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Abstract. It is well known that, fixed an even, unimodular, positive
definite quadratic form, one can construct a modular form in each
genus; this form is called the theta series associated to the quadratic
form. Varying the quadratic form, one obtains the ring of stable
modular forms. We show that the differences of theta series associated
to specific pairs of quadratic forms vanish on the locus of hyperelliptic
Jacobians in each genus. In our examples, the quadratic forms have
rank 24, 32 and 48. The proof relies on a geometric result about the
boundary of the Satake compactification of the hyperelliptic locus. We
also study the monoid formed by the moduli space of all principally
polarised abelian varieties, the operation being the product of abelian
varieties. We use this construction to show that the ideal of stable
modular forms vanishing on the hyperelliptic locus in each genus is
generated by differences of theta series.
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1. Introduction

The hyperelliptic Schottky problem is to characterise the locus of Jacobians
of hyperelliptic curves inside the moduli space of principally polarised abelian
varieties. A classical approach is to look for modular forms vanishing along the
hyperelliptic locus; in other words, one looks for the equations of the hyperel-
liptic locus inside the moduli space of principally polarised abelian varieties.
A special kind of modular forms are the theta constants; these were used by
Mumford to give a solution to the hyperelliptic Schottky problem, as reviewed
in Theorem 4.4.
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In this paper, we deal with stable modular forms. One nice feature of these
forms is that they relate the theory of moduli spaces with the theory of qua-
dratic forms.
To start with, let us explain what we mean by stable modular forms. Let Ag

be the moduli space of principally polarised abelian g-fold defined over the field
of complex numbers. We consider the Satake compactification AS

g of Ag. This
comes with a stratification

AS
g = Ag ⊔ Ag−1 · · · A1 ⊔ A0

In particular, we have a closed embedding

ιg : A
S
g−1 →֒ A

S
g

The collection of the moduli spaces AS
g and these maps form a direct system

of varieties; we can thus consider the ind-scheme

A∞ := lim
g
AS

g

The basic definitions about ind-schemes are recalled in Section 2
Stable modular forms are naturally defined on A∞. A stable modular form
F is a collection of modular forms (Fg)g≥0: each Fg is modular form on AS

g

and ι∗gFg = Fg−1. We will recall the theory in Section 3, in particular see
Definition 3.3. A classical and surprising fact is that we can construct a stable
modular form out of an even, unimodular, positive definite quadratic form Q.
This stable modular form is called theta series associated to Q, and is denoted
by ΘQ; see Definition 3.6. In particular, for any g, ΘQ,g is a modular form
on AS

g . In [Fre77], Freitag showed that all stable modular forms are linear
combinations of theta series.
In this set up, we can consider the ideal of stable modular forms vanishing on
the locus Hypg of hyperelliptic Jacobians in every genus. Let us formalise this
with definition.

Definition 1.1 (Stable Equation). A stable equation for the hyperelliptic locus
is a stable modular form (Fg)g≥0 such that Fg vanishes along the hyperelliptic
locus Hypg for every g.

Our first result is the following:

Theorem 1.2 (= Theorem 4.2). The ideal of stable equations of the hyperel-
liptic locus is generated by differences of theta series

ΘP −ΘQ

where P and Q are even, unimodular, positive definite quadratic forms of the
same rank.

A key ingredient in the proof of this results is a natural monoidal structure that
one can put on A∞. Given two principally polarised abelian varieties, their
product is still a principally polarised abelian variety but of higher dimension.
This defines an operation

m : A∞ ×A∞ → A∞
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The pull-back m∗ gives to the ring of stable modular forms the structure of a
co-commutative co-algebra. Because of this, we can run the general machinery
explained in Section 2 to prove Theorem 1.2.

So far, the ideal of stable equations for the hyperelliptic locus could be trivial.
Indeed, this is the case for the moduli space of curves: in [CSB14], it is shown
that the ideal of stable modular form vanishing on the Jacobian locus in any
genus is trivial. In other words, given a non-zero stable modular form F , there
exists a g such that Fg does not vanish on the moduli space of genus g curves.
In [SB13], it is similarly shown that the ideal of stable equation for the n-gonal
locus, with n ≥ 3, is trivial. However, as we are going to see, the ideal of stable
equations for the locus of Jacobians of hyperelliptic curves is far from being
trivial.

The first stable equation for the hyperelliptic locus was discovered by C. Poor
([Poo96]): it is the difference of the theta series associated to the quadratic
forms D+

16 and E8 ⊕ E8; this modular form is also called the called Schottky
form. To construct new stable equations, we need to know more about the
geometry of the Satake compactification. The Satake compactification HypSg
of Hypg will be defined in Section 4. We denote by Aind

g the moduli space of
indecomposable principally polarised abelian g-fold.

Theorem 1.3 (= Theorem 4.3; Transversality). The intersection of the Stake
compactification HypSg+1 and Aind

g inside AS
g+1 is scheme theoretically equal to

Hypg.

The statement was well-known at the level of sets; we call it a transversality
result because it states that the scheme structure of the intersection is the re-
duced one. The analogue result does not hold for the moduli of curves [CSB14,
Theorem 1.1] and for the moduli of n-gonal curves [SB13], with n ≥ 3. In those
cases, the failure of the transversality implies that there are no stable equations;
in the hyperelliptic case, this transversality result is key in the construction of
stable equations.
Combining Theorem 1.3 and Criterion 5.2 we can prove the following

Theorem 1.4 (= Corollary 5.7 and Theorem 6.1). The difference of theta
series

ΘP −ΘQ

is a stable equation for the hyperelliptic locus when one of the following hold:

(1) rk(P ) = rk(Q) = 24 and the two quadratic forms have same number of
vectors of norm 2;

(2) rk(P ) = rk(Q) = 32 and the two quadratic forms do not have any
vector of norm 2;

(3) rk(P ) = rk(Q) = 48 and the two quadratic forms do not have any
vector of norm 2 or 4;

Each item of Corollary 1.4 concerns a finite positive number of pairs of qua-
dratic forms. In [Kin03], it is shown that there are more than ten millions of
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quadratic forms meeting the hypothesis of the second item. In the first item,
the "slope" of the quadratic form, i.e. the ratio between the rank and the
norm of the shortest non-zero vector, is strictly bigger than the slope of the
hyperelliptic locus; because of this, in the proof we need to use some non-trivial
arithmetic properties of the quadratic forms: namely we use Theorem 6.2 via
Corollary 6.3.

