (2) we have that either

C∗(A+
Γ )

∼= (E−1
2 )⊗N−1(Γ) ⊗ (E+1

2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ),

C∗(A+
Γ )

∼= E+1
m ⊗ (E−1

2 )⊗N−1(Γ) ⊗ (E+1
2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ)

for some m 6= 2, or

C∗(A+
Γ )

∼= E−1
m ⊗ (E−1

2 )⊗N−1(Γ) ⊗ (E+1
2 )⊗N1(Γ) ⊗ (O∞)⊗o(Γ).

for some m 6= 2. If o(Γ) ≥ 1, then by [KP00, Theorem 3.15], (O∞)⊗o(Γ) ∼= O∞.
Hence, by Lemma 6.5, C∗(A+

Γ ) is isomorphic to a graph algebra. ✷

Remark 6.8 The relation between a (undirected, loop-free) graph Γ and a di-
rected graph GΓ with C∗(A+

Γ )
∼= C∗(GΓ) is somewhat opaque, although the

proof given above in principle is constructive. In Figure 2 we present eight
graphs presenting the C*-algebras given by five-vertex graphs of Figure 1 in the
unshaded regions.

We conclude by establishing semiprojectivity and non-semiprojectivity of
C∗(A+

Γ ) in a number of cases, covering for instance all graphs with 5 or fewer
vertices. We note, however, that this theorem does not contain a full answer to
the question of which of the C*-algebras under study are semiprojective. The
most basic open case has N−2 = 2 and may be represented by a graph with 6
vertices.

Theorem 6.9

1. When t(Γ) > 1, C∗(A+
Γ ) is not semiprojective.

2. When t(Γ) = 1, C∗(A+
Γ ) is semiprojective if and only if

o(Γ) =
∑

k

Nk(Γ) = 0.

3. When t(Γ) = 0, C∗(A+
Γ ) is semiprojective when N−1(Γ) + N1(Γ) < ∞

and ∑

|k|6=1

Nk(Γ) ≤ 1
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Figure 2: Graphs representing cases from Figure 1
.
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Proof: We first note that by [End13, Corollary 4.4.16], a C*-algebra of the
form A ⊗ T with A unital, nuclear, infinite-dimensional and in the UCT-class
can never be semiprojective. This proves (1) and (2) since T itself is trivially
semiprojective.
For (3), we first apply Theorem 6.7 to see that C∗(A+

Γ ) in this case is a unital
graph algebra. We have seen that when o(Γ) > 0, C∗(A+

Γ ) is strongly purely
infinite, and when o(Γ) = 0, there is a minimal ideal K in C∗(A+

Γ ) so that
C∗(A+

Γ )/K is strongly purely infinite. In either case, [EK] applies to guarantee
that the C*-algebra is semiprojective. ✷
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