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Abstract. We construct p-adic L-functions for automorphic repre-
sentations of GL2 of a number field F , and show that the correspond-
ing p-adic L-function of a modular elliptic curve E over F has an extra
zero at the central point for each prime above p at which E has split
multiplicative reduction, a part of the exceptional zero conjecture.
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Introduction

Let F be a number field (with adele ring AF ), and p a prime number. Let
π =

⊗

v πv be an automorphic representation of GL2(AF ). Attached to π is
the complex L-function L(s, π), s ∈ C, of Jacquet-Langlands [JL70]. Under
certain conditions on π, we can also define a p-adic L-function Lp(s, π) of π,
with s ∈ Zp. It is related to L(s, π) by the interpolation property: For every
character χ : Gp → C∗ of finite order we have

Lp(0, π ⊗ χ) = τ(χ)
∏

p|p
e(πp, χp) · L(12 , π ⊗ χ),

where e(πp, χp) is a certain Euler factor (see theorem 4.12 for its definition)
and τ(χ) is the Gauss sum of χ.
Lp(s, π) was defined by Haran [Har87] in the case where π has trivial central
character and πp is an ordinary spherical principal series representation for
all p|p. For a totally real field F , Spieß [Sp14] has given a new construction
of Lp(s, π) that also allows for πp to be a special (Steinberg) representation
for some p|p. In this article, we generalize Spieß’ construction of Lp(s, π) to
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automorphic representations π of GL2 over any number field, with arbitrary
central character, and show that Lp has the conjectured number of exceptional
zeros at the central point. We assume that π is ordinary at all primes p|p (cf.
definition 2.3), that πv is discrete of weight 2 at all real infinite places v, and
is the principal series representation σ(| · |1/2, | · |−1/2) at the complex places.
We define a p-adic measure µπ, which heuristically is the image under the global
reciprocity map of a product of certain local distributions µπp

on F ∗
p attached

to πp for p|p and a Whittaker function times the Haar measure on the group
of p-ideles Ip =

∏′
v∤p F

∗
v .

Then we can define the p-adic L-function of π as an integral with respect to µπ
over the Galois group Gp of the maximal abelian extension that is unramified
outside p and ∞; it is naturally a t-variable function, where t is the Zp-rank of
Gp:

Lp(s, π) := Lp(s1, . . . , st, π) :=

∫

Gp

t
∏

i=1

expp(siℓi(γ))µπ(dγ)

for s1, . . . , st ∈ Zp, where the ℓi are Zp-valued homomorphisms corresponding
to the t independent Zp-extensions of F (cf. section 4.7 for their definition).
For a modular elliptic curve E over F corresponding to π (i.e. the local L-
factors of the Hasse-Weil L-function L(E, s) and of the automorphic L-function
L(s− 1

2 , π) coincide at all places v of F ), our construction allows us to define
the p-adic L-function of E as Lp(E, s) := Lp(s, π). The condition that π be
ordinary at all p|p means that E must have good ordinary or multiplicative
reduction at all places p|p of F .
The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum
[MTT86] for F = Q, and by Hida [Hi09] for totally real F ) states that

ords=0 Lp(E, s) ≥ n, (1)

where n is the number of p|p at which E has split multiplicative reduction,

and gives an explicit formula for the value of the n-th derivative L
(n)
p (E, 0) as

a multiple of certain L-invariants times L(E, 1). The conjecture was proved
in the case F = Q by Greenberg and Stevens [GS93] and independently by
Kato, Kurihara and Tsuji, and for totally real fields F by Spieß [Sp14]. In this
article, we prove (1) for all number fields F .

The structure of this article is as follows: In chapter 2, we describe the local
distributions µπp

on F ∗
p ; they are the image of a Whittaker functional under a

map δ on the dual of πp. For constructing δ, we describe πp in terms of what
we call the “Bruhat-Tits graph” of F 2

p : the directed graph whose vertices (resp.
edges) are the lattices of F 2

p (resp. inclusions between lattices). Roughly speak-
ing, it is a covering of the (directed) Bruhat-Tits tree of GL2(Fp) with fibres
∼= Z. When πp is the Steinberg representation, µp can actually be extended to
all of Fp.
In chapter 3, we attach a p-adic distribution µφ to any map φ(U, xp) of an open
compact subset U ⊆ F ∗

p :=
∏

p|p F
∗
p and an idele xp ∈ Ip (satisfying certain
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conditions). Integrating φ over all the infinite places, we get a cohomology
class κφ ∈ Hd(F ∗′,Df (C)) (where d = r + s − 1 is the rank of the group of
units of F , F ∗′ ∼= F ∗/µF is a maximal torsion-free subgroup of F ∗, and Df (C)
is a space of distributions on the finite ideles of F ). We show that µφ can be
described solely in terms of κφ, and µφ is a (vector-valued) p-adic measure if
κφ is “integral”, i.e. if it lies in the image of Hd(F ∗′,Df (R)), for a Dedekind
ring R consisting of “p-adic integers”.
In chapter 4, we define a map φπ by

φπ(U, x
p) :=

∑

ζ∈F∗

µπp
(ζU)W p

(

ζxp 0
0 1

)

(U ⊆ F ∗
p compact open, xp ∈ Ip). φπ satisfies the conditions of chapter 3, and

we show that κπ := κφπ
is integral by “lifting” the map φπ 7→ κπ to a function

mapping an automorphic form to a cohomology class in Hd(GL2(F )
+,Af ),

for a certain space of functions Af . (Here GL2(F )
+ is the subgroup of M ∈

GL2(F ) with totally positive determinant.) For this, we associate to each
automorphic form ϕ a harmonic form ωϕ on a generalized upper-half space
H∞, which we can integrate between any two cusps in P1(F ).
Then we can define the p-adic L-function Lp(s, π) := Lp(s, κπ) as above,
with µπ := µφπ

. By a result of Harder [Ha87], Hd(GL2(F )
+,Af )π is one-

dimensional, which implies that Lp(s, π) has values in a one-dimensional
Cp-vector space. Finally, we formulate an exceptional zero conjecture (conjec-
ture 4.15) for all number fields F , and show that Lp(s, π) satisfies (1).
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1 Preliminaries

Let X be a totally disconnected locally compact topological space, R a topo-
logical Hausdorff ring. We denote by C(X , R) the ring of continuous maps
X → R, and let Cc(X , R) ⊆ C(X , R) be the subring of compactly supported
maps. When R has the discrete topology, we also write C0(X , R) := C(X , R),
C0
c (X , R) := Cc(X , R).

We denote by Co(X ) the set of all compact open subsets of X , and for an R-
module M we denote by Dist(X ,M) the R-module of M -valued distributions
on X , i.e. the set of maps µ : Co(X ) →M such that µ(

⋃n
i=1 Ui) =

∑n
i=1 µ(Ui)

for any pairwise disjoint sets Ui ∈ Co(X ).
For an open set H ⊆ X , we let 1H ∈ C(X , R) be the R-valued indicator
function of H on X .
Throughout this paper, we fix a prime p and embeddings ι∞ : Q →֒C, ιp :
Q →֒Cp. Let O denote the valuation ring of Q with respect to the p-adic
valuation induced by ιp.
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We writeG := GL2 throughout the article, and let B denote the Borel subgroup
of upper triangular matrices, T the maximal torus (consisting of all diagonal
matrices), and Z the center of G.

For a number field F , we let G(F )+ ⊆ G(F ) and B(F )+ ⊆ B(F ) denote
the corresponding subgroups of matrices with totally positive determinant, i.e.
σ(det(g)) is positive for each real embedding σ : F →֒R. (If F is totally com-
plex, this is an empty condition, so we have G(F )+ = G(F ), B(F )+ = B(F )
in this case.) Similarly, we define G(R)+ and G(C)+ = G(C).

1.1 p-adic measures

Definition 1.1. Let X be a compact totally disconnected topological space.
For a distribution µ : Co(X ) → C, consider the extension of µ to the Cp-linear
map C0(X ,Cp) → Cp ⊗Q C, f 7→

∫

fdµ. If its image is a finitely-generated
Cp-vector space, µ is called a p-adic measure.

We denote the space of p-adic measures on X by Distb(X ,C) ⊆ Dist(X ,C). It is
easily seen that µ is a p-adic measure if and only if the image of µ, considered as
a map C0(X ,Z) → C, is contained in a finitely generated O-module. A p-adic
measure can be integrated against any continuous function f ∈ C(X ,Cp).

2 Local results

For this chapter, let F be a finite extension of Qp, OF its ring of integers, ̟ its
uniformizer and p = (̟) the maximal ideal. Let q be the cardinality of OF /p,
and set U := U (0) := O×

F , U
(n) := 1 + pn ⊆ U for n ≥ 1.

We fix an additive character ψ : F → Q
∗
with kerψ ⊇ OF and p−1 6⊆ kerψ. 1

We let | · | be the absolute value on F ∗ (normalized by |̟| = q−1), ord = ord̟
the additive valuation, and dx the Haar measure on F normalized by

∫

OF
dx =

1. We define a (Haar) measure on F ∗ by d×x := q
q−1

dx
|x| (so

∫

O×

F

d×x = 1).

2.1 Gauss sums

Recall that the conductor of a character χ : F ∗ → C∗ is by definition the
largest ideal pn, n ≥ 0, such that kerχ ⊇ U (n), and that χ is unramified if its
conductor is p0 = OF .

Definition 2.1. Let χ : F ∗ → C∗ be a quasi-character with conductor pf .
The Gauss sum of χ (with respect to ψ) is defined by

τ(χ) := [U : U (f)]

∫

̟−fU

ψ(x)χ(x)d×x.

1Note that there is in general no ψ such that ker(ψ) = OF , since p−1/OF has more than
p points of order p if F |Qp has inertia index > 1.
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For a locally constant function g : F ∗ → C, we define

∫

F∗

g(x)dx := lim
n→∞

∫

x∈F∗,−n≤ord(x)≤n
g(x)dx,

whenever that limit exists.

Lemma 2.2. Let χ : F ∗ → C∗ be a quasi-character with conductor pf . For
f = 0, assume |χ(̟)| < q. Then we have

∫

F∗

χ(x)ψ(x)dx =

{

1−χ(̟)−1

1−χ(̟)q−1 if f = 0

τ(χ) if f > 0.

(Cf. [Sp14], lemma 3.4.)

2.2 Tamely ramified representations of GL2(F )

For an ideal a ⊂ OF , letK0(a) ⊆ G(OF ) be the subgroup of matrices congruent
to an upper triangular matrix modulo a.
Let π : GL2(F ) → GL(V ) be an irreducible admissible infinite-dimensional
representation on a C-vector space V , with central quasicharacter χ. It is well-
known (e.g [Ge75], Thm. 4.24) that there exists a maximal ideal c(π) = c ⊂ OF ,
the conductor of π, such that the space V K0(c),χ = {v ∈ V |π(g)v = χ(a)v ∀g =
(

a b
c d

)

∈ K0(c)} is non-zero (and in fact one-dimensional). A representation π
is called tamely ramified if its conductor divides p.
If π is tamely ramified, then π is the spherical resp. special representation
π(χ1, χ2) (in the notation of [Ge75] or [Sp14]):
If the conductor is OF , π is (by definition) spherical and thus a principal series
representation π(χ1, χ2) for two unramified quasi-characters χ1 and χ2 with
χ1χ

−1
2 6= | · |±1 ([Bu98], Thm. 4.6.4).

If the conductor is p, then π = π(χ1, χ2) with χ1χ
−1
2 = | · |±1.

For α ∈ C∗, we define a character χα : F ∗ → C∗ by χα(x) := αord(x).
So let now π = π(χ1, χ2) be a tamely ramified irreducible admissible infinite-
dimensional representation of GL2(F ); in the special case, we assume χ1 and
χ2 to be ordered such that χ1 = | · |χ2.
Set αi := χi(̟)

√
q ∈ C∗ for i = 1, 2. (We also write π = πα1,α2 sometimes.)

Set a := α1 + α2, ν := α1α2/q. Define a distribution µα1,ν := µα1/ν :=
ψ(x)χα1/ν(x)dx on F ∗.
For later use, we will need the following condition on the αi:

Definition 2.3. Let π = πα1,α2 be tamely ramified. π is called ordinary if a

and ν both lie in O∗
(i.e. they are p-adic units in Q). Equivalently, this means

that either α1 ∈ O∗
and α2 ∈ qO∗

, or vice versa.

Proposition 2.4. Let χ : F ∗ → C∗ be a quasi-character with conductor pf ; for
f = 0, assume |χ(̟)| < |α2|. Then the integral

∫

F∗ χ(x)µα1/ν(dx) converges
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and we have
∫

F∗

χ(x)µα1/ν(dx) = e(α1, α2, χ)τ(χ)L(
1
2 , π ⊗ χ),

where

e(α1, α2, χ) =















(1−α1χ(̟)q−1)(1−α2χ(̟)−1q−1)(1−α2χ(̟)q−1)

(1−χ(̟)α−1
2

)
, f = 0 and π spherical,

(1−α1χ(̟)q−1)(1−α2χ(̟)−1q−1)

(1−χ(̟)α−1
2

)
, f = 0 and π special,

(

α1
ν

)

−f
=

(

α2
q

)f
, f > 0,

and where we assume the right-hand side to be continuously extended to the
potential removable singularities at χ(̟) = q/α1 or = q/α2.

Proof. This follows immediately from lemma 2.2 and the definition of the
(Jacquet-Langlands) L-function.

2.3 The Bruhat-Tits graph

Let Ṽ denote the set of lattices (i.e. submodules isomorphic to O2
F ) in F 2,

and let Ẽ be the set of all inclusion maps between two lattices; for such a map
e : v1 →֒ v2 in Ẽ , we define o(e) := v1, t(e) := v2. Then the pair T̃ := (Ṽ , Ẽ) is
naturally a directed graph, connected, with no directed cycles (specifically, Ẽ
induces a partial ordering on Ṽ). For each v ∈ Ṽ , there are exactly q+1 edges
beginning (resp. ending) in v, each.

Recall that the Bruhat-Tits tree T = (V , ~E) of G(F ) is the directed graph
whose vertices are homothety classes of lattices of F 2 (i.e. V = Ṽ/ ∼, where

v ∼ ̟iv for all i ∈ Z), and the directed edges e ∈ ~E are homothety classes of

inclusions of lattices. We can define maps o, t : ~E → V analogously. For each
edge e ∈ ~E , there is an opposite edge e′ ∈ ~E with o(e′) = t(e), t(e′) = o(e); and
the undirected graph underlying T is simply connected. We have a natural
“projection map” π : T̃ → T , mapping each lattice and each homomorphism
to its homothety class. Choosing a (set-theoretic) section s : V → Ṽ , we get a

bijection V × Z
∼=−→ Ṽ via (v, i) 7→ ̟is(v).

The group G(F ) operates on Ṽ via its standard action on F 2, i.e. gv = {gx|x ∈
v} for g ∈ G(F ), and on Ẽ by mapping e : v1 → v2 to the inclusion map
ge : gv1 → gv2. The stabilizer of the standard vertex v0 := O2

F is G(OF ).