We think that the ideal of stable equations defines scheme theoretically the
hyperelliptic locus inside the moduli space of indecomposable principally po-
larised abelian varieties in any genus. This, in particular, would imply that
there are infinitely many pairs of quadratic forms which give stable equations
for the hyperelliptic locus. In order to give a characterisation of these pairs, we
think one should relate theta series to partition functions, as partially suggested
in [GV09], [GKV10] and [Mat15].
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2. Ind-varieties and commutative Monoids

In this section, we recall some general definitions and results about ind-varieties
and monoid. A reference about ind-variety is [Kum02, Chapter IV]. An ind-
varietyX is a collection (Xn)n≥0 of algebraic varieties and a collection of closed
embeddings

ιn : Xn−1 →֒ Xn

We write

X = lim
n
Xn

This limit exists in the category of locally ringed spaces; however, we prefer to
enlarge the category of schemes including all direct systems. This means that
for us an ind-variety is a direct system of algebraic varieties.
A line bundle L on X is the data of a line bundle Ln on each Xn such that
ι∗nLn = Ln−1. A section s of L is a collection of sections (sn)n≥0 such that sn
is a section of Ln on Xn and the restriction of sn to Xn−1 is sn−1. We assume
that the vector space H0(X,Lk) is finite dimensional for every k. The ring of
sections of L is thus defined as a projective limit in the category of graded rings

R(X,L) := lim
←−
R(Xn, Ln) .
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We do not have to worry about the topology of this ring because of graded
pieces H0(X,Lk) are finite dimensional. In other words, elements on R(X,L)
are not formal power series.

Remark 2.1 (Ampleness on ind-varieties). The concept of ampleness for a line
bundle L on an ind-variety X is subtle and, to the best of our knowledge, there
is not a standard definition. A first definition could be that there exists a k
such that Lk

n is very ample on Xn for every n. Remark that k does not depend
on n. If H0(X,Lk) is finite dimensional for every k but the dimension of Xn

tends to infinity when n grows, L can not be ample. A weaker definition is
to ask that for every n there exists a k = k(n) such that Lk

n is very ample on
Xn. The example that we will study in this paper is ample just in the sense
of the second definition. This second definition does not imply the classical
consequences of ampleness: for instance, in this generality, it is not even clear
that an ample line bundle is effective.

An ind-monoid is an ind-variety M with an associative multiplication and an
identity element 1M . A multiplication m is a family of maps

mg,h : Mg ×Mh →Mg+h

compatible with the restrictions. M is commutative if the multiplication is.

Definition 2.2 (Split monoid). Let M be a commutative ind-monoid and L a
line bundle on M . We say that M is split with respect to L if the following two
conditions hold:

(1) For every g and h

m∗
g,hLg+h

∼= pr∗1Lg ⊗ pr
∗
2Lh =: Lg ⊠ Lh

where pri are the projections;
(2) for every k, the vector space H0(M,Lk) is finite dimensional and

spanned by characters, where a section χ of L is a character if

m∗
g,hχg+h = χg ⊠ χh ∀ g, h .

In the language of Hopf algebras, condition (1) means that the pull-back m∗

is a co-commutative co-multiplication for R(M,L). The definition of character
makes sense only if condition (1) holds. With a slight abuse of notations,
we will speak about characters of M rather than characters of the co-algebra
R(M,L), and we will write χ(αβ) = χ(α)χ(β) instead of m∗

g,hχg+h(α × β) =

χg(α)⊠ χh(β).

Lemma 2.3. Let M be a commutative monoid, suppose it is split with respect
to a line bundle L, then, any set of characters is linearly independent.

Proof. This proof is standard. We argue by contradiction. Take n minimal
such that there exist n linearly dependent characters χ1, . . . , χn. We can write

χn =

n−1
∑

i=1

λiχi λi ∈ C .
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Pick α ∈M such that χ1(α) 6= χn(α). For any β ∈M we have

n−1
∑

i=1

λiχi(α)χi(β) = χn(α)χn(β) = χn(α)

(

n−1
∑

i=1

λiχi(β)

)

Since β is arbitrary we get

n−1
∑

i=i

λi(χi(α)− χn(α))χi = 0 .

The coefficient χ1(α) − χn(α) is non-zero, so we have written a non-trivial
linear relation among fewer than n characters. This contradicts the minimality
of n. �

Proposition 2.4. Let M be a commutative ind-monoid and N a submonoid.
Suppose that M is split with respect to a line bundle L. Then the ideal IN in
R(M,L) of sections vanishing on N is generated by differences of characters

χi − χj

Proof. Take s in IN . We can assume that s is homogeneous and write it as a
linear combination

s = λ1χ1 + · · ·+ λnχn

where χi are characters and λi are constants. Restricting χi to N some of them
might become equal. Up to relabelling the χi, we can fix integers 0 = m0 <
m1 < · · · < mk = n and distinct characters θ1, . . . , θk of N such that

χi |N= θj ⇐⇒ mj−1 < i ≤ mj

For j = 1, . . . , k, let us define

µj :=

mj
∑

i=mj−1+1

λi .

By hypothesis we know that

0 = s |N =
k
∑

j=1

µjθj .

