
Documenta Math. 555

On Zeta Elements for Gm

David Burns, Masato Kurihara, and Takamichi Sano

Received: November 18, 2015

Communicated by Otmar Venjakob

Abstract. In this paper, we present a unifying approach to the gen-
eral theory of abelian Stark conjectures. To do so we define natural
notions of ‘zeta element’, of ‘Weil-étale cohomology complexes’ and
of ‘integral Selmer groups’ for the multiplicative group Gm over finite
abelian extensions of number fields. We then conjecture a precise con-
nection between zeta elements and Weil-étale cohomology complexes,
we show this conjecture is equivalent to a special case of the equi-
variant Tamagawa number conjecture and we give an unconditional
proof of the analogous statement for global function fields. We also
show that the conjecture entails much detailed information about the
arithmetic properties of generalized Stark elements including a new
family of integral congruence relations between Rubin-Stark elements
(that refines recent conjectures of Mazur and Rubin and of the third
author) and explicit formulas in terms of these elements for the higher
Fitting ideals of the integral Selmer groups of Gm, thereby obtaining a
clear and very general approach to the theory of abelian Stark conjec-
tures. As first applications of this approach, we derive, amongst other
things, a proof of (a refinement of) a conjecture of Darmon concerning
cyclotomic units, a proof of (a refinement of) Gross’s ‘Conjecture for
Tori’ in the case that the base field is Q, explicit conjectural formulas
for both annihilating elements and, in certain cases, the higher Fit-
ting ideals (and hence explicit structures) of ideal class groups and a
strong refinement of many previous results concerning abelian Stark
conjectures.
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1. Introduction

The study of the special values of zeta functions and, more generally, of L-
functions is a central theme in number theory that has a long tradition stretch-
ing back to Dirichlet and Kummer in the nineteenth century. In particular,
much work has been done concerning the arithmetic properties of the special
values of L-functions and their incarnations in appropriate arithmetic coho-
mology groups, or ‘zeta elements’ as they are commonly known.
The aim of our project is to systematically study the fine arithmetic prop-
erties of such zeta elements and thereby to obtain both generalizations and
refinements of a wide range of well-known results and conjectures in the area.
In this first article we shall concentrate, for primarily pedagogical reasons, on
the classical and very concrete case of the L-functions that are attached to the
multiplicative group Gm over a finite abelian extension K/k of global fields. In
subsequent articles we will then investigate the key Iwasawa-theoretic aspects
of our approach (see [9]) and also explain how the conjectures and results
presented here naturally extend both to the case of Galois extensions that are
not abelian and to the case of the zeta elements that are associated (in general
conjecturally) to a wide class of motives over number fields.
The main results of the present article are given below as Theorems 1.1, 1.5
and 1.10. In the rest of this introduction we state these results and also discuss
a selection of interesting consequences.
To do this we fix a finite abelian extension of global fields K/k with Galois
group G = Gal(K/k).
We then fix a finite non-empty set of places S of k containing both the set
Sram(K/k) of places which ramify in K/k and the set S∞(k) of archimedean
places (if any).
Lastly we fix an auxiliary finite non-empty set of places T of k which is disjoint
from S and such that the group O×K,S,T of S-units of K that are endowed with

a trivialization at each place of K above a place in T is Z-torsion-free (for the
precise definition of O×K,S,T , see §1.7).

1.1. The leading term conjecture and Rubin-Stark elements. As a
first step we shall define a canonical ‘T -modified Weil-étale cohomology’ com-
plex for Gm and then formulate (as Conjecture 3.6) a precise ‘leading term
conjecture’ LTC(K/k) for the extension K/k. This conjecture predicts that
the canonical zeta element zK/k,S,T interpolating the leading terms at s = 0 of
the (S-truncated T -modified) L-functions Lk,S,T (χ, s) generates the determi-
nant module over G of the T -modified Weil-étale cohomology complex for Gm
over K.
The main result of the first author in [5] implies that LTC(K/k) is valid if k is
a global function field.
In the number field case our formulation of LTC(K/k) is motivated by the
‘Tamagawa Number Conjecture’ formulated by Bloch and Kato in [1] and by
the ‘generalized Iwasawa main conjecture’ studied by Kato in [24] and [25]. In
particular, we shall show that for extensions K/k of number fields LTC(K/k)
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is equivalent to the relevant special case of the ‘equivariant Tamagawa number
conjecture’ formulated in the article [7] of Flach and the first author. Taken
in conjunction with previous work of several authors, this fact implies that
LTC(K/k) is also unconditionally valid for several important families of number
fields.
We assume now that S contains a subset V = {v1, . . . , vr} of places which split
completely in K. In this context, one can use the values at s = 0 of the r-th
derivatives of S-truncated T -modified L-functions to define a canonical element

ǫVK/k,S,T

in the exterior power module
∧r

Z[G]O
×
K,S,T ⊗ R (for the precise definition see

§5.1).
As a natural generalization of a classical conjecture of Stark (dealing with the
case r = 1) Rubin conjectured in [45] that the elements ǫVK/k,S,T should always

satisfy certain precise integrality conditions (for more details see Remark 1.6).
As is now common in the literature, in the sequel we shall refer to ǫVK/k,S,T
as the ‘Rubin-Stark element’ (relative to the given data) and to the central
conjecture of Rubin in [45] as the ‘Rubin-Stark Conjecture’.
In some very special cases ǫVK/k,S,T can be explicitly computed and the Rubin-

Stark Conjecture verified. For example, this is the case if r = 0 (so V = ∅)
when ǫVK/k,S,T can be described in terms of Stickelberger elements and if k = Q

and V = {∞} when ǫVK/k,S,T can be described in terms of cyclotomic units.

As a key step in our approach we show that in all cases the validity of LTC(K/k)
implies that ǫVK/k,S,T can be computed as ‘the canonical projection’ of the zeta

element zK/k,S,T .
This precise result is stated as Theorem 5.14 and its proof will also incidentally
show that LTC(K/k) implies the validity of the Rubin-Stark conjecture for
K/k. The latter implication was in fact already observed by the first author in
[3] (and the techniques developed in loc. cit. have since been used by several
other authors) but we would like to point out that the proof presented here is
very much simpler than that given in [3] and is therefore much more amenable
to subsequent generalization.

1.2. Refined class number formulas for Gm. The first consequence of
Theorem 5.14 that we record here concerns a refined version of a conjecture
that was recently formulated independently by Mazur and Rubin in [37] (where
it is referred to as a ‘refined class number formula for Gm’) and by the third
author in [46].
To discuss this we fix an intermediate field L of K/k and a subset V ′ =
{v1, . . . , vr′} of S which contains V and is such that every place in V ′ splits
completely in L.
In this context it is known that the elements ǫVK/k,S,T naturally constitute an

Euler system of rank r and the elements ǫV
′

L/k,S,T an Euler system of rank r′. If

r < r′, then the image of ǫVK/k,S,T under the map induced by the field theoretic
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norm K× → L× vanishes. However, in this case Mazur and Rubin (see [37,
Conj. 5.2]) and the third author (see [46, Conj. 3]) independently observed that
the reciprocity maps of local class field theory lead to an important conjectural
relationship between the elements ǫVK/k,S,T and ǫV

′

L/k,S,T .

We shall here formulate an interesting refinement MRS(K/L/k, S, T ) of the
central conjectures of [37] and [46] (see Conjecture 5.4 and the discussion of
Remark 5.7) and we shall then prove the following result.

Theorem 1.1. LTC(K/k) implies the validity of MRS(K/L/k, S, T ).

This result is both a generalization and strengthening of the main result
of the third author in [46, Th. 3.22] and provides strong evidence for
MRS(K/L/k, S, T ).
As already remarked earlier, if k is a global function field, then the validity of
LTC(K/k) is a consequence of the main result of [5]. In addition, if k = Q,
then the validity of LTC(K/k) follows from the work of Greither and the first
author in [8] and of Flach in [14].
Theorem 1.1 therefore has the following consequence.

Corollary 1.2. MRS(K/L/k, S, T ) is valid if k = Q or if k is a global func-
tion field.

This result is of particular interest since it verifies the conjectures of Mazur
and Rubin [37] and of the third author [46] even in cases for which one has
r > 1.
In a sequel [9] to this article we will also prove a partial converse to Theorem
1.1 and show that this converse can be used to derive significant new evidence
in support of the conjecture LTC(K/k) (for more details see §1.6 below).
Next we recall that in [12] Darmon used the theory of cyclotomic units to
formulate a refined version of the class number formula for the class groups of
real quadratic fields. We further recall that Mazur and Rubin in [36], and later
the third author in [46], have proved the validity of the central conjecture of
[12] but only after inverting the prime 2.
We shall formulate in §6 a natural refinement of Darmon’s conjecture. By using
Corollary 1.2 we shall then give a full proof of our refined version of Darmon’s
conjecture, thereby obtaining the following result (for a precise version of which
see Theorem 6.1).

Corollary 1.3. A natural refinement of Darmon’s conjecture in [12] is valid.

Let now K/k be an abelian extension as above and choose intermediate fields

L and L̃ with [L : k] = 2, L ∩ L̃ = k and K = LL̃. In this context Gross has
formulated in [21] a ‘conjecture for tori’ regarding the value of the canonical
Stickelberger element associated to K/k modulo a certain ideal constructed
from class numbers and a canonical integral regulator map. This conjecture
has been widely studied in the literature, perhaps most notably by Hayward
in [22] and by Greither and Kučera in [16, 17].
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We shall formulate (as Conjecture 6.3) a natural refinement of Gross’s conjec-
ture for tori and we shall then prove (in Theorem 6.5) that the validity of this
refinement is a consequence of MRS(K/L/k, S, T ).
As a consequence of Corollary 1.2 we shall therefore obtain the following result.

Corollary 1.4. A natural refinement of Gross’s conjecture for tori is valid if
k = Q or if k is a global function field.

This result is a significant improvement of the main results of Greither and
Kučera in [16, 17]. In particular, whilst the latter articles only study the

case that k = Q, L is an imaginary quadratic field, and L̃/Q is an abelian
extension satisfying several technical conditions (see Remark 6.6), Corollary
1.4 now proves Gross’s conjecture completely in the case k = Q and with no

assumption on either L or L̃.

1.3. Selmer groups and their higher Fitting ideals. In order to state
our second main result, we introduce two new Galois modules which are each
finitely generated abelian groups and will play a key role in the arithmetic
theory of zeta elements.
The first of these is a canonical ‘(Σ-truncated T -modified) integral dual Selmer
group’ SΣ,T (Gm/K) for the multiplicative group over K for each finite non-
empty set of places Σ of K that contains S∞(K) and each finite set of places
T of K that is disjoint from Σ.
If Σ = S∞(K) and T is empty, then SΣ,T (Gm/K) is simply defined to be the
cokernel of the map

∏

w

Z −→ HomZ(K
×,Z), (xw)w 7→ (a 7→

∑

w

ordw(a)xw),

where in the product and sum w runs over all finite places of K, and in this
case constitutes a canonical integral structure on the Pontryagin dual of the
Bloch-Kato Selmer group H1

f (K,Q/Z(1)) (see Remark 2.3(i)).

In general, the group SΣ,T (Gm/K) is defined to be a natural analogue for Gm of
the ‘integral Selmer group’ that was introduced for abelian varieties by Mazur
and Tate in [38] and, in particular, lies in a canonical exact sequence of G-
modules of the form
(1)

0 −→ HomZ(Cl
T
Σ(K),Q/Z) −→ SΣ,T (Gm/K) −→ HomZ(O

×
K,Σ,T ,Z) −→ 0

where ClTΣ(K) is the ray class group of OK,Σ modulo the product of all places
of K above T (see §1.7).
This Selmer group is also philosophically related to the theory of Weil-étale
cohomology that is conjectured to exist by Lichtenbaum in [34], and in this
direction we show that in all cases there is a natural identification

SΣ,T (Gm/K) = H2
c,T ((OK,Σ)W ,Z)

where the right hand group denotes the cohomology in degree two of a canoni-
cal ‘T -modified compactly supported Weil-étale cohomology complex’ that we
introduce in §2.2.
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The second module Str
Σ,T (Gm/K) that we introduce is a canonical ‘transpose’

(in the sense of Jannsen’s homotopy theory of modules [23]) for SΣ,T (Gm/K).
In terms of the complexes introduced in §2.2 this module can be described as
a certain ‘T -modified Weil-étale cohomology group’ of Gm

Str
Σ,T (Gm/K) = H1

T ((OK,Σ)W ,Gm)

and can also be shown to lie in a canonical exact sequence of G-modules of the
form

(2) 0 −→ ClTΣ(K) −→ Str
Σ,T (Gm/K) −→ XK,Σ −→ 0.

Here XK,Σ denotes the subgroup of the free abelian group on the set ΣK of
places of K above Σ comprising elements whose coefficients sum to zero.
We can now state our second main result.
In this result we write FittrG(M) for the r-th Fitting ideal of a finitely generated
G-module M , though the usual notation is Fittr,Z[G](M), in order to make the

notation consistent with the exterior power
∧r

Z[G]M . Note that we will review

the definition of higher Fitting ideals in §7.1 and also introduce there for each
finitely generated G-module M and each pair of non-negative integers r and i
a natural notion of ‘higher relative Fitting ideal’

Fitt
(r,i)
G (M) = Fitt

(r,i)
G (M,Mtors).

We write x 7→ x# for the C-linear involution of C[G] which inverts elements of
G.

Theorem 1.5. Let K/k, S, T, V and r be as above, and assume that LTC(K/k)
is valid. Then all of the following claims are also valid.

(i) One has

FittrG(SS,T (Gm/K)) = {Φ(ǫVK/k,S,T )
# : Φ ∈

r∧

Z[G]

HomZ[G](O
×
K,S,T ,Z[G])}.

(ii) Let Pk(K) be the set of all places which split completely in K. Fix a
non-negative integer i and set

Vi = {V ′ ⊂ Pk(K) : |V ′| = i and V ′ ∩ (S ∪ T ) = ∅}.

Then one has

Fitt
(r,i)
G (Str

S,T (Gm/K))

= {Φ(ǫV ∪V
′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

Z[G]

HomZ[G](O
×
K,S∪V ′,T ,Z[G])}.

In particular, if i = 0, then one has

FittrG(S
tr
S,T (Gm/K)) = {Φ(ǫVK/k,S,T ) : Φ ∈

r∧

Z[G]

HomZ[G](O
×
K,S,T ,Z[G])}.
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Remark 1.6. In terms of the notation of Theorem 1.5, the Rubin-
Stark Conjecture asserts that Φ(ǫVK/k,S,T ) belongs to Z[G] for every Φ in∧r

Z[G]HomZ[G](O
×
K,S,T ,Z[G]). The property described in Theorem 1.5 is

deeper in that it shows the ideal generated by Φ(ǫVK/k,S,T ) as Φ runs over∧r
Z[G]HomZ[G](O

×
K,S,T ,Z[G]) should encode significant arithmetic information

relating to integral Selmer groups. (See also Remark 5.13 in this regard.)

1.4. Galois structures of ideal class groups. In this subsection, in
order to better understand the content of Theorem 1.5, we discuss several
interesting consequences concerning the explicit Galois structure of ideal class
groups.
To do this we fix an odd prime p and suppose that K/k is any finite abelian
extension of global fields. We write L for the (unique) intermediate field of
K/k such that K/L is a p-extension and [L : k] is prime to p. Then the group
Gal(K/k) decomposes as a direct product Gal(L/k)×Gal(K/L) and we fix a

non-trivial faithful character χ of Gal(L/k). We set ClT (K) := ClT∅ (K) and
define its ‘(p, χ)-component’ by setting

AT (K)χ := (ClT (K)⊗ Zp)⊗Zp[Gal(L/k)] Oχ.

Here we write Oχ for the module Zp[im(χ)] upon which Gal(L/k) acts via χ so
that AT (K)χ has an induced action of the group ring RχK := Oχ[Gal(K/L)].
Then in Theorem 8.1 we shall derive the following results about the structure
of AT (K)χ from the final assertion of Theorem 1.5(ii).
In this result we write ‘χ(v) 6= 1’ to mean that the decomposition group of v
in Gal(L/k) is non-trivial.

Corollary 1.7. Let V be the set of archimedean places of k that split com-
pletely in K and set r := |V |. Assume that any ramifying place v of k in K
satisfies χ(v) 6= 1. Assume also that the equality of LTC(K/k) is valid after
applying the functor −⊗Zp[Gal(L/k)] Oχ.
Then for any non-negative integer i one has an equality

FittiRχ
K
(AT (K)χ) = {Φ(ǫV ∪V

′,χ
K/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

Rχ
K

Hχ}

where we set S := S∞(k) ∪ Sram(K/k) and Hχ := HomRχ
K
((O×K,S∪V ′,T ⊗

Zp)
χ, RχK).

We remark that Corollary 1.7 specializes to give refinements of several results
in the literature.
For example, if k = Q and K is equal to the maximal totally real subfield
Q(ζm)+ of Q(ζm) where ζm is a fixed choice of primitive m-th root of unity for
some natural number m, then LTC(K/k) is known to be valid and so Corollary
1.7 gives an explicit description of the higher Fitting ideals of ideal class groups
in terms of cyclotomic units (which are the relevant Rubin-Stark elements in
this case). In particular, if m = pn for any non-negative integer n, then the
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necessary condition on χ is satisfied for all non-trivial χ and Corollary 1.7 gives
a strong refinement of Ohshita’s theorem in [41] for the field K = Q(ζpn)

+.
The result is also stronger than that of Mazur and Rubin in [35, Th. 4.5.9] since
the latter describes structures over a discrete valuation ring whilst Corollary
1.7 describes structures over the group ring RχK .
In addition, if K is a CM extension of a totally real field k, then Corollary 1.7
constitutes a generalization of the main results of the second author in both
[28] and [30]. To explain this we suppose that K/k is a CM-extension and that
χ is an odd character. Then classical Stickelberger elements can be used to
define for each non-negative integer i a ‘higher Stickelberger ideal’

Θi(K/k) ⊆ Zp[Gal(K/k)]

(for details see §8.3). By taking T to be empty we can consider the (p, χ)-
component of the usual ideal class group

A(K)χ := (ClT (K)⊗ Zp)⊗Zp[Gal(L/k)] Oχ.

Then, by using both Theorem 1.1 and Corollary 1.7 we shall derive the following
result as a consequence of the more general Theorem 8.6.
In this result we write ω for the Teichmüller character giving the Galois action
on the group of p-th roots of unity.

Corollary 1.8. Let K be a CM-field, k totally real, and χ an odd character
with χ 6= ω. We assume that any ramifying place v of k in K satisfies χ(v) 6= 1
and that LTC(F/k) is valid for certain extensions F of K (see Theorem 8.6
for the precise conditions on F ).
Then for any non-negative integer i one has an equality

FittiRχ
K
(A(K)χ) = Θi(K/k)χ.

In the notation of Corollary 1.8 suppose that K is the n-th layer of the cyclo-
tomic Zp-extension of L for some non-negative integer n and that every place
p above p satisfies χ(p) 6= 1. Then the conditions on χ(v) and LTC(F/k)
that are stated in Corollary 1.8 are automatically satisfied and so Corollary 1.8
generalizes the main results of the second author in [30].
To get a better feeling for Corollary 1.8, consider the simple case that [K : k] is
prime to p. In this case K = L, the ring Zp[Gal(K/k)] is semi-local and A(K)χ

is a module over the discrete valuation ring Oχ = RχK . Then the conclusion in
Corollary 1.8 in the case i = 0 implies that

(3) |A(K)χ| = |Oχ/Lk(χ
−1, 0)|

where Lk(χ
−1, s) is the usual Artin L-function. If every place p above p sat-

isfies χ(p) 6= 1, then this equality is known to be a consequence of the main
conjecture for totally real fields proved by Wiles [54]. However, without any
such restriction on the values χ(p), the equality (3) is as yet unproved.
In addition, in this case the result of Corollary 1.8 is much stronger than (3)
in that it shows the explicit structure of A(K)χ as a Galois module to be
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completely determined (conjecturally at least) by Stickelberger elements by
using the obvious (non-canonical) isomorphism of Oχ-modules

A(K)χ ≃
⊕

i≥1

FittiOχ(A(K)χ)/Fitti−1Oχ (A(K)χ) =
⊕

i≥1

Θi(K/k)χ/Θi−1(K/k)χ.

Next we note that the proof of Corollary 1.8 also combines with the result of
Theorem 1.16 below to give the following result (which does not itself assume
the validity of LTC(K/k)).
This result will be proved in Corollaries 8.4 and 8.8. In it we write µp∞(k(ζp))
for the p-torsion subgroup of k(ζp)

×.

Corollary 1.9. Assume that K/k is a CM-extension, that the degree [K : k]
is prime to p, and that χ is an odd character of G such that there is at most
one p-adic place p of k with χ(p) = 1. Assume also that the p-adic µ-invariant
of K∞/K vanishes.
Then one has both an equality

|A(K)χ| =

{
|Oχ/Lk(χ

−1, 0)| if χ 6= ω,
|Oχ/(|µp∞(k(ζp))| · Lk(χ−1, 0))| if χ = ω

and a (non-canonical) isomorphism of Oχ-modules

A(K)χ ≃
⊕

i≥1

Θi(K/k)χ/Θi−1(K/k)χ.

This result is a generalization of the main theorem of the second author in [28]
where it is assumed that χ(p) 6= 1 for all p-adic places p. It also generalizes the
main result of Rubin in [44] which deals only with the special case K = Q(µp)
and k = Q.
To end this subsection we note Remark 1.13 below explains why Theorem 1.5(ii)
also generalizes and refines the main result of Cornacchia and Greither in [10].

1.5. Annihilators and Fitting ideals of class groups for small Σ.
In this subsection we discuss further connections between Rubin-Stark elements
and the structure of class groups of the form ClTΣ(K) for ‘small’ sets Σ which
do not follow from Theorem 1.5. In particular, we do not assume here that Σ
contains Sram(K/k).
To do this we denote the annihilator ideal of a G-module M by AnnG(M).

