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ABSTRACT. We construct p-adic L-functions for automorphic repre-
sentations of GLs of a number field F', and show that the correspond-
ing p-adic L-function of a modular elliptic curve E over F' has an extra
zero at the central point for each prime above p at which E has split
multiplicative reduction, a part of the exceptional zero conjecture.
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INTRODUCTION

Let F' be a number field (with adele ring Ar), and p a prime number. Let
T = @, T be an automorphic representation of GLa(Ap). Attached to 7 is
the complex L-function L(s,7), s € C, of Jacquet-Langlands [JL70]. Under
certain conditions on 7, we can also define a p-adic L-function L,(s,7) of 7,
with s € Z,,. It is related to L(s, ) by the interpolation property: For every
character x : G, — C* of finite order we have

Ly(0,7 @ x) = 700 [ [ e(mps xp) - L(3, 7 @ x),
plp

where e(my, Xp) is a certain Euler factor (see theorem for its definition)
and 7(x) is the Gauss sum of .

L,(s,m) was defined by Haran [Har87] in the case where 7 has trivial central
character and 7, is an ordinary spherical principal series representation for
all p|p. For a totally real field F, Spiel [Sp14] has given a new construction
of Ly(s,m) that also allows for m, to be a special (Steinberg) representation
for some p|p. In this article, we generalize Spie’ construction of L,(s,7) to
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automorphic representations 7 of GLg over any number field, with arbitrary
central character, and show that L, has the conjectured number of exceptional
zeros at the central point. We assume that 7 is ordinary at all primes p|p (cf.
definition 23]), that m, is discrete of weight 2 at all real infinite places v, and
is the principal series representation o(| - |'/2,]-|~'/2) at the complex places.
We define a p-adic measure p,, which heuristically is the image under the global
reciprocity map of a product of certain local distributions ur, on Fy attached
to mp, for p|p and a Whittaker function times the Haar measure on the group
of p-ideles 7 = [T, F.

Then we can define the p-adic L-function of 7 as an integral with respect to i,
over the Galois group G, of the maximal abelian extension that is unramified
outside p and oo; it is naturally a t-variable function, where ¢ is the Z,-rank of

Op:
Ly(s,7) 1= Ly(si,... s0,7) i= /g [T expy (si6i (7)) ()

pi=1
for sq,...,s: € Zy, where the ¢; are Z,-valued homomorphisms corresponding
to the ¢ independent Z,-extensions of F' (cf. section [ for their definition).
For a modular elliptic curve E over F corresponding to = (i.e. the local L-
factors of the Hasse-Weil L-function L(E, s) and of the automorphic L-function
L(s— %, m) coincide at all places v of F'), our construction allows us to define
the p-adic L-function of E as L,(E,s) := L,(s, 7). The condition that 7 be
ordinary at all p|p means that F must have good ordinary or multiplicative
reduction at all places p|p of F'.
The exceptional zero conjecture (formulated by Mazur, Tate and Teitelbaum
[MTTS86] for FF = Q, and by Hida [Hi09] for totally real F') states that

ords—o L,(E, s) > n, (1)

where n is the number of p|p at which F has split multiplicative reduction,
and gives an explicit formula for the value of the n-th derivative Ll(jn)(E ,0) as
a multiple of certain L-invariants times L(F,1). The conjecture was proved
in the case FF = Q by Greenberg and Stevens [GS93] and independently by
Kato, Kurihara and Tsuji, and for totally real fields F' by Spiefl [Sp14]. In this
article, we prove () for all number fields F.

The structure of this article is as follows: In chapter Bl we describe the local
distributions pr, on Fy; they are the image of a Whittaker functional under a
map 6 on the dual of 7,. For constructing ¢, we describe m, in terms of what
we call the “Bruhat-Tits graph” of FPQ: the directed graph whose vertices (resp.
edges) are the lattices of Fp2 (resp. inclusions between lattices). Roughly speak-
ing, it is a covering of the (directed) Bruhat-Tits tree of GLa(F,) with fibres
2 7Z. When m, is the Steinberg representation, p, can actually be extended to
all of Fj.

In chapter B we attach a p-adic distribution p4 to any map ¢(U, P) of an open
compact subset U C FJ := lep F7 and an idele 2P € IP (satisfying certain
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conditions). Integrating ¢ over all the infinite places, we get a cohomology
class ky € HY(F*',D(C)) (where d = r + s — 1 is the rank of the group of
units of ', F*' & F* /up is a maximal torsion-free subgroup of F*, and Dy (C)
is a space of distributions on the finite ideles of F'). We show that py can be
described solely in terms of kg, and pg is a (vector-valued) p-adic measure if
ke is “integral”, i.e. if it lies in the image of H(F*', Ds(R)), for a Dedekind
ring R consisting of “p-adic integers”.

In chapter @ we define a map ¢, by

o:0) = Y (4 )

CeF™

(U C F; compact open, z¥ € IP). ¢, satisfies the conditions of chapter [3, and
we show that k. := kg is integral by “lifting” the map ¢ — K, to a function
mapping an automorphic form to a cohomology class in H%(GLa(F)T, Ay),
for a certain space of functions Ay. (Here GLo(F)™ is the subgroup of M €
GL2(F) with totally positive determinant.) For this, we associate to each
automorphic form ¢ a harmonic form w, on a generalized upper-half space
H oo, which we can integrate between any two cusps in PL(F).

Then we can define the p-adic L-function Lp(s,m) := Lp(s,kx) as above,
with pr := py,. By a result of Harder [Ha87], H(GLy(F)*, A;), is one-
dimensional, which implies that L,(s,m) has values in a one-dimensional
C,-vector space. Finally, we formulate an exceptional zero conjecture (conjec-
ture @I5) for all number fields F', and show that L,(s, m) satisfies ().
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1 PRELIMINARIES

Let X be a totally disconnected locally compact topological space, R a topo-
logical Hausdorff ring. We denote by C(X, R) the ring of continuous maps
X — R, and let C.(X,R) C C(X, R) be the subring of compactly supported
maps. When R has the discrete topology, we also write C°(X, R) := C(X, R),
CYX,R) := C.(X,R).

We denote by €o(X) the set of all compact open subsets of X, and for an R-
module M we denote by Dist(X, M) the R-module of M-valued distributions
on X, i.e. the set of maps p1: €o(X) — M such that p(J, U;) = >y w(U;)
for any pairwise disjoint sets U; € Co(X).

For an open set H C X, we let 1y € C(X,R) be the R-valued indicator
function of H on X

Throughout this paper, we fix a prime p and embeddings ts, : Q< C, lp -
@<—>(Cp. Let O denote the valuation ring of Q with respect to the p-adic
valuation induced by ¢,.
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We write G := GLg throughout the article, and let B denote the Borel subgroup
of upper triangular matrices, T' the maximal torus (consisting of all diagonal
matrices), and Z the center of G.

For a number field F, we let G(F)* C G(F) and B(F)"™ C B(F) denote
the corresponding subgroups of matrices with totally positive determinant, i.e.
o(det(g)) is positive for each real embedding o : F—R. (If F is totally com-
plex, this is an empty condition, so we have G(F)* = G(F), B(F)™ = B(F)
in this case.) Similarly, we define G(R)* and G(C)™ = G(C).

1.1 p-ADIC MEASURES

DEFINITION 1.1. Let X be a compact totally disconnected topological space.
For a distribution p : €o(X) — C, consider the extension of y to the Cp-linear
map C°(X,C,) — C, @5 C, f — [ fdu. If its image is a finitely-generated
Cp-vector space, p is called a p-adic measure.

We denote the space of p-adic measures on X' by Dist? (X, C) C Dist(X,C). Itis
easily seen that u is a p-adic measure if and only if the image of p, considered as
a map C°(X,Z) — C, is contained in a finitely generated O-module. A p-adic
measure can be integrated against any continuous function f € C(X,C,).

2 LOCAL RESULTS

For this chapter, let F' be a finite extension of Q,,, O its ring of integers, w its
uniformizer and p = (w) the maximal ideal. Let ¢ be the cardinality of Op/p,
and set U := U .= o5, UM :=1+p" CU forn > 1.

We fix an additive character ¢ : F — Q with ker¢) O Op and p~! € ker .
We let | -| be the absolute value on F* (normalized by || = ¢~ 1), ord = ord,,
the additive valuation, and dz the Haar measure on F' normalized by f o dx =

1. We define a (Haar) measure on F* by d*z := %% (so fo; d*x=1).

2.1 GAUSS SUMS

Recall that the conductor of a character y : F* — C* is by definition the
largest ideal p™, n > 0, such that kery D U™ and that y is unramified if its
conductor is p° = Op.

DEFINITION 2.1. Let x : F* — C* be a quasi-character with conductor p/.
The Gauss sum of x (with respect to ) is defined by

7(x) = [U: U(f)]/ W(z)x(z)d™ x.

w—fU

INote that there is in general no 1 such that ker(y)) = O, since p~!/Of has more than
p points of order p if F'|Qp has inertia index > 1.
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For a locally constant function g : F* — C, we define

/* g(x)dz := lim g(x)dx,

n—00 zeF*,—n<ord(z)<n
whenever that limit exists.

LEMMA 2.2. Let x : F* — C* be a quasi-character with conductor pf. For
[ =0, assume |x(w)| < q. Then we have

1-x(w) ! F
de = ) e YV S=0
/*X(xm(x) ’ {T(;(() "o

(CH.

Sp14], lemma 3.4.)

2.2 TAMELY RAMIFIED REPRESENTATIONS OF GLy(F')

For an ideal a C Op, let Ko(a) € G(OF) be the subgroup of matrices congruent
to an upper triangular matrix modulo a.

Let m : GLa(F) — GL(V) be an irreducible admissible infinite-dimensional
representation on a C-vector space V', with central quasicharacter x. It is well-
known (e.g [GeTH], Thm. 4.24) that there exists a maximal ideal ¢(7) = ¢ C Op,
the conductor of 7, such that the space VEo()X = {y € V|n(g)v = x(a)v Vg =
(25) € Ko(c)} is non-zero (and in fact one-dimensional). A representation 7
is called tamely ramified if its conductor divides p.

If 7 is tamely ramified, then 7 is the spherical resp. special representation
(X1, x2) (in the notation of [GeTH] or [Spl4]):

If the conductor is O, 7 is (by definition) spherical and thus a principal series
representation m(x1,x2) for two unramified quasi-characters x; and xo with
xixz ' # |- [F' ([Bud8], Thm. 4.6.4).

If the conductor is p, then 7 = 7(x1, x2) with x1x5 = = | - |*'.
For o € C*, we define a character x, : F* — C* by xq(2) := «
So let now m = 7(x1, x2) be a tamely ramified irreducible admissible infinite-
dimensional representation of GLa(F'); in the special case, we assume x; and
X2 to be ordered such that x1 =] |x2-

Set a; := xi(w)\/q € C* for i = 1,2. (We also write 7 = 7y, o, sometimes.)
Set a := a1 + ag, v := ajas/q. Define a distribution pg, , := Bayjv =
lﬂ(x)Xm/u(fU)dtT on F™.

For later use, we will need the following condition on the «y:

ord(m).

DEFINITION 2.3. Let m = mq, o, be tamely ramified. 7 is called ordinary if a
and v both lie in O (i.e. they are p-adic units in Q). Equivalently, this means
that either o € 0" and Qg € q5*, or vice versa.

PROPOSITION 2.4. Let x : F* — C* be a quasi-character with conductor p’ ; for
[ =0, assume |x(w)| < |az|. Then the integral [,.. x(x)pa, /v (dx) converges
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and we have

[ @ () = e, a2 07 (0L G w2 ).

where
_ w)g— L _ o)1~ 1 _ w=)g—1 )
o )qil)(l (ff:((w))ﬁgl{ll)(l cox(@)a ) | f =0 and 7w spherical,
e(ar,az,x) = (lialxm)((iix)((;;;fi()(w) ) f =0 and 7w special,
2
(=) =), >0,

and where we assume the right-hand side to be continuously extended to the
potential removable singularities at x(w) = q/a1 or = q/as.

Proof. This follows immediately from lemma and the definition of the
(Jacquet-Langlands) L-function. O

2.3 THE BRUHAT-TITS GRAPH

Let V denote the set of lattices (i.e. submodules isomorphic to ©O%) in F2,
and let € be the set of all inclusion maps between two lattices; for such a map
e: v vy in £, we define o(e) := vy, t(e) := vy. Then the pair 7 := (V,€) is
naturally a directed graph, connected, with no directed cycles (specifically, £
induces a partial ordering on f)) For each v € V, there are exactly ¢ + 1 edges
beginning (resp. ending) in v, each.