By Lemma 2.3 we have µj = 0 for every j, so

s = s−

k
∑

j=1

µjχmj
=

k
∑

j=1

mj
∑

i=mj−1+1

λi(χi − χmj
)

The differences χi − χmj
vanish on N for mj−1 < i ≤ mj , so we have just

expressed s as linear combination of differences of characters vanishing on N .
�

The previous argument actually shows that every element of the ideal can be
written as a linear combination of differences of characters. These results are
special cases of a more general theory of Milnor and Moore. They have many
applications in the study of moduli spaces, e.g. [GHT14].
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3. Satake compactification, modular forms and theta series

We recall some facts about modular forms and the Satake compactification of
Ag. General references about modular forms are [BvdGHZ08] and [Mum07].
The Satake compactification was first defined in [Sat56]; a comprehensive ref-
erence is [Fre83].
The line bundle Lg of weight one modular forms on Ag is defined as the deter-
minant of the Hodge bundle; it is ample and it generates the rational Picard
group.

Definition 3.1 (Siegel modular form). A weight k and degree g Siegel modular
form is a section of Lk

g on Ag.

The universal cover of Ag is the Siegel upper half space Hg; the symplectic
group Sp(2g,Z) acts on Hg and

Ag = Hg/Sp(2g,Z)

The line bundle Lg is trivial when it s pulled back to Hg; therefore a modular
form can be also defined as a holomorphic function on Hg which transforms
appropriately under the action of Sp(2g,Z).
The Satake compactificationAS

g is a normal projective variety defined as follows

AS
g := Proj(

⊕

n≥0

H0(Ag, L
n
g ))

This is the compactification "seen" by modular forms. The line bundle Lg

extends naturally to AS
g because it is the O(1) of this Proj. For the same

reason, all modular forms extend to AS
g

Definition 3.2 (The Siegel operator). The Siegel operator Φ is a map of graded
rings

Φ:
⊕

n≥0

H0(Ag, L
n
g )→

⊕

n≥0

H0(Ag−1, L
n
g−1)

defined as
Φ(F )(τ) := lim

t→+∞
F (τ ⊕ it) ,

where τ is an element of Hg−1 and t ∈ R. Here, we are thinking at F as a
holomorphic function on Hg.

Clearly, there is some work to do to show that Φ(F ) is a well defined element
of H0(Ag−1, L

n
g ); the interested reader cal look at [Fre83].

The Siegel operator is surjective for n even and larger than 2g ([Fre83] page 64);
this means that the Siegel operator defines a closed embedding of ιg : A

S
g−1 →֒

AS
g . One can check that the image of AS

g−1 is the boundary ∂AS
g of AS

g , so we
obtain a stratification

AS
g = Ag ⊔A

S
g−1 = Ag ⊔ Ag−1 · · · A1 ⊔A0 .

By construction, the pull-back ι∗gLg is isomorphic to Lg−1, and the pull-back

ι∗g : H
0(Ag, L

n
g )→ H0(Ag−1, L

n
g−1) is the Siegel operator. Again, a reference is

[Fre83].
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The system of varieties AS
g together with the closed embeddings ιg induced by

the Siegel operators forms a direct system, so we can define the ind-variety

A∞ := lim
g
AS

g

We follow the notations of Section 2. The line bundles Lg define a line bundle

L∞ := lim
g
Lg

on A∞. This line bundle is called the line bundle of weight one stable stable
modular forms.

Definition 3.3 (Stable modular forms). A weight k stable modular form F is
a section of Lk

∞. More concretely, it is a collection

F = (Fg)g≥0

where Fg is a modular form of weight k on Ag and

Φ(Fg+1) = Fg

Recall that each line bundle Lg is ample on Ag; however, the same assertion is
problematic for L∞, as explained in Remark 2.1.
We now define a structure of commutative monoid on A∞. Given two princi-
pally polarised abelian varieties of dimension respectively g and h, their product
is still a principally polarised abelian variety of dimension g + h. This gives a
commutative operation

m : A∞ ×A∞ → A∞

([X ], [Y ]) 7→ [X × Y ]

The identity element is A0.

Lemma 3.4. On A∞ ×A∞, we have

m∗L∞ = L∞ ⊠ L∞ .

Proof. For every pair of integers g and h one looks at the morphism

m : Ag ×Ah → Ag+h

The fibre of the Hodge bundle Eg at a point [X ] of Ag is the tangent space at
the identity of X . This implies that m∗Eg+h is Eg ⊠Eh. The statement on Lg

follows by taking the determinant. �

We have the following useful formal consequence

Proposition 3.5. The pull-back m∗ defines a co-commutative co-
multiplication on the algebra of stable modular forms R(A∞, L∞).

The ring of stable modular form, so far, could be trivial. However, there is a
classical and surprising way to produce plenty of stable modular forms out of
quadratic forms. Let us go trough all definitions. A quadratic form is a pair
(Λ, Q), where Λ is a finitely generated free group and Q is a Z-valued bilinear
form on Λ. The rank of the quadratic form is defined as the rank of Λ. The
elements of Λ are called vectors, and the norm of a vector v is Q(v, v). We
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always assume Q to be even (i.e. Q(v, v) is even for every v), unimodular (i.e.
detQ = 1) and positive definite. Often, we will denote a quadratic form just
by Q.

Definition 3.6 (Theta series). Let (Λ, Q) be an even unimodular positive def-
inite quadratic form and g a positive integer, the associated theta series is

ΘQ,g(τ) :=
∑

x1,...,xg∈Λ

exp(πi
∑

i,j

Q(xi, xj)τij)

where τ belongs to Hg.