For a directed edge e ∈ ~E of the Bruhat-Tits tree T , we define U(e) to be the
set of ends of e (cf. [Se80]/[Sp14]); it is a compact open subset of P1(F ), and
we have gU(e) = U(ge) for all g ∈ G(F ).
For n ∈ Z, we set vn := OF ⊕ pn ∈ Ṽ , and denote by en the edge from vn+1 to
vn; the “decreasing” sequence (π(e−n))n∈Z is the geodesic from ∞ to 0. (The
geodesic from 0 to ∞ traverses the π(vn) in the natural order of n ∈ Z.) We
have U(π(en)) = p−n for each n.
On T , we have the height function h : V → Z (cf. [BL95]) defined as follows:
The geodesic ray from v ∈ V to ∞ must contain some π(vn) (n ∈ Z), since
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it has non-empty intersection with A := {π(vn)|n ∈ Z}; we define h(v) :=
n − d(v, π(vn)) for any such vn. This is easily seen to be well-defined, and
satisfies h(π(vn)) = n for all n ∈ Z. We have the following lemma:

Lemma 2.5. (a) For all e ∈ E, we have

h(t(e)) =

{

h(o(e)) + 1 if ∞ ∈ U(e),

h(o(e))− 1 otherwise.

(b) For a ∈ F ∗, b ∈ F , v ∈ V we have

h

((

a b
0 1

)

v

)

= h(v)− ord̟(a).

(Cf. [Sp14], lemma 3.6)

Let R be a ring, M an R-module. We let C(Ṽ ,M) be the R-module of maps
φ : Ṽ → M , and C(Ẽ ,M) the R-module of maps Ẽ → M . Both are G(F )-
modules via (gφ)(v) := φ(g−1v), (gc)(e) := c(g−1e).

We let Cc(Ṽ ,M) ⊆ C(Ṽ ,M) and Cc(Ẽ ,M) ⊆ C(Ẽ ,M) be the (G(F )-stable)
submodules of maps with compact support, i.e. maps that are zero outside a
finite set. We get pairings

〈- , -〉 : Cc(Ṽ , R)× C(Ṽ ,M) →M, 〈φ1, φ2〉 :=
∑

v∈Ṽ
φ1(v)φ2(v) (2)

and

〈- , -〉 : Cc(Ẽ , R)× C(Ẽ ,M) →M, 〈c1, c2〉 :=
∑

e∈Ẽ
c1(v)c2(v). (3)

We define Hecke operators T,N : C(Ṽ,M) → C(Ṽ ,M) by

Tφ(v) =
∑

t(e)=v

φ(o(e)) and Nφ := ̟φ (i.e. Nφ(v) = φ(̟−1v))

for all v ∈ Ṽ . These restrict to operators on Cc(Ṽ , R), which we sometimes
denote by Tc and Nc for emphasis. With respect to (2), Tc is adjoint to TN ,
and Nc is adjoint to its inverse operator N−1 : Cc(Ṽ , R) → Cc(Ṽ , R).

T and N obviously commute, and we have the following Hecke structure the-
orem on compactly supported functions on Ṽ (an analogue of [BL95], Thm.
10):

Theorem 2.6. Cc(Ṽ , R) is a free R[T,N±1]-module (where R[T,N±1] is the
ring of Laurent polynomials in N over the polynomial ring R[T ], with N and
T commuting).
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Proof. Fix a vertex v0 ∈ Ṽ . For each n ≥ 0, let Cn be the set of vertices v ∈ Ṽ
such that there is a directed path of length n from v0 to v in Ṽ , and such that
d(π(v0), π(v)) = n in the Bruhat-Tits tree T . So C0 = {v0}, and Cn is a lift of
the ”circle of radius n around v0” in T , in the parlance of [BL95].
One easily sees that

⋃∞
n=0 Cn is a complete set of representatives for the projec-

tion map π : Ṽ → V ; specifically, for n > 1 and a given v ∈ Cn−1, Cn contains
exactly q elements adjacent to v in Ṽ; and we can write Ṽ as a disjoint union
⋃

j∈Z

⋃∞
n=0N

j(Cn).
We further define V0 := {v0} and choose subsets Vn ⊆ Cn as follows: We let
V1 be any subset of cardinality q. For n > 1, we choose q − 1 out of the q
elements of Cn adjacent to v′, for every v′ ∈ Cn−1, and let Vn be the union of
these elements for all v′ ∈ Cn−1. Finally, we set

Hn,j := {φ ∈ Cc(Ṽ , R)| Supp(φ) ⊆
n
⋃

i=0

N j(Ci)} for each n ≥ 0, j ∈ Z,

Hn :=
⋃

j∈ZHn,j, and H−1 := H−1,j := {0}. (For ease of notation, we identify
v ∈ Ṽ with its indicator function 1{v} ∈ Cc(Ṽ , R) in this proof.)

Define T ′ : Cc(Ṽ , R) → Cc(Ṽ , R) by

T ′(φ)(v) :=
∑

t(e)=(v),

o(e)∈Nj (Cn)

φ(o(e)) for each v ∈ N j(Cn−1), j ∈ Z;

T ′ can be seen as the ”restriction to one layer”
⋃∞
n=0N

j(Cn) of T . We have
T ′(v) ≡ T (v) mod Hn−1 for each v ∈ Hn, since the ”missing summand” of T ′

lies in Hn−1.
We claim that for each n ≥ 0, the set Xn,j :=

⋃n
i=0N

jT n−i(Vi) is an R-basis
for Hn,j/Hn−1,j. By the above congruence, we can replace T by T ′ in the
definition of Xn,j.
The claim is clear for n = 0. So let n ≥ 1, and assume the claim to be true
for all n′ ≤ n. For each v ∈ Cn−1, the q points in Cn adjacent to v are
generated by the q − 1 of these points lying in Vn, plus T

′v (which just sums
up these q points). By induction hypothesis, v is generated by Xn−1,0, and
thus (taking the union over all v), Cn is generated by T ′(Xn−1,0)∪ Vn = Xn,0.
Since the cardinality of Xn,0 equals the R-rank of Hn,0/Hn−1,0 (both are equal
to (q + 1)qn−1), Xn,0 is in fact an R-basis.
Analoguously, we see that Hn,j/Hn−1,j has N j(Xn,0) = Xn,j as a basis, for
each j ∈ Z.
From the claim, it follows that

⋃

j∈ZXn,j is an R-basis of Hn/Hn−1 for each

n, and that V :=
⋃∞
n=0 Vn is an R[T,N±1]-basis of Cc(Ṽ , R).

For a ∈ R and ν ∈ R∗ , we let B̃a,ν(F,R) be the ”common cokernel” of T − a

and N−ν in Cc(Ṽ , R), namely B̃a,ν(F,R) := Cc(Ṽ , R)/(Im(T−a)+Im(N−ν));
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dually, we define B̃a,ν(F,M) := ker(T − a) ∩ ker(N − ν) ⊆ C(Ṽ ,M).

For a lattice v ∈ Ṽ , we define a valuation ordv on F as follows: For w ∈ F 2,
the set {x ∈ F |xw ∈ v} is some fractional ideal ̟mOF ⊆ F (m ∈ Z); we set
ordv(w) := m. This map can also be given explicitly as follows: Let λ1, λ2 be
a basis of v. We can write any w ∈ F 2 as w = x1λ1 + x2λ2; then we have
ordv(w) = min{ord̟(x1), ord̟(x2)}. This gives a ”valuation” map on F 2, as
one easily checks. We restrict it to F ∼= F × {0} →֒F 2 to get a valuation ordv
on F , and consider especially the value at e1 := (1, 0).

Lemma 2.7. Let α, ν ∈ R∗, and put a := α + qν/α. Define a map ̺ = ̺α,ν :

Ṽ → R by ̺(v) := αh(π(v))ν− ordv(e1). Then ̺ ∈ B̃a,ν(F,R).

Proof. One easily sees that
(

v 7→ ν− ordv(e1)
)

∈ ker(N − ν). It remains to show
that ̺ ∈ ker(T − a):
We have the Iwasawa decomposition G(F ) = B(F )G(OF ) =
{( ∗ ∗

0 1 )}Z(F )G(OF ); thus every vertex in Ṽ can be written as ̟iv with
v = ( a b0 1 ) v0, with i ∈ Z, a ∈ F ∗, b ∈ F .
Now the lattice v = ( a b0 1 ) v0 is generated by the vectors λ1 = ( a0 ) and λ2 =
( b1 ) ∈ O2

F , so e1 = a−1λ1 and thus ordv(e1) = ord̟(a
−1) = − ord̟(a). The

q + 1 neighbouring vertices v′ for which there exists an e ∈ Ẽ with o(e) =
v′, t(e) = v are given by Niv, i ∈ {∞} ∪ OF /p, with N∞ := ( 1 0

0 ̟ ), and
Ni := (̟ i

0 1 ) where i ∈ OF runs through a complete set of representatives
mod ̟. By lemma 2.5, h(π(N∞v)) = h(π(v))+1 and h(π(Niv)) = h(π(v))−1
for i 6= ∞. By considering the basis {Niλ1, Niλ2} of Niv for each Ni, we see
that ordN∞v(e1) = ordv(e1) and ordNiv(e1) = ordv(e1)− 1 for i 6= ∞. Thus we
have

(T̺)(v) =
∑

t(e)=v

αh(π(o(e)))ν− ordo(e)(e1)

= αh(π(v))+1ν− ordv e1 + q · αh(π(v))−1ν1−ordv(e1)

= (α + qα−1ν)αh(π(v))ν− ordv e1 = a̺(v),

and also (T̺)(̟iv) = (TN−i̺)(v) = N−i(a̺)(v) = a̺(̟iv) for a general
̟iv ∈ Ṽ, which shows that ̺ ∈ ker(T − a).

If a2 6= ν(q + 1)2 (the “spherical case”), we put Ba,ν(F,R) := B̃a,ν(F,R) and

Ba,ν(F,M) := B̃a,ν(F,M).

In the “special case” a2 = ν(q + 1)2, we need to assume that the polynomial
X2 − aνX + qν−1 ∈ R[X ] has a zero α′ ∈ R. Then the map ̺ := ̺α′,ν ∈
C(Ṽ , R) defined as above lies in B̃aν,ν−1

(F,R) = ker(TN − a) ∩ ker(N−1 − ν)
by Lemma 2.7, since aν = α′ + qν−1/α′. In other words, the kernel of the map
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〈·, ̺〉 : Cc(Ṽ , R) → R contains Im(T − a) + Im(N − ν); and we define

Ba,ν(F,R) := ker (〈·, ̺〉) / (Im(T − a) + Im(N − ν))

to be the quotient; evidently, it is an R-submodule of codimension 1 of
B̃a,ν(F,R). Dually, T−a and N−ν both map the submodule ̺M = {̺ ·m,m ∈
M} of C(Ṽ ,M) to zero and thus induce endomorphisms on C(Ṽ ,M)/̺M ; we
define Ba,ν(F,M) to be the intersection of their kernels.
In the special case, since ν = α2, Lemma 2.7 states that ̺(gv0) =

χα(ad)̺(v0) = χα(det g)̺(v0) for all g =

(

a b
0 d

)

∈ B(F ), and thus for

all g ∈ G(F ) by the Iwasawa decomposition, since G(OF ) fixes v0 and lies
in the kernel of χα ◦ det. By the multiplicity of det, we have (g−1̺)(v) =
̺(gv) = χα(det g)̺(v) for all g ∈ G(F ), v ∈ Ṽ. So φ ∈ ker〈·, ̺〉 implies
〈gφ, ̺〉 = 〈φ, g−1̺〉 = χα(det g)〈φ, ̺〉 = 0, i.e. ker〈·, ̺〉 and thus Ba,ν(F,R) are
G(F )-modules.
By the adjointness properties of the Hecke operators T and N , we have pairings
coker(Tc − a) × ker(TN − a) → M and coker(Nc − ν) × ker(N−1 − ν) → M ,
which ”combine” to give a pairing

〈- , -〉 : Ba,ν(F,R)× Baν,ν−1

(F,M) →M

(since ker(TN − a) ∩ ker(N−1 − ν) = ker(T − aν) ∩ ker(N − ν−1)), and a

corresponding isomorphism Baν,ν−1

(F,M)
∼=−→ Hom(Ba,ν(F,R),M).

Definition 2.8. LetG be a totally disconnected locally compact group,H ⊆ G
an open subgroup. For a smooth R[H ]-module M , we define the (compactly)
induced G-representation of M , denoted IndGHM , to be the space of maps
f : G → M such that f(hg) = f(g) for all g ∈ G, h ∈ H , and such that f has
compact support modulo H . We let G act on IndGHM via g · f(x) := f(xg).
(We can also write IndGHM = R[G]⊗R[H] M , cf. [Br82], III.5.)

We further define CoindGHM := HomR[H](R[G],M). Finally, for an R[G]-
module N , we write resGH N for its underlying R[H ]-module (“restriction”).

By Theorem 2.6, Tc − a (as well as Nc − ν) is injective, and the induced map

Nc − ν : coker(Tc − a) = Cc(Ṽ , R)/ Im(Tc − a) → coker(Tc − a)

(of R[T,N±1]/(T − a) = R[N±1]-modules) is also injective. Now since G(F )
acts transitively on Ṽ , with the stabilizer of v0 := O2

F being K := G(OF ), we

have an isomorphism Cc(Ṽ, R) ∼= Ind
G(F )
K R. Thus we have exact sequences

0 → Ind
G(F )
K R

T−a−−−→ Ind
G(F )
K R −→ coker(Tc − a) −→ 0 (4)

and (for a, ν in the spherical case)

0 → coker(Tc − a)
N−ν−−−→ coker(Tc − a) → Ba,ν(F,R) → 0, (5)

with all entries being free R-modules. Applying HomR(·,M) to them, we get:
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Lemma 2.9. We have exact sequences of R-modules

0 → ker(TN − a) → Coind
G(F )
K M

T−a−−−→ Coind
G(F )
K M → 0

and, if Ba,ν(F,M) is spherical (i.e. a2 6= ν(q + 1)2),

0 → Baν,ν−1

(F,M) → ker(TN − a)
N−ν−−−→ ker(TN − a) → 0.