Recall that the Bruhat-Tits tree T = (V,€) of G(F) is the directed graph
whose vertices are homothety classes of lattices of F2 (i.e. V = V/ ~, where
v ~ wiv for all i € Z), and the directed edges € € & are homothety classes of
inclusions of lattices. We can define maps o, t : E= vV analogously. For each
edge € € &, there is an opposite edge ¢ € € with o(e) = t(€), t(¢') = o(€); and
the undirected graph underlying 7 is simply connected. We have a natural
“projection map” 7 : T =T, mapping each lattice and each homomorphism
to its homothety class. Choosing a (set-theoretic) section s : V — V, we get a

bijection V x Z = V via (v, ) — @'s(v).

The group G(F) operates on V via its standard action on F2, i.e. gv = {gz|x €
v} for g € G(F), and on € by mapping e : v; — vo to the inclusion map
ge : gu1 — gva. The stabilizer of the standard vertex v := 0% is G(OF).

For a directed edge € € £ of the Bruhat-Tits tree 7, we define U(€) to be the
set of ends of € (cf. [Se80]/[Sp14]); it is a compact open subset of P1(F), and
we have gU (€) = U(ge) for all g € G(F).

For n € Z, we set v, := Op & p™ € V, and denote by e, the edge from Up+41 tO
Un; the “decreasing” sequence (m(e—p))nez is the geodesic from oo to 0. (The
geodesic from 0 to oo traverses the 7(vy,) in the natural order of n € Z.) We
have U(r(ey)) = p~" for each n.

On T, we have the height function h : V — Z (cf. [BL95]) defined as follows:
The geodesic ray from v € V to oo must contain some 7(v,) (n € Z), since
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it has non-empty intersection with A := {w(v,)|n € Z}; we define h(v) :=
n — d(v,w(v,)) for any such v,. This is easily seen to be well-defined, and
satisfies h(mw(v,)) = n for all n € Z. We have the following lemma:

LEMMA 2.5. (a) For all € € £, we have

h(o(®))+1 ifoc e U(e),
h(o(€)) — 1 otherwise.

h(t(e)) = {

(b) Forae F*, b F,T €V we have

h <<g 11)) a) — h(®) — ordw(a).

(Cf. [Sp14], lemma 3.6)

Let R be a ring, M an R-module. We let C(f/, M) be the R-module of maps
¢ :V — M, and C(£, M) the R-module of maps €& — M. Both are G(F)-
modules via (g¢)(v) := ¢(g71v), (gc)(e) := c(g~te).

We let C.(V, M) C C(V,M) and C.(€,M) C C(E, M) be the (G(F)-stable)
submodules of maps with compact support, i.e. maps that are zero outside a
finite set. We get pairings

(-,-) 1 Ce(D,R) x C(V, M) = M, {1, ¢2) := > _ b1(v)¢a(v) (2)
vef)
and
(-,-): Ce(E,R) x C(E, M) — M, ({c1,¢3) = ch(U)CQ(’U). (3)

ecé

We define Hecke operators T, N : C(V, M) — C(V, M) by

Tov)= > ¢lo(e)) and N¢:=ws (ie. No(v) = ¢(w 'v))

t(e)=v

for all v € V. These restrict to operators on C.(V, R), which we sometimes
denote by 7, and N, for emphasis. With respect to @), T, is adjoint to T'N,
and N, is adjoint to its inverse operator N=! : C.(V, R) — C.(V, R).

T and N obviously commute, and we have the following Hecke structure the-
orem on compactly supported functions on V (an analogue of [BL95], Thm.
10):

THEOREM 2.6. C.(V,R) is a free R[T, N*'-module (where R[T, N*'] is the

ring of Laurent polynomials in N over the polynomial ring R[T], with N and
T commuting).
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Proof. Fix a vertex vy € V. For each n > 0, let C,, be the set of vertices v € V
such that there is a directed path of length n from vy to v in VY, and such that
d(m(vg),m(v)) = n in the Bruhat-Tits tree T. So Cy = {vo}, and C, is a lift of
the "circle of radius n around vy” in 7, in the parlance of [BL95].

One easily sees that |, , C, is a complete set of representatives for the projec-
tion map 7 : V — V; specifically, for n > 1 and a given v € Cy,_1, C,, contains
exactly ¢ elements adjacent to v in V; and we can write V as a disjoint union
UjeZ UZO:O NY (Cn)

We further define Vj := {wg} and choose subsets V;, C C), as follows: We let
V1 be any subset of cardinality q. For n > 1, we choose ¢ — 1 out of the ¢
elements of C,, adjacent to v/, for every v’ € C,,_1, and let V;, be the union of
these elements for all v' € C,,_;. Finally, we set

H, ;= {6 € C.(V,R)|Supp(¢) C U NI(C;)} foreachn>0,j € Z,
=0

H, = Ujez Hn,jo and Hoq = H_y j = {0}.~ (For ease of notation, we identify
v € V with its indicator function 1y, € Ce(V, R) in this proof.)
Define 7" : C.(V, R) — C.(V, R) by

T'(¢)(v) := Z #(o(e))  for each v € N¥(C,_1),j € Z;
oy ens ()

T’ can be seen as the “restriction to one layer” |J;—, N7(C,) of T. We have
T'(v) =T(v) mod H,_; for each v € H,, since the "missing summand” of 7"
lies in H,,_1.
We claim that for each n > 0, the set X, ; := U, N7T™*(V;) is an R-basis
for H,, j/Hn—1,. By the above congruence, we can replace T' by T” in the
definition of X, ;.
The claim is clear for n = 0. So let n > 1, and assume the claim to be true
for all n’ < n. For each v € C,_1, the g points in C, adjacent to v are
generated by the ¢ — 1 of these points lying in V;,, plus T’v (which just sums
up these ¢ points). By induction hypothesis, v is generated by X,_1,0, and
thus (taking the union over all v), C,, is generated by T"(X,,—1,0) UV;, = Xy 0.
Since the cardinality of X, ¢ equals the R-rank of H,, o/H,—1,0 (both are equal
to (¢ +1)¢g" 1), X, 0 is in fact an R-basis.
Analoguously, we see that H,, ;j/H,_1; has N7(X,,0) = X, ; as a basis, for
each j € Z.
From the claim, it follows that UjeZ X, ; is an R-basis of H, /H,_1 for each
n, and that V := J0° Vi, is an R[T, N*!]-basis of C.(V, R).

O

For a € R and v € R* | we let B, ,(F, R) be the ”common cokernel” of T — a
and N —vin C.(V, R), namely B, ,(F, R) := C.(V, R)/(Im(T —a)+Im(N —v));
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dually, we define B*"(F, M) := ker(T — a) Nker(N —v) C C(V, M).

For a lattice v € V, we define a valuation ord, on F as follows: For w € F2,
the set {z € Flzw € v} is some fractional ideal w™Op C F (m € Z); we set
ord, (w) := m. This map can also be given explicitly as follows: Let A1, Ay be
a basis of v. We can write any w € F? as w = x1 A\ + Z2)2; then we have
ord, (w) = min{ordy (z1),0rdy(72)}. This gives a "valuation” map on F?, as
one easily checks. We restrict it to F = F x {0} < F? to get a valuation ord,
on F, and consider especially the value at e; := (1,0).

LEMMA 2.7. Let a,v € R*, and put a := a + qu/a. Define a map 0 = 0a,p :
V = R by o(v) := a"m@)y=ordu(er) - Then g € B*Y(F, R).

Proof. One easily sees that (U v Ord“(el)) € ker(N — v). It remains to show
that o € ker(T — a):

We have the Iwasawa decomposition G(F) = B(F)G(Op) =
{(§ )}Z(F)G(OF); thus every vertex in V can be written as w'v with
v= (&%) vy, withi € Z, ac F*,be F.

Now the lattice v = (&%) v is generated by the vectors Ay = (§) and Ay =
(b) € 0%, s0 e; = a~'A; and thus ord,(e;) = ords(a™!) = —ordw(a). The
q + 1 neighbouring vertices v’ for which there exists an e € € with o(e) =
v/, t(e) = v are given by N;v, i € {oco} UOp/p, with N := (} %), and
N; == (% %) where i € Op runs through a complete set of representatives
mod w. By lemma([Z5] h(71(Nov)) = h(m(v))+1 and h(n(N;v)) = h(n(v)) —1
for i # oo. By considering the basis {N;A1, N;A2} of N;v for each N;, we see
that ordy_ ., (e1) = ord,(e1) and ordy,,(e1) = ord,(e1) — 1 for i # co. Thus we
have

(To)(v)

Z ah(fr(o(e))) v ordy(e)(e1)
t(e)=v

_ ah(vr(v))Jerf ord, e1 +q- ah(w(v))flylfordv(el)

— (CY + qafly)ah(ﬂ'(v))yf ordy e1 _ GQ(’U),

and also (To)(w'v) = (TN~"p)(v) = N~ *(ag)(v) = ag(w'v) for a general
w'v € V, which shows that ¢ € ker(T — a). O

If a® # v(q + 1) (the “spherical case”), we put By, (F, R) := B, (F, R) and
B»Y(F, M) := B%Y(F, M).

In the “special case” a? = v(q + 1)?, we need to assume that the polynomial
X? —avX +qv~! € R[X] has a zero o’ € R. Then the map ¢ := 9o, €
C(V,R) defined as above lies in B "' (F, R) = ker(TN — a) Nker(N~! — )
by Lemma [Z7] since av = o/ +qv~1/a’. In other words, the kernel of the map
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(-,0) : Co(V, R) = R contains Im(T — a) 4+ Im(N — v); and we define
Boy(F,R) :=ker ((-,0)) / (Im(T — a) + Im(N —v))

to be the quotient; evidently, it is an R-submodule of codimension 1 of
BQW(F, R). Dually, T—a and N —v both map the submodule oM = {o-m,m €
MY} of C(V, M) to zero and thus induce endomorphisms on C(V, M)/oM; we
define B»*(F, M) to be the intersection of their kernels.

In the special case, since v = o2, Lemma 1] states that o(gvy) =

Xa(ad)o(vo) = xal(det g)o(vo) for all g = (g Z) € B(F), and thus for

all ¢ € G(F) by the Iwasawa decomposition, since G(Op) fixes vg and lies
in the kernel of x, o det. By the multiplicity of det, we have (g71o)(v) =
0(gv) = xaldet g)o(v) for all g € G(F), v € V. So ¢ € ker(-,9) implies
(90, 0) = (¢, 97" 0) = Xa(det g)(h,0) = 0, i.e. ker(-, o) and thus By, (F, R) are
G(F)-modules.

By the adjointness properties of the Hecke operators T and N, we have pairings
coker(T. — a) x ker(TN — a) — M and coker(N,. — v) x ker(N~! —v) — M,
which ”combine” to give a pairing

(-,-) : Baw(F,R) x B™" " (F,M) = M
(since ker(TN — a) Nker(N~! —v) = ker(T — av) Nker(N — v~ 1)), and a

~

corresponding isomorphism B (F, M) — Hom(B,,, (F, R), M).

DEFINITION 2.8. Let G be a totally disconnected locally compact group, H C G
an open subgroup. For a smooth R[H]-module M, we define the (compactly)
induced G-representation of M, denoted Indg M, to be the space of maps
f:+ G — M such that f(hg) = f(g) for all g € G,h € H, and such that f has
compact support modulo H. We let G act on Ind%M via g - f(z) := f(zg).
(We can also write Ind% M = R[G] ®@pa) M, cf. [Br82], I11.5.)

We further define Coind$ M := Hompg g (R[G], M). Finally, for an R[G]-
module N, we write res§; N for its underlying R[H]-module (“restriction”).

By Theorem [2.6] T, — a (as well as N. — v) is injective, and the induced map
N, —v: coker(T. — a) = C.(V,R)/ Im(T. — a) — coker(T, — a)
(of R[T, N*1/(T — a) = R[N*']-modules) is also injective. Now since G(F')

acts transitively on V, with the stabilizer of vg := 0% being K := G(OF), we

have an isomorphism Cc(f), R) Indg(F) R. Thus we have exact sequences

0 — Ind%" R 222 md$") R — coker(T, — a) — 0 (4)

and (for a,v in the spherical case)

0 — coker(T, — a) v, coker(T, — a) = Bo o (F,R) — 0, (5)
with all entries being free R-modules. Applying Hompg(-, M) to them, we get:
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LEMMA 2.9. We have ezact sequences of R-modules

0 — ker(TN —a) — Coindf((F) M= Coindf((F) M =0
and, if Ba,,(F, M) is spherical (i.e. a® # v(q+1)?),

0 — B™" ' (F, M) = ker(TN — a) =% ker(TN — a) — 0.