This is a weight 1
2 rk(Λ) and degree g modular form. By explicit computation,

one sees that the Siegel operator 3.2 acts as follows

Φ(ΘQ,g+1) = ΘQ,g ,

so the collection of all theta series

ΘQ := (ΘQ,g)g≥0

is a stable modular form. Given X ∈ Ag and Y ∈ Ah, we have the factorisation
property

ΘQ,g+h([X × Y ]) = ΘQ,g(X)ΘQ,h(Y ) ,

which means that the theta series are characters for the monoid A∞.

Example 3.7 (Quadratic forms and theta constants). In some cases, theta
series can be written in term of theta constants, let us give some examples
following [Igu81]. Let E8 be the quadratic form associate to the Dynkin diagram
E8. Using a similar definition, for every integer k one can define the Witt
quadratic forms W8k. The quadratic form W8k has rank 8k, it is equal to E8

for k = 1 and to D+
16 for k = 2. Up to a constant, we have the following

expansion

ΘW8k,g(τ) =
∑

ǫ even

θ[ǫ]8k(τ) ,

where the sum runs over all the even theta characteristics. In particular, the
well-known Schottky form can be written as

ΘD
+

16

−ΘE8⊕E8
= 2−g

∑

ǫ even

θ[ǫ]16(τ) − 2−2g(
∑

ǫ even

θ[ǫ]8(τ))2

In general, a theta series will not have such a simple expression in term of
theta constants. In [SM89, Section 3], there is a systematic analysis of the
theta series which can be expanded in this way; the results of that paper relies
upon [Mum07, Theorem 6.3].

The ring of stable modular forms is described by the following result of Freitag:

Theorem 3.8 (Theorem 2.5 of [Fre77]). The ring of stable modular forms
R(A∞, L∞) is the polynomial ring in the theta series associated to irreducible
quadratic forms.
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Freitag’s main contribution was to show that H0(A∞, L
k
∞) is spanned by theta

series for every k. There are finitely many quadratic forms of a given rank, so
we already learn that H0(A∞, L

k
∞) is finite dimensional. This result, together

with Lemma 3.4 and the fact that theta series are characters, means that A∞

equipped with the line bundle L∞ is a split monoid in the sense of Definition
2.2. Freitag’s claim about the polynomial structure now follows easily from
Proposition 2.4.

4. Satake compactification of the hyperelliptic locus

In this section we define the Satake compactification of the hyperelliptic locus
and we prove Theorems 1.2 and 1.3. Consider the Jacobian morphism

j : Hypg → Ag

mapping a curve to its Jacobian.

Definition 4.1 (Satake compactification). The Satake compactification HypSg
of the hyperelliptic locus Hypg is the scheme-theoretic closure of j(Hypg) inside
AS

g .

A degeneration of a hyperelliptic Jacobian is still the Jacobian of a hyperelliptic
curve ([Hoy63]), so we have a stratification

HypSg =
⊔

∑
gi≤g

Hypg1 × · · · ×Hypgk

Equivalently, the Satake compactification is the image of the Deligne-Mumford
compactification of Hypg under the morphism which maps a curve to the Ja-
cobian of its normalisation.

In particular, HypSg+1 contains HypSg as a scheme, so we can define the com-
mutative ind-monoid

Hyp∞ := lim
g
HypSg

Using the monoid structure we can show the following

Theorem 4.2. The ideal of stable modular forms vanishing on Hyp∞ is gen-
erated by differences of theta series

ΘP −ΘQ

where P and Q are even, unimodular, positive definite quadratic forms of the
same rank.

Proof. We know that Hyp∞ is a commutative sub-monoid of A∞ and A∞

satisfies the hypotheses of Definition 2.2. The theta series are the characters
of co-algebra R(A∞, L∞), so the result is a direct consequence of Proposition
2.4. �

So far, the ideal studied in the theorem could be trivial. A key tool to show that
a modular form is a stable equation for the hyperelliptic locus is the following
geometric result. Let Aind

g be the moduli space of indecomposable principally
polarised abelian g-fold.
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Theorem 4.3 (Transversality). Inside AS
g+1 , the intersection of HypSg+1 and

Aind
g is scheme theoretically equal to Hypg.

The statement was well-known at the level of sets (cf [Hoy63] or [ACG11,
Lemma 11.6.14]); we call it a transversality result because it states that the
scheme structure of the intersection is the reduced one.

Proof. We work with level structure (4, 8), and we denote by AS
g (4, 8) the

Satake compactification of the moduli space Ag(4, 8) of principally polarised
abelian g-fold with level structure (4, 8). This amounts to take a finite Galois
cover of AS

g . Now, AS
g+1(4, 8) has several boundary components, all isomor-

phic to AS
g (4, 8). We will fix one of them, let us call it V . The hyperelliptic

locus HypSg+1(4, 8) breaks into several irreducible components (cf. [Tsu91]);
an irreducible component is identified by the choice of a fundamental system
m of theta characteristic, we will fix such an m and denote by Y = Ym the
corresponding irreducible component. Since the cover is Galois, locally the
intersection of HypSg+1 and Ag is isomorphic to the intersection of Y and V .
Because of this, it is enough to show that the scheme-theoretic intersection of
V ind and Y is reduced. We need to work at level (4, 8) to apply the following
result, which is due set-theoretically to Mumford and scheme theoretically to
Salvati Manni.

Theorem 4.4 ([SM03]). Fix a fundamental system of theta characteristic m =
(m1, . . . ,m2g+1), and let b be the sum of the odd mi. Then, the corresponding
irreducible component Y = Ym of Hypg(4, 8) is scheme theoretically defined by
the vanishing of the theta constants θm+b such that m = mi1 + · · · +mik for
k < g and k ≡ g, g+1, and the non-vanishing of the remaining theta constants.