Theorem 1.10. Assume LTC(K/k) is valid.
Fix Φ in

∧r
Z[G]HomZ[G](O

×
K,S,T ,Z[G]) and any place v in S \ V .

Then one has

Φ(ǫVK/k,S,T ) ∈ AnnG(Cl
T
V ∪{v}(K))

and, if G is cyclic, also

Φ(ǫVK/k,S,T ) ∈ Fitt0G(Cl
T
V ∪{v}(K)).
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Remark 1.11. The first assertion of Theorem 1.10 provides a common re-
finement and wide-ranging generalization (to L-series of arbitrary order of
vanishing) of several well-known conjectures and results in the literature. To

discuss this we write ClT (K) for the full ray class group modulo T (namely,

ClT (K) = ClT∅ (K), see §1.7).
(i) We first assume that r = 0 (so V is empty) and that k is a number field.
Then, without loss of generality (for our purposes), we can assume that k is to-

tally real and K is a CM field. In this case ǫ∅K/k,S,T is the Stickelberger element

θK/k,S,T (0) of the extension K/k (see §3.1). We take v to be an archimedean

place in S. Then ClT{v}(K) = ClT (K) and so the first assertion of Theorem

1.10 shows that LTC(K/k) implies the classical Brumer-Stark Conjecture,

θK/k,S,T (0) · Cl
T (K) = 0.

(ii) We next consider the case that K is totally real and take V to be S∞(k)
so that r = |V | = [k : Q]. In this case Corollary 1.10 implies that for any
non-archimedean place v in S, any element σv of the decomposition subgroup

Gv of v in G and any element Φ of
∧[k:Q]

Z[G] HomZ[G](O
×
K,S,T ,Z[G]), one has

(4) (1− σv) · Φ(ǫ
S∞

K/k,S,T ) ∈ AnnG(Cl
T (K)).

To make this containment even more explicit we further specialize to the case
that k = Q and that K is equal to Q(ζm)+ for some natural number m. We
recall that LTC(K/k) has been verified in this case. We take S to be the set
comprising the (unique) archimedean place ∞ and all prime divisors of m, and
V to be S∞ = {∞} (so r = 1). For a set T which contains an odd prime, we set
δT :=

∏
v∈T (1−NvFr−1v ), where Frv ∈ G denotes the Frobenius automorphism

at a place of K above v. In this case, we have

ǫ
{∞}
K/k,S,T = ǫm,T := (1− ζm)δT ∈ O×K,S,T

(see, for example, [50, p.79] or [42, §4.2]) and so (4) implies that for any σv ∈ Gv
and any Φ ∈ HomZ[G](O

×
K,S,T ,Z[G]) one has

(1− σv) · Φ(ǫm,T ) ∈ AnnG(Cl
T (K)).

Now the group G is generated by the decomposition subgroups Gv of each
prime divisor v of m, and so for any σ ∈ G one has an equality σ − 1 =
Σv|mxv for suitable elements xv of the ideal I(Gv) of Z[G] that is generated

by {σv − 1 : σv ∈ Gv}. Hence, since ǫσ−1m,T belongs to O×K one finds that for

any ϕ ∈ HomZ[G](O
×
K ,Z[G]) one has ϕ(ǫσ−1m,T ) = Σv|mxvϕ̃(ǫm,T ) where ϕ̃ is any

lift of ϕ to HomZ[G](O
×
K,S,T ,Z[G]). Therefore, for any ϕ in HomZ[G](O

×
K ,Z[G])

and any σ in G, one has

(5) ϕ(ǫσ−1m,T ) ∈ AnnG(Cl
T (K)).

This containment is actually finer than the annihilation result proved by Rubin
in [43, Th. 2.2 and the following Remark] since it deals with the group ClT (K)
rather than Cl(K).
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Remark 1.12. We next consider the case that K/k is a cyclic CM-extension
and V is empty. As remarked above, in this case the Rubin-Stark element
ǫ∅K/k,S,T coincides with the Stickelberger element θK/k,S,T (0).

The second assertion of Theorem 1.10 therefore combines with the argument
in Remark 1.11(i) to show that LTC(K/k) implies a containment

θK/k,S,T (0) ∈ Fitt0G(Cl
T (K)).

This is a strong refinement of the Brumer-Stark conjecture. To see this note
that ClT (K) is equal to the ideal class group Cl(K) of K when T is empty.
The above containment thus combines with [50, Chap. IV, Lem. 1.1] to imply
that if G is cyclic, then one has

θK/k,S(0) · AnnG(µ(K)) ⊂ Fitt0G(Cl(K))

where µ(K) denotes the group of roots of unity in K. It is known that this
inclusion is not in general valid without the hypothesis that G is cyclic (see
[18]). The possibility of such an explicit refinement of Brumer’s Conjecture
was discussed by the second author in [29] and [31]. In fact, in the terminology
of [29], the above argument shows that both properties (SB) and (DSB) follow
from LTC(K/k) whenever G is cyclic. For further results in the case that G is
cyclic see Corollary 7.10.

Remark 1.13. Following the discussion of Remark 1.11(ii) we can also now
consider Theorem 1.5 further in the case that k = Q, K = Q(ζpn)

+ for an odd
prime p and natural number n and S = {∞, p}.
In this case the G-module XK,S is free of rank one and so the exact sequence
(2) combines with the final assertion of Theorem 1.5(ii) (with r = 1) to give
equalities

Fitt0G(Cl
T
S (K)) = Fitt1G(S

tr
S,T (Gm/K))

= {Φ(ǫpn,T ) | Φ ∈ HomG(O
×
K,S,T ,Z[G])}

= Fitt0G(O
×
K,S,T/(Z[G] · ǫpn,T ))

where the last equality follows from the fact that G is cyclic.
Since (in this case) ClS(K) = Cl(K) a standard argument shows that the above
displayed equality implies Fitt0G(Cl(K)) = Fitt0G(O

×
K/CK) with CK denoting

the group Z[G] · {1 − ζpn , ζpn} ∩ O×K of cyclotomic units of K, and this is the
main result of Cornacchia and Greither in [10]. Our results therefore constitute
an extension of the main result in [10] for K = Q(ζpn)

+.

For any finite group Γ and any Γ-module M we write M∨ for its Pontryagin
dual HomZ(M,Q/Z), endowed with the natural contragredient action of Γ.
In §7.5 we show that the proof of Theorem 1.10 also implies the following result.
In this result we fix an odd prime p and set ClT (K)∨p := ClT (K)∨ ⊗ Zp.

Corollary 1.14. Let K/k be any finite abelian CM-extension and p any odd
prime. If LTC(K/k) is valid, then one has a containment

θK/k,S,T (0)
# ∈ Fitt0Zp[G](Cl

T (K)∨p ).
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Remark 1.15.
(i) In [19] Greither and Popescu prove the validity of the displayed containment
in Corollary 1.14 under the hypotheses that S contains all p-adic places of k (so
that the Stickelberger element θK/k,S,T (0) is in general ‘imprimitive’) and that
the p-adic µ-invariant of K vanishes. In [9, §3.5] we give a new proof of their
result by using the natural Selmer modules for Gm defined in §2 below in place
of the Galois modules ‘related to 1-motives’ that are explicitly constructed for
this purpose in [19]. In addition, by combining Corollary 1.14 with the result of
Theorem 1.16 below we can also now prove the containment in Corollary 1.14,
both unconditionally and without the assumption that S contains all p-adic
places, for important families of examples. For more details see [9, §3.5 and
§5].
(ii) For any odd prime p the group Cl(K)∨p := Cl(K)∨ ⊗ Zp is not a quotient

of ClT (K)∨p and so Corollary 1.14 does not imply that θK/k,S,T (0) belongs to

Fitt0Zp[G](Cl(K)∨p ).

(iii) For any odd prime p write Cl(K)∨,−p for the submodule of Cl(K) ⊗ Zp
upon which complex conjugation acts as multiplication by −1. Then, under
a certain technical hypothesis on µ(K), the main result of Greither in [15]
shows that LTC(K/k) also implies an explicit description of the Fitting ideal
Fitt0Zp[G](Cl(K)∨,−p ) in terms of suitably normalized Stickelberger elements. By
replacing the role of ‘Tate sequences for small S’ in the argument of Greither
by the ‘T -modified Weil-étale cohomology’ complexes that we introduce in §2.2
one can in fact prove the same sort of result without any hypothesis on µ(K).

1.6. New verifications of the leading term conjecture. In a sequel
[9] to this article we investigate the natural Iwasawa-theoretic aspects of our
general approach.
In particular, we show in [9, Th. 5.2] that, without any restriction to CM
extensions (or to the ‘minus parts’ of conjectures), under the assumed validity
of a natural main conjecture of higher rank Iwasawa theory, the validity of
the p-part of MRS(L/K/k, S, T ) for all finite abelian extensions L/k implies
the validity of the p-part of LTC(K/k). Such a result provides an important
partial converse to Theorem 1.1 and can also be used to derive new evidence
in support of LTC(K/k).
For example, in [9, Th. 4.9] we show that, in all relevant cases, the validity
of MRS(K/L/k, S, T ) is implied by a well-known leading term formula for p-
adic L-series that has been conjectured by Gross (the ‘Gross-Stark conjecture’
[20]). By combining this observation with significant recent work of Darmon,
Dasgupta and Pollack and of Ventullo concerning the Gross-Stark conjecture
we are then able to give (in [9, Cor. 5.8]) the following new evidence in support
of the conjectures LTC(K/k) and MRS(K/L/k, S, T ).

Theorem 1.16. Assume that k is a totally real field, that K is an abelian CM
extension of k (with maximal totally real subfield K+) and that p is an odd
prime. If the p-adic Iwasawa µ-invariant of K vanishes and at most one p-
adic place of k splits in K/K+, then for any finite subextension K ′/K of the
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cyclotomic Zp-extension of K the minus parts of the p-parts of both LTC(K ′/k)
and MRS(K ′/K/k, S, T ) are valid.

For examples of explicit families of extensions K/k that satisfy all of the hy-
potheses of Theorem 1.16 with respect to any given odd prime p see [9, Exam-
ples 5.9].

1.7. Notation. In this final subsection of the Introduction we collect together
some important notation which will be used in the article.
For an abelian group G, a Z[G]-module is simply called a G-module. Tensor
products, Hom, exterior powers, and determinant modules over Z[G] are de-
noted by ⊗G, HomG,

∧
G, and detG, respectively. We use similar notation for

Ext-groups, Fitting ideals, etc. The augmentation ideal of Z[G] is denoted by
I(G). For any G-module M and any subgroup H ⊂ G, we denote MH for the
submodule of M comprising elements fixed by H . The norm element of H is
denoted by NH , namely,

NH =
∑

σ∈H

σ ∈ Z[G].

Let E denote either Q, R or C. For an abelian group A, we denote E ⊗Z A
by EA. The maximal Z-torsion subgroup of A is denoted by Ators. We write
A/Ators by Atf . The Pontryagin dual HomZ(A,Q/Z) of A is denoted by A∨ for
discrete A.
Fix an algebraic closure Q of Q. For a positive integer n, we denote by µn the

group of n-th roots of unity in Q
×
.

Let k be a global field. The set of all infinite places of k is denoted by S∞(k)
or simply by S∞ when k is clear from the context. (If k is a function field,
then S∞(k) is empty.) Consider a finite Galois extension K/k, and denote its
Galois group by G. The set of all places of k which ramify in K is denoted
by Sram(K/k) or simply by Sram when K/k is clear from the context. For any
non-empty finite set S of places of k, we denote by SK the set of places of K
lying above places in S. The ring of S-integers of K is defined by

OK,S

:= {a ∈ K : ordw(a) ≥ 0 for all finite places w of K not contained in SK},

where ordw denotes the normalized additive valuation at w. The unit group of
OK,S is called the S-unit group of K. Let T be a finite set of finite places of
k, which is disjoint from S. The (S, T )-unit group of K is defined by

O×K,S,T := {a ∈ O×K,S : a ≡ 1 (mod w) for all w ∈ TK}.

The ideal class group of OK,S is denoted by ClS(K). This is called the S-class

group ofK. The (S, T )-class group ofK, which we denote by ClTS (K), is defined
to be the ray class group of OK,S modulo

∏
w∈TK

w (namely, the quotient of the
group of fractional ideals whose supports are coprime to all places above S ∪T
by the subgroup of principal ideals with a generator congruent to 1 modulo all
places in TK). When S ⊂ S∞, we omit S and write ClT (K) for ClTS (K). When
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S ⊂ S∞ and T = ∅, we write Cl(K) which is the class group of the integer ring
OK .
We denote by XK,S the augmentation kernel of the divisor group YK,S :=⊕

w∈SK
Zw. If S contains S∞(k), then the Dirichlet regulator map

λK,S : RO×K,S −→ RXK,S ,

defined by λK,S(a) := −
∑
w∈SK

log |a|ww, is an isomorphism.
For a place w of K, the decomposition subgroup of w in G is denoted by Gw. If
w is finite, the residue field of w is denoted by κ(w). The cardinality of κ(w) is
denoted by Nw. If the place v of k lying under w is unramified in K, then the
Frobenius automorphism at w is denoted by Frw ∈ Gw. When G is abelian,
then Gw and Frw depend only on v, so in this case we often denote them by
Gv and Frv respectively. The C-linear involution C[G] → C[G] induced by
σ 7→ σ−1 with σ ∈ G is denoted by x 7→ x#.
A complex of G-modules is said to be ‘perfect’ if it is quasi-isomorphic to a
bounded complex of finitely generated projective G-modules.
We denote by D(Z[G]) the derived category of G-modules, and by Dp(Z[G])
the full subcategory of D(Z[G]) consisting of perfect complexes.

2. Canonical Selmer groups and complexes for Gm

In this section, we give a definition of ‘integral dual Selmer groups for Gm’, as
analogues of Mazur-Tate’s ‘integral Selmer groups’ defined for abelian varieties
in [38]. We shall also review the construction of certain natural arithmetic
complexes, which are used for the formulation of the leading term conjecture.

2.1. Integral dual Selmer groups. Let K/k be a finite Galois extension
of global fields with Galois group G. Let S be a non-empty finite set of places
which contains S∞(k). Let T be a finite set of places of k which is disjoint from
S.

Definition 2.1. We define the ‘(S-relative T -trivialized) integral dual Selmer
group for Gm’ by setting

SS,T (Gm/K) := coker(
∏

w/∈SK∪TK

Z −→ HomZ(K
×
T ,Z)),

where K×T is the subgroup of K× defined by

K×T := {a ∈ K× : ordw(a− 1) > 0 for all w ∈ TK},

and the homomorphism on the right hand side is defined by

(xw)w 7→ (a 7→
∑

w/∈SK∪TK

ordw(a)xw).

When T is empty, we omit the subscript T from this notation.

By the following proposition we see that our integral dual Selmer groups are
actually like usual dual Selmer groups (see also Remark 2.3 below).
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Proposition 2.2. There is a canonical exact sequence

0 −→ ClTS (K)∨ −→ SS,T (Gm/K) −→ HomZ(O
×
K,S,T ,Z) −→ 0

of the form (1) in §1.

Proof. Consider the commutative diagram

0 //
∏
w/∈SK∪TK

Z //

��

∏
w/∈SK∪TK

Q //

��

∏
w/∈SK∪TK

Q/Z //

��

0

0 // HomZ(K
×
T ,Z)

// HomZ(K
×
T ,Q) // (K×T )

∨,

where each row is the natural exact sequence, and each vertical arrow is given
by (xw)w 7→ (a 7→

∑
w/∈SK∪TK

ordw(a)xw). Using the exact sequence

0 −→ O×K,S,T −→ K×T

⊕
ordw
−→

⊕

w/∈SK∪TK

Z −→ ClTS (K) −→ 0

and applying the snake lemma to the above commutative diagram, we obtain
the exact sequence

0 −→ ClTS (K)∨ −→ SS,T (Gm/K) −→ HomZ(O
×
K,S,T ,Q) −→ (O×K,S,T )

∨.

Since the kernel of the last map is HomZ(O
×
K,S,T ,Z), we obtain the desired

conclusion. �

Remark 2.3.
(i) The Bloch-Kato Selmer group H1

f (K,Q/Z(1)) is defined to be the kernel of
the diagonal map

K× ⊗Q/Z −→
⊕

w

K×w /O
×
Kw

⊗Q/Z

where w runs over all finite places, and so lies in a canonical exact sequence

0 −→ O×K ⊗Q/Z −→ H1
f (K,Q/Z(1)) −→ Cl(K) −→ 0.

Its Pontryagin dual H1
f (K,Q/Z(1))

∨ is a finitely generated Ẑ-module and our

integral dual Selmer group SS∞
(Gm/K) provides a canonical finitely generated

Z-structure on H1
f (K,Q/Z(1))

∨.

(ii) In general, the exact sequence (1) also means that SS,T (Gm/K) is a natural
analogue (relative to S and T ) for Gm over K of the ‘integral Selmer group’
that is defined for abelian varieties by Mazur and Tate in [38, p.720].

In the next subsection we shall give a natural cohomological interpretation of
the group SS,T (Gm/K) (see Proposition 2.4(iii)) and also show that it has a
canonical ‘transpose’ (see Definition 2.6).
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2.2. ‘Weil-étale cohomology’ complexes. In the following, we construct
two canonical complexes ofG-modules, and use them to show that there exists a
canonical transpose of the module SS,T (Gm/K). The motivation for our choice
of notation (and terminology) for these complexes is explained in Remark 2.5
below.
We fix data K/k,G, S, T as in the previous subsection. We also write F×TK for

the direct sum
⊕

w∈TK
κ(w)× of the multiplicative groups of the residue fields

of all places in TK .

Proposition 2.4. There exist canonical complexes of G-modules
RΓc((OK,S)W ,Z) and RΓc,T ((OK,S)W ,Z) which satisfy all of the following
conditions.

(i) There exists a canonical commutative diagram of exact triangles in
D(Z[G])

(6)

HomZ(O
×
K,S ,Q)[−3]

θ
−→ RΓc(OK,S ,Z) −→ RΓc((OK,S)W ,Z) −→

y
∥∥∥

y

(HomZ(O
×
K,S ,Q)⊕ (F×TK )

∨)[−3]
θ′
−→ RΓc(OK,S ,Z) −→ RΓc,T ((OK,S)W ,Z) −→

y
y

(F×TK )
∨[−3] (F×TK )

∨[−2]
y

yθ′′

in which the first column is induced by the obvious exact sequence

0 −→ HomZ(O
×
K,S ,Q) −→ HomZ(O

×
K,S ,Q)⊕ (F×TK )

∨ −→ (F×TK )
∨ −→ 0

and H2(θ′′) is the Pontryagin dual of the natural injective homomor-
phism

H3(RΓc((OK,S)W ,Z))
∨ = O×K,tors −→ F×TK .

(ii) If S′ is a set of places of k which contains S and is disjoint from T ,
then there is a canonical exact triangle in D(Z[G])

RΓc,T ((OK,S′)W ,Z) −→ RΓc,T ((OK,S)W ,Z) −→
⊕

w∈S′
K
\SK

RΓ((κ(w))W ,Z),

where RΓ((κ(w))W ,Z) is the complex of Gw-modules which lies in the
exact triangle

Q[−2] −→ RΓ(κ(w),Z) −→ RΓ((κ(w))W ,Z) −→,

where the H2 of the first arrow is the natural map

Q −→ Q/Z = H2(κ(w),Z).
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(iii) The complex RΓc,T ((OK,S)W ,Z) is acyclic outside degrees one, two and
three, and there are canonical isomorphisms

Hi(RΓc,T ((OK,S)W ,Z)) ≃





YK,S/∆S(Z) if i = 1,

SS,T (Gm/K) if i = 2,

(K×T,tors)
∨ if i = 3,

where ∆S is the natural diagonal map.
(iv) If S contains Sram(K/k), then RΓc((OK,S)W ,Z) and

RΓc,T ((OK,S)W ,Z) are both perfect complexes of G-modules.