For the special case, we have to work a bit more to get similar exact sequences:
By [Spl4], eq. (22), for the representation St~ (F,R) := B_(44+1)1(F, R) (i.e.

v =1, a« = —1) with trivial central character, we have an exact sequence of
G-modules

0— Ind%, R — Ind%., R — St~ (F,R) — 0, (6)
where K’ = (W) Ko(p) is the subgroup of KZ generated by W := (2 }) and

the subgroup Ky(p) € K of matrices that are upper-triangular modulo p.
(Since W2 € Z, Ko(p)Z is a subgroup of K’ of order 2.) Now aany special
representation (7, V) can be written as # = x ® St~ for some character x =
Xz (cf. the proof of lemma below), and is obviously G-isomorphic to
the representation m ® (x o det) acting on the space V ®p R(x o det), where
R(x odet) is the ring R with G-module structure given via gr = x(det(g))r for
g € G,r € R. Tensoring (@) with R(x o det) over R gives an exact sequence of
G-modules

0—Ind%, x = Ind% , x = V = 0. (7)

It is easily seen that R(x o det) fits into another exact sequence of G-modules

(F§)-x(=)id

0— Ind$ R md% R % R(y o det) — 0,

where H := {g € G|detg € Ox} is a normal subgroup containing K,
(59 (Ng) = F(F " g) for f € mdFGR = {f : G — R|f(Hg) = f(9)
for all ¢ € G}, g € G, is the natural operation of G, and where 1 is the
G-equivariant map defined by 1y — 1.

Now since H C G is a normal subgroup, we have Ind$ R = R[G/H] as G-
modules (in fact G/H = Z as an abstract group). Let X C G be a subgroup
such that the natural inclusion X/(X N H) < G/H has finite cokernel; let g;H,
i=1,...n be a set of representatives of that cokernel. Then we have a (non-
canonical) X-isomorphism @}, Ind¥~y; — Ind§ R defined via (1(xnmz)i =
1Hag, for each i =1,...,n (cf. [Br82], III (5.4)).

Using this isomorphism and the “tensor identity” Ind$ M @ N = Ind$(M ®
res$ N) for any groups H C G, H-module M and G-module N ([Br82] IIL5,
Ex. 2), we have

md¥, R®r Ind$ R =~ nd¥, (res$ ,(Ind% R))
= Indgz((lndggrm R)2)

= (Ind$ ,(Ind%Z R))? = (Ind§ R)?
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(since KZ/KZ N H — G/H has index 2), and similarly
md%,, R®r Ind% R =~ (Ind%, R)?.
Thus, we can resolve the first and second term of ([7]) into exact sequences
0 — (Ind$ R)? — (Ind% R)? — nd%, x — 0,

0 — (Ind R)* = (Ind% R)* = Ind{yy i, (pyz X = 0.

Dualizing (@) and these by taking Hom(-, M) for an R-module M, we get a
“resolution” of B (F, M) in terms of coinduced modules:

LEMMA 2.10. We have exact sequences

0 =B ' (F,M) — Coind%,, M(x) — Coind% , M(y) — 0,
0 — Coind% , M (x) — (Coind$ R)? — (Coind$ R)? — 0,
0 — Coind%,, M(x) — (Coind%, R)? — (Coind%, R)? — 0

for all special B, ,(F,R) (i.e. a®> = v(q+ 1)?), where x = xz 1is the central
character.

It is easily seen that the above arguments could be modified to get a similar set
of exact sequences in the spherical case as well (replacing K’ by K everywhere),
in addition to that given in lemma [Z3 but we will not need this.

2.4 DISTRIBUTIONS ON THE BRUHAT-TITS GRAPH
For o € C(V, R) we define R-linear maps
0 : C(E,M) = C(V, M), 3y(c)(v):= Y olo(e))e(e) = > olt(e))c(e),
v=t(e) v=o(e)
0¢: C(V,M) = C(E, M), §¢(¢)(e) := o(o(e))d(t(e)) — o(t(e))d(o(e)).
One easily checks that these are adjoint with respect to the pairings @) and
@), i.e. we have (d,(c),d) = (c,0%(¢)) for all c € Cc(E, R), ¢ € C(V, M). We

denote the maps corresponding to ¢ = 1 by 0 := 41, 0% := L.
For each p, the map §, fits into an exact sequence

C.(E,R) 2% .0, R) VY R 0

but it is not injective in general: e.g. for p = 1, the map ESR symbolized by
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(and zero outside the square) lies in ker 4. 3
The restriction 6*| v,r) to compactly supported maps is injective since 7 has
no directed circles, and we have a surjective map

coker (6% : Co(V, R) — C.(€, R)) — C°(P*(F), R) ¢ Y e(e)y(a(e)
ecé

(which corresponds to an isomorphism of the similar map on the Bruhat-Tits
tree 7). Its kernel is generated by the functions 1y.) — 1;cy for e, e’ € £ with

m(e) =m(e’). }
For 01,02 € C(V,R) and ¢ € C(V, M) it is easily checked that

(591 0592)(@ =(I'+TN)(o1-02)-¢—02-(T+TN)(01-9).

For o' € R and ¢ € ker(T + TN —a') , applying this equality for g1 = ¢ and
02 = 1 shows that 0, maps Im ¢* into Im(T + TN — a’), so we get an R-linear
map

8, : coker (6% : Co(V, R) — C.(€, R)) — coker(T. + T.N. — a').

Let now again o, v € R*, and a := a + qv/a. We let 0 := gq,, € B**(F,R) as
defined in lemma [Z7] and write 5a p = 5 Since 5a v maps lyey — 1{zey into
Im(R — v), it induces a map

baw : C°(PY(F),R)/R — B, (F,R)
(same name by abuse of notation) via the commutative diagram

Oo,v
coker §* ———— coker(T, + T.N. — d’)

‘/ l mod (N—v)

C°(P*(F),R)/R > Buu(F,R)
with @’ := a(1 + v), since ¢ € B*"(F,R) C ker(T'+ TN — a’).

LEMMA 2.11. We have g (gv) = Xxa(d/a')xv(a")o(v), and thus
Soz,l/(gf) = Xa(d/a/)XV(a/)ggoz,V(f)a
forallveV, f e CO(PY(F),R)/R and g = (c(t)’ Z) € B(F).

Proof. (a) Using lemma [Z5(b) and the fact that ordg,(e1) = —orde(a’) +
ord,(e1), we have

a’/ b v)—or a' or a' —Oor e
0 <<0 d) v) — o) —ord=(a’/d), orde (a')—ordy (e1) :xa(d/a’)x,,(a’)g(v)
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for all v € V. For f and ¢ as in the assertion, we thus have

Saw(gf)) = D olo(e)flg'e) = Y olt(e))flg"e)

v=t(e) v=o(e)
=Y seef@ - X eltge)fe)
g to=t(e) g~ 1v=o(e)
— eld/dul@)ew( X deense@ - 3 o))
g~ tv=t(e) g~ tv=o(e)

= on(d/al)xu(a/)gga,u(f)(v)'
O

We define a function &, : Ce(F*,R) — B,,(F,R) as follows: For
f € C.F* R), we let o(f) € C.(PL(F),R) be the extension of z
Xa ()0 (2) "1 f(z) by zero to PY(F). We set 64, := 0a., 0 0. If & = v,
we can define d,,, on all functions in C.(F, R).

We let F'* operate on C..(F, R) by (tf)(z) := f(t'z); this induces an action of
the group T (F) := {(£9) |t € F*}, which we identify with F* in the obvious
way. With respect to it, we have

ho(tf)(@) = Xa(t)xw (t) " to(f)(2)

and

Sa,v(tf) = X;l(t)xu(t)téaﬁv(f)v

S0 04, is T1(F)-equivariant.

For an R-module M, we define an F*-action on Dist(EF™*, M) by [ fd(tu) =
t[(t71f)du. Let H C G(F) be a subgroup, and M an R[H]|-module. We
define an H-action on B~ (F, M) by requiring (¢, hA) = h- (h=1¢, A) for all
@€ By (F, M), A e B“””’fl(F, M), h € H. With respect to these two actions,
we get a T1(F) N H-equivariant mapping

5 L B (F, M) — Dist(F*, M), 6“"(\) i= (5au(-),\)

)

dual to dq,,.

2.5 LOCAL DISTRIBUTIONS

Now consider the case R = C. Let xi1,x2 : F* — C* be two unramified
characters. We consider (x1,x2) as a character on the torus T(F') of GLy(F),
which induces a character y on B(F') by

X (tol Z;) = X1(t1)x2(t2).

Put a; := xi(w),/qg € C* for i = 1,2. Set v := y1(@w)x2(w) = a1a2q™* € C*,
and a := a1 + a2 = o; + qv/«; for either i. When a and v are given by the «;
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like this, we will often write By, o, (F, R) 1= Ba(F, R) and BY*2(F, M) :=
B (F,M) (1) for its dual. In the special case a> = v(q + 1), we assume
the x; to be sorted such that x1 = |- |x2-

Let B(x1, x2) denote the space of continuous maps ¢ : G(F') — C such that

o((§ 1)9) = xmtaslnloto) ©

forallty,to € F*,u € F, g € G(F). G(F) operates canonically on B(x1, x2) by
right translation (cf. [Bu98], Ch. 4.5). If x1x5 " # |- [*, B(x1, x2) is a model
of the spherical representation 7(x1, x2); if x1x5* = | - |**, the special repre-
sentation 7(x can be given as an irreducible subquotient of codimension

1 Xz)
1 of B(X17X2)E

LEMMA 2.12. We have a G-equivariant isomorphism Ba,u(F,(C) > B(x1, X2)-
It induces an isomorphism B, , (F,C) = w(x1, x2) both for spherical and special
representations.

Proof. We choose a “central” unramified character xz : F* — C satisfying
X% (@) = v; then we have x1 = xzXo ', X2 = XzXo for some unramified char-
acter xo. We set a’ := /g (xo(@) ™ + xo(w)), which satisfies a = xz(w@)a'.
For a representation (7, V) of G(F), by [Bu98], Ex. 4.5.9, we can define another
representation xyz @ w on V via

(g,v) — xz(det(g))m(g)v forall g € G(F),v eV,

and with this definition we have B(x1, x2) = xz®B(xs ' x0)- Since B(xg ', xo0)

has trivial central character, [BL95|, Thm. 20 (as quoted in [Sp14]) states that
G

B(xg". x0) = Bor 1 (F,C) = Ind3y” R/ Im(T — o).

Define a G-linear map ¢ : Ind?( R — xz ®Ind?( Rby lg — (xzodet) 1kz.
Since 1x (resp. (xz odet) - 1xz) generates Ind% R (resp. xz ® Ind%, R) as a
C[G]-module, ¢ is well-defined and surjective.

¢ maps N1g = (5 2) 1k to

(% 2)((xzodet) 1xz) = xz(@)* - ((xz odet) - 1xz) = v - ¢(1k).

Thus Im(N — v) C ker ¢, and in fact the two are equal, since the preimage of
the space of functions of support in a coset KZg (g € G(F)) under ¢ is exactly
the space generated by the 1.4, z € Z(F) = Z(Op){(F 2)}~.

Furthermore, ¢ maps T1x = ZiGOF/(w)U{oo} N;1g (with the N; as in Lemma

271) to
> xz(det(Ny)) - ((xz o det) - Nilkz) = xz(@) - (xz © det)T'lx 7

(since det(NN;) = w for all i),and thus Im(T — a) is mapped to Im (xz(w@)T —
a) =Im (xz(@)(T —d)) =Im(T — o).

2Note that [Bu98|] denotes this special representation by o(x1, x2), not by m(x1, x2)-
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Putting everything together, we thus have G-isomorphisms

C.(V,C)/(Im(T — a) + Im(N —v)) = Ind§ R/(Im(T — a) + Im(N — v))
xz @ (Ind%, R/ Im(T — o))

xz ® B(xg " x0) = B(x1, x2)-

1%

IR

Thus, B, (F,C) is isomorphic to the spherical principal series representation
m(x1,X2) for a® # v(g +1)%

In the special case, By, (F,C) is a G-invariant subspace of By, (F,C) of codi-
mension 1, so it must be mapped under the isomorphism to the unique G-
invariant subspace of B(x1, x2) of codimension 1 (in fact, the unique infinite-
dimensional irreducible G-invariant subspace, by [Bu98|, Thm. 4.5.1), which is
the special representation m(x1, x2)- O

By [Bu98|, section 4.4, there exists thus for all pairs a, v a Whittaker functional
A on B, (F,C), i.e. a nontrivial linear map A : B, ,(F,C) — C such that
A(§%) @) =v(x)A(). It is unique up to scalar multiples.

