
Documenta Math. 735

Hyperplane Mass Partitions

via Relative Equivariant Obstruction Theory

Pavle V. M. Blagojević, Florian Frick,
Albert Haase, Günter M. Ziegler1

Received: October 6, 2015

Revised: April 28, 2016

Communicated by Christian Bär

Abstract. The Grünbaum–Hadwiger–Ramos hyperplane mass par-
tition problem was introduced by Grünbaum (1960) in a special case
and in general form by Ramos (1996). It asks for the “admissible”
triples (d, j, k) such that for any j masses in R

d there are k hy-
perplanes that cut each of the masses into 2k equal parts. Ramos’
conjecture is that the Avis–Ramos necessary lower bound condition
dk ≥ j(2k − 1) is also sufficient. We develop a “join scheme” for this
problem, such that non-existence of an S±

k -equivariant map between
spheres (Sd)∗k → S(Wk ⊕ U⊕j

k ) that extends a test map on the sub-
space of (Sd)∗k where the hyperoctahedral group S±

k acts non-freely,
implies that (d, j, k) is admissible. For the sphere (Sd)∗k we obtain a
very efficient regular cell decomposition, whose cells get a combina-
torial interpretation with respect to measures on a modified moment
curve. This allows us to apply relative equivariant obstruction theory
successfully, even in the case when the difference of dimensions of the
spheres (Sd)∗k and S(Wk⊕U

⊕j
k ) is greater than one. The evaluation of

obstruction classes leads to counting problems for concatenated Gray
codes. Thus we give a rigorous, unified treatment of the previously
announced cases of the Grünbaum–Hadwiger–Ramos problem, as well
as a number of new cases for Ramos’ conjecture.
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1 Introduction

1.1 The Grünbaum–Hadwiger–Ramos hyperplane mass partition
problem

In 1960, Grünbaum [10, Sec. 4.(v)] asked whether for any convex body in R
k

there are k affine hyperplanes that divide it into 2k parts of equal volume: This
is now known to be true for k ≤ 3, due to Hadwiger [11] in 1966, and remains
open and challenging for k = 4. (A weak partition result for k = 4 was given in
2009 by Dimitrijević-Blagojević [8].) For k > 4 it is false, as shown by Avis [1]
in 1984 by considering a measure on a moment curve. In 1996, Ramos [15]
proposed the following generalization of Grünbaum’s problem.

The Grünbaum–Hadwiger–Ramos problem. Determine the minimal di-
mension d = ∆(j, k) such that for every collection of j masses M on R

d there
exists an arrangement of k affine hyperplanes H in R

d that equiparts M.

The Ham Sandwich theorem, conjectured by Steinhaus and proved by Banach,
states that ∆(d, 1) = d. The Grünbaum–Hadwiger–Ramos hyperplane mass
partition problem was studied by many authors. It has been an excellent
testing ground for different equivariant topology methods; see to our recent
survey in [3].
The first general result about the function ∆(j, k) was obtained by Ramos [15],
by generalizing Avis’ observation: The lower bound

∆(j, k) ≥ 2k−1
k j

follows from considering k measures with disjoint connected supports concen-
trated along a moment curve in R

d. Ramos also conjectured that this lower
bound is tight.

The Ramos conjecture. ∆(j, k) = ⌈ 2k−1
k j⌉ for every j ≥ 1 and k ≥ 1.

All available evidence up to now supports this, though it has been established
rigorously only in special cases.

1.2 Product scheme and join scheme

It seems natural to use Yd,k := (Sd)k as a configuration space for any k ori-
ented affine hyperplanes/halfspaces in R

d, which leads to the following product
scheme: If there is no equivariant map

(Sd)k −→
S

±

k
S(U⊕j

k )

from the configuration space to the unit sphere in the space U⊕j
k of values

on the orthants of R
k that sum to 0, which is equivariant with respect to

the hyperoctahedral (signed permutation) group S±
k , then there is no counter-

example for the given parameters, so ∆(j, k) ≤ d.
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However, our critical review [3] of the main papers on the Grünbaum–
Hadwiger–Ramos problem since 1998 has shown that this scheme is very hard to
handle: Except for the 2006 upper bounds by Mani-Levitska, Vrećica & Živalje-
vić [13], derived from a Fadell–Husseini index calculation, it has produced very
few valid results: The group action on (Sd)k is not free, the Fadell–Husseini
index is rather large and thus yields weak results, and there is no efficient cell
complex model at hand.
In this paper, we provide a new approach, which proves to be remarkably clean
and efficient. For this, we use a join scheme, as introduced by Blagojević and
Ziegler [4], which takes the form

F : (Sd)∗k −→
S

±

k
S(Wk ⊕ U⊕j

k ).