For the special case, we have to work a bit more to get similar exact sequences:
By [Sp14], eq. (22), for the representation St−(F,R) := B−(q+1),1(F,R) (i.e.
ν = 1, α = −1) with trivial central character, we have an exact sequence of
G-modules

0 → IndGKZ R→ IndGK′Z R → St−(F,R) → 0, (6)

where K ′ = 〈W 〉K0(p) is the subgroup of KZ generated by W := ( 0 1
̟ 0 ) and

the subgroup K0(p) ⊆ K of matrices that are upper-triangular modulo p.
(Since W 2 ∈ Z, K0(p)Z is a subgroup of K ′ of order 2.) Now aany special
representation (π, V ) can be written as π = χ ⊗ St− for some character χ =
χZ (cf. the proof of lemma 2.12 below), and is obviously G-isomorphic to
the representation π ⊗ (χ ◦ det) acting on the space V ⊗R R(χ ◦ det), where
R(χ ◦det) is the ring R with G-module structure given via gr = χ(det(g))r for
g ∈ G, r ∈ R. Tensoring (6) with R(χ ◦ det) over R gives an exact sequence of
G-modules

0 → IndGKZ χ→ IndGK′Z χ→ V → 0. (7)

It is easily seen that R(χ ◦ det) fits into another exact sequence of G-modules

0 → IndGH R
(̟ 0
0 1 )−χ(̟) id

−−−−−−−−−−→ IndGH R
ψ−→ R(χ ◦ det) → 0,

where H := {g ∈ G| det g ∈ O×
F } is a normal subgroup containing K,

(̟ 0
0 1 ) (f)(g) := f((̟ 0

0 1 )
−1
g) for f ∈ IndGH R = {f : G → R|f(Hg) = f(g)

for all g ∈ G}, g ∈ G, is the natural operation of G, and where ψ is the
G-equivariant map defined by 1U 7→ 1.
Now since H ⊆ G is a normal subgroup, we have IndGH R

∼= R[G/H ] as G-
modules (in fact G/H ∼= Z as an abstract group). Let X ⊆ G be a subgroup
such that the natural inclusion X/(X∩H) →֒G/H has finite cokernel; let giH ,
i = 1, . . . n be a set of representatives of that cokernel. Then we have a (non-
canonical) X-isomorphism

⊕n
i=0 Ind

X
X∩H → IndGH R defined via (1(X∩H)x)i 7→

1Hxgi for each i = 1, . . . , n (cf. [Br82], III (5.4)).

Using this isomorphism and the “tensor identity” IndGHM ⊗ N ∼= IndGH(M ⊗
resGH N) for any groups H ⊆ G, H-module M and G-module N ([Br82] III.5,
Ex. 2), we have

IndGKZ R⊗R IndGH R
∼= IndGKZ(res

G
KZ(Ind

G
H R))

= IndGKZ((Ind
KZ
KZ∩H R)

2)

= (IndGKZ(Ind
KZ
K R))2 = (IndGK R)

2
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(since KZ/KZ ∩H →֒G/H has index 2), and similarly

IndGK′Z R⊗R IndGH R
∼= (IndGK′ R)2.

Thus, we can resolve the first and second term of (7) into exact sequences

0 → (IndGK R)
2 → (IndGK R)

2 → IndGKZ χ→ 0,

0 → (IndGK′ R)2 → (IndGK′ R)2 → IndG〈W 〉K0(p)Z χ→ 0.

Dualizing (7) and these by taking Hom(·,M) for an R-module M , we get a

“resolution” of Baν,ν−1

(F,M) in terms of coinduced modules:

Lemma 2.10. We have exact sequences

0 →Baν,ν−1

(F,M) → CoindGK′ZM(χ) → CoindGKZM(χ) → 0,

0 →CoindGKZM(χ) → (CoindGK R)
2 → (CoindGK R)

2 → 0,

0 →CoindGK′ZM(χ) → (CoindGK′ R)2 → (CoindGK′ R)2 → 0

for all special Ba,ν(F,R) (i.e. a2 = ν(q + 1)2), where χ = χZ is the central
character.

It is easily seen that the above arguments could be modified to get a similar set
of exact sequences in the spherical case as well (replacing K ′ by K everywhere),
in addition to that given in lemma 2.9; but we will not need this.

2.4 Distributions on the Bruhat-Tits graph

For ̺ ∈ C(Ṽ , R) we define R-linear maps

δ̺̃ : C(Ẽ ,M) → C(Ṽ ,M), δ̺̃(c)(v) :=
∑

v=t(e)

̺(o(e))c(e)−
∑

v=o(e)

̺(t(e))c(e),

δ̺̃ : C(Ṽ ,M) → C(Ẽ ,M), δ̺̃(φ)(e) := ̺(o(e))φ(t(e)) − ̺(t(e))φ(o(e)).

One easily checks that these are adjoint with respect to the pairings (2) and
(3), i.e. we have 〈δ̺̃(c), φ〉 = 〈c, δ̺̃(φ)〉 for all c ∈ Cc(Ẽ , R), φ ∈ C(Ṽ ,M). We

denote the maps corresponding to ̺ ≡ 1 by δ := δ̃1, δ
∗ := δ̃1.

For each ̺, the map δ̺̃ fits into an exact sequence

Cc(Ẽ , R)
δ̺̃−→ Cc(Ṽ , R)

〈·,̺〉−−−→ R → 0

but it is not injective in general: e.g. for ̺ ≡ 1, the map Ẽ → R symbolized by

·
1

��

−1
// ·

−1

��· 1
// ·
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(and zero outside the square) lies in ker δ.
The restriction δ∗|Cc(Ṽ,R) to compactly supported maps is injective since T̃ has
no directed circles, and we have a surjective map

coker
(

δ∗ : Cc(Ṽ , R) → Cc(Ẽ , R)
)

→ C0(P1(F ), R)/R, c 7→
∑

e∈Ẽ

c(e)1U(π(e))

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits
tree T ). Its kernel is generated by the functions 1{e} − 1{e′} for e, e′ ∈ Ẽ with
π(e) = π(e′).
For ̺1, ̺2 ∈ C(Ṽ , R) and φ ∈ C(Ṽ ,M) it is easily checked that

(

δ̺̃1 ◦ δ̺̃2
)

(φ) = (T + TN)(̺1 · ̺2) · φ− ̺2 · (T + TN)(̺1 · φ).

For a′ ∈ R and ̺ ∈ ker(T + TN − a′) , applying this equality for ̺1 = ̺ and
̺2 = 1 shows that δ̺̃ maps Im δ∗ into Im(T + TN − a′), so we get an R-linear
map

δ̺̃ : coker
(

δ∗ : Cc(Ṽ , R) → Cc(Ẽ , R)
)

→ coker(Tc + TcNc − a′).

Let now again α, ν ∈ R∗, and a := α+ qν/α. We let ̺ := ̺α,ν ∈ B̃a,ν(F,R) as
defined in lemma 2.7, and write δ̃α,ν := δ̺̃. Since δ̃α,ν maps 1{e} − 1{̟e} into
Im(R − ν), it induces a map

δ̃α,ν : C0(P1(F ), R)/R → Ba,ν(F,R)
(same name by abuse of notation) via the commutative diagram

coker δ∗
δ̃α,ν

//

��

coker(Tc + TcNc − a′)

mod (N−ν)
��

C0(P1(F ), R)/R
δ̃α,ν

// Ba,ν(F,R)

with a′ := a(1 + ν), since ̺ ∈ Ba,ν(F,R) ⊆ ker(T + TN − a′).

Lemma 2.11. We have ̺ (gv) = χα(d/a
′)χν(a′)̺(v), and thus

δ̃α,ν(gf) = χα(d/a
′)χν(a

′)gδ̃α,ν(f),

for all v ∈ Ṽ, f ∈ C0(P1(F ), R)/R and g =

(

a′ b
0 d

)

∈ B(F ).

Proof. (a) Using lemma 2.5(b) and the fact that ordgv(e1) = − ord̟(a
′) +

ordv(e1), we have

̺

((

a′ b
0 d

)

v

)

= αh(v)−ord̟(a′/d)νord̟(a′)−ordv(e1) = χα(d/a
′)χν(a

′)̺(v)
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for all v ∈ Ṽ . For f and g as in the assertion, we thus have

δ̃α,ν(gf)(v) =
∑

v=t(e)

̺(o(e))f(g−1e)−
∑

v=o(e)

̺(t(e))f(g−1e)

=
∑

g−1v=t(e)

̺(o(ge))f(e)−
∑

g−1v=o(e)

̺(t(ge))f(e)

= χα(d/a
′)χν(a

′)̺(v)

(

∑

g−1v=t(e)

̺(o(e))f(e)−
∑

g−1v=o(e)

̺(t(e))f(e)

)

= χα(d/a
′)χν(a

′)gδ̃α,ν(f)(v).

We define a function δα,ν : Cc(F
∗, R) → Ba,ν(F,R) as follows: For

f ∈ Cc(F
∗, R), we let ψ0(f) ∈ Cc(P

1(F ), R) be the extension of x 7→
χα(x)χν (x)

−1f(x) by zero to P1(F ). We set δα,ν := δ̃α,ν ◦ ψ0. If α = ν,
we can define δα,ν on all functions in Cc(F,R).
We let F ∗ operate on Cc(F,R) by (tf)(x) := f(t−1x); this induces an action of
the group T 1(F ) := {( t 0

0 1 ) |t ∈ F ∗}, which we identify with F ∗ in the obvious
way. With respect to it, we have

ψ0(tf)(x) = χα(t)χν(t)
−1tψ0(f)(x)

and
δ̃α,ν(tf) = χ−1

α (t)χν(t)tδ̃α,ν(f),

so δα,ν is T 1(F )-equivariant.
For an R-module M , we define an F ∗-action on Dist(F ∗,M) by

∫

fd(tµ) :=
t
∫

(t−1f)dµ. Let H ⊆ G(F ) be a subgroup, and M an R[H ]-module. We

define an H-action on Baν,ν−1

(F,M) by requiring 〈φ, hλ〉 = h · 〈h−1φ, λ〉 for all
φ ∈ Ba,ν(F,M), λ ∈ Baν,ν−1

(F,M), h ∈ H . With respect to these two actions,
we get a T 1(F ) ∩H-equivariant mapping

δα,ν : Baν,ν−1

(F,M) → Dist(F ∗,M), δα,ν(λ) := 〈δα,ν(·), λ〉

dual to δα,ν .

2.5 Local distributions

Now consider the case R = C. Let χ1, χ2 : F ∗ → C∗ be two unramified
characters. We consider (χ1, χ2) as a character on the torus T (F ) of GL2(F ),
which induces a character χ on B(F ) by

χ

(

t1 u
0 t2

)

:= χ1(t1)χ2(t2).

Put αi := χi(̟)
√
q ∈ C∗ for i = 1, 2. Set ν := χ1(̟)χ2(̟) = α1α2q

−1 ∈ C∗,
and a := α1 + α2 = αi + qν/αi for either i. When a and ν are given by the αi
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like this, we will often write Bα1,α2(F,R) := Ba,ν(F,R) and Bα1,α2(F,M) :=

Baν,ν−1

(F,M) (!) for its dual. In the special case a2 = ν(q + 1)2, we assume
the χi to be sorted such that χ1 = | · |χ2.
Let B(χ1, χ2) denote the space of continuous maps φ : G(F ) → C such that

φ

((

t1 u
0 t2

)

g

)

= χα1(t1)χα2(t2)|t1|φ(g) (8)

for all t1, t2 ∈ F ∗, u ∈ F , g ∈ G(F ). G(F ) operates canonically on B(χ1, χ2) by
right translation (cf. [Bu98], Ch. 4.5). If χ1χ

−1
2 6= | · |±1, B(χ1, χ2) is a model

of the spherical representation π(χ1, χ2); if χ1χ
−1
2 = | · |±1, the special repre-

sentation π(χ1, χ2) can be given as an irreducible subquotient of codimension
1 of B(χ1, χ2).

2

Lemma 2.12. We have a G-equivariant isomorphism B̃a,ν(F,C) ∼= B(χ1, χ2).
It induces an isomorphism Ba,ν(F,C) ∼= π(χ1, χ2) both for spherical and special
representations.

Proof. We choose a “central” unramified character χZ : F ∗ → C satisfying
χ2
Z(̟) = ν; then we have χ1 = χZχ0

−1, χ2 = χZχ0 for some unramified char-
acter χ0. We set a′ :=

√
q
(

χ0(̟)−1 + χ0(̟)
)

, which satisfies a = χZ(̟)a′.
For a representation (π, V ) of G(F ), by [Bu98], Ex. 4.5.9, we can define another
representation χZ ⊗ π on V via

(g, v) 7→ χZ(det(g))π(g)v for all g ∈ G(F ), v ∈ V,

and with this definition we have B(χ1, χ2) ∼= χZ⊗B(χ−1
0 , χ0). Since B(χ−1

0 , χ0)
has trivial central character, [BL95], Thm. 20 (as quoted in [Sp14]) states that

B(χ−1
0 , χ0) ∼= Ba′,1(F,C) ∼= Ind

G(F )
KZ R/ Im(T − a′).

Define a G-linear map φ : IndGK R → χZ ⊗ IndGKZ R by 1K 7→ (χZ ◦ det) · 1KZ .
Since 1K (resp. (χZ ◦ det) · 1KZ) generates IndGK R (resp. χZ ⊗ IndGKZ R) as a
C[G]-module, φ is well-defined and surjective.
φ maps N1K = (̟ 0

0 ̟ ) 1K to

(̟ 0
0 ̟ ) ((χZ ◦ det) · 1KZ) = χZ(̟)2 · ((χZ ◦ det) · 1KZ) = ν · φ(1K).

Thus Im(N − ν) ⊆ kerφ, and in fact the two are equal, since the preimage of
the space of functions of support in a coset KZg (g ∈ G(F )) under φ is exactly
the space generated by the 1Kzg, z ∈ Z(F ) = Z(OF ){(̟ 0

0 ̟ )}Z.
Furthermore, φ maps T 1K =

∑

i∈OF /(̟)∪{∞}Ni1K (with the Ni as in Lemma

2.7) to
∑

i

χZ(det(Ni)) · ((χZ ◦ det) ·Ni1KZ) = χZ(̟) · (χZ ◦ det)T 1KZ

(since det(Ni) = ̟ for all i),and thus Im(T − a) is mapped to Im
(

χZ(̟)T −
a
)

= Im
(

χZ(̟)(T − a′)
)

= Im(T − a′).

2Note that [Bu98] denotes this special representation by σ(χ1, χ2), not by π(χ1, χ2).
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Putting everything together, we thus have G-isomorphisms

Cc(Ṽ ,C)/
(

Im(T − a) + Im(N − ν)
) ∼= IndGK R/

(

Im(T − a) + Im(N − ν)
)

∼= χZ ⊗
(

IndGKZ R/ Im(T − a′)
)

∼= χZ ⊗ B(χ−1
0 , χ0) ∼= B(χ1, χ2).

Thus, Ba,ν(F,C) is isomorphic to the spherical principal series representation
π(χ1, χ2) for a

2 6= ν(q + 1)2.
In the special case, Ba,ν(F,C) is a G-invariant subspace of B̃a,ν(F,C) of codi-
mension 1, so it must be mapped under the isomorphism to the unique G-
invariant subspace of B(χ1, χ2) of codimension 1 (in fact, the unique infinite-
dimensional irreducible G-invariant subspace, by [Bu98], Thm. 4.5.1), which is
the special representation π(χ1, χ2).

