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ABSTRACT. We consider the continuity property in Lebesgue spaces
LP(R™) of the wave operators W of scattering theory for Schrédinger
operators H = —A + V on R™, |V(z)| < C(z)~° for some § > 2
when H is of exceptional type, i.e. N = {u € (z)°L?(R™): (1 +
(—A)"'V)u = 0} # {0} for some 1/2 < s < § — 1/2. Tt has recently
been proved by Goldberg and Green for m > 5 that W4 are in general
bounded in LP(R™) for 1 < p < m/2, for 1 < p < m ifall ¢ € N
satisfy [ Vode = 0 and, for 1 < p < oo if [, 2iVdz = 0, i =
1,...,m in addition. We make the results for p > m/2 more precise
and prove in particular that these conditions are also necessary for
the stated properties of Wi. We also prove that, for m = 3, Wy
are bounded in LP(R3) for 1 < p < 3 and that the same holds for
1 < p < oo if and only if all ¢ € N satisfy [o3 Vodz = 0 and
Jgs xiVédx =0, i = 1,2, 3, simultaneously.

2010 Mathematics Subject Classification: 35P25, 81U05, 47A40.

1 INTRODUCTION

Let Hy = —A be the free Schrédinger operator on the Hilbert space H =
L*(R™) with domain D(Hy) = {u € H: — Au € H} and H = Hy + V,
V being the multiplication operator with the real measurable function V(z)
which satisfies

V(2)| < Clz)™° for some &> 2, (x) = (1+ |z[*)2. (1.1)

Then, H is selfadjoint in H with a core C§°(R™) and it satisfies the following
properties (see e.g. [18| 19, 211 22| 23]):

1Supported by JSPS grant in aid for scientific research No. 22340029
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(i) The spectrum o(H) of H consists of the absolutely continuous (AC for
short) part [0, 00) and a finite number of non-positive eigenvalues of finite
multiplicities.

We write Hq.(H) for the AC spectral subspace of H for H, H,. for the part of
H in H,(H) and P,.(H) for the orthogonal projection onto Hq.(H).

(ii) Wave operators Wy = limy 40 e’tH ¢=itHo defined by strong limits exist
and are complete, viz. Image Wi = H,c(H). They are unitary from #H
onto H..(H) and intertwine H,. and Hy. Hence, for Borel functions f,

J(H)Poo(H) = Wy f(Ho)WZ. (1.2)

If follows that various mapping properties of f(H)P,. may be deduced from
those of f(Hp) if the corresponding ones of W4 are known. In particular, if
Wy € B(LP(R™)) for 1 < p; < p < p2 < oo, then Wi € B(LY(R™)) for
@2<q<q,1l/pj+1/g;=1,j=12, and

Hf(H)PaC(H)HB(LQ,LP) < Cpq”f(HO)HB(Lq,LP)a (1-3)

for these p and ¢ with C,, which are independent of f. We define the Fourier
and the conjugate Fourier transforms Fu(€) and F*u(€) respectively by

1

Fu(§) = /m e” 8y (z)dx and F*u(€) = R /m ey (z)dz.

We also write @(§) for Fu(§).

The intertwining property (L2) may be made more precise. Wave operators
W are transplantations ([24]) of the complete set of (generalized) eigenfunc-
tions {e™¢: ¢ € R™} of —A by those of out-going and in-coming scattering
eigenfunctions {p1(x,£): £ € R™} of H = -A+V ([19]):

1
(2m)

where 74 and FI are the generalized Fourier transforms associated with
{px(x,£): £ € R™} and the conjugate ones defined respectively by

Wou(s) = FrFu(z) = /R s (e,

Feu©) = [ mOuin, Fiu(©) = g [ eslauiee

They satisfy FiFiu = u for u € Hoo(H) and, FrFiu = u for u € L*(R™).
We define F'(D) = F*MpF and F(D4) = Fi MpF+ for Borel functions F' on
R™ where M is the multiplication with F(£). Then,

F(Dy) =Wy F(D)Wiu, u€ He(H)
and W transplant estimates for F'(D) in LP-spaces to F(Dy).
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In this paper we are interested in the problem whether or not W are bounded
in LP(R™). This will almost automatically imply the same property in Sobolev
spaces WFP(R™) = {u € LP(R™): 9% € LP(R™)} for integers 0 < k < 2 (see
Section 7 of [q]).

There is now a large literature on this problem ([3l 4] [6, [8], 27 BTl [T5] 16, 29] 33])
and it is well known that the answer depends on the spectral properties of H
at 0, the bottom of the AC spectrum of H. We define

E={uec H*(R™): (~A+ V)u =0}, (1.4)
the eigenspace of H with eigenvalue 0 and, for 1/2 < s < — 1/2,
N ={ue @)°L*R™): (1+(-A)"'V)u =0} =0. (1.5)

Functions ¢ in A satisfy —A¢ + V¢ = 0 for z € R™. The space N is finite
dimensional, independent of 1/2 < s <§ —1/2, £ C N and, if m > 5, & =N
([T4]). The operator H is said be of generic type if N' = {0} and of ezceptional
type otherwise. When H is of generic type, we have rather satisfactory results
(though there is much space for improving conditions on V') and it has been
proved that Wy are bounded in LP(R™) for all 1 < p < oo if m > 3 and, for
all 1 < p < oo if m =1 and m = 2 under various smoothness and decay at
infinity assumptions on V' (see [4] for the best result when m = 3); but they
are in general not bounded in L'(R!) or L>°(R!) when m =1 (|27)).

When H is of exceptional type, it is long known that the same results hold
when m = 1 (see [27, [l [6]). For higher dimensions m > 3, it is first shown
([33L [8]) that W are bounded in LP(R™) for 3/2 < p < 3 if m = 3 and for
—s <p < G if m > 5, which is subsequently extended to 1 < p < 3 form =3
and 1 < p <m/2 for m > 5 ([34]). Then, recently, Goldberg and Green ([10])
have substantially improved these results by proving the following theorem for
m > 5. In what follows in this paper, we assume m > 3 and V satisfies the
following assumption. The constant m, is defined by

my. = (m—1)/(m— 2).
ASSuMPTION 1.1. V is a real valued measurable function such that
(1) f((z)QUV) € L™ for some o > 1/m,.

m+4, if 3<m<7,

m+3  if m>8 and C > 0.

(2) |V(z)| < Cx)~° for some § > {
The condition (1) requires certain smoothness on V.
We write (u,v) = [, u(z)v(z)dz and define subspaces £ C & C N respec-
tively by

50:{¢€N2 <V,¢> :0}, 51:{¢€502 <.TV,¢> :0}, (16)

where (zV, ¢) = 0 means (x;V,¢) = 0 for all 1 < i < m. We have dimN /& <
1,&=Eifm=3and N =& if m >5.
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THEOREM 1.2 (Goldberg-Green). Suppose that V satisfies Assumption [T and
that H is of exceptional type. Then, if m > 5, Wi are bounded in LP(R™) for
1 <p<m/2. They are bounded in LP(R™) also for 1 <p <m if N =&y and
for1<p<oo if N =¢&.

In this paper, we show following theorems which in particular prove the cor-
responding result for m = 3 and that the conditions N' = & and N’ = & of
Theorem are also necessary for the stated properties of W respectively.
We write P, Py and P; for the orthogonal projections onto £, & and &; re-
spectively. Because (—A)~1V is a real operator, we may take the bases of N\,
& and & which consist of real functions and P, Py and P; are real operators:
For the conjugation (Cu)(x) = u(z),

c'pc=prP, C'PC=P C'PC=P,. (1.7)
We state results for m = 3, m = 5 and m > 6 separately.

THEOREM 1.3. Let m = 3. Suppose that V satisfies Assumption [Tl and that
H is of exceptional type. Then:

(1) W4 are bounded in LP(R3) for 1 < p < 3.
(2) For 3 <p < oo, there exists a constant C' such that
I(W £ ap ® [D|™'Ve + P)ull e < Cllull s, (1.8)

where ¢ is the real function defined by BI3) (the canonical resonance),
a = 4mi|(V,¢)| =2 and P may be replaced by P © P;.

(3) If Wy are bounded in LP(R?) for some 3 < p < oo, then N' = &;. In this
case they are bounded in LP(R3) for all 1 < p < oco.

THEOREM 1.4. Let m = 5. Suppose that V satisfies Assumption [Tl and that
H is of exceptional type. Then:

(1) W4 are bounded in LP(R®) for 1 < p < 5/2.

(2) For5/2 < p <5, there exists a constant C such that

P
|(we2ator Vo oo+t )] <Cle, 09

Lp

where ¢ = PV, V being considered as a function, ag = i/(247?) and
P may be replaced by P © Py. If Wi are bounded in LP(R5) for some
g <p <5, then N = &y. In this case they are bounded in LP(R®) for all
1<p<h.

(3) By virtue of (1) and (2), the condition € = &y is necessary for Wy to be
bounded in LP(R3) for some p > 5. Suppose & = &y. Then,

(W + P)ull g, < Cllullze (1.10)
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for a constant C, where P = Py may be replaced by Py © Py. If Wi are
bounded in LP(R®) for some p > m, then N' = &;. In this case they are
bounded in LP(R®) for all 1 < p < oo.

THEOREM 1.5. Let m > 6. Suppose that V satisfies Assumption [Tl and that
H is of exceptional type. Then:

(1) W4 are bounded in LP(R™) for 1 < p < m/2.
(2) For 3 < p < m, there exists a constant C > 0 such that

(W + D P)ullzr < Cpllull e, (1.11)

where P may be replaced by P S Py and

w‘

() ,
\/_1_‘( ) m is odd, (1.12)
2T (g)

F [e.°]
(2% 4+ 1)~ D, m is even. (1.13)
e )

If W are bounded in LP(R™) for some m/2 < p < m then, &€ =&y. In
this case they are bounded in LP(R™) for all1 <p <m

‘3

D,, =

—~
l\’|3 o

NE
v |

(3) Suppose £ =Ey. Let m < p < co. Then, for a constant Cp,
[(Wx + Pul| < Cypllul| L, (1.14)

where P may be replaced by Py © Py. If W4 are bounded in LP(R™) for
some p > m, then &€ = &;. In this case they are bounded in LP(R™) for
all1 < p < oo.

REMARK 1.6. (1) The integral in (LI3) may be computed explicitly:

oo T (m—3) ()2t
2 y-(m-1)gy _ LM = 3) g2
/1 (x*+1) dx T = 1)

(2) There are examples of V such that & = & C N, & € & = N and
& C & C N (see Example 8.4 of [13]).

(3) Murata’s result (Theorem 1.2 of [20]) also implies that, if N" # 0, Wy are
not in general bounded in LP(R™) for p > 3 if m = 3 and for p > % if m > 5.

(1.15)

The rest of the paper is devoted to the proof of Theorems. In spite that sub-
stantial part of Theorems [[.4] and [[H] overlaps with Theorem [[2]and that they
miss critically important L!-boundedness, we present the proof of Theorems
which is very different from the one by Goldberg and Green ([10]). Our proof
heavily uses harmonic analysis machinery, which produces sharper results for
larger p’s, however, at the same time, prevents us from reaching end points
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p =1and p = co. We prove the theorems only for W_ since conjugation
changes the direction of time, viz. C~le™"H(C = ¢™*H  and

Wy =Cc'w_c. (1.16)

We use the following notation and conventions: The ¢-th derivative of f(x),
x € R is denoted by f@(z). ¥ =S""1 = {x: 2 +--- + 22, = 1} is the unit
sphere in R™ and wy,—1 = 212 /T (&) is its area. The coupling and the inner
product are anti-linear with respect to the first component,

(w:0) = (wv) = [ u@e(e)da,
in accordance with the interchangeable notaion for the rank 1 operator
(o] = u v ;6 ulv, 6).

This notation is used also when v is in a certain function space and u in its
dual space.
f<|.| g means |f| <|g|.

For Banach spaces X and Y, B(X,Y) is the Banach space of bounded operators
from X to Y and B(X) = B(X,X); Boo(X,Y) and B (X) are spaces of
compact operators; and the dual space B(X,C) of X is denoted by X*. The
identity operators in various Banach spaces are indistinguishably denoted by
1. For 1 < p < o0, ||ullp = |lullrr is the norm of LP(R™) and p’ is its dual
exponent, 1/p+ 1/p’ = 1. When p = 2, we often omit p and write ||u|| for
lue]l2. We interchangeably write L2 (R™) or LP>>°(R™) for weak-LP spaces and
|ee]|p,w or ||u||p,00 for their norms. For s € R,

L? = (z)"°L? = L*(R™, (x)**dz), H*(R™)= FL*(R™)

are the weighted L? spaces and Sobolev spaces. The space of rapidly decreasing
functions is denoted by S(R™).
We denote the resolvents of H and H( respectively by

R(z)=(H —2)"', Ro(z)=(Ho—2)"".

We parameterize z € C\ [0,0) as z = A2 by A € C*, the open upper half plane
of C, so that the positive and the negative parts of the boundary {\: £ X €
(0,00)} are mapped onto the upper and the lower edges of the positive half line
{z € C: 2> 0}. We define

G(\) = R(\?), Go(A\) = Ro(N\?), NeCT.

These are B(H)-valued meromorphic functions of A € C* and the limiting
absorption principle [19] (LAP for short) asserts that, when considered as
B((z) °L2, ()" L?)-valued functions for s ¢ > 2 and s+t > 2, Go()\) has

DOCUMENTA MATHEMATICA 21 (2016) 391-443
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Hélder continuous extensions to its closure C = {# : Oz > 0}. The same is
true also for G()), but, if H is of exceptional type, it has singularities at A = 0.
In what follows 22 is the branch of square root of z cut along the negative real
axis such that 22 > 0 when z > 0.