Proof. In this argument we use the fact that morphisms in D(Z[G]) between
bounded above complexesK•1 andK•2 can be computed by means of the spectral
sequence

(7) Ep,q2 =
∏

a∈Z

ExtpG(H
a(K•1 ), H

q+a(K•2 )) ⇒ Hp+q(RHomG(K
•
1 ,K

•
2 ))

constructed by Verdier in [53, III, 4.6.10].
Set C• = C•S := RΓc(OK,S ,Z) and W := HomZ(O

×
K,S ,Q) for simplicity. Then

we recall first that C• is acyclic outside degrees one, two and three, that there
are canonical isomorphisms

(8) Hi(C•) ∼=





YK,S/∆S(Z) if i = 1,

ClS(K)∨ if i = 2,

(O×K,S)
∨ if i = 3,

where ∆S is the map that occurs in the statement of claim (iii) and that,
when S contains Sram(K/k), C

• is isomorphic to a bounded complex of
cohomologically-trivial G-modules.
It is not difficult to see that the groups ExtiG(W,H

3−i(C•)) vanish for all
i > 0, and so the spectral sequence (7) implies that the ‘passage to cohomology’
homomorphism

H0(RHomG(W [−3], C•)) = HomD(Z[G])(W [−3], C•) −→ HomG(W, (O
×
K,S)

∨)

is bijective. We may therefore define θ to be the unique morphism in D(Z[G])
for which H3(θ) is equal to the natural map

W = HomZ(O
×
K,S ,Q) −→ HomZ(O

×
K,S ,Q/Z) = (O×K,S)

∨

and then take C•W := RΓc((OK,S)W ,Z) to be any complex which lies in an
exact triangle of the form that occurs in the upper row of (6). An analysis
of the long exact cohomology sequence of this triangle then shows that C•W
is acyclic outside degrees one, two and three, that H1(C•W) = H1(C•), that
H2(C•W )tors = H2(C•), that H2(C•W)tf = HomZ(O

×
K,S ,Z) and that H3(C•W ) =

(O×K,tors)
∨. In particular, when S contains Sram(K/k), since each of these

groups is finitely generated and both of the complexes W [−3] and C• are
represented by bounded complexes of cohomologically-trivial G-modules, this
implies that C•W is perfect.
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To define the morphism θ′ we first choose a finite set S′′ of places of k which
is disjoint from S ∪ T and such that ClS′(K) vanishes for S′ := S ∪ S′′. Note
that (8) with S replaced by S′ implies C•S′ is acyclic outside degrees one and
three. We also note that, since each place in T is unramified in K/k, there is
also an exact sequence of G-modules

(9) 0 −→
⊕

v∈T

Z[G]
(1−NvFrw)v

−→
⊕

v∈T

Z[G] −→ (F×TK )
∨ −→ 0

where w is any choice of place of K above v. This sequence shows both
that (F×TK )

∨[−3] is a perfect complex of G-modules and also that the func-

tor ExtiG((F
×
TK

)∨,−) vanishes for all i > 1. In particular, the spectral sequence
(7) implies that in this case the passage to cohomology homomorphism

HomD(Z[G])((F
×
TK

)∨[−3], C•S′) −→ HomG((F
×
TK

)∨, (O×K,S′)
∨)

is bijective. We may therefore define θ′ to be the morphism which restricts on
W [−3] to give θ and on (F×TK )

∨[−3] to give the composite morphism

(F×TK )
∨[−3]

θ′1−→ RΓc(OK,S′ ,Z)
θ′2−→ RΓc(OK,S ,Z)

where θ′1 is the unique morphism for which H3(θ′1) is the Pontryagin dual of
the natural map O×K,S′ → F×TK and θ′2 occurs in the canonical exact triangle

(10) RΓc(OK,S′ ,Z)
θ′2−→ RΓc(OK,S ,Z) −→

⊕

w∈S′′
K

RΓ(κ(w),Z) −→

constructed by Milne in [39, Chap. II, Prop. 2.3 (d)].
We now take C•W,T := RΓc,T ((OK,S)W ,Z) to be any complex which lies in an

exact triangle of the form that occurs in the second row of (6) and then, just
as above, an analysis of this triangle shows that C•W,T is a perfect complex of

G-modules when S contains Sram(K/k). Note also that since for this choice
of θ′ the upper left hand square of (6) commutes the diagram can then be
completed to give the right hand vertical exact triangle. The claim (ii) follows
easily from the above constructions.
It only remains to prove claim (iii). It is easy to see that the groups
Hi(RΓc,T ((OK,S)W ,Z)) for i = 1 and 3 are as described in claim (iii), so we
need only prove that there is a natural isomorphism

H2(RΓc,T ((OK,S)W ,Z)) ≃ SS,T (Gm/K).

To do this we first apply claim (ii) for a set S′ that is large enough to ensure

that ClTS′(K) vanishes. Since in this case

H2(RΓc,T ((OK,S′ )W ,Z)) = HomZ(O
×
K,S′,T ,Z),

we obtain in this way a canonical isomorphism

(11) H2(RΓc,T ((OK,S)W ,Z)) ≃ coker(
⊕

w∈S′
K
\SK

Z −→ HomZ(O
×
K,S′,T ,Z)).
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Consider next the commutative diagram

0 //
∏
w/∈S′

K
∪TK

Z //
∏
w/∈SK∪TK

Z //

��

⊕
w∈S′

K
\SK

Z //

��

0

0 //
∏
w/∈S′

K
∪TK

Z // HomZ(K
×
T ,Z)

// HomZ(O
×
K,S′,T ,Z)

// 0

with exact rows, where the first exact row is the obvious one, the second is the
dual of the exact sequence

0 −→ O×K,S′,T −→ K×T

⊕
ordw
−→

⊕

w/∈S′
K
∪TK

Z −→ 0,

and the vertical arrows are given by (xw)w 7→ (a 7→
∑
w ordw(a)xw). From this

we have the canonical isomorphism

SS,T (Gm/K) ≃ coker(
⊕

w∈S′
K
\SK

Z −→ HomZ(O
×
K,S′,T ,Z)).(12)

From (11) and (12) our claim follows. �

Given the constructions in Proposition 2.4, in each degree i we set

Hi
c,T ((OK,S)W ,Z) := Hi(RΓc,T ((OK,S)W ,Z)).

We also define a complex

RΓT ((OK,S)W ,Gm) := RHomZ(RΓc,T ((OK,S)W ,Z),Z)[−2].

We endow this complex with the natural contragredient action of G and then
in each degree i set

Hi
T ((OK,S)W ,Gm) := Hi(RΓT ((OK,S)W ,Gm)).

Remark 2.5. Our notation for the above cohomology groups and complexes
is motivated by the following facts.
(i) Assume that k is a function field. Write Ck for the corresponding smooth
projective curve, Ck,W ét for the Weil-étale site on Ck that is defined by Licht-
enbaum in [33, §2] and j for the open immersion Spec(Ok,S) −→ Ck. Then the
groupHi

c ((OK,S)W ,Z) defined above is canonically isomorphic to the Weil-étale
cohomology group Hi(Ck,W ét, j!Z).
(ii) Assume that k is a number field. In this case there has as yet been no
construction of a ‘Weil-étale topology’ for YS := Spec(OK,S) with all of the

properties that are conjectured by Lichtenbaum in [34]. However, if YS is
a compactification of YS and φ is the natural inclusion YS ⊂ YS , then the
approach of [4] can be used to show that, should such a topology exist with
all of the expected properties, then the groups Hi

c ((OK,S)W ,Z) defined above

would be canonically isomorphic to the group Hi
c(YS ,Z) := Hi(YS , φ!Z) that

is discussed in [34].
(iii) The definition of RΓT ((OK,S)W ,Gm) as the (shifted) linear dual of the
complex RΓc,T ((OK,S)W ,Z) is motivated by [4, Rem. 3.8] and hence by the
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duality theorem in Weil-étale cohomology for curves over finite fields that is
proved by Lichtenbaum in [33].

An analysis of the complex RΓc,T ((OK,S)W ,Z) as in the proof of Lemma 2.8
below then leads us to give the following definition. In this definition we use
the notion of ‘transpose’ in the sense of Jannsen’s homotopy theory of modules
[23].

Definition 2.6. The ‘transpose’ of SS,T (Gm/K) is the group

Str
S,T (Gm/K) := H1

T ((OK,S)W ,Gm) = H−1(RHomZ(RΓc,T ((OK,S)W ,Z),Z)).

When T is empty, we omit the subscript T from this notation.

Remark 2.7. By using the spectral sequence

Ep,q2 = ExtpZ(H
−q
c,T ((OK,S)W ,Z),Z) ⇒ Hp+q+2

T ((OK,S)W ,Gm),

which is obtained from (7), one can check that RΓT ((OK,S)W ,Gm) is acyclic
outside degrees zero and one, that there is a canonical isomorphism

H0
T ((OK,S)W ,Gm) ≃ O×K,S,T ,

and that there is a canonical exact sequence

0 −→ ClTS (K) −→ Str
S,T (Gm/K) −→ XK,S −→ 0

of the form (2) in §1.

In the sequel we shall say that a G-module M has a ‘locally-quadratic presen-
tation’ if it lies in an exact sequence of finitely generated G-modules of the
form

P → P ′ →M → 0

in which P and P ′ are projective and the Q[G]-modules QP and QP ′ are
isomorphic.

Lemma 2.8. Assume that G is abelian, that S contains S∞(k) ∪ Sram(K/k),
and that O×K,S,T is Z-torsion-free. Then each of the groups SS,T (Gm/K) and

Str
S,T (Gm/K) have locally-quadratic presentations, and for each non-negative

integer i one has an equality

FittiG(S
tr
S,T (Gm/K)) = FittiG(SS,T (Gm/K))#.

Proof. Set

C• := RΓc,T ((OK,S)W ,Z)

and

C•,∗ := RHomZ(RΓc,T ((OK,S)W ,Z),Z).

From Proposition 2.4 we also know that C• is a perfect complex of G-modules
that is acyclic outside degree one and two and Z-torsion-free in degree one.
This implies, by a standard argument, that C• can be represented by a complex

P
δ
−→ P ′ of G-modules, where P and P ′ are finitely generated and projective
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and the first term is placed in degree one, and hence that there is a tautological
exact sequence of G-modules

(13) 0 −→ H1(C•) −→ P
δ

−→ P ′ −→ H2(C•) −→ 0.

The descriptions in Proposition 2.4(iii) imply that the linear dual of the Dirich-
let regulator map λK,S induces an isomorphism of R[G]-modules

(14) λ∗K,S : RH1(C•) ∼= RH2(C•).

Taken in conjunction with the sequence (13) this isomorphism implies that
the Q[G]-modules QP and QP ′ are isomorphic and hence that SS,T (Gm/K) =

H2(C•) has a locally-quadratic presentation, as claimed.

The complex C•,∗[−2] is represented by HomZ(P
′,Z)

δ∗
→ HomZ(P,Z) where

the linear duals are endowed with contragredient action of G, the first term
is placed in degree zero and δ∗ is the map induced by δ. There is therefore a
tautological exact sequence
(15)

0 −→ H
0(C•,∗[−2]) −→ HomZ(P

′

,Z)
δ∗

−→ HomZ(P,Z) −→ H
1(C•,∗[−2]) −→ 0,

and, since the above observations imply that HomZ(P
′,Z) and HomZ(P,Z) are

projective G-modules that span isomorphic Q[G]-spaces, this sequence implies
that the module Str

S,T (Gm/K) = H1(C•,∗[−2]) has a locally-quadratic presen-
tation.
It now only remains to prove the final claim and it is enough to prove this after
completion at each prime p. We shall denote for any abelian group A the p-
completion A⊗Zp of A by Ap. By Swan’s Theorem (cf. [11, (32.1)]) one knows
that for each prime p the Zp[G]-modules Pp and P

′
p are both free of rank, d say,

that is independent of p. In particular, after fixing bases of Pp and P
′
p the homo-

morphism Pp
δ
→ P ′p corresponds to a matrixAδ,p in Md(Zp[G]) and the sequence

(13) implies that the ideal FittiG(H
2(C•))p is generated over Zp[G] by the de-

terminants of all (d− i)× (d− i) minors of Aδ,p. The corresponding dual bases
induce identifications of both HomZ(P

′,Z)p and HomZ(P,Z)p with Zp[G]
⊕d,

with respect to which the homomorphism HomZ(P
′,Z)p

δ∗
→ HomZ(P,Z)p is

represented by the matrix Atr,#
δ,p that is obtained by applying the involution

# to each entry of the transpose of Aδ,p. The exact sequence (15) therefore

implies that FittiG(H
1(C•,∗[−2]))p is generated over Zp[G] by the determinants

of all (d− i)× (d− i) minors of Atr,#
δ,p . Hence one has an equality

FittiG(H
2(C•))p = FittiG(H

1(C•,∗[−2]))#p ,

as required. �

2.3. Tate sequences. In this subsection we review the construction of Tate’s
exact sequence, which is used in the formulation of the leading term conjecture
in the next section. Let K/k,G, S be as in the previous subsection. We assume
that Sram(K/k) ⊂ S. We assume only in this subsection that S is large enough
so that ClS(K) vanishes.
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In this setting, Tate constructed a ‘fundamental class’ τK/k,S ∈

Ext2G(XK,S ,O
×
K,S) using the class field theory [49]. This class τK/k,S

has the following property: if we regard τK/k,S as an element of

H2(G,HomZ(XK,S ,O
×
K,S)) via the canonical isomorphism

Ext2G(XK,S ,O
×
K,S) ≃ Ext2G(Z,HomZ(XK,S ,O

×
K,S))

= H2(G,HomZ(XK,S ,O
×
K,S)),

then, for every integer i, the map between Tate cohomology groups

Ĥi(G,XK,S)
∼
−→ Ĥi+2(G,O×K,S)

that is defined by taking cup product with τK/k,S is bijective.
The Yoneda extension class of τK/k,S is therefore represented by an exact se-
quence of the following sort:

0 −→ O×K,S −→ A −→ B −→ XK,S −→ 0,(16)

where A and B are finitely generated cohomologically-trivial G-modules (see
[50, Chap. II, Th. 5.1]). We call this sequence a ‘Tate sequence’ for K/k.

Proposition 2.9. The complex RΓ((OK,S)W ,Gm) defines an element of

Ext2G(S
tr
S (Gm/K),O×K,S).

This element is equal to Tate’s fundamental class τK/k,S .

Proof. The first assertion follows directly from the discussion of Remark 2.7.
The assumed vanishing of ClS(K) combines with the exact sequence (2) to
imply that Str

S (Gm/K) = XK,S . Given this, the second claim is proved by the
first author in [4, Prop. 3.5(f)] �

3. Zeta elements and the leading term conjecture

In this section, we suppose that K/k is a finite abelian extension of global fields
with Galois group G.
We fix a finite non-empty set of places S of k which contains both S∞(k) and
Sram(K/k) and an auxiliary finite set of places T of k that is disjoint from S.

3.1. L-functions. We recall the definition of (abelian) L-functions of global

fields. For any linear character χ ∈ Ĝ := Hom(G,C×), we define the S-
truncated T -modified L-function for K/k and χ by setting

Lk,S,T (χ, s) :=
∏

v∈T

(1− χ(Frv)Nv
1−s)

∏

v/∈S

(1− χ(Frv)Nv
−s)−1.

This is a complex function defined on Re(s) > 1 and is well-known to have a
meromorphic continuation on C and to be holomorphic at s = 0. We denote
by rχ,S the order of vanishing of Lk,S,T (χ, s) at s = 0 (this clearly does not
depend on T ). We denote the leading coefficient of the Taylor expansion of
Lk,S,T (χ, s) at s = 0 by

L∗k,S,T (χ, 0) := lim
s→0

s−rχ,SLk,S,T (χ, s).
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We then define the S-truncated T -modified equivariant L-function for K/k by
setting

θK/k,S,T (s) :=
∑

χ∈Ĝ

Lk,S,T (χ
−1, s)eχ,

where eχ := 1
|G|

∑
σ∈G χ(σ)σ

−1, and we define its leading term to be

θ∗K/k,S,T (0) :=
∑

χ∈Ĝ

L∗k,S,T (χ
−1, 0)eχ.

It is then easy to see that θ∗K/k,S,T (0) belongs to R[G]×.

When T = ∅, we simply denote Lk,S,∅(χ, s), θK/k,S,∅(s), etc., by Lk,S(χ, s),
θK/k,S(s), etc., respectively, and refer to them as the S-truncated L-function
for K/k, S-truncated equivariant L-function for K/k, etc., respectively.

3.2. The leading term lattice. In this section we recall the explicit formu-
lation of a conjectural description of the lattice θ∗K/k,S,T (0)·Z[G] which involves

Tate sequences. In particular, up until Remark 3.3, we always assume (without
further explicit comment) that S is large enough to ensure the group ClS(K)
vanishes.
At the outset we also note that, as observed by Knudsen and Mumford in
[27], to avoid certain technical difficulties regarding signs, determinant mod-
ules must be regarded as graded invertible modules. Nevertheless, for simplic-
ity of notation, in the following we have preferred to omit explicit reference to
the grading of any graded invertible modules. Thus, for a finitely generated
projective G-module P , we have abbreviated the graded invertible G-module
(detG(P ), rkG(P )) to detG(P ), where rkG(P ) is the rank of P . Since the nota-
tion detG(P ) explicitly indicates P , which in turn determines rkG(P ), we feel
that this abbreviation should not cause difficulties.
We shall also use the following general notation. Suppose that we have a perfect
complex C• of G-modules, which is concentrated in degree i and i+1 with some
integer i, and an isomorphism λ : RHi(C•)

∼
→ RHi+1(C•). Then we define an

isomorphism

ϑλ : RdetG(C
•)

∼
−→ R[G]

as follows:

RdetG(C
•)

∼
−→

⊗

j∈Z

det
(−1)j

R[G] (RC
j)

∼
−→

⊗

j∈Z

det
(−1)j

R[G] (RH
j(C•))

= det
(−1)i

R[G] (RH
i(C•))⊗R[G] det

(−1)i+1

R[G] (RHi+1(C•))

∼
−→ det

(−1)i

R[G] (RH
i+1(C•))⊗R[G] det

(−1)i+1

R[G] (RHi+1(C•))

∼
−→ R[G],
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where the fourth isomorphism is induced by λ(−1)
i

.
Let A and B be the G-modules which appear in the Tate sequence (16). Since
we have the regulator isomorphism

λK,S : RO×K,S
∼
−→ RXK,S ,

the above construction for C• = (A→ B), where A is placed in degree 0, gives
the isomorphism

ϑλK,S : RdetG(A)⊗R[G] Rdet
−1
G (B)

∼
−→ R[G].

We study the following conjecture.

Conjecture 3.1. In R[G] one has

ϑλK,S (detG(A)⊗G det−1G (B)) = θ∗K/k,S(0) · Z[G].

Remark 3.2. This conjecture coincides with the conjecture C(K/k) stated in
[3, §6.3]. The observations made in [3, Rem. 6.2] therefore imply that Conjec-
ture 3.1 is equivalent in the number field case to the ‘equivariant Tamagawa
number conjecture’ [7, Conj. 4 (iv)] for the pair (h0(SpecK),Z[G]), that the
validity of Conjecture 3.1 is independent of S and of the choice of Tate sequence
and that its validity for the extension K/k implies its validity for all extensions
F/E with k ⊆ E ⊆ F ⊆ K.

Remark 3.3. Conjecture 3.1 is known to be valid in each of the following cases:

(i) K is an abelian extension of Q (by Greither and the first author [8]
and Flach [14]),

(ii) k is a global function field (by the first author [5]),
(iii) [K : k] ≤ 2 (by Kim [26, §2.4, Rem. i)]).

In the following result we do not assume that the group ClS(K) vanishes and we
interpret the validity of Conjecture 3.1 in terms of the ‘Weil-étale cohomology’
complexes RΓc,T ((OK,S)W ,Z) and RΓT ((OK,S)W ,Gm) defined in §2.2.
We note at the outset that RΓc,T ((OK,S)W ,Z) (resp. RΓT ((OK,S)W ,Gm)) is
represented by a complex which is concentrated in degrees one and two (resp.
zero and one), and so we can define the isomorphism

ϑλ∗
K,S

: RdetG(RΓc,T ((OK,S)W ,Z))
∼
−→ R[G]

(resp. ϑλK,S : RdetG(RΓT ((OK,S)W ,Gm))
∼
−→ R[G]).

Proposition 3.4. Let S be any finite non-empty set of places of k containing
both S∞(k) and Sram(K/k) and let T be any finite set of places of k that is
disjoint from S. Then the following conditions on K/k are equivalent.

(i) Conjecture 3.1 is valid.
(ii) In R[G] one has an equality

ϑλ∗
K,S

(detG(RΓc,T ((OK,S)W ,Z))) = θ∗K/k,S,T (0)
−1# · Z[G].

(iii) In R[G] one has an equality

ϑλK,S (detG(RΓT ((OK,S)W ,Gm))) = θ∗K/k,S,T (0) · Z[G].
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Proof. For any finitely generated projective G-module P of (constant) rank d
there is a natural identification

d∧

G

HomZ(P,Z) ∼=

d∧

G

HomG(P,Z[G])
# ∼= HomG(

d∧

G

P,Z[G])#,

where G acts on HomZ(P,Z) contragrediently and on HomG(P,Z[G]) via right
multiplication. The equivalence of the equalities in claims (ii) and (iii) is
therefore a consequence of the fact that for any element ∆ of the mutliplica-
tive group of invertible Z[G]-lattices in R[G] the evaluation pairing identifies
HomG(∆,Z[G])

# with the image under the involution # of the inverse lattice
∆−1.
To relate the equalities in claims (ii) and (iii) to Conjecture 3.1 we note first
that the third column of (6) implies that

ϑλ∗
K,S

(detG(RΓc,T ((OK,S)W ,Z)))

= detG((F
×
TK

)∨[−2]) · ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))),

whilst the resolution (9) implies that

detG((F
×
TK

)∨[−2]) = (
∏

v∈T

(1 −NvFrw))
−1 · Z[G]

= (θ∗K/k,S,T (0)/θ
∗
K/k,S(0))

−1# · Z[G].

The equality in claim (ii) is therefore equivalent to an equality

(17) ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))) = θ∗K/k,S(0)
−1# · Z[G].

We now choose an auxiliary set of places S′′ as in the proof of Proposition 2.4
and set S′ := S ∪ S′′. By Chebotarev density theorem we can even assume
that all places in S′′ split completely in K/k and, for simplicity, this is what we
shall do. Then, in this case, the exact triangle (10) combines with the upper
triangle in (6) to give an exact triangle in D(Z[G]) of the form
(18)

YK,S′′ [−1]⊕ YK,S′′ [−2]
α

−→ RΓc((OK,S′)W ,Z)
β

−→ RΓc((OK,S)W ,Z) −→ .

After identifying the cohomology groups of the second and the third occurring
complexes by using Proposition 2.4(iii) the long exact cohomology sequence of
this triangle induces (after scaler extension) the sequence

0 −→ QYK,S′′ −→ QYK,S′/∆S′(Q) −→ QYK,S/∆S(Q)

0
−→ QYK,S′′

ord∗
S′′

−→ HomZ(O
×
K,S′ ,Q)

πS′′

−−→ HomZ(O
×
K,S ,Q) −→ 0.