By [Bu98], section 4.4, there exists thus for all pairs a, ν a Whittaker functional
λ on Ba,ν(F,C), i.e. a nontrivial linear map λ : Ba,ν(F,C) → C such that
λ (( 1 x0 1 )φ) = ψ(x)λ(φ). It is unique up to scalar multiples.
From it, we furthermore get a Whittaker model Wa,ν of Ba,ν(F,C):

Wa,ν := {Wξ : GL2(F ) → C | ξ ∈ Ba,ν(F,C)},

where Wξ(g) := λ(g · ξ) for all g ∈ GL2(F ). (see e.g. [Bu98], Ch. 3, eq. (5.6).)
Now write α := α1 for short. Recall the distribution µα,ν = ψ(x)χα/ν (x)dx ∈
Dist(F ∗,C). For α = ν, it extends to a distribution on F . We have the
following generalization of [Sp14], Prop. 3.10:

Proposition 2.13. (a) There exists a unique Whittaker functional λ = λa,ν
on Ba,ν(F,C) such that δα,ν(λ) = µα,ν .
(b) For every f ∈ Cc(F

∗,C), there exists W =Wf ∈ Wa,ν such that

∫

F∗

(af)(x)µα,ν(dx) =Wf

(

a 0
0 1

)

.

If α = ν, then for every f ∈ Cc(F,C), there exists Wf ∈ Wa,ν such that

∫

F

(af)(x)µα,ν(dx) =Wf

(

a 0
0 1

)

.

(c) Let H ⊆ U = O×
F be an open subgroup, and write WH := W1H . For every

f ∈ C0
c (F

∗,C)H we have

∫

F∗

f(x)µα,ν(dx) = [U : H ]

∫

F∗

f(x)WH

(

x 0
0 1

)

d×x.

Proof. (a) By [Sp14], we have a Whittaker functional of the Steinberg repre-
sentation given by the composite

St(F,C) := C0(P1(F ),C)/C
∼=−→ Cc(F,C)

Λ−→ C, (9)
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where the first map is the F -equivariant isomorphism

C0(P1(F ),C)/C → Cc(F,C), φ 7→ f(x) := φ(x) − φ(∞),

(with F acting on Cc(F,C) by (x · f)(y) := f(y − x), and on C0(P1(F ),C)/C
by xφ := ( 1 x0 1 )φ), and the second is

Λ : Cc(F,C) → C, f 7→
∫

F

f(x)ψ(x)dx.

Let now λ : Ba,ν(F,C) → C be a Whittaker functional of Ba,ν(F,C). By lemma
2.11, for u = ( 1 x0 1 ) ∈ B(F ),

(λ ◦ δ̃α,ν)(uφ) = λ(uδ̃α,ν(φ)) = ψ(x)λ(δ̃α,ν (φ)),

so λ ◦ δ̃α,ν is a Whittaker functional if it is not zero.

To describe the image of δ̃α,ν , consider the commutative diagram

Cc(Ẽ , R)
δ̃α,ν

//

(10)

��

Cc(Ṽ , R)
φ 7→φ·̺

��

Cc(Ẽ , R)
δ

// Cc(Ṽ , R)
〈·,1〉

// R // 0

where the vertical maps are defined by

Cc(Ẽ , R) → Cc(Ẽ , R), c 7→
(

e 7→ c(e)̺(o(e))̺(t(e))
)

(10)

resp. by mapping φ to v 7→ φ(v)̺(v); both are obviously isomorphisms.
Since the lower row is exact, we have Im δ = ker〈·, 1〉 =: C0

c (Ṽ , R) and thus
Im δ̃α,ν = ̺−1 · C0

c (Ṽ, R).
Since λ 6= 0 and Ba,ν(F,C) is generated by (the equivalence classes of) the 1{v},

v ∈ Ṽ, there exists a v ∈ Ṽ such that λ(1{v}) 6= 0. Let φ be this 1{v}, and let
u = ( 1 x

0 1 ) ∈ B(F ) such that x /∈ kerψ. Then

̺ · (uφ− φ) = ̺ · (1{u−1v} − 1{v}) = ̺(v)(1{u−1v} − 1{v}) ∈ C0
c (Ṽ , R)

by lemma 2.11, so 0 6= uφ−φ ∈ Im δ̃α,ν , but λ(uφ−φ) = ψ(x)λ(φ)−λ(φ) 6= 0.

So λ ◦ δ̃α,ν 6= 0 is indeed a Whittaker functional. By replacing λ by a scalar

multiple, we can assume λ ◦ δ̃α,ν = (9).

Considering λ as an element of Baν,ν−1

(F,C) ∼= Hom(Ba,ν(F,C),C), we have

δα,ν(λ)(f) = 〈δα,ν(f), λ〉
= Λ(χαχ

−1
ν f)

=

∫

F∗

χα(x)χ
−1
ν (x)f(x)ψ(x)dx

= µα,ν(f).

(b), (c) follow from (a) as in [Sp14].
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2.6 Semi-local theory

We can generalize many of the previous constructions to the semi-local case,
considering all primes p|p at once.
So let F1, . . . , Fm be finite extensions of Qp, and for each i, let qi be the number
of elements of the residue field of Fi. We put F := F1 × · · · × Fm.
Let R again be a ring, and ai ∈ R, νi ∈ R∗ for each i ∈ {1, . . . ,m}. Put
a := (a1, . . . , am), ν := (ν1, . . . , νm). We define Ba,ν(F ,R) as the tensor prod-
uct

Ba,ν(F ,R) :=
m
⊗

i=1

Bai,νi(Fi, R).

For an R-module M , we define Baν,ν−1

(F ,M) := HomR(Ba,ν(F ,R),M); let

〈·, ·〉 : Ba,ν(F ,R)× Baν,ν−1

(F ,M) → M (11)

denote the evaluation pairing.
We have an obvious isomorphism

m
⊗

i=1

C0
c (F

∗
i , R) → C0

c (F
∗, R),

⊗

i

fi 7→
(

(xi)i=1,...,m 7→
m
∏

i=1

fi(xi)

)

. (12)

Now when we have αi,1, αi,2 ∈ R∗ such that ai = αi,1 + αi,2 and νi =
αi,1αi,2q

−1
i , we can define the T 1(F )-equivariant map

δα1,2
:= δα1,ν : C0

c (F ,R) → Ba,ν(F ,R)

as the inverse of (12) composed with
⊗m

i=1 δαi,1,νi .
Again, we will often write Bα1,α2(F,R) := Baν,ν−1(F,R) and Bα1,α2(F,M) :=

Baν,ν−1

(F,M).
If H ⊆ G(F ) is a subgroup, and M an R[H ]-module, we define an H-action

on Baν,ν−1

(F,M) by requiring 〈φ, hλ〉 = h · 〈h−1φ, λ〉 for all φ ∈ Ba,ν(F,M),

λ ∈ Baν,ν−1

(F,M), h ∈ H , and get a T 1(F ) ∩H-equivariant mapping

δα1,α2 : Baν,ν−1

(F,M) → Dist(F ∗,M), δα1,α2(λ) := 〈δα1,α2(·), λ〉.
Finally, we have a homomorphism

m
⊗

i=1

Baiνi,ν−1
i (Fi, R)

∼=−→
m
⊗

i=1

HomR(Baiνi,ν−1
i

(Fi, R), R)

→ Hom(Ba1,ν1(F1, R),Hom(Ba2,ν2(F2, R),Hom(. . . , R))...)
∼=−→ Baν,ν−1

(F,R).

(13)

where the second map is given by ⊗ifi 7→ (x1 7→ (x2 7→ (. . . 7→∏

i fi(xi))...),
and the last map by iterating the adjunction formula of the tensor product.
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3 Cohomology classes and global measures

3.1 Definitions

From now on, let F denote a number field, with ring of integers OF . For each
finite prime v, let Uv := O∗

v. Let A = AF denote the ring of adeles of F , and
I = IF the group of ideles of F . For a finite subset S of the set of places of
F , we denote by AS := {x ∈ AF |xv = 0 ∀v ∈ S} the S-adeles and by IS

the S-ideles, and put FS :=
∏

v∈S Fv, US :=
∏

v∈S Uv, U
S :=

∏

v/∈S Uv (if S
contains all infinite places of F ), and similarly for other global groups.
For ℓ a prime number or ∞, we write Sℓ for the set of places of F above ℓ, and
abbreviate the above notations to Aℓ := ASℓ , Ap,∞ := ASp∪S∞ , and similarly
write Ip, I∞, Fp, F∞, U∞, Up, U

p,∞, I∞ etc.
Let F have r real embeddings and s pairs of complex embeddings. Set d :=
r + s − 1. Let {σ0, . . . , σr−1, σr , . . . , σd} be a set of representatives of these
embeddings (i.e. for i ≥ r, choose one from each pair of complex embeddings),
and denote by ∞0, . . . ,∞d the corresponding archimedian primes of F . We let
S0
∞ := {∞1, . . . ,∞d} ⊆ S∞.

For each place v, let dxv denote the associated self-dual Haar measure on
Fv, and dx :=

∏

v dxv the associated Haar measure on AF . We define Haar
measures d×xv on F ∗

v by d×xv := cv
dxv

|xv|v , where cv = (1 − 1
qv
)−1 for v finite,

cv = 1 for v|∞. For v|∞ complex, we use the decomposition C∗ = R∗
+ × S1

(with S1 = {x ∈ C∗; |x| = 1}) to write d×xv = d×rv dϑv for variables rv, ϑv
with rv ∈ R∗

+, ϑv ∈ S1.
Let S1 ⊆ Sp be a set of primes of F lying above p, S2 := Sp − S1. Let R be a
topological Hausdorff ring.

Definition 3.1. We define the module of continuous functions

C(S1, R) := C(FS1 × F ∗
S2

× Ip,∞/Up,∞, R);

and let Cc(S1, R) be the submodule of all compactly supported f ∈ C(S1, R).
We write C0(S1, R), C0

c (S1, R) for the submodules of locally constant maps
(or of continuous maps where R is assumed to have the discrete topology).We
further define

C♭c(S1, R) := Cc(∅, R) + C♭c(S1, R) ⊆ C♭c(S1, R)

to be the module of continuous compactly supported maps that are “constant
near (0p, x

p)” for each p ∈ S1.

Definition 3.2. For an R-module M , let Df (S1,M) denote the R-module of
maps

φ : Co(FS1 × F ∗
S2
)× Ip,∞F →M

that are Up,∞-invariant and such that φ(·, xp,∞) is a distribution for each
xp,∞ ∈ Ip,∞F .
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Since Ip,∞F /Up,∞ is a discrete topological group, Df (S1,M) naturally identifies
with the space of M -valued distributions on FS1 × F ∗

S2
× Ip,∞F /Up,∞. So there

exists a canonical R-bilinear map

Df (S1,M)× C0
c (S1, R) →M, (φ, f) 7→

∫

f dφ, (14)

which is easily seen to induce an isomorphism Df (S1,M) ∼=
HomR(C0

c (S1, R),M).
For a subgroupE ⊆ F ∗ and an R[E]-moduleM , we let E operate on Df (S1,M)
and C0

c (S1, R) by (aφ)(U, xp,∞) := aφ(a−1U, a−1xp,∞) and (af)(x∞) :=
f(a−1x∞) for a ∈ E, U ∈ Co(FS1 ×F ∗

S2
), x· ∈ I·F ; thus we have

∫

(af) d(aφ) =
a
∫

f dφ for all a, f, φ.
When M = V is a finite-dimensional vector space over a p-adic field, we write
Db
f (S1, V ) for the subset of φ ∈ Df (S1, V ) such that φ is even a measure on

FS1 × FS2 × Ip,∞F /Up,∞.

Definition 3.3. For a C-vector space V , define D(S1, V ) to be the set of all
maps φ : Co(FS1 × F ∗

S2
)× Ip → V such that:

(i) φ is invariant under F× and Up,∞.

(ii) For xp ∈ Ip, φ(·, xp) is a distribution of FS1 × FS2 .

(iii) For all U ∈ Co(FS1 × F ∗
S2
), the map φU : I = F×

p × Ip → V, (xp, x
p) 7→

φ(xpU, x
p) is smooth, and rapidly decreasing as |x| → ∞ and |x| → 0.

We will need a variant of this last set: Let D′(S1, V ) be the set of all maps
φ ∈ D(S1, V ) that are ”(S1)s-invariant”, i.e. such that for all complex primes
∞j of F and all ζ ∈ S1 = {x ∈ C∗; |x| = 1}, we have

φ(U, xp,∞j , ζx∞j
) = φ(U, xp,∞j , x∞j

) for all xp = (xp,∞j , x∞j
) ∈ Ip.

There is an obvious surjective map

D(S1, V ) → D′(S1, V ), φ 7→
(

(U, x) 7→
∫

(S1)s
φ(U, x)dϑr · · · dϑr+s−1

)

given by integrating over (S1)s ⊆ (C∗)s →֒ I∞.

Let F ∗
+ denote the set of all x ∈ F∗ that are totally positive, i.e. positive

with respect to every real embedding of F . (For F totally imaginary, we have
F ∗ = F ∗

+.) Let F ∗′ ⊆ F ∗
+ be a maximal torsion-free subgroup of F ∗

+. If F has
at least one real embedding, we obviously have F ∗′ = F ∗

+; for totally imaginary
F , F ∗′ is a subgroup of finite index of F ∗ with F/F ∗′ ∼= µF , the roots of unity
of F .
We set

E′ := F ∗′ ∩O×
F ⊆ O×

F ,
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so E′ is a torsion-free Z-module of rank d. E′ operates freely and discretely on
the space

Rd+1
0 :=

{

(x0, . . . , xd) ∈ Rd+1|
d
∑

i=0

xi = 0

}

via the embedding

E′ →֒ Rd+1
0

a 7→ (log |σi(a)|)i∈S∞

(cf. proof of Dirichlet’s unit theorem, e.g. in [Neu92], Ch. 1), and
the quotient Rd+1

0 /E′ is compact. We choose the orientation on Rd+1
0 in-

duced by the natural orientation on Rd via the isomorphism Rd ∼= Rd+1
0 ,

(x1, . . . , xd) 7→ (−∑d
i=1 xi, x1, . . . , xd). So Rd+1

0 /E′ becomes an oriented com-
pact d-dimensional manifold.
Let Gp be the Galois group of the maximal abelian extension of F which is
unramified outside p and ∞; for a C-vector space V , let Dist(Gp, V ) be the
set of V -valued distributions of Gp. Denote by ̺ : IF /F

∗ → Gp the projection
given by global reciprocity.

3.2 Global measures

Now let V = C, equipped with the trivial F ∗′-action. We want to construct a
commutative diagram

D(S1,C)

φ 7→µφ

&&M
M

MM
M

M
MM

M
MM

φ 7→κφ
// Hd

(

F ∗′,Df (S1,C)
)

κ 7→µκ=κ∩∂(·)
vvmmmmmmmmmmmmm

Dist(Gp,C)

(15)

First, let R be any topological Hausdorff ring. Let E′ denote the closure of
E′ in Up. The projection map pr : I∞/Up,∞ → I∞/(E′ × Up,∞) induces an
isomorphism

pr∗ : Cc(I
∞/(E′ × Up,∞), R) → H0(E′, Cc(I

∞/Up,∞, R)),

and the reciprocity map induces a surjective map ̺ : I∞/(E′ × Up,∞) → Gp.
Now we can define a map

̺♯ : H0(F
∗′/E′, Cc(I

∞/(E′ × Up,∞), R)) → C(Gp, R),
[f ] 7→

(

̺(x) 7→
∑

ζ∈F∗′/E′

f(ζx) for x ∈ I∞/(E′ × Up,∞)
)

.