From it, we furthermore get a Whittaker model W, ,, of B, ,(F, C):

Wa = {We: GLy(F) — C|¢ € B, (F,C)},

where We(g) :== A(g - &) for all g € GLo(F). (see e.g. [Bu9s], Ch. 3, eq. (5.6).)
Now write o := oy for short. Recall the distribution pq,, = ¥(2)Xa/y (z)dz €
Dist(F*,C). For o = v, it extends to a distribution on F. We have the
following generalization of [Sp14], Prop. 3.10:

PROPOSITION 2.13. (a) There exists a unique Whittaker functional X\ = A,
on B, (F,C) such that §*Y(X\) = pa,u-
(b) For every f € C.(F*,C), there exists W = W; € W, ,, such that

[ @hmatan =w; (5 7).

If a = v, then for every f € C.(F,C), there exists Wy € W, ,, such that

[ @nt@patan =w; (5 7).

(c) Let H C U = OF be an open subgroup, and write Wy := Wy,,. For every
f e Co%F*,C)H we have

. z 0\ ,«
[ oot =wem [ s (5 V) ae

Proof. (a) By [Spl4], we have a Whittaker functional of the Steinberg repre-
sentation given by the composite

St(F,C) := C°(P}(F),C)/C = C.(F,C) & C, (9)
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where the first map is the F-equivariant isomorphism
CO(PH(F),C)/C — Ce(F,C), ¢ f(x):= ¢(x) — ¢(c0),
(with F acting on C..(F,C) by (x - f)(y) := f(y — z), and on C°(P!(F),C)/C
by z¢ := (} %) ¢), and the second is
A:C(F,C)—>C, [~ / f@)y(z)de.

Let now A : By, (F,C) — C be a Whittaker functional of B, ., (F,C). By lemma

BI0 for u = (3 1) € B(F)
(/\ © ga,u)(u¢) - A(uga,u((b)) = w(z)A(Sa,u((ﬁ));

SO Ao 5a7u is a Whittaker functional if it is not zero.
To describe the image of d,,,, consider the commutative diagram

N N
C.(E,R) —=C.(V,R)

o e

Co(€,R) —= (0, R) 2 R ——0

where the vertical maps are defined by
C.(E,R) — C(E,R), c— (e — c(e)o(o(e))o(t(e))) (10)

resp. by mapping ¢ to v — ¢(v)o(v); both are obviously isomorphisms.

Since the lower row is exact, we have Imd = ker(-,1) =: C%(V, R) and thus
Imd,, =o' -CV,R).

Since A # 0 and B, (F, C) is generated by (the equivalence classes of) the 1¢,,

v € V, there exists a v € V such that A(1{s}) # 0. Let ¢ be this 15y, and let
uw=(}%) € B(F) such that « ¢ kert. Then

0 (up—0) =0 (Iu-10y — Ly) = 0(0)(L{u-10) — Luy) € C2(V, R)

by lemma 2T} 50 0 # u¢ — ¢ € Im by, but Aug — @) = h(z) (@) — M(¢) # 0.
So Ao S,LV # 0 is indeed a Whittaker functional. By replacing A by a scalar
multiple, we can assume \ o 501# = (@.

Considering A as an element of BV (F,C) = Hom(B,,.,(F,C),C), we have

SYO() = Ban(f), N\
= Axaxy'f)

- / Yo (2)X5 () f (2)0 (x)da
.

= Ma,V(f>-
(b), (c) follow from (a) as in [Spl4]. O
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2.6 SEMI-LOCAL THEORY

We can generalize many of the previous constructions to the semi-local case,
considering all primes p|p at once.

So let Fy, ..., Fy, be finite extensions of Q,, and for each 7, let ¢; be the number
of elements of the residue field of F;. We put F := Fy X - -+ X Fy,.

Let R again be a ring, and a; € R,v; € R* for each i € {1,...,m}. Put
a:=(a1,...,am), ¥:= (V1,...,Vm). We define B, ,(F, R) as the tensor prod-
uct

m

Ba,g(Ev R) = ® Bai,ui (E7 R)

i=1

For an R-module M, we define B (F, M) := Hompg(B,.,(F, R), M); let

() : Byy(E, R) x B2 (F, M) — M (11)

denote the evaluation pairing.
We have an obvious isomorphism

®C’O (F},R) — CY(E*,R ®f1 ( Ti)i=1,...,m F ﬁfz(%)) - (12)

i=1
Now when we have «;1,0;2 € R* such that a; = «;1 + a2 and v; =
aiﬁlaiﬁgqfl, we can define the T (F)-equivariant map
ba, , = 0ayw CYUE,R) — Ba,(F,R)

as the inverse of (I2) composed with @;"; da, ,,v.-

Again, we will often write Ba, o, (F} R) 1= Bay,,-1 (F, R) and B2L22(F, M) :=
Ba-r™' (F, M).

If H C G(F) is a subgroup, and M an R[H]-module, we define an H-action
on BL ' (F, M) by requiring (¢, hA) = h - (h=¢, ) for all ¢ € B, (F, M),
A€ Bwr (F,M), h e H, and get a T'(F) N H-equivariant mapping

gevez ; BTN (F M) < Dist(E*, M),  0%092(X) i= (Jay a0 (), A).

Finally, we have a homomorphism

m

&) B+ (F, R)

i=1

lnz

®HomR vt (Fiy R), R)

— Hom(B,, ., (F1, R), Hom(Bq, v, (F2, R),Hom(..., R))...)

=, By (F,R).
(13)

where the second map is given by ®;f; — (x1 — (22— (... = [, fi(xi))...),
and the last map by iterating the adjunction formula of the tensor product.
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3 COHOMOLOGY CLASSES AND GLOBAL MEASURES

3.1 DEFINITIONS

From now on, let ' denote a number field, with ring of integers Op. For each
finite prime v, let U, := O}. Let A = Ap denote the ring of adeles of F', and
I = I the group of ideles of F. For a finite subset S of the set of places of
F, we denote by A% := {z € Ap|z, = 0 Vo € S} the S-adeles and by I°
the S-ideles, and put Fs := [[,cq Fo, Us == [[,cg Us, U := [Togs U (if S
contains all infinite places of F'), and similarly for other global groups.

For ¢ a prime number or oo, we write Sy for the set of places of F' above ¢, and
abbreviate the above notations to A := AS¢, AP := A%YS<  and similarly
write IP, I, F},, Fo, U™, Up, UP>, I etc.

Let F have r real embeddings and s pairs of complex embeddings. Set d :=

r+s—1. Let {o0,...,0,-1,0n,...,04} be a set of representatives of these
embeddings (i.e. for i > 7, choose one from each pair of complex embeddings),
and denote by 0oy, ..., 004 the corresponding archimedian primes of F. We let

SY = {001,...,004} C Sx.

For each place v, let dx, denote the associated self-dual Haar measure on
F,, and dz := [[, dz, the associated Haar measure on Ap. We define Haar
measures d*z, on F' by d*xz, = cv“i%rv, where ¢, = (1 — qiu)_1 for v finite,
¢y = 1 for v|oco. For v|oo complex, we use the decomposition C* = R* x S!
(with S1 = {z € C*;|z| = 1}) to write d*x, = d*r, dV, for variables r,, ¥,
with r, € R%, J, € St

Let S; C S, be a set of primes of F' lying above p, S> := S, — 51. Let R be a
topological Hausdorff ring.

DEFINITION 3.1. We define the module of continuous functions
C(S1,R) := C(Fs, x F5, x IP"*> /JUP*>° R);

and let C.(S7, R) be the submodule of all compactly supported f € C(S1, R).
We write C%(S1, R), C2(S1, R) for the submodules of locally constant maps
(or of continuous maps where R is assumed to have the discrete topology).We
further define

C’(S1,R) :=Ce(3, R) +C2(S1, R) C C2(S1, R)

to be the module of continuous compactly supported maps that are “constant
near (Op,z?)” for each p € Si.

DEFINITION 3.2. For an R-module M, let Df(S1, M) denote the R-module of
maps
¢ Co(Fs, x F3) x 2™ 5 M

that are UP'*°-invariant and such that ¢(-,2°°) is a distribution for each
P> e IR,
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Since I:°° /UP>° is a discrete topological group, Dy (S1, M) naturally identifies
with the space of M-valued distributions on Fs, x F§ x I%:°°/UP*°. So there
exists a canonical R-bilinear map

Dy(S1, M) x C2S1, R) = M, (6, f) o / f do, (14)

which is easily seen to induce an isomorphism D;(S7, M) =
Homp(C2(S1, R), M).

For a subgroup E C F* and an R[E]-module M, we let E operate on Dy (Sq, M)
and C2(S1,R) by (a¢)(U,zP>°) := a¢(a™'U,a 1aP>®) and (af)(z>) =
fla™'z>) fora € E, U € Co(Fs, x F§ ), x° € Ij; thus we have [(af) d(ag) =
a [ fdgforalla, f,é.

When M =V is a finite-dimensional vector space over a p-adic field, we write
’DI}(S’l,V) for the subset of ¢ € Dy(S1,V) such that ¢ is even a measure on

FS X F52 X H;;?OO/UP’OO.

1

DEFINITION 3.3. For a C-vector space V, define D(S1,V) to be the set of all
maps ¢ : €o(Fs, x I ) x I’ — V such that:

(i) ¢ is invariant under F'* and UP*°.
(ii) For P € IP, ¢(-,2P) is a distribution of Fs, x Fs,.

(iii) For all U € €o(Fs, x Fg,), the map ¢y : [ = F) x I = V, (xp,2P)
¢(xpU, 2P) is smooth, and rapidly decreasing as |z| — oo and |z| — 0.

We will need a variant of this last set: Let D’(S1, V) be the set of all maps
¢ € D(S1,V) that are ”(S!)*-invariant”, i.e. such that for all complex primes
o0j of F and all ¢ € S = {z € C*;|z| = 1}, we have

d(U, xP>7 C‘TOOJ) = (U, 27>, xooj) for all ¥ = (277, -Tooj) err.

There is an obvious surjective map

D(S1,V) = D'(S1,V), ¢+ ((U}m)k» ¢(U;x)dﬂT---dﬂT+s_1>

(st)e
given by integrating over (S1)* C (C*)* — I,

Let F7} denote the set of all x € F'x that are totally positive, i.e. positive
with respect to every real embedding of F. (For F totally imaginary, we have
F* =F%.) Let F*' C FY be a maximal torsion-free subgroup of Fy. If F' has
at least one real embedding, we obviously have F*' = FY; for totally imaginary
F, F*' is a subgroup of finite index of F* with F//F*' = up, the roots of unity
of F.

We set

E' :=F"NO; COf,
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so E’ is a torsion-free Z-module of rank d. E’ operates freely and discretely on
the space

d
R+ ;:{(xo,...,xd)eR“Hin:o}
=0
via the embedding
E — Rt
a +— (logloi(a)])ies..
(cf.  proof of Dirichlet’s unit theorem, e.g. in [Neu92], Ch. 1), and

the quotient Rg“ /E’ is compact. We choose the orientation on Rg“ in-
duced by the natural orientation on R? via the isomorphism R¢ =2 ]Rg“,
(X1, xq) — (— Zle TiyT1, ..., Tq). So RITH/E’ becomes an oriented com-
pact d-dimensional manifold.

Let G, be the Galois group of the maximal abelian extension of F' which is
unramified outside p and oo; for a C-vector space V, let Dist(G,, V) be the
set of V-valued distributions of G,. Denote by ¢ : Ir/F* — G, the projection
given by global reciprocity.

3.2 GLOBAL MEASURES

Now let V' = C, equipped with the trivial F*'-action. We want to construct a
commutative diagram

¢i—>l€¢

D(S1,C) HY(F*' D (S1,C)) (15)
D1
\ /K—mac)
Dist(G,,C)

First, let R be any topological Hausdorff ring. Let F’_ denote the closure of
E’ in Up,. The projection map pr : I>°/UP>° — I°*°/(E’ x UP*°) induces an
isomorphism

pr* : Co(I°/(E" x UP>°), R) — H°(E', C.(I>° /UP"*, R)),

and the reciprocity map induces a surjective map o : I°°/(E’ x UP*®) — G,,.
Now we can define a map

Qﬁ : HO(F*//E/,CC(HOO/(F X UPyOO),R)) N C(gp,R)’
[f] = (@(x) — Z f(¢z) for x € I /(E’ x UWX’))_

CeEF*'/E’

This is an isomorphism, with inverse map f +— [(f 0 2) - 1£|, where 1x is the
characteristic function of a fundamental domain JF of the action of F*'/E’ on
I°°/U>.