Here the domain (Sd)∗k ⊆ R
(d+1)×k is a sphere of dimension dk + k − 1, given

by

Xd,k := {(λ1x1, . . . , λkxk) : x1, . . . , xk ∈ Sd, λ1, . . . , λk ≥ 0, λ1+ · · ·+λk = 1},

where we write λ1x1+ · · ·+λkxk as a short-hand for (λ1x1, . . . , λkxk). The co-
domain is a sphere of dimension j(2k−1)+k−2. Both domain and co-domain
are equipped with canonical S±

k -actions. We observe that the map restricted
to the points with non-trivial stabilizer (the “non-free part”)

F ′ : X>1
d,k ⊂ (Sd)∗k −→

S
±

k
S(Wk ⊕ U⊕j

k )

is the same up to homotopy for all test maps. If for any parameters (j, k, d) an
equivariant extension F of F ′ does not exist, we get that ∆(j, k) ≤ d.
To decide the existence of this map, or at least obtain necessary criteria, we
employ relative equivariant obstruction theory, as explained by tom Dieck [7,
Sect. II.3]. This turns out to work beautifully, and have a few remarkable
aspects:
• The Fox–Neuwirth [9]/Björner–Ziegler [2] combinatorial stratification

method yields a simple and efficient cone stratification for the space
R

(d+1)×k, which is equivariant with respect to the action of S±
k on the

columns, and which respects the arrangement of k2 subspaces of codimen-
sion d given by columns of a matrix (x1, . . . , xd) being equal, opposite, or
zero.

• This yields a small equivariant regular CW complex model for the sphere
(Sd)∗k ⊆ R

(d+1)×k, for which the the non-free part, given by an arrange-
ment of k2 subspheres of codimension d + 1, is an invariant subcomplex.
The cells DS

I (σ) in the complex are given by combinatorial data.
• To evaluate the obstruction cocycle, we use measures on a non-standard (bi-

nomial coefficient) moment curve. For the resulting test map, the relevant
cells DS

I (σ) can be interpreted as k-tuples of hyperplanes such that some
of the hyperplanes have to pass through prescribed points of the moment
curve, or equivalently, they have to bisect some extra masses.
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1.3 Statement of the main results

The join scheme reduces the Grünbaum–Hadwiger–Ramos problem to a com-
binatorial counting problem that can be solved by hand or by means of a
computer: A k-bit Gray code is a k × 2k binary matrix of all column vectors
of length k such that two consecutive vectors differ by only one bit. Such a
k-bit code can be interpreted as a Hamiltonian path in the graph of the k-cube
[0, 1]k. The transition count of a row in a binary matrix A is the number of
bit-changes, not counting a bit change from the last to the first entry. By
transition counts of a matrix A we refer to the vector of the transition counts
of the rows of the matrix A. Two binary matrices A and A′ are equivalent,
if A can be obtained from A′ by a sequence of permutations of rows and/or
inversion of bits in rows.

Definition 1.1. Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 1 be integers such that
dk = (2k − 1)j + ℓ with 0 ≤ ℓ ≤ d− 1. A binary matrix A of size k × j2k is an
ℓ-equiparting matrix if

(a) A = (A1, . . . , Aj) for Gray codes A1, . . . , Aj with the property that the
last column of Ai is equal to the first column of Ai+1 for 1 ≤ i < j; and

(b) there is one row of the matrix A with the transition count d − ℓ, while
all other rows have transition count d.

Example 1.2. If d = 5, j = 2, ℓ = 1 and k = 3, then a possible 1-equiparting
matrix is

A = (A1, A2) =



0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1
0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1


 .

In this example the first row of A has transition count 4 while the remaining
two rows have transition count 5.