The plan of the paper is as follows: In section 2, we record some results most
of which are well known and which we use in the sequel. They include:

e Formulas for the integral kernel of Go(\) as exponential-polynomials in
odd dimensions or their superpositions in even dimensions.

e Representation of ()[(Go(A) — Go(—A))u) as the linear combination of
Fourier transforms of r/T*M(r,4 x i), M(r, f) being the average of f
over the sphere of radius r centered at the origin.

e The Muckenhaupt weighted inequality and examples of A,-weights.

In section 3, we recall and improve results of [33] and [§] on the behavior as
A = 0 of (1+ Go(\)V)~! and reduce the problem to the LP-boundedness of
Zsu = —% Go(MVS(AN)(Go(A) — Go(=A))urF(N)dA (1.17)
0
where S()\) is the singular part of the expansion of (1 + Go(A\)V)™tat A =0
and F € C§°(R) is such that F(A\) = 1 near A = 0.
We prove Theorem [[3] in Section 4, Theorem [[.4] for odd dimensions m > 5 in
Section 5 and for even dimensions in Section 6. We explain the basic strategy
of the proof at the end of §4.1] after most of basic ideas appears in the simplest
form.
ACKNOWLEDGMENT The part of this work was carried out while the author
was visiting Aalborg and Aarhus universities in summers of 2014 and 2015
respectively. He would like to express his sincere gratitude to both institutions
for the hospitality, to Arne Jensen, Jacob Schach Mgller and Erik Skibsted
in particular. He thanks Professors Goldberg and Green for sending us their
manuscript [10] before posting on the arXiv-math, Shin Nakano for computing
the recursion formula for (ILTH) and Fumihiko Nakano for bringing [12] to his
attention.

2 PRELIMINARIES

In this section we record some well known results which we use in what follows.

2.1 INTEGRAL KERNEL OF THE FREE RESOLVENT

For m > 2, resolvent Go(X) for S\ > 0 is the convolution with

. m—3
Golra) = — " / et <3_M|x|) Ca (21
2(2m) %7 T (25L) |2|m=2 Jo 2
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([28]). When m > 3 is odd, it is an exponential polynomial like function.
LEMMA 2.1. Let m > 3 be odd. Then:

(m—3)/2 . N .
M| )7 eirl=l —iV(m =3 — )
Go(ho)= > cj% with Cj = ( Z_) fﬁ D
= || gm—1=jg 7 jl(m=d _ )l
(2.2)
The constant Cy may also be written as Cy = (m — 2)’1w;11_1 and
iCop+Cy =0, when m>5. (2.3)

If m is even, the structure of Go(\, z) is more complex and this makes the
analysis harder. For partly circumventing the difficulty we express Go(\, z) as
a superposition of exponential-polynomial like functions of the form (2.2]). This
will allow a part of the proof for even dimensions to go in parallel with the odd
dimensional cases. We set

m — 2
v=——.
2
Define operators Tj(a), 7 =0,...,v for superposing over parameter a > 0 by
a > 1 d
Tf(z,0)] = cm,jwm_l/o (1+ a)-<2v-ﬂ+é>f(x,a)7%, (2.4)
Tv—j+1) (v

Conjwm—1 = (—2i)) ———22 ("] . 2.5
- 1<”0%Mﬁ() (25)

The factor wy,—1 is added for shorting some formulas below (see ([2I])).

LEMMA 2.2. If m > 4 is even, then we have

Go(\ z) = ZV:%;T].(“) {emﬂﬂﬂl(;l'%] . (2.6)
=0
Proof. Let Cppy = om—=lp"7tp (mT_l) In the formula 21)):
pirla] © s I
Go(\ x) = W/o et T (t—2iNx]) = dt, (2.7)

m—3
2

write (t — 2iA|z|) = (t—2iM|z|)” (t — 2i\|z])~ 2, expand (¢t — 2i|z|)” via the
binomial formula and use the identity

1 /OO 1
=— e a 2da, RNz>0 (2.8)
VT Jo

for (t — 2iX|z|)~2. The right hand side of 1) becomes

z

=

zuj (—21)! (V> // o~ (1+a)t2v—j (ei/\|z|(1+2a) ()‘|$|)]) ﬂﬁ
2o \i) LS o1772) Vi Va

The integral converges absolutely if m > 4 and we obtain (2.6 after performing
the integral with respect to t. O
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2.2 SPECTRAL MEASURE OF Hj
. The spectral measure of Hy = —A is AC and Stone’s theorem implies that
the spectral projection Eg(du) is given for u = A%, A > 0 by
1 , , 1
Eo(dp) = 5—(Ro(p +i0) = Ro(p — i0))dp = —(Go(}) = Go(=A))AdA.

LEMMA 2.3. Let m > 3 and u,v € (L* N L?)(R™). Then, both sides of the
following equation can be continuously extended to A\ =0 and

“Ho, (Go(A) = Go(=A)u) = (| D10, (Go(A) = Go(=A)u), A >0. (2.9)
For bounded continuous functions f on R we have for A > 0,
F)(, (Go(Nu = Go(=A))u) = (v, (Go(\)u — Go(=A) f(ID)u).  (2.10)
Proof. For u,v € (L* N L?)(R™) we have
(0, (GoA) — Go(—A)u) = ot

i
2(2m)m—1

/ D(Aw)t(Aw)dw, (2.11)
b
where X = S™~1. Tt follows, since |D/|:v()\w) = A"19(\w), A > 0, that

Am—34 —
<|D|71’U, (Go(N) = Go(—=A)u) = W/g’@(/\&])ﬁ()\&))d&). (2.12)

The right side extends to a continuous function of A > 0 when m > 3 and (2.9)
follows by comparing (ZI1)) and (ZI12). Eqn. [2I0) likewise follows. O

We define the spherical average of a function f on R™ by

M(r, f) = ! / frw)dw, for all r € R. (2.13)

Wm—1

We often write My(r) = M(r, f). We have My(—r) = M;(r) and Holder’s
inequality implies

oo 1/17
1
( / |Mf(r)|prm_1dr) <Ifllys 1<p<oc. (2.14)
0

Wm—1

For an even function M(r) of r € R, define M(p) by

/poo ( - /_’; rM(r)dr) . (2.15)

LEMMA 2.4. Suppose M(r) = M(—r) and (r)>M(r) is integrable. Then,

/Re*i”rM(r)dr = ?/Re’iml\z(r)dr, /RM(T)CZTZ /Rr?M(r)dr. (2.16)

Proof. Since rM(r) = —M (), integration by parts gives the first equation.
We differentiate both sides of the first and set A = 0. The second follows. [

We denote @(z) = u(—x), z € R™. (The sign @ will be reserved for this purpose
and will not be used to denote the conjugate Fourier transform.)
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REPRESENTATION FORMULA FOR ODD DIMENSIONS.

LEMMA 2.5. Let m > 3 be odd and u,vp € C°(R™). Define ¢; = wm-1Cj,
1<5< mT_?’, where C; are the constants in 2.2). Then, for A > 0 we have

m—3
2

@, (Go(N) = Go(=A)u) = > ¢j(—=1)/ TN / e~ NP My (r)dr. (2.17)
0 R

<

Proof. We compute (1, Go(A)u) by using the integral kernel ([Z2) of Gp(N).
Change the order of integration and use polar coordinates. Then,

m—3

.o =30 [ (| Xy

m

m—3 m

-3
2 N el ()« 2 o 4
= C’j/ c "(i};_u)(wdy: Z cj/ )\Je“\rrlﬂME*ﬁ(r)dr.
R [yl ’ = Jo

§=0
Since MEM(T) is even, change of variable r by —r yields

m

T 0
(Gl = 3 ey [ NN,
j=0 /=00

Add both sides of last two equations and change r by —r. o

REPRESENTATION FORMULA FOR EVEN DIMENSIONS. If m is even, we have
the analogue of (2.I7). For a function M(r) on R and a > 0, define

M(r) = M((1+4 2a)"'r).
LEMMA 2.6. Let m > 2. Let u,yp € C°(R™). Then

v ) )\j}—(rj"'lMﬂ ()
_ j+1p(a) Yl
(. G ~ Gt = D1l | s ] @iy
FrMa )(N) AFME_)(N)
. (a) Pxa _ .m(a) (e
FOT] = 0, _TO W] = TO W (219)

Proof. Define Bj(\,r,a) = eA"(1+20) (\p)ip=(m=2) and
Bivau(e) = [ Bl a)ute —y)dy, §=0,....v.

Then, (236) and change of the order of integrations imply

v 1
<w’ (GO()\) - Go(—)\))u> — Z J

Jj=0

(¢, (Bj(A @) = Bj(=Aa))u)] . (2.20)

Wm—1
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We have, as in odd dimensions, that for v € S(R™) and ¢ € L'(R™)

B0 = [ ([ FEB 0ot - ay) do

m

= [ Bl )@ )y = e [ et e

Replacing A to —X\ and changing the variable r to —r, we have

0
— (1, Bj(=\, a)u) = wm_l/_ 61(1+2a))\T()\T)]TME*a(T)dT,

where we used that Mg, (—r) = Mg,

(r). Adding these two yields
(1, (Bj( A, a) — Bj(=\, a))u) = Wm_1 / e 2N () M (r)dr. (2.21)
R
Change r to —r in the right of (Z21), plug the result with (Z20) and, at the
end, change the variable r to —r/(1 + 2a). Then, (Z21]) becomes

(_1)j+1wm_1)\j

Qa7 7T MEDW)

—1)j+1w —1 . P
7( = / eI N\ it e (r)dr = 3
R [EEN)

(1+2a)i+2 i

and (2.I]) follows. If we use the first of [2.I0]), the right of the last equation
for j = 0 becomes

INFMg, (V)
(1+ 2a)?

and we obtain ([2.19). O

Wm—1

2.3 SOME RESULTS FROM HARMONIC ANALYSIS.

The following lemma on weighted inequality (cf. [11], Chapter 9) plays crucial
role in this paper. We let 1 < p < oo in this subsection.

LEMMA 2.7. The weight function |r|* is an A, weight on R if and only if
—1<a<p—1. The Hilbert transform H and the Hardy-Littlewood mazimal
operator M are bounded in LP(R,w(r)dr) for A, weights w(r).

Modifying the Hilbert transform 7, we define

Hu(p) = %2)”@) = % /000 e Pi(r)dr. (2.22)

We shall repeatedly use following A, weights on R! to the operator MH:

R, e e and [, (223)
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m m m m

respectively for 1 <p < -2 2 <p < Z, Z <p<mandm <p.

For a function F(x) on R™, we say G(|x|) € L'(R™) is a radially decreasing
integrable majorant (RDIM for short) of F if G(r) > 0 is decreasing and
|F(z)] < G(Jz|) for a.e. & € R™. The following lemma is well known (see e.g.
[26], p.57).

LEMMA 2.8. (1) A rapidly decreasing function F € S(R™) has a RDIM.
(2) If F has a RDIM. then there is a constant C > 0 such that
|(F*u)(t)] < C(Mu)(t), teR. (2.24)

LEMMA 2.9. Foru and F € L'(R) such that i, ' € L'(R) we have

1 o[>,
> /O eMEN)a(N)dN = (F*F « Hu)(p). (2.25)
Proof. Let ©O(\) = { (1): igi i 2 8 . Then, the left side of ([2:28) equals
1 , 1 .
> /R eMENON)a(N)d\ = o . ( /R e“@—ﬁ)f*F(g)dg) O(N)i(N\)dA
= [ FROFOWIN} o~ €)ds = (FF + Ha)(p)
as desired. 0

3 REDUCTION TO THE LOW ENERGY ANALYSIS

We write W_ = W in the sequel. When u € (z) °L? s > 1/2, Wu may be
expressed via the boundary values of resolvents (e.g. [19]):

R
Wu=u— Ewl}]r\}lToo . /E GN)V(Go(N) — Go(=X)uddX (3.1)
—u- L /OO GOV (Go(N) — Go(—\))urdA (3.2)
i Jo

Here the right of (3] is the Riemann integral of an (:I:)tLQ-valued continuous
function where t > 1/2 is such that s + ¢ > 2, the result belongs to L*(R™)
and the limit exists in L?(R™), which we symbolically write as (3.2).

We decompose W into the high and the low energy parts

W =W + We = WU (Hy) + Wo(Hp), (3.3)
by using cut off functions ® € C5°(R) and ¥ € C*°(R) such that

PAN) 4+ T(A?) =1, ®(A\?) =1 near A =0 and &(\?) =0 for |\ > Ao
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for a small constant Ay > 0. We have proven in previous papers [33] [§] that,
under Assumption [[J} W5 is bounded in LP(R™) for all 1 <p < oo if m >3
and we only need to study We = ®(Hy) + Z where

Z = f% GNV(Go(A) — Go(—A))AD(Hp)dA. (3.4)

0

Evidently ®(Hy) € B(LP(R™)) for all 1 < p < oo and we have only to study
the operator Z defined by (34). Since § > 2, the LAP (cf. Lemma 2.2 of [33])
implies that Go(A\)V is a Holder continuous function of A € R with values in
Boo(L7*) for any 1 < s < § — 3 and, the absence of positive eigenvalues ([I7])
implies that 14 Go(\)V is invertible for A > 0 (cf. [I]). It follows from the
resolvent equation G(\) = Go(A) — Go(A\)VG(N) that G(A)V may be expressed
in terms of Go(\)V:

GV = Go(WV (1 +Go(N)V) ™! for X #0 (3.5)

and it is locally Holder continuous for A € R\ {0} with values in By (L2 ).
Thus, we have the expression of Z in terms of the free resolvent Go(\):
1 e o)
Zu=—— GoMNV (1 4+ Go(W)V)HGo(N) — Go(=A)AF(Nud), (3.6)
i Jo
where F(\) = ®(\?). If H is of generic type, Kerp2 (14 Go(0)V) =N = {0}
for any + < s < 6 — 3 and 1 + Go(A)V is invertible for A in a neighborhood
A =0 and both sides of (B3] become Holder continuous. We then have shown
in [33, §] that Z is bounded in LP(R™) for all 1 < p < co under Assumption

LT

3.1 LOW ENERGY BEHAVIOR OF (1 + Go(A\)V)~1.

If H is of exceptional type, (1 + Go(\)V)~! becomes singular at A = 0 and
we describe its singularities here. Before doing so we recall some properties of
functions in A. Recall ([25]) that for 0 < s < m :

When s = 1 and s = 2, the constants in front of the integral respectively equal
tom'wt, and Cp = (m —2)"tw,b | of Z2).