In the statement, the non-vanishing of the remaining theta constants is needed
to rule out the loci of decomposable abelian varieties; our statement is about
Jacobians of smooth curves, so we are already working outside these loci. Let m
be a g+1 dimensional system of fundamental theta characteristic, e.g. the one
defined in equation 7 of [SM03]. Let Y = Ym be the corresponding irreducible
component of HypSg+1(4, 8). Let Ig+1(Ym) be the ideal of modular forms gen-
erated by the theta constants vanishing along Ym. Because of Salvati Manni’s
result, this ideal defines scheme-theoretically Ym. By direct computation one
sees that

Φ(θ

[

ǫ 0
ǫ′ δ

]

) = θ

[

ǫ
ǫ′

]

for δ equal either to 0 or 1. In the previous formula, Φ is the Siegel operator,
i.e. the restriction operator from AS

g+1(4, 8) to one of the boundary component,
say to V . Because of the theorem quoted above, this means that, scheme the-
oretically, the intersection of Ym and V ∼= Ag(4, 8)

S away from decomposable
abelian varieties is isomorphic to Yn; where n is the g dimensional system of
fundamental theta characteristic defined in equation 7 of [SM03]. �
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We now complete the description of the tangent space of HypSg+1 along Hypg.
Let C be a smooth genus g hyperelliptic curve and X its Jacobian. To start
with, let us describe the normal bundle exact sequence of Ag in AS

g+1 at X .
This sequence reads

0→ TXAg → TXA
S
g+1 → H0(X, 2Θ)∨ → 0

We will need the following explicit description of the action of these derivations.
Let Fg+1 be a modular form on Ag+1 and Fg its restriction to Ag. For any
element T in the Siegel upper half space Hg+1 write

T =

(

τ z
tz t

)

,

with t inH1 and τ inHg. Let q := exp(2πit); then the Fourier-Jacobi expansion
of Fg+1 is

(1) Fg+1(T ) = Fg(τ) +
∑

n≥1

fn(τ, z)q
n

where fn is a section of H0(Xτ , 2nΘ), Xτ is the principally polarised abelian
variety defined by τ , and z is a system of co-ordinates on Xτ . A derivation
D ∈ TXAg acts as D(Fg+1) = D(Fg); a derivation in D ∈ H0(X, 2Θ)∨ acts as
D(Fg+1) = D(f1).
The normal bundle exact sequence for Hypg in HypSg+1 at C is a subsequence

of the normal bundle exact sequence of Ag in AS
g+1 at X . To describe it, we

need to introduce the following morphism

(2)
Ψ : C

f
−→ C × C

δ
−→ X

p 7→ (p, ι(p))
(a, b) 7→ AJ(a)−AJ(b)

where ι is the hyperelliptic involution and AJ is the Abel-Jacobi map.

Lemma 4.5. The pull-back Ψ∗2Θ is isomorphic to 2(KC +W ), where W is the
divisor of Weierstrass points on C.

Proof. The pull-back δ∗2Θ is KC ⊠KC(2∆), where ∆ is the diagonal; this is
well-known, e.g. [Wel86, Equation 4.4]. Now, we pull-back KC ⊠KC(2∆) via
f . The pull-back of ∆ is W ; the pull-back of KC ⊠KC is KC + ι∗KC = 2KC .

�

Theorem 4.6. Keep notation as above, the normal bundle exact sequence for
Hypg in Hypg+1 at C is

0→ TCHypg → TCHyp
S
g+1 → PC → 0

where PC is the image of the map

Ψ∗ : H0(X, 2Θ)→ H0(C, 2(KC +W )) .

In other words, the normal tangent cone at C is the cone over (Ψ(C), 2Θ).
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Proof. There are two things we have to prove, first

TCHyp
S
g+1 ∩ TCAg = TCHypg ;

but this is equivalent to Theorem 4.3.
To describe the co-kernel of the inclusion

TCHypg →֒ TCHyp
S
g+1

we need to know that, after blowing up AS
g in AS

g+1, the proper transform of

HypSg+1 meets the Kummer variety of X in Ψ(C). This is proved in [Nam73,
Theorem 6], just remark that to obtain a generic irreducible nodal hyperelliptic
curve we need to glue two points conjugated under the hyperelliptic involution.

�

In [Cod14, Lemma 3.6], it is shown that Ψ∗ is not surjective and PC has rank
2g; however, we do not need this result here.

Remark 4.7 (Failure of Theorem 4.3 at the locus of decomposable abelian
varieties). For the sake of completeness, let us sketch a proof of the failure of
Theorem 4.3 at the locus of decomposable abelian varieties. This result is not
needed in this paper, but we think that the study of this intersection is interest-
ing on its own. Pick two integers such that g1+g2 = g; fix a hyperelliptic curve
C of genus g1 and a hyperelliptic curve D of genus g2. Call ι the hyperelliptic
involution. The point (C,D) in HypSg+1 represents all the hyperelliptic curves
of the form C ⊔D/(p ∼ q, ι(p) ∼ ι(q)), where p is a point varying in C and q
is varying in D. Recall that we have an identification

Sym2(H0(C,KC)
∨ ⊕H0(D,KD)∨) = T(J(C)×J(D))Ag

Arguing as in [CSB14], we can show that the tangent space of HypSg+1 at (C,D)
contains the image of the map

ψ : C/ι×D/ι → P Sym2(H0(C,KC)
∨ ⊕H0(D,KD)∨)

(p, q) 7→ ωi(p)ψj(q) + ωj(p)ψi(q)

where ωi are a basis of H0(C,KC) and ψi are a basis of H0(D,KD). This is
the same tangent direction we get when we consider an appropriate smoothing
of the genus g nodal curve C ⊔D/p ∼ q; this smoothing is not hyperelliptic, so
the intersection of T(C,D)Hyp

S
g+1 with T(J(C)×J(D))Ag is strictly bigger than

T(C,D)Hyp
S
g .