This is an isomorphism, with inverse map f 7→ [(f ◦ ̺) · 1F ], where 1F is the
characteristic function of a fundamental domain F of the action of F ∗′/E′ on
I∞/U∞.
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We get a composite map

C(Gp, R)
(̺♯)−1

−−−−→ H0

(

F ∗′/E′, Cc(I
∞/(E′ × Up,∞), R)

)

pr∗−−→ H0

(

F ∗′/E′, H0(E′, Cc(I
∞/Up,∞, R))

)

−→ H0

(

F ∗′/E′, H0(E′, Cc(S1, R))
)

,

(16)

where the last arrow is induced by the “extension by zero” from
Cc(I

∞/Up,∞, R) to Cc(S1, R).
Now let η ∈ Hd(E

′,Z) ∼= Z be the generator that corresponds to the given
orientation of Rd+1

0 . This gives us, for every R-module A, a homomorphism

H0

(

F ∗′/E′, H0(E′, A)
) ∩η

// H0

(

F ∗′/E′, Hd(E
′, A)

)

Composing this with the edge morphism

H0

(

F ∗′/E′, Hd(E
′, A)

)

→ Hd(F
∗′, A) (17)

(and setting A = Cc(S1, R)) gives a map

H0

(

F ∗′/E′, H0(E′, Cc(S1, R))
)

→ Hd

(

F ∗′, Cc(S1, R)
)

(18)

We define
∂ : C(Gp, R) → Hd

(

F ∗′, Cc(S1, R)
)

as the composition of (16) with this map.
Now, letting M be an R-module equipped with the trivial F ∗′-action, the
bilinear form (14)

Df (S1,M)× Cc(S1, R) → M

(φ, f) 7→
∫

f dφ

induces a cap product

∩ : Hd
(

F ∗′,Df (S1,M)
)

×Hd

(

F ∗′, Cc(S1, R)
)

→ H0(F
∗′,M) =M. (19)

Thus for each κ ∈ Hd(F ∗′,Df (S1,M)), we get a distribution µκ on Gp by
defining

∫

Gp

f(γ) µκ(dγ) := κ ∩ ∂(f) (20)

for all continuous maps f : Gp → R.
Now let M = V be a finite-dimensional vector space over a p-adic field
K, and let κ ∈ Hd(F ∗′,Db

f (S1, V )). We identify κ with its image in

Hd(F ∗′,Df (S1, V )); then it is easily seen that µκ is also a measure, i.e. we
have a map

Hd(F ∗′,Db
f (S1, V )) → Distb(Gp, V ), κ 7→ µκ. (21)
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Let L|F be a Zp-extension of F . Since it is unramified outside p, it gives
rise to a continuous homomorphism Gp → Gal(L|F ) via σ 7→ σ|L. Fixing an
isomorphism Gal(L|F ) ∼= pεpZp (where εp = 2 for p = 2, εp = 1 for p odd),
we obtain a surjective homomorphism ℓ : Gp → pεpZp. (Note that pεpZp is the
space of definition of the p-adic exponential function expp.)

Example 3.4. Let L be the cyclotomic Zp-extension of F . Then we can take
ℓ = logp ◦N , where N : Gp → Z∗

p is the p-adic cyclotomic character, defined

by requiring γζ = ζN (γ) for all γ ∈ Gp and all p-power roots of unity ζ. It is
well-known (cf. [Wa82], par. 5) that logp(Z

∗
p) = pεpZp.

It is well-known that F has t independent Zp-extensions, where s + 1 ≤ t ≤
[F : Q]; the Leopoldt conjecture implies t = s+1. µκ defines a t-variable p-adic
L-function as follows:

Definition 3.5. Let K be a p-adic field, V a finite-dimensional K-vector
space, κ ∈ Hd(F ∗′,Db

f (S1, V )). Let ℓ1, . . . , ℓt : Gp → pεpZp be continuous
homomorphisms.The p-adic L-function of κ is given by

Lp(s, κ) := Lp(s1, . . . , st, κ) :=

∫

Gp

(

t
∏

i=1

expp(siℓi(γ))

)

µκ(dγ)

for all s1, . . . , st ∈ Zp.

Remark 3.6. Let Σ := {±1}r, where r is the number of real embeddings of F .
The group isomorphism Z/2Z ∼= {±1}, ε 7→ (−1)ε, induces a pairing

〈·, ·〉 : Σ → {±1}, 〈((−1)εi)i, ((−1)ε
′

i)i〉 := (−1)
∑

i εiε
′

i .

For a field k of characteristic zero, a k[Σ]-module V and µ = (µ0, . . . , µr−1) ∈ Σ,
we put Vµ := {v ∈ V | 〈µ, ν〉v = νv ∀ν ∈ Σ}, so that we have V =

⊕

µ∈Σ Vµ.

We write vµ for the projection of v ∈ V to Vµ, and v+ := v(1,...,1).

For r > 0, we identify Σ with F ∗/F ∗′ via the isomorphism Σ ∼=
∏r−1
i=0 R∗/R∗

+
∼=

F ∗/F ∗′ = F ∗/F ∗
+. Then for each F ∗-moduleM , Σ acts onHd(F ∗′,Df (S1,M))

and on Hd(F ∗′,Db
f (S1,M)). For r = 0, we let the trivial group Σ act on these

groups as well for ease of notation. The exact sequence Σ ∼=
∏r−1
i=0 R∗/R∗

+ =
I∞/I0∞ → Gp → G+

p → 0 of class field theory (where I0∞ is the maximal
connected subgroup of I∞) yields an action of Σ on Gp. We easily check that
(21) is Σ-equivariant, and that the maps γ 7→ expp(sℓi(γ)) factor over Gp →
G+
p (since Zp-extensions are unramified at ∞). Therefore we have Lp(s, κ) =
Lp(s, κ+).

For φ ∈ D(S1, V ) and f ∈ C0(I/F ∗,C), let

∫

I/F∗

f(x)φ(d×xp, x
p) d×xp := [Up : U ]

∫

I/F∗

f(x)φU (x) d
×x,
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where we choose an open set U ⊆ Up such that f(xpu, x
p) = f(xp, x

p) for all
(xp, x

p) ∈ I and u ∈ U ; such a U exists by lemma 3.7 below. Since this integral
is additive in f , there exists a unique V -valued distribution µφ on Gp such that

∫

Gp

f dµφ =

∫

I/F∗

f(̺(x))φ(d×xp, x
p) d×xp (22)

for all functions f ∈ C0(Gp, V ).

Lemma 3.7. Let F : I/F ∗ → X be a locally constant map to a set X. Then
there exists an open subgroup U ⊆ I such that f factors over I/F ∗U .

Proof. I∞ =
∏

v|∞ Fv is connected, thus f factors over f : I/F ∗I∞ → X . Since

I/F ∗I∞ is profinite, f further factors over a subgroup U ′ ⊆ I∞ of finite index,
which is open.

Let U0
∞ :=

∏

v∈S0
∞

R∗
+; the isomorphisms U0

∞ ∼= Rd, (rv)v 7→ (log rv)v, and

Rd ∼= Rd+1
0 give it the structure of a d-dimensional oriented manifold (with the

natural orientation). It has the d-form d×r1 · . . . · d×rd, where (by slight abuse
of notation) we choose d×ri on F∞i

corresponding to the Haar measure d×xi
resp. d×ri on R∗

+ ⊆ F ∗
∞i

. E′ operates on U0
∞ via a 7→ (|σi(a)|)i∈S0

∞
, so the

isomorphism U0
∞ ∼= Rd+1

0 is E′-equivariant.
For φ ∈ D′(S1, V ), set

∫ ∞

0

φ d×r0 : Co(FS1 × F ∗
S2
)× Ip,∞0 → C

(U, xp,∞0) 7→
∫ ∞

0

φ(U, r0, x
p,∞0) d×r0,

where we let r0 ∈ F∞0 run through the positive real line R∗
+ in F∞0 . Composing

this with the projection D(S1, V ) → D′(S1, V ) gives us a map

D(S1, V ) → H0
(

F ∗′,Df (S1, C
∞(U0

∞, V ))
)

,

φ 7→
∫

(S1)s

(∫ ∞

0

φ d×r0

)

dϑr dϑr+1 . . . dϑr+s−1

(23)

(where C∞(U0
∞, V ) denotes the space of smooth V -valued functions on U0

∞),
since one easily checks that

∫∞
0 φ d×r0 is F ∗′-invariant.

Define the complex C• := Df (S1,Ω
•(U0

∞, V )). By the Poincare lemma, this is
a resolution of Df (S1, V ). We now define the map φ 7→ κφ as the composition
of (23) with the composition

H0
(

F ∗′,Df (S1, C
∞(U0

∞, V ))
)

→ H0(F ∗′, Cd) → Hd(F ∗′,Df (S1, V )), (24)

where the first map is induced by

C∞(U0
∞, V ) → Ωd(U0

∞, V ), f 7→ f(r1, . . . , rd)d
×r1 · . . . · d×rd, (25)
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and the second is an edge morphism in the spectral sequence

Hq(F ∗′, Cp) ⇒ Hp+q(F ∗′,Df (S1, V )). (26)

Specializing to V = C, we now have:

Proposition 3.8. The diagram (15) commutes, i.e., for each φ ∈ D(S1,C),
we have

µφ = µκφ
.

Proof. Analoguously to [Sp14], proof of prop. 4.21, we define a pairing

〈 , 〉 : D(S1,C)× C0(Gp,C) → C

as the composite of (23)× (16) with

H0
(

F ∗′,Df (S1, C
∞(U0

∞,C))
)

×H0

(

F ∗′/E′, H0(E′, C0
c (S1,C))

)

∩−→ H0

(

F ∗′/E′, H0(E′, C∞(U0
∞,C))

)

→ H0(F
∗′/E′,C) ∼= C, (27)

where ∩ is the cap product induced by (14), and the second map is induced by

H0
(

E′, C∞(U0
∞,C)

)

→ C, f 7→
∫

U0
∞
/E′

f(r1, . . . , rd) d
×r1 . . . d

×rd. (28)

Then we can show that

κφ ∩ ∂(f) = 〈φ, f〉 =
∫

Gp

f(γ) µφ(dγ) for all f ∈ C0(Gp,C),

by copying the proof for the totally real case (replacing F ∗
+ by F ∗′, E+ by

E′), using the fact that for a d-form on the d-dimensional oriented manifold
M := Rd+1

0 /E′ ∼= U0
∞/E

′, integration over M corresponds to taking the cap
product with the fundamental class η of M under the canonical isomorphism
Hd
dR(M) ∼= Hd

sing(M) = Hd(E′,C).

3.3 Exceptional zeros

Now let ℓ1, . . . , ℓt : Gp → Zp be continuous homomorphisms. Let again S1 =
{p1, . . . , pn} ⊆ Sp be a set of primes above p, of cardinality n := #S1.

Proposition 3.9. For each x = (x1, . . . , xt) ∈ Nt0 set |x| :=∑t
i=1 xi. Then

∂(

t
∏

i=1

ℓxi

i ) = 0 for all x with |x| ≤ n− 1.
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Proof. We can readily generalize the proof of Spieß’ result for the p-adic cy-
clotomic character (ℓ = logp ◦N ) in the totally real case ([Sp14], Prop. 4.6(a),
Lemmas 4.1 and 4.7) to show that ∂(ℓx) = 0 for all 0 ≤ x ≤ n − 1, us-
ing the facts that we can write F ∗′ = E′ × T for some subgroup T ⊆ F ∗′

(since F ∗′/E′ = F ∗/O×
F is a free Z-module), and that for each homomorphism

ℓ : Gp → Zp, the composition

ℓ̃ : I∞
̺−→ Gp ℓ−→ Zp →֒Qp.

is zero on I∞,p (since the pro-q-part of Gp is finite for every prime q 6= p and
Qp is torsion-free).

Now for a ring R ⊇ Q, each monomial
∏t
i=1X

ni

i ∈ R[X1, . . . , Xt] of degree
n =

∑

i ni can be written as a linear combination of n-th powers (Xi+ri,jXj)
n.

Therefore each product
∏t
i=1 ℓ

xi

i of degree x = |x| is a linear combination of
x-th powers of the homomorphisms ℓi,j := ℓi + ri,jℓj : Gp → Zp. This proves
the proposition.

Definition 3.10. A t-variable p-adic analytic function f(s) = f(s1, . . . , st)
(si ∈ Zp) has vanishing order ≥ n at the point 0 = (0, . . . , 0) if all its partial
derivatives of total order ≤ n− 1 vanish, i.e. if

∂k

(∂s)k
f(0) :=

∂k

∂sk11 · · ·∂sktt
f(0) = 0

for all k = (k1, . . . , kt) ∈ Nt0 with k := |k| ≤ n− 1. We write ords=0 f(s) ≥ n
in this case.

Theorem 3.11. Let n := #(S1), κ ∈ Hd(F ∗′,Db
f (S1, V )), V a finite-

dimensional vector space over a p-adic field. Then Lp(s, κ) is a locally analytic
function, and we have

ords=0 Lp(s, κ) ≥ n.

Proof. We have

∂k

(∂s)k
Lp(0, κ) =

∫

Gp

(

t
∏

i=1

ℓi(γ)
ki

)

µκ(dγ) = κ ∩ ∂
(

t
∏

i=1

ℓi(γ)
ki

)

for all k = (k1, . . . , kt) ∈ Nt0. Thus the theorem follows from proposition
3.9.

3.4 Integral cohomology classes

Definition 3.12. A nonzero cohomology class κ ∈ Hd(F ∗′,Df (S1,C)) is called
integral if κ lies in the image of

Hd(F ∗′,Df (S1, R))⊗R C → Hd(F ∗′,Df (S1,C))
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for some Dedekind ring R ⊆ O. If, in addition, there exists a torsion-free R-
submodule M ⊆ Hd(F ∗′,Df (S1, R)) of rank ≤ 1 (i.e. M can be embedded
into R) such that κ lies in the image of M ⊗R C → Hd(F ∗′,Df (S1,C)), then
κ is integral of rank ≤ 1.

For κ as in def. 3.12 and R ⊆ C, we let Lκ,R be the image of

Hd(F
∗′, C0

c (S1, R)) → H0(F
∗′,C) = C, x 7→ κ ∩ x.

