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Abstract. By the collective name of lattice counting we refer to a
setup introduced in [10] that aims to establish a relationship between
arithmetic and randomness in the context of affine symmetric spaces.
In this paper we extend the geometric setup from symmetric to real
spherical spaces and continue to develop the approach with harmonic
analysis which was initiated in [10].

2010 Mathematics Subject Classification: 22E40, 22E46, 43A85
Keywords and Phrases: Lattice counting, homogeneous spaces, real
spherical spaces, spectral analysis

1 Introduction

1.1 Lattice counting

Let us recall from Duke, Rudnick and Sarnak [10] the setup of lattice counting
on a homogeneous space Z = G/H . Here G is an algebraic real reductive group
and H < G an algebraic subgroup such that Z carries an invariant measure.
Further we are given a lattice Γ < G such that its trace ΓH := Γ ∩H in H is
a lattice in H .
Attached to invariant measures dh and dg on H and G we obtain an invariant
measure d(gH) on Z via Weil-integration:

∫

Z

( ∫

H

f(gh)dh
)
d(gH) =

∫

G

f(g) dg (f ∈ Cc(G)) .
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Likewise the measures dg and dh give invariant measures d(gΓ) and d(hΓH) on
Y := G/Γ and YH := H/ΓH . We pin down the measures dg and dh and hence
d(gH) by the request that Y and YH have volume one.
Further we are given a family B of “balls” BR ⊂ Z depending on a parameter
R ≥ 0. At this point we are rather imprecise about the structure of these balls
and content us with the property that they constitute an exhausting family of
compact sets as R→ ∞.
Let z0 = H ∈ Z be the standard base point. The lattice counting problem for
B consists of the determination of the asymptotic behavior of the density of
Γ · z0 in balls BR ⊂ Z, as the radius R → ∞. By main term counting for B
we understand the statement that the asymptotic density is 1. More precisely,
with

NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}

and |BR| := volZ(BR) we say that main term counting holds if

NR(Γ, Z) ∼ |BR| (R → ∞). (1.1)

1.2 Relevant previous works

The main term counting was established in [10] for symmetric spaces G/H
and certain families of balls, for lattices with YH compact. Furthermore, the
main term counting in the case where YH is non-compact was proven using
a hypothesis on regularization of periods of Eisenstein series, whose proof re-
mains unpublished. In subsequent work Eskin and McMullen [11] removed
the obstruction that YH is compact and presented an ergodic approach. Later
Eskin, Mozes and Shah [12] refined the ergodic methods and discovered that
main term counting holds for a wider class of reductive spaces: For reductive
algebraic groups G,H defined over Q and arithmetic lattices Γ < G(Q) it is
enough to request that the identity component ofH is not contained in a proper
parabolic subgroup of G which is defined over Q and that the balls BR satisfy
a certain condition of non-focusing.
In these works the balls BR are constructed as follows. All spaces considered
are affine in the sense that there exists a G-equivariant embedding of Z into
the representation module V of a rational representation of G. For any such
embedding and any norm on the vector space V, one then obtains a family of
balls BR on Z by intersection with the metric balls in V . For symmetric spaces
all families of balls produced this way are suitable for the lattice counting,
but in general one needs to assume non-focusing in addition. In particular
all maximal reductive subgroups satisfy all the conditions and hence fulfill the
main term counting.

1.3 Real spherical spaces

In this paper we investigate the lattice counting for a real spherical space Z, that
is, it is requested that the action of a minimal parabolic subgroups P < G on
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Z admits an open orbit. In addition we assume that H is reductive and remark
that with our standing assumption that Z is unimodular this is automatically
satisfied for a spherical space when the Lie algebra h of H is self-normalizing
(see [17], Cor. 9.10).
Our approach is based on spectral theory and is a natural continuation to
[10]. We consider a particular type of balls which are intrinsically defined by
the geometry of Z (and thus not related to a particular representation V as
before).

1.3.1 Factorization of spherical spaces

In the spectral approach it is of relevance to get a control over intermediate
subgroups H < H⋆ < G which arise in the following way: Given a unitary rep-
resentation (π,H) one looks at the smooth vectors H∞ and its continuous dual
H−∞, the distribution vectors. The space (H−∞)H of H-invariant distribution
vectors is of fundamental importance. For all pairs (v, η) ∈ H∞× (H−∞)H one
obtains a smooth function on Z, a generalized matrix-coefficient, via

mv,η(z) = η(g−1 · v) (z = gH ∈ Z) . (1.2)

The functions (1.2) are the building blocks for the harmonic analysis on Z.
The stabilizer Hη in G of η ∈ (H−∞)H is a closed subgroup which contains H ,
but in general it can be larger than H even if π is non-trivial.
Let us call Z⋆ = G/H⋆ a factorization of Z if H < H⋆ and Z⋆ is unimodular.
For a general real spherical space Z the homogeneous spaces Zη = G/Hη

can happen to be non-unimodular (see [19] for H the Iwasawa N -subgroup).
However there is a large subclass of real spherical spaces which behave well
under factorization. Let us call a factorization co-compact if H⋆/H is compact
and basic if (up to connected components) H⋆ is of the form HI := HI for
a normal subgroup I ⊳ G. Finally we call a factorization weakly basic if it is
obtained by a composition of a basic and a co-compact factorization.

1.3.2 Wavefront spherical spaces

A real spherical space is called wavefront if the attached compression cone is
a quotient of a closed Weyl-chamber. The relevant definitions will be recalled
in Section 3. Many real spherical spaces are wavefront: all symmetric spaces
and all Gross-Prasad type spaces G ×H/H (see (3.2) - (3.4)) are wavefront.3

The terminology wavefront originates from [24] because wavefront real spherical
spaces satisfy the “wavefront lemma” of Eskin-McMullen (see [11], [18]) which
is fundamental in the approach of [11] to lattice counting.
On the geometric side wavefront real spherical spaces enjoy the following prop-
erty from [19]: All Zη are unimodular and the factorizations of the type Zη are
precisely the weakly basic factorizations of Z.

3Also, if Z is complex, then of the 78 cases in the list of [4], the non-wavefront cases are
(11), (24), (25), (27), (39-50), (60), (61)
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On the spectral level wavefront real spherical spaces are distinguished by the
following integrability property, also from [19]: The generalized matrix coeffi-
cients mv,η of (1.2) belong to Lp(Zη) for some 1 ≤ p < ∞ only depending on
π and η.

1.3.3 Main term counting

In the theorem below we assume that Z is a wavefront real spherical space
of reductive type. For simplicity we also assume that all compact normal
subgroups of G are finite.
Using soft techniques from harmonic analysis and a general property of decay
from [21], our first result (see Section 5) is:

Theorem A. Let Z = G/H be as above, and assume that Y = G/Γ is com-
pact. Then main term counting (1.1) holds.

Since wavefront real spherical spaces satisfy the wavefront lemma by [18], Sec-
tion 6, this theorem could also be derived with the ergodic method of [11]. In
the current context the main point is thus the proof by harmonic analysis.
To remove the assumption that Y is compact and to obtain error term bounds
for the lattice counting problem we need to apply more sophisticated tools
from harmonic analysis. This will be discussed in the next paragraph with
some extra assumptions on G/H .

1.4 Error Terms

The problem of determining the error term in counting problems is notoriously
difficult and in many cases relies on deep arithmetic information. Sometimes,
like in the Gauss circle problem, some error term is easy to establish but getting
an optimal error term is a very difficult problem.
We restrict ourselves to the cases where the cycle H/ΓH is compact.4 To
simplify the exposition here we assume in addition that Γ < G is irreducible,
i.e. there do not exist non-trivial normal subgroups G1, G2 of G and lattices
Γi < Gi such that Γ1Γ2 has finite index in Γ.
The error we study is measure theoretic in nature, and will be denoted here
as err(R,Γ). Thus, err(R,Γ) measures the deviation of two measures on Y =
Γ\G, the counting measure arising from lattice points in a ball of radius R,
and the invariant measure dµY on Y . More precisely, with 1R denoting the
characteristic function of BR we consider the densities

FΓ
R(gΓ) :=

∑
γ∈Γ/ΓH

1R(gγH)

|BR|
.

Then,
err(R,Γ) = ||FΓ

R − dµY ||1,

4After a theory for regularization of H-periods of Eisenstein series is developed, one can
drop this assumption.
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where || · ||1 denotes the total variation of the signed measure. Notice that

|FΓ
R(eΓ) − 1| = |NR(Γ,Z)−|BR||

|BR| is essentially the error term for the pointwise

count (1.1).
Our results on the error term err(R,Γ) allows us to deduce results toward the
error term in the smooth counting problem, a classical problem that studies
the quantity

errpt,α(R,Γ) = |BR||F
Γ
α,R(eΓ)− 1|

where α ∈ C∞
c (G) is a positive smooth function of compact support (with

integral one) and FΓ
α,R = α∗FΓ

R. See Remark 7.2 for the comparison of err(R,Γ)
with errpt,α(R,Γ).
To formulate our result we introduce the exponent pH(Γ) (see (6.2)), which
measures the worst Lp-behavior of any generalized matrix coefficient associated
with a spherical unitary representation π, which is H-distinguished and occurs
in the automorphic spectrum of L2(Γ\G). We first state our result for the
non-symmetric case of triple product spaces, which is Theorem 8.2 from the
body of the paper.