LEMMA 3.1. (1) Functions ¢ in N satisfy ()" °¢ € H?(R™)N CYR™) for
any s > 1/2 and V¢ is Holder continuous. They satisfy the following
asymptotic expansion as |xr| — oo:

___Co_
o) =~ [ (Velwd

Wm

- %1 Z ;ﬁ /Rm y; (V) (y)dy + O(lz|~™).  (3.8)
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(2) For p e N\ &y, o @ ¢ & B(LP(R™)) for any 1 < p < oo if m = 3 or
m =4 and, if m > 5, ¢ ® ¢ € B(LP(R™)) if and only if -5 <p < F.
If ¢ € &\ &1, then ¢ @ ¢ € B(LP(R™)) if and only if -5 < p <m for
any m >3 and, if ¢ € &1, then ¢ ® ¢ € B(LP(R™)) for all 1 < p < o0.

(3) If (x)°u € L*(R™), |D|"u(z) has the following expansion as |z| — oo

me udx " (m— 1)a; R
iud. O mTh). 3.9
Tz Jr; |z /Rm zjudz + O(|z| ). (39)
Proof. (1) The smoothness property of ¢ is well known (see e.g. Corollary 2.6
of [2]). We have from (3.7 that

v
o(x) = —C’O/ Mﬂdy. (3.10)
rm [T — Y]
Taylor’s formula implies that
1 1 (m—mwy‘ (y)®
- - S C m r—y 2 1
PR T P A P w1

and ([B.8) follows. Statement (2) follows from (B.8). We omit the proof of (3)
which is similar to that of (3.9). O

3.1.1 ODD DIMENSIONAL CASES

The structure of singularities depends on m. For odd dimensions m > 3 we have
the following results (see, e.g. Theorem 2.12 of [33]). We state it separately
for m = 3 and m > 5. In the following Theorems and for odd m > 3
and Theorem B4 for even m > 6, we will indiscriminately write F(\) for the
operator valued function of A defined near A = 0 which, when inserted in (B.6))
for (1+Go(\)V)~!, produces the operator which is bounded in LP(R™) for all
1<p<oo

THE CASE m = 3. By virtue of (8.8]), we have for ¢ € A that

b(z) = @ L O(2]2) as |2 = 00, L() = —1/ V(@)d(a)de. (3.11)
x| 4 Jrs
Thus, £ = {¢ € N\ {0}: L(¢) = 0}(= &) and, as N > ¢ — L(¢) € C is
continuous, dimN /€ < 1. Any ¢ € N'\ € is called threshold resonance of H.
We say that H is of exceptional type of the first kind if £ = {0}, the second
if &€ = N and the third kind if {0} C & C N. We let Dy, Dy, ... be integral
operators defined by

1

/3 | =yl ruly)dy, j=0,1,....
R
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so that we have the formal Taylor expansion

1 ez —yl >
GoWu(e) = 3= [ T—rulu)dy = Y0y Dy
j=1

If H is of exceptional type of the third kind, —(V¢, ¢) defines inner product
on N and there is a unique real ¢ € A such that

—(Vip,90) =0, Voe&, —(Vi,¢p)=1and L(¢)) > 0. (3.12)
We define the canonical resonance by
o =1+ PVDVy eN. (3.13)

If H is of exceptional type of the first kind, then dim N = 1 and there is a
unique ¢ € N such that —(V,p) = 1 and L(¢) > 0 and we call this the
canonical resonance. We have the following result for m = 3 (see e.g. [33)]).

THEOREM 3.2. Let m = 3 and let V satisfy |V (z)| < C{x)~° for some § > 3.
Suppose that H is of exceptional type of the third kind and let ¢ be the canonical
resonance and a = 4mi|(V, )| 2. Then:

_ PV PVD3VPV a
(I +GoWV) ! = 5 +i———— =3l elV + EQ).  (3.14)

If H is of exceptional type of the first or the second kind, BI4) holds with
P =0 or ¢ = 0 respectively.

THE CASE m > 5. If m > 5, (B8) implies N' = €.

THEOREM 3.3. Let m > 5 be odd and |V (z)| < C<x>_6 for some 6 > m + 3.
Suppose H is of exceptional type. Then:

(1) If m =5 then, with ¢ = PV, V being considered as a function,

(T +GoV) ™ = S~ LU plV + BO), a0 =55 (319)
(2) If m> 7 then
(I + Go(W)V)~! = 1;—‘2/ + BV, (3.16)
Define S(A) = (I +Go(\)V)™" — E()) and
Z, = % /O T G VSN (Go(A) — Go(—A) F()ADA. (3.17)

Then, it follows from Theorems and B3l that Z — Z; € B(LP?(R™)) for all
1 < p < oo and we have only to study Z, in what follows.
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3.2 EVEN DIMENSIONAL CASE

When m is even, singular terms of (1 4+ Go(A\)V)~! may contain logarithmic
factors. The following is the improvement of Proposition 3.6 of [8]. We let
dim & = d and {¢1,...,dq} be the real orthonormal basis of £. For making the
expression simpler, we state the theorem for V(1 + Go(A\)V)~ L.

THEOREM 3.4. Let m > 6 be even. Suppose |V (x)| < C’(:c>75 for o >m+4 if
m =6 and for 6 > m+3 if m > 8. Let p = PV with V being considered as
a function. Then, we have the following statements for SA > 0 and log A such
that log A € R for A > 0:

(1) If m =6 then, we have that

VPV
= + B g Ve e V)

V(1+Go(\)V)! =2ty

2
+ (‘*E;”“;’J') A log? AV @ V) + A2 log \Fs + VE(), (3.18)
™

where Fy is an operator of rank at most 8 such that

8
F = Z Pa ®¢b, Pas wb € (Ll OLOO)(RG)' (319)

a,b=1

(2) If m > 8, then we have with a constant c,, that

P
V(1+Go\)V) ™t = % +em(Vp @ V)X Slog A+ VE()). (3.20)

(3) If m > 12, then ¢, (Vo @ Vip)A™ Slog\ of B.20) may be included in
VE(\).

Proof. We prove (1) only, using the notation of the proof of subsection 3.2.1 of
[8]. A slightly more careful look at the argument there shows that, in spite of
Eqn.(3.5) of [8], V(1 + Go(A)V) ™! is actually given by

VoV log A A2 log A A?log® A A

T + VDOl og + VD21 og + VDQQ og + VE( ) (321)
Here, with Fj; = F;i(0), Fjix()\) being defined by (3.16) of [8], and A(0) =
(27) Swy—1(1 ® 1), VDg; and V Dgy are rank 1 operators given by

Wm—1

(2m)°

VDo1 = VPV Ey PV = VPVA()VPV = Ve V), (3.22)

2
Wy,
VD = V(PVEn)*PV = V(PVAOVP)'V = Grgllel* (Ve ® Vo),
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where we have used PVQ = PV and VQP = VP and,

V Dy = VPV (Fy 4 FooPV Fo1 + Fo1 PV EFy) PV (3.23)
—VX(0)QDyVPVEy PV — VX(0)QA(0)V PV (3.24)
—~VPVFEPVQDVQX(0) — PVQA(0)VQX(0). (3.25)

It is obvious that the first line [B23]) is of rank at most 4 and of the form
> aju(Ve; @ Vey); four other operators are of rank one and of the form f® g
with f € (L' N L*)(R®). We check this for VX(0)QDyV PV Fy PV as a
prototype. We have Dy = D2 and DoV = —¢p. Thus, [3.22)) implies

VX(0)QDyVPVEy PV = —(21) %wnm_1(VX(0)QDoyp) ® (V).

Here Doy € C?(R®) and satisfies Dop<|.|C(z)”* by virtue of Lemma 11
Hence, a fortiori Doy € Cy(R®), the Banach space of continuous functions
which converge to 0 as |z| — oo. It is obvious that X = QCo(R®) C Cp(RS)
and X(0) = N71(0) = [Q(1 + DoV)Q]~ ! is an isomorphism of X. This is
because T = QDoV Q is compact both in X = QCy(R®) and Y = QL2 ,(R),
X NYis dense in Y and Kery(1 4+ T) = {0} (see e.g. Lemma 2. 11 of [9]).
Thus, VX (0)QDop(x)<,.| Clx) " O

It follows from Theorem B4 that Zu = Zsu+ Zjogu modulo the operator which
is bounded in LP? for all 1 < p < co and we need study
Zye = i/ Go(NV PV (Go(N) — Go(—N)F(MA"LdA, (3.26)
™ Jo
_ i [ 2j k
Ziog = Z ;/ Go(M)A7 (log N)*Dji(Go(A) — Go(—=A))F(MNAdA,  (3.27)
gk 70

for even m > 6, where the sum and Dj; are as in Theorem [3.4]

4 PROOF OF THEOREM [[.3]

The proof of Theorem [[3] for m = 3 is the simplest and is the prototype for
other dimensions and, most of the basic ideas already appear here.

4.1 THE CASE OF EXCEPTIONAL TYPE OF THE FIRST KIND

We begin with the case that H is of exceptional type of the first kind and, we

let ¢ be the canonical resonance, a = 47i|(V, ¢)| =2 # 0 and

v() =D (Vi)ta) = g [ gy, (a.1)

The following lemma proves Theorem when H is of exceptional type of the
first kind.
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LEMMA 4.1. (1) For 1 < p < 3, there exists a constant Cp, such that

1Zsullp < Copllullp, e CG°(RY).

(4.2)
(2) For 3 < p < oo, there exists a constant Cp, such that

1(Zs + ap @ V)ull, < Cyllull,, u € C5°(R?).
(3) For p >3, Zs is unbounded in LP(R3).

Proof. Recall ¢g = Cowa = 1. We have S()\) = —5[p){(¢|V and

Zu= -1 /0 T GV l(Go() — Go(— N FO)dA.  (44)

Defining M (r) = M(r,(Vp) * @), we substitute (2.2)) and (ZI7) respectively
for Go(A\) and (Vp|(Go(X) — Go(—A))u). Then,
N iAz—y]
Zu— (/ e V(y)e(y)
™ Jo R3

oWy ([ raar) pojin

If we change the order of integrations,

_ai [ Ko(lz —y)V(y)e(y)
Zsu = o7 | =] dy, (4.5)
Ko(p) !

=5 /0 h e E(N) ( /R e”)‘rM(r)dr) .

(4.6)
Since F*F € S(R), it follows by virtue of Lemmas [Z8 and 29 that
Ko(p) = {(F"F) « H(rM(r))}(p)<|.| CMH(rM)(p). (4.7)
Function Ky(p) may also be expressed as
i [ : '
Ko(p) = —/ e <F(/\)/ SW/\TM(T>d7’> dA. (4.8)
21p Jo R
and, after integration by parts, we see that K¢(p) satisfies also
Ko(p)<).| Co~ (MHG2M)(p) + MH(rM)(p)). (4.9)

The boundary term does not appear in 8] since [, rM(r)dr =0
(la) Let 3/2 < p < 3. By virtue of Young’s inequality

al(4m)t/P | Ko(p) P 1/p
1zl < PG vl ([T 12220

(4.10)
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We estimate Ko(p) by (@7T) and use that p>~? is an A, weight on R. Lemma
2.7 and Young’s inequality imply

( OO ’Ko—(m prdp) Up <C (/OOO IMH(TM)(p)I”pQ"’dp)l/p

1/p
<, (/ M(r 2dr> < ClVeruly < CollVeliluly  (411)

and || Zsullp < Cpl[Veoll2llullp.

1b) For 1 < p < 3, we use estimate and that p>~2P is an A, weight on R
p P g

and obtain that

(e _

<o ([T e w2 yar)" < cvel + Vel (412
0

depf < ( | I an + MH(rM))(pnpp“pdp) '

where we estimated the integral over 0 < r < 1 by using that

sup [M(r)| < [V * ulloo < [[Veollp |[ullp- (4.13)

Thus, we have || Zsull, < C([[Vellr + [Veollp)[Vell|ull, for 1 < p < 3/2.
Combining (1a) and (1b), we obtain [@2]) for 1 < p < 3 by interpolation([5])
(2) Let p > 3. Writing [, re " M(r)dr = i ([ e”" M (r)dr)" in @B), we
apply integration by parts and obtain yet another expression of Kq(p):

Ko(p) = ;—;/}RM(r)dr— ﬁ/ooo (e F(N) (/R ei”M(r)dr) dX. (4.14)

Denote the second term by Ro(p). By virtue of Lemmas 2.8 and 2.9
Rolp)<).| Clp+ DMH(M)(p). (4.15)

Substituting [@I4]) for Ko(p) in (IE) We obtain Z,u = Zyu+ Z;u, where Z;, and
Z; are operators produced by 5= L [ M(r)dr and Ko(p), respectively. Because

: /]RM(r)dr N 2_71r2 - (/R3 Wﬂ) u(y)dy = (Y,u)  (4.16)

™

by the definition ([I]), we have by using (BI0) for m = 3 that

Zyu(z) = #/}RM(r)dr./Rs VWeW) 4 a0 wlu. (4.17)

[z =yl
We splite the integral as

</ / )Ko lyl) ‘|/y9|0)($_y)dy:[1(x)+[2($)- (4.18)
lyl<t JJy|>1
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For estimating I, we use {IR) for p > 1: |Ko(p)] < CpMH(M)(p). Since

p? is an Ap-weight on R for p > 3, we have by using Young’s and Holder’s

inequalities and Lemma [2.7] that

1

1Ll < ClVelh ( / h |M’H(M)(p)|pp2dp) '

< Vel ( / |M<r>|Pr2dr) < OIVelllull, (1.19)

Holder’s inequality implies, with p’ = p/p — 1, that

L) <C ( /|| " dy> . ( / 1 |z%o<p>|pp2dp)1/p.