Here ord∗S′′ is induced by the linear dual of the map O×K,S′ → YK,S′′ induced

by taking valuations at each place in S′′K and πS′′ by the linear dual of the
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inclusion O×K,S ⊆ O×K,S′ and all other maps are obvious. This sequence implies
that there is an exact commutative diagram

0 −→ RYK,S′′

H1(α)
−−−−→ RH1

c ((OK,S′ )W ,Z)
H1(β)
−−−−→ RH1

c ((OK,S)W ,Z) −→ 0

ηS′′

y λ∗
K,S′

y λ∗
K,S

y

0 −→ RYK,S′′

H2(α)
−−−−→ RH2

c ((OK,S′ )W ,Z)
H2(β)
−−−−→ RH2

c ((OK,S)W ,Z) −→ 0

where ηS′′ sends each sum
∑
v∈S′′

∑
w|v xww to

∑
v∈S′′

∑
w|v log(Nv)xww.

This diagram combines with the triangle (18) to imply that

ϑλ∗
K,S′

(detG(RΓc((OK,S′)W ,Z)))

= detR[G](ηS′′)−1ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z)))

=
( ∏

v∈S′′

log(Nv)
)−1

ϑλ∗
K,S

(detG(RΓc((OK,S)W ,Z))).

Since θ∗K/k,S′(0) =
(∏

v∈S′′ log(Nv)
)
θ∗K/k,S(0) this equality shows that (after

changing S if necessary) we may assume that ClS(K) vanishes when verifying
(17). Given this, the proposition follows from Proposition 2.9. �

3.3. Zeta elements. We now use the above results to reinterpret Conjecture
3.1 in terms of the existence of a canonical ‘zeta element’. This interpretation
will then play a key role in the proofs of Theorem 5.12, 5.16 and 7.5 given
below.
The following definition of zeta element is in the same spirit as that used by
Kato in [24] and [25].

Definition 3.5. The ‘zeta element’ zK/k,S,T of Gm relative to the data K/k, S
and T is the unique element of

RdetG(RΓT ((OK,S)W ,Gm)) ∼= detR[G](RO
×
K,S)⊗R[G] det

−1
R[G](RXK,S)

which satisfies ϑλK,S (zK/k,S,T ) = θ∗K/k,S,T (0).

The following ‘leading term conjecture’ is then our main object of study.

Conjecture 3.6 (LTC(K/k)). In RdetG(RΓT ((OK,S)W ,Gm)) one has an
equality

Z[G] · zK/k,S,T = detG(RΓT ((OK,S)W ,Gm)).

Given the definition of zK/k,S,T , Proposition 3.4 implies immediately that this
conjecture is equivalent to Conjecture 3.1 and hence is independent of the
choices of S and T .

4. Preliminaries concerning exterior powers

In this section, we recall certain useful constructions concerning exterior powers
and also prove algebraic results that are to be used in later sections.
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4.1. Exterior powers. Let G be a finite abelian group. For a G-module M
and f ∈ HomG(M,Z[G]), there is a G-homomorphism

r∧

G

M −→
r−1∧

G

M

for all r ∈ Z≥1, defined by

m1 ∧ · · · ∧mr 7→
r∑

i=1

(−1)i−1f(mi)m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr.

This morphism is also denoted by f .
This construction gives a homomorphism

s∧

G

HomG(M,Z[G]) −→ HomG(

r∧

G

M,

r−s∧

G

M)(19)

for all r, s ∈ Z≥0 such that r ≥ s, defined by

f1 ∧ · · · ∧ fs 7→ (m 7→ fs ◦ · · · ◦ f1(m)).

By using this homomorphism we often regard an element of
∧s
GHomG(M,Z[G])

as an element of HomG(
∧r
GM,

∧r−s
G M).

For a G-algebra Q and a homomorphism f in HomG(M,Q), there is a G-
homomorphism

r∧

G

M −→ (

r−1∧

G

M)⊗G Q

defined by

m1 ∧ · · · ∧mr 7→
r∑

i=1

(−1)i−1m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr ⊗ f(mi).

By the same method as the construction of (19), we have a homomorphism

s∧

G

HomG(M,Q) −→ HomG(

r∧

G

M, (

r−s∧

G

M)⊗G Q).(20)

In the sequel we will find an explicit description of this homomorphism to be
useful. This description is well-known and given by the following proposition,
the proof of which we omit.

Proposition 4.1. Let m1, . . . ,mr ∈ M and f1, . . . , fs ∈ HomG(M,Q). Then
we have

(f1 ∧ · · · ∧ fs)(m1 ∧ · · · ∧mr)

=
∑

σ∈Sr,s

sgn(σ)mσ(s+1) ∧ · · · ∧mσ(r) ⊗ det(fi(mσ(j)))1≤i,j≤s,

where

Sr,s := {σ ∈ Sr : σ(1) < · · · < σ(s) and σ(s+ 1) < · · · < σ(r)}.
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In particular, if r = s, then we have

(f1 ∧ · · · ∧ fr)(m1 ∧ · · · ∧mr) = det(fi(mj))1≤i,j≤r .

We will also find the technical observations that are contained in the next two
results to be very useful.

Lemma 4.2. Let E be a field and A an n-dimensional E-vector space. If we
have an E-linear map

Ψ : A −→ E⊕m,

where Ψ =
⊕m

i=1 ψi with ψ1, . . . , ψm ∈ HomE(A,E) (m ≤ n), then we have

im(
∧

1≤i≤m

ψi :

n∧

E

A −→
n−m∧

E

A) =

{∧n−m
E ker(Ψ), if Ψ is surjective,

0, if Ψ is not surjective.

Proof. Suppose first that Ψ is surjective. Then there exists a subspace B ⊂ A
such that A = ker(Ψ) ⊕ B and Ψ maps B isomorphically onto E⊕m. We see
that

∧
1≤i≤m ψi induces an isomorphism

m∧

E

B
∼
−→ E.

Hence we have an isomorphism

∧

1≤i≤m

ψi :

n∧

E

A =

n−m∧

E

ker(Ψ)⊗E

m∧

E

B
∼
−→

n−m∧

E

ker(Ψ).

In particular, we have

im(
∧

1≤i≤m

ψi :
n∧

E

A −→
n−m∧

E

A) =
n−m∧

E

ker(Ψ).

Next, suppose that Ψ is not surjective. Then ψ1, . . . , ψm ∈ HomE(A,E) are
linearly dependent. In fact, since each ψi is contained in HomE(A/ ker(Ψ), E),
we have

dimE(〈ψ1, . . . , ψm〉) ≤ dimE(A/ ker(Ψ)) = dimE(im(Ψ)),

so dimE(〈ψ1, . . . , ψm〉) < m if dimE(im(Ψ)) < m. This shows that the element∧
1≤i≤m ψi vanishes, as required. �

Using the same notation as in Lemma 4.2, we now consider an endomorphism
ψ ∈ EndE(A). We write rψ for the dimension over E of ker(ψ) and consider
the composite isomorphism

Fψ :

n∧

E

A⊗E

n∧

E

HomE(A,E) ≃ detE(A)⊗E det−1E (A)

∼
−→ detE(ker(ψ)) ⊗E det−1E (coker(ψ))

≃

rψ∧

E

ker(ψ)⊗E

rψ∧

E

HomE(coker(ψ), E),
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where the second isomorphism is induced by the tautological exact sequence

0 −→ ker(ψ) −→ A
ψ

−→ A −→ coker(ψ) −→ 0.

Then the proof of Lemma 4.2 leads directly to the following useful description
of this isomorphism Fψ .

Lemma 4.3. With E,A and ψ as above, we fix an E-basis {b1, . . . , bn} of A so
that im(ψ) = 〈brψ+1, . . . , bn〉 and write {b∗1, . . . , b

∗
n} for the corresponding dual

basis of HomE(A,E). For each index i we also set ψi := b∗i ◦ ψ.
Then for every a in

∧n
E A the element (

∧
rψ<i≤n

ψi)(a) belongs to
∧rψ
E ker(ψ)

and one has

Fψ(a⊗ (b∗1 ∧ · · · ∧ b∗n)) = (−1)rψ(n−rψ)(
∧

rψ<i≤n

ψi)(a) ⊗ (b∗1 ∧ · · · ∧ b∗rψ).

Here, on the right hand side of the equation, we use the equality im(ψ) =
〈brψ+1, . . . , bn〉 to regard b∗i for each i with 1 ≤ i ≤ rψ as an element of
HomE(coker(ψ), E).

4.2. Rubin lattices. The following definition is due to Rubin [45, §1.2]. We
adopt the notation in [46] for the lattice. Note in particular that the notation
‘
⋂
’ does not refer to an intersection.

Definition 4.4. For a finitely generated G-module M and a non-negative
integer r we define the ‘r-th Rubin lattice’ by setting

r⋂

G

M = {m ∈ Q

r∧

G

M : Φ(m) ∈ Z[G] for all Φ ∈
r∧

G

HomG(M,Z[G])}.

In particular, one has
⋂0
GM = Z[G].

Remark 4.5. We define the homomorphism ι :
∧r
GHomG(M,Z[G]) →

HomG(
∧r
GM,Z[G]) by sending each element ϕ1 ∧ · · · ∧ ϕr to ϕr ◦ · · · ◦ ϕ1

(see (19)). Then it is not difficult to see that the map
r⋂

G

M
∼
−→ HomG(im(ι),Z[G]); m 7→ (Φ 7→ Φ(m))

is an isomorphism (see [45, §1.2]).

By this remark, one obtains the following result.

Proposition 4.6. Let P be a finitely generated projective G-module. Then we
have

r⋂

G

P =
r∧

G

P

for all non-negative integers r.

Lemma 4.7. Let M be a G-module. Suppose that there is a finitely generated
projective G-module P and an injection j : M →֒ P whose cokernel is Z-
torsion-free.
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(i) The map

HomG(P,Z[G]) −→ HomG(M,Z[G])

induced by j is surjective.
(ii) If we regard M as a submodule of P via j, then we have

r⋂

G

M = (Q

r∧

G

M) ∩
r∧

G

P.

Proof. The assertion (i) follows from [45, Prop. 1.1 (ii)]. Note that

r∧

G

HomG(P,Z[G]) −→
r∧

G

HomG(M,Z[G])

is also surjective. This induces a surjection

im(ιP ) −→ im(ιM ),

where ιP and ιM denote the maps defined in Remark 4.5 for P and M , respec-
tively. Hence, taking the dual, we have an injection

r⋂

G

M ≃ HomG(im(ιM ),Z[G]) −→ HomG(im(ιP ),Z[G]) ≃
r⋂

G

P.

Since P is projective, we have
⋂r
G P =

∧r
G P by Proposition 4.6. Hence we

have
r⋂

G

M ⊂
r∧

G

P.

Next, we show the reverse inclusion ‘⊃’. To do this we fix a in (Q
∧r
GM)∩

∧r
G P

and Φ in
∧r
GHomG(M,Z[G]). By (i), we can take a lift Φ̃ ∈

∧r
GHomG(P,Z[G])

of Φ. Since a ∈
∧r
G P , we have

Φ(a) = Φ̃(a) ∈ Z[G].

This shows that a belongs to
⋂r
GM , as required. �

Remark 4.8. The proof of Lemma 4.7 shows that the cokernel of the injection

r⋂

G

M −→
r∧

G

P

is Z-torsion-free. This implies that for any abelian group A, the map

(

r⋂

G

M)⊗Z A −→ (

r∧

G

P )⊗Z A

is injective.
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4.3. Homomorphisms between Rubin lattices. In the sequel we fix a sub-
group H of G and an ideal J of Z[H ]. Recall that we denote the augmentation
ideal of Z[H ] by I(H). Put JH := J/I(H)J . We also put J := JZ[G], and
JH := J /I(H)J .

Proposition 4.9. We have a natural isomorphism of G/H-modules

JH ≃ Z[G/H ]⊗Z JH .

Proof. Define a homomorphism

Z[G/H ]⊗Z JH −→ JH

by τ ⊗ a 7→ τ̃ a, where τ ∈ G/H , a ∈ J , and τ̃ ∈ G is a lift of τ . One can easily
check that this homomorphism is well-defined, and bijective. �

Definition 4.10. Let M be a G-module. For ϕ ∈ HomG(M,Z[G]), we define
ϕH ∈ HomG/H(MH ,Z[G/H ]) by

MH ϕ
−→ Z[G]H ≃ Z[G/H ],

where the last isomorphism is given by NH =
∑

σ∈H σ 7→ 1. Let r be

a non-negative integer. For Φ ∈
∧r
GHomG(M,Z[G]), we define ΦH ∈∧r

G/H HomG/H(MH ,Z[G/H ]) to be the image of Φ under the map

ϕ1 ∧ · · · ∧ ϕr 7→ ϕH1 ∧ · · · ∧ ϕHr .

For convention, if r = 0, then we define ΦH ∈ Z[G/H ] to be the image of
Φ ∈ Z[G] under the natural map : Z[G] −→ Z[G/H ].

Proposition 4.11. Let M be a G-module and r ∈ Z≥0. For any m ∈ Q
∧r
GM

and Φ ∈
∧r
GHomG(M,Z[G]), we have

Φ(m) = ΦH(NrH m) in Q[G/H ],

where NrH denote the map Q
∧r
GM → Q

∧r
G/HM

H induced by NH :M →MH .

Proof. This follows directly from the definition of ΦH . �

We consider the canonical map

ν :

r⋂

G/H

MH −→
r⋂

G

M

which is defined as follows. Let

ι :

r∧

G

HomG(M,Z[G]) −→ HomG(

r∧

G

M,Z[G])

and

ιH :

r∧

G/H

HomG/H(M
H ,Z[G/H ]) −→ HomG/H(

r∧

G/H

MH ,Z[G/H ])
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be the homomorphisms defined in Remark 4.5. The map

im(ι) −→ im(ιH); ι(Φ) 7→ ιH(ΦH)

induces a map

α : HomG(im(ιH),Z[G]) −→ HomG(im(ι),Z[G]) ≃
r⋂

G

M.

Note that we have a canonical isomorphism

β : HomG(im(ιH),Z[G])
∼
−→ HomG/H(im(ιH),Z[G/H ]) ≃

r⋂

G/H

MH ; ϕ 7→ ϕH .

We define a map ν by

ν := α ◦ β−1 :

r⋂

G/H

MH −→
r⋂

G

M.

Proposition 4.12. LetM be a finitely generated G-module which is Z-torsion-
free. For any r ∈ Z≥0, the map ν :

⋂r
G/HM

H →
⋂r
GM is injective. Further-

more, the maps

(

r⋂

G/H

MH)⊗Z JH −→ (

r⋂

G

M)⊗Z JH −→ (

r⋂

G

M)⊗Z Z[H ]/I(H)J

are both injective, where the first map is induced by ν, and the second by inclu-
sion JH →֒ Z[H ]/I(H)J .

Proof. The proof is the same as [46, Lem. 2.11], so we omit it. �

Remark 4.13. The inclusion MH ⊂M induces a map

ξ :

r⋂

G/H

MH −→
r⋂

G

M.

We note that this map does not coincide with the above map ν if r > 1. Indeed,
one can check that im(ξ) ⊂ |H |max{0,r−1}

⋂r
GM (see [37, Lem. 4.8]), and

ν = |H |−max{0,r−1}ξ.

Remark 4.14. Let P be a finitely generated projective G-module. Then, any
element of PH is written as NH a with some a ∈ P , since P is cohomolog-
ically trivial. One can check that, if r > 0 (resp. r = 0), then the map
ν :

∧r
G/H P

H →
∧r
G P constructed above coincides with the map

NH a1 ∧ · · · ∧ NH ar 7→ NH a1 ∧ · · · ∧ ar

(resp. Z[G/H ] ≃ Z[G]H →֒ Z[G]).

In particular, we know that im(ν) = NH
∧r
G P .
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Proposition 4.15. LetM be a finitely generated G-module which is Z-torsion-
free, and r ∈ Z≥0. Then the map

(
r⋂

G/H

MH)⊗Z JH −→ HomG(
r∧

G

HomG(M,Z[G]),JH ); α 7→ (Φ 7→ ΦH(α))

is injective. (We regard ΦH(α) ∈ Z[G/H ]⊗Z JH as an element of JH via the
isomorphism JH ≃ Z[G/H ]⊗Z JH in Proposition 4.9.)

Proof. The proof is the same as [46, Th. 2.12]. �

4.4. Congruences between exterior powers. The following definition is
originally due to Darmon [12], and used in [46, Def. 2.13] and [37, Def. 5.1].

Definition 4.16. Let M be a G-module. For m ∈M , define

NH(m) =
∑

σ∈H

σm⊗ σ−1 ∈M ⊗Z Z[H ]/I(H)J.

The following proposition is an improvement of the result of the third author
in [46, Prop. 2.15].

Proposition 4.17. Let P be a finitely generated projective G-module, r ∈ Z≥0,
and

ν : (

r∧

G/H

PH)⊗Z JH −→ (

r∧

G

P )⊗Z Z[H ]/I(H)J

be the injection in Proposition 4.12. For an element a ∈
∧r
G P , the following

are equivalent.

(i) a ∈ J ·
∧r
G P ,

(ii) NH(a) ∈ im(ν),
(iii) Φ(a) ∈ J for every Φ ∈

∧r
GHomG(P,Z[G]).

Furthermore, if the above equivalent conditions are satisfied, then for every
Φ ∈

∧r
GHomG(P,Z[G]) we have

Φ(a) = ΦH(ν−1(NH(a))) in JH ,

where we regard ΦH(ν−1(NH(a))) ∈ Z[G/H ] ⊗Z JH as an element of JH via
the isomorphism JH ≃ Z[G/H ]⊗Z JH in Proposition 4.9.

Proof. By Swan’s Theorem (see [11, (32.1)]), for every prime p, Pp is a free
Zp[G]-module of rank, d say, independent of p. Considering locally, we may
assume that P is a free G-module of rank d. We may assume r ≤ d. Clearly,
(i) implies (iii). We shall show that (iii) implies (ii). Suppose Φ(a) ∈ J for all
Φ ∈

∧r
GHomG(P,Z[G]). Fix a basis {b1, . . . , bd} of P . Write

a =
∑

µ∈Sd,r

xµbµ(1) ∧ · · · ∧ bµ(r),

with some xµ ∈ Z[G]. For each µ, by Proposition 4.1, we have

xµ = (b∗µ(1) ∧ · · · ∧ b∗µ(r))(a) ∈ J ,
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where b∗i ∈ HomG(P,Z[G]) is the dual basis of bi. For each τ ∈ G/H , fix a lift
τ̃ ∈ G. Note that we have a direct sum decomposition

J =
⊕

τ∈G/H

Jτ̃ .

Therefore, we can write each xµ as follows:

xµ =
∑

τ∈G/H

yτµτ̃ ,

where yτµ ∈ J . Hence we have

NH(a) =
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H

σyτµτ̃ bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1

=
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H

στ̃bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1yτµ

=
∑

µ∈Sd,r

∑

τ∈G/H

NH τ̃ bµ(1) ∧ · · · ∧ bµ(r) ⊗ yτµ

∈ NH

r∧

G

P ⊗Z JH = im(ν)

(see Remark 4.14). This shows (ii). We also see by Remark 4.14 that

ν−1(NH(a)) =
∑

µ∈Sd,r

∑

τ∈G/H

τ NH bµ(1)∧· · ·∧NH bµ(r)⊗yτµ ∈ (
r∧

G/H

PH)⊗ZJH .

Hence, by Proposition 4.11, we have

Φ(a) = ΦH(ν−1(NH(a))) in JH

for all Φ ∈
∧r
GHomG(P,Z[G]).

Finally, we show that (ii) implies (i). Suppose NH(a) ∈ im(ν) = (NH
∧r
G P )⊗Z

JH . As before, we write

a =
∑

µ∈Sd,r

∑

τ∈G/H

yτµτ̃ bµ(1) ∧ · · · ∧ bµ(r)

with yτµ ∈ Z[H ]. We have

NH(a) =
∑

σ∈H

∑

µ∈Sd,r

∑

τ∈G/H

στ̃bµ(1) ∧ · · · ∧ bµ(r) ⊗ σ−1yτµ ∈ (NH

r∧

G

P )⊗Z JH .

Since (
∧r
G P ) ⊗Z Z[H ]/I(H)J ≃

⊕
σ,µ,τ Z[H ]/I(H)J as abelian groups, we

must have yτµ ∈ J . This shows that a ∈ J ·
∧r
G P . �
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5. Congruences for Rubin-Stark elements

For a finite abelian extension K/k, and an intermediate field L, a conjecture
which describes a congruence relation between two Rubin-Stark elements for
K/k and L/k was formulated by the third author in [46, Conj. 3]. Mazur
and Rubin also formulated in [37, Conj. 5.2] essentially the same conjecture.
In this section, we formulate a refined version (see Conjecture 5.4) of these
conjectures. We also recall a conjecture formulated by the first author, which
was studied in [22], [3], [16], [17], [48], and [46] (see Conjecture 5.9). In [46, Th.
3.15], the third author proved a link between Conjecture 5.4 and Conjecture
5.9. We now improve the argument given there to show that Conjecture 5.4
and Conjecture 5.9 are in fact equivalent (see Theorem 5.10). Finally we prove
that the natural equivariant leading term conjecture (Conjecture 3.6) implies
both Conjecture 5.4 and Conjecture 5.9 (see Theorem 5.16).

5.1. The Rubin-Stark conjecture. In this subsection, we recall the for-
mulation of the Rubin-Stark conjecture [45, Conj. B′].
Let K/k,G, S, T be as in §3, namely, K/k is a finite abelian extension of global
fields, G is its Galois group, S is a non-empty finite set of places of k such that
S∞(k) ∪ Sram(K/k) ⊂ S, and T is a finite set of places of k which is disjoint
from S. In this section, we assume that O×K,S,T is Z-torsion-free.

Following Rubin [45, Hyp. 2.1] we assume that S satisfies the following hy-
pothesis with respect to some chosen integer r with 0 ≤ r < |S|: there exists a
subset V ⊂ S of order r such that each place in V splits completely in K/k.