5. Projective invariants of hyperelliptic curves

In this section, we review the theory of projective invariants, and we use it to
show that certain modular forms vanish on the hyperelliptic locus.
To start with, let us introduce the auxiliary space Bg. This is the moduli space
of 2g + 2 points on P1, up to permutation and projectivity. The points are
counted with multiplicity, points are not allowed to have multiplicity bigger that
g + 1. This space is classically constructed as a GIT quotient; it is irreducible,
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it has an open dense subset B◦
g where the 2g + 2 points are all distinct, and a

boundary D where at least two points coincide.
Let C be a smooth genus g hyperelliptic curve, fix a two to one map π : C → P1.
This morphism is unique up to projective transformations of P1, it ramifies at
2g+2 points. A point p is called a Weierstrass point if it is a ramification point
for π.

Definition 5.1 (Projective invariants). The projective invariants of C are the
image of the Weierstrass points under π, considered up to permutations and
projective automorphisms of P1.

Equivalently, the projective invariants of C are the points of the branch divisor
of π, considered up to projectivity. The projective invariants of a smooth
hyperelliptic curve C are naturally a point of B◦

g , so we have a morphism

fg : Hypg → B
◦
g

One can reconstruct a hyperelliptic curve out of its projective invariants, and
given 2g + 2 points on P1 there is a hyperelliptic curve with that projective
invariants; this means that fg is an isomorphism.
This construction has been extensively used to study the moduli space Hypg;
references are [Igu67], [AL02] and [Pas11, Chapter 2].
As an aside, let us recall that the Thomæ’s formula permits to write the cross-
ratios of the projective invariants in term of second order theta functions eval-
uated at the period matrix of C.
Following [AL02], the map fg extends to an isomorphism

fg : Hypg ⊔ η
∗
0 → B

◦
g ⊔D

∗

where η∗0 parametrises irreducible singular hyperelliptic curves with just one
node, i.e. curves of the form C/p ∼ ι(p), and D∗ parametrises 2g + 2 points
on P1 such that exactly 2 points coincide. The image of a curve in η∗0 is a
set of 2g + 2 points of the form {p1, . . . , p2g, p, p}, where {p1, . . . , p2g} are the
projective invariants of the normalisation and the glued points are the pre-
images of p under π.
Always following [AL02], we can extend fg further to a morphism

fg : Hypg → Bg

which contracts the boundary divisors of the Deligne-Mumford compactifica-
tion different from the closure of η∗0 to high co-dimension loci.

We need some more information about Bg, again references are [Igu67], [AL02]
and [Pas11, Chapter 2]. From the GIT point of view, the moduli space Bg
can be constructed as the Proj of the ring S(2, 2g + 2), which is the ring of
co-invariant of binary forms of degree 2g+2. This ring is formally constructed
as follows: let Z be the cartesian product of 2g+2 copies of P1, on this variety
we have a diagonal action of SL(2,C) and an action of the symmetric group;
this action linearise to an action on the line bundle M := O(1, . . . , 1), the
ring S(2, 2g + 2) is the ring of invariant element of R(Z,M). More concretely,
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S(2, 2g + 2) is the ring of symmetric functions in 2g + 2 variables, which are
co-invariant under the natural action of SL(2,C). The discriminant ∆ is an
element of S(2, 2g + 2) of degree 4g + 2, it cuts out the boundary divisor D.

We now consider also the Jacobian morphism

j : Hypg → HypSg →֒ Ag

Take the composition
j ◦ f−1

g : Bg 99K Ag

Under this map, D∗ dominates Hypg−1; explicitly, the set {p1, . . . , p2g, p, p}
is mapped to the Jacobian of the smooth hyperelliptic curve defined by the
projective invariants {p1, . . . , p2g}. Taking the pull-back we obtain a morphism
of graded ring

ρ : R(Ag, Lg)→ S(2, 2g + 2)

whose kernel is exactly the ideal of modular forms vanishing on the hyperelliptic
locus. This map is sometime called Igusa morphism of projective invariants, it
was introduced in [Igu67], where Igusa proved that its degree is 1

2g
1. Using

this construction we can prove the following criterion.

Criterion 5.2 (Weissauer - unpublished). Let Fg be a weight n and degree
g modular form. Restrict it to HypSg and say it vanishes along Hypg−1 with
multiplicity at least k. If

n

k
< 8 +

4

g
then Fg vanishes on Hypg.

Proof. Suppose Fg vanishes with multiplicity at least k onHypg−1. This means
that (j ◦ f−1

g )∗Fg vanishes with multiplicity at least k on D. In other words,

∆k divides ρ(Fg). The degree of the discriminant in S(2, 2g + 2) is 4g + 2, the
degree of ρ(Fg) is 1

2gn. Since, by hypothesis,

k(4g + 2) >
1

2
gn

we obtain that ρ(Fg) is equal to zero, so the claim. �

Remark 5.3 (Relation with Theorem 4.6). To show that Fg vanishes along
Hypg−1 with multiplicity at least 2 one needs to know the tangent space of
HypSg along Hypg−1; in the applications, especially in Theorem 6.1, we will
use the description given in Theorem 4.6.

Remark 5.4 (Other versions of Criterion 5.2). A weaker version of Criterion 5.2
can be found in [Poo96]. An alternative proof is in [Pas11]. In [SM00], Salvati
Manni attributed this criterion to Weissauer, in an unpublished preprint, and
showed that the inequality is sharp. This Criterion is also related to the slope
of the hyperelliptic locus, in the sense of slope of the cone of effective divisors
(cf. [CH88]).

1If g is odd, all non-trivial modular forms have odd degree, so the factor 1

2
should not

worry the reader.
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Combining Theorem 1.3 and Criterion 5.2 we can find a first group of stable
equations for the hyperelliptic locus. We will need the following basic invariant
of a quadratic form (Q,Λ)

µ(Q) := min{Q(v, v) | v ∈ Λ; v 6= 0} = min{n | Rn(Λ) 6= ∅} ,

where Rn(Λ) is the set of vectors of Λ of norm 2n.