Since Ko(p)g‘ J CMH(M)(p) for 0 < p < 1 by virtue of [IH) and since p? is
an A,-weight, we obtain as in (£19) that

Ve)(z —y)

]

( / 1 |f€o<p>|pp2dp)1/p <c ( I |MH<M><p>|pp2dp)1/p < Cllull,. (4.20)

It follows by virtue of Minkowski’s inequality that

I < Claly | [
ly|<1

because 1 < p’ < 3/2 < 3 < p < co. Thus,

V)= —y)

p/ 1/p
M dy) < CllullplVell,  (4.21)

p

Ko(lz — y)V(y)ey)
R3 |z — y

With (£I7) this proves [@3).

(3) Since [ps Vpda # 0, Lemma B implies that ¢ ¢ LP(R?) for 1 < p < 3 and
that ¢ € LP(R3)* if and only if p > 3. Hence, ¢ ®1 is unbounded in LP(R3) for
any 1 < p < co. Thus, statement (2) implies that Z, is unbounded in LP(R3)
for p > 3. This completes the proof of the lemma. O

dy

< C(IVelly + [Vel)llullp-
p

We review here the basic strategy of this subsection as it will be repeatedly
employed in the following (sub)sections. We express Z u as the convolution
5] of Vi and Ko(p) of [@0). By applying integration by parts if necessary
we represent and estimate Ko(p) as in (@71), (£9) or (@IF) by using MH.
These estimates are used for proving

([ ot )" <: .
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via the weighted inequality for % <p<3 l<p< % and p > 3 respectively.
Desired estimates are then obtained by combining ([4.22)) and Young’s inequal-
ity. However, the boundary term appears in the integration by parts for large
values of p > 3 which obstructs the LP-boundedness. We represent the ob-
struction explicitly in terms of functions of A and show that LP-boundedness
depends on the properties of functions in A/. Suitable modifications, improve-
ments and additional arguments will be of course necessary in what follows.

4.2 'THE CASES OF THE SECOND AND THIRD KINDS

Let H be of exceptional type of the second kind. Then,

PV PVD;VPV
A2 A ’
where Dj is the integral operator with kernel |z — y|?/4m. We take the real

orthonormal basis {¢1,...,d,} of & and define ajr, = 7= (¢;|VD3V|¢y) € R.
We have (V,¢;) =0, 1 < j < n. Substituting [@23)) for S(A) in BIT), we have

S() = (4.23)

Zsu = Zgou + Zg1u = i Zs0,jkU + i Z,j, (4.24)
k=1 j=1
Zuagu=ia [~ GoVoVa(GolN) ~ Gal-N))F(NIA,  (4.2)
Zaju="= [T GOV aNVEIGN) - G- NFN T (420)
LEMMA 4.2. For any 1 < p < oo, there exists a constant C, such that
1Zsoullp < Cpllullp, € C5°(R?). (4.27)

Proof. The operator Zsg ji is equal to Zs of [@4) with two ¢ € N’s being
replaced by ¢; and ¢ € £ and a by —mwaji. Thus, the proof of Lemma [£.]
implies that Zso jx € B(LP(R?)) for 1 < p < 3 and that

Zgo,jk — Tajrd; @ |D|7H(Vey) € B(LP(R?)), p>3. (4.28)

Here ¢; @ |D|~!(V ¢%) is bounded in LP(R?) for p > 3 because ¢; € LP(R?) and
|D|=1(V¢y) € (LP(R3))* by virtue of (B8] and [B3). Thus Zso jx € B(LP(R?))
for 3 < p and, hence, for 1 < p < oo by interpolation. This proves the
lemma. O

LEMMA 4.3. (1) Let 1 <p < 3. Then, for a constant C,, we have
|Zasully < Cyllully,  u € CF*(R?). (4.29)
(2) Let 3 <p < oo. Then, for a constant Cp, we have
1(Zs1 + Plully < Cllully, u € C5°(R?). (4.30)
In @30) P may be replaced by P © Py by virtue of Lemma 311
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(3) The operator Zg is bounded in LP(R3) for some p > 3 if and only if
E = &1. In this case Zs is bounded in LP(R3) for all 1 < p < co.

Proof. Define ¢;(z) = |D|7'(V$;)(x), j =1,...,n. Then Lemma 23] implies

Zagu== [ GV aGI(GoN) ~ Go- NI (431

which can be obtained from Z;u of [@4) by replacing a by —1, the first Vi
by V¢, and the second by ;. Thus, it may be expressed by using Ko ;(p) of
(@0) with M (r) being replaced by M;(r) = M(r,; = 4):

1 [ Ko,(jz— :
’ 27 Jps |z — y

(1) The argument of (1a) in the proof of Lemma .1 implies
1Zs1,5ullp < ClIIV;llillvs *ullp,  3/2<p<3 (4.33)
(see (@) and the one of (1b) does
1Zs1.5ullp < CIVO;l1 (s *ullp + 1 ¥ ulle), 1<p<3/2  (4.34)

(see (@I2)). Since [V¢;dx =0, (B9) implies that ¢; = |D|"'¢; € LY(R?) for
all 1 < ¢ < oo and that the convolution operator with ;(z) is bounded in L?
for any 1 < p < oo via Calderén-Zygmund theory (see e.g. [26], pp. 30-36).
Thus, [[; * ully < Cllull, 5 * ullae < lsllylully and Zous i bounded in

LP(R3) forall 1 <p<3,j=1,...,n. Statement (1) follows.
(2) Integration by parts as in ([@I4) by using the identity [, e rM;(r)dr =
i ([ e~ AM;(r)dr)" implies that Ko j(p) may be written as

_% M, (r)dr — - / M F(A ( / —iMMj(r)dr) A\, (4.35)

which we insert into (@32). Since |D|~1¢; = (—=A)"1(V;) = —¢;, @EIE) with
¥, € € in place of Vi produces —(¢;|u). It follows that the boundary term of

#38) produces
-1 [ V()

A Jgs Isc*yl

vz [ o) =-loioly @30)

as in (@I7). Denote by Ko;(p) and Zs ; the second term of [@3H) and the
operator it produces via ([£32). They can respectively be obtained from Ko (p)
of (EI4) and Z; of @IR) by replacing M (r) and Ko(p) by M;(r) and Ko j(p).
Thus, the argument of step (2) of the proof of Lemma [£1] (£19) and (Z2])) in
particular, implies that

1Zs1,5ully < CUVSsllp + Vs ll)lles  ullp, 3 <p < oo (4.37)
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Zs1,ju

The Calderén-Zygmund theory with ([B3) once more implies ‘

Cllu|lp- Since ¢ ® ¢ € B(LP) for all 1 < p < oo if ¢ € & by virtue of
(B3], this together with ([@30]) proves statement (2).

(3) Tt is obvious from (1) and (2) that Zs € B(LP(R?)) for all 1 < p < oo if
& = &;. Suppose then that Zg; € B(LP(R?)) for some p > 3 then P © P; must
be bounded in L?(R?) by virtue of (2). Take the orthonormal basis {¢1, ..., ¢4}
of £ & and {p1,...,pa} C C5(R?) such that {(p;,dx)} becomes the unit
matrix. Then, (P& P1)p; = ¢, j = 1,...,n and, if P & P; is bounded in
LP(R?) for some p > 3, there must exist a constant C' > 0 such that

] <
p

|(u, 05)| = [((P © Pr)u, pj)| < Cjllullp, for all u € C5°(R?).
Then, ¢; has to be in LP' (R3) for p’ < 3/2 for all j = 1,...,n. This implies

¢; = 0 by virtue of B8). Thus, £ = & must hold. This completes the
proof. O

Lemma and Lemma prove Theorem [[.3] when H is of exceptional type
of the second kind. The following lemma completes the proof of Theorem

LEMMA 4.4. Suppose that H is of exceptional type of the third kind. Then:
(1) W is bounded in LP(R3) for all 1 < p < 3.
(2) W +ap @ (|D|=V ) + P is bounded in LP(R3) for all p > 3.
(3) W is unbounded in LP(R3) for any p >3 and p = 1.

Proof. The combination of Lemmas 1] and [L3] proves statements (1) and
(2). Suppose that W is bounded in LP(R?) for some 3 < p < oo. Then, so is
a(p® (|D]71V¢)) + P. Let 1 € N be the function which defines the canonical
resonance ¢ by (BI3) and which satisfies (3.12)). Then,

(Vih,ap @ (ID|7'V))u + Pu) = —a(|D|"'Vp,u), e C5*(RY)
and this must be extended to a bounded functional of u € LP(R3). Hence,

|ID|='V¢ € LIY(R3) for ¢ = (p — 1)/p < 3/2. This contradicts (3.8) because
Jgs V(@)@(x)dx # 0 and (3) is proved. O

5 PROOF OF THEOREMS [I.4] AND FOR ODD m

If m > 5, then N = £ and we let {¢1,...,pq} be the real orthonormal basis of
. Theorem B3 implies that, with ag = i/(247?),

ATZPV —ap) e @ V), ifm=>5,

S = { A-2PV, i m > T, (5-1)
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Note that ¢ # 0 if and only if £; # €. We substitute (5.1)) for S(\) in BI1) and
apply (2.2) and [2.I7) as previously. Let Cj,cx, 1 < j,k < 5= 3 respectively
be constants of (Z2]) and (ZIT). Then, we have

Zsu = Zso’u + Zslu, (52)

where Zy9 = 0 for m > 7 and, for m = 5, with M (r) = M (r,Vp x @)

Zsou = —2iag Z J'HCkc Zsou (5.3)
7,k=0,1
: 1
Zifuta) = [ PO RO (o - )y, (5.4)
RS |9U |
. 1 o . . .
K§M (p) = o /0 e NI ( /]R e—WrJ“M(r)dr) F(\)dA, (5.5)

and Zsiu is defined for all m > 5 by

d
Zau=Y_Za(d)u (5.6)

=1

where, for ¢ € £, with M(r) = M (r,V¢ x @),
=20 3 (~1)7Ches Z5(9), (5.7)
k=0
. Ve _

Zt i) = [ R KOS (o~ gl 5.9

K(]’k)(p) — %/O e \ITh—1 </R e_ZMrJ'HM(T)dT) F(N)dA. (5.9)

Note that Zggu and Kéj’k) (p) are obtained from Z/Fu and K U%)(p) by changing
¢ by ¢ and MTF~1 by M+r in (59).
We shall prove the last statements of (2) and (3) of Theorems[[4] and [[L5] only
for Zs1(¢) since the proof of Lemma (3) can easily be adapted for proving
the same statements for Z.
5.1 ESTIMATE OF Zg FOR m =5
We begin by proving the following lemma for Zsg, assuming ¢ # 0.
LEMMA 5.1. (1) Zso is bounded in LP(R5) for 1 < p < 5.

(2) Zso + aol@)(|D|7H (V)| is bounded in LP(R®) for 5/2 < p < oo.

(3) Zso is not bounded in LP(R®) if p > 5.
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Proof. For ¢ = PV, we have [,;Vpdz = |[l¢[|> > 0 and, by virtue of
@3) and @), ¢ @ |D|"1(Vy) € B(LP(R®)) if and only if 5/3 < p < 5.
Hence, statement (3) follows (2). Using that e = (ip)~(*TD 95 1A and

Je N e M (r)dr = i ([ e A" M (r)dr) (j), we apply integration by parts
to (BH) and write Kéj’k) (p) in two ways

k kL e , . (e+1)
K(]’ )(p) / e <)\J+kF()\)/ e“\TrJJrlM(T)dT) d\
R

2mpk+1
g (5.10)
_ (=i)? [ oA \I+k (4) =L M (P dre
=5 /0 (e NTFF(N)) (/R M (r)d ) dx.  (5.11)

Note that boundary terms do not appear in (5.I0) since [, M (r)dr = 0 and,
if K = 1, we may apply further integration by parts to (G.11I]) without having
boundary term and

i)jﬂ

K9 = S [T entpon) 0 ([ o) o 612

We then apply Lemmas 2.8 and [Z9 to the right sides and obtain the following
estimates for j, k =0, 1:

k+1
- Cp~ "IN MH M) (p), (5.13)
K§(p)<). Zo:
C(1+ p ™Y MH(F M) (p). (5.14)

(a) Let 1 < p < 5/4. Since |r|~4P=1 is an A, weight on R and 3p — 4 > —1,
we have by using (513)) and @I3)) that, for any j, k=0, 1,

Jk) (I k+1 j++1 1/p
yl) X MH (M) (p) P
H ly|3—F H <CZ pilp—1) dp

1
Pdr e ®
<o [ gt / M) < OVl + Vel lul,
(5.15)
Young’s inequality then implies || ZZ%ull, < CIVels (IVely + IVl lully
(b) We next show that || Z7jull, < C|lull, for p > 5 and j = 0, 1. Interpolating

this with the result of (a), we then have the same for all 1 < p < co. We split
the integral as in (£I8) and repeat the argument after it:

Izl < € </ ) ) Wel@ Z 9| g )y = 1(2) + Laa).

ly[?
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For p > 1, we have Kéj’l)(p)§|‘|CpQM’H(M(r))(p) by virtue of (5I4) and
since r* is A, weight on R if p > 5. It follows that

(3,1)
| B

2]l < ClIVelh <C|Velh </ |MH(M)(p)|pp4dp>
0

Lr(|z|>1)
o 4 1/p 2
<OVl ( | e dr) < OIVelllull, (5.16)