Theorem B. Let Z = G3
0/ diag(G0) for G0 = SOe(1, n) and assume that

H/ΓH is compact. For all p > pH(Γ) there exists a C = C(p) > 0 such that

err(R,Γ) ≤ C|BR|
− 1

(6n+3)p

for all R ≥ 1. (In particular, main term counting holds in this case). Further-
more, in regards to smooth counting, for any α ∈ C∞

c (G) and for all p > pH(Γ)
there exists a C = C(p, α) > 0 such that

errpt,α(R,Γ) ≤ C|BR|
1− 1

(6n+3)p

for all R ≥ 1.

To the best of our knowledge this is the first error term obtained for a non-
symmetric space. The crux of the proof is locally uniform comparison between
Lp and L∞ norms of generalized matrix coefficients mv,η which is achieved by
applying the model of [3] and [9] for the triple product functional η in spherical
principal series.
It is possible to obtain error term bounds under a certain technical hypothesis
introduced in Section 6 and refered to as Hypothesis A. This hypothesis in
turn is implied by a conjecture on the analytic structure of families of Harish-
Chandra modules which we explain in Section 9.1. The conjecture and hence
the hypothesis appear to be true for symmetric spaces but requires quite a
technical tour de force. In general, the techniques currently available do not
allow for an elegant and efficient solution. Under this hypothesis we show that:

Theorem C. Let Z be wavefront real spherical space for which Hypothesis A
is valid. Assume also

• G is semisimple with no compact factors
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• Γ is arithmetic and irreducible

• ΓH = H ∩ Γ is co-compact in H .

• p > pH(Γ)

• k > rank(G/K)+1
2 dim(G/K) + 1

Then, there exists a constant C = C(p, k) > 0 such that

err(R,Γ) ≤ C|BR|
− 1

(2k+1)p

for all R ≥ 1. Moreover, if Y = Γ\G is compact one can replace the third
condition by k > dim(G/K) + 1.

The existence of a non-quantitative error term for symmetric spaces was estab-
lished in [1] and improved in [14].
We note that in case of the hyperbolic plane our error term is still far from the
quality of the bound of A. Selberg. This is because we only use a weak version
of the trace formula, namely Weyl’s law, and use simple soft Sobolev bounds
between eigenfunctions on Y .

2 Reductive homogeneous spaces

In this section we review a few facts on reductive homogeneous spaces: the
Mostow decomposition, the associated geometric balls and their factorizations.
We use the convention that real Lie groups are denoted by upper case Latin
letters, e.g A,B,C, and their Lie algebras by the corresponding lower case
German letter a, b, c.
Throughout this paper G will denote an algebraic real reductive group and
H < G is an algebraic subgroup. We form the homogeneous space Z = G/H
and write z0 = H for the standard base point.
Furthermore, unless otherwise mentioned we assume that H is reductive in G,
that is, the adjoint representation of H on g is completely reducible. In this
case we say that G/H is of reductive type.
Let us fix a maximal compact subgroup K < G for which we assume that the
associated Cartan involution θ leaves H invariant (see the references to [21],
Lemma 2.1). Attached to θ is the infinitesimal Cartan decomposition g = k+ s

where s = k⊥ is the orthogonal complement with respect to a non-degenerate
invariant bilinear form κ on g which is positive definite on s (if g is semi-simple,
then we can take for κ the Cartan-Killing form). Further we set q := h⊥.

2.1 Mostow decomposition

We recall Mostow’s polar decomposition:

K ×H∩K q ∩ s → Z, [k,X ] 7→ k exp(X) · z0 (2.1)
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which is a homeomorphism. With that we define

‖k exp(X) · z0‖Z = ‖X‖ := κ(X,X)
1
2

for k ∈ K and X ∈ q ∩ s.

2.2 Geometric balls

The problem of lattice counting in Z leads to a question of exhibiting natural
exhausting families of compact subsets. We use balls which are intrinsically
defined by the geometry of Z.
We define the intrinsic ball of radius R > 0 on Z by

BR := {z ∈ Z | ‖z‖Z < R} .

Write BG
R for the intrinsic ball of Z = G, that is, if g = k exp(X) with k ∈ K

and X ∈ s, then we put ‖g‖G = ‖X‖ and define BG
R accordingly.

Our first interest is the growth of the volume |BR| for R → ∞. We have the
following upper bound.

Lemma 2.1. There exists a constant c > 0 such that:

|BR+r| ≤ ecr|BR|

for all R ≥ 1, r ≥ 0.

Proof. Recall the integral formula
∫

Z

f(z) dz =

∫

K

∫

q∩s

f(k exp(X).z0)δ(X) dX dk, (2.2)

for f ∈ Cc(Z), where δ(Y ) is the Jacobian at (k, Y ) of the map (2.1). It is
independent of k because dz is invariant. Then

|BR| =

∫

X∈q∩s,‖X‖<R

δ(X) dX .

Hence it suffices to prove that there exists c > 0 such that
∫ R+r

0

δ(tX)tl−1 dt ≤ ecr
∫ R

0

δ(tX)tl−1 dt

for all X ∈ q ∩ s with ‖X‖ = 1. Here l = dim q ∩ s. Equivalently, the function

R 7→ e−cR

∫ R

0

δ(tX)tl−1 dt

is decreasing, or by differentiation,

δ(RX)Rl−1 ≤ c

∫ R

0

δ(tX)tl−1 dt

for all R. The latter inequality is established in [12, Lemma A.3] with c inde-
pendent of X .
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Further we are interested how the volume behaves under distortion by elements
from G.

Lemma 2.2. For all r, R > 0 one has BG
r BR ⊂ BR+r.

To prove the lemma we first record that:

Lemma 2.3. Let z = gH ∈ Z. Then ‖z‖Z = infh∈H ‖gh‖G.

Proof. It suffices to prove that ‖ exp(X)h‖G ≥ ‖X‖ for X ∈ q ∩ s, h ∈ H , and
by Cartan decomposition of H , we may assume h = exp(T ) with T ∈ h ∩ s.
Thus we have reduced to the statement that

‖ exp(X) exp(T )‖G ≥ ‖ exp(X)‖G

for X ⊥ T in s. In order to see this, we note that for each g ∈ G the norm ‖g‖G
is the length of the geodesic in K\G which joins the origin x0 to x0g. More
generally the geodesic between x0g1 and x0g2 has length ‖g2g

−1
1 ‖G. Hence c =

‖ exp(X) exp(T )‖G is the distance from A = x0 exp(−T ) to B = x0 exp(X). As
X ⊥ T the points A and B form a right triangle with C = x0. The hypotenuse
has length c and the leg CB has length a = ‖ exp(X)‖. As the sectional
curvatures are non-positive we have a2 + b2 ≤ c2. In particular a ≤ c.

In particular, it follows that

‖gz‖Z ≤ ‖z‖Z + ‖g‖G (z ∈ Z, g ∈ G) (2.3)

and Lemma 2.2 follows.

Remark 2.4. Observe that the norm ‖ · ‖G on G depends on the chosen Cartan
decomposition θ. However, by applying (2.3) with Z = G one sees that the
norm obtained with a conjugate θ′ of θ will satisfy

‖g‖′G ≤ ‖g‖G + c, ‖g‖G ≤ ‖g‖′G + c′ (2.4)

for all g ∈ G with some constants c, c′ ≥ 0.

For the definition of ‖ · ‖Z we assumed that θ leaves H invariant. If instead we
use the identity in Lemma 2.3 as the definition of ‖ · ‖Z then this assumption
can be avoided. In any case, it follows that the norms on Z obtained from
two different Cartan involutions will satisfy similar inequalities as (2.4). The
corresponding families of balls are then also compatible,

BR ⊂ B′
R+c, B′

R ⊂ BR+c′ ,

for all R > 0.

Documenta Mathematica 21 (2016) 627–660



Lattice Counting on Real Spherical Spaces 635

2.3 Factorization

By a (reductive) factorization of Z = G/H we understand a homogeneous space
Z⋆ = G/H⋆ with H⋆ an algebraic subgroup of G such that

• H⋆ is reductive.

• H ⊂ H⋆.

A factorization is called compact if Z⋆ is compact, and co-compact if the fiber
space F := H⋆/H is compact. It is called proper if dimH < dimH⋆ < dimG.

Lemma 2.5. Let Z = G/H → Z⋆ = G/H⋆ be a factorization. Then the
following assertions are equivalent:

1. Z → Z⋆ is co-compact.

2. There exist a compact subgroup K⋆ < H⋆ such that K⋆H = H⋆.

3. There exists a compact subalgebra k⋆ < h⋆ such that h⋆ = k⋆ + h and
exp(k⋆) < H⋆ compact.

Proof. First (1) implies (2) by the Mostow decomposition of the reductive
homogeneous space H⋆/H . Clearly (2) implies (3) as the multiplication map
K⋆ × H → H⋆ needs to be submersive by Sard’s theorem. Finally, for (3)
implies (1) we observe that H⋆/H has finitely many components and exp(k⋆)H
is compact and open in there.

Let F → Z → Z⋆ be a factorization of Z. We write B⋆
R and BF

R for the intrinsic
balls in Z⋆ and F , respectively.

Lemma 2.6. We have B⋆
R = BRH

⋆/H⋆ and BF
R = BR ∩ F .

Proof. Follows from Lemma 2.3.