DOCUMENTA MATHEMATICA 21 (2016) 689-734



p-ADIC L-FUNCTIONS OF AUTOMORPHIC FORMS 711

We get a composite map

C(Gy, R) L Hy(F*' /B, Co1% ) (B x UP™), R))

Py Ho(FY B HO(E', C,(I% JUP™, R))) (16)
— Ho(F*'/E',H°(E',C.(51, R))),

where the last arrow is induced by the “extension by zero” from
C.(I*°/UP*> R) to C.(S1, R).

Now let n € Hy(FE',Z) = Z be the generator that corresponds to the given
orientation of Rg“. This gives us, for every R-module A, a homomorphism

Ho(F*'/E', H(E', A)) —> Hy(F*'/E', Hy(E', A))
Composing this with the edge morphism
Ho(F*'/E',Hy(E', A)) — Hq(F*', A) (17)
(and setting A = C.(S1, R)) gives a map
Ho(F*'/E' H°(E',Cc(S1,R))) = Ha(F*',Cc(S1, R)) (18)

We define
8: C(Gp, R) — Hy(F*',C.(S1,R))

as the composition of (I6) with this map.
Now, letting M be an R-module equipped with the trivial F*'-action, the
bilinear form (T4l

Ds(S1, M) x Cc(S1,R) — M
@ o [
induces a cap product
N: HYF* ,Dp(S1,M)) x Hq(F*',Cc(S1,R)) — Ho(F*', M) =M. (19)

Thus for each k € H(F*',D(S1,M)), we get a distribution u, on G, by
defining

; f(0) ps(dy) == kN O(f) (20)

for all continuous maps f : G, = R.

Now let M = V be a finite-dimensional vector space over a p-adic field
K, and let xk € Hd(F*’,D?(Sl,V)). We identify x with its image in
HY(F*' D(S1,V)); then it is easily seen that u, is also a measure, i.e. we
have a map

HYF*' D4(S1,V)) = Dist’(G,, V), K+ pu. (21)
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Let L|F be a Zy-extension of F. Since it is unramified outside p, it gives
rise to a continuous homomorphism G, — Gal(L|F') via ¢ — o|r. Fixing an
isomorphism Gal(L|F) & p*rZ, (where €, = 2 for p = 2, ¢, = 1 for p odd),
we obtain a surjective homomorphism ¢ : G, — prZ,. (Note that p*rZ, is the
space of definition of the p-adic exponential function exp,.)

Ezample 3.4. Let L be the cyclotomic Z,-extension of F. Then we can take
¢ = log, oN, where N : G, — Z, is the p-adic cyclotomic character, defined

by requiring v{ = CN(’Y) for all v € G, and all p-power roots of unity ¢. It is
well-known (cf. [Wa82], par. 5) that log,(Z;) = p*Z,.

It is well-known that F' has t independent Z,-extensions, where s +1 < ¢ <
[F : QJ; the Leopoldt conjecture implies t = s+ 1. u, defines a t-variable p-adic
L-function as follows:

DEFINITION 3.5. Let K be a p-adic field, V' a finite-dimensional K-vector
space, Kk € Hd(F*/,DI}(Sl,V)). Let ¢1,...,¢; : G, — p°*Z, be continuous
homomorphisms.The p-adic L-function of k is given by

Ly(s,k) = Lp(s1,...,8, k) = /g <H expp(si&(’y))> i (dy)

i=1
for all 51,...,5; € Zp.

Remark 3.6. Let X := {£1}", where r is the number of real embeddings of F.
The group isomorphism Z /27 = {£1},e — (—1)°, induces a pairing

() S L (FD7) (F)5) = (-1 Eeeel

For a field k of characteristic zero, a k[X]-module V and p = (uo, ..., fir—1) € 3,
we put V,, == {v € V|(u,v)v = vv Vv € £}, so that we have V =@ 5, V..
We write v, for the projection of v € V' to Vj,, and vy := v, 1)

For r > 0, we identify ¥ with F*/F*' via the isomorphism ¥ 2 [/ R* /R* =
F*/F*' = F*/F}. Then for each F*-module M, ¥ acts on HYF*' Dy (S, M))
and on HY(F*', ’Dl} (S1, M)). For r = 0, we let the trivial group ¥ act on these

groups as well for ease of notation. The exact sequence ¥ = H::_OI R*/R% =
Io/I3, — G, — GF — 0 of class field theory (where I3 is the maximal
connected subgroup of I,) yields an action of ¥ on G,. We easily check that
(1)) is Y-equivariant, and that the maps 7 +— exp,(sf;(7y)) factor over G, —

G, (since Zy-extensions are unramified at oo). Therefore we have Ly (s, k) =
L:D (§’ "€+)'
For ¢ € D(S1,V) and f € C°(I/F*,C), let

HED

/ f(@)p(d* xp, aP) d*aP = [U, : U] (x)py (z) d*z,
1/F* 1/ F*
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where we choose an open set U C U, such that f(z,u,z?) = f(xp,2?) for all
(xp,2?) € land u € U; such a U exists by lemma 3.7 below. Since this integral
is additive in f, there exists a unique V-valued distribution p4 on G, such that

/ [ dug = flo(x))p(d™ zp, xP) d* P (22)
Gy 1/F*

for all functions f € C%(G,, V).

LEMMA 3.7. Let F : I/F* — X be a locally constant map to a set X. Then
there exists an open subgroup U C 1 such that f factors over 1/F*U.

Proof. Tos =[]0 Fo is connected, thus f factors over f:1/F*1 — X. Since

I/F*I, is profinite, f further factors over a subgroup U’ C I*® of finite index,
which is open. O

Let U := [],cq0 R%; the isomorphisms U = R?, (r,), ~— (logry),, and

R? =~ Rg“ give it the structure of a d-dimensional oriented manifold (with the
natural orientation). It has the d-form d*rq -...-d*rq, where (by slight abuse
of notation) we choose d*r; on F,,, corresponding to the Haar measure d*x;
resp. d*r; on R% C FX . E’ operates on U2, via a — (|oi(a)|)iesy. , so the
isomorphism U2 =2 Rg"'l is E’-equivariant.

o0

For ¢ € D'(51,V), set
/ ¢ d*ry: Co(Fs, x F3) x "0 5 C
0

(U, zP>°0) / d(U, g, 2P) d*rg,
0

*

where we let rg € Fu, run through the positive real line R* in F,. Composing
this with the projection D(S1,V) — D’(S1,V) gives us a map

D(S1,V) — H°(F*', D (S1,C™ (UL, V))),

oo 23
b </ ¢ dxro) A0, d9yy ... Ay s 1 (23)
(s1)s \Jo

(where C>(UY,, V') denotes the space of smooth V-valued functions on U2,),
since one easily checks that fooo ¢ d*rg is F*'-invariant.

Define the complex C® := D¢ (S1,Q* (UL, V)). By the Poincare lemma, this is
a resolution of Dy (S1,V). We now define the map ¢ — £, as the composition
of ([23) with the composition

H°(F*,Dy(51,0°(UL,, V))) = HO(F*',C%) — HYF, Dy (51,V)), (24)
where the first map is induced by

CeWo, V) = QUUL. V), f flri,...,ra)d*r-...-d*rg, (25)

DOCUMENTA MATHEMATICA 21 (2016) 689-734



714 HoLGER DEPPE
and the second is an edge morphism in the spectral sequence

HYF*' CP) = HPTI(F* Ds(S1,V)). (26)
Specializing to V = C, we now have:

PROPOSITION 3.8. The diagram ([IB) commutes, i.e., for each ¢ € D(S1,C),
we have

1 = Hiy-
Proof. Analoguously to [Spl4], proof of prop. 4.21, we define a pairing
{(,):D(S,C) x C°G,,C) = C
as the composite of [23)) x (I8) with
HO(F*', Dy(51,C% Uz, ©))) x Ho(F*'/E' H(E',C2(S1, C)))
5 Ho(F*' JE',H(E',C=(UY,,C))) — Ho(F*'/E',C) = C, (27)

where N is the cap product induced by (4], and the second map is induced by
H°(E',c>UL,C)) = C, fr flri,...,rq) d*ry...d%rq.  (28)

Then we can show that
ko NO(S) = (6, ) = /g F() o(dy)  for all f € CO(G,,C),

by copying the proof for the totally real case (replacing F} by F * E. by
E’), using the fact that for a d-form on the d-dimensional oriented manifold
M := RgH/E’ =~ U9 /FE’, integration over M corresponds to taking the cap
product with the fundamental class 17 of M under the canonical isomorphism
Hip(M)= HZ, (M)=HYFE',C). O

sing

3.3 EXCEPTIONAL ZEROS

Now let ¢1,...,¢; : G, — Z;, be continuous homomorphisms. Let again S; =
{p1,-..,pn} €S, be a set of primes above p, of cardinality n := #5;.

PROPOSITION 3.9. For each x = (x1,...,x;) € N set |z| := Zle x;. Then

t
G(Hff) =0 foralxz with |z| <n-—1.
i=1
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Proof. We can readily generalize the proof of Spie’ result for the p-adic cy-
clotomic character (¢ = log, o) in the totally real case ([Sp14], Prop. 4.6(a),
Lemmas 4.1 and 4.7) to show that 9(¢*) = 0 for all 0 < = < n — 1, us-
ing the facts that we can write F*' = E’ x T for some subgroup 7 C F*
(since F*'/E' = F*/O} is a free Z-module), and that for each homomorphism
£ : G, — Zp, the composition

0:1° %6, 572,50,

is zero on I°*? (since the pro-g-part of G, is finite for every prime ¢ # p and
Q, is torsion-free).

Now for a ring R O Q, each monomial Hle X" € R[Xq,...,X;] of degree
n =) . n; can be written as a linear combination of n-th powers (X;+r; ; X;)".
Therefore each product [Ji_, £ of degree z = |x| is a linear combination of
x-th powers of the homomorphlsms b;j:=VU;+r;l; : G, = Zy. This proves
the proposition. O

DEFINITION 3.10. A t¢-variable p-adic analytic function f(s) = f(s1,...,5st)
(si € Zp) has vanishing order > n at the point 0 = (0,...,0) if all its partial
derivatives of total order < n — 1 vanish, i.e. if

oF oF
0 - -
G’ O = G gk

f(0)=0
for all k = (k1,..., k) € N§ with k:= |k|] <n— 1. We write ords—o f(s) > n
in this case.

THEOREM 3.11. Let n = #(S1), & € HY(F*,D4Y(S1,V)), V a finite-
dimensional vector space over a p-adic field. Then L,(s, k) is a locally analytic
function, and we have

ordg—g Ly(s, k) > n.

Proof. We have

(aa:)kl’ / (Hf ),u,.i dv)-mﬂ@(Hﬁ )

i=1

for all k& = (k1,...,k) € Nf. Thus the theorem follows from proposition
0.9 o

3.4 INTEGRAL COHOMOLOGY CLASSES

DEFINITION 3.12. A nonzero cohomology class k € H(F*', D;(S1,C)) is called
integral if k lies in the image of

HYF*',Ds(S1,R)) @r C — HYF*',Ds(S1,C))
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for some Dedekind ring R C O. If, in addition, there exists a torsion-free R-
submodule M C H4(F*',D(S1, R)) of rank < 1 (i.e. M can be embedded
into R) such that x lies in the image of M @ C — H(F*',D;(S1,C)), then
K is integral of rank < 1.

For k as in def. and R C C, we let L, g be the image of
Hd(F*I,CCO(Sl,R)) —>H0(F*I,(C) =C, z—krNuz.

PROPOSITION 3.13. Let k € HY(F*',Ds(S1,C)) be integral. Then

(a) py is a p-adic measure. -

(b) There exists a Dedekind ring R C O such that Ly g is a finitely generated
R-module (resp. a torsion-free R-module of rank < 1, if k is integral of rank
<1).

For each such R, the map HY(F*',Dy(S1, Ly r)) @ Q — HYF*', Ds(S1,C)) is

injective and K lies in its image.