Holder’s inequality and (514 for 0 < p < 1, Kéj’l)(p)g‘ ) CMH(M)(p), imply

|11<x>|sc</y§ ) (/ IMH(M <p>|Pp4dp);

Since p’ < % if p > 5, Minkowski’s inequality and (G.16) imply

Ve(z —y)
Iyl2

Il < CIVellVellplullp- (5.17)

(c) We finally prove —2iagCo(c1 2L — coZ%) + aolp)(| D]~ (V)| € B(LP(R®))
for p > 5/2. This will complete the proof of the lemma because this and
(b) imply statement (2) by virtue of (B.3); since |p)(|D|~1(Vp)| is bounded
in LP(R%) for 5/3 < p < 5 as remarked previously, this also implies
—2iagCo(c1 Z1—co ZQ) € B(LP(R)) for 5/3 < p < 5 and, hence, for 1 <p <5
by virtue of result (a) and interpolation. Then, (b) yields statement (1). If
k = 0, further integration by parts to (&I produces boundary term:

K§V ) = S [

n —T/oo (e xi F(x) VT (/R eWM(r)dr) dx.  (5.18)

0

The second integral, which we denote by f(éj ’O)(p), satisfies
E§(p)<). CA+ P YMHM) (p) < C(1+ p ) MH(M)(p)  (5.19)

and we estimate the operator Z7° obtained by replacing K7” (p) by K{” (p)
in (54) by repeating the argument of step (b): Split Z/%u(x) as in step (b)
and obtain ||z, < C|lull, for 5/2 < p < 5 (resp. p > 5) by using the
first (resp. second) estimate of (5I9) and that r*=7 (resp. r?) is an Ap,-
weight on R. Likewise we obtain ||I1]], < Cllu|, for 5/2 < p < 5 (resp.
p > 5) by first applying Holder’s inequality by considering the integrand as
(Vo = )l/1y?) - (K5 (1w)1/ly) (resp. [Vee(x —)|/lyf* - 1K™ (Jy])]) and
then using Minkowski’s inequality. Thus, we have for j = 0,1 that

||Zj0u||p < Clullp, 5/2<p < occ. (5.20)

DOCUMENTA MATHEMATICA 21 (2016) 391-443



REMARKS ON LP-BOUNDEDNESS OF WAVE OPERATORS FOR ... 417

The contribution of boundary terms of (B.18) to CoK(()OO) - clK((,IO) is given by

virtue of (23) and [B.3) by

. 1 C 2 . —1
(c1 — ico) ¥ %/RM(T)dr = W—Z_/RM(r)dr = —47%Coi(|D| V), u)

and this contributes to 2a¢iCy(coZ% — c1Z L) u(z) by

872ayC2 / V*”(;L dy - (|DI" (Vo) u)) = —ap(@){| D (Vo). u),

R5 |SC*

where we used 8m2Cy = 1 when m = 5. This proves the lemma. O

5.2 ESTIMATES OF Zg; FOR m > 5.

We next study Zsyu for all m > 7. By virtue of (5.6) and (571) and the remark
at the beginning of section 5, it suffices to study Z{f (¢)u defined by (B8] for
¢ € &. For simplifying notation, we often omit ¢ from fo (¢). Define

M, (r) = M(r,|D|"* (V) * 10). (5.21)

Then, by virtue of Z3), KU*)(p) may also be expressed as
_ 1 [ o
KU (p) = o / e NTRE()) ( / eWrJHM*(r)dr) d\ (5.22)
T Jo R

which has the larger factor A¥*7 than A*+7=1 of (5.0). We omit the proof of
the following lemma which is essentially the same as that of (&.13] B.14)

LeEMMA 5.2. KU*)(p) satisfies the following estimates:

Cp~F1 % MHEFETHM (p),  §>2. (5.23)
C(1+ pjl‘:f)MH(TQM)(p), j>1. (5.24)
KOD()< | O(1 + ) MH (M) (p), ktj>1. (5.25)
C(1+ p"THMH(M)(p), k> 2. (5.26)
C(1 4 pYMH(rM.)(p), k> 0. (5.27)

LEMMA 5.3. Suppose m > 5 and ¢ € £. Then:
(1) Ifj > 2, Z{f(qﬁ), k=0,...,252 are bounded in LP(R™) for 1 <p < Z.

(2) Fork>2, Zi%(¢), j=0,..., m=2

5 3 are bounded in LP(R™) for T <p.

(3) For all j and k, ZI¥(¢) is bounded in LP(R™) for T <p<F.
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If both j, k > 2, fo(gb) s bounded in LP(Rm) for all 1 < p < oo.

Proof. (a) We first prove (1) for 1 < p < —5. General case follows from this

and (3) by interpolation. We use (5.23)) and that r=(m=DE=1) s an A, weight
on R for 1 < p < 5. Then, estimating as in (5.15), we obtain

o) 1 1/p
1Z5ully < CIVélh (/ | M (r)[Pr™ = dr +/ | @' rm‘ldr)
0 0 T(m* )P

< CIIVlL Vel + IVl (5.28)

(b) We next prove (2) for p > m. General case then follows from this and (3)
by interpolation. We split the integral as in (£IX):

|V¢ vl (4,k) _
o ([ ) St iy = o + 1o

Using (5.26) for p > 1 and that r™~! is A, weight on R if p > m, we obtain

1

||12||pscnv¢||1( / |MH<M><p)|Ppm-1dp>p < CIVollul,  (5.29)

Holder’s inequality and ([.20) for 0 < p <1 imply that

|11<x>|s</ly|<l ' ) </ MA(M |pm1dp>1/p.

(5.30)
Then, Minkowski’s inequality and the estimate as in (5.29]) yield

Vd)(:c—
ez

/ 1/p'
|Volb da
11l < ClIVollxllullp </| > 7|$|(m_§_k)p, < CIVollllVelplully
xr|<

(m=2-k)p" ig integrable over |y| < 1. Thus,

because p’ < 1 if p > m and |y~
statement (2) for p > m follows.

(c¢) We prove statement (3) by modifying the argument in step (b). Let 2+ <
p < %. Then, r™~ =% is an A, weight on R. We split the integral of Z3%u(x)
as in step (b).

(i) Let j > 1. Estimate (5:24]) for p > 1 and Lemma [Z71] yield

1

2]l < ClV el (/0 IMH(T2M)(p)I”pm‘1‘2”dp> < CIVelilully.

(5.31)
Estimate (5.24) for p < 1 and Hélder’s inequality imply

()| < ( /

p’ # 1 i
dy) (/ IMH(TQM)(p)I”pm‘l_Q”dp)
0
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Minkowski’s inequality and the second estimate of (B.3I) imply [, <
ClIVlplIV el |, as previously and, hence, || ZZull, < Cfull.
(b) Let j = 0. Express K% (p) by using M(r) of (ZI5) and estimate as

KR (p) = = /0 iy < /R eWM(r)dr) F(N)dAS|.| CMH(M)(p).

291
(5.32)
Since p~(m=2-k) < p=2 for p > 1, Young’s inequality, Lemma 27 and Hardy’s
inequality yield

o~ 1/p
1Ll < CIVelh ( / VT () P2 dT)
0
o ) 1/p
< C|IVelh (/O [ M (r)[Pr™™ dr) <CVelillVolpluly  (5.33)

Holder’s inequality and (2.32) imply

1)) < </ g ) </ IMA(T) ()P~ 2pdp>1/p

Estimate the second factor by (B.33) and use Minkowski’s equality. This yields
I1llp < CIVOlpllVolillullp. The last statement follows from (1) and (2) by
interpolation. O

Vol —y)|
|ly|m—4- k

LEMMA 5.4. Let m >5 and ¢ € €. Then:
(1) For1<p<2, (cZ" = e 24P ll, < Cllull, for all 0 < k < ms3.
(2) The operator Zsl((,b) is bounded in LP(R™) for 1 <p < .

Proof. Tt suffices to prove the estimate of (1) for 1 < p < -5 since that for

1 < p < F follows from this and Lemma [5.3] (3) by interpolation and since
statement (2) follows from this and statement (1) of Lemma Using the
identity e = (ip)*k*18§+1eZAp, we apply integration by parts k 4 1 times to

the integral of (5.32]) and use the identity (2.16). We obtain
&
0.k ¢ 2
KO9(p) = 5 (k!/Rr M (r)dr

k+1
+Z<k—}—1>/0 eiAp(AkF)(k-‘rl—l)/Re—Mr(ir)lMdrd/\>. (5.34)

=0

Integration by parts k 4 1 times to K (%) (p) of (59) likewise yields

-k
K k)(p) ﬁ <—k!/R7“2M(r)dr

kt1 k+1 o )
—Z( | ) / e (AR F)FHIED / e—W(—z‘r)lr2MdrdA>. (5.35)
1=0 0 R

DOCUMENTA MATHEMATICA 21 (2016) 391-443



420 K. YAaJimA

Since ¢g — ic; = 0, the boundary terms of (5.34) and (535) cancel out and

1, k+1
KO (p) — et KW (p) _— C i(MH(rlM)(P)+MH(7“Z+2M)(/)))-

=0

pm—2—k = o1

For 1 < p < =%, p~(m=D®=Y j5 an A,-weight on R. It follows by Young’s
inequality, Lemma 27 and Hardy’s inequality that ||(coZ®*) —¢; Z0F) )|, is
bounded by C||V |1 times

k+1 1/p

> < / Oo(|M(T)|prl + |M(r)|prp<l+2>)rm1p<m1>dr) (5.36)
1=0 0
1 o] 1/p
<C </0 L%EQL? rm Ly Jr/o |M(7’)|p7’7”1d7") (5.37)
< C(Vely + 1Velp)llullp- (5.38)

Here we used k +3 < m — 1 for m > 5 in the first step and p(m — 1) < m in
the last. This proves the estimate of (1) for 1 < p < 5. O

Lemma [B.J] and the second statement of Lemma [5.4] prove statement (1) of
Theorems [[.4] and for odd m. The following lemma (and Lemma [5.1] for
the case m = 5) proves statement (2) of these theorems for odd m.

LEMMA 5.5. Let m > 5, ¢ € £ and ' < p <m. Then, for a constant C > 0,

D (52)
Zs1(¢)u + m(%@qﬁ ) < Cllullp. (5.39)

If Z1(¢) € B(LP) for some 2 < p <m, then ¢ € & and Zs1(p) € B(LP) for
alll <p<m.

Proof. Let j+k > 1. Since m —2 — (k4 j) > 1, we have from (5.20]) that

KUk (p) ( 1 1)
—— < C + — | MH(rM)(p).
pm—2—Fk [ pn—2-k T,

Using that r™~177 is A, weight and (m—2)p’ < m for m/2 < p < m, we repeat

the argument of the step (b) or (c¢) of the proof of Lemma 53] and obtain
1ZIully < Cllullp, j+k>1. (5.40)

It remains to consider —2iCocoZ%, see (5.7). We apply integration by parts
to the right of (5.22) with j =k = 0:

K©9(p) = i/ e F(\)0y (/R e“’“M*(r)dr) d\
0

7

— [ M.(r)dr — i /0 Oo(e“pF(/\))’ < /}R ei)‘TM*(r)dr> d\.  (5.41)

:27TR
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We denote the second integral of (54T) by K" (p) and, by Z% the operator
produced by substituting K0 (p) for K9 (p) in ([58). We have |K,EO’O) (p)| <
C(1 + p)MH(M.)(p). Decompose

K00
SR </|y|<1 /|y|>1> Vol )|| ly |m(|2| |dy_I () + La(=)

as previously. For estimating || I2||,, define 1/¢ = 1/p—1/m and apply Young’s
inequality, Holder’s inequality, Lemma 7] noticing that ¢ > m and »™ ! is
A, weight and, Hardy-Littlewood-Soblev inequality recalling that |D|~!(V ¢) x
()< Cla)' ™. We obtain

1/q 1

ly[m=3

11211, < ClIVelh </O |MH(M*)(p)|qpm—1dp)

< CIVolLllIDI= (V) + tlly < CIVIL DI (V) _x

Lm(ly[>1)

(5.42)

For I (x), Holder’s inequality implies
Vo) —y)

¢ 1/¢ 1/q
[L(x) < © </|y|s1 g2 dy) </y§1 IMH(M*)(IyI)quy> :

The second factor on the right is bounded by C|[|D|~"(V§)||_m_ |lul/, as in

T

(542) and ¢’ < %7 < & < p. It follows by Minkowski’s inequality that

1/q
dy
1]y < CIV@llpllullp / R TC < CIVollpllullp-
lyl<1 |

Thus, we have || Z2%/, < C|lul|, for & < p < m. The boundary term of (5.41)
is, by virtue of (B7) and that ¢y = ( —2)71 equal to

= DO 1 e
o M (r)dr T W 1/m (/m | —y|m™1 dy) (z)d
7ZF (%) -2 (%)
= Zorpay [, P V@ = . (549

Inserting this into the right of (L8] for j = k = 0, we see the contribution of
the boundary term to Zs(¢)u is given by

2c0Col (%) Vo) . I (252)
VT (251) /R Pk Ay eresy SRl

This proves the first statement. If Z,; € B(L?) for some & < p < m, (&.39)
implies ¢ ® ¢ € B(LP) for this p. Then, [B.8) implies that ¢ must satisfy
(¢,V) =0and ¢ ® ¢ € B(LP) for all 5 < p <m. Then, Z;; € B(L?) must
be satisfied for all F < p < m and, hence, for all 1 < p < m by Lemma 5.4
and interpolation. O
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We finally study Zi5(¢) in LP(R™) for p > m. If Z15(¢) € B(LP(R™)) for
some p > m, then Lemma implies ¢ € &. Thus, assume ¢ € & in the
following lemma. The following lemma proves statements (3) of Theorem [L4]
and Theorem [L.5] for odd m > 7.

LEMMA 5.6. Let m > 5 be odd, p >m and ¢ € &. Then:
(1) For a constant Cp > 0, || Zs1(d)u + |@)(d))ullp < C|lullp.