Theorem 5.5. Let (Q,Λ) and (P,Γ) be two even positive definite unimodular
quadratic forms of rank N and let µ := min{µ(Q), µ(P )}. If

N

µ
≤ 8 ,

then
F := ΘQ −ΘP

is a stable equation for the hyperelliptic locus. In other words, Fg vanishes on
Hypg for every g.

Proof. The proof is by induction on g. The difference of two theta series van-
ishes on A0. Suppose the statement true for g, we want to apply Criterion 5.2
to Fg+1. Call k := 1

2µ, we need to prove that Fg+1 vanishes at the boundary
component Hypg with multiplicity at least k.
We first compute the multiplicity along tangent direction parallel to the bound-
ary, namely along TCHyp

S
g+1∩TCAg, where C is a smooth genus g hyperelliptic

curve. This intersection is, by Theorem 1.3, equal to TCHypg. By induction,
Fg vanishes along Hypg, so Fg+1 is annihilated by the derivations contained in
TCHyp

S
g+1 ∩ TCAg.

Let us now look at the normal direction to Ag; we will use the Fourier-Jacobi
expansion introduced in the equation (1). Writing out the Fourier-Jacobi ex-
pansion of Fg+1, the hypothesis on µ implies that the first k terms vanish. This
means that Fg+1 vanishes with order at least k along the normal direction to Ag

in AS
g+1; in particular, we obtain that it vanishes along Hypg with multiplicity

at least k and we can apply Criterion 5.2. �

The hypotheses of Theorem 5.5 are quite restrictive; let us describe the cases
where the Theorem can be applied.

Proposition 5.6. Let (Q,Λ) be an even, positive definite, unimodular qua-
dratic form, then

rk(Q)

µ(Q)
≤ 8

if and only if the pair (rk(Q), µ(Q)) is equal to one of the following pairs: (8, 2),
(16, 2), (32, 4) or (48, 6).

Proof. Given any even unimodular quadratic form (Q,Λ), there is an upper
bound

µ(Q) ≤ 2⌊
rk(Q)

24
⌋+ 2
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where “⌊ ⌋” is the round down (see [CS99, Section 7.7 Corollary 21] ). This
bound, combined with the fact that the rank is divisible by 8, gives the Propo-
sition.

�

Let us call the type of quadratic form the pair (rk(Q), µ(Q)). There is just one
quadratic form of type (8, 2) and one of type (24, 4), so we do not get any stable
equation in these cases. The rank 16 case was considered by Poor in [Poo96]:
there are two quadratic forms of type (16, 2), so one gets one equation. In
[Kin03, Corollary 5], using a generalization of the mass formula, it is shown
that there exist at least ten millions of quadratic forms of rank 32 and µ = 4
; however, just 15 of them are known explicitly. The situation for quadratic
forms of type (48, 6) is not clear: believably, there exist many of them, see
[Kin03, Page 15], but there is not any lower bound and just 3 of them are
known explicitly. (King adopts a slightly different notation: every quadratic
form is tacitly assumed to be positive definite.) To summarise, Theorem 5.5
can be applied to the following cases

Corollary 5.7. If P and Q are two even, unimodular, positive definite qua-
dratic forms meeting one of the following two hypotheses:

(1) rk(P ) = rk(Q) = 32 and µ(P ) = µ(Q) = 4; that is, the quadratic forms
do not have any vector of norm 2;

(2) rk(P ) = rk(Q) = 48 and µ(P ) = µ(Q) = 6; that is, the quadratic forms
do not have any vector of norm 2 and 4;

then, the difference
ΘP −ΘQ

is a stable equation for the hyperelliptic locus.

6. Niemeier quadratic forms

Niemeier quadratic forms are rank 24 quadratic forms. In this section we prove
the following:

Theorem 6.1. Let (P,Γ) and (Q,Λ) be two rank 24 quadratic forms with the
same number of vectors of norm 2, then the difference

ΘP −ΘQ

is a stable equation for the hyperelliptic locus.

Vectors of norm 2 are usually called roots. This result concerns the following
5 pairs of quadratic forms

quadratic forms A4
5D4 , D6

4 A2
9D6 , D4

6 A11D7E6, E
4
6

# roots 72 120 144

A17E7 , D10E
2
7 E8D16, E

3
8

216 360
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where a quadratic form of rank 24 is labelled by its root system (see e.g. [Ebe13,
Section 3] for more details). The pair E3

8 , D16E8 corresponds to the modular
form ΘE8

(ΘE8⊕E8
− ΘD

+

16

), so its behaviour was well-understood. The others

cases can not be expressed as a product of lower weight stable modular forms
and they are not covered by previous results.
This result is surprising because the slope of these quadratic forms, i.e. the
ratio between the rank and the norm of the shortest vector, is strictly bigger
than 8, so they were not expected to vanish on the hyperelliptic locus in every
genus. Before proving our theorem we need two preliminary results.

6.1. A formula for sections of 2Θ. Let s be a section of 2Θ on the Jaco-
bian of a curve C with period matrix τ . For every couple of points a and b of
C the following classical formula holds:

(3) s(τ, a− b) = E(a, b)2[s(τ, 0)ω(a, b) +
∑

i,j

∂2s

∂zi∂zj
(τ, 0)ωi(a)ωj(b)]

where E is the Prime form, {ωi} is the basis of the holomorphic differentials
on C corresponding to the basis { ∂

∂zi
} of the tangent space at the origin of the

Jacobian, ω(a, b) is the fundamental normalised bi-differential, and everything
is trivialised with respect to a choice of local co-ordinates za and zb. This
formula is well known, see e.g. [MV10, Appendix A].