Proof. The proofs of the corresponding results for totally real F ([Spl4],
prop. 4.17 and cor. 4.18) also work in the general case. O

Remark 3.14. Let x be integral with Dedekind ring R as above. By (b) of the
proposition, we can view s as an element of H4(F*' Ds(S1, L, r)) ® Q. Put
Vi == Ly ,r @R Cp; let E be the image of x under the composition

HYF,Dy(S1,Lu.r)) ©rQ — HUF* Dp(S1, Ler)) ®r Cp
- Hd(F*/,D?(ShVH))a

where the second map is induced by D¢(S1, Lk, r) ®r Cp — D?(Sl, V.). By
[Sp14], lemma 4.15, & does not depend on the choice of R.

Since py is a p-adic measure, pz allows integration of all continuous functions
f € C(Gp,Cp), and by abuse of notation, we write L,(s, %) := Ly(s,%) (cf.
remark [B.0). So Ly, (s, k) has values in the finite-dimensional C,-vector space
V.

4 p-ADIC L-FUNCTIONS OF AUTOMORPHIC FORMS

We keep the notations from chapter Bl so F' is again a number field with r real
embeddings and s pairs of complex embeddings.

For an ideal 0 # m C Op, we let Ko(m), C G(OF,) be the subgroup of matrices
congruent to an upper triangular matrix modulo m, and we set Ko(m) :=
[Toroe Ko(m)o, Ko(m)S = [Toioo,vgs Ko(m), for a finite set of primes S. For
each plp, let ¢, = N(p) denote the number of elements of the residue class field
of Fy.

We denote by |-|c the square of the usual absolute value on C, i.e. |z|¢c = 2% for
all z € C, and write |- |g for the usual absolute value on R in context. We write

1
|a| := |a|@ for the archimedian absolute value when « is given as a complex
number in the context; whereas in the context of the p-adic characters, | - |
denotes the p-adic absolute value, unless otherwise noted.
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DEFINITION 4.1. Let 20(G,2, xz) denote the set of all cuspidal autormorphic

~

representations T = ®,m, of G(Ar) with central character xz such that m, =

1/2 1/2
ol - 11211572

of [JLT0]; so o(] - 1/2 o |Fl/2 is the discrete series of weight 2, D(2), if v
is real, and is isomorphlc to the principal series representation (1, t2) with
p1(z) = 2122 7V2 po(2) = 271222 if v is complex (cf. section 4.5 below).

at all archimedian primes v. Here we follow the notation

We will only consider automorphic representations that are p-ordinary , i.e m,
is ordinary (in the sense of chapter 2] for every p|p.

Therefore, for each p|p we fix two non-zero elements Qp,1,0p2 € O C C such
that 7a, , a,, 1S an ordinary, unitary representation. By the classification of
unitary representations (see e.g. [Ge75], Thm. 4.27), a spherical representation
Tap 1,ap2 = T(X1,X2) is unitary if and only if either x1, x2 are both unitary
characters (i.e. [ap 1| = |ap 2| = \/qp), Or X12 = X0 - |+ with yo unitary and
f% <s< % A special representation 7o, |0, , = 7T(X1,X2) is unitary if and
only if the central character xixs is unitary. In all three cases, we have thus
max{|ap 1], [ap 2|} > (/@p. Without loss of generality, we will assume the ay ;
to be ordered such that |ayp 1| < |ayp,2| for all p|p.

As in chapter 2] we define ap, = ap 1 + ap 2, Vp 1= ap,104,2/Gp.

Let a; := (ap,i, p|p), for i = 1,2. We denote by 2o(G, 2, xz, a1, a2) the subset
of all € Ao(G,2, xz) such that mp = 7o, , qa,., for all p[p.

For later use we note that 7°° = ®,4, T, is known to be defined over a finite
extension of Q, the smallest such field being the field of definition of m (cf.
[Spid]).

4.1 UPPER HALF-SPACE

For k € {R,C}, let H,, := Hy := k x R be the upper half-space of dimension
= [k : R] + 1. Each H,, is a differentiable manifold of dimension m. If
we write = (u,t) € H,, with ¢t € RY, v in R or C, respectively, it has a
Riemannian metric ds? = ‘M%‘W, which induces a hyperbolic geometry on
Hm, i.e. the geodesic lines on H,, are given by “vertical” lines {u} x R% and
half-circles with center in the line or plane ¢ = 0. Hg is naturally isomorphic
to the complex upper half-plane {z € C|Im(z) > 0}.
We have the decompositions GLy(C)t = B - Z(C) - K¢ and GLy(R)" =
By - Z(R) - Kgr, where B, C GLa(k
k =R,C, Z is the center, and K =
Identifying Bj, with Hj via (§ %) —

) is the subgroup of matrices (]ROi ’I) for
SO(2), K¢ = SU(2) (cf. [By98], Cor. 43).
(z,t) gives natural projections

R - GrLQ(IR)Jr —» GLQ( )Jr/Z( SO( ) HQ,
7ic : GLy(C) — GLy(C)/Z(C)Ke = He

and corresponding left GLqy(k)-actions on cosets.
A differential form w on H,, is called left-invariant if it is invariant under
the pullback Lj of left multiplication Ly :  + gz on Hy, for all g € G.
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Following [By98], eqs. (4.20), (4.24), we choose the following basis of left-
invariant differential 1-forms on Hs:

dz dt dz
Bo == —5 B = e Ba = 5
and on Ho (writing z = a + iy € Ha C C):
dz dz
61 =, 62 =
Yy Yy

We note that a form f181 + f2f2 is harmonic on Hs if and only if f;/y and
f2/y are holomorphic functions in z ([By98|, lemma 60).

The Jacobian J(g, (0,1)) of left multiplication by g in (0,1) € H,, with respect
to the basis (8;); gives rise to a representation

0=ok: Z(k) - K = SL,,(C)

with o|z(x) trivial, which on K} is explicitly given by

2 2

U 2uv v u
oc(h)=| —uv wu—vv wvu for h = (_
2 -2 T

g) € SU(2),
2 (u m) = (G o)

([By98], (4.27), (4.21)). In the real case, we will only consider harmonic forms
on H, that are multiples of 31, thus we sometimes identify pgr with its restriction

g%) to the first basis vector 1,

1. 1 * _ ( cos(¥)  sin(d) 210
op’ :S0(2) =S CC*, kKy= (sin(ﬁ) cos(?) — eV,
For each i, let w; be the left-invariant differential 1-form on GLa(k) which
coincides with the pullback (7¢)*f; at the identity. Write w (resp. j3) for the
column vector of the w; (resp. B;). Then we have the following lemma from
[By93]:
LEMMA 4.2. For each i, the differential w; on G induces B; on H.,, by restric-
tion to the subgroup By, = H,,. For a function ¢ : G — C™, the form ¢-w (with

C™ considered as a Tow vector, so - is the scalar product of vectors) induces
[+ B, where f: Hm — C™ is given by

()]
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(See [By98], Lemma 57.)
To consider the infinite primes of F' all at once, we define

d r—1 d
Hoo = [ [ Hom, = [[ Ho x [[ s
=0 =0 i=r

(where m; = 2 if 0; is a real embedding, and m; = 3 if o; is complex), and let
HY, = Hle Hm,; be the product with the zeroth factor removed. (The choice
of the 0-th factor is for convenience; we could also choose any other infinite
place, whether real or complex.)

For each embedding o;, the elements of P!(F) are cusps of H,,,: for a given
complex embedding F'— C, we can identify F' with F' x {0} — C x R>g and
define the ”extended upper half-space“ as Hz := HzUFU{oo} C CxRsoU{oc};
similarly for a given real embedding F'— R, we get the extended upper half-
plane Hsy := Ha U F U {occ} . A basis of neighbourhoods of the cusp oo is given
by the sets {(u,t) € Hyu|t > N}, N > 0, and of z € F by the open half-balls
in H,, with center (x,0).

Let G(F)*™ C G(F) denote the subgroup of matrices with totally positive
determinant. It acts on H, by composing the embedding

G = J[ G, g (01(g).---.0a(9)),

v|oco,v#£vg

with the actions of G(C)* = G(C) on Hs and G(R)" on Hs as defined above,
and on Qf _ (H%) by the inverse of the corresponding pullback, 7 - w :=

harm

(y~1)*w. Both are left actions.
For each complex v, we write the codomain of gr, as

OF, : Z(Fv) . KFU — SL3((C) =: SL(‘/;,),

for a three-dimensional C-vector space V,,. We denote the harmonic forms on
GLy(F,), HF, defined above by w,, 3, etc.

Let V = ®UESC V, = (C3H®s Z, = Hv|oo Z(Fy), Koo = Hv‘oo Kp,. Denoting
by Sc (resp. Sgr) the set of complex (resp. real) archimedian primes of F', we
can merge the representations gp, for each v|oo into a representation

0=t @ 00 @ A T Ko SLIV)
vESe vESR

and define V-valued vectors of differential forms

wi=@Quwo@uw, b= Lo QB

vESc VE SR vESc vE Sk

on GLy(Fs) and Hoo, respectively.
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4.2 AUTOMORPHIC FORMS

Let xz : A}, /F* — C* be a Hecke character that is trivial at the archimedian
places. We also denote by xz the corresponding character on Z(Ap) under the
isomorphism A}, — Z(Ap), a— (29).

DEFINITION 4.3. An automorphic cusp form of parallel weight 2 with central
character xz is a map ¢ : G(Ap) — V such that

(i) d(z79) = xz(2)¢(g) for all g € G(A), z € Z(A), v € G(F).
(ii) ¢(gkoo) = ¢(g9)0(koo) for all koo € Koo, g € G(A) (considering V' as a row

vector).

1
By, : lo(A)]] < C-sup(lyl*, ly| ™) (for any fised norm || on V);

(iii) ¢ has “moderate growth® on Bj := {(g x) € G(A)}, ie. AC,AVA €

and @|g(a..) - w is the pullback of a harmon ic form wg = fy - 8 on Hoo.

(iv) There exists a compact open subgroup K’ C G(A*) such that ¢(gk) =
@(g) for all g € G(A) and k € K'.

(v) For all g € G(Ap),

/ 1) <<(1) T) g) dr = 0. ( “Cuspidality”)
Ap/F

We denote by A (G, harm, 2, yz) the space of all such maps ¢.

For each ¢ € AP, let wy(g™) be the restriction of ¢(¢°°,-) - w from G(AY)
t0 Hoo; it is a (d + 1)-form on Hee.

We want to integrate we(g™) between two cusps of the space H,,. (We
will identify each x € P!(F) with its corresponding cusp in H,,, in the fol-
lowing.) The geodesic between the cusps z € F and oo in H,y,, is the line
{z} x RY € Hyn, and the integral of wy along it is finite since ¢ is uniformly
rapidly decreasing:

THEOREM 4.4. (Gelfand, Piatetski-Shapiro) An automorphic cusp form ¢
is rapidly decreasing modulo the center on a fundamental domain F of
i.e. there exists an integer r such that for all N € N there exists a C > 0 such
that

P(zg) < Clz|"|lg| ™™

forallz € Z(Ap), g € FNSLa(AF). Here | g|| := max{|g: ;| |(g_1)i,j|}i1j€{112}.
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(See [CKMO04], Thm. 2.2; or [Kur78|, (6) for quadratic imaginary F.)
In fact, the integral of wg(g>) along {z} x R% C H,,, equals the integral of
(g, ) - w along a path g; € GLz(Fi,), t € R, where we can choose

v )= %)

and thus have | g¢| = v/ for all t > 0, ||g:|| = C% for t < 1, so the integral

[ we(9%°) € Q.0 (HY) is well-defined by the theorem.
For any two cusps a,b € P*(F), we now define

[ oo™y = [T nte™) [ o) € 02,

Since ¢ is uniformly rapidly decreasing (||g:|| does not depend on z, for ¢ > 0),
this integral along the path (a,0) — (a,00) = (b,00) — (b,0) in H,,, is the
same as the limit (for ¢ — oco) of the integral along (a,0) — (a,t) — (b,t) —
(b,0); and since wg is harmonic (and thus integration is path-independent
within #,,,) the latter is in fact independent of ¢, so equality holds for each
t > 0, or along any path from (a,0) to (b,0) in H,,,. Thus f; we(9°°) equals
the integral of wy(g™) along the geodesic from a to b, and we have

/ usla™) + [ wnte=) = [ wate™

for any three cusps a,b,c € P1(F). Let Div(P!(F)) denote the free abelian
group of divisors of P1(F), and let M := Divo(P*(F)) be the subgroup of
divisors of degree 0.