(2) If Z15(¢9) is bounded in LP(R™) for some p > m, then ¢ € . In this
case Z1s s bounded in LP(R™) for all 1 < p < co.

Proof. Considering that [, ri*te™ "M, (r)dr = 7+ ([, e 7" M, (r)dr) (jJrl),
we apply integration by parts to (5.22]). Then, for k > 1, we have
(fi)jﬂ

KU (p) = —
™

/ (et p(a)) Y ( / ei)‘TM*(r)dr> A\ (5.44)
0 R
and, if k¥ = 0, additional boundary term which is given by virtue of (5.43)) by

(—iy 1yt (i () o mes
T/RM*(TW_W@,U), =0, 20 (545

Denote the right of (5.24) by K79 (p) when k = 0. Then,

KGR (p)
pm—2—k

m—3
2

<.C (1+ )MH(M*)(p), 0<ik< (5.46)

pm—2

and the same for K79 (p). We split Z7¥u as previously:

2% () = VoK (e —yl) 1oy 4 1),
Huw) </+/> y= D) + B()

|z —y[m—2h

We estimate I>(z) by using (5.486]) for p > 1, that p™~! is A, weight for p > m,
B8) for ¢ € & and the Calderén-Zygmund theory. This yields

1/p

2], < Vel (/1 |MH(M*)(p)|ppm1dp)
< VI IDI™ (V) * ully < CIVAl fully (5.47)

Holder’s inequality and (48] for p < 1 imply

o 1/p’ 1/p
|11<x>|sc(/|y|§ dy> (/y§|MH<M*><|y|>|de> .

DOCUMENTA MATHEMATICA 21 (2016) 391-443

(Vo) (z —y)
ly[m—2




REMARKS ON LP-BOUNDEDNESS OF WAVE OPERATORS FOR ... 423

The second factor on the right is bounded by C|lu||, as in (541). Since p’ <
—5 <m < p, it follows by Minkowski’s inequality that

1/p’
dy
1], < CIVPlpllullp / D < CIVellpllullp.
i<t [yl

Thus, Zﬁf € B(LP(R™)) for p > m if k > 1 and the same for the operator zZ7
produced by KU (p). The contribution of boundary terms (5.45) to Zs(¢) is
given by using the constants C; of (Z2) by

- " Vo)) |\ i (2)
21 jgo CoCy(=1) wy, (/]Rd = ?J|m_2dy> AT (1) (P, u)

m—3
2 .
~ ~ (m—3—j)!
= _Dm|¢> <¢’ u)a Dy, = . —3 pre— -~ (548)
jz::o 2m=3=7 (mEE) (g2 — )t
The constant Dm can be elementarily computed and with n = mng

~ 1 2n —k 1 (n+4k
D= s (nk) -y ( : ) Y
k=0 k=0
(see also page 167 of [12].) This proves statement (1). We omit the proof of
(2) which is similar to the corresponding statement of Lemma O
Since Zgu =Y ; Zs1(¢;) for the orthonormal basis of £, the combination of

lemmas in this section proves Theorems [[.4] and for odd m.

6 PROOF OF THEOREM FOR EVEN m > 6

For proving Theorem for even dimensions m > 6 we need study Z, and
Ziog of (3.20) and B27). Since Ziog may be studied in a way similar to but
simpler than that for Z,, we shall be mostly concentrated on Z5 and only briefly
comment on Zj,, at the end of the section. As in odd dimensions we take the
real orthonormal basis {¢1,..., ¢4} of £ and define, for ¢ € &,

2@ =1 [ GV IGo) - Go(-N)FA A (61)
Then, we have

d
Zsu = Z ZS(¢j)U
j=1

and we study Zs(¢) for ¢ € £. In this section we choose and fix a ¢ € &
arbitrarily and write M (r) = M (r, V¢ * @).
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We wish to apply the argument for odd dimensions also to even dimensions as
much as possible and, we express Zs(¢) as a superposition of operators which
are of the same form as those studied in odd dimensions except scaling. We
set v = (m — 2)/2. Define for a > 0

M(r) = M(r/(1 + 2a)) (6.2)

and, for 5,k =0,...,v and a,b > 0,

a —1 g+l
le}b(P) = 271'( )

W /O Aj+kflei)\(1+2b)Pf(Tj+lMa)(A)F(A)dA. (63)

As in (522), we may express Q?,’vb(p) by using M.,(r) and increase the factor

NHE=1 of [63) to M HF:
(_1)j+1

Qi () = 5 2077 /0 N HEAAE F (IO (AF (A, (6.4)

When j = 0, we also use M(r) of (ZIH) to express g}cb(p) as follows:

() = S aar . e / T XA ER () FNAL (65)

LEMMA 6.1. Let Q?,;b(p) be defined by [63), @) or [GH). Then,

/ (Vo) (@ —1)Q% (Iyl)

2 = (@) (b
Zy(d)u(z) = T S rr® = dy} . (6.6)
m=L 5 k=0

Proof. We apply 2I]) for (V¢,(Go(A) — Go(—A))u) and 26) for Go(A) in
(61). We see that Zs(¢)u(z) is the integral with respect to A € (0, 00) of

i & (@)m®) (71)j+1/\j+k71 eiA(1+20)]y| e
P 3 [, (s Vo) 76 o] 7oy
7,k=0

Integrating with respect to A first yields (G.6)). O

We define, for 0 < 5,k < v and a,b > 0, that

24 @)ula) = =TT (22 (0)ula)] ©.)
; Vo)(z — @b
Zif“b(sb)u(w)/m( ¢)(|y|m£?,§’“(|y|)dy. (6.8)

Lemma [6.1] implies Zs(¢)u = Y. Z7%(¢)u. In what follows we often write Z/*u
and Zfb respectively for Z7%(¢)u and Zfb(qﬁ).
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6.1 ESTIMATE OF | Z/*ul|, FOR (j, k) # (v,v).

We estimate Z7% for the case (j, k) # (v, v) first, postponing the case (j, k) =
(v,v) to the next subsection. As we shall see, the argument used for odd
dimensions applies to Z7* if (4, k) # (v, ) modulo superpositions and scalings.

LEMMA 6.2. With suitable constants C' > 0, followings are majorants of Q?,;b(p)
for 0 < k,j < v which satisfy the attached conditions respectively:

{MHE M) (A + 2b)p)

1 c T i k> (6.9)
2) CMH(](T{C:Z(Q%; 2b)o) if j=0. (6.10)
I o e MR ETED 6.1)
(4) C’MH( (iz\fggg 2)p) {14200 " 41}, if 1<j.  (6.12)
(5) MH((ﬁa;gjj‘Q 200 (o 4197 + 1), forall gk (6.13)

Proof. Define ®;,(\) = N TE=LF(X). If j + &k > 1, @, € C°(R) and Lemma
implies Q?,’vb(p) = (—1)7(1 4 2a) " U {(F® 1) * H(rH M) (1 +2b)p).
Then, [6.9) follows by applying ([2.24]). Likewise we have ([G.I0) from (G.5]). If
J = 2, we apply integration by parts k+1 times to ([6.3) using that e (1+20)r —
(i(1 + 2b)p) = F+D GEFLeird(1420)p then, without boundary terms,

k+1 i k+1
ot (=1)i+1 1 k+1
ij (P) - ; 271'(1 + 2a)j+2 <—’L'(1 —+ Qb)p) ( ! >

% / ei)\(1+25)p(bjk()\)(k‘i’l*l)]:((_i)lrj‘i’l‘i’l Ma)()\)d)\ (614)
0

and (G.IT)) follows as previously. If j > 1, we may apply integration by parts
to (63) by using that F(riT1 M) (\) = i7" H{F(r2M*)(A\)}=D. Then

Q%b( - i /oo (/\j+k—1F(>\>ei>\(1+2b)p)(jfl) ]:(7,2Ma>(>\)
e PP= ) 2 (1 + 2a)i+2

and (612]) follows. Apply another integration by parts in (G.13). No boundary
term appears as F(rM*)(0) = 0, and we obtain (613). O

dx  (6.15)

6.1.1 ESTIMATE FOR 1 <p < -y
Define for 0 <o <m —1and 1 <p < "5

1/p

Ng’b(u)(/OOO|MH(T‘7M“)((1+2b)p)|ppm1p(m1)dp) . (6.16)
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LEMMA 6.3. For any = < q < o0, we have
y 115 <4q ,

142b)" 7%
A aeE Vel + Vel 617

N&t <C

Proof. Change variable p by (1 + 2b)~!p first. Since p™~17P(m=1) is an A,-
weight,

oo 1/p
e T I
0

_1-m

1426175 > 1/r
0(1( *2 )3”_1_&_0_ </ |M(r)|prm1p(m1")dr> . (6.18)
+ 2a P 0

Denote by I the integral on (GI8). Let kK = m — 1 — 0. If K = 0, then
I<C|Voxu|p <CIVo|il|lullp, and @I follows. Let 0 < k < m — 1. Split
I into integral over 0 < r» < 1 and r > 1 and use r™~17P* < ™~ for p > 1.
Then, we have I < C(|[e]*(V £ w)(@)]| (et <n) + IVl [ull). Take &’ such
that k < k¥’ < m and apply Holder’s and Young’s inequalities for the integral

over |z| < 1. We obtain with ¢ = —"— € [H%,oo} that

1< Ol ™1y oy ey IVl + VOl (619)
This completes the proof. O
LEMMA 6.4. Suppose 1 < p < 5. Then, for 2 < j <v and 0 <k < v such

that (4,k) # (v,v),
1Z7%ull, < Cllullp, e CEoR™). (6.20)

Proof. Minkowski’s and Young’s inequality imply

2%, < 202 Vol - 70T ([lePomagt] | e

We apply (6.11)) to estimate Q?kb(|x|) Then, since o = j+1+1<m—1 for
(4, k) # (v,v), Lemma [6.3] implies

[E

] < CO(1+2a)F~mFD(1 4 20)™ 2 F K|y, (6.22)
p
We plug this to [@2I) and use m —k — 1 > j 4+ 2. Then,

127%ully < Conge Ty T (14 20) 508D (L4 20)™ 25 ] ],

< Olull /°° (1+2a)5~0"2 da /°° (142" 2% % ap
u e e — |.
=Cle\ Jy araen va )\l Tarnen v

Counting powers show that the integrals are finite and the lemma follows. O
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As in odd dimensions we use the cancellation in

2% + 72y
=2 [ B @ Qs + T )y (623
and obtain the following lemma.
LEMMA 6.5. For 1 <p < ™5, there exists a constant C' > 0 such that
(2" + Z(l’k))qu <Clully, k=0,...,v. (6.24)

Proof. We apply integration by parts k 4+ 1 times to (6.5) and (63) as in the
proof of (GI1]). This produces

-k I -k k+1
ab, \_ —CER(FMY)(O)wm-1 i wm 1
k+17. 21 ra 1 k41
ap T KRFEEMY)(O)wma wm 1
(6.26)
where QOk ,(p) and Q‘f}ﬁl(p) are given and estimated as follows:
wb () = /°° PN PN) D (F((—ir) M)
Ok! 0 (14 2a)2(1 + 2b)k+1pktl
MH(r' M) (1 + 2b)p))
ST 202 (4 20)F R (6.27)
Qa,b ( ) _ (7Z'>l /oo eiA(1+2b)p()\kF(/\))(kJrlfl)]:(TQHMa)(/\))d}\
1k,1 o (1 + 2a)3(1 + Qb)k-i-lpk-i-l
M) (1 + 2
MU (1 + 20)0) 625)

<) (1 + 2a)3(L 4 20)F+1ph+1-
Eqn. (ZI6) shows F(M®)(0) = F(r2M*)(0) = (1 + 2a) 8 5 M (r)dr and
TVl = Ty”[(1 +20)] = (m—3)~!

It follows that the sum of the superposition via To(a) of the boundary term of
625) and that via T of (B26) vanishes:

i* k! o . .
A 20 (/0 T2M(r)dr) (T\90] — TSV[(1 + 2a)]) = 0. (6.29)
For 1 <p < 2y, pm—1=P(m=1) jg an A, weight on R and we have the identity:

Mea(r) = /m sM®(s)ds = (1 + 2a)>M((1 + 2a)~'r). (6.30)
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Then, Lemma 27, ([@30), change of variable and Hardy’s inequality imply

C(l +2b)m_1_% oo o N p
= (14 2a)2(1 + 2b)k+1 /0 |rt Me(r)|Pyrm—t=p(m=1) g

m—('m—l—l) 0o 1/p
< C(Vil +2i;1)( k—2) (/ |M(7’)|p7"mlp(mgl)d7") . (6.31)
+2b)» VT 0

0kz(|$|)
|:L-|m k—2

The integral is similar to the integral which appeared in ([@I8) and we remark
m —3—12>0 for m > 6. Thus, applying ([G.I9) with 0 = + 2, we obtain

(1+2a)7—(m k—2)
(1+2b)?7(m7k72)

6.31) < Vol +[Vellz)llully, 0<I<k+1. (6.32)
Counting the powers of a and b, we thus have from ([6.32) that
7@ T® [H| 2 onle ] <Clull,. 0<I<k+1. (6.33)

Entirely similarly, starting from (G.28]), we obtain

a,b m—1—2 o) 1/p
Qlk,l(|z|) < C(1 +2b) v |7°2'HM“(7“)|p7“m_1_p(m_1)d7”
a2 | = 200+ 20T Uy

_ C(1+2a) —(m—k-1)
(1+2b)?7(m7k72)

Vol + Vol z)llully, 0<T<k+1. (6.34)

The extra decaying factor (1 + 2a)~! of ([6.34) compared to ([6.32) cancels the
extra increasing factor (1 + a) of T\*) compared to T,") and we have

T(a)T(b) [H| |k+2 mQOkl |1.|)H ] <Cllullp, 0<I<k+1. (6.35)
p

In view of ([6.23), (6.25), [6.20) and (6.29), ([€33) and (6.35) with the help of

Young’s and Minkowski’s inequalities imply the lemma.

m m
6.1.2 ESTIMATE FOR T <p<F

The following lemma together with Lemma [6.4] and Lemma [6.5] will prove that
> (k) #(v) Z7F is bounded in LP(R™) for 1 <p < %

LEMMA 6.6. Let 3 < p < F. Then, for (j,k) # (v,v),
1Z7%ull, < Cpllull, (6.36)

for a constant C), > 0 independent of u € CF°(R™).
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Proof. Except the superposition the proof is virtually the repetition of that of

statement (2) of Lemma 53]
1) Let j > 1 first. Since p™ 1727 is A, weight for Z < p < Z, we have
p p Weig 3 2

( / h |{MH<7~2M“)}(pnw-l-%dp)5 <C 4203 |Volhllul,.  (6.37)

Splitting the integral of (6.8]) we define

(Vo) (z — Q% (Iyl)
/y " /|y|> )
(6.38)

y[m—2—Fk
For I (x), we estimate |y|~(™~%=2) < |y|=(™=2) for |y| < 1 and apply Hélder’s

inequality. Then
p 1/p
/ dy
ly| <55t

201
Minkowski’s inequality implies that the first factor on the right is bounded by
CV|l,(142b)™ """+ and % —(m—4) > 1. For the second factor, we apply

E12) for (14 2b)p < 1 and then ([E31). We obtain

dy = I (z) + I(z).