6.2. The “heat equation” for Niemeier quadratic forms. The classifi-
cation of rank 24 quadratic forms is due to Niemeier, but it has been simplified
by Venkov proving and using the following identity

Theorem 6.2 (Venkov, cf. [Ebe13] Section 3). Let (Λ, Q) be a rank 24 qua-
dratic form, then

r2(Λ)Q(v, w) = 8
∑

y∈R2(Λ)

Q(y, w)Q(y, v) ∀ v, w ∈ Λ

where r2(Λ) is the number of roots and R2(Λ) is the set of roots.

The proof relies upon the theory of degree 1 modular forms with harmonic
coefficients. Let us draw a consequence of this result about the Fourier-Jacobi
expansion of theta series (cf. equation (1)).

Corollary 6.3 (Heat equation). The first Fourier-Jacobi coefficient f1 of a
theta series associated to a rank 24 quadratic form Λ satisfies the following
“heat equation”

r2(Λ)πi
∂f1
∂τij

(τ, 0) = 3(1 + δij)
∂2f1
∂zi∂zj

(τ, 0) ,

where r2(Λ) is the number of roots of Λ.
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Proof. By explicit computation, we can write out the first Fourier-Jacobi coef-
ficient of a theta series:

f1(τ, z) =
∑

x1,...,xg∈Λ

∑

y∈R2(Λ)

exp(πi
∑

i,j

Q(xi, xj)τij + 2πi
∑

i

Q(y, xi)zi) .

Fix two indexes i and j, by explicit computation we have

∂2f1
∂zi∂zj

(τ, 0) = (2πi)2
∑

x1,...,xg∈Λ

∑

y∈R2(Λ)

Q(y, xi)Q(y, xj) exp(πi
∑

i,j

Q(xi, xj)τij) ,

On the other hand

(1 + δij)
∂f1
∂τij

(τ, 0) = 2πi
∑

x1,...,xg∈Λ

Q(xi, xj) exp(πi
∑

i,j

Q(xi, xj)τij) ,

the coefficient (1 + δij) is because the variables on Hg are τij with i ≤ j, so
when we compute the derivative with respect to τij we need to derive both τij
and τji. Applying Theorem 6.2 we obtain the result. �

This formula is also discussed in [MV10, page 16]. This result is generalised
to higher order Fourier-Jacobi coefficients and higher rank quadratic forms in
[Cod14, Theorem 10.3].

6.3. Proof of Theorem 6.1. We want to show that Fg = ΘP,g − ΘQ,g is
zero on Hypg for every g; we argue by induction on g. The case g = 0 is
easy. To prove the inductive step we use Criterion 5.2: we need to show that
Fg+1 vanishes along Hypg with multiplicity at least 2. As in Theorem 5.5, the
derivative along directions tangent to Ag vanishes because of Theorem 1.3 and
the inductive hypothesis.
The normal direction is quite different: now the first Fourier-Jacobi coefficient
is not trivial, so there is some work to do. Because of Theorem 4.6, it is enough
to check that f1 vanishes when restricted to points of the form (τ, p − ι(p)),
where τ is the period matrix of a smooth hyperelliptic curve C, p is a point of
C and ι is the hyperelliptic involution.
To show this we argue as follows. First remark that

f1(τ, 0) = Fg(τ) = 0

Then we apply the formula (3), trivialising everything with respect to co-
ordinates zp and ι∗zp and recalling that

ω

dzp
(p) =

ω

ι∗dzp
(ι(p))

we get

f1(τ, p− ι(p)) = E(p, ι(p))2
∑

i,j

∂2f1
∂zi∂zj

(τ, 0)ωi(p)ωj(p)

Documenta Mathematica 21 (2016) 445–466



464 G.Codogni

Now the heat equation 6.3 and the hypothesis on the number of roots come
into the game: since r2(Λ) = r2(Γ) =: r, we have

6
∑

i,j

∂2f1
∂zi∂zj

(τ, 0)ωi(p)ωj(p) = rπi
∑

i≥j

∂Fg

∂τij
(τ)ωi(p)ωj(p) = (rπi)dFg(τ)(p)

Let us explain the last equality: the fibre of the cotangent bundle of Ag

at Jac(C) is isomorphic to Sym2H0(C,KC), so dFg(τ) is a quadric in
PH0(C,KC)

∨ and we can evaluate it on the image of p under the canonical
map.
The co-normal bundle of Hypg in Mg is given by the −1 eigenspace

of H0(C, 2KC); the image of the co-differential m : Sym2H0(C,KC) →
H0(C, 2KC) is the +1 eigenspace; we conclude that the quadric in the co-
normal bundle of Hypg in Ag vanishes along the canonical image of C. Since
Fg vanishes along Hypg, dFg is a quadric containing the canonical image of
C; in other words, it has to vanish when evaluated at any point p of C. This
concludes the proof of Theorem 6.1.

6.4. Other results about Niemeir quadratic forms. With similar tools,
we can prove other results about the behaviour of these modular forms on the
moduli space of curves and abelian varieties.

Theorem 6.4 ([Cod14] Corollary 11.2). Let P and Q be two even positive
definite unimodular quadratic forms of rank 24 with the same number of roots,
then the stable modular form

F := ΘP −ΘQ

is zero on Mg for g ≤ 4, and it cuts a divisor of slope 12 on M5.

Theorem 6.5 ([Cod14] Theorem 11.3). The following degree 5 modular forms
are non-trivial cusp forms

Θ(D16E8)−Θ(E3
8 )−

21504

24
(Θ(A4

5D5)−Θ(D6
4))

Θ(D16E8)−Θ(E3
8 )−

21504

216
(Θ(A2

9D6)−Θ(D4
6))

Θ(D16E8)−Θ(E3
8 )−

21504

480
(Θ(A11D7E6)−Θ(E4

6))

Θ(D16E8)−Θ(E3
8 )−

21504

−2520
(Θ(A17E7)−Θ(D10E

2
7))

where, for typographical reasons, we write Θ(Q) rather than ΘQ,5.
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