Theorem 1.3. Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 2 be integers with the property
that dk = (2k − 1)j + ℓ and 0 ≤ ℓ ≤ d − 1. The number of non-equivalent
ℓ-equiparting matrices is the number of arrangements of k affine hyperplanes
H that equipart a given collection of j disjoint intervals on a moment curve γ
in R

d, up to renumbering and orientation change of hyperplanes in H, when
it is forced that one of the hyperplanes passes through ℓ prescribed points on γ
that lie to the left of the j disjoint intervals.

In some situations this yields a solution for the Grünbaum–Hadwiger–Ramos
problem.

Theorem 1.4. Let j ≥ 1 and k ≥ 3 be integers, with d := ⌈ 2k−1
k j⌉ and

ℓ := ⌈ 2k−1
k j⌉k− (2k− 1)j = dk− (2k− 1)j, which implies 0 ≤ ℓ < k ≤ d. If the

number of non-equivalent ℓ-equiparting matrices of size k × j2k is odd, then

∆(j, k) = ⌈ 2k−1
k j⌉.
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Theorem 1.4 is also true for k = 1 (and thus d = j, ℓ = 0), where it yields the
Ham Sandwich theorem: In this case an equiparting matrix A is a row vector
of length 2d and transition count d. Thus, each Ai is either (0, 1) or (1, 0),
where Ai uniquely determines Ai+1. Hence, up to inversion of bits A is unique
and so ∆(d, 1) ≤ d, and consequently ∆(d, 1) = d.
While the situation for k = 1 hyperplane is fully understood, we seem to be
far from a complete solution for the case of k = 2 hyperplanes. However, we
do obtain the following instances.

Theorem 1.5. Let t ≥ 1. Then:
(i) ∆(2t − 1, 2) = 3 · 2t−1 − 1,
(ii) ∆(2t, 2) = 3 · 2t−1,
(iii) ∆(2t + 1, 2) = 3 · 2t−1 + 2.

The statements (i) and (iii) were already known: Part (i) is the only case where
the lower bound of Ramos and the upper bound of Mani-Levitska, Vrećica,
and Živaljević [13, Thm. 39] coincide. Part (ii) is Hadwiger’s result [11] for
t = 1; the general case was previously claimed by Mani-Levitska et al. [13,
Prop. 25]. However, the proof of the result was incorrect and not recoverable,
as explained in [3, Sec. 8.1]. Here we recover this result by a different method of
proof. Similarly, statement (iii) was claimed by Živaljević [17, Thm. 2.1] with a
flawed proof; for an explanation of the gap see [3, Sec. 8.2], where we also gave
a proof of (iii) via degrees of equivariant maps [3, Sec. 5]. Here we will prove
all three cases of Theorem 1.5 in a uniform way.
In the case of k = 3 hyperplanes we prove using Theorem 1.4 the following
instances of the Ramos conjecture.

Theorem 1.6.
(i) ∆(2, 3) = 5,
(ii) ∆(4, 3) = 10.

Statement (i) was previously claimed by Ramos [15, Sec. 6.1]. A gap in the
method that Ramos developed and used to get this result was explained in [3,
Sec. 7]. It is also claimed by Vrećica and Živaljević in the recent preprint [16]
without a proof for the crucial [16, Prop. 3].
The reduction result of Hadwiger and Ramos ∆(j, k) ≤ ∆(2j, k − 1) applied
to Theorem 1.6 implies the following consequences. For details on reduction
results see for example [3, Sec. 3.3].

Corollary 1.7.
(i) 4 ≤ ∆(1, 4) ≤ 5,
(ii) 8 ≤ ∆(2, 4) ≤ 10.

Note that ∆(1, 4) is the open case for Grünbaum’s original conjecture.
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2 The join configuration space test map scheme and equivariant
obstruction theory

In this section we develop the join configuration test map scheme that was in-
troduced in [5, Sec. 2.1]. A sufficient condition for ∆(j, k) ≤ d will be phrased
in terms of the non-existence of a particular equivariant map between repre-
sentation spheres.

2.1 Arrangements of k hyperplanes

Let Ĥ = {x ∈ R
d : 〈x, v〉 = a} be an affine hyperplane determined