For a compactly supported bounded measurable function φ on Z we define the
fiberwise integral

φF (gH⋆) :=

∫

H⋆/H

φ(gh⋆) d(h⋆H)

and recall the integration formula
∫

Z

φ(gH) d(gH) =

∫

Z⋆
φF (gH⋆) d(gH⋆) (2.5)

under appropriate normalization of measures. Consider the characteristic func-
tion 1R of BR and note that its fiber average 1

F
R is supported in the compact

ball B⋆
R. We say that the family of balls (BR)R>0 factorizes well to Z

⋆ provided
for all compact subsets Q ⊂ G

lim
R→∞

supg∈Q 1
F
R(gH

⋆)

|BR|
= 0 . (2.6)
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Observe that for all compact subsets Q there exists an R0 = R0(Q) > 0 such
that

sup
g∈Q

1
F
R(gH

⋆) ≤ |BF
R+R0

|

by Lemma 2.2. Thus the balls BR factorize well provided

lim
R→∞

|BF
R+R0

|

|BR|
= 0 . (2.7)

for all R0 > 0.

Remark 2.7. The condition that the balls BR factorize well is closely related
to the non-focusing condition (Definition 1.14 in [12]). Thus, in the case of
semi-simple connected H , the non-focusing condition of the intrinsic balls is
implied by the condition that they factorize well to all factorizations.

2.4 Basic factorizations

There is a special class of factorizations with which we are dealing with in the
sequel. ¿From now on we assume that g is semi-simple and write

g = g1 ⊕ . . .⊕ gm

for the decomposition into simple ideals. For a reductive subalgebra h < g and
a subset I ⊂ {1, . . . ,m} we define the reductive subalgebra

hI := h+ gI = h+
⊕

i∈I

gi . (2.8)

We say that the factorization is basic provided that h∗ = hI for some I. Finally
we call a factorization weakly basic if it is built from consecutive basic and co-
compact factorizations, that is, there exists a sequence

h⋆ = hk ⊃ · · · ⊃ h0 = h (2.9)

of reductive subalgebras such that for each i we have hi = (hi−1)I for some I
or hi/hi−1 is compact. The following lemma shows that in fact it suffices with
k ≤ 2.

Lemma 2.8. Let Z → Z⋆ be a weakly basic factorization. Then there exists
an intermediate factorization Z → Zb → Z⋆ such that Z → Zb is basic and
Zb → Z⋆ co-compact.

Proof. Let a sequence (2.9) of factorizations which are consecutively basic or
compact be given. We first observe that two consecutive basic factorizations
make up for a single basic factorization, and likewise two consecutive compact
factorizations yield a single compact factorization by Lemma 2.5. Hence it
suffices to prove that we can modify a string

hi+2 ⊃ hi+1 ⊃ hi
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with hi+2/hi+1 basic and hi+1/hi compact to

hi+2 ⊃ hi+1
b ⊃ hi

with hi+2/hi+1
b compact and hi+1

b /hi basic.
We have hi+2 = hi+1 + gI for some I, and by Lemma 2.5 that hi+1 = hi +
c with c compact. Then hi+1

b := hi + gI is a reductive subalgebra and a
basic factorization of hi. Furthermore hi+2 = hi+1

b + c. This establishes the
lemma

3 Wavefront real spherical spaces

We assume that Z is real spherical, i.e. a minimal parabolic subgroup P < G
has an open orbit on Z. It is no loss of generality to assume that PH ⊂ G is
open, or equivalently that g = h+ p.
If L is a real algebraic group, then we write Ln for the normal subgroup of L
which is generated by all unipotent element. In case L is reductive we observe
that ln is the sum of all non-compact simple ideals of l.
According to [20] there is a unique parabolic subgroupQ ⊃ P with the following
two properties:

• QH = PH .

• There is a Levi decomposition Q = LU with Ln ⊂ Q ∩H ⊂ L.

Following [20] we call Q a Z-adapted parabolic subgroup.
Having fixed L we let L = KLALNL be an Iwasawa decomposition of L. We
choose an Iwasawa decomposition G = KAN which inflates the one of L,
i.e. KL < K,AL = A and NL < N . Further we may assume that N is the
unipotent radical of the minimal parabolic P .

Remark 3.1. It should be noted that the assumption on the Cartan decom-
position θ, which was demanded in Section 2.2, may be overruled by the above
requirement to K. However, it follows from Remark 2.4 that the balls BR can
still be defined, and that the difference does not disturb the lattice counting
on Z.

Set AH := A ∩H and put AZ = A/AH . We recall that dimAZ is an invariant
of the real spherical space, called the real rank (see [20]).
In [18], Section 6, we defined the notion of wavefront for a real spherical space,
which we quickly recall. Attached to Z is a geometric invariant, the so-called
compression cone which is a closed and convex subcone a−Z of aZ . It is defined
as follows. Write Σu for the space of a-weights of the a-module u and let u

denote the corresponding sum of root spaces for −Σu. According to [20] there
exists a linear map

T : ⊕α∈Σu
g−α = u → l⊥H ⊕ u ⊂ ⊕β∈{0}∪Σu

gβ (3.1)
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such that h = l∩h+{X+T (X) | X ∈ u}. Here l⊥H denotes the orthocomplement
of l ∩ h in l. For each pair α, β we denote by

Tα,β : g−α → gβ

the map obtained from T by restriction to g−α and projection to gβ . Then
T =

∑
α,β Tα,β and by definition

a−Z = {X ∈ a | (α+ β)(X) ≥ 0, ∀α, β with Tα,β 6= 0}.

It follows from (3.1) that α + β vanishes on aH if Tα,β 6= 0. Hence a−Z ⊂ aZ .
If one denotes by a− ⊂ a the closure of the negative Weyl chamber, then
a− + aH ⊂ a−Z and by definition Z is wavefront if

a− + aH = a−Z .

Let us mention that many real spherical spaces are wavefront; for example all
symmetric spaces and all Gross-Prasad type spaces Z = G×H/H with (G,H)
one of the following

(GLn+1(C),GLn(C)), (GLn+1(R),GLn(R)), (3.2)

(GLn+1(H),GLn(H)), (U(p+ 1, q),U(p, q)), (3.3)

(SO(n+ 1,C), SO(n,C)), (SO(p+ 1, q), SO(p, q)) . (3.4)

We recall from [18] the polar decomposition for real spherical spaces

Z = ΩA−
ZF · z0 (3.5)

where

• Ω is a compact set of the type F ′K with F ′ ⊂ G a finite set.

• F ⊂ G is a finite set with the property that F · z0 = T · z0 ∩ Z where
T = exp(ia) and the intersection is taken in ZC = GC/HC.

3.1 Volume growth

Define ρQ ∈ a∗ by ρQ(X) = 1
2 tr(aduX), X ∈ a. It follows from the unimodu-

larity of Z and the local structure theorem that ρQ|aH = 0, i.e. ρQ ∈ a∗Z = a⊥H .

Lemma 3.2. Let Z = G/H be a wavefront real spherical space. Then

|BR| ≍ sup
X∈a

‖X‖≤R

e2ρQ(X) = sup
X∈a

−
Z

‖X‖≤R

e−2ρQ(X) . (3.6)

Here the expression f(R) ≍ g(R) signifies that the ratio f(R)
g(R) remains bounded

below and above as R tends to infinity.
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Proof. First note that the equality in (3.6) is immediate from the wavefront
assumption.
Let us first show the lower bound, i.e. there exists a C > 0 such that for all
R > 0 one has

|BR| ≥ C sup
X∈a

‖X‖≤R

e2ρQ(X) .

For that we recall the volume bound from [19], Prop. 4.2: for all compact
subsets B ⊂ G with non-empty interior there exists a constant C > 0 such that
volZ(Ba · z0) ≥ Ca2ρQ for all a ∈ A−

Z . Together with the polar decomposition
(3.5) this gives us the lower bound.
As for the upper bound let

a−R := {X ∈ a− | ‖X‖ ≤ R} .

Observe that BR ⊂ B′
R := KA−

RK · z0. In the sequel it is convenient to realize
AZ as a subgroup of A (and not as quotient): we identify AZ with A⊥

H ⊂ A.
The upper bound will follow if we can show that

|B′
R| ≤ C sup

X∈a

‖X‖≤R

e2ρQ(X) (R > 0) .

for some constant C > 0. This in turn will follow from the argument for the
upper bound in the proof of Prop. 4.2 in [19]: in this proof we considered for
a ∈ A−

Z the map

Φa : K × ΩA × Ξ → G, (k, b,X) 7→ kb exp(Ad(a)X)

where ΩA ⊂ A is a compact neighborhood of 1 and Ξ ⊂ h is a compact neigh-
borhood of 0. It was shown that the Jacobian of Φa, that is

√
det(dΦadΦt

a), is
bounded by Ca−2ρQ . Now this bounds holds as well for the right K-distorted
map

Ψa : K × ΩA ×K × Ξ → G, (k, b, k′, X) 7→ kb exp(Ad(ak′)X) .

The reason for that comes from an inspection of the proof; all what is needed is
the following fact: let d := dim h and consider the action of Ad(a) on V =

∧d
g.

Then for a ∈ A− we have

a−2ρ ≥ sup
v∈V,
‖v‖=1

〈Ad(a)v, v〉 .