Z;l;bu(x) = (

1 1
‘ < 1+2b 1+2b

1/p'

QL (lyl)

L, <
|| ||P |y|2

/ (Vo) (z —y)|P dy
ly|<

S

p/p’

1—m

11llp < O +2a)% 7721+ 26) % [V [l1 [Vl ull- (6.39)
By Youngs inequality |1 all, < CI[Voll o>~ ™ Q522 L 1r (1 2njers1)- For
the second factor, we use ([GI2) for (1 4+ 2b)p > 1 and, after changing the
variables p — (1 +2b)~!p, we estimate p~ (" —2=F=0G=1) < p=2 for p > 1 (here
we used (j, k) # (v,v)) and apply (637) once more. Then,

1

(14 2p)m27k=% /°° ) I v
< _ a p. . m D
[12]l, < Cl[Vll 0t 272 : HMH (M)} ()P p dp
< C(1+2a)7 7214 20)™ 25 |Vo|2 | ul- (6.40)

Since m —2 —k > 1 and (1 + 2a)7 7721 + 2b)™27*% is summable by
77", G39) and G0) imply

127 ull, < CIVSIL VSl + IVl lull. (6.41)
(2) When j = 0, we apply the argument in the proof in (1) for estimating Qg,’:’
but by using (610) in stead of (612). Then, by the help of ([G.30) and Hardy’s

inequality, it leads to estimates ([G39) and (640) and, hence, to the desired
(638) for Z%%. This completes the proof of the lemma. O
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6.1.3 ESTIMATE FOR m/2 < p < m AND FOR p > m.

We now estimate Z7*, (j, k) # (v,v), in LP(R™) for % < p < m and for p > m.
As in odd dimensions, Z° will not in general be bounded in LP(R™) when

T < p < m and likewise for all Z% k=0,...,2=2 when p > m. Elementary

2
computations using

1 /°°
—k —zt k—1
= — e #t" TN dt, Rz>0, k>0
L'(k) Jo

and the formula (23] for Cy, jwm—1 we obtain the following lemma.

LEMMA 6.7.
(1) We have Tj(a)[l] =(m-=3-=j)/(m-2).
(2) Fork>1andj=0,---,v, Tj(a)[(l +2a)7*] is given by

(—i)j2m71F(2V 7] + k) v 0o (1'2 . 1>k71
i ()| et 0

LEMMA 6.8. Let 5 <p<m and ¢ € E. Then:
(1) If (,k) # (0,0) or (j,k) # (v,v), Z7* is bounded in LP(R™):

1Z7ullp < Cllullp, w e C5°(R™) (6.43)

(2) There exists a constant C > 0 such that for uw € C§°(R™), we have

2% + Dunlé) (6, < Cllull (6.44)
2T (B) [T 2y

If Z°9(@) is bounded in LP(R™) for some T <p<mthen ¢ € &. In
this case Z°(¢) is bounded in LP(R™) for all % < p < m.

Proof. (1) Split ngvbu(:n) as in (638) and apply the argument thereafter to
I(z) and Iz(z) by using the estimate (GI3). Since m —2 — (k+ j) > 1 and
p™ 1P is an A, weight for 2t < p < m, we have, as in (G.40),

(14 2p)m"27k=%
(1t 207> % IV ol3lullp- (6.46)

2], < C

For dealing with I;(x), we estimate |y|~(m=27%) < |y|™=2 for |y| < 1 as
previously but now decompose |y|~("~2) = |y|~(m=3) . |y|~!, remarking that
(m —3)p’ <m and p/p’ > 1. Then, we obtain as in ([6.39) that

(1+2a)» 972

Il < = VoIVl (6.47)
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Summing up (6.46) and (6.47) by Tj(a)T,gb), we obtain (G.43).
et 7 =k = 0. We apply integration by parts to .
2) L k=0. W ly integration b

a,b _ —i < iA(142b)p a\/
50 = g | QLY () ()

= L MS(T) r ¢ - ei)\(l 2b)p\/ a
o Je (1 +2a)2d + (1 +2a)2/0 (F'(A) TN F(ME) (NN (6.48)

Denote the second term on (6.48)) by Q8b(p) and by Z% the operator produced
by inserting Q2%(p) for Q& (p) in ([6.7). We have

MH(ML)((1 + 2b)p)
(1 + 2a)?

W<, C (1+ (1 +2b)p). (6.49)

Let 5 < p < m. We split as in (6.38) and estimate I, first:

o Vo) =)0 1W) 5 _ 1 )+ 1ot
Zu(x)—</|y +/> dy = 1(x) + Ip(x).

|<T12b 1+26 |y|m72
We obtain
1 2b mi?i% H(M*
Il < OVl SE 77 | MAALE) ()
(14 2a) | Lo(yl>1)
1 + 2b mi?i% 1 oo - %
< Vel Ve | s ([ rzern—tar)
(1 + 20:) |y| Lm(jy|>1) 0
m—2—12
= CHVME(Ej)g)? DI (V)| g ol (6.50)

where we used Young’s inequality, (649) for (1 + 2b)p > 1 and the change
of variable (1 4+ 2b)p to p in the first step, Holder’s inequality considering
p~t = m™! + ¢! and that 1 is an A, weight ¢ = mp/(m — p) > m in the
second and finally weak-Young’s inequality. For I, we apply Holder’s and

Minkowski’s inequalities and ([G.50) and obtain

1
q ra
L, <C / ay
ly| <15
p

1/q
X (1+25)7% (14 20) ( / B |MH<M$>(|y|>|Qdy>

<O +20)7 7 (1+20)7 2[VOlpllIDI T (V) oollullp (6.51)

m—1"

Vo)(z—y)
ly|™=2

Summing ([@50) and B5L) by T,V T, we obtain || Z©Ou|, < C|lull,.
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By virtue of (3I0) and (5.43)), the contribution to Z%u of the boundary term
of ([6.48) is given by

20 (@) (b) (Vo)y)dy i
oy 010 [/Rmm'%r 1+2a }
:fﬁTéw[(um I Hfr (3)1)<¢,U>¢>- (6:52)

By using Lemma and Cowpm—1 = (m — 2)71 we can simplify ([E52) to
—Dp (¢, uyp with D, given by ([@4H) and ([€.44) follows. The last statement
follows as in the odd dimensional case, see the remark after Lemma O

Finally in this section we study Z7*(¢)u for (j,k) # (v,v) in LP(R™) when
p > m, assuming ¢ € & by the same reason as in odd dimensions. We define

Dpj =27 (?) ﬁrr((%m)T—l) /100 (;;Eil)iild:c, j=0,...,v. (653

LEMMA 6.9. Let m > 6 be even and p > m. Suppose that ¢ € &. Then:
(1) For (j, k) such that k # 0 and (j,k) # (v,v), Z7* is bounded in LP(R™).

(2) There exists a constant C' > 0 such that
1Z27° 4 Djm (¢, w)ollp < Cllullp, j=0,...,v. (6.54)
(3) If Z3%(¢) is bounded in LP(R™) for some 0 < j < v and some m <

p < 00, then ¢ € E. In this case, Z1°(¢) is bounded in LP(R™) for all
l<p<ooand0<j<v.

Proof. We apply integration by parts j + 1 times to (6.4):

aby [ (SE)TTINTRE)eA TG F (M) (M)}
(1) If £ > 1, then no boundary terms appear and we have
C M2)((1+2b . )
Qa b( )S\ | MH( * )(( + )p){(l + 2b)]+1p]+1 + 1} (656)

(14 2a)i+2

Observing that m—2— (k+j+1) > 0 for (j, k) # (v,v), that 7™~ is A, weight
on R for p > m and that (m — 2 — k)p’ < m, we apply the argument used for
proving ([@50) and (@X5]) in the proof of the previous lemma and obtain

Cl[Vll(1+20)" > * %
(14 2a)T27%

1

C(1L+2b)" % |[Vll, dy " ipt

R =l ¥ = B [ VORI
T+2b

I1DI7 (V) % ull,

1 Zastllp <
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Since [(V¢)(z)dz =0, |||D|"*(V¢)*ull, < C|lu||, for any 1 < p < oo by virtue
of 39) and the Calderén-Zygmund theory. It follows that

. a) (b ke
| 27", < Tj( )T,g )HZ;,bqu < Cllullp

for k > 1 and (j, k) # (v,v) and statement (1) is proved.
(2) If k = 0, then, j+1 times integration by parts in ([6.55) produces the integral
and boundary terms. The integral is bounded by (6.50]) and the repetition of the
argument in step (1) implies that its contribution to Z7° is the operator which
is bounded in LP(R™) for all p > m. The boundary term may be expressed as
follows by using (5:43) once more,
Py a1 m

_ et / My (r)dr = L T(3)
2r(1+ 2a)7+1 Jp (1+2a)H1 T (L)

(¢, u), (6.58)

and its contribution Z7% may be computed as follows:

L2 ppw [ [ VO)dy < i+ 151 )} r(m)
om0 [/]R ey (@ 2apT )| T vr O
= 2ij+2j!Tj(“)[(1 + 2a)" U] r(3)

where we used Cowy,—1 = To(b) 1] = (m —2)"! and 622) with k = j + 1 for
Tj(a) [(1+2a)~U+D)]. This proves statement (2). We omit the proof of statement
(3) which is similar to the corresponding part of the previous lemma. O

LEMMA 6.10. Define Dy = Y7_o D j. Then, Dy, = 1.
Proof. Use binomial formula for [@.53]). We have

I‘ m oo Z.m—2
mugl2 ) / 2 —1 dx
r(z)y o )i (@24+10)m

D,, =2m

Change of variable + — 27! shows that the integral is equal to the same
integral over the interval 0 < =z < 1. It follows after making the change of
variable x2 =t that the integral is equal to

1 /°° vob T ()
4 Jo (t+1)m=17" " 22T (m — 1)

Thus, Dy, = 2720 (2) T (21) T(m —1)"1n—2 = 1. O

-

In the next two sections we prove that Z*” and Zj,s are bounded in LP(R™)
for all 1 < p < oo. These will complete the proof of Theorem [[L5l
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6.2 ESTIMATE OF || Z""ul|, FOR 1 < p < o0

In this section we prove
127y < Cllullye 1< p < oo, (6.59)

The method of previous subsection does not apply for proving this and we
exploit more direct method. By virtue of interpolation, it suffices to prove
(EX29) for arbitrarily small p > 1 and large p > m.

2(m 1)

6.2.1 THE CASE FOR 1 <p < = =

We first show (659) for 1 < p < Q(nT—Jr_ll) After changing the variable r to

(14 2a)r in ([G3), we write Q%(p)/p” in the form

(—1+!
2mpv

/ ei(1+2b)p/\/\m73F(>\> (/ ei(1+2‘1)7")‘r’/+1M(7’>d7’> d\.  (6.60)
0 R

Integration by parts implies that (6.60) is equal to

v+1 oo .
. 11(+ ;b - / ez(1+2b)p/\(/\m—3F(/\))/ </ e—l(1+2a)r)\ru+1M(r)dr> d\
™ v R

(
(=1)"*1(1 + 2a) /OO (14+2b)pA ym—3 / —i(1
[ A3 (N i(1+2a)r u+2Md d\.
+—27T(1+2b) T, e N Re T r

The first line becomes i(1 + 2b)~ QV(V (P p)/p™ 2= =1 if we replace (m —
3)F(A\) + AF'(A\) by F(\) and the former function can play the same role as
the latter does in the argument of previous sections and, v —1 > 1 if m > 6.
Thus, if we substutute it for Q%(p)/p” in ([G.8) for (j,k) = (v,v) and, then the
resulting function for Z% (¢)u(z) in (@.1), it produces the operator which has
the same LP property as Z¥(*~1 which is bounded in LP(R™) for 1 < p < oc.
Hence, we need study only the operator produced by the second line. Once
again we substitute it for Q%2(p)/p” in B3) and the result for Z1%(¢)u(z) in
(©70). We denote the functiotn thus obtain by Z”u(z), abusing notation. We
want to show that this Z""u(r) satisfies (6.59) for 1 < p < 5. Integrating
with respect to a, b first via Fubini’s theorem shows

2u(o) = === [ (Vo) =) Xullyis (6.61)

Wm—1

203,“1 m— Rl . > (1 2b —1,2iXpb db
X, (p) = =t 1/ {e“ﬂxn?’ </ (o —>
prt 0 0 (L+b)r+2 Vb

X /Re—i” (/OOO %%) T”+2M(7’)dr} F(\)dA. (6.62)
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Let x+(r) =1 for £r > 0 and x+(r) = 0 for £r < 0. Define, for ¢ > 0,

& a v—3 . da
_ 142 (1 tia 40 6.63
o) = [ (1+5) (14 5) e (6.63)
1
> b\ b\ """z . db
h(t) = 1+ - 1 +ib 6.64
o= [ (1+3) (1+3) = oo
and, with C = innyl,wm_l, write X, (p) as follows:
c U2 — %
X"(p>:pu+g R(L+(p,7’)+L7(pﬂ’))T |r[~= M (r)dr, (6.65)
Ly(p,r) = x(r) / eNPmTINT ARy (Ap) g (ErA) F(A)dA. (6.66)
0

LEMMA 6.11. Suppose that f is C> on [0,00) and satisfies |f9)(c)| <
C’jcf(jJrl) forc>1,7=0,1,.... Define

(at) = /OOO eiicf(c/t)%.