Recall that for any χ ∈ Ĝ we denote by rχ,S the order of vanishing of
Lk,S,T (χ, s) at s = 0. We know by [50, Chap. I, Prop. 3.4] that

rχ,S = dimC(eχCXK,S) =

{
|{v ∈ S : χ(Gv) = 1}| if χ 6= 1,

|S| − 1 if χ = 1.
(21)

Therefore, the existence of V ensures that r ≤ rχ,S for every χ and hence the
function s−rLk,S,T (χ, s) is holomorphic at s = 0. We define the ‘r-th order
Stickelberger element’ by

θ
(r)
K/k,S,T := lim

s→0

∑

χ∈Ĝ

s−rLk,S,T (χ
−1, s)eχ ∈ R[G].

Note that the 0-th order Stickelberger element θ
(0)
K/k,S,T (= θK/k,S,T (0)) is the

usual Stickelberger element.
Recall that we have the regulator isomorphism

λK,S : RO×K,S,T
∼
−→ RXK,S

defined by

λK,S(a) = −
∑

w∈SK

log|a|ww.
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This map λK,S induces the isomorphism

r∧

R[G]

RO×K,S,T
∼
−→

r∧

R[G]

RXK,S ,

which we also denote by λK,S . For each place v ∈ S, fix a place w of K lying
above v. Take any v0 ∈ S\V , and define the ‘(r-th order) Rubin-Stark element’

ǫVK/k,S,T ∈
r∧

R[G]

RO×K,S,T = R

r∧

G

O×K,S,T .

by

(22) λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

v∈V

(w − w0),

where
∧
v∈V (w − w0) is arranged by some chosen order of the elements in V .

One can show that the Rubin-Stark element ǫVK/k,S,T does not depend on the

choice of v0 ∈ S \ V .
We consider the Rubin lattice

r⋂

G

O×K,S,T ⊂ Q

r∧

G

O×K,S,T

(see Definition 4.4). The Rubin-Stark conjecture claims

Conjecture 5.1 (The Rubin-Stark conjecture for (K/k, S, T, V )). One has

ǫVK/k,S,T ∈
r⋂

G

O×K,S,T .

Remark 5.2. One can check that the above Rubin-Stark conjecture is equiv-
alent to [45, Conj. B′] for the data (K/k, S, T, V ), and that our Rubin-Stark
element ǫVK/k,S,T coincides with the unique element predicted by [45, Conj. B′].

This shows, in particular, that the validity of the conjecture does not depend
on the choice of the places lying above v ∈ S or on the ordering of the elements
in V .

Remark 5.3. The Rubin-Stark conjecture for (K/k, S, T, V ) is known to be
true in the following cases:

(i) r = 0. In this case ǫ∅K/k,S,T = θ
(0)
K/k,S,T = θK/k,S,T (0) ∈ R[G] so the

Rubin-Stark conjecture claims only that θK/k,S,T (0) ∈ Z[G] which is a
celebrated result of Deligne-Ribet, Cassou-Noguès, and Barsky.

(ii) [K : k] ≤ 2. This is due to Rubin [45, Cor. 3.2 and Th. 3.5].
(iii) K is an abelian extension over Q. This is due to the first author [3,

Th. A].
(iv) k is a global function field. This is due to the first author [3, Th. A].
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5.2. Conventions for Rubin-Stark elements. The notation ǫVK/k,S,T has

some ambiguities, since ǫVK/k,S,T depends on the choice of the places lying

above v ∈ S, and on the choice of the order of the elements in V . To avoid this
ambiguity, we use the following convention: when we consider the Rubin-Stark
element ǫVK/k,S,T , we always fix a place w of K lying above each v ∈ S, and

label the elements of S as

S = {v0, v1, . . . , vn}

so that V = {v1, . . . , vr}, and thus we fix the order of the elements in V .
So, under this convention, the Rubin-Stark element ǫVK/k,S,T is the element

characterized by

λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

1≤i≤r

(wi − w0).

5.3. Conjectures on Rubin-Stark elements. In this subsection, we give
a refinement of the conjecture formulated by the third author [46, Conj. 3],
and Mazur and Rubin [37, Conj. 5.2]. Let K/k,G, S, T be as before, and we
assume that, for a non-negative integer r, there exists a subset V ⊂ S of order
r such that each place in V splits completely in K. We fix a subgroup H of G
for which, for some integer r′ with r′ ≥ r, there exists a subset V ′ ⊂ S of order
r′, which contains V , and satisfies that each place in V ′ splits completely in
the field L := KH .
Following the convention in §5.2, we fix, for each place v ∈ S, a place w
of K lying above v, and label the elements of S as S = {v0, . . . , vn} so that
V = {v1, . . . , vr} and V ′ = {v1, . . . , vr′}. We consider the Rubin-Stark elements

ǫVK/k,S,T and ǫV
′

L/k,S,T characterized by

λK,S(ǫ
V
K/k,S,T ) = θ

(r)
K/k,S,T

∧

1≤i≤r

(wi − w0)

and

λL,S(ǫ
V ′

L/k,S,T ) = θ
(r′)
L/k,S,T

∧

1≤i≤r′

(wi − w0)

respectively, where we denote the place of L lying under w also by w.
For each integer i with 1 ≤ i ≤ n we write Gi for the decomposition group of
vi in G. For any subgroup U ⊂ G, recall that the augmentation ideal of Z[U ]
is denoted by I(U). Put Ii := I(Gi)Z[G] and IH := I(H)Z[G]. We define

Reci : O
×
L,S,T −→ (Ii)H = Ii/IHIi

by

Reci(a) =
∑

τ∈G/H

τ−1(recwi(τa) − 1).

Here, recwi is the reciprocity map L×wi → Gi at wi. Note that τ
−1(recwi(τa)−1)

is well-defined for τ ∈ G/H in (Ii)H .
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We put W := V ′ \ V = {vr+1, . . . , vr′}. We define an ideal JW of Z[H ] by

JW :=

{
(
∏
r<i≤r′ I(Gi))Z[H ], if W 6= ∅,

Z[H ], if W = ∅,

and put (JW )H := JW /I(H)JW . We also define an ideal JW of Z[G] by

JW :=

{∏
r<i≤r′ Ii, if W 6= ∅,

Z[G], if W = ∅,

and put (JW )H := JW /IHJW . Note that JW = JWZ[G]. By Proposition 4.9,
we have a natural isomorphism of G/H-modules Z[G/H ]⊗Z (JW )H ≃ (JW )H .
We consider the graded G/H-algebra

QW :=
⊕

a1,...,ar′−r∈Z≥0

(Ia1r+1 · · · I
ar′−r
r′ )H ,

where
(Ia1r+1 · · · I

ar′−r
r′ )H := Ia1r+1 · · · I

ar′−r
r′ /IHIa1r+1 · · · I

ar′−r
r′ ,

and we define the 0-th power of any ideal of Z[G] to be Z[G].
For any integer i with r < i ≤ r′ we regard Reci as an element of
HomG/H(O×L,S,T ,QW ) via the natural embedding (Ii)H →֒ QW . Then by

the same method as in [46, Prop. 2.7] (or [37, Cor. 2.1]), one shows that∧
r<i≤r′ Reci ∈

∧r′−r
G/H HomG/H(O×L,S,T ,QW ) induces the map

(23)

r′⋂

G/H

O×L,S,T −→ (

r⋂

G/H

O×L,S,T )⊗G/H (JW )H ≃ (

r⋂

G/H

O×L,S,T )⊗Z (JW )H ,

which we denote by RecW .
Following Definition 4.16, we define

NH :

r⋂

G

O×K,S,T −→ (

r⋂

G

O×K,S,T )⊗Z Z[H ]/I(H)JW

by NH(a) =
∑
σ∈H σa⊗ σ−1.

Note that since (O×K,S,T )
H = O×L,S,T , there is a natural injective homomorphism

ν : (
r⋂

G/H

O×L,S,T )⊗Z (JW )H −→ (
r⋂

G

O×K,S,T )⊗Z Z[H ]/I(H)JW

by Proposition 4.12.

To state the following conjecture we assume the validity of the Rubin-Stark
conjecture (Conjecture 5.1) for both (K/k, S, T, V ) and (L/k, S, T, V ′).

Conjecture 5.4 (MRS(K/L/k, S, T, V, V ′)). The element NH(ǫVK/k,S,T ) be-

longs to im(ν), and satisfies

NH(ǫVK/k,S,T ) = (−1)r(r
′−r) · ν(RecW (ǫV

′

L/k,S,T )).
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Remark 5.5. In this article we write ‘MRS(K/L/k, S, T ) is valid’ to mean that
the statement of Conjecture 5.4 is valid for all possible choices of V and V ′.

Remark 5.6. In §6 we show that Conjecture 5.4 constitutes a natural re-
finement and generalization of both a conjecture of Darmon from [12] and of
several conjectures of Gross from [21]. In addition, in a subsequent article [9]
we will show that the validity of Conjecture 5.4 also implies the ‘Gross-Stark
conjecture’ formulated by Gross in [20] and a refinement of the main result of
Solomon in [47] concerning the ‘wild Euler system’ that he constructs in loc.
cit.

Remark 5.7. One has I(Gi)Z[H ] ⊂ I(H), so JW ⊆ I(H)e where e := r′− r ≥
0. Thus there is a natural homomorphism

(

r⋂

G

O×K,S,T )⊗Z (JW )H −→ (

r⋂

G

O×K,S,T )⊗Z I(H)e/I(H)e+1.

Conjecture 5.4 is therefore a strengthening of the central conjecture of the third
author in [46, Conj. 3] and of the conjecture formulated by Mazur and Rubin
in [37, Conj. 5.2], both of which claim only that the given equality is valid
after projection to the group (

⋂r
GO
×
K,S,T )⊗Z I(H)e/I(H)e+1. This refinement

is in the same spirit as Tate’s strengthening in [51] of the ‘refined class number
formula’ formulated by Gross in [21].

Remark 5.8. Note that, when r = 0, following [46, Def. 2.13] NH would be
defined to be the natural map Z[G] → Z[G]/IHJW , but this does not make
any change because of the observation of Mazur and Rubin in [37, Lem. 5.6
(iv)]. Note also that, by Remark 4.13, the map jL/K in [37, Lem. 4.9] (where

our K/L is denoted by L/K) is essentially the same as our homomorphism ν.
Finally we note that Mazur and Rubin do not use the fact that jL/K is injective,
so the formulation of [46, Conj. 3] is slightly stronger than the conjecture [37,
Conj. 5.2].

We next state a refinement of a conjecture that was formulated by the first
author in [3] (the original version of which has been studied in many subsequent
articles of different authors including [22], [16], [17], [48], and [46]).

Conjecture 5.9. (B(K/L/k, S, T, V, V ′)). For every

Φ ∈
r∧

G

HomG(O
×
K,S,T ,Z[G]),

we have

Φ(ǫVK/k,S,T ) ∈ JW

and an equality

Φ(ǫVK/k,S,T ) = (−1)r(r
′−r)ΦH(RecW (ǫV

′

L/k,S,T )) in (JW )H .
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In this article we improve an argument of the third author in [46] to prove the
following result.

Theorem 5.10. The conjectures

MRS(K/L/k, S, T, V, V ′) and B(K/L/k, S, T, V, V ′)

are equivalent.

The proof of this result will be given in §5.5.

5.4. An explicit resolution. As a preliminary step, we choose a useful
representative of the complex

D•K,S,T := RΓT ((OK,S)W ,Gm) ∈ Dp(Z[G]).

To do this we follow the method used in [3, §7].
Let d be a sufficiently large integer, and F be a free G-module of rank d with
basis b = {bi}1≤i≤d. We define a surjection

π : F −→ Str
S,T (Gm/K)(= H1(D•K,S,T ))

as follows. Recall that S = {v0, . . . , vn}. Let F≤n be a free Z[G]-module
generated by {bi}1≤i≤n. First, choose a homomorphism

π1 : F≤n −→ Str
S,T (Gm/K)

such that the composition map

F≤n
π1−→ Str

S,T (Gm/K) −→ XK,S

sends bi to wi − w0. (Such a homomorphism exists since F≤n is free.) Next,
let A denote the kernel of the composition map

Str
S,T (Gm/K) −→ XK,S −→ YK,S\{v0},

where the last map sends the places above v0 to 0. Since d is sufficiently large,
we can choose a surjection

π2 : F>n −→ A,

where F>n is the free Z[G]-module generated by {bi}n<i≤d. Define

π := π1 ⊕ π2 : F = F≤n ⊕ F>n −→ Str
S,T (Gm/K).

One can easily show that π is surjective.
D•K,S,T defines a Yoneda extension class in Ext2G(S

tr
S,T (Gm/K),O×K,S,T ). Since

D•K,S,T is perfect, this class is represented by an exact sequence of the following
form:

0 −→ O×K,S,T −→ P
ψ

−→ F
π

−→ Str
S,T (Gm/K) −→ 0,(24)

where π is the above map and P is a cohomologically-trivial G-module. Since
O×K,S,T is Z-torsion-free, it follows that P is also Z-torsion-free. Hence, P is
projective. Note that the complex

P
ψ

−→ F,
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where P is placed in degree 0, is quasi-isomorphic to D•K,S,T . Hence we have
an isomorphism

detG(D
•
K,S,T ) ≃ detG(P )⊗G det−1G (F ).(25)

For each 1 ≤ i ≤ d, we define

ψi := b∗i ◦ ψ ∈ HomG(P,Z[G]),

where b∗i ∈ HomG(F,Z[G]) is the dual basis of bi ∈ F .

5.5. The equivalence of Conjectures 5.4 and 5.9. In this subsection,
we prove Theorem 5.10.

Proof of Theorem 5.10. We regard O×K,S,T ⊂ P by the exact sequence (24).

Note that, since P/O×K,S,T ≃ im(ψ) ⊂ F is Z-torsion-free, we can apply Lemma

4.7 and Remark 4.8 for M = O×K,S,T . If NH(ǫVK/k,S,T ) ∈ im(ν), then we have

Φ(ǫVK/k,S,T ) = ΦH(ν−1(NH(ǫVK/k,S,T ))) in (JW )H(26)

for every Φ ∈
∧r
GHomG(O

×
K,S,T ,Z[G]), by Proposition 4.17. Hence Conjecture

5.4 implies Conjecture 5.9.
Conversely, suppose that Conjecture 5.9 is valid. Then we have Φ(ǫVK/k,S,T ) ∈

JW for every Φ ∈
∧r
GHomG(O

×
K,S,T ,Z[G]), so again we use Proposition 4.17

to deduce that

NH(ǫVK/k,S,T ) ∈ im


ν : (

r∧

G/H

PH)⊗Z (JW )H → (
r∧

G

P )⊗Z Z[H ]/I(H)JW


 ,

and that the equality (26) holds for every Φ ∈
∧r
GHomG(P,Z[G]). By Propo-

sition 4.15, we see that the equality

ν−1(NH(ǫVK/k,S,T )) = (−1)r(r
′−r)RecW (ǫV

′

L/k,S,T )

holds in (
∧r
G/H P

H)⊗Z (JW )H . Since the natural map

(

r⋂

G/H

O×L,S,T )⊗Z (JW )H −→ (

r∧

G/H

PH)⊗Z (JW )H

is injective by Remark 4.8, we see that the above equality holds in
(
⋂r
G/H O×L,S,T )⊗Z (JW )H . Thus Conjecture 5.9 implies Conjecture 5.4. �

Remark 5.11. Although in the proof of Theorem 5.10 we used the exact se-
quence (24) to verify the existence of a finitely generated projective G-module
P and an injection O×K,S,T →֒ P whose cokernel is Z-torsion-free, the referee

pointed out that it is unnecessary to use (24) at this point. Indeed, choosing
a projective module P ′ and a surjection f : P ′ → HomZ(O

×
K,S,T ,Z), we have

an embedding O×K,S,T →֒ P := HomZ(P
′,Z) by dualizing f , whose cokernel is

Z-torsion-free.
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5.6. The leading term conjecture implies the Rubin-Stark conjec-

ture. The following result was first proved by the first author in [3, Cor. 4.1]
but the proof given here is very much simpler than that given in loc. cit.

Theorem 5.12. LTC(K/k) implies the Rubin-Stark conjecture for both
(K/k, S, T, V ) and (L/k, S, T, V ′).

Proof. Assume that LTC(K/k) is valid so the zeta element zK/k,S,T is a Z[G]-
basis of detG(D

•
K,S,T ). In this case one also knows that P must be free of rank

d and we define zb ∈
∧d
G P to be the element corresponding to the zeta element

zK/k,S,T ∈ detG(D
•
K,S,T ) via the isomorphism

d∧

G

P
∼
−→

d∧

G

P ⊗
d∧

G

HomG(F,Z[G]) ≃ detG(D
•
K,S,T ),

where the first isomorphism is defined by

a 7→ a⊗
∧

1≤i≤d

b∗i ,

and the second isomorphism is given by (25).
Then Theorem 5.12 follows immediately from the next theorem (see also Corol-
lary 5.15 below for (L/k, S, T, V ′)). �

Remark 5.13. In [52] Vallières closely follows the proof of [3, Cor. 4.1] to show
that Conjecture 3.1 (and hence also LTC(K/k) by virtue of Proposition 3.4)
implies the extension of the Rubin-Stark Conjecture formulated by Emmons
and Popescu in [13]. The arguments used here can be used to show that
LTC(K/k) implies a refinement of the main result of Vallières, and hence also
of the conjecture of Emmons and Popescu, that is in the spirit of Theorem 1.5.
This result is to be explained in forthcoming work of Livingstone-Boomla.

The following theorem was essentially obtained in [3] by the first author. This
theorem describes the Rubin-Stark element in terms of the zeta elements. It is
a key to prove Theorem 5.12, and also plays important roles in the proofs of
Theorem 5.16 and Theorem 7.5 given below.

Theorem 5.14. Assume that LTC(K/k) holds. Then, regarding O×K,S,T as a
submodule of P , one has

(
∧

r<i≤d

ψi)(zb) ∈
r⋂

G

O×K,S,T (⊂
r∧

G

P )

(see Lemma 4.7 (ii)) and also

(−1)r(d−r)(
∧

r<i≤d

ψi)(zb) = ǫVK/k,S,T .

Proof. Take any χ ∈ Ĝ. Recall from (21) that

rχ,S = dimC(eχCXK,S) = dimC(eχCO
×
K,S,T )
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(the last equality follows from CO×K,S,T ≃ CXK,S). Consider the map

Ψ :=
⊕

r<i≤d

ψi : eχCP −→ eχC[G]
⊕(d−r).

This map is surjective if and only if rχ,S = r. Indeed, if rχ,S = r, then
{eχ(wi − w0)}1≤i≤r is a C-basis of eχCXK,S , so eχC im(ψ) = eχC ker(π) =⊕

r<i≤d eχC[G]bi. In this case, Ψ is surjective. If rχ,S > r, then

dimC(eχC im(ψ)) = d− rχ,S < d− r, so Ψ is not surjective. Applying Lemma
4.2, we have

eχ(
∧

r<i≤d

ψi)(zb)

{
∈ eχC

∧r
GO×K,S,T , if rχ,S = r,

= 0, if rχ,S > r.

From this and Lemma 4.7 (ii), we have

(
∧

r<i≤d

ψi)(zb) ∈ (Q
r∧

G

O×K,S,T ) ∩
r∧

G

P =
r⋂

G

O×K,S,T .

By Lemma 4.3 and the definition of zb, we have

λK,S((−1)r(d−r)(
∧

r<i≤d

ψi)(zb)) = θ
(r)
K/k,S,T

∧

1≤i≤r

(wi − w0).

By the characterization of the Rubin-Stark element, we have

(−1)r(d−r)(
∧

r<i≤d

ψi)(zb) = ǫVK/k,S,T .

This completes the proof. �

By the same argument as above, one obtains the following result.

Corollary 5.15. Assume that LTC(K/k) holds. Then we have an equality

(−1)r
′(d−r′)(

∧

r′<i≤d

ψHi )(NdH zb) = ǫV
′

L/k,S,T

in
⋂r′

G/H O×L,S,T .

5.7. The leading term conjecture implies Conjecture 5.4. In this
subsection we prove the following result.

Theorem 5.16. LTC(K/k) implies MRS(K/L/k, S, T, V, V ′).

By Remark 3.3, this directly implies the following result.

Corollary 5.17. MRS(K/L/k, S, T, V, V ′) is valid if K is an abelian exten-
sion over Q or if k is a function field.

Remark 5.18. Theorem 5.16 is an improvement of the main result in [46, Th.
3.22] by the third author, which asserts that under some hypotheses LTC(K/k)
implies most of Conjecture 5.4. In [3, Th. 3.1], the first author proved that
LTC(K/k) implies most of Conjecture 5.9. Since we know by Theorem 5.10
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that Conjecture 5.4 and Conjecture 5.9 are equivalent, Theorem 5.16 is also an
improvement of [3, Th. 3.1].

Remark 5.19. In [46, §4], by using a weak version of Corollary 5.17, the third
author gave another proof of the ‘except 2-part’ of Darmon’s conjecture on
cyclotomic units [12], which was first proved by Mazur and Rubin in [36] via
Kolyvagin systems. In §6, we shall use Corollary 5.17 to give a full proof of
a refined version of Darmon’s conjecture, and also give a new evidence for
Gross’s conjecture on tori [21], which was studied by Hayward [22], Greither
and Kučera [16], [17].

We prove Theorem 5.16 after proving some lemmas. The following lemma is a
restatement of [3, Lem. 7.4].

Lemma 5.20. If 1 ≤ i ≤ n, then we have an inclusion

im(ψi) ⊂ Ii.

In particular, ψi = 0 for 1 ≤ i ≤ r.

Proof. Take any a ∈ P . Write

ψ(a) =

d∑

j=1

xjbj

with some xj ∈ Z[G]. For each i with 1 ≤ i ≤ n, we show that xi ∈ Ii, or
equivalently, NGixi = 0. Noting that FGi is a free G/Gi-module with basis
{NGibj}1≤j≤d, it is sufficient to show that

d∑

j=1

NGixjbj ∈ 〈NGibj : 1 ≤ j ≤ d, j 6= i〉G/Gi .