We deduce an upper bound

volZ(KΩAaK · z0) ≤ Ca−2ρ . (3.7)

We need to improve that bound from ρ to ρQ on the right hand side of (3.7).
For that let WL be the Weyl group of the reductive pair (l, a). Note that ρQ =
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1
|WL|

∑
w∈WL

w · ρ. Further, the local structure theorem implies that Ln ⊂ H

and hence WL can be realized as a subgroup of WH∩K := NH∩K(a)/ZH∩K(a).
We choose ΩA to be invariant under NH∩K(a) and observe that a ∈ AZ is fixed
under WH∩K . Thus using the NH∩K(a)-symmetry in the a-variable we refine
(3.7) to

volZ(KΩAaK · z0) ≤ Ca−2ρQ .

The desired bound then follows.

Corollary 3.3. Let Z = G/H be a wavefront real spherical space of reductive
type. Let Z → Z⋆ be a basic factorization such that Z⋆ is not compact. Then
the geometric balls BR factorize well to Z⋆.

Proof. As Z → Z⋆ is basic we may assume (ignoring connected components)
that H⋆ = GIH for some I. Note that F = H⋆/H ≃ GI/GI ∩ H is real
spherical.
LetQ be the Z-adapted parabolic subgroup attached to P . Let PI = P∩GI and
GI ⊃ QI ⊃ PI be the F -adapted parabolic above PI and note thatQI = Q∩GI .
With Lemma 3.2 we then get

|BF
R | ≍ sup

X∈aI
‖X‖≤R

e2ρQI (X) ,

which we are going to compare with (3.6).
Let uI be the Lie algebra of the unipotent radical of QI . Note that uI ⊂ u

and that this inclusion is strict since G/H⋆ is not compact. The corollary now
follows from (2.7).

3.2 Property I

We briefly recall some results from [19].
Let (π,Hπ) be a unitary irreducible representation of G. We denote by H∞

π the
G-Fréchet module of smooth vectors and by H−∞

π its strong dual. One calls
H−∞

π the G-module of distribution vectors; it is a DNF-space with continuous
G-action.
Let η ∈ (H−∞

π )H be an H-fixed element and Hη < G the stabilizer of η. Note
that H < Hη and set Zη := G/Hη. With regard to η and v ∈ H∞ we form the
generalized matrix-coefficient

mv,η(gH) := η(π(g−1)v) (g ∈ G)

which is a smooth function on Zη.
We recall the following facts from [19] Thm. 7.6 and Prop. 7.7:

Proposition 3.4. Let Z be a wavefront real spherical space of reductive type.
Then the following assertions hold:

1. Every generalized matrix coefficient mv,η as above is bounded.
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2. Let H < H⋆ < G be a closed subgroup such that Z⋆ is unimodular. Then
Z⋆ is a weakly basic factorization.

3. Let (π,H) be a unitary irreducible representation of G and let η ∈
(H−∞

π )H . Then:

(a) Z → Zη is a weakly basic factorization.

(b) Zη is unimodular and there exists 1 ≤ p < ∞ such that mv,η ∈
Lp(Zη) for all v ∈ H∞

π .

The property of Z = G/H that (3b) is valid for all π and η as above is denoted
Property (I) in [19]. Note that (1) and (3b) together imply mv,η ∈ Lq(Zη) for
q > p. Assuming Property (I) we can then make the following notation.

Definition 3.5. Given π as above, define pH(π) as the smallest index ≥ 1
such that all K-finite generalized matrix coefficients mv,η with η ∈ (H−∞

π )H

belong to Lp(Zη) for any p > pH(π).

Notice that mv,η belongs to Lp(Zη) for all K-finite vectors v once that this is
the case for some non-trivial such vector v, see [19] Lemma 7.2. For example,
this could be the trivial K-type, if it exists in π.
It follows from finite dimensionality of (H−∞

π )H (see [23]) that pH(π) < ∞.
We say that π is H-tempered if pH(π) = 2.
The representation π is said to be H-distinguished if (H−∞

π )H 6= {0}. Note
that if π is not H-distinguished then pH(π) = 1.

4 Lattice point counting: setup

Let G/H be a real algebraic homogeneous space. We further assume that we
are given a lattice (a discrete subgroup with finite covolume) Γ ⊂ G, such that
ΓH := Γ∩H is a lattice in H . We normalize Haar measures on G and H such
that:

• vol(G/Γ) = 1.

• vol(H/ΓH) = 1.

Our concern is with the double fibration

G/ΓH

yyrrrrrrrrrr

%%
KKKKKKKKKK

Z := G/H Y := G/Γ

Fibre-wise integration yields transfer maps from functions on Z to functions
on Y and vice versa. In more precision,

L∞(Y ) → L∞(Z), φ 7→ φH ; φH(gH) :=

∫

H/ΓH

φ(ghΓ) d(hΓH) (4.1)
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and we record that this map is contractive, i.e

‖φH‖∞ ≤ ‖φ‖∞ (φ ∈ L∞(Y )) . (4.2)

Likewise we have

L1(Z) → L1(Y ), f 7→ fΓ; fΓ(gΓ) :=
∑

γ∈Γ/ΓH

f(gγH) , (4.3)

which is contractive, i.e

‖fΓ‖1 ≤ ‖f‖1 (f ∈ L1(Z)) . (4.4)

Unfolding with respect to the double fibration yields, in view of our normaliza-
tion of measures, the following adjointness relation:

〈fΓ, φ〉L2(Y ) = 〈f, φH〉L2(Z) (4.5)

for all φ ∈ L∞(Y ) and f ∈ L1(Z). Let us note that (4.5) applied to |f | and
φ = 1Y readily yields (4.4).
We write 1R ∈ L1(Z) for the characteristic function of BR and deduce from
the definitions and (4.5):

• 1
Γ
R(eΓ) = NR(Γ, Z) := #{γ ∈ Γ/ΓH | γ · z0 ∈ BR}.

• ‖1Γ
R‖L1(G/Γ) = |BR|.

4.1 Weak asymptotics

In the above setup, G/H need not be of reductive type, but we shall assume
this again from now on. For spaces with property (I) and Y compact we prove
analytically in the following section that

NR(Γ, Z) ∼ |BR| (R → ∞) . (MT)

For that we will use the following result of [21]:

Theorem 4.1. Let Z = G/H be of reductive type. The smooth vectors for the
regular representation of G on Lp(Z) vanish at infinity, for all 1 ≤ p <∞.

With notation from (4.3) we set

FΓ
R :=

1

|BR|
1
Γ
R.

We shall concentrate on verifying the following limit of weak type:

〈FΓ
R , φ〉L2(Y ) →

∫

Y

φ̄ dµY (R → ∞), (∀φ ∈ C0(Y )) . (wMT)

Here C0 indicates functions vanishing at infinity.

Lemma 4.2. (wMT) ⇒ (MT).

Proof. As in [10] Lemma 2.3 this is deduced from Lemma 2.1 and Lemma
2.2.
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5 Main term counting

In this section we will establish main term counting under the mandate of
property (I) and Y being compact. Let us call a family of balls (BR)R>0 well
factorizable if it factorizes well to all proper factorizations of type Z → Zη.

5.1 Main theorem on counting

Theorem 5.1. Let G be semi-simple and H a closed reductive subgroup. Sup-
pose that Y is compact and Z admits (I). If (BR)R>0 is well factorizable, then
(wMT) and (MT) hold.

Remark 5.2. In case Z = G/H is real spherical and wavefront, then Z has (I)
by Proposition 3.4. If we assume in addition that G has no compact factors
and that all proper factorizations are basic, then the family of geometric balls is
well factorizable by Corollary 3.3. In particular, Theorem A of the introduction
then follows from the above.

The proof is based on the following proposition. For a function space F(Y )
consisting of integrable functions on Y we denote by F(Y )van the subspace of
functions with vanishing integral over Y .

Proposition 5.3. Let Z = G/H be of reductive type. Assume that there exists
a dense subspace A(Y ) ⊂ Cb(Y )Kvan such that

φH ∈ C0(Z) for all φ ∈ A(Y ) . (5.1)

Then (wMT) holds true.

Proof. We will establish (wMT) for φ ∈ Cb(Y ). As

Cb(Y ) = Cb(Y )van ⊕ C1Y ,

and (wMT) is trivial for φ a constant, it suffices to establish

〈FΓ
R , φ〉L2(Y ) → 0 (φ ∈ Cb(Y )van) . (5.2)

We will show (5.2) is valid for φ ∈ A(Y ). By density, as FΓ
R is K-invariant and

belongs to L1(Y ), this will finish the proof.
Let φ ∈ A(Y ) and let ǫ > 0. By the unfolding identity (4.5) we have

〈FΓ
R , φ〉L2(Y ) =

1

|BR|
〈1R, φ

H〉L2(Z). (5.3)

Using (5.1) we choose Kǫ ⊂ Z compact such that |φH(z)| < ǫ outside of Kǫ.
Then

1

|BR|
〈1R, φ

H〉L2(Z) =

∫

Kǫ

+

∫

Z−Kǫ

1R(z)

|BR|
φH(z) dµZ(z) .