Then, £1(t) is C™ for t > 0 and satisfies the following properties.
(1) £4(1/t) can be exteded to a C™ function on [0, 1], hence, limy_yo0 €4 () =
a4 exists and fort > 1, |€(jg)(t)| <CitITh g =12,
(2) Foro<t<1, |01 <CVE<C;, j=0,1,....

Proof. We prove the lemma for ¢ (¢) only and omit the +-sign. It is evident
that £(t) is C* for t > 0. Splitting the interval, we define

</ / > —ﬁl( ) + £a(2).

It is obvious that ¢1(1/t) is of C°°[0, 1]. To see the same for ¢2(1/t), we perform
integration by parts n times for ¢t > 0:

- o (140 o

i"la(1/t) = By (t) + (—1 "/ oy (— e'“dc. 6.67

2(1/t) ) +(=1) . e (6.67)

The boundary term B, (¢) is a polynomial of order n and Leibniz’ formula im-

plies 97 (f\(/cf)) > im0 Crj fD (ct)(ct)i e 2™, Since o (f9) (y)y?) is bounded
for any j,k=0,1,... and

chgf(]) ct)(ct)lc™ 3 ZC"J 85 (y)y?) cmETnEk

=ct
Jj=0 Y
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the integral of ([G.67) is a function of class C"~1(]0, 1]). Since n is arbitray, this
proves (1). For proving (2), after changing the variable we decompose:

i ([ [7) s = Vi + )

We obseve that / satisfies the property (2) and that, if a(t) satisfies (2) and
[t76U)(t)| < €y, then so does v(t) = a(t)B(t). Hence, vl (t) satisfies (2)
because ¢; () is entire. To prove the same for v/t(f5(t), it suffices to show that
|(t"05(t))™]| < C,, for 0 < t < 1, n = 0,1,2,.... By integration by parts we
have

(it)"Ea(t) = / m(al’e“c)f(c)%

) T;(mmag (52) el [ et tyoae

The boundary term is a polynomial of ¢ and the integral is n times continuously
differentiable and a fortiori ("fo(t))(™ < C for 0 < t < 1. O

We define Ly ,(p,r) for an integer o > 0 and functions g+ and h by

Loolpr) = xs) [P0 R Mg (EF N (608

so that we have Ly (p,7) = Ly m—a(p,7) (see (6.60)).

LEMMA 6.12. Suppose that g+(t) and hy(t) are C*° functions of t > 0 and
they satisfy following properties replacing f:

(a) The limit lim;_, o f(t) exists.

o =1 1<t j=12,...
i £ <. ’ ’ o
(b) |t7 f (t)I_OJ{@ O<t<l, j=01,....°

Then, Ly , is C° with respect to p > 0 and r > 0 and, for a constant C > 0,
Lo (psr)| < C{p—r)~(HD (6.69)

Proof. We prove the lemma for Ly ,. The proof for L_ , is similar. It is
obvious that Ly ,(p,r) is smooth and is bounded for p,r > 0 and, it suffices
to prove (6.69) for |[p — r| > 1. We apply integration by parts o + 1 times to

(i)

Lyo(pr) = | (571620 0) xhe (o () F O

(p—r)tt Jo

By Leibniz’ rule, derivatives (A hy (Ap)g_ (rA)F (X)) are linear combinations
over indices (8,7,d) such that k —o < S +~v+ 6 < k of

\o—HK+d ()\p)Bh(ﬂ) ()\p)(r)\)”g(j) (r)\)F(‘S) ()\) (6-70)
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and they converge to 0 as A — 0 if k < o. It follows that (p—7) Ly ,(p,7) is
the linear combination over the same set of (53,~, d) as above but with k = o+1
of

Tns(pr) = [ 000 ) () g (A FD ()
0

It suffices to show that Ig,s(p,r) is bounded. If § # 0, F(®)(\) = 0 outside
0 <co<A<c <ooand it is clear that Ig,s(p,7)<|.| C. Thus, we assume
0 = 0 in what follows. We may also assume 0 < r < p < oo by symmetry.
We split the interval of integration as (0,00) = (0,1/p) U [1/p,1/r]U (1/r, o0)
and denote integrals over these intervals by I;, I3 and I3 in this order so that
IB,Y(;(p,T) =1 + 1+ I3.

(1) If 0 < A < 1/p then 0 < 7A < pA < 1 and (pA)?hP(pA)<|.| Cy/pX and

(T)\)"’g(j)(r/\)g .1 CVr. Tt follows that

1/p
n<. c | yprax= c\/f <C (6.71)
0 P

(2) f 1/p < X < 1/r, we have 0 < rA < 1 < pX and we estimate as
(PA)PRB)(pA)<, .| C and (r)\)"yg(_'”(r)\)g .1 CVrA. Tt follows that

yr 1 1
L<. C’/ A" 2rd\ = 20 (——) <2C. 6.72
25| » NN (6.72)

(3) Finally if 1 < rA < pA, then we likewise estimate

(rA)~1, ifB=0,v#0
AP RP Ap)(rA) gD (N <) O (o) if #0, v=0,
(PN i By #0.

The right hand side is bounded by Cr=!A=! and
Igch/ ATl =C
1/r

This completes the proof. o

2(m—1)

=i we have

PROPOSITION 6.13. Let m > 6 and ¢ € £. For1 <p<
127" ully < Cpllully- (6.73)

Proof. We recall (6.61]). Lemma implies Ly (p,r)<|. | C{p —r)=(m=3) Tt
follows by Young’s inequality and (6.65]) that

oo m—1_ m+1 | m+1 ( )l p %
p P 2 |r—=2 M(r
Z%ul|, < C||Vé / / dr| dp| . (6.74
127" ull, < C |I1< ; (R T (6.74)
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Deﬁnefi:E—mTH,theHKZOforlgpgmandm—S—mZéfor
m+1 2

any 1 < p < oo if m > 6. Thus, we may estimate
3
p—r)"2 if |r|<1
oy < o W 7
(o= H it | =1

and Young’s inequality implies

1 o0 %
||zwu|pg0||v¢||1</ |TL2+1M(T)|PdT+/ |rmp1M(r)|Pd7’> ,
0 1

which is bounded by C([|V ¢ ullo +[Vo*ullp) < (VO +[[Vll1)llullp. This
completes the proof of the proposition. O

6.2.2 THE case 22=D < p < oo

LEMMA 6.14. Let m > 6 and ¢ € €. Then, Z""(¢) is bounded in LP(R™) for
any 2(;?—:31) <p<oo.

Proof. we apply integration by parts to (G.G0) by using the identity that

Jp e AF2 AN (1) dr = (1 + 2a) 710N (g e‘i(1+2“)T’\7"’M(7‘)dr)/. We see
that p=7Q%>(p) is equal to

_1\v+1 oo )
( 1) ))/ ez(1+2b)pk()\m—3F(A))/ (/ e—z(1+2a)rkTVM(r)dr) d\
0 R

27p¥ (i(1 4 2a
/ ei(1+2b)pk)\m—3F(A) (/ €_i(1+2a)r>\7"VM(T)dT) d\
0 R

(—1)1(1 + 25)
2mp? (1 4 2a)

The argument similar to the one at the beginning of the proof of Proposition
[6.I3Ishows that the operator produced by the first line has the same L property
as Z=D¥ and, hence, is bounded in LP(R™) for any 1 < p < co. Thus, we
need consider the operator produced by the second line, which we substitute
for Q%%(p)/p” in (6.8)) and the resulting function for Z()u(z) in @1). The
result is given by (G.61]) where X, (p) is replaced by

Xo(p) = pyc,l /OOO {e“ﬂAmS (/OOO %%)
e ([ e

which can be simplified into the form (6.65), (G.66) with the roles of g and
h being replaced and the factors p_(”"’%) and r”+2|r|_% being replaced by
pf(l’*%) and r"|r|’% respectively. Then, Lemmas and [G.12] imply

c v — L
XV(P)§||pV7% /R<p77’>3 |T| |7’| ZM(T)dT.
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We estimate || X, (|y])]|zo(yi=1) for p > 222D and X, (|y)| o<1y Let
/i:mT’l—u—i—%. Ifp> %,thenmSOandm—i’)—i—ﬁZ%formZGand

forp>1

1

PElp =) < Clo— ) TE) T < Clp— 1) TR

N
dp)

<C (/O IM(r)Iprmldr) ’ < C|Ve|illullp-  (6.76)

It follows by Young’s inequality that for any 2 < p < oo,

||XV<|y|>||Lp<|y|>1>gc( / / (o — )~ 37 M(r)dr

When p < 1, we have p™~1=#+3 < 1 and (p —r)3~™ < C(r)3~™. Hence,
X (YDl L (yi<1) < C/R<7“>3_m|7“|"_7|M(7“)|d7“ < Cl[M|loo < ClIV Ol |ullp-

We therefore obtain by using Young’s inequality again after splitting the inte-
gral corresponding to (6.61) into the ones over |y| < 1 and |y| > 1 that

12 ullp < CUVIT + IV EllpIIV Sl ull,-

This completes the proof. O

6.3 ESTIMATE OF || Zjogt|p

In this section we study Ziog and prove the following lemma. The combination
of the lemma with results of the previous subsections proves Theorem for
even dimensions m > 6, the formal proof of which will be omitted.

LEMMA 6.15. (1) If m = 6, then Ziog is bounded in LP(R™) for all 1 <p <
m. If € =&y, then so is Ziog for all 1 < p < oo.

(2) If m > 8, then Ziog is bounded in LP(R™) for all 1 < p < co.

Proof. We prove the lemma for m = 6 only. The proof for m > 8 is similar and
easier. Out of three operators on the right of B.27) for m = 6, we first study

Z1log = /OOO Go( M) (Ve @ Vp)Alog A(Go(A) — Go(—=A))F(N)dA, (6.77)

where we have ignored the constant wy,—1/7(27)™ which is not important.
Since Z110g = 0, if £ = &, it suffices to prove (1) for 1 < p < ™5 and

F < p < m. By using ([28) and (2I8) as previously, we express Z1 1o as the
sum over 0 < j, k < v of

. Volx — a,b
7k (@) = CuT T / (Vo) | |y>§ﬂ;1og(|y|>
, i e

dy|, (6.78)
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where Q%P (p) are defined by (B3) or [BH) (for the case j = 0) by replacing

] Jk,log )
N1 or AF respectively by MTE+1 log A or \¥+2log A. We prove

ik
||Z{,log

ullp < Cllullp (6.79)

separately for (j,k) # (v,v) and (j,k) = (v,v) by repeating the argument in
corresponding subsections.

Let (j,k) # (v,v). We first observe that, if j > 1, Fourier inverse transforms
of the derivatives upto the order k + 1 of MT*+1(log \)F have the RDIM

Fr N log VF) D) (p)<). C(L + p)2(log(L +p)), 0<I<k+1

and estimates corresponding to (G.IT]) and (6.27]) are satisfied by Q?/}blog(ﬁ') re-
spectively for 1 < j < v and for j = 0 (without producing the boundary term).
Then, the argument in §6.1.1] goes through for Zf’iog and produces estimate

@73) for 1 < p < Z"5. By the same reason the estimate corresponding (€.13])
for m/2 < p < m is satisfied by Q?,’flog(p) for all j,k and we likewise have
©79) for m/2 < p < m by using the argument of the first part of proof of
Lemmal[6.8 It is then obvious that the same holds for Z; j,, which is obtained

from Z1 10¢ by replacing Alog A by A3(log A) and, that the operator
2458 = [ ol © )X log NA(GolN) ~ Go(-A)F A (650)

produced by A2 log AF, of (B.I8) satisfies (6.79) for all 1 < p < m.

We next prove (6.179) when (j,k) = (v,v). It suffices prove it for 1 < p < pg
for some py > 1 and p > p; for some p; > 2. The argument at the beginnings
of §6.2.1] and §6.2.2] shows that respectively for 1 < p < pg and p > p1, we have
only to estimate operators obtained by replacing Q?,’:jlog (p) by

1+ 2a % i(1420)px ym—1 (/ —i(14+2a)rA v+2 )
_ ¢ AT log AF(A ¢ WrAPYTEMdr | dA
(1+2b)pv+! /0 ‘ BAF() - ' '

and

1+2 > )
+ b — / ez(1+2b)p)\)\m—1 10g )\F()\) (/ e—z(1+2a)r>\7,,1/+2Md7,,) d\
(1+2a)p"~" Jo R

in (678). We then repeat the argument of §6.21 We have A™~2log \ in place
of A™~% in (666). If we change A\° by A\°"2log\ in the definition (G.68) of
Li(p,r), then (669) is satisfied with faster decaying factor (p — r)=(?2) in
place of {p —r)~(e+1) . Thus, [ Zisgullp is bounded C|[V |1 times [E74) with
(p—r)~m=2) in place of (p—7r)~("=3) and this proves the lemma for 1 < p < py.
The proof for p > p; is similar and we omit further details. o
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