The left hand side is equal to ψ(NGia). By the exact sequence (24), this is
contained in ker(π|FGi ). Note that we have a natural isomorphism

NGiXK,S ≃ XKGi ,S.

Since vi splits completely in KGi, the G/Gi-submodule of NGiXK,S generated
by NGi(wi − w0) is isomorphic to Z[G/Gi]. This shows that

ker(π|FGi ) ⊂ 〈NGibj : 1 ≤ j ≤ d, j 6= i〉G/Gi .

�

For each integer i with r < i ≤ r′, we define a map

R̃eci : P
H −→ (Ii)H

as follows. For a ∈ PH , take ã ∈ P such that NH ã = a (this is possible since
P is cohomologically-trivial). Define

R̃eci(a) := ψi(ã) mod IHIi ∈ (Ii)H .

(Note that im(ψi) ⊂ Ii by Lemma 5.20.) One can easily check that this is
well-defined.
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Lemma 5.21. On O×L,S,T , which we regard as a submodule of PH , R̃eci coin-

cides with the map Reci. In particular, by the construction of (20), we can
extend the map

RecW :

r′⋂

G/H

O×L,S,T −→ (

r⋂

G/H

O×L,S,T )⊗Z (JW )H

to

R̃ecW :=
∧

r<i≤r′

R̃eci :

r′∧

G/H

PH → (

r∧

G/H

PH)⊗G/H (JW )H ≃ (

r∧

G/H

PH)⊗Z(JW )H .

Proof. The proof is essentially the same as [3, Prop. 10.1] and [2, Lem. 8]. For
a ∈ O×L,S,T , take ã ∈ P such that NH ã = a in PH . For each τ ∈ G/H , fix a

lift τ̃ ∈ G. Regard F as the free H-module with basis {τ̃ bi}i,τ . It is sufficient
to show that

(τ̃ bi)
∗ ◦ ψ(ã) = recτ̃wi(a)− 1 = recwi(τ

−1a)− 1,(27)

for every r < i ≤ r′, where (τ̃ bi)
∗ ∈ HomH(F,Z[H ]) is the dual basis of F as a

free H-module. Indeed, using

R̃eci(a) = ψi(ã) =
∑

τ∈G/H

τ̃((τ̃ bi)
∗ ◦ ψ(ã)),

we know from (27) that

R̃eci(a) =
∑

τ∈G/H

τ̃(recwi(τ
−1a)− 1) = Reci(a).

We shall show (27). For simplicity, set w := τ̃wi and b := τ̃ bi. We denote the
decomposition group of w by Gw(= Gi). As in the proof of Proposition 2.4,
one can show that there is a unique morphism

θw : Q[−2] −→ RΓ(Kw,Gm)

in D(Z[Gw ]) such that H2(θw) is equal to the natural map

Q −→ Q/Z ≃ H2(Kw,Gm),

where the last isomorphism is the invariant map in the local class field theory.
We define the complex RΓ((Kw)W ,Gm) by

RΓ((Kw)W ,Gm) := Cone(θw)

for the local field Kw. We have natural identifications H0((Kw)W ,Gm) = K×w
and H1((Kw)W ,Gm) = Z. The complex RΓ((Kw)W ,Gm) defines a Yoneda ex-
tension class τw in Ext2Gw(Z,K

×
w ), and [6, Prop. 3.5(a)] shows that τw coincides

with the local fundamental class in H2(Gw,K
×
w ). The class τw is represented

by a 2-extension of the form

0 −→ K×w −→ Pw
ψw
−→ Z[Gw] −→ Z −→ 0,
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where Pw is a cohomologically trivial Gw-module. Define

ρw : L×w −→ I(Gw)/I(Gw)
2

by ρ(x) := ψw(x̃), where x̃ ∈ Pw is taken so that NGw x̃ = x (note that ψw(x̃)
is well-defined in I(Gw)/I(Gw)

2). Then, the existence of a natural localization
morphism

D•K,S,T = RΓT ((OK,S)W ,Gm) −→ Z[H ]⊗L
Z[Gw] RΓ((Kw)W ,Gm)

and our choice of a representative of D•K,S,T implies

b∗ ◦ ψ(ã) = ρw(a) in I(Gw)/I(H)I(Gw).

Hence, (27) is reduced to the equality

ρw = recw − 1.

Consider the map

(28) I(Gw)/I(Gw)
2 = Ĥ−1(Gw , I(Gw)) ≃ Ĥ−2(Gw,Z)

∼
−→ Ĥ0(Gw,K

×
w ),

where the first isomorphism is the connecting homomorphism with respect to
the short exact sequence

0 −→ I(Gw) −→ Z[Gw ] −→ Z −→ 0,

and the last is given by the cup product with τw. The map (28) is the inverse
of recw−1 by definition. One can also check that (28) coincides with the δ-map
of the snake lemma applied to the diagram

(K×w )Gw
//

NGw

��

(Pw)Gw
ψw

//

NGw
��

I(Gw)/I(Gw)
2 //

0

��

0

0 // L×w
// PGww

ψw
// I(Gw)

Gw ,

i.e. the inverse of ρw. Thus we have ρw = recw − 1, which completes the
proof. �

Note that, by Lemma 5.20,
∧
r<i≤d ψi defines a map

d∧

G

P −→ JW

r∧

G

P.

Let ν be the injection

ν : (

r∧

G/H

PH)⊗Z (JW )H −→ (

r∧

G

P )⊗Z Z[H ]/I(H)JW

in Proposition 4.12. By Proposition 4.17, we have

NH(JW

r∧

G

P ) ⊂ im(ν),
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so we can define a map

ν−1 ◦ NH : JW

r∧

G

P −→ (

r∧

G/H

PH)⊗Z (JW )H .

Lemma 5.22. We have the following commutative diagram:

∧d
G P

NdH
��

// JW
∧r
G P

ν−1◦NH
��∧d

G/H P
H // (

∧r
G/H P

H)⊗Z (JW )H ,

where the top arrow is (−1)r(d−r)
∧
r<i≤d ψi, and the bottom arrow is the com-

position of (−1)r(r
′−r)R̃ecW and (−1)r

′(d−r′)
∧
r′<i≤d ψ

H
i .

Proof. We can prove this lemma by explicit computations, using Proposition
4.1, Proposition 4.11, and Remark 4.14. �

Proof of Theorem 5.16. By Remark 4.8 we may compute in (
∧r
G/H P

H) ⊗Z

(JW )H . Using Corollary 5.15, Lemma 5.21, Lemma 5.22, and Theorem 5.14 in
this order, we compute

(−1)r(r
′−r)RecW (ǫV

′

L/k,S,T )

= (−1)r(r
′−r)R̃ecW ((−1)r

′(d−r′)(
∧

r′<i≤d

ψHi )(NdH zb))

= (−1)r(d−r)ν−1(NH((
∧

r<i≤d

ψi)(zb)))

= ν−1(NH(ǫVK/k,S,T )).

This completes the proof of Theorem 5.16. �

6. Conjectures of Darmon and of Gross

In this section we use Corollary 5.17 to prove a refined version of the conjecture
formulated by Darmon in [12] and to obtain important new evidence for a
refined version of the ‘conjecture for tori’ formulated by Gross in [21].

6.1. Darmon’s Conjecture. We formulate a slightly modified and refined
version of Damon’s conjecture ([12],[36]).
Let L be a real quadratic field. Let f be the conductor of L. Let χ be the
Dirichlet character defined by

χ : (Z/fZ)× = Gal(Q(µf )/Q) −→ Gal(L/Q) ≃ {±1},

where the first map is the restriction map. Fix a square-free positive integer
n which is coprime to f , and let K be the maximal real subfield of L(µn).
Set G := Gal(K/Q) and H := Gal(K/L). Put n± :=

∏
ℓ|n,χ(ℓ)=±1 ℓ, and
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ν± := |{ℓ|n±}| (in this section, ℓ always denotes a prime number). We fix an
embedding Q →֒ C. Define a cyclotomic unit by

βn := NL(µn)/K(
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1 − ζnf )
χ(σ)) ∈ K×,

where ζnf = e
2πi
nf . Let τ be the generator of G/H = Gal(L/Q). Write n+ =

ℓ1 · · · ℓν+ . Note that (1−τ)OL[1/n]
× is a free abelian group of rank ν++1 (see

[36, Lem. 3.2 (ii)]). Take u0, . . . , uν+ ∈ OL[1/n]
× so that {u1−τ0 , . . . , u1−τν+ } is

a basis of (1− τ)OL[1/n]
× and that det(log |u1−τi |λj )0≤i,j≤ν+ > 0, where each

λj (1 ≤ j ≤ ν+) is a (fixed) place of L lying above ℓj, and λ0 is the infinite

place of L determined by the embedding Q →֒ C fixed above. Define

Rn := (
∧

1≤i≤ν+

(recλi − 1))(u1−τ0 ∧ · · · ∧ u1−τν+ ) ∈ L× ⊗Z (Jn+)H ,

where

Jn+ :=

{
(
∏i=ν+
i=1 I(Gℓi), if ν+ 6= 0,

Z[H ], if ν+ = 0,

where Gℓi is the decomposition group of ℓi in G (note that since ℓi splits in L,
we have Gℓi ⊂ H), and (Jn+)H := Jn+/I(H)Jn+ . We set hn := |Pic(OL[

1
n ])|.

For any element a ∈ K×, following Definition 4.16 we define

NH(a) :=
∑

σ∈H

σa⊗ σ−1 ∈ K× ⊗Z Z[H ]/I(H)Jn+ .

Note that, since K×/L× is Z-torsion-free, the natural map

(L×/{±1})⊗Z (Jn+)H −→ (K×/{±1})⊗Z Z[H ]I(H)Jn+

is injective.
Our refined Darmon’s conjecture is formulated as follows.

Theorem 6.1. One has

NH(βn) = −2ν−hnRn in (L×/{±1})⊗Z (Jn+)H .

Remark 6.2. Let In be the augmentation ideal of Z[Gal(L(µn)/L)]. Note that
there is a natural isomorphism

Iν+n /Iν++1
n ⊗Z Z[

1

2
]
∼
−→ I(H)ν+/I(H)ν++1 ⊗Z Z[

1

2
].

It is not difficult to see that the following statement is equivalent to [36, Th.
3.9]:

NH(βn) = −2ν−hnRn in (L×/{±1})⊗Z I(H)ν+/I(H)ν++1 ⊗Z Z[
1

2
]

(see [46, Lem. 4.7]). Since there is a natural map (Jn+)H −→
I(H)ν+/I(H)ν++1, Theorem 6.1 refines [36, Th. 3.9]. Note also that, in the
original statement of Darmon’s conjecture, the cyclotomic unit is defined by

αn :=
∏

σ∈Gal(Q(µnf )/Q(µn))

σ(1− ζnf )
χ(σ),
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whereas our cyclotomic unit is βn = NL(µn)/K(αn). Since cyclotomic units, as
Stark elements, lie in real fields, it is natural to consider βn. Thus, modifying
the original statement of Darmon’s conjecture in the ‘2-part’, we obtained
Theorem 6.1, which does not exclude the ‘2-part’.

Proof of Theorem 6.1. We show that Darmon’s conjecture is a consequence of
Conjecture 5.4, and use Corollary 5.17 to prove it. We fit notation in this
section into that in §5. Set S := {∞} ∪ {ℓ|nf}. Take a prime v0 of Q, which
divides f . We denote by w1 the infinite place of K (and also L) which corre-
sponds to the fixed embedding Q →֒ C. For 2 ≤ i ≤ ν++1, set wi := λi−1. Let
T be a finite set of primes that is disjoint from S and satisfying that O×K,S,T
is Z-torsion-free. (In the sequel, we refer such a set of primes as ‘T ’.) Since
K and L are abelian over Q, the Rubin-Stark conjecture for K/Q and L/Q
holds (see Remark 5.3 (iii)). Set V := {∞} and V ′ := {∞, ℓ1, . . . , ℓν+}. We

denote ǫK,T = ǫVK/Q,S,T ∈ O×K,S,T and ǫL,T = ǫV
′

L/Q,S,T ∈
⋂ν++1
G/H O×L,S,T for the

Rubin-Stark elements, characterized by

λK,S(ǫK,T ) = θ
(1)
K/Q,S,T (w1 − w0),

λL,S(ǫL,T ) = θ
(ν++1)

L/Q,S,T

∧

1≤i≤ν++1

(wi − w0).

We take T , a finite family of ‘T ’, such that
∑

T∈T

aT δT = 2

for some aT ∈ Z[G], where δT :=
∏
ℓ∈T (1 − ℓFr−1ℓ ) (see [50, Chap. IV, Lem.

1.1]). By [46, Lem. 4.6], we have

(1− τ)
∑

T∈T

aT ǫK,T = βn in K×/{±1},

(where τ ∈ Gal(L/Q) is regarded as an element of Gal(K/Q(µn)
+)) and

(1− τ)
∑

T∈T

aT ǫL,T = (−1)ν++12ν−hn(1 − τ)u0 ∧ · · · ∧ uν+ in Q

ν++1∧

G/H

O×L,S .

As in §5.3, for 1 < i ≤ ν+ + 1 we denote by Reci the homomorphism

Reci : O
×
L,S,T −→ (Jn+)H = Jn+Z[G]/IHJn+Z[G]

defined by

Reci(a) = recλi−1(a)− 1 + τ(recλi−1(τa) − 1).
∧

1<i≤ν++1 Reci induces a homomorphism

ν++1⋂

G/H

O×L,S,T −→ (

1⋂

G/H

O×L,S,T )⊗Z (Jn+)H = O×L,S,T ⊗Z (Jn+)H ,
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which we denote by Recn+ . We compute

(1 − τ)
∑

T∈T

aTRecn+(ǫL,T )

=
∑

T∈T

Recn+(aT (1− τ)ǫL,T )

=
∑

T∈T

(
∧

1≤i≤ν+

(recλi − 1))((1 − τ)ν++1aT ǫL,T )

= (
∧

1≤i≤ν+

(recλi − 1))((−1)ν++12ν−hnu
1−τ
0 ∧ · · · ∧ u1−τν+ )

= (−1)ν++12ν−hnRn.

By Corollary 5.17, we have

NH(ǫK,T ) = (−1)ν+Recn+(ǫL,T )

(note that the map ν in Conjecture 5.4 is the natural inclusion map in this
case.) Hence, we have

NH(βn) = (1− τ)
∑

T∈T

aTNH(ǫK,T )

= (−1)ν+(1− τ)
∑

T∈T

aTRecn+(ǫL,T )

= −2ν−hnRn,

as required. �

6.2. Gross’s conjecture for tori. In this section we use Corollary 5.17 to
obtain some new evidence in support of the ‘conjecture for tori’ formulated by
Gross in [21].
We review the formulation of Gross’s conjecture for tori. We follow [22, Conj.

7.4]. Let k be a global field, and L/k be a quadratic extension. Let L̃/k

be a finite abelian extension, which is disjoint to L, and set K := LL̃. Set

G := Gal(K/k), and H := Gal(K/L) = Gal(L̃/k). Let τ be the generator of
G/H = Gal(L/k). Let S be a non-empty finite set of places of k such that
S∞(k) ∪ Sram(K/k) ⊂ S. Let T be a finite set of places of k that is disjoint
from S and satisfies that O×K,S,T is Z-torsion-free. Let v1, . . . , vr′ be all places

in S which split in L. We assume r′ < |S|. Then, by [45, Lem. 3.4 (i)], we see

that hk,S,T := |ClTS (k)| divides hL,S,T := |ClTS (L)|. Take u1, . . . , ur′ ∈ O×L,S,T
such that {u1−τ1 , . . . , u1−τr′ } is a basis of (1 − τ)O×L,S,T , which is isomorphic to

Z⊕r
′

, and det(− log |u1−τi |wj )1≤i,j≤r′ > 0, where wj is a (fixed) place of L lying
above vj . Put W := {v1, . . . , vr′}. As in §5.3, we define

JW :=

{
(
∏

0<i≤r′ I(Gi))Z[H ], if W 6= ∅,

Z[H ], if W = ∅,
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where Gi ⊂ H denotes the decomposition group of vi, and I(Gi) is the aug-
mentation ideal of Z[Gi]. Set

RS,T := det(recwj (u
1−τ
i )− 1)1≤i,j≤r′ ∈ (JW )H .

Let χ be the non-trivial character of G/H . The map

Z[G] = Z[H ×G/H ] −→ Z[H ]

induced by χ is also denoted by χ.
Gross’s tori conjecture is formulated as follows.

Conjecture 6.3.

χ(θK/k,S,T (0)) = 2|S|−1−r
′ hL,S,T
hk,S,T

RS,T in (JW )H .

Remark 6.4. The statement that the equality of Conjecture 6.3 holds in
Z[H ]/I(H)r

′+1 is equivalent to [22, Conj. 7.4] (if we neglect the sign). In-
deed, we see that

RS,T = ((O×L,S,T )
− : (1 − τ)O×L,S,T )R

−
H ,

where R−H is the ‘minus-unit regulator’ defined in [22, §7.2] (where our H

is denoted by G). Since there is a natural map (JW )H → Z[H ]/I(H)r
′+1,

Conjecture 6.3 refines [22, Conj. 7.4].

Theorem 6.5. Conjecture 5.4 implies Conjecture 6.3. In particular, Conjec-
ture 6.3 is valid if K is an abelian extension over Q or k is a global function
field.

Proof. First, note that the Rubin-Stark conjecture for (K/k, S, T, ∅) and
(L/k, S, T,W ) is true by Remark 5.3 (i) and (ii), respectively. By Conjecture
5.4, we have

θK/k,S,T (0) = RecW (ǫWL/k,S,T ) in (JW )H(= Z[G/H ]⊗Z (JW )H).

(Note that ν−1(NH(θK/k,S,T (0))) = θK/k,S,T (0) in (JW )H by [37, Lem. 5.6
(iv)].) Note that χ ◦ Reci = recwi((1− τ)(·)) − 1. So we have

χ(RecW (ǫWL/k,S,T )) = (
∧

1≤i≤r′

(recwi − 1))((1− τ)r
′

ǫWL/k,S,T ).

We know by the proof of [45, Th. 3.5] that

(1 − τ)r
′

ǫWL/k,S,T = 2|S|−1−r
′ hL,S,T
hk,S,T

u1−τ1 ∧ · · · ∧ u1−τr′ .
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Hence we have

χ(θK/k,S,T (0)) = χ(RecW (ǫWL/k,S,T ))

= (
∧

1≤i≤r′

(recwi − 1))((1 − τ)r
′

ǫWL/k,S,T )

= 2|S|−1−r
′ hL,S,T
hk,S,T

(
∧

1≤i≤r′

(recwi − 1))(u1−τ1 ∧ · · · ∧ u1−τr′ )

= 2|S|−1−r
′ hL,S,T
hk,S,T

RS,T ,

as required.
Having now proved the first claim, the second claim follows directly from Corol-
lary 5.17. �

Remark 6.6. The strongest previous evidence in favour of the conjecture for
tori is that obtained by Greither and Kučera in [16, 17], in which it is referred
to as the ‘Minus Conjecture’ and studied in a slightly weaker form in order to
remove any occurence of the auxiliary set T . More precisely, by using rather
different methods they were able to prove that this conjecture was valid in the
case that k = Q, K = FK+ where F is imaginary quadratic of conductor f
and class number hF and K+/Q is tamely ramified, abelian of exponent equal
to an odd prime ℓ and ramified at precisely s primes {pi}1≤i≤s each of which
splits in F/Q; further, any of the following conditions are satisfied

• s = 1 and ℓ ∤ f [16, Th. 8.8], or
• s = 2, ℓ ∤ fhF and either K+/Q is cyclic or p1 is congruent to an ℓ-th

power modulo p2 [16, Th. 8.9], or
• ℓ ≥ 3(s+ 1) and ℓ ∤ hF [17, Th. 3.7].

It is straightforward to show that the conjecture for tori implies their ‘Minus
conjecture’, using [50, Chap. IV, Lem. 1.1] to eliminate the dependence on ‘T ’
(just as in the proof of Theorem 6.1). The validity of the ‘Minus conjecture’ in
the case k = Q is thus also a consequence of Theorem 6.5.

7. Higher Fitting ideals of Selmer groups

In this section, we introduce a natural notion of ‘higher relative Fitting ideals’
in §7.1, and then study the higher Fitting ideals of the transposed Selmer group
Str
S,T (Gm/K). In this way we prove Theorems 1.5 and 1.10 and Corollary 1.14.

7.1. Relative Fitting ideals. In this subsection, we recall the definition of
Fitting ideals and also introduce a natural notion of ‘higher relative Fitting
ideals’.
Suppose that R is a noetherian ring and M is a finitely generated R-module.
Take an exact sequence

R⊕m
f
→ R⊕n →M → 0,
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and denote by Af the matrix with n rows and m columns corresponding to f .

Then for i ∈ Z≥0 the i-th Fitting ideal of M , denoted by FittiR(M), is defined
to be the ideal generated by all (n− i)× (n− i) minors of Af if 0 ≤ i < n and
R if i ≥ n. In this situation we call Af a relation matrix of M . These ideals do
not depend on the choice of the above exact sequence (see [40, Chap. 3]). The
usual notation is Fitti,R(M), but we use the above notation which is consistent

with the exterior power
∧i
RM . If we can take a presentation

R⊕m
f
→ R⊕n →M → 0

of M with m = n, then we say M has a quadratic presentation.
We now fix a submodule N of M , and non-negative integers a and b. We write
ν for the minimal number of generators of N .
If b > ν, then we simply set

Fitt
(a,b)
R (M,N) := FittaR(M/N).