By (4.2), the first term is bounded by |Kǫ|||φ||∞
|BR| , which is ≤ ǫ for R sufficiently

large. As the second term is bounded by ǫ for all R, we obtain (5.2). Hence
(wMT) holds.
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Remark 5.4. It is possible to replace (5.1) by a weaker requirement: Suppose
that an algebraic sum

A(Y ) =
∑

j∈J

A(Y )j (5.4)

is given together with a factorization Z⋆
j = G/H⋆

j for each j ∈ J . Suppose that

the balls BR all factorize well to Z⋆
j , j ∈ J . Suppose further that φH factorizes

to a function
φH

⋆
j ∈ C0(Z

⋆
j ) (5.5)

for all φ ∈ A(Y )j and all j ∈ J . Then the conclusion in Proposition 5.3 is still
valid. In fact, using (2.5) the last part of the proof modifies to:

1

|BR|
〈1R, φ

H〉L2(Z) =
1

|BR|
〈1F

R , φ
H⋆
j 〉L2(Z⋆j )

=

=

∫

K⋆
ǫ

+

∫

Z⋆j−K⋆
ǫ

1
F
R(z)

|BR|
φH

⋆
j (z) dµZ⋆j

(z)

for φ ∈ A(Y )j . As ‖1FR‖L1(Z⋆j )
= |BR|, the second term is bounded by ǫ for all

R. As the balls factorize well to Z⋆
j we get the first term as small as we wish

with (2.6).

5.2 The space A(Y )

We now construct a specific subspace A(Y ) ⊂ Cb(Y )Kvan and verify condition
(5.5).

Denote by Ĝs ⊂ Ĝ the K-spherical unitary dual.
As Y is compact, the abstract Plancherel-theorem implies:

L2(G/Γ)K ≃
⊕

π∈Ĝs

(H−∞
π )Γ.

If we denote the Fourier transform by f 7→ f∧ then the corresponding inversion
formula is given by

f =
∑

π

avπ,f∧(π). (5.6)

Here avπ,f∧(π) denotes a matrix coefficient for Y with vπ ∈ Hπ normalized
K-fixed and f∧(π) ∈ (H−∞

π )Γ, and the sum in (5.6) is required to include
multiplicities. The matrix coefficients for Y are defined as in (1.2), that is

av,ν(y) = ν(g−1 · v) (y = gH ∈ Y ) . (5.7)

for v ∈ Hπ and ν ∈ (H−∞
π )Γ.

Note that L2(Y ) = L2(Y )van ⊕ C · 1Y . We define A(Y ) ⊂ L2(Y )Kvan to be the
dense subspace of functions with finite Fourier support, that is,

A(Y ) = span{av,ν | π ∈ Ĝs non-trivial, v ∈ HK
π , ν ∈ (H−∞

π )Γ}.
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Then A(Y ) ⊂ L2(Y )K,∞
van is dense and since C∞(Y ) and L2(Y )∞ are topologi-

cally isomorphic, it follows that A(Y ) is dense in C(Y )Kvan as required.
The following lemma together with Remark 5.4 immediately implies Theorem
5.1.

Lemma 5.5. Assume that Y is compact and Z has (I), and define A(Y ) as
above. Then there exists a decomposition of A(Y ) satisfying (5.4)-(5.5).

Proof. The map φ 7→ φH from (4.1) corresponds on the spectral side to a map
(H−∞

π )Γ → (H−∞
π )H , which can be constructed as follows.

As H/ΓH is compact, we can define for each π ∈ Ĝs

Λπ : (H−∞
π )Γ → (H−∞

π )H , Λπ(ν) =

∫

H/ΓH

ν ◦ π(h−1) d(hΓH) (5.8)

by H−∞
π -valued integration: the defining integral is understood as integration

over a compact fundamental domain F ⊂ H with respect to the Haar measure
on H ; as the integrand is continuous and H−∞

π is a complete locally convex
space, the integral converges in H−∞

π . It follows from (5.8) that (av,ν)
H =

mv,Λπ(ν) for all v ∈ H∞
π and ν ∈ (H−∞

π )Γ.
Let J denote the set of all factorizations Z⋆ → Z, including also Z⋆ = Z which
we give the index j0 ∈ J . For j ∈ J we define A(Y )j ⊂ A(Y ) accordingly to
be spanned by the matrix coefficients av,ν for which HΛπ(ν) = H⋆

j . Then (5.4)
holds.
Let φ ∈ A(Y )j0 , then it follows from (5.6) that

φH =
∑

π 6=1

mvπ ,Λπ(φ∧(π)) . (5.9)

Note that Hη = H for each distribution vector η = Λπ(φ
∧(π)) in this sum, by

the definition of A(Y )j0 . As Z has property (I) the summand mvπ,Λπ(φ∧(π)) is
contained in Lp(G/H) for p > pH(π), and by [19], Lemma 7.2, this containment
is then valid for all K-finite generalized matrix coefficients mv,Λπ(φ∧(π)) of π.
Thus mvπ,Λπ(φ∧(π)) generates a Harish-Chandra module inside Lp(G/H). As
mvπ,Λπ(φ∧(π)) is K-finite, we conclude that it is a smooth vector. Hence φH ∈
Lp(G/H)∞, and in view of Theorem 4.1 we obtain (5.1).
The proof of (5.5) for φ ∈ A(Y )j for general j ∈ J is obtained by the same
reasoning, where one replaces H by H⋆

j in (5.8) and (5.9).

This concludes the proof of Theorem 5.1.

6 Lp-bounds for generalized matrix coefficients

¿From here on we assume that Z = G/H is wavefront and real spherical. Recall
that we assumed that G is semi-simple and that we wrote g = g1 ⊕ . . . ⊕ gm
for the decomposition of g into simple factors. It is no big loss of generality to
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assume that G = G1 × . . .×Gm splits accordingly. We will assume that from
now on.
Further we request that the lattice Γ < G is irreducible, that is, the projection
of Γ to any normal subgroup J ( G is dense in J .
Let π be an irreducible unitary representation of G. Then π = π1 ⊗ . . . ⊗ πm
with πj and irreducible unitary representation of Gj . We start with a simple
observation.

Lemma 6.1. Let (π,H) be an irreducible unitary representation of G and 0 6=
ν ∈ (H−∞)Γ. If one constituent πj of π is trivial, then π is trivial.

Proof. The element ν gives rise to a G-equivariant injection

H∞ →֒ C∞(Y ), v 7→ (gΓ 7→ ν(π(g−1)v)) . (6.1)

Say πj is trivial and let J :=
∏m

i=1
i6=j

Gi. Let ΓJ be the projection of Γ to J .

Then (6.1) gives rise to a J-equivariant injection H∞ →֒ C∞(J/ΓJ). As ΓJ is
dense in J , the assertion follows.

We assume from now on that the cycle H/ΓH ⊂ Y is compact. This technical
condition ensures that the vector valued average map (5.8) converges.

Lemma 6.2. Let (π,H) be a non-trivial irreducible unitary representation of G.
Let ν ∈ (H−∞

π )Γ such that η := Λπ(ν) ∈ (H−∞
π )H is non-zero. Then Hη/H is

compact.

Proof. Recall from Proposition 3.4 that Z → Zη is weakly basic, and from
Lemma 2.8 that then there exists H ⊂ Hb ⊂ Hη such that Hη/Hb is compact
and Z → Zb is basic. Hence hb = hI for some I. As π is irreducible it
infinitesimally embeds into C∞(Zη) and hence also to C∞(Zb) on which Gi

acts trivially for i ∈ I. It follows that πi is trivial for i ∈ I. Hence Lemma 6.1
implies I = ∅ and thus hb = h.

In the sequel we use the Plancherel theorem (see [15])

L2(G/Γ)K ≃

∫ ⊕

Ĝs

Vπ,Γ dµ(π) ,

where Vπ,Γ ⊂ (H−∞
π )Γ is a finite dimensional subspace and of constant dimen-

sion on each connected component in the continuous spectrum (parametrization
by Eisenstein series), and where the Plancherel measure µ has support

ĜΓ,s := supp(µ) ⊂ Ĝs .

Given an irreducible lattice Γ ⊂ G we define (cf. Definition 3.5)

pH(Γ) := sup{pH(π) : π ∈ ĜΓ,s} (6.2)

and record the following.
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Lemma 6.3. Assume that G = G1 × . . . × Gm with all gi simple and non-
compact. Then pH(Γ) <∞.

Proof. For a unitary representation (π,H) and vectors v, w ∈ H we form the
matrix coefficient πv,w(g) := 〈π(g)v, w〉. We first claim that there exists a

p < ∞ (in general depending on Γ) such that for all non-trivial π ∈ ĜΓ,s one
has πv,w ∈ Lp(G) for all K-finite vectors v, w. In case G has property (T) this
follows (independently of Γ) from [7]. The remaining cases contain at least one
factor Gi of SOe(n, 1) or SU(n, 1) (up to covering) and have no compact factors
by assumption. They are treated in [6].
The claim can be interpreted geometrically via the leading exponent ΛV ∈ a∗

which is attached to the Harish-Chandra module of H (see [19], Section 6).
The lemma now follows from Prop. 4.2 and Thm. 6.3 in [19] (see the proof of
Thm. 7.6 in [19] how these two facts combine to result in integrability).