Proposition 3.13. Let κ ∈ Hd(F ∗′,Df (S1,C)) be integral. Then
(a) µκ is a p-adic measure.
(b) There exists a Dedekind ring R ⊆ O such that Lκ,R is a finitely generated
R-module (resp. a torsion-free R-module of rank ≤ 1, if κ is integral of rank
≤ 1).
For each such R, the map Hd(F ∗′,Df (S1, Lκ,R))⊗Q → Hd(F ∗′,Df (S1,C)) is
injective and κ lies in its image.

Proof. The proofs of the corresponding results for totally real F ([Sp14],
prop. 4.17 and cor. 4.18) also work in the general case.

Remark 3.14. Let κ be integral with Dedekind ring R as above. By (b) of the
proposition, we can view κ as an element of Hd(F ∗′,Df (S1, Lκ,R)) ⊗ Q. Put
Vκ := Lκ,R ⊗R Cp; let κ be the image of κ under the composition

Hd(F ∗′,Df (S1, Lκ,R))⊗R Q → Hd(F ∗′,Df (S1, Lκ,R))⊗R Cp

→ Hd(F ∗′,Db
f (S1, Vκ)),

where the second map is induced by Df (S1, Lκ,R) ⊗R Cp → Db
f (S1, Vκ). By

[Sp14], lemma 4.15, κ does not depend on the choice of R.
Since µκ is a p-adic measure, µκ allows integration of all continuous functions
f ∈ C(Gp,Cp), and by abuse of notation, we write Lp(s, κ) := Lp(s, κ) (cf.
remark 3.6). So Lp(s, κ) has values in the finite-dimensional Cp-vector space
Vκ.

4 p-adic L-functions of automorphic forms

We keep the notations from chapter 3; so F is again a number field with r real
embeddings and s pairs of complex embeddings.
For an ideal 0 6= m ⊆ OF , we letK0(m)v ⊆ G(OFv

) be the subgroup of matrices
congruent to an upper triangular matrix modulo m, and we set K0(m) :=
∏

v∤∞K0(m)v, K0(m)S :=
∏

v∤∞,v/∈S K0(m)v for a finite set of primes S. For

each p|p, let qp = N(p) denote the number of elements of the residue class field
of Fp.
We denote by | · |C the square of the usual absolute value on C, i.e. |z|C = zz for
all z ∈ C, and write | · |R for the usual absolute value on R in context. We write

|α| := |α|
1
2

C for the archimedian absolute value when α is given as a complex
number in the context; whereas in the context of the p-adic characters, | · |
denotes the p-adic absolute value, unless otherwise noted.
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Definition 4.1. Let A0(G, 2, χZ) denote the set of all cuspidal automorphic
representations π = ⊗vπv of G(AF ) with central character χZ such that πv ∼=
σ(| · |1/2Fv

, | · |−1/2
Fv

) at all archimedian primes v. Here we follow the notation

of [JL70]; so σ(| · |1/2Fv
, | · |−1/2

Fv
) is the discrete series of weight 2, D(2), if v

is real, and is isomorphic to the principal series representation π(µ1, µ2) with
µ1(z) = z1/2z −1/2, µ2(z) = z−1/2z1/2 if v is complex (cf. section 4.5 below).

We will only consider automorphic representations that are p-ordinary , i.e πp
is ordinary (in the sense of chapter 2) for every p|p.
Therefore, for each p|p we fix two non-zero elements αp,1, αp,2 ∈ O ⊆ C such
that παp,1,αp,2 is an ordinary, unitary representation. By the classification of
unitary representations (see e.g. [Ge75], Thm. 4.27), a spherical representation
παp,1,αp,2 = π(χ1, χ2) is unitary if and only if either χ1, χ2 are both unitary
characters (i.e. |αp,1| = |αp,2| = √

qp), or χ1,2 = χ0| · |±s with χ0 unitary and

− 1
2 < s < 1

2 . A special representation παp,1,αp,2 = π(χ1, χ2) is unitary if and
only if the central character χ1χ2 is unitary. In all three cases, we have thus
max{|αp,1|, |αp,2|} ≥ √

qp. Without loss of generality, we will assume the αp,i

to be ordered such that |αp,1| ≤ |αp,2| for all p|p.
As in chapter 2, we define ap := αp,1 + αp,2, νp := αp,1αp,2/qp.
Let αi := (αp,i, p|p), for i = 1, 2. We denote by A0(G, 2, χZ , α1, α2) the subset
of all π ∈ A0(G, 2, χZ) such that πp = παp,1,αp,2 for all p|p.
For later use we note that π∞ = ⊗v∤∞πv is known to be defined over a finite
extension of Q, the smallest such field being the field of definition of π (cf.
[Sp14]).

4.1 Upper half-space

For k ∈ {R,C}, let Hm := Hk := k×R∗
+ be the upper half-space of dimension

m := [k : R] + 1. Each Hm is a differentiable manifold of dimension m. If
we write x = (u, t) ∈ Hm with t ∈ R∗

+, u in R or C, respectively, it has a

Riemannian metric ds2 = dt2+du du
t , which induces a hyperbolic geometry on

Hm, i.e. the geodesic lines on Hm are given by “vertical” lines {u} × R∗
+ and

half-circles with center in the line or plane t = 0. HR is naturally isomorphic
to the complex upper half-plane {z ∈ C| Im(z) > 0}.
We have the decompositions GL2(C)

+ = B′
C · Z(C) · KC and GL2(R)

+ =

B′
R · Z(R) · KR, where B

′
k ⊆ GL2(k) is the subgroup of matrices

(

R∗

+ k

0 1

)

for

k = R,C, Z is the center, and KR = SO(2), KC = SU(2) (cf. [By98], Cor. 43).
Identifying B′

k with Hk via ( t z0 1 ) 7→ (z, t) gives natural projections

πR : GL2(R)
+
։ GL2(R)

+/Z(R) SO(2) ∼= H2,

πC : GL2(C) ։ GL2(C)/Z(C)KC
∼= HC

and corresponding left GL2(k)-actions on cosets.
A differential form ω on Hm is called left-invariant if it is invariant under
the pullback L∗

g of left multiplication Lg : x 7→ gx on Hm, for all g ∈ G.
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Following [By98], eqs. (4.20), (4.24), we choose the following basis of left-
invariant differential 1-forms on H3:

β0 := −dz
t
, β1 :=

dt

t
, β2 :=

dz

t
,

and on H2 (writing z = x+ iy ∈ H2 ⊆ C):

β1 :=
dz

y
, β2 := −dz

y
.

We note that a form f1β1 + f2β2 is harmonic on H2 if and only if f1/y and
f2/y are holomorphic functions in z ([By98], lemma 60).

The Jacobian J(g, (0, 1)) of left multiplication by g in (0, 1) ∈ Hm with respect
to the basis (βi)i gives rise to a representation

̺ = ̺k : Z(k) ·Kk → SLm(C)

with ̺|Z(k) trivial, which on Kk is explicitly given by

̺C(h) =





u2 2uv v2

−uv uu− vv vu
v2 −2uv u2



 for h =

(

u v
−v u

)

∈ SU(2),

resp.

̺R

(

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)

=

(

e2iϑ 0
0 e−2iϑ

)

([By98], (4.27), (4.21)). In the real case, we will only consider harmonic forms
onH2 that are multiples of β1, thus we sometimes identify ̺R with its restriction

̺
(1)
R to the first basis vector β1,

̺
(1)
R : SO(2) → S1 ⊆ C∗, κϑ =

(

cos(ϑ) sin(ϑ)
− sin(ϑ) cos(ϑ)

)

7→ e2iϑ.

For each i, let ωi be the left-invariant differential 1-form on GL2(k) which
coincides with the pullback (πC)

∗βi at the identity. Write ω (resp. β) for the
column vector of the ωi (resp. βi). Then we have the following lemma from
[By98]:

Lemma 4.2. For each i, the differential ωi on G induces βi on Hm, by restric-
tion to the subgroup B′

k
∼= Hm. For a function φ : G→ Cm, the form φ·ω (with

Cm considered as a row vector, so · is the scalar product of vectors) induces
f · β, where f : Hm → Cm is given by

f(z, t) := φ

((

t z
0 1

))

.
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(See [By98], Lemma 57.)
To consider the infinite primes of F all at once, we define

H∞ :=
d
∏

i=0

Hmi
=

r−1
∏

i=0

H2 ×
d
∏

i=r

H3

(where mi = 2 if σi is a real embedding, and mi = 3 if σi is complex), and let

H0
∞ :=

∏d
i=1 Hmi

be the product with the zeroth factor removed. (The choice
of the 0-th factor is for convenience; we could also choose any other infinite
place, whether real or complex.)

For each embedding σi, the elements of P1(F ) are cusps of Hmi
: for a given

complex embedding F →֒C, we can identify F with F × {0} →֒C × R≥0 and
define the ”extended upper half-space“ asH3 := H3∪F∪{∞} ⊆ C×R≥0∪{∞};
similarly for a given real embedding F →֒R, we get the extended upper half-
plane H2 := H2 ∪F ∪ {∞} . A basis of neighbourhoods of the cusp ∞ is given
by the sets {(u, t) ∈ Hm|t > N}, N ≫ 0, and of x ∈ F by the open half-balls
in Hm with center (x, 0).
Let G(F )+ ⊆ G(F ) denote the subgroup of matrices with totally positive
determinant. It acts on H0

∞ by composing the embedding

G(F )+ →֒
∏

v|∞,v 6=v0
G(Fv)

+, g 7→ (σ1(g), . . . , σd(g)),

with the actions of G(C)+ = G(C) on H3 and G(R)+ on H2 as defined above,
and on Ωdharm(H0

∞) by the inverse of the corresponding pullback, γ · ω :=
(γ−1)∗ω. Both are left actions.
For each complex v, we write the codomain of ̺Fv

as

̺Fv
: Z(Fv) ·KFv

→ SL3(C) =: SL(Vv),

for a three-dimensional C-vector space Vv. We denote the harmonic forms on
GL2(Fv), HFv

defined above by ωv, βv etc.

Let V =
⊗

v∈SC
Vv ∼= (C3)⊗s, Z∞ =

∏

v|∞ Z(Fv), K∞ =
∏

v|∞KFv
. Denoting

by SC (resp. SR) the set of complex (resp. real) archimedian primes of F , we
can merge the representations ̺Fv

for each v|∞ into a representation

̺ = ̺∞ :=
⊗

v∈SC

̺C ⊗
⊗

v∈SR

̺
(1)
R : Z∞ ·K∞ → SL(V ),

and define V -valued vectors of differential forms

ω :=
⊗

v∈SC

ωv ⊗
⊗

v∈SR

ω1
v, β :=

⊗

v∈SC

βv ⊗
⊗

v∈SR

(βv)1

on GL2(F∞) and H∞, respectively.
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4.2 Automorphic forms

Let χZ : A∗
F /F

∗ → C∗ be a Hecke character that is trivial at the archimedian
places. We also denote by χZ the corresponding character on Z(AF ) under the
isomorphism A∗

F → Z(AF ), a 7→ ( a 0
0 a ).

Definition 4.3. An automorphic cusp form of parallel weight 2 with central
character χZ is a map φ : G(AF ) → V such that

(i) φ(zγg) = χZ(z)φ(g) for all g ∈ G(A), z ∈ Z(A), γ ∈ G(F ).

(ii) φ(gk∞) = φ(g)̺(k∞) for all k∞ ∈ K∞, g ∈ G(A) (considering V as a row
vector).

(iii) φ has “moderate growth“ on B′
A := {

(

y x
0 1

)

∈ G(A)}, i.e. ∃C, λ ∀A ∈
B′

A : ‖φ(A)‖ ≤ C · sup(|y|λ, |y|−λ) (for any fixed norm ‖·‖ on V );

and φ|G(A∞) · ω is the pullback of a harmon ic form ωφ = fφ · β on H∞.

(iv) There exists a compact open subgroup K ′ ⊆ G(A∞) such that φ(gk) =
φ(g) for all g ∈ G(A) and k ∈ K ′.

(v) For all g ∈ G(AF ),

∫

AF /F

φ

((

1 x
0 1

)

g

)

dx = 0. (“Cuspidality”)

We denote by A0(G, harm, 2, χZ) the space of all such maps φ.

For each g∞ ∈ A∞
F , let ωφ(g

∞) be the restriction of φ(g∞, ·) · ω from G(A∞
F )

to H∞; it is a (d+ 1)-form on H∞.

We want to integrate ωφ(g
∞) between two cusps of the space Hm0 . (We

will identify each x ∈ P1(F ) with its corresponding cusp in Hm0 in the fol-
lowing.) The geodesic between the cusps x ∈ F and ∞ in Hm0 is the line
{x} × R∗

+ ⊆ Hm0 and the integral of ωφ along it is finite since φ is uniformly
rapidly decreasing:

Theorem 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form φ
is rapidly decreasing modulo the center on a fundamental domain F of
GL2(F )\GL2(AF );
i.e. there exists an integer r such that for all N ∈ N there exists a C > 0 such
that

φ(zg) ≤ C|z|r‖g‖−N

for all z ∈ Z(AF ), g ∈ F∩SL2(AF ). Here ‖g‖ := max{|gi,j|, |(g−1)i,j |}i,j∈{1,2}.
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(See [CKM04], Thm. 2.2; or [Kur78], (6) for quadratic imaginary F .)
In fact, the integral of ωφ(g

∞) along {x} × R∗
+ ⊆ Hm0 equals the integral of

φ(g∞, ·) · ω along a path gt ∈ GL2(F∞0 ), t ∈ R∗
+, where we can choose

gt =
1√
t

(

t x
0 1

)

=

( 1√
t

x√
t

0
√
t

)

,

and thus have ‖gt‖ =
√
t for all t ≫ 0, ‖gt‖ = C 1√

t
for t ≪ 1, so the integral

∫∞
x ωφ(g

∞) ∈ Ωdharm(H0
∞) is well-defined by the theorem.

For any two cusps a, b ∈ P1(F ), we now define

∫ b

a

ωφ(g
∞) :=

∫ ∞

a

ωφ(g
∞)−

∫ ∞

b

ωφ(g
∞) ∈ Ωdharm(H0

∞).

Since φ is uniformly rapidly decreasing (‖gt‖ does not depend on x, for t≫ 0),
this integral along the path (a, 0) → (a,∞) = (b,∞) → (b, 0) in Hm0 is the
same as the limit (for t → ∞) of the integral along (a, 0) → (a, t) → (b, t) →
(b, 0); and since ωφ is harmonic (and thus integration is path-independent
within Hm0) the latter is in fact independent of t, so equality holds for each

t > 0, or along any path from (a, 0) to (b, 0) in Hm0 . Thus
∫ b

a
ωφ(g

∞) equals
the integral of ωφ(g

∞) along the geodesic from a to b, and we have

∫ b

a

ωφ(g
∞) +

∫ c

b

ωφ(g
∞) =

∫ c

a

ωφ(g
∞)

for any three cusps a, b, c ∈ P1(F ). Let Div(P1(F )) denote the free abelian
group of divisors of P1(F ), and let M := Div0(P

1(F )) be the subgroup of
divisors of degree 0.
We can extend the definition of the integral linearly to get a homomorphism

M → Ωdharm(H0
∞), m 7→

∫

m

ωφ(g
∞),

and easily check that

γ∗
(∫

γm

ωφ(γg)

)

=

∫

m

ωφ(g). (29)

for all γ ∈ G(F )+, g ∈ G(A∞), m ∈ M.
Now let m be an ideal of F prime to p, let χZ be a Hecke character of conductor
dividing m, and α1, α2 as above.