However, if b ≤ ν then we consider a relation matrix for M of the form

A =

(
A1 A2

0 A3

)

where A1 is a relation matrix of N . We suppose that A1 is a matrix with
n1 rows and m1 columns and A3 is a matrix with n2 rows and m2 columns.
We remove b rows from among the first row to the n1-th row of A to get a
matrix A′, and remove a rows from A′ to get A′′. We denote by F (A′′) the
ideal generated by all c × c minors of A′′ where c = n1 + n2 − a − b if c > 0
and F (A′′) = R otherwise. We consider all such A′′ obtained from A and then
define the relative Fitting ideal by setting

Fitt
(a,b)
R (M,N) :=

∑

A′′

F (A′′).

By the standard method using the elementary operations of matrices (see the
proof of [40, p.86, Th. 1]), one can show that this sum does not depend on the
choice of relation matrix A.
The following result gives an alternative characterization of this ideal.

Lemma 7.1. Let X be an R-submodule ofM that is generated by (a+b) elements
x1, . . . , xa+b such that the elements x1, . . . , xb belong to N . Let X be the set of
such R-submodules of M . Then we have

Fitt
(a,b)
R (M,N) =

∑

X∈X

Fitt0R(M/X).

Proof. If b > ν, both sides equal FittaR(M/N), so we may assume b ≤ ν. Let
e1, . . . , en be the generators of M corresponding to the above matrix A where
n = n1 + n2. Suppose that A′′ is obtained from A by removing (a + b) rows,
from the i1-th row to the ia+b-th row with 1 ≤ i1, . . . , ib ≤ n1. Let X be a
submodule of M generated by ei1 , . . . , eia+b . Then by definitions X ∈ X and
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F (A′′) = Fitt0R(M/X). This shows that the left hand side of the equation in
Lemma 7.1 is in the right hand side.
On the other hand, suppose thatX is in X and x1, . . . , xa+b are generators ofX .
Regarding e1, . . . , en1 , x1, . . . , xb, en1+1, . . . , en, xb+1, . . . , xa+b as generators of
M , we have a relation matrix of M of the form

B =




A1 B1 A2 B2

0 Ib 0 0
0 0 A3 B3

0 0 0 Ia




where Ia, Ib are the identity matrices of degree a, b, respectively. Then

C =

(
A1 B1 A2 B2

0 0 A3 B3

)

is a relation matrix of M/X . Since C is obtained from B by removing (a+ b)
rows in the way of obtaining A′′ from A, it follows from the definition of the

relative Fitting ideal that Fitt0R(M/X) ⊂ Fitt
(a,b)
R (M,N). This shows the other

inclusion. �

In the next result we record some useful properties of higher relative Fitting
ideals.

Lemma 7.2.

(i) Fitt
(a,b)
R (M,N) ⊂ Fitta+bR (M).

(ii) Fitt
(a,0)
R (M,N) = FittaR(M).

(iii) Suppose that there exists an exact sequence 0 →M ′ →M → R⊕r → 0
of R-modules and that N ⊂M ′. Then one has

Fitt
(a,b)
R (M,N) =

{
Fitt

(a−r,b)
R (M ′, N), if a ≥ r,

0, otherwise.

(iv) Assume that M/N has a quadratic presentation. Then one has

Fitt
(0,b)
R (M,N) = FittbR(N) Fitt0R(M/N).

Proof. Claims (i), (ii) and (iii) follow directly from the definition of the higher
relative Fitting ideal. To prove claim (iv), we consider a relation matrix

A =

(
A1 A2

0 A3

)

as above, where A1 is a matrix with n1 rows and A3 is a square matrix of n2

rows. Put n = n1 + n2. Then a matrix A′′ obtained from A as above is of the
form

A′′ =

(
A′′1 A′′2
0 A3

)
.

This is a matrix with (n− b) rows and so a nonzero (n− b)× (n− b) minor of
A′′ must be det(A3) times a (n1 − b)× (n1 − b) minor of A′′1 . This implies the
required conclusion. �
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7.2. Statement of the conjecture. Let K/k,G, S, T, V be as in §5.1. For
the element ǫVK/k,S,T , the Rubin-Stark conjecture asserts that Φ(ǫVK/k,S,T ) be-

longs to Z[G] for every Φ in
∧r
GHomG(O

×
K,S,T ,Z[G]).

We next formulate a much stronger conjecture which describes the arithmetic
significance of the ideal generated by the elements Φ(ǫVK/k,S,T ) when Φ runs

over
∧r
GHomG(O

×
K,S,T ,Z[G]).

Conjecture 7.3. One has an equality

FittrG(SS,T (Gm/K)) = {Φ(ǫVK/k,S,T )
# : Φ ∈

r∧

G

HomG(O
×
K,S,T ,Z[G])},

or equivalently (by Lemma 2.8),

FittrG(S
tr
S,T (Gm/K)) = {Φ(ǫVK/k,S,T ) : Φ ∈

r∧

G

HomG(O
×
K,S,T ,Z[G])}.

The following result shows that this conjecture refines the first half of the
statement of Conjecture 5.9.

Proposition 7.4. For a finite set Σ of places, we put JΣ =
∏
v∈Σ I(Gv)Z[G].

Assume Conjecture 7.3 is valid. Then, for every Φ ∈
∧r
GHomG(O

×
K,S,T ,Z[G])

and v ∈ S \ V , one has

Φ(ǫVK/k,S,T ) ∈ JS\(V ∪{v}).

Proof. It is sufficient to show that FittrG(S
tr
S,T (Gm/K)) ⊂ JS\(V ∪{v}). Since

there is a canonical surjective homomorphism

Str
S,T (Gm/K) −→ XK,S ≃ Z[G]⊕r ⊕XK,S\V ,

we have

FittrG(S
tr
S,T (Gm/K)) ⊂ FittrG(XK,S) = Fitt0G(XK,S\V ).

The existence of the surjective homomorphism XK,S\V → YK,S\(V ∪{v}) implies

that Fitt0G(XK,S\V ) ⊂ Fitt0G(YK,S\(V ∪{v})) = JS\(V ∪{v}). This completes the
proof. �

7.3. The leading term conjecture implies Conjecture 7.3. The fol-
lowing result combines with Lemma 2.8 to imply the statement of Theorem
1.5(i).

Theorem 7.5. LTC(K/k) implies Conjecture 7.3. In particular, Conjecture
7.3 is valid if either K is an abelian extension over Q or k is a function field
or [K : k] ≤ 2.

Proof. The second claim is a consequence of Remark 3.3.
To prove the first claim we assume the validity of LTC(K/k). Then the module
P that occurs in the exact sequence (24) is free of rank d, as we noted before.
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Hence we may assume P = F . Let zb ∈
∧d
G F be as in §5.6. By LTC(K/k), zb

is a G-basis of
∧d
G F . Write zb as

zb = x
∧

1≤i≤d

bi

with some x ∈ Z[G]×. By Theorem 5.14 and Proposition 4.1, we have

ǫVK/k,S,T = ±x
∑

σ∈Sd,r

sgn(σ) det(ψi(bσ(j)))r<i,j≤dbσ(1) ∧ · · · ∧ bσ(r).

Take Φ ∈
∧r
GHomG(O

×
K,S,T ,Z[G]). Since F/O

×
K,S,T ≃ im(ψ) ⊂ F is Z-torsion-

free, we know by Lemma 4.7(ii) that the map

HomG(F,Z[G]) −→ HomG(O
×
K,S,T ,Z[G])

induced by the inclusion O×K,S,T ⊂ F is surjective. Hence, we can take a lift Φ̃

of Φ to
∧r
GHomG(F,Z[G]). We have

Φ(ǫVK/k,S,T ) = ±x
∑

σ∈Sd,r

sgn(σ) det(ψi(bσ(j)))r<i,j≤dΦ̃(bσ(1) ∧ · · · ∧ bσ(r))

∈ 〈det(ψi(bσ(j)))r<i,j≤d : σ ∈ Sd,r〉G.

We consider the matrix A corresponding to the presentation

F → F → Str
S,T (Gm/K) → 0

which comes from the exact sequence (24). By Lemma 5.20, ψi = 0 for 1 ≤
i ≤ r. If we write elements in F as column vectors, this implies that the i-th
row of A is zero for all i such that 1 ≤ i ≤ r. Hence we have

FittrG(S
tr
S,T (Gm/K)) = 〈det(ψi(bσ(j)))r<i,j≤d : σ ∈ Sd,r〉G.

Therefore, we get an inclusion

{Φ(ǫVK/k,S,T ) : Φ ∈
r∧

G

HomG(O
×
K,S,T ,Z[G])} ⊂ FittrG(S

tr
S,T (Gm/K)).

We obtain the reverse inclusion from

(b∗σ(1) ∧ · · · ∧ b∗σ(r))(ǫ
V
K/k,S,T ) = ±xdet(ψi(bσ(j)))r<i,j≤d

and the fact that x is a unit in Z[G]. �

7.4. The proof of Theorem 1.10. For any G-module M we write M∗ for
the linear dual HomZ(M,Z) endowed with the natural contragredient action of
G. We also set V ′ := V ∪ {v}.
We start with a useful technical observation.

Lemma 7.6. For each integer i with 1 ≤ i ≤ r let ϕi be an element of (O×K,S,T )
∗.

Then for any given integer N there is a subset {ϕ′i : 1 ≤ i ≤ r} of (O×K,S,T )
∗

which satisfies the following properties.

(i) For each i one has ϕ′i ≡ ϕi modulo N · (O×K,S,T )
∗.
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(ii) The image in (O×K,V ′,T )
∗ of the submodule of (O×K,S,T )

∗ that is gener-

ated by the set {ϕ′i : 1 ≤ i ≤ r} is free of rank r.

Proof. Our choice of V implies that we may choose a free G-submodule F of
(O×K,V ′,T )

∗ of rank r. We then choose a subset {fi : 1 ≤ i ≤ r} of (O×K,S,T )
∗

which the natural surjection ρ : (O×K,S,T )
∗ → (O×K,V ′,T )

∗ sends to a basis of
F . For any integer m we set ϕi,m := ϕi +mNfi and note it suffices to show
that for any sufficiently large m the elements {ρ(ϕi,m) : 1 ≤ i ≤ r} are linearly
independent over Q[G].
Consider the composite homomorphism of G-modules F → Q(O×K,V ′,T )

∗ →
QF where the first arrow sends each ρ(fi) to ρ(ϕi,m) and the second is in-

duced by a choice of Q[G]-equivariant section to the projection Q(O×K,V ′,T )
∗ →

Q((O×K,V ′,T )
∗/F). Then, with respect to the basis {ρ(fi) : 1 ≤ i ≤ r}, this

linear map is represented by a matrix of the form A +mNIr for a matrix A
in Mr(Q[G]) that is independent of m. In particular, if m is large enough to
ensure that −mN is not an eigenvalue of eχA for any χ, then the composite ho-
momorphism is injective and so the elements {ρ(ϕi,m) : 1 ≤ i ≤ r} are linearly
independent over Q[G], as required. �

For each integer i with 1 ≤ i ≤ r let ϕi be an element of (O×K,S,T )
∗. Then,

for any non-zero integer N which belongs to Fitt0G(Cl(K)) we choose homo-
morphisms ϕ′i as in Lemma 7.6. Then the congruences in Lemma 7.6(i) imply
that

(
∧

1≤i≤r

ϕi)(ǫ
V
K/k,S,T ) ≡ (

∧

1≤i≤r

ϕ′i)(ǫ
V
K/k,S,T ) modulo N · Z[G].

Given this, Lemma 7.6(ii) implies that Theorem 1.10 is true provided that it
is true for all Φ of the form

∧
1≤i≤rϕi where the images in (O×K,V ′,T )

∗ of the
homomorphisms ϕi span a free module of rank r.
We shall therefore assume in the sequel that Φ is of this form.
For each index i we now choose a lift ϕ̃i of ϕi to SS,T (Gm/K) and then write
EΦ for the G-module that is generated by the set {ϕ̃i : 1 ≤ i ≤ r}.

Proposition 7.7. If LTC(K/k) is valid, then for every Φ as above one has

Φ(ǫVK/k,S,T )
# ∈ Fitt0G(SS,T (Gm/K)/EΦ).

Proof. We use the existence of an exact triangle in Dp(Z[G]) of the form

(29) Z[G]⊕r,•
θ
−→ RΓc,T ((OK,S)W ,Z)

θ′
−→ C• → Z[G]⊕r,•[1].

Here Z[G]⊕r,• denotes the complex Z[G]⊕r[−1]⊕Z[G]⊕r[−2] and, after choos-
ing an ordering {vi : 1 ≤ i ≤ r} of the places in V , the morphism θ is uniquely
specified by the condition that H1(θ) sends each element bi of the canonical ba-
sis {bi : 1 ≤ i ≤ r} of Z[G]⊕r to w∗i in (YK,V )

∗ ⊂ (XK,S)
∗ = H1

c,T ((OK,S)W ,Z)

and H2(θ) sends each bi to ϕ̃i in SS,T (Gm/K).
Note that the long exact cohomology sequence of this triangle implies C• is
acyclic outside degrees one and two and identifies H1(C•) and H2(C•) with
(XK,S\V )

∗ and SS,T (Gm/K)/EΦ, respectively.
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In particular, if we now write er for the idempotent of Q[G] obtained as∑
rχ,S=r

eχ, then the space erQH
i(C•) vanishes for both i = 1 and i = 2.

We may therefore choose a commutative diagram of R[G]-modules
(30)

0 −−−−→ R[G]⊕r
H1(θ)
−−−−→ RH1

c,T ((OK,S)W ,Z)
H1(θ′)
−−−−→ RH1(C•) −−−−→ 0

λ1

y λ2

y λ3

y

0 −−−−→ R[G]⊕r
H2(θ)
−−−−→ RH2

c,T ((OK,S)W ,Z)
H2(θ′)
−−−−→ RH2(C•) −−−−→ 0

such that erλ2 = erλ
∗
K,S .

This diagram combines with the triangle (29) to imply that there is an equality
of lattices

ϑλ2(detG(RΓc,T ((OK,S)W ,Z)))
−1 = det(λ1) · ϑλ3(detG(C

•))−1.(31)

We now assume that the conjecture LTC(K/k) is valid. Then Proposition
3.4 implies that detG(RΓc,T ((OK,S)W ,Z))

−1 is a free rank one Z[G]-module
and further that if we choose any basis ξ for this module, then both erξ and

erθ
∗
K/k,S,T (0)

# = θ
(r),#
K/k,S,T are bases of the erZ[G]-module

erϑλ2(detG(RΓc,T ((OK,S)W ,Z)))
−1 = erϑλ∗

K,S
(detG(RΓc,T ((OK,S)W ,Z)))

−1.

Bass’s Theorem (cf. [32, Chap. 7, (20.9)]) implies that for each prime p the
projection map Z(p)[G]

× → erZ(p)[G]
× is surjective. The above equality thus

implies that the Z(p)[G]-module ϑλ2(detG(RΓc,T ((OK,S)W ,Z)))
−1 ⊗Z Z(p) has

a basis ξp for which one has erξp = erθ
∗
K/k,S,T (0)

# = θ
(r),#
K/k,S,T . For each prime

p the equality (31) therefore implies that

erϑλ3(detG(C
•))−1 ⊗Z Z(p)(32)

= det(λ1)
−1erϑλ2(detG(RΓc,T ((OK,S)W ,Z)))

−1 ⊗Z Z(p)

=Z(p)[G] · erdet(λ1)
−1θ

(r),#
K/k,S,T .

Now the commutativity of (30) implies that erdet(λ1) is equal to the de-
terminant of the matrix which represents erλ

∗
K,S with respect to the bases

{erw∗i : 1 ≤ i ≤ r} and {erϕi : 1 ≤ i ≤ r} and hence that

er
∧

1≤i≤r

λ∗K,S(w
∗
i ) = erdet(λ1)Φ.

Since the element ǫVK/k,S,T is defined via the equality

θ
(r)
K/k,S,T

∧

1≤i≤r

λ−1K,S(wi − w) = ǫVK/k,S,T ,
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one therefore has

Φ(ǫVK/k,S,T )
#

= (erdet(λ1))
−1

∧

1≤i≤r

λ∗K,S(w
∗
i )(θ

(r),#
K/k,S,T (

∧

1≤i≤r

λ−1K,S(wi − w)))(33)

= (erdet(λ1))
−1θ

(r),#
K/k,S,T

∈ erϑλ3(detG(C
•))−1 ⊗Z Z(p)

where the last containment follows from (32).
Now by the same reasoning as used in the proof of Lemma 2.8, we know that the

p-localized complex Z(p)⊗C
• is represented by a complex P

δ
−→ P , where P is a

finitely generated free Z(p)[G]-module and the first term is placed in degree one.

In particular, since for any character χ of G the space eχCH
1(C•) = eχC ker(δ)

does not vanish if eχer = 0, one has

erϑλ3(detG(C
•))−1(p) = Z(p)[G]erdet(δ)(34)

= Z(p)[G]det(δ)

⊂ Fitt0Z(p)[G]((H
2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p))

= Fitt0G(H
2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p).

The inclusion here follows from the tautological exact sequence

P
δ

−→ P −→ H2(Z(p) ⊗ C•) −→ 0

and the identification H2(Z(p) ⊗ C•) = (H2
c,T ((OK,S)W ,Z)/EΦ)⊗Z Z(p).

The claimed result now follows from (33) and (34). �

Now we proceed to the proof of Theorem 1.10. The existence of a surjec-
tive homomorphism of G-modules f : SS,T (Gm/K) → SV ′∪S∞,T (Gm/K) (see
Proposition 2.4(ii)) combines with Proposition 7.7 to imply that

(35) Φ(ǫVK/k,S,T )
# ∈ Fitt0G(SV ′∪S∞,T (Gm/K)/f(EΦ)).

This implies the first assertion of Theorem 1.10 since the natural map
ClTV ′(K)∨ → SV ′∪S∞,T (Gm/K) induces an injection

ClTV ′(K)∨ → SV ′∪S∞,T (Gm/K)/f(EΦ).

In addition, if G is cyclic, then the latter injection combines with (35) to imply
that

Φ(ǫVK/k,S,T ) ∈ Fitt0G(Cl
T
V ′(K)∨)# = Fitt0G(Cl

T
V ′(K)),

as claimed by the second assertion of Theorem 1.10.
This completes the proof of Theorem 1.10.
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7.5. The proof of Corollary 1.14. Let K/k be a CM-extension, S =
S∞(k), and p an odd prime. For a Zp[G]-module M , we denote by M− the
submodule on which the complex conjugation acts as −1.
Then, since complex conjugation acts trivially on HomZ(O

×
K,S,T ,Z) ⊗ Zp, the

exact sequence

0 −→ ClT (K)∨ −→ SS,T (Gm/K) −→ HomZ(O
×
K,S,T ,Z) −→ 0,

implies that in this case there is an equality

((ClT (K)⊗ Zp)
∨)− = (SS,T (Gm/K)⊗ Zp)

−.

In addition, in this case the containment of Proposition 7.7 applies with V
empty (so r = 0 and EΦ vanishes) to imply that

θK/k,S,T (0)
# ∈ Fitt0G(SS,T (Gm/K)),

and hence one has

θK/k,S,T (0)
# ∈ Fitt0Zp[G](((Cl

T (K)⊗ Zp)
∨)−).

Since θK/k,S,T (0) lies in the minus component of Zp[G], this is in turn equivalent
to the required containment

θK/k,S,T (0)
# ∈ Fitt0Zp[G]((Cl

T (K)⊗ Zp)
∨).

This completes the proof of Corollary 1.14.

7.6. The higher relative Fitting ideals of the dual Selmer group.

We write Mtors for the Z-torsion submodule of a G-module M and abbreviate

the higher relative Fitting ideal Fitt
(a,b)
Z[G] (M,Mtors) to Fitt

(a,b)
G (M).

In this subsection, we study the ideals Fitt
(r,i)
G (Str

S,T (Gm/K)) and, in partic-

ular, prove Theorem 1.5(ii). We note that the exact sequence (2) identifies

Str
S,T (Gm/K)tors with the group ClTS (K).

For each non-negative integer i we define the set Vi as in Theorem 1.5(ii).

Conjecture 7.8. For each non-negative integer i one has an equality

Fitt
(r,i)
G (Str

S,T (Gm/K))

= {Φ(ǫV ∪V
′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

G

HomG(O
×
K,S∪V ′,T ,Z[G])}.

The following result is a generalization of Theorem 7.5 in §7.3.

Theorem 7.9. If LTC(K/k) is valid, then so is Conjecture 7.8.

Proof. We consider the composition of the two canonical homomorphisms

Str
S,T (Gm/K) → XK,S → YK,V ,

and denote its kernel by Str
S,T (Gm/K)′. By Lemma 7.2 (iii), we have

(36) Fitt
(r,i)
G (Str

S,T (Gm/K)) = Fitt
(0,i)
G (Str

S,T (Gm/K)′).
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We also note that the sequence (2) gives rise to an exact sequence of G-modules

(37) 0 −→ ClTS (K) −→ Str
S,T (Gm/K)′ −→ XK,S\V −→ 0.

For V ′ ∈ Vi, we denote by Str
S∪V ′,T (Gm/K)′ the kernel of the natural composi-

tion

Str
S∪V ′,T (Gm/K) → XK,S∪V ′ → YK,V ∪V ′

so that the following sequence is exact

0 −→ ClTS∪V ′(K) −→ Str
S∪V ′,T (Gm/K)′ −→ XK,S\V −→ 0.

Let XV ′ be the subgroup of ClTS (K) generated by the classes of places of K

above V ′ in ClTS (K). Since ClTS (K)/XV ′ = ClTS∪V ′(K), there is an isomorphism
Str
S,T (Gm/K)′/XV ′ ≃ Str

S∪V ′,T (Gm/K)′. By Chebotarev density theorem and
Lemma 7.1, we obtain

Fitt
(0,i)
G (Str

S,T (Gm/K)′) =
∑

V ′∈V′
i

Fitt0G(S
tr
S∪V ′,T (Gm/K)′)

=
∑

V ′∈V′
i

Fittr+iG (Str
S∪V ′,T (Gm/K))(38)

where we used Lemma 7.2 (iii) again to get the last equality.
Now Theorem 7.9 follows from (36), (38) and Theorem 7.5. �

Corollary 7.10. We assume that LTC(K/k) is valid and that the group G =
Gal(K/k) is cyclic. Then for each non-negative integer i one has an equality

FittiG(Cl
T
S (K)) Fitt0G(XK,S\V )

= {Φ(ǫV ∪V
′

K/k,S∪V ′,T ) : V
′ ∈ Vi and Φ ∈

r+i∧

G

HomG(O
×
K,S∪V ′,T ,Z[G])}.