Let 1 ≤ p < ∞. Let us say that a subset Λ ⊂ Ĝs is Lp-bounded provided that
mv,η ∈ Lp(Zη) for all π ∈ Λ and v ∈ H∞

π , η ∈ (H−∞
π )H . By definition we thus

have that ĜΓ,s is Lp-bounded for p > pH(Γ).
In this section we work under the following:

Hypothesis A: For every 1 ≤ p < ∞ and every Lp-bounded subset Λ ⊂ Ĝs

there exists a compact subset Ω ⊂ G and constants c, C > 0 such that the
following assertions hold for all π ∈ Λ, η ∈ (H−∞

π )H and v ∈ HK
π :

‖mv,η‖Lp(Zη) ≤ C‖mv,η‖∞ , (A1)

‖mv,η‖∞ ≤ c‖mv,η‖∞,Ωη (A2)

where Ωη = ΩHη/Hη. Here ‖ · ‖∞,ω denotes the supremum norm taken on the
subset ω.

In the sequel we are only interested in the following choice of subset Λ ⊂ Ĝs,
namely

Λ := {π ∈ ĜΓ,s | Λπ(ν) 6= 0 for some ν ∈ Vπ,Γ} . (6.3)

An immediate consequence of Hypothesis A is:

Lemma 6.4. Assume that p > pH(Γ). Then there is a C > 0 such that for all

π ∈ ĜΓ,s, v ∈ HK
π , ν ∈ (H−∞

π )Γ and η := Λπ(ν) ∈ (H−∞
π )H one has

‖φHπ ‖Lp(Zη) ≤ C‖φπ‖∞

where φπ(gΓ) := ν(π(g−1)v).

Proof. Recall from (4.2), that integration is a bounded operator from L∞(Y ) →
L∞(Z). Hence the assertion follows from (A1).
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Recall the Cartan-Killing form κ on g = k+ s and choose a basis X1, . . . , Xl of
k and X ′

1, . . . , X
′
s of s such that κ(Xi, Xj) = −δij and κ(X ′

i, X
′
j) = δij . With

that data we form the standard Casimir element

C := −
l∑

j=1

X2
j +

s∑

j=1

(X ′
j)

2 ∈ U(g) .

Set ∆K :=
∑l

j=1 X2
j ∈ U(k) and obtain the commonly used Laplace element

∆ = C + 2∆K ∈ U(g) (6.4)

which acts on Y = G/Γ from the left.
Let d ∈ N. For 1 ≤ p ≤ ∞, it follows from [2], Section 3, that Sobolev norms
on Lp(Y )∞ ⊂ C∞(Y ) can be defined by

||f ||2p,2d =

d∑

j=0

||∆jf ||2p .

Basic spectral theory allows one to define ‖ · ‖p,d more generally for any d ≥ 0.
Let us define

s := dim s = dimG/K = dimΓ\G/K

and

r := dim a = rankR(G/K) ,

where a ⊂ s is maximal abelian.
We denote by Cb(Y ) the space of continuous bounded functions on Y and by
Cb(Y )van the subspace with vanishing integral.

Proposition 6.5. Assume that

1. Z is a wavefront real spherical space,

2. G = G1 × . . .×Gm with all gi simple and non-compact.

3. Γ < G is irreducible and YH is compact,

4. Hypothesis A is valid.

Let p > pH(Γ). Then the map

AvH : C∞
b (Y )Kvan → Lp(Z)K ; AvH(φ) = φH

is continuous. More precisely, for all

1. k > s+ 1 if Y is compact.

2. k > r+1
2 s+ 1 if Y is non-compact and Γ is arithmetic
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there exists a constant C = C(p, k) > 0 such that

‖φH‖Lp(Z) ≤ C‖φ‖∞,k (φ ∈ C∞
b (Y )Kvan)

Proof. For all π ∈ Ĝ the operator dπ(C) acts as a scalar λπ and we set

|π| := |λπ | ≥ 0 .

Let φ ∈ C∞
b (Y )Kvan and write φ = φd +φc for its decomposition in discrete and

continuous Plancherel parts. We assume first that φ = φd.
In case Y is compact we have Weyl’s law: There is a constant cY > 0 such that

∑

|π|≤R

m(π) ∼ cY R
s/2 (R → ∞) .

Here m(π) = dimVπ,Γ. We conclude that

∑

π

m(π)(1 + |π|)−k <∞ (6.5)

for all k > s/2 + 1. In case Y is non-compact, we let Ĝµ,d be the the discrete
support of the Plancherel measure. Then assuming Γ is arithmetic, the upper
bound in [16] reads:

∑

π∈Ĝµ,d
|π|≤R

m(π) ≤ cYR
rs/2 (R > 0) .

For k > rs/2 + 1 we obtain (6.5) as before.
Let p > pH(Γ). As φ is in the discrete spectrum we decompose it as φ =

∑
π φπ

and obtain by Lemmas 6.2 and 6.4

‖φH‖p ≤
∑

π

‖φHπ ‖p ≤ C
∑

π

‖φπ‖∞ .

The last sum we estimate as follows:
∑

π

‖φπ‖∞ =
∑

π

(1 + |π|)−k/2(1 + |π|)k/2‖φπ‖∞

≤ C
∑

π

(1 + |π|)−k/2‖φπ‖∞,k

with C > 0 a constant depending only on k (we allow universal positive con-
stants to change from line to line). Applying the Cauchy-Schwartz inequality
combined with (6.5) we obtain

‖φH‖p ≤ C
(∑

π

‖φπ‖
2
∞,k

) 1
2
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with C > 0. With Hypothesis (A2) we get the further improvement:

‖φH‖p ≤ C
(∑

π

‖φπ‖
2
Ω,∞,k

) 1
2

where the Sobolev norm is taken only over the compact set Ω.
To finish the proof we apply the Sobolev lemma on K\G. Here Sobolev norms
are defined by the central operator C, whose action agrees with the left action of
∆. It follows that ‖f‖∞,Ω ≤ C‖f‖2,k1,Ω with k1 >

s
2 for K-invariant functions

f on G. This gives

‖φH‖p ≤ C(
∑

π

||φπ ||
2
Ω,2,k+k1

)
1
2 = C||φ||Ω,2,k+k1 ≤ C||φ||∞,k+k1

which proves the proposition for the discrete spectrum.
If φ = φc belongs to the continuous spectrum, where multiplicities are bounded
(see [15]), the proof is simpler. Let µc be the restriction of the Plancherel
measure to the continuous spectrum. As this is just Euclidean measure on
r-dimensional space we have

∫

Ĝs

(1 + |π|)−k dµc(π) <∞ (6.6)

if k > r/2. We assume for simplicity in what follows that m(π) = 1 for almost
all π ∈ suppµc. As supπ∈suppµc m(π) < ∞ the proof is easily adapted to the
general case.
Let

φ =

∫

Ĝs

φπ dµc(π).

As ‖φH‖∞ ≤ ‖φ‖∞ we conclude with Lemma 6.4, (6.6) and Fubini’s theorem
that

φH =

∫

Ĝs

φHπ dµc(π)

and, by the similar chain of inequalities as in the discrete case

‖φH‖p ≤ C‖φ‖∞,k+k1

with k > r
2 and k1 >

s
2 . This concludes the proof.

7 Error term estimates

Recall 1R, the characteristic function of BR. The first error term for the lattice
counting problem can be expressed by

err(R,Γ) := sup
φ∈Cb(Y )

‖φ‖∞≤1

|

〈
1
Γ
R

|BR|
− 1Y , φ

〉
| (R > 0),
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and our goal is to give an upper bound for err(R,Γ) as a function of R.
According to the decomposition Cb(Y ) = Cb(Y )van⊕C1Y we decompose func-
tions as φ = φo + φ1 and obtain

err(R,Γ) = sup
φ∈Cb(Y )

‖φ‖∞≤1

|〈1Γ
R, φo〉|

|BR|
= sup

φ∈Cb(Y )

‖φ‖∞≤1

|〈1R, φ
H
o 〉|

|BR|
.

Further, from ‖φo‖∞ ≤ 2‖φ‖∞ we obtain that err(R,Γ) ≤ 2 err1(R,Γ) with

err1(R,Γ) := sup
φ∈Cb(Y )van

‖φ‖∞≤1

|〈1Γ
R, φ〉|

|BR|
= sup

φ∈Cb(Y )van
‖φ‖∞≤1

|〈1R, φ
H〉|

|BR|
.

7.1 Smooth versus non-smooth counting

Like in the classical Gauss circle problem one obtains much better estimates
for the remainder term if one uses a smooth cutoff. Let α ∈ C∞

c (G) be a
non-negative test function with normalized integral. Set 1R,α := α ∗ 1R and
define

errα(R,Γ) := sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α, φ〉|

|BR|
= sup

φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1R,α, φ
H〉|

|BR|
.

Lemma 7.1. Let k > s + 1 if Y is compact and k > r+1
2 s + 1 otherwise. Let

p > pH(Γ) and q be such that 1
p + 1

q = 1. Then there exists C > 0 such that

errα(R,Γ) ≤ C‖α‖1,k|BR|
− 1
p (7.1)

for all R ≥ 1 and all α ∈ C∞
c (G).

Proof. First note that

〈1R,α, φ
H〉 = 〈1R,α, (−1+∆)k/2(−1+∆)−k/2φH〉 .