Definition 4.5. We define S2(G,m, α1, α2) to be the C-vector space of all
maps

Φ : G(Ap) → Bα1,α2(Fp, V ) = Hom(Bα1,α2(Fp,C), V )

such that:
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(a) φ is “almost” K0(m)-invariant (in the notation of [Ge75]), i.e. φ(gk) =
φ(g) for all g ∈ G(Ap) and k ∈ ∏v∤mpG(Ov), and φ(gk) = χZ(a)φ(g) for

all v|m, k =

(

a b
c d

)

∈ K0(m)v and g ∈ G(Ap).

(b) For each ψ ∈ Bα1,α2(Fp,C), the map

〈Φ, ψ〉 : G(A) = G(Fp)×G(Ap) → V, (gp, g
p) 7→ Φ(gp)(gpψ)

lies in A0(G, harm, 2, χZ).

Note that (a) implies that φ is K ′-invariant for some open subgroup K ′ ⊆
K0(m)p of finite index ([By98]/[We71]).

4.3 Cohomology of GL2(F )

Let M be a left G(F )-module and N an R[H ]-module, for a ring R and a
subgroup H ⊆ G(F ). Let S ⊆ Sp be a set of primes of F dividing p; as above,
let χ = χZ be a Hecke character of conductor m prime to p.

Definition 4.6. For a compact open subgroup K ⊆ K0(m)S ⊆ G(AS,∞), we
denote by Af (K,S,M ;N) the R-module of all maps Φ : G(AS,∞) ×M → N
such that

1. Φ(gk,m) = Φ(g,m) for all g ∈ G(AS,∞), m ∈M , k ∈∏v∤mpG(Ov);

2. Φ(gk) = χZ(a)Φ(g) for all v|m, k =

(

a b
c d

)

∈ K0(m)v and g ∈ G(AS,∞),

m ∈M .

We denote by Af (S,M ;N) the union of the Af (K,S,M ;N) over all compact
open subgroups K.

Af (S,M ;N) is a left G(AS,∞)-module via (γ ·Φ)(g,m) := Φ(γ−1g,m) and has
a left H-operation given by (γ ·Φ)(g,m) := γΦ(γ−1g, γ−1m), commuting with
the G(AS,∞)-operation.
In contrast to our previous notation, we consider two subsets S1 ⊆ S2 ⊆ Sp in
this section. We put (α1, α2)S1 := {(αp,1, αp,2)|p ∈ S1}, we set

Af ((α1, α2)S1 , S2,M ;N) = Af (S2,M ;B(α1,α2)S1 (FS1 , N));

we write Af (m, (α1, α2)S1 , S2,M ;N) := Af (K0(m), (α1, α2)S1 , S2,M ;N). If
S1 = S2, we will usually drop S2 from all these notations.
We have a natural identification of Af (m, (α1, α2)S ,M ;N) with the space of
maps G(AS,∞)×M × B(α1,α2)S(FS , R) → N that are “almost” K-invariant.

Let S0 ⊆ S1 ⊆ S2 ⊆ Sp be subsets. The pairing (11) induces a pairing

Af ((α1, α2)S1 , S2,M ;N)× B(α1,α2)S0
(FS0 , R) → Af ((α1, α2)S0 , S2,M ;N)
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which, when restricting to K-invariant elements, induces an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= B(α1,α2)S1−S0 (FS1−S0 ,Af (α1, α2)S0 , S2,M ;N).

Putting S0 := S1 − {p} for a prime p ∈ S1, we specifically get an isomorphism

Af (K, (α1, α2)S1 , S2,M ;N) ∼= Bαp,1,αp,2(Fp,Af (α1, α2)S0 , S2,M ;N).

Lemmas 2.9 and 2.10 now immediately imply the following:

Lemma 4.7. Let S ⊆ Sp, p ∈ S, S0 := S−{p}. Let K ⊆ G(AS,∞) be a compact
open subgroup.
(a) If παp,1,αp,2 is spherical, we have exact sequences

0 → Af (K, (α1, α2)S ,M ;N) → Z
N−νp−−−−→ Z → 0

and

0 → Z → Af (K0, (α1, α2)S0 ,M ;N)
T−ap−−−−→ Af (K0, (α1, α2)S0 ,M ;N) → 0

for a G(AS0,∞)-module Z and a compact open subgroup K0 = K × Kp of
G(AS0,∞).

(b) If παp,1,αp,2 is special (with central character χp), we have exact sequences

0 → Af (K, (α1, α2)S ,M ;N) → Z ′ → Z → 0

and

0 →Z → Af (K0, (α1, α2)S0 ,M ;N)2 → Af (K0, (α1, α2)S0 ,M ;N)2 → 0,

0 →Z ′ → Af (K
′
0, (α1, α2)S0 ,M ;N)2 → Af (K

′
0, (α1, α2)S0 ,M ;N)2 → 0,

with Z(′) := Af (K
(′)
0 , (α1, α2)S0 , S,M ;N(χp)), where K

(′)
0 = K × K

(′)
p are

compact open subgroups of G(AS0,∞).

Proposition 4.8. Let S ⊆ Sp and let K be a compact open subgroup of
G(AS,∞).
(a) For each flat R-module N (with trivial G(F )-action), the canonical map

H
q(G(F )+,Af (K, (α1, α2)S,M;R))⊗R N → H

q(G(F )+,Af (K, (α1, α2)S,M;N))

is an isomorphism for each q ≥ 0.
(b) If R is finitely generated as a Z-module, Hq(G(F )+,Af (K, (α1, α2)S ,M;R)
is finitely generated over R.

Proof. We can copy the proof of [Sp14], Prop. 5.6, using lemma 4.7 instead of
[Sp14], lemma 5.4 to reduce to the case S = ∅.
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We define

Hq
∗(G(F )

+,Af ((α1, α2)S ,M ;R)) := lim−→Hq(G(F )+,Af (K, (α1, α2)S ,M ;R))

where the limit runs over all compact open subgroups K ⊆ G(AS,∞); and
similarly defineHq

∗(B(F )+,Af ((α1, α2)S ,M;R). The proposition immediately
implies

Corollary 4.9. Let R → R′ be a flat ring homomorphism. Then the canonical
map

Hq
∗(G(F )

+,Af ((α1, α2)S ,M;R))⊗R R′ → Hq
∗(G(F )

+,Af ((α1, α2)S ,M;R′)

is an isomorphism, for all q ≥ 0.

If R = k is a field of characteristic zero, Hq
∗(G(F )+,Af ((α1, α2)S ,M ;R) is a

smooth G(AS,∞)-module, and we have

Hq
∗ (G(F )

+,Af ((α1, α2)S ,M ; k)K = Hq(G(F )+,Af (K, (α1, α2)S ,M ; k).

We identify G(F )/G(F )+ with the group Σ = {±1}r via the isomorphism

G(F )/G(F+)
det−−→ F ∗/F ∗

+
∼= Σ

(with all groups being trivial for r = 0). Then Σ acts on
Hq

∗ (G(F )+,Af ((α1, α2)S ,M ; k) and Hq(G(F )+,Af (K, (α1, α2)S ,M ; k) by
conjugation.For π ∈ A0(G, 2) and µ ∈ Σ, we write Hq

∗ (G(F )+, ·)π,µ :=

HomG(AS,∞)(π
S , Hq

∗(G(F )+, ·))µ.

Proposition 4.10. Let π ∈ A0(G, 2, χZ , α1, α2), S ⊆ Sp. Let k be a field
which contains the field of definition of π. Then for every µ ∈ Σ, we have

Hq
∗ (G(F )

+,Af ((α1, α2)S ,M; k)π,µ =

{

k, if q = d;

0, if q ∈ {0, . . . , d− 1} (30)

Proof. The case S = ∅ is proved analogously to [Sp14], prop. 5.8, using the
results of Harder [Ha87]. For S = S0 ∪ {p} and πp spherical, lemma 4.7(a) and
the statement for S0 give an isomorphism

Hq
∗ (G(F )

+,Af ((α1, α2)S0 ,M; k))π,µ ∼= Hq
∗ (G(F )

+,Af ((α1, α2)S ,M; k))π,µ

since the Hecke operators Tp and Np act on the left-hand side by multiplication
with ap and νp, respectively. If πp is special, we can similarly deduce the
statement for S from that for S0, using the first exact sequence of lemma
4.7(b), since the results of [Ha87] also hold when twisting k by a (central)
character.
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4.4 Eichler-Shimura map

From now on, let S1 ⊆ Sp be the set of places such that πp is the Steinberg
representation (i.e. αp,1 = νp = 1, αp,2 = q).
Given a subgroup K0(m)p ⊆ G(Ap,∞) as above, there is a map

I0 : S2(G,m, α1, α2) → H0(G(F )+,Af (m, α1, α2,M; Ωdharm(H0
∞)))

given by

I0(Φ) : (ψ, (g,m)) 7→
∫

m

ω〈Φ,ψ〉(1p, g),

for ψ ∈ Bα1,α2(Fp,C), g ∈ G(Ap,∞),m ∈ M, where 1p denotes the unity ele-
ment in G(Fp).
This is well-defined since both sides are “almost” K0(m)-invariant, and the
G(F )+-invariance of I0(Φ) follows from a straightforward calculation, using
(29).
From the complex

Af (m,α1, α2,M;C) → C• := Af (m, α1, α2,M; Ω•
harm(H0

∞))

we get a map

S2(G,m, α1, α2) → Hd(G(F )+,Af (m, α1, α2,M;C)) (31)

by composing I0 with an edge morphism of the spectral sequence

Hq(G(F )+, Cp) =⇒ Hp+q(G(F )+, C•).

Using the map δα1,α2 : Bα1,α2(F, V ) → Dist(F ∗
p , V ) from section 2.6, we next

define a map

∆
α1,α2

V : S2(G,m, α1, α2) → D(S1, V ) (32)

by

∆
α1,α2

V (Φ)(U, xp) = δα1,α2

(

Φ

(

xp 0
0 1

))

(U)

for U ∈ Co(FS1 × FS2), x
p ∈ Ip, and we denote by ∆α1,α2 : S2(G,m, α1, α2) →

D(S1,C) its (1,...,1)th coordinate function (i.e. corresponding to the harmonic
forms

⊗

v|∞(ωv)1,
⊗

v|∞(βv)1 in section 4.1):

∆α1,α2(Φ)(U, xp) = δα1,α2

(

Φ

(

xp 0
0 1

))

(1,...,1)

(U).

Since for each complex prime v, S1 ∼= SU(2) ∩ T (C) operates on Φ via ̺v,
∆α1,α2 is easily seen to be S1-invariant, i.e. it lies in D′(S1,C).
We also have a natural (i.e. commuting with the complex maps of each C•)
family of maps

Af (m, α1, α2,M,Ωiharm(H0
∞)) → Df (S1,Ω

i(U0
∞,C)) (33)
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for all i ≥ 0, and

Af (m, α1, α2,M,C) → Df (S1,C) (34)

(the i = −1-th term in the complexes), by mapping Φ ∈ Af (m, α1, α2,M, ·)
first to

(U, xp,∞) 7→ Φ

((

xp,∞ 0
0 1

)

,∞− 0

)

(δα1,α2(1U )) ∈ Ωiharm(H0
∞) resp. ∈ C,

and then for i ≥ 0 restricting the differential forms to Ωi(U0
∞) via

U0
∞ =

∏

v∈S0
∞

R∗
+ →֒

∏

v∈S0
∞

Hv = H0
∞.

One easily checks that (33) and (34) are compatible with the homomorphism
of “acting groups” F ∗′ →֒G(F )+, x 7→

(

x 0
0 1

)

, so we get induced maps in coho-
mology

H0(G(F )+,Af (m, α1, α2,M,Ωdharm(H0
∞))) → H0(F ∗′,Df (S1,Ω

d(U0
∞,C)))

(35)
and

Hd(G(F )+,Af (m, α1, α2,M,C)) → Hd(F ∗′,Df (S1,C)), (36)

which are linked by edge morphisms of the respective spectral sequences to give
a commutative diagram (given in the proof below).

Proposition 4.11. We have a commutative diagram:

S2(G,m, α1, α2)
(31)

//

∆
α1,α2

��

Hd(G(F )+,Af (m, α1, α2,M,C))

(36)

��

D′(S1,C)
φ 7→κφ

// Hd
(

F ∗′,Df (S1,C)
)

Proof. The given diagram factorizes as

S2(G,m, α1, α2)
I0

//

∆
α1,α2

��

H0(G(F )+,Af (Ω
d
harm(H0

∞
))) //

(35)

��

Hd(G(F )+,Af (C))

(36)

��

D′(S1,C) // H0(F ∗′,Df (S1,Ωd(U0
∞
,C))) // Hd

(

F ∗′,Df (S1,C)
)

(where we write Af (·) instead of Af (m, α1, α2,M, ·) for brevity). The right-
hand square is the naturally commutative square mentioned above; the com-
mutativity of the left-hand square can easily be checked by hand.
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4.5 Whittaker model

We now consider an automorphic representation π = ⊗νπν ∈
A0(G, 2, χZ , α1, α2). Denote by c(π) :=

∏

v finite c(πv) the conductor of
π.
Let χ : I∞ → C∗ be a unitary character of the finite ideles; for each finite place
v, set χv = χ|F∗

v
. For each prime v of F , let Wv denote the Whittaker model

of πv. For each finite and each real prime, we choose Wv ∈ Wv such that the
local L-factor equals the local zeta function at g = 1, i.e. such that

L(s, πv ⊗ χv) =

∫

F∗
v

Wv

(

x 0
0 1

)

χv(x)|x|s−
1
2 d×x (37)

for any unramified quasi-character χv : F
∗
v → C∗ and Re(s) ≫ 0.

This is possible by [Ge75], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, Wv can
be chosen such that SO(2) operates on Wv via ̺v for real archimedian v, and
is “almost” K0(c(πv))-invariant for finite v.
For complex primes v of F , we can also choose a Wv satisfying (37) and which
behaves well with respect to the SU(2)-action ̺v, as follows:
By [Kur77], there exists a function

Wv = (W 0
v ,W

1
v ,W

2
v ) : G(Fv) → C3

such that W i
v ∈ Wv for all i, and such that SU(2) operates by the right via ̺v

on Wv; i.e. for all g ∈ G(Fv) and h ∈ SU(2), we have

Wv(gh) =Wv(g)̺C(h).

Note that W 1
v is thus invariant under right multiplication by a diagonal matrix

(

u 0
0 u

)

with u ∈ S1 ⊆ C. Since πv has trivial central character for archi-

median v by our assumption, a function in Wv is also invariant under Z(Fv).
Thus we have

W 1
v

(

g

(

u 0
0 1

))

=W 1
v (g) for all g ∈ G(Fv), u ∈ S1.