Proof. Since G is cyclic, the G-module XK,S\V has a quadratic presentation.
We may therefore apply Lemma 7.2(iv) to the exact sequence (37) to obtain
an equality

FittiG(Cl
T
S (K)) Fitt0G(XK,S\V ) = Fitt

(0,i)
G (Str

S,T (Gm/K)′).

Given this equality, the claimed result follows from Theorem 7.9 and the equal-
ity (36). �

An application of Theorem 7.9 to character components of ideal class groups
will be given in §8.

8. Higher Fitting ideals of character components of class groups

In this section, as an application of Theorem 7.9, we study the higher Fitting
ideals of character components of class groups.
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8.1. General abelian extensions. We suppose that K/k is a finite abelian
extension as in §7. We take and fix an odd prime p in this section. We put
ATS (K) = ClTS (K)⊗ Zp, A

T (K) = ClT (K)⊗ Zp, and A(K) = Cl(K)⊗ Zp.
We take a character χ of G = Gal(K/k). Throughout this section, we assume
that the order of χ is prime to p.
We decompose G = ∆K × ΓK where |∆K | is prime to p and ΓK is a p-group.
By our assumption χ is regarded as a character of ∆K . For any Zp[∆K ]-module
M , we define the χ-component Mχ by setting

Mχ :=M ⊗Zp[∆K ] Oχ

where Oχ = Zp[im(χ)] on which ∆K acts via χ. This is an exact functor from
the category of Zp[G]-modules to that of Oχ[ΓK ]-modules.
Let kχ be the subfield of K corresponding to the kernel of χ, namely, χ induces
a faithful character of Gal(kχ/k). Put K(∆) := KΓK , then kχ ⊂ K(∆). We
also put ∆K,χ := Gal(K(∆)/kχ) which is a subgroup of ∆K . We consider

K(χ) := K∆K,χ , then Gal(K(χ)/kχ) = ΓK . We consider ATS (K)χ which we
regard as an Oχ[ΓK ]-module. By the standard norm argument, we know the
natural map ATS (K(χ))χ → ATS (K)χ is bijective, so when we consider the χ-
component ATS (K)χ, we may assume that χ is a faithful character of ∆K by
replacing K with K(χ). In the following, we assume this. We write χ(v) 6= 1
if the decomposition group of ∆K at v is non-trivial.

We denote the χ-component of ǫVK/k,S,T by ǫV,χK/k,S,T ∈ ((
⋂r
GO×K,S,T ) ⊗ Zp)

χ.

Let Vi be the set as in Theorem 1.5(ii) for i ≥ 0.
Finally we assume that the following condition is satisfied

(∗) any ramifying place v of k in K does not split completely in K(∆).

Theorem 8.1. Let V be the set of the archimedean places of k that split com-
pletely in K and set r := |V |. We assume that χ 6= 1 is a faithful character
of ∆K , and consider the χ-component of the class group AT (K)χ which is an
Oχ[ΓK ]-module. We assume that the χ-component of LTC(K/k) is valid and
that the condition (∗) is satisfied.
Then for any non-negative integer i one has an equality

FittiOχ[ΓK ](A
T (K)χ) = {Φ(ǫV ∪V

′,χ
K/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

Oχ[ΓK ]

Hχ}

where S = S∞(k) ∪ Sram(K/k) and Hχ = HomOχ[ΓK ]((O
×
K,S∪V ′,T ⊗

Zp)
χ,Oχ[ΓK ]).

Proof. Since v ∈ Sram(K/k) does not split completely inK(∆), one has χ(v) 6= 1
and hence (YK,Sram ⊗ Zp)

χ = 0.
As χ 6= 1, we therefore also have (XK,Sram⊗Zp)

χ = (YK,Sram ⊗Zp)
χ = 0. Hence

(XK,S ⊗ Zp)
χ = (YK,S∞

⊗ Zp)
χ is isomorphic to Oχ[ΓK ]⊕r. This implies that

Fitt
(r,i)
Oχ[ΓK ]((S

tr
S,T (Gm/K)⊗ Zp)

χ), ATS (K)χ) = FittiOχ[ΓK ](A
T
S (K)χ)

and so the claim follows from Theorem 7.9. �
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In the case K = kχ, the condition (∗) is automatically satisfied. We denote the
group AT (kχ)

χ by (AT )χ, which is determined only by χ.

Corollary 8.2. Let χ be a non-trivial linear character of k of order prime to
p, and V the set of the archimedean places of k that split completely in kχ and
set r := |V |. We assume the χ-component of LTC(kχ/k) to be valid. Then for
any non-negative integer i one has an equality

FittiOχ((A
T )χ) = {Φ(ǫV ∪V

′,χ
kχ/k,S∪V ′,T ) : V

′ ∈ Vi and Φ ∈
r+i∧

Oχ

Hχ}

where S = S∞(k) ∪ Sram(kχ/k) and Hχ = HomOχ((O
×
kχ,S∪V ′,T ⊗ Zp)

χ,Oχ).

8.2. The order of character components in CM abelian extensions.

In this subsection, we assume that k is totally real, K is a CM-field, and χ is
an odd character. In this case, we can compute the right hand side of Theorem
8.1 more explicitly. First of all, note that r = 0 in this case.
We first consider the case K = kχ and i = 0. When S = S∞(k) ∪ Sram(kχ/k),
we denote the L-function Lk,S,T (χ

−1, s) by LTk (χ
−1, s). When T is empty, we

denote LTk (χ
−1, s) by Lk(χ

−1, s). In this case, we know

ǫ∅,χkχ/k,S,T = θkχ/k,S,T (0)
χ = LTk (χ

−1, 0)

(see §5.3). Therefore, Corollary 8.2 with i = 0 implies

Corollary 8.3. Let k be totally real, and χ a one dimensional odd character
of k of order prime to p. We assume the χ-component of LTC(kχ/k) to be
valid.

(i) One has |(AT )χ| = |Oχ/L
T
k (χ

−1, 0)|.
(ii) Let Cl(kχ) be the ideal class group of kχ, A(kχ) = Cl(kχ) ⊗ Zp, and

Aχ = A(kχ)
χ. We denote by ω the Teichmüller character giving the

Galois action on µp, the group of p-th roots of unity, and by µp∞(k(µp))
the group of roots of unity of p-power order in k(µp). Then one has

|Aχ| =

{
|Oχ/Lk(χ

−1, 0)| if χ 6= ω,
|Oχ/(|µp∞(k(µp))|Lk(χ−1, 0))| if χ = ω.

Proof. Claim (i) is an immediate consequence of Corollary 8.2 and a remark
before this corollary. We shall now prove claim (ii).
When χ 6= ω, we take a finite place v such that v is prime to p and Nv 6≡
χ(Frv) (mod p). We put T = {v}. Then (AT )χ = Aχ and ordpL

T
k (χ

−1, 0) =
ordpLk(χ

−1, 0). Therefore, claim (i) implies the equality in claim (ii).
When χ = ω, using Chebotarev density theorem we take a finite place v such
that v splits completely in kχ = kω = k(µp) and ordp|µp∞(kχ)| = ordp(Nv−1).
We take T = {v}, then we also have (AT )χ = Aχ from the exact sequence

µp∞(kχ) −→ (
⊕

w|v

κ(w)× ⊗ Zp)
χ −→ (AT )χ −→ Aχ −→ 0
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where w runs over all places of kχ above v. Therefore, claim (ii) follows from
claim (i) in this case, too. �

By combining the argument of Corollary 8.3 with the result of Theorem 1.16
one also directly obtains the following result.

Corollary 8.4. Assume that at most one p-adic place p of k satisfies χ(p) = 1.
Then the same conclusion as Corollary 8.3 holds.

Remark 8.5. We note that the formula on Aχ in Corollary 8.3 has not yet
been proved in general even in such a semi-simple case (namely the case that
the order of χ is prime to p). If no p-adic place p satisfies χ(p) = 1, this is an
immediate consequence of the main conjecture proved by Wiles [54]. Corollary
8.4 shows that this holds even if the set {p : p-adic place of k with χ(p) = 1}
has cardinality one.

8.3. The structure of the class group of a CM field. Now we con-
sider a general CM-field K over a totally real number field k (in particular, we
do not assume that K = kχ).
We assume the condition (∗) stated just prior to Theorem 8.1.
We fix a strictly positive integer N . Suppose that v is a place of k such that v
is prime to p, v splits completely in K and there is a cyclic extension F (v)/k
of degree pN , which is unramified outside v and in which v is totally ramified.
(Note that F (v) is not unique.) We denote by S(K) the set of such places v
and recall that S(K) is infinite (see [30, Lem. 3.1]).
Suppose now that V = {v1, . . . , vt} is a subset of S(K) consisting of t dis-
tinct places. We take a cyclic extension F (vj)/k as above, and put F =
F (v1) · · ·F (vt) the compositum of fields F (vj). In particular, F is totally real.
We denote by Ft,N the set of all fields F constructed in this way. When t = 0,
we define F0,N = {k}.
We set

H := Gal(KF/K) ∼= Gal(F/k) ∼=

t∏

j=1

Gal(F (vj)/k),

where the first (restriction) isomorphism is due to the fact that K ∩F = k and
the second to the fact that each extension F (vj)/k is totally ramified at vj and
unramified at all other places.
We fix a generator σj of Gal(F (vj)/k) and set Sj := σj − 1 ∈ Z[Gal(KF/k)].
Noting that Gal(KF/k) = G × H where G = Gal(K/k), for each element x
of Z[Gal(KF/k)] = Z[G][H ] we write x =

∑
xn1,...,ntS

n1
1 · · ·Sntt where each

xn1,...,nt belongs to Z[G]. We then define a map

ϕV : Z[Gal(KF/k)] → Z/pN [G]

by sending x to x1,...,1 modulo pN and we note that this map is a well-defined
homomorphism of G-modules.
We consider θKF/k,S∪V,T (0) ∈ Z[Gal(KF/k)]. We define ΘiN,S,T (K/k) to be

the ideal of Z/pN [G] generated by all ϕV (θKF/k,S∪V,T (0)) ∈ Z/pN [G] where F
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runs over Ft,N such that t ≤ i. We note that we can compute θKF/k,S∪V,T (0),
and hence also ϕV (θKF/k,S∪V,T (0)), numerically. Taking F = k, we know that

θK/k,S,T (0) mod pN is in ΘiN,S,T (K/k) for any i ≥ 0.

We set FN :=
⋃
t≥0 Ft,N .

For any abelian extension M/k, if S = S∞(k)∪Sram(M/k) and T is the empty
set, we write θM/k(0) for θM/k,S,T (0).
We take a character χ of ∆K such that χ 6= ω, at first. We take S = S∞(k) ∪
Sram(K/k) and T = ∅. In this case, we know that the χ-component θKF/k(0)

χ

is integral, namely is in Oχ[ΓK × H ]. We simply denote the χ-component
ΘiN,S,∅(K/k)

χ by ΘiN(K/k)
χ (⊂ Oχ[ΓK ]). This ideal ΘiN(K/k)

χ coincides

with the higher Stickelberger ideal Θ
(δ,N),χ
i,K defined in [30, §8.1].

When χ = ω, we assume that K = k(µpm) for some m ≥ 1. By using the
Chebotarev density theorem we can choose a place v which satisfies all of the
following conditions

(i) v splits completely in k(µp)/k,
(ii) each place above v of k(µp) is inert in K/k(µp), and
(iii) each place w of K above v satisfies ordp|µp∞(K)| = ordp(Nw − 1).

We set T := {v}. We consider the ω-component ΘiN,S,{v}(K/k)
ω, which we

denoted by ΘiN,{v}(K/k)
ω

Theorem 8.6. Let K/k be a finite abelian extension, K a CM-field, and k
totally real. Suppose that χ is an odd faithful character of ∆K , and consider
the χ-component of the class group A(K)χ which is an Oχ[ΓK ]-module. We
assume the condition (∗) stated just prior to Theorem 8.1 and the validity of
the χ-component of LTC(FK/k) for every field F in FN .

(i) Suppose that χ 6= ω. For any integer i ≥ 0, we have

FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ) = ΘiN(K/k)
χ.

(ii) We assume that K = k(µpm) for some m ≥ 1. For χ = ω, using a
place v as above, we have

FittiOω[ΓK ]/pN (A(K)ω ⊗ Z/pN ) = ΘiN,{v}(K/k)
ω

for any i ≥ 0.

Proof. We first prove claim (i). Since the image of θKF/k(0) in Z[G] is a

multiple of θK/k(0), Θ0
N (K/k)χ is a principal ideal generated by θK/k(0)

χ.
Therefore, this theorem for i = 0 follows from Theorem 8.1.
Now suppose that i > 0. For a place v ∈ S(K), we take a place w of K above
v. Put H(v) = Gal(F (v)K/K) = Gal(F (v)/k) ≃ Z/pN . We take a generator
σv of H(v) and fix it. We define φv by

φv : K×
Recv−→ (I(H(v))Z[Gal(F (v)K/k)]/I(H(v))2Z[Gal(F (v)K/k)])

= Z[G]⊗Z I(H(v))/I(H(v))2 ≃ Z/pN [G]
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Here, the last isomorphism is defined by σv − 1 7→ 1, and Recv is defined by

Recv(a) =
∑

τ∈G

τ−1(recw(τa) − 1)

as in §5.3 by using the reciprocity map recw : K×w → H(v) at w. Taking the
χ-component of φv, we obtain

φv : (K× ⊗ Z/pN )χ −→ Oχ[ΓK ]/pN ,

which we also denote by φv.
We take S = S∞(k) ∪ Sram(K/k), T = ∅, and V = {v1, . . . , vi} ∈ Vi. Suppose
that Φ = ϕ1 ∧ · · · ∧ ϕi where

ϕj ∈ Hχ = HomOχ[ΓK ]((O
×
K,S∪V ⊗ Zp)

χ,Oχ[ΓK ]/pN)

for j = 1, . . . , i. We take a place wj of K above vj for j such that 1 ≤ j ≤ i.
We denote by [wj ] the class of wj in A(K)χ.
By [30, Lem. 10.1], for each integer j = 1,...,i we can choose a place v′j ∈ S(K)
that satisfies all of the following conditions;

(a) [w′j ] = [wj ] in A(K)χ where w′j is a place of K above v′j ,

(b) ϕj(x) = φv′
j
(x) for any x ∈ (O×K,S∪V ⊗ Z/pN )χ,

Here, we used the fact that the natural map (O×K,S∪V ⊗ Z/pN )χ → (K× ⊗

Z/pN )χ is injective.
Set V ′ = {v′1, . . . , v

′
i}. By property (b), we have

Φ(ǫV,χK/k,S∪V,∅) = (φv′1 ∧ · · · ∧ φv′
i
)(ǫV,χK/k,S∪V,∅).

By property (a), there exists an xj in O×K,S∪V ∪V ′ whose prime decomposition

is (xj) = wj(w
′
j)
−1 for any j such that 1 ≤ j ≤ i. Put Vi−1 = {v1, ..., vi−1}

and V ′i = {v1, ..., vi−1, v′i}. Then

ǫV,χK/k,S∪V,∅ = ǫ
V ′
i ,χ

K/k,S∪V ′
i
,∅ + ǫ

Vi−1,χ
K/k,S∪Vi−1,∅

∧ xi

and by using this kind of equation recursively, one deduces that ǫV,χK/k,S∪V,∅ −

ǫV
′,χ

K/k,S∪V ′,∅ is a sum of elements of the form ǫW,χK/k,S∪W,∅ ∧ bj with |W | = i− 1.

Now, by induction on i, we know Ψ(ǫW,χK/k,S∪W,∅) is in Θi−1N (K/k)χ for any Ψ in

HomOχ[ΓK ]((O
×
K,S∪W ⊗ Zp)

χ,Oχ[ΓK ]/pN ). Therefore we have

(φv′1 ∧· · ·∧φv′
i
)(ǫV,χK/k,S∪V,∅) ≡ (φv′1 ∧· · ·∧φv′

i
)(ǫV

′,χ
K/k,S∪V ′,∅) (mod Θi−1N (K/k)χ).

Set F = F (v′1) · · ·F (v
′
i) and H = Gal(FK/K) = Gal(F/k). Then as in §5.3 we

can define RecV ′(ǫV
′,χ

K/k,S∪V ′,∅) ∈ Z[G]⊗(JV ′)H . Let ϕV ′ : Z[G×H ] → Z/pN [G]

be the homomorphism defined before Theorem 8.6 by using the generators σv′
i

we fixed. This ϕV ′ induces a homomorphism

Z[G×H ]/I(H)i+1Z[G×H ] = Z[G]⊗ Z[H ]/I(H)i+1 → Z/pN [G]

and we also denote the composite homomorphism

Z[G] ⊗ (JV ′)H → Z[G] ⊗ Z[H ]/I(H)i+1 ϕV ′

→ Z/pN [G]
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by ϕV ′ .
Then by the definitions of these homomorphisms, we have

(φv′1 ∧ · · · ∧ φv′
i
)(ǫV

′,χ
K/k,S∪V ′,∅) = ϕV ′(RecV ′(ǫV

′,χ
K/k,S∪V ′,∅)).

By Conjecture 5.4 which is a theorem under our assumptions (Theorem 5.16),
we get

ϕV ′(RecV ′(ǫV
′,χ

K/k,S∪V ′,∅)) = ϕV ′(θKF/k(0)
χ).

Combining the above equations, we get

Φ(ǫV,χK/k,S∪V,∅) ≡ ϕV ′(θKF/k(0)
χ) (mod Θi−1N (K/k)χ).

Since ϕV ′(θKF/k(0)
χ), Θi−1N (K/k)χ are in ΘiN(K/k)

χ, we get Φ(ǫV,χK/k,S∪V,∅) ∈

ΘiN (K/k)χ. It follows from Theorem 8.1 that the left hand side of the equation
in Theorem 8.6 (i) is in the right hand side.
On the other hand, suppose that F is in Ft,N with t ≤ i, and that V =
{v1, . . . , vt} is the set of ramifying place in F/k. As above, by Theorem 5.16
we have

ϕV (θKF/k(0)
χ) = ϕV (RecV (ǫ

V,χ
K/k,S∪V,∅)) = (φv1 ∧ · · · ∧ φvt)(ǫ

V,χ
K/k,S∪V,∅).

Therefore, by Theorem 8.1 we have

ϕV (θKF/k(0)
χ) ∈ FitttOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ).

Since FitttOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN) ⊂ FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ), we get

ϕV (θKF/k(0)
χ) ∈ FittiOχ[ΓK ]/pN (A(K)χ ⊗ Z/pN ).

Thus, the right hand side of the equation in Theorem 8.6 (i) is in the left hand
side.
We can prove claim (ii) by the same method. The condition on v is used to
show the injectivity of the natural homomorphism (O×K,S∪V,T ⊗ Z/pN )ω →

(K× ⊗ Z/pN )ω with T = {v}. �

Corollary 8.7. Let K/k and χ be as in Theorem 8.6. We assume the condi-
tion (∗) stated just prior to Theorem 8.1 and that there is at most one place p

of k above p such that χ(p) = 1. Then the same conclusion as in Theorem 8.6
holds.

Proof. It suffices to note that, under the stated conditions, Theorem 1.16 im-
plies that the χ-component of LTC(FK/k) is valid. �

To give an example of Corollary 8.7 we suppose that K is the m-th layer of
the cyclotomic Zp-extension of K(∆) for some strictly positive integer m, and
assume that χ(p) 6= 1 for any p | p.
Then this assumption implies that the condition (∗) is satisfied and so all of the
assumptions in Corollary 8.7 are satisfied. Therefore, by taking the projective
limit of the conclusion, Corollary 8.7 implies the result of the second author in
[30, Th. 2.1].
In this sense, Corollary 8.7 is a natural generalization of the main result in [30].
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To state our final result we now set

Θi(K/k)χ = lim
←−N

ΘiN(K/k)
χ ⊆ Oχ[ΓK ].

Then Theorem 8.6 implies that FittiOχ[Γ](A(K)χ) = Θi(K/k)χ.

Let kχ be the field corresponding to the kernel of χ as in Corollary 8.3. We
denote Θi(kχ/k)

χ by Θi,χ, which is an ideal of Oχ. For χ = ω, we denote
lim
←−N

ΘiN,{v}(kχ/k)
ω by Θi,ω.

Then Corollary 8.7 implies the following result, which is a generalization of the
main result of the second author in [28].

Corollary 8.8. Set Aχ := (Cl(kχ) ⊗ Zp)
χ as in Corollary 8.3. Assume that

there is at most one p-adic place p of k such that χ(p) = 1 and that the p-adic
Iwasawa µ-invariant of K vanishes.
Then there is an isomorphism of Oχ-modules of the form Aχ ≃⊕

i≥1 Θ
i,χ/Θi−1,χ.

Acknowledgements It is a pleasure for the first author to thank Dick Gross
for much encouragement at an early stage of this general project and, in ad-
dition, to thank Cornelius Greither for stimulating discussions. The second
author would like to thank Cornelius Greither for discussions with him on var-
ious topics related to the subjects in this paper. He also thanks Kazuya Kato
and Karl Rubin for their beautiful ideas to define several zeta elements, and for
stimulating conversations and discussions with them. The third author would
like to thank Kazuya Kato for his interest in the works of the third author and
for encouragement.

References

[1] S. Bloch, K. Kato, L-functions and Tamagawa numbers of motives, in
The Grothendieck Festschrift Vol I, Progress in Math. Vol 86, Birkhäuser
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