We can extend the definition of the integral linearly to get a homomorphism

M O (). s [ g™,

( / o) = [ wola) (29)

for all v € G(F)*t, g € G(A>®), m € M.
Now let m be an ideal of F' prime to p, let xz be a Hecke character of conductor
dividing m, and oy, az as above.

and easily check that

DEFINITION 4.5. We define So(G, m, a1, a2) to be the C-vector space of all
maps

©: G(AP) — B222(F), V) = Hom(Bq, 0, (Fp, C), V)
such that:
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(a) ¢ is “almost” Ko(m)-invariant (in the notation of [GeTh]), i.e. ¢(gk) =
¢(g) for all g € G(AP) and k € [] 4, G(O.), and ¢(gk) = xz(a)d(g) for

all vjm, k = <LCL Z) € Ko(m), and g € G(AP).

(b) For each ¢ € Ba, a, (£}, C), the map
(®,9) : G(A) = G(Fp) x G(AY) =V, (gp, 9") = (9")(9p¥)
lies in Ao(G,harm, 2, xz).

Note that (a) implies that ¢ is K’-invariant for some open subgroup K’ C
Ko(m)? of finite index ([By98]/[WeT1]).

4.3 COHOMOLOGY OF GLy(F)

Let M be a left G(F)-module and N an R[H]-module, for a ring R and a
subgroup H C G(F). Let S C S, be a set of primes of F' dividing p; as above,
let x = xz be a Hecke character of conductor m prime to p.

DEFINITION 4.6. For a compact open subgroup K C Ko(m)® C G(A%>), we
denote by As(K, S, M; N) the R-module of all maps ® : G(AS>) x M — N
such that

1. ®(gk,m) = ®(g,m) for all g € G(AS>®), me M, k € [Totmp G(O0);
2. ®(gk) = xz(a)®(g) for all vjm, k = ((Cl Z) € Ko(m), and g € G(AS>),

m € M.

We denote by A (S, M; N) the union of the A;(K, S, M; N) over all compact
open subgroups K.

A (S, M; N) is a left G(A%>°)-module via (y-®)(g,m) := ®(y"1g,m) and has
a left H-operation given by (v - ®)(g,m) := y®(y~tg,7~'m), commuting with
the G(AS>°)-operation.

In contrast to our previous notation, we consider two subsets S; C Sy C S, in
this section. We put (o, a2)s, = {(ap,1,0p,2)p € S1}, we set

Af((ﬂa %)517525 M, N) = Af(SQa M, B(ﬂ72)81 (FSUN));
we write Ag(m, (a1, 2)s,,52, M;N) = Ay (Ko(m), (a1, a2)s,,S2, M;N). If
S1 = S92, we will usually drop S from all these notations.
We have a natural identification of Af(m, (a1, a2)s, M; N) with the space of

maps G(A5™) x M x B, ay)s(Fs, R) = N that are “almost” K-invariant.
Let Sy C S1 € Sz C S, be subsets. The pairing (II)) induces a pairing

‘Af((ﬂa %)51,52, M;N) x B(ﬂ,%)so (Fsy, 1) = Af((ﬂ’ %)So’ S2, M;N)
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which, when restricting to K-invariant elements, induces an isomorphism

Af (K, (a1, a2)s,, S2, M5 N) 2 Blar22)si=50 (Fg, g, Ay (au, as)sys Sz, M; N).

Putting Sy := S1 — {p} for a prime p € S1, we specifically get an isomorphism
A(K, (a1, a2)s,, S2, My N) = B2 (Fy, Ap(oa, a2) sy, S2, M3 N).

Lemmas [2.9] and now immediately imply the following:

LEMMA 4.7. Let S C S, p € S, S := S—{p}. Let K C G(AS>) be a compact
open subgroup.
(a) If T, 1 ,a,.. 05 spherical, we have exact sequences

0 — Ag(K, (a1, a0)s, MiN) = Z =25 7 5.0
and
T—a
0= Z — Ay (Ko, (a1, 02)s0, M; N) — Ay (Ko, (a1, 02)s,, M N) — 0
for a G(AS0>°)-module Z and a compact open subgroup Ko = K x K, of

G(AS0:).

(0) If T, 1 - 5 special (with central character Xy ), we have exact sequences
0— Ap(K, (a1, 00)5, M;N) = Z' - Z — 0
and
0 —Z — Af(Ko, (a1, 2)s,, M; N)? = Ap(Ko, (1, a)s,, M; N)* — 0,
0 —=2" = A (Ko, (a1, az)so, Mi N)* = Ag(Kp, (au, az)s,, M5 N)* = 0,

with Z() = Af(Ké/),(ﬂ,%)SO,S,M;N(XP)), where Kg) = K x Ké/) are
compact open subgroups of G(AS0>).

ProrosITION 4.8. Let S C S, and let K be a compact open subgroup of
G(AS°).
(a) For each flat R-module N (with trivial G(F)-action), the canonical map

HYG(F)*, Af(K, (a1, a2)s, M; R)) @g N — H(G(F)", Af (K, (o, a2)s, M; N))

s an isomorphism for each q > 0.
(b) If R is finitely generated as a Z-module, H1(G(F)", Af(K, (o1, a2)s, M; R)

is finitely generated over R.

Proof. We can copy the proof of [Sp14], Prop. 5.6, using lemma [£.7] instead of
[Sp14], lemma 5.4 to reduce to the case S = @. O
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We define
HI(G(F)", Ay((a1, a2)s, M R)) = lim HY(G(F) ", A¢(K, (a1, az)s, M3 R))

where the limit runs over all compact open subgroups K C G(A%>); and
similarly define H{(B(F)", Af((ou1, a2) s, M; R). The proposition immediately
implies

COROLLARY 4.9. Let R — R’ be a flat ring homomorphism. Then the canonical
map

HY(G(F)", As((a1, 02)s, M; R)) ®@r B — HI(G(F)", Ag((e1, az)s, M; )
s an isomorphism, for all ¢ > 0.

If R =k is a field of characteristic zero, H{(G(F)", Af((oa,a2)s, M; R) is a
smooth G(A%>)-module, and we have

HE(G(F)JF’ Af((ﬂa %)Sa M; k)K = Hq(G(F)Jr’ Ay (K, (ﬂ’ asz)s, M; k).
We identify G(F)/G(F)" with the group ¥ = {+1}" via the isomorphism

G(F)/G(FT) &% Fr/pr = 5

(with all groups being trivial for r = 0). Then X acts on
HIG(F)*, Ap((a1, @2)s, M3 k) and HY(G(F)*, Af(K, (a1, a2)s, M3 k) by
conjugation.For m € 2A(G,2) and p € ¥, we write HI(G(F)*, )z, =
HomG(AS’“’)(ﬂ-Sng(G(F)JFa ))ﬁ

PROPOSITION 4.10. Let 7 € Ao(G,2,xz,01,02), S € Sp. Let k be a field
which contains the field of definition of w. Then for every u € ¥, we have

k, qu: d;

0, ifqe{0,....,d—1} (30)

HY(G(F)*, Ap((au. 02)s, M; K)o = {

Proof. The case S = & is proved analogously to [Sp14], prop. 5.8, using the
results of Harder [Ha87]. For S = SoU {p} and m, spherical, lemma [ 7a) and
the statement for Sy give an isomorphism

HE(G(F)Jra Af((ﬂa %)Soa M; k))mg = HE(G(F)Jra Af((ﬂa %)Sa M; k))ﬂ,ﬁ

since the Hecke operators T, and N, act on the left-hand side by multiplication
with ap and vy, respectively. If m, is special, we can similarly deduce the
statement for S from that for Sy, using the first exact sequence of lemma
[£7(b), since the results of [Ha87] also hold when twisting k by a (central)
character. O
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4.4 EICHLER-SHIMURA MAP

From now on, let S; € S, be the set of places such that 7, is the Steinberg
representation (i.e. ap1 =1y =1, ap2 = q).
Given a subgroup Ko(m)? C G(AP*°) as above, there is a map

IO : SQ(vaaﬂa %) — HO(G(F)+5 Af(maﬂv %a M? Qﬁarm(Hgo)))
given by
(@) s (0, (g.m) = [ wio (1,9).
for 1 € Ba,,a,(Fp,C),g € G(AP>),m € M, where 1, denotes the unity ele-
ment in G(F),).

This is well-defined since both sides are “almost” Ko(m)-invariant, and the
G(F)T-invariance of Io(®) follows from a straightforward calculation, using

@9).

From the complex
Ag(m, a1, 09, M;C) = C® = Ap(m, 4y, ag, M3 Qf 1, (D))

we get a map

Sa(Gom, a1, az) — HYG(F)*, Af(m, a1, az, M; C)) (31)
by composing Iy with an edge morphism of the spectral sequence

HY(G(F)",C?) = HPTY(G(F)*,C*).

Using the map 02492 : B2L22(F V) — Dist(F,;, V) from section .6, we next
define a map

AT §3(G,m, 0, 02) - DS, V) 3

by
v (@)U, af) = geres (q’ <%p (1))> )

for U € €o(Fs, x Fs,), 2P € IP, and we denote by A%422 : So(G, m, a1, a2) —
D(S4,C) its (1,...,1)th coordinate function (i.e. corresponding to the harmonic

forms @, (Wv)1, @00 (Bu)1 in section E.I)):

ALL22 (§)(U, 2P) = 52122 (@ (“’Cop (1)))(1 , (U).

.....

~

Since for each complex prime v, S = SU(2) N T(C) operates on ® via g,,
A21:22 g easily seen to be S'-invariant, i.e. it lies in D’(Sy, C).

We also have a natural (i.e. commuting with the complex maps of each C*)
family of maps

Ay (m, a1, a9, M, Qo (HS,)) = Dy (51,92(UL,, C)) (33)
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for all ¢ > 0, and
Ayp(m, a1, a2, M, C) — D (5,C) (34)

(the ¢ = —1-th term in the complexes), by mapping ® € Af(m, o, s, M, ")
first to

P> 0

(U, zP>°) = ® << 0 1> ,00 — 0> (5ﬂ7%(1U)) € Qflarm(’Hgo) resp. € C,
and then for i > 0 restricting the differential forms to Q(UY,) via
vl = [ &= [] #o=H%.
veSY veSY
One easily checks that [B3]) and ([B4) are compatible with the homomorphism

of “acting groups” F*' — G(F)*,x (3 (1)), so we get induced maps in coho-
mology

HO(G(F), Ap(m, a, a9, M, Q0 (HD)) = HY(FY, Dy(S1,Q4(UY,, C)))
(35)
and

HY(G(F)*, Ap(m, a1, 09, M, C)) = HU(F*', Dy (51,C)), (36)

which are linked by edge morphisms of the respective spectral sequences to give
a commutative diagram (given in the proof below).

ProprosITION 4.11. We have a commutative diagram:

Sa(Gym, a1, a5) —— 2 HA(G(F)*, Ap(m, 01, 02, M, C))

lA“l’“Q l(BED

(S, C) it HY(F*',Ds(5,,C))

Proof. The given diagram factorizes as

52(Gym, a1, 02) — %> HO(G(F)F, A (O, (M) ——> HA(G(F)*, Af(C))

harm

= -

D,(SL(C) HO(F*vaf(Slvﬂd(Ugov(c))) I Hd(F*,7Df(Slvc))

(where we write Aj(-) instead of Ay(m, oy, an, M, ) for brevity). The right-
hand square is the naturally commutative square mentioned above; the com-
mutativity of the left-hand square can easily be checked by hand. o
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4.5 WHITTAKER MODEL

We now consider an automorphic representation # = ®,m, €
Ao(G,2,xz,01,02). Denote by ¢(m) = T[], anite ¢(7v) the conductor of
.

Let x : I*®* — C* be a unitary character of the finite ideles; for each finite place
v, set Xy = X|F:. For each prime v of F, let W, denote the Whittaker model
of m,. For each finite and each real prime, we choose W, € W, such that the
local L-factor equals the local zeta function at g = 1, i.e. such that

Lemex) = [ W (5 1) @il e (37)
Ey

for any unramified quasi-character x, : Fif — C* and Re(s) > 0.

This is possible by [Ge75], Thm. 6.12 (ii); and by loc.cit., Prop. 6.17, W, can
be chosen such that SO(2) operates on W, via g, for real archimedian v, and
is “almost” Ko(c¢(m,))-invariant for finite v.

For complex primes v of F'; we can also choose a W, satisfying [87) and which
behaves well with respect to the SU(2)-action p,, as follows:

By [Kur77], there exists a function

Wy = (W, Wy, W) : G(F,) — C°

such that W! € W), for all 4, and such that SU(2) operates by the right via g,
on W,; i.e. for all g € G(F,) and h € SU(2), we have

Wy (gh) = Wy(g)oc(h).