W 1
v can be described explicitly in terms of a certain Bessel function, as follows.

The modified Bessel differential equation of order α ∈ C is

x2
d2y

dx2
+ x

dy

dx
− (x2 + α2)y = 0.

Its solution space (on {Re z > 0}) is two-dimensional; we are only interested
in the second standard solution Kv, which is characterised by the asymptotics

Kv(z) ∼
√

π

2z
e−z
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(cf. [We71]). By [Kur77],3 we have W 1
v

(

x 0
0 1

)

= 2
πx

2K0(4πx).

(W 0
v andW 2

v can also be described in terms of Bessel functions; they are linearly
dependent and scalar multiples of x2K1(4πx).)

By [JL70], Ch. 1, Thm. 6.2(vi), σ(| · |1/2C , | · |−1/2
C ) ∼= π(µ1, µ2) with

µ1(z) = z1/2z −1/2 = |z|−1/2
C z, µ2(z) = z−1/2z1/2 = |z|−1/2

C z;

and the L-series of the representation is the product of the L-factors of these
two characters:

Lv(s, πv) = L(s, µ1)L(s, µ2) = 2 (2π)−(s+ 1
2 )Γ(s+ 1

2 ) · 2 (2π)−(s+ 1
2 )Γ(s+ 1

2 )

= 4 (2π)−(2s+1)Γ(s+ 1
2 )

2.

On the other hand, letting d×x = dx
|x|C = dr

r dϑ (for x = reiϑ), we have for

Re(s) > − 1
2 :

∫

C∗

W 1
v

(

x 0
0 1

)

|x|s−
1
2

C d×x =

∫

S1

∫

R+

W 1
v

(

reiϑ 0
0 1

)

|x|s−
1
2

C

dr

r
dϑ

= 4

∫ ∞

0

x2K0(4πx)x
2s−1 dx

x

(invariance under SU(2) · Z(Fv) gives a constant integral w.r.t. ϑ)

= 4 (4π)−2s+1

∫ ∞

0

K0(x)x
2s dx

= 4 (4π)−2s+1 22s−1 Γ(s+ 1
2 )

2

= 4 (2π)−2s+1 Γ(s+ 1
2 )

2

by ([DLMF] 10.43.19). Thus we have

∫

C∗

W 1
v

(

x 0
0 1

)

|x|s−
1
2

C d×x = (2π)2 Lv(s, πv)

for all Re(s) > − 1
2 .We set Wv := (2π)−2 W 1

v ; thus (37) holds also for complex
primes.

Now that we have defined Wv for all primes v, we put W p(g) :=
∏

v∤pWv(gv)

for all g = (gv)v ∈ G(Ap). We will also need the vector-valued function W p :
G(AF ) → V given by

W p(g) :=
∏

v∤p finite or v real

Wv(gv) ·
⊗

v complex

(2π)−2Wv(gv).

3Note that [Kur77] uses a slightly different definition of the Kv, which is 2
π

times our Kv.
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4.6 p-adic measures of automorphic forms

Now return to our π ∈ A0(G, 2, χZ , α1, α2). We fix an additive character ψ :
A → C∗ which is trivial on F , and let ψv denote the restriction of ψ to Fv →֒A,
for all primes v. We further require that ker(ψp) ⊇ Op and p−1 6⊆ kerψp for
all p|p, so that we can apply the results of chapter 2.
As in chapter 2, let µπp

:= µαp,1/νp = µqp/αp,2
denote the distribution

χqp/αp,2
(x)ψp(x)dx on Fp, and let µπp

:=
∏

p|p µπp
be the product distribu-

tion on Fp :=
∏

p|p Fp.

Define φ = φπ : Co(FS1 × F ∗
S2
)× Ip → C by

φ(U, xp) :=
∑

ζ∈F∗

µπp
(ζU)W p

(

ζxp 0
0 1

)

.

By proposition 2.13(a), we have for each U ∈ Co(FS1 × F ∗
S2
):

φU (x) := φ(xpU, x
p) =

∑

ζ∈F∗

µπp
(ζxpU)W p

(

ζxp 0
0 1

)

=
∑

ζ∈F∗

W

(

ζx 0
0 1

)

,

where W (g) := WU (gp)W
p(gp) lies in the global Whittaker model W = W(π)

for all g = (gp, g
p) ∈ G(A), putting WU := W1U ; so φ is well-defined and lies

in D(S1,C) (since W is smooth and rapidly decreasing; distribution property,
F ∗- and Up,∞-invariance being clear by the definitions of φ and W p).
Let µπ := µφπ

be the distribution on Gp corresponding to φπ, as defined in
(22), and let κπ := κφπ

∈ Hd(F ∗′,Df (S1,C)) be the cohomology class defined
by (23) and (24).

Theorem 4.12. Let π ∈ A0(G, 2, χZ , α1, α2); we assume the αp,i to be ordered
such that |αp,1| ≤ |αp,2| for all p|p. (So χp,1 = | · |χp,2 for all special πp.)
(a) Let χ : Gp → C∗ be a character of finite order with conductor f(χ). Then
we have the interpolation property

∫

Gp

χ(γ)µπ(dγ) = τ(χ)
∏

p∈Sp

e(πp, χp) · L(12 , π ⊗ χ),

where

e(πp, χp) =















































(1 − αp,1xpq
−1
p )(1 − αp,2x

−1
p q−1

p )(1 − αp,2xpq
−1
p )

(1 − xpα
−1
p,2)

, ordp(f(χ)) = 0

and π spherical,

(1 − αp,1xpq
−1
p )(1 − αp,2x

−1
p q−1

p )

(1 − xpα
−1
p,2)

, ordp(f(χ)) = 0

and π special,

(αp,2/qp)ordp(f(χ)), ordp(f(χ)) > 0
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and xp := χp(̟p).
(b) κπ is integral (cf. definition 3.12). For µ ∈ Σ, let κπ,µ be the projection of

κπ to Hd(F ∗′,Df (S1,C))π,µ. Then κπ,µ is integral of rank ≤ 1.

Proof. (a) We consider χ as a character on IF /F
∗, and choose a subgroup

V =
∏

p|p Vp ⊆ Up such that χp|V = 1.

Since π is unitary, we have |αp,2| ≥ √
qp > 1 = |χp(̟p)| for all p, thus

e(πp, χp| · |sp) is non-singular for all s ≥ 0, and we will be able to apply propo-
sition 2.4 locally below.
We have

∫

Gp

χ(γ)µπ(dγ) = [Up : V ]

∫

IF /F∗

χ(x)φV (x)d
×x,

and therefore we have to show that the equality

[Up : V ]

∫

IF /F∗

χ(x)|x|sφV (x)d×x = N(f(χ))sτ(χ)
∏

p|p
e(πp, χp|·|sp)·L(s+ 1

2 , π⊗χ)

holds for s = 0. Since both the left-hand side and L(s+ 1
2 , π⊗χ) are holomorphic

in s (cf. [Ge75], Thm. 6.18), it suffices to show this for Re(s) ≫ 0. But for
such s, we have

[Up : V ]

∫

IF /F∗

χ(x)|x|sφV (x)d×x =

∫

IF

χ(x)|x|sW
(

x 0
0 1

)

d×x

= [Up : V ]

∫

F∗
p

χp(x)|x|sWV

(

x 0
0 1

)

d×x ·
∫

IpF

χp(y)|y|sW p

(

y 0
0 1

)

d×y

=
∏

p|p

∫

F∗
p

χp(x)|x|spµπp
(dx) · LSp

(s+ 1
2 , π ⊗ χ)

=
∏

p|p

(

e(πp, χp| · |sp)τ(χp| · |sp)
)

· L(s+ 1
2 , π ⊗ χ)

= N(f(χ))sτ(χ)
∏

p|p
e(πp, χp| · |sp) · L(s+ 1

2 , π ⊗ χ)

by propositions 2.13, 2.4 and equation (37).
(b) Let λα1,α2 ∈ Bα1,α2(Fp,C) be the image of ⊗v|pλav ,νv under the map (13).
For each ψ ∈ Bα1,α2(Fp,C), define

〈Φπ, ψ〉(gp, gp) :=
∑

ζ∈F∗

λα1,α2

((

ζ 0
0 1

)

gp · ψ
)

W p

((

ζ 0
0 1

)

gp
)

=:
∑

ζ∈F∗

Wψ

((

ζ 0
0 1

)

g

)
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for a V -valued function Wψ whose every coordinate function is in W(π).

This defines a map Φπ : G(Ap) → Bα1,α2(Fp, V ). In fact, Φπ lies in
S2(G,m, α1, α2), where m is the prime-to-p part of f(π):
Condition (a) of definition 4.5 follows from the fact that the Wv are almost
K0(c(πv))-invariant, for v ∤ p,∞. For condition (b), we check that 〈Φπ , ψ〉
satisfies the conditions (i)-(v) in the definition of A0(G, harm, 2, χ):
Each coordinate function of 〈Φπ, ψ〉 lies in (the underlying space of) π by
[Bu98], Thm. 3.5.5, thus 〈Φ, ψ〉 fulfills (i) and (v), and has moderate growth.
(ii) and (iv) follow from the choice of the Wv and Wv. Now since πv ∼=
σ(| · |1/2v , | · |−1/2

v ) for v|∞, 〈Φ, ψ〉|B′

Fv
· βv = C

∑

ζ∈F∗ Wv

(

ζt 0
0 1

)

· βv is har-

monic for each archimedian place v of F : for real v, it is well-known that
f(z)/y is holomorphic for f ∈ D(2), and thus f · (βv)1 is harmonic; for complex
v, harmonicity follows from the other conditions, see e.g. [Kur78], p. 546 or
[We71].
An easy calculation shows that

λα1,α2

((

ζ 0
0 1

)

δα1,α2(1U )

)

=

∫

ζU

∏

p|p
χαp,2(−x)ψp(−x)dx = µπp

(ζU)

for all ζ ∈ F ∗, and therefore we have

∆α1,α2(Φπ)(U, x
p) =

∑

ζ∈F∗

λα1,α2

((

ζ 0
0 1

)

δα1,α2(1U )

)

W p

(

ζxp 0
0 1

)

=
∑

ζ∈F∗

µπp
(ζU)W p

(

ζxp 0
0 1

)

= φπ(U, x
p).

Let R be the integral closure of Z[ap, νp; p|p] in its field of fractions; thus R
is a Dedekind ring ⊆ O for which Bα1,α2(F,R) is defined. Since C is a flat
R-module,

Hd(G(F )+,Af (m, α1, α2,M, R))⊗ C → Hd(G(F )+,Af (m, α1, α2,M,C))

is an isomorphism by proposition 4.8. The map (36) can be described as the
”R-valued” map

Hd(G(F )+,Af (m, α1, α2,M, R)) → Hd
(

F ∗′,Df (R)
)

tensored with C. By proposition 4.11, κπ lies in its image, and thus in
Hd
(

F ∗′,Df (R)
)

⊗ C; i.e. it is integral.
Similarly, it follows from propositions 4.8 and 4.10 that κπ,µ is integral of rank
≤ 1.

Corollary 4.13. µπ is a p-adic measure.

Proof. By proposition 3.8, µπ = µφπ
= µκπ

. Since κπ is integral, µκπ
is a

p-adic measure by corollary 3.13.
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4.7 Vanishing order of the p-adic L-function

Let L1, . . . , Lt be independent Zp-extensions of F , and let ℓ1, . . . , ℓt : Gp →
pεpZp be the homomorphisms corresponding to them (as in section 3.2). Then
we have the p-adic L-function

Lp(s, π) := Lp(s, κπ) := Lp(s1, . . . , st, κπ,+) :=

∫

Gp

t
∏

i=1

expp(siℓi(γ))µπ(dγ)

of definition 3.5, with s1, . . . , st ∈ Zp. Lp(s, π) is a locally analytic function
with values in the one-dimensional Cp-vector space Vκπ,+ = Lκ,O,+ ⊗O Cp.
By theorem 3.11, we have

Theorem 4.14. Lp(s, π) is a locally analytic (t-variabled) function, and all
partial derivatives of order ≤ n := #(S1) vanish; i.e. we have

ords=0 Lp(s, π) ≥ n.

Now let E be a modular elliptic curve over F , corresponding to an automorphic
representation π; by this we mean that the local L-factors of the Hasse-Weil
L-function L(E, s) and of the automorphic L-function L(s − 1

2 , π) coincide at
all places v of F . From the definition of the respective L-factors (cf. [Si86] for
the Hasse-Weil L-function, [Ge75] for the automorphic L-function) we know
that π has trivial central character. Moreover, for p|p, πp is a principal series
representation iff E has good reduction at p, and in this case πp is ordinary
iff E is ordinary (i.e. not supersingular) at p; πp is a special (resp. Steinberg)
representation iff E has multiplicative (resp. split multiplicative) reduction at
p. For v|∞, πv is “of weight 2” as assumed before.
We say that E is p-ordinary if it has good ordinary or multiplicative reduction
at all places p|p of F . So E is p-ordinary iff π is ordinary at all p|p. In this
case, we define the p-adic L-function of E by Lp(E, s) := Lp(s, π).
For each i ∈ {1, . . . , t} and each prime p|p of F , we write ℓp,i for the restriction
of ℓi to Fp →֒ I ։ Gp. Let qp be the Tate period of E|Fp and ordp the normalized
valuation on F ∗

p . Defining the L-invariants of E|Fp with respect to Li by

Lp,i(E) := ℓp,i(qp)/ ordp(qp),

we can generalize Hida’s exceptional zero conjecture to general number fields:

Conjecture 4.15. Let S1 be the set of p|p at which E has split multiplicative
reduction, n := #S1, S2 := Sp \ S1. Then

ords=0 Lp(E, s) ≥ n, (38)

and we have

∂n

∂sni
Lp(E, s)|s=0 = n!

∏

p∈S1

Lp,i(E)
∏

p∈S2

e(πp, 1) · L(E, 1), (39)
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for all i = 1, . . . , t, where e(πp, 1) = (1 − αp,1
−1)2 if E has good ordinary

reduction at p, and e(πp, 1) = 2 if E has non-split multiplicative reduction at
p.

Note that the conjecture (when considered for all sets of independent Zp-

extensions of F ) also determines the “mixed” partial derivatives ∂k

∂nsLp(E, 0)

of order n, since they can be written as Q-linear combinations of n-th “pure”
partial derivatives ∂n

∂s′ni
Lp(E, 0) with respect to other choices of independent

Zp-extensions of F (cf. the proof of proposition 3.9).
Theorem 4.14 immediately implies the first part (38) of the conjecture:

Corollary 4.16. Let E be a p-ordinary modular elliptic curve over F . Let n
be the number of places p|p at which E has split multiplicative reduction. Then
we have

ords=0 Lp(E, s) ≥ n.

In future work, we hope to also establish formula (39) for a class of non-totally-
real number fields.
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