With ψ = (−1+∆)−k/2φ we have ‖ψ‖∞,k ≤ C‖φ‖∞ for some C > 0. We thus
obtain

errα(R,Γ) ≤ C sup
ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1+∆)k/2ψH〉|

|BR|

≤
C

|BR|
sup

ψ∈Cb(Y )Ko
‖ψ‖∞,k≤1

|〈1R,α, (−1+∆)k/2ψH〉|

Moving (−1 + ∆)k/2 to the other side we get with Hölder’s inequality and
Proposition 6.5 that

errα(R,Γ) ≤
C

|BR|
‖(−1+∆)k/2α ∗ 1R||q .
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652 B. Krötz, E. Sayag, H. Schlichtkrull

Finally,
‖(−1+∆)k/2α ∗ 1R‖q ≤ C‖α‖1,k‖1R‖q

and with ‖1R‖q = |BR|
1
q , the lemma follows.

Remark 7.2. In the literature results are sometimes stated not with respect to
err(R,Γ) but the pointwise error term errpt(R,Γ) = |1Γ

R(1) − |BR||. Likewise
we define errpt,α(R,Γ). Let BY be a compact neighborhood of 1Γ ∈ Y and
note that

errpt,α(R,Γ) ≤ |BR| sup
φ∈L1(BY )

‖φ‖1≤1

|〈
1
Γ
R,α

|BR|
− 1Y , φ〉| (R > 0).

The Sobolev estimate ‖φ‖∞ ≤ C‖φ‖1,k, for K-invariant functions φ on BY and
with k = dimY/K the Sobolev shift, then relates these error terms:

errpt,α(R,Γ) ≤ |BR| sup
φ∈C∞

b
(Y )

‖φ‖∞,−k≤1

|〈
1
Γ
R

|BR|
− 1Y , φ〉| .

We then obtain

errpt,α(R,Γ) ≤ C|BR|
1− 1

p (R > 0)

in view of (7.1).

We return to the error bound in Lemma 7.1 and would like to compare
err1(R,Γ) with errα(R,Γ). For that we note (by the triangle inequality) that

| err1(R,Γ)− errα(R,Γ)| ≤ sup
φ∈Cb(Y )Ko
‖φ‖∞≤1

|〈1Γ
R,α − 1

Γ
R, φ〉|

|BR|
.

Suppose that suppα ⊂ BG
ǫ for some ǫ > 0. Then Lemma 2.2 implies that 1R,α

is supported in BR+ǫ, and hence

|〈1Γ
R,α − 1

Γ
R, φ〉| ≤ ‖1Γ

R,α − 1
Γ
R‖1

≤ ‖1R,α − 1R‖1

≤ |BR+ǫ|
1
2 ‖1R,α − 1R‖2

≤ |BR+ǫ|
1
2 |BR+ǫ\BR|

1
2 .

With Lemma 2.1 we get

|BR+ǫ\BR| ≤ Cǫ|BR| (R ≥ 1, ǫ < 1) .

Thus we obtain that

| err1(R,Γ)− errα(R,Γ)| ≤ Cǫ
1
2 .
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Combining this with the estimate in Lemma 7.1 we arrive at the existence of
C > 0 such that

err1(R,Γ) ≤ C(ǫ−k|BR|
− 1
p + ǫ

1
2 )

for all R ≥ 1 and all 0 < ǫ < 1. The minimum of the function ǫ 7→ ǫ−kc+ ǫ1/2

is attained at ǫ = (2kc)
2

2k+1 and thus we get:

Theorem 7.3. Under the assumptions of Proposition 6.5 the first error term
err(R,Γ) for the lattice counting problem on Z = G/H can be estimated as
follows: for all p > pH(Γ) and k > s + 1 for Y compact, resp. k > r+1

2 s + 1
otherwise, there exists a constant C = C(p, k) > 0 such that

err(R,Γ) ≤ C|BR|
− 1

(2k+1)p

for all R ≥ 1.

Remark 7.4. The point where we lose essential information is in the estimate
(6.5) where we used Weyl’s law. In the moment pointwise multiplicity bounds
are available the estimate would improve. To compare the results with Selberg
on the hyperbolic disc, let us assume that pH(Γ) = 2. Then with r = 1 and

s = 2 our bound is err(R,Γ) ≤ Cǫ|BR|−
1
14+ǫ while Selberg showed err(R,Γ) ≤

Cǫ|BR|−
1
3+ǫ.

8 Triple spaces

In this section we verify our Hypothesis A for triple space Z = G/H where
G = G′ ×G′ ×G′, H = diag(G′) and G′ = SOe(1, n) for some n ≥ 2. Observe
that SOe(1, 2) ∼= PSl(2,R). We take K ′ := SO(n,R) < G′ as a maximal
compact subgroup and set K := K ′ ×K ′×K ′. Further we set s := s′ × s′ × s′.
A maximal abelian subspace a ⊂ s is then of the form

a = a′1 × a′2 × a′3

with a′i ⊂ s′ one dimensional subspaces. We recall the following result from [8].

Proposition 8.1. For the triple space the following assertion hold true:

1. G = KAH if and only if dim(a′1 + a′2 + a′3) = 2.

2. Suppose that all a′i are pairwise distinct. Then one has PH is open for
all minimal parabolics P with Langlands-decomposition P = MPAPNP

and AP = A.

We say that the choice of A is generic if all a′i are distinct and dim(a′1+a′2+a′3) =
2.
The invariant measure dz on Z can then be estimated as

∫

Z

f(z) dz ≤

∫

K

∫

A

f(ka · z0)J(a) da dk (f ∈ Cc(Z), f ≥ 0)
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with

J(a) = sup
w∈W

a2wρ (8.1)

by Lemma 3.2. Note that in this case the Weyl group W is just {±1}3.

8.1 Proof of the Hypothesis A

We first note that for all π ∈ Ĝs the space of H-invariants

(H−∞
π )H = CI .

is one-dimensional, see [5], Thm. 3.1.
Write π = π1 ⊗π2⊗π3 with each factor a K ′-spherical unitary irreducible rep-
resentation of G′. If we assume that π 6= 1 has non-trivial H-fixed distribution
vectors, then at least two of the factors πi are non-trivial.
Let vi be normalizedK ′-fixed vectors of πi and set v = v1⊗v2⊗v3. Since Z is a
multiplicity one space, the functional I ∈ (H−∞

π )H is unique up to scalars. Our
concern is to obtain uniform Lp-bounds for the generalized matrix coefficients
fπ := mv,I :

fπ(g1, g2, g3) := I(π1(g1)
−1v1 ⊗ π2(g2)

−1v2 ⊗ π3(g3)
−1v3) ,

when π belongs to the set Λ of (6.3).
We decompose Λ = Λ0 ∪ Λ1 ∪ {1} with Λ0 ⊂ Λ the set of π ∈ Λ with all πi
non-trivial, and Λ1 the set of π’s with exactly one πi to be trivial.
Consider first the case where π ∈ Λ1, i.e. one πi is trivial, say π3. Then
π2 = π∗

1 . We identify Z ≃ G′ ×G′ via (g, h) 7→ (1, g, h)H and obtain

fπ(g, h) = 〈π1(g)v1, v1〉 ,

a spherical function. Note that Zη ≃ G′ and Hypothesis A follows from
standard properties about K ′-spherical functions on G′. To be more spe-
cific let G′ = N ′A′K ′ be an Iwasawa-decomposition with middle-projection
a : G′ → A′, then

fπ(g, h) = ϕλ1(g) :=

∫

K′

a(k′g)λ1−ρ′

dk′ .

We use Harish-Chandra’s estimates |ϕν(a)| ≤ aνϕ0(a) and ϕ0(a) ≤ Ca−ρ(1 +
| log a|)d for a ∈ A′ in positive chamber. The condition of π ∈ Λ1 implies that
ρ−Reλ1 > 0 is bounded away from zero and Hypothesis A follows in this case.
Suppose now that π ∈ Λ0, i.e. all πi are non-trivial.
For a simplified exposition we assume that n = 2, i.e. G′ = PSl(2,R), and
comment at the end for the general case. Then πi = πλi are principal series
for some λi ∈ iR+ ∪ [0, 1) with H∞

πi = C∞(S1) in the compact realization. Set
λ = (λ1, λ2, λ3) and set π = πλ.
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In order to analyze fπ we use G = KAH and thus assume that g = a =
(a1, a2, a3) ∈ A. We work in the compact model of Hπi = L2(S1) and use the
explicit model for I in [3]: for h1, h2, h3 smooth functions on the circle one has

I(h1 ⊗ h2 ⊗ h3) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

h1(θ1)h2(θ2)h3(θ3)·

· K(θ1, θ2, θ3) dθ1dθ2dθ3 ,

where

K(θ1, θ2, θ3) = | sin(θ2 − θ3)|
(α−1)/2| sin(θ1 − θ3)|

(β−1)/2| sin(θ1 − θ2)|
(γ−1)/2 .

In this formula one has α = λ1−λ2−λ3, β = −λ1+λ2−λ3 and γ = −λ1−λ2+λ3
where λi ∈ iR ∪ (−1, 1) are the standard representation parameters of πi.
According to to [5], Cor. 2.1, the kernel K is absolutely integrable.
Set

A′ :=
{
at :=

(
t 0
0 1

t

)
| t > 0

}
< G′

Then A′
i = kφiA

′k−1
φi

with φi ∈ [0, 2π] and

kφ =

(
cosφ − sinφ
sinφ cosφ

)
.

Set at,i = kφiatk
−1
φi

.
Returning to our analysis of fπ we now take hi(ti, θi) = [π1(ati,i)vi](θi) and
remark that

hi(ti, θi) =
1

(t2i + sin2(θi − φi)(
1
t2i

− t2i ))
1
2 (1+λi)

.