Note that W} is thus invariant under right multiplication by a diagonal matrix

(g g) with w € S C C. Since m, has trivial central character for archi-

median v by our assumption, a function in W, is also invariant under Z(F).
Thus we have

W (g <g (1)>) =Wl(g) forallge G(F,), ueS'.
W} can be described explicitly in terms of a certain Bessel function, as follows.

The modified Bessel differential equation of order o € C is

d*y dy
2 2 2
xsz—i—xd (z° +a”)y = 0.

Its solution space (on {Rez > 0}) is two-dimensional; we are only interested
in the second standard solution K,, which is characterised by the asymptotics
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(cf. [WeTl]). By [Kur77]8 we have W} (‘g ?) = 222 Ko(4mz).
(W9 and W2 can also be described in terms of Bessel functions; they are linearly
dependent and scalar multiples of 22K (47x).)

By [IL70], Ch. 1, Thm. 6.2(vi), o] - |&/%, ] |2 /%) = 7 (1, p2) with

1/2

1/2——1/2 |Z|7 2, MQ(Z) =z

—1/251/2 _ |Z|<El/22;

p(z) =

and the L-series of the representation is the product of the L-factors of these
two characters:

Ly(s,my) = L(s,pu1)L(s,p2) = 2 (277)7(”%)1"(3 +4)-202n)” (SJF%)F(S +3)
= 4(2m)”@HD(s + )2

On the other hand, letting d*z = % = 9d¥ (for = = re”’), we have for
Re(s) > —1:
/ W (‘"” 0) 25 e = / / W (”em 0> 2l I g
C* 0 1 S1 R+ v 0 1 T
> d
= 4/ 22 Ko(4rx)z? 1 d
0 .T

(invariance under SU(2) - Z(F,) gives a constant integral w.r.t. )
= 4(4m) 25“/ Ko(z)2* da

— A (4m) 2t 92 (s 4 1)
= 42m) M I(s+1)?

by (I[DLMEF] 10.43.19). Thus we have

/C Wl <”” 0> 2[5 F d¥e = (21)2 Lo(s, 1)

for all Re(s) > —1.We set W, := (2r)=2 W,'; thus @7) holds also for complex
primes.

Now that we have defined W, for all primes v, we put W»(g) := Hufp W (gv)
for all g = (gy)» € G(AP). We will also need the vector-valued function WP :
G(Afp) — V given by

WP(g) = H W (gv) - ® (27T)72M(9v)-

vfp finite or v real v complex

3Note that [Kur77] uses a slightly different definition of the K, which is % times our K.
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4.6 p-ADIC MEASURES OF AUTOMORPHIC FORMS

Now return to our 7 € Ao(G, 2, xz, a1, 22). We fix an additive character 1 :
A — C* which is trivial on F', and let v,, denote the restriction of ¢ to F,, < A,
for all primes v. We further require that ker(y,) 2 O, and p~' € ker, for
all p|p, so that we can apply the results of chapter

As in chapter @ let pr, = pa,,/v, = Hgy/a,. denote the distribution
Xap Jap.2(T)p(x)dx on Fy, and let pi, := lep pir, be the product distribu-
tion on F, := Hp|p Fy.

Define ¢ = ¢ : Co(Fs, x F5,) x I? = C by

ow.at) = 3w icomr ().

CeF™
By proposition 2.13(a), we have for each U € €o(Fs, x Fy,):

du(e) = OapUa?) = Y, (Cap U)W (Cgp (1)>
CEF™

- Zw(§ ).

CeF™

where W(g) := Wy (gp)WP(g?) lies in the global Whittaker model W = W(r)
for all g = (gp,¢”) € G(A), putting Wy := Wi, ; so ¢ is well-defined and lies
in D(S1,C) (since W is smooth and rapidly decreasing; distribution property,
F*- and UP-*°-invariance being clear by the definitions of ¢ and WP?).

Let pir := pg, be the distribution on G, corresponding to ¢, as defined in
@2), and let Ky := Ky, € HYF*',D§(S1,C)) be the cohomology class defined
by 23) and (24]).

THEOREM 4.12. Let m € Ao(G, 2, xz, a1, a2); we assume the oy ; to be ordered
such that |oyp 1| < |oy 2| for all p|p. (So xp1 = |- |xp,2 for all special m,.)

(a) Let x : G, — C* be a character of finite order with conductor f(x). Then
we have the interpolation property

/ xpldn) = 700 TT el xe) - Lk, 7@ %),

9p pESY
where
(1= ap1mpgy (1 = ap2zy 'gp ) (1 — ap2wpgy ') ordy (f(x)) = 0
(1—=zpayy) 7
and 7 spherical,
_ 1_ —1y1 _ -1 _—1
e(ﬂPvXp) ( Qp,1Tpqp )( ?‘P’QIP dp )7 Ordp(f(X)) =0
(1- IPO‘;Q)
and 7 special,
(ap,2/gp)°rdp T00), ordp (f(x)) >0
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and xp = xp(wp).
(b) kir is integral (cf. definition[Z12). For p € ¥, let kir ,, be the projection of
Kx tO Hd(F*/,Df(Sl,(C))m&. Then ki, is integral of rank < 1.

Proof. (a) We consider x as a character on Ir/F*, and choose a subgroup
V =11,, Vs € Up such that x,|v = 1.

Since 7 is unitary, we have [ap2| > /gy > 1 = [xp(wy)| for all p, thus
e(mp, Xp| - |3) is non-singular for all s > 0, and we will be able to apply propo-
sition [2.4] locally below.

We have

NV (d) = [U, - V] / @)y (@)d*z,

gp ]IF/F*

and therefore we have to show that the equality

[Up: V] /HF/F}($)|$IS¢v($)dX$ = N(F(X))*T(x) g e(mp; Xpl-[3)- L(s+3, 7@X)

holds for s = 0. Since both the left-hand side and L(s+21, 7®x) are holomorphic
in s (cf. [GeT5], Thm. 6.18), it suffices to show this for Re(s) > 0. But for
such s, we have

v [ x@ltovwae= [ xoppw (G ])a

Ir

s 0 s 0
= w1 [ o@iaw (5 D) [ ewwrwe (4 9) e
Fr 1%

= 1/ %@lelgun, (@) L, (s + hno )
plp "7

= T (emos xol - 1700l - 19)) - Ls + 3.7 @ x)
plp

= NG T0) [Je(mpxol - 13) - L(s + 3. 7@ x)
plp

by propositions .13 [2.4] and equation (3.
(b) Let Aoy . € BE122(F},, C) be the image of ®,,Aa, ., under the map (I3).
For each ¢ € Ba, a,(F}, C), define

@) = Y dmaa ((§ 9)av) w2 ((§ 9) o)

CEF™*

= (1))

CEF™
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for a V-valued function W, whose every coordinate function is in W(w).

This defines a map @, : G(AP) — B2 (F, V). In fact, @, lies in
S2(G, m, a1, ), where m is the prime-to-p part of f(r):

Condition (a) of definition follows from the fact that the W, are almost
Ko(c(my))-invariant, for v 1 p,c0. For condition (b), we check that (P, )
satisfies the conditions (i)-(v) in the definition of Ag(G,harm, 2, x):

Each coordinate function of (®,,1) lies in (the underlying space of) 7 by
[Bu98|, Thm. 3.5.5, thus (®, ) fulfills (i) and (v), and has moderate growth.
(i) and (iv) follow from the choice of the W, and W,. Now since m, =
o] - 1% 1513 for v|oo, (@,9) By, - B = C e Wa (§9) - B s har-
monic for each archimedian place v of F: for real v, it is well-known that
f(2)/y is holomorphic for f € D(2), and thus f-(5,)1 is harmonic; for complex
v, harmonicity follows from the other conditions, see e.g. [Kur7§], p. 546 or
[WeTd].

An easy calculation shows that

0
doses ((§ 1) dmsal1)) = [ Tlens(-op(-0)de = ey (€0)
Uplp
for all ( € F*, and therefore we have

A2 )(U,a?) = S Aayas ((8 (1)) 5%&2(1U)) wr (C»’gp (1))

CeF™

= Yy (COYWP (Cgp g’) = 6:(U, "),

CeF~

Let R be the integral closure of Z[ay, vp;p[p] in its field of fractions; thus R
is a Dedekind ring € O for which Bg, a,(F, R) is defined. Since C is a flat
R-module,

HYG(F)*, Af(m, 01,00, M, R)) ® C — HYG(F)", Af(m, a1, az, M, C))

is an isomorphism by proposition The map ([B6]) can be described as the
” R-valued” map

HYG(F)*, Ag(m, a1, 09, M, R)) — H*(F*', Dys(R))

tensored with C. By proposition 11l %, lies in its image, and thus in
HY(F*',Dg(R)) ® C; i.e. it is integral.

Similarly, it follows from propositions .8 and A.I0lthat x, , is integral of rank
<1 - O

COROLLARY 4.13. ur is a p-adic measure.

Proof. By proposition B8, pr = pe¢, = pr,. Since ki is integral, p,. is a
p-adic measure by corollary [3.13] O
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4.7 VANISHING ORDER OF THE p-ADIC L-FUNCTION

Let Lq,...,L; be independent Zy-extensions of F', and let ¢1,...,4; : G, —
p°*Z, be the homomorphisms corresponding to them (as in section B.2)). Then
we have the p-adic L-function

t
Lp(s,m) = Ly(s, kx) 1= Lyp(s1, .., ¢, hin 4) i= : T exp, (siti(7))px(dy)
P g=1

of definition B35l with s1,...,8 € Z,. Ly(s, ) is a locally analytic function
with values in the one-dimensional Cp-vector space V,,, | =L, 5, ®7Cp.
By theorem BTl we have

THEOREM 4.14. Ly(s,m) is a locally analytic (t-variabled) function, and all
partial derivatives of order < n := #(S1) vanish; i.e. we have

ords—g Lp(s, ) > n.

Now let E be a modular elliptic curve over F', corresponding to an automorphic
representation 7; by this we mean that the local L-factors of the Hasse-Weil
L-function L(E, s) and of the automorphic L-function L(s — %,7) coincide at
all places v of F. From the definition of the respective L-factors (cf. [Si86] for
the Hasse-Weil L-function, [GeT5] for the automorphic L-function) we know
that 7 has trivial central character. Moreover, for p|p, 7, is a principal series
representation iff &/ has good reduction at p, and in this case 7, is ordinary
iff E is ordinary (i.e. not supersingular) at p; m, is a special (resp. Steinberg)
representation iff £ has multiplicative (resp. split multiplicative) reduction at
p. For v|oco, m, is “of weight 2” as assumed before.

We say that FE is p-ordinary if it has good ordinary or multiplicative reduction
at all places p|p of F. So E is p-ordinary iff 7 is ordinary at all p|p. In this
case, we define the p-adic L-function of E by L,(E,s) := Ly(s, ).

For each i € {1,...,t} and each prime p|p of F, we write £, ; for the restriction
of ¢; to Fy =1 — G,,. Let g, be the Tate period of E|F}, and ord, the normalized
valuation on Fy. Defining the L-invariants of E |F, with respect to L; by

Ly i(E) = Lyi(qp)/ ordp(gp),

we can generalize Hida’s exceptional zero conjecture to general number fields:

CONJECTURE 4.15. Let Sy be the set of p|p at which E has split multiplicative
reduction, n := #S51, So := S, \ S1. Then

ords—g L,(E, s) > n, (38)
and we have
an
Ly (B,)lsmg = 0! [[ £oa(B) [] elmp1) LB, (39)
? peST peS>L
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for all i = 1,...,t, where e(my,1) = (1 — ap1~')? if E has good ordinary
reduction at p, and e(my, 1) = 2 if E has non-split multiplicative reduction at
p.

Note that the conjecture (when considered for all sets of independent Z,-

extensions of F') also determines the “mixed” partial derivatives ;T;LP(E,Q)
of order n, since they can be written as Q-linear combinations of n-th “pure”

partial derivatives %LP(E, 0) with respect to other choices of independent

Zp-extensions of F' (cf. the proof of proposition B.9).
Theorem [£.14] immediately implies the first part (B8] of the conjecture:

COROLLARY 4.16. Let E be a p-ordinary modular elliptic curve over F. Let n
be the number of places p|p at which E has split multiplicative reduction. Then
we have

ords—g Lp(E, s) > n.

In future work, we hope to also establish formula ([B3)) for a class of non-totally-
real number fields.
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