Let us set |π| := πRe λ1 ⊗ πReλ2 ⊗ πReλ3 . Our formulas then show

|fπ(a)| ≤ f|π|(a) (a ∈ A) . (8.2)

Let ci := 1−|Reλi| for i = 1, 2, 3. The fundamental estimate in [22], Thm. 3.2,
then yields a constant d, independent of π, and a constant C = C(π) > 0 such
that for a = (at1,1, at2,2, at3,3) one has

|fπ(a)| ≤ C
(1 + | log t1|+ | log t2|+ | log t3|)d

[cosh log t1]c1 · [cosh log t2]c2 · [cosh log t3]c3
. (8.3)

In view of (8.2) the constant C(π) can be assumed to depend only on the dis-
tance of Reλi to the trivial representation. Looking at the integral representa-
tion of fπ with the kernel K we deduce a lower bound without the logarithmic
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factor, i.e. the bound is essentially sharp. Hence (8.1) together with the fact
that all fπ for π ∈ Λ0 are in Lp(Z) for some p <∞ implies that

inf
π∈Λ0

ci(π) > 0 . (8.4)

We now claim
sup
π∈Λ0

‖fπ‖p <∞ , (8.5)

and
sup
π∈Λ0

‖fπ‖∞ <∞ . (8.6)

For 0 < ǫ < 1 set Λǫ,R = [0, 1 − ǫ] × [0, 1 − ǫ] × [0, 1 − ǫ] and Λǫ := ia∗ + Λǫ.
It follows from (8.4) that there exists an ǫ > 0 such that Λ0 ⊂ Λǫ. We
prove the stronger inequalities with Λ0 replaced by Λǫ. In view of (8.2)
and (8.3) we may replace by Λǫ by Λǫ,R. Let Eǫ be the eight element
set of extreme points of Λǫ,R. For fixed a = at and θ = (θ1, θ2, θ3) we
let Fλ(a, θ) = K(θ)h1(t1, θ1)h2(t2, θ2)h3(t3, θ3) and note that the assignment
Λǫ,R → R+, λ 7→ Fλ(a, θ) is convex. Therefore we get for all λ ∈ Λǫ that

fλ(a) ≤
∑

µ∈Eǫ

fµ(a) .

In view of (8.3) the inequalities (8.5) and (8.6) then follow.
On the other hand for g = 1 = (1,1,1), the value fπ(1) is obtained by applying
I to the constant function 1 = 1⊗1⊗1. This value has been computed explicitly
by Bernstein and Reznikov in [3] as

Γ((α + 1)/4)Γ((β + 1)/4)Γ((γ + 1)/4)Γ((δ + 1)/4)

Γ((1 − λ1)/2)Γ((1− λ2)/2)Γ((1− λ3)/2)

where α, β, γ are as before and δ = −λ1 − λ2 − λ3. Stirling approximation,

|Γ(σ + it)| = const.e−
π
2 |t||t|σ−

1
2

(
1 +O(|t|−1)

)

as |t| → ∞ and σ is bounded, yields a lower bound for fπ(1):

inf
π∈Λ0

|fπ(1)| > 0 . (8.7)

As ‖fπ‖∞ ≥ |fπ(1)| the assertion (A1) of Hypothesis A is readily obtained
from (8.5) and (8.7). Likewise (A2) with Ω = {1} follows from (8.6) and (8.7).
In general for G′ = SOe(1, n) one needs to compute the Bernstein-Reznikov
integral. This was accomplished in [9].

Theorem 8.2. Let Z = G′ × G′ × G′/ diag(G′) for G′ = SOe(1, n) and as-
sume that H/ΓH is compact. Then the first error term err(R,Γ) for the lattice
counting problem on Z = G/H can be estimated as follows: for all p > pH(Γ)
there exists a C = C(p) > 0 such that

err(R,Γ) ≤ C|BR|
− 1

(6n+3)p

for all R ≥ 1.
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8.2 Cubic lattices

Here we let G0 = SOe(1, 2) with the quadratic Q form defining G0 having
integer coefficients and anisotropic over Q, for example

Q(x0, x1, x2) = 2x20 − 3x21 − x22 .

Then, according to Borel, Γ0 = G0(Z) is a uniform lattice in G0.

Next let k be a cubic Galois extension of Q. Note that k is totally real. An
example of k is the splitting field of the polynomial f(x) = x3+x2−2x−1. Let
σ be a generator of the Galois group of k|Q. Let Ok be the ring of algebraic
integers of k. We define Γ < G = G3

0 to be the image of G0(Ok) under the
embedding

G0(Ok) ∋ γ 7→ (γ, γσ, γσ
2

) ∈ G .

Then Γ < G is a uniform irreducible lattice with trace H ∩ Γ ≃ Γ0 a uniform
lattice in H ≃ G0.

9 Outlook

We discuss some topics of harmonic analysis on reductive homogeneous spaces
which are currently open and would have immediate applications to lattice
counting.

9.1 A conjecture which implies Hypothesis A

Hypothesis A falls in the context of a more general conjecture about the growth
behavior of families of Harish-Chandra modules.

We let Z = G/H be a real spherical space. Denote by A−
Z ⊂ AZ the

compression cone of Z (see Section 3) and recall that wavefront means that
A−AH/AH = A−

Z which, however, we do not assume for the moment.

We use V to denote Harish-Chandra modules for the pair (g,K) and V∞ for
their unique moderate growth smooth Fréchet globalizations. These V∞ are
global objects in the sense that they are G-modules whereas V is defined in
algebraic terms. We write V −∞ for the strong dual of V∞. We say that V is
H-distinguished provided that the space ofH-invariants (V −∞)H is non-trivial.

It is no big loss of generality to assume that A−
Z is a sharp cone, as the edge

of this cone is in the normalizer of H and in particular acts on the finite
dimensional space of H-invariants.

As A−
Z is pointed it is a fundamental domain for the little Weyl group and

as such a simplicial cone (see [17], Section 9). If a−Z = logA−
Z , then we write

ω1, . . . , ωr for a set of generators (spherical co-roots) of a−Z .

Set Q := θ(Q) where θ is the Cartan involution determined by the choice of
K. Note that V/qV is a finite dimensional Q module, in particular a finite
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dimensional AZ-module. Let Λ1, . . . ,ΛN ∈ a∗Z be the aZ,C-weight spectrum.
Then we define the H-spherical exponent ΛV ∈ a∗Z of V by

ΛV (ωi) := max
1≤j≤N

ReΛj(ωi) .

Further attached to V is a “logarithmic” exponent d ∈ N. Having this data we
recall the main bound from [22]

|mv,η(a · z0)| / aΛV (1 + ‖ log a‖)dV (a ∈ A−
Z ) .

Conjecture 9.1. Fix a K-type τ , a constant C > 0, and a compact subset
Ω ⊂ G. Then there exists a compact set ΩA ⊂ A−

Z such that for all Harish-
Chandra modules V with ‖ΛV ‖ ≤ C, all v ∈ V [τ ] and all η ∈ (V −∞)H one
has

max
a∈A

−
Z

g∈Ω

|mv,η(ga · z0)|a
−ΛV (1 + ‖ log a‖)−dV =

max
a∈ΩA
g∈Ω

|mv,η(ga · z0)|a
−ΛV (1 + ‖ log a‖)−dV .

It is easily seen that this conjecture implies Hypothesis A if all the generalized
matrix coefficients mv,η are bounded, as for example it is the case when Z is
wavefront (see Proposition 3.4(1)).

Remark 9.2. It might well be that a slightly stronger conjecture is true. For
that we recall that a Harish-Chandra module V has a unique minimal globaliza-
tion, the analytic model V ω. The space V ω is an increasing union of subspaces
Vǫ for ǫ → 0. The parameter ǫ parametrizes left G-invariant neigborhoods
Ξǫ ⊂ GC of 1 which decrease with ǫ → 0. Further Vǫ consists of those vectors
v ∈ V ω for which the orbit map G→ V ω, g 7→ g · v extends to a holomorphic
map on Ξǫ. For fixed ǫ, C > 0 the strengthened conjecture would be that there
exists a compact subset ΩA such that for all Harish-Chandra modules V with
‖ΛV ‖ ≤ C and all v ∈ Vǫ one has

max
a∈A−

Z

|mv,η(a · z0)|a
−ΛV (1 + ‖ log a‖)−dV =

max
a∈ΩA

|mv,η(a · z0)|a
−ΛV (1 + ‖ log a‖)−dV .

Note that the compact set Ω is no longer needed, as Ω · Vǫ ⊂ Vǫ′ .

9.2 Spectral geometry of Zη

In the general context of a reductive real spherical space it may be possible
to establish both main term counting and the error term bound, with the
arguments presented here for wavefront spaces, provided the following two key
questions allow affirmative answers.
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In what follows Z = G/H is a real reductive spherical space and V denotes an
irreducible Harish-Chandra module and η ∈ (V −∞)H .

Question A: Is Hη reductive?

Question B: If for v ∈ V the generalized matrix coefficient mv,η is bounded,
then there exists a 1 ≤ p <∞ such that mv,η ∈ Lp(Zη).

In this context we note that issues related to the well-factorization of the intrin-
sic balls in affine spherical spaces can possibly be resolved with similar methods
to those applied here, using volume estimates as described in Theorem 7.17 of
[13].

Acknowledgement. We are grateful to an anonymous referee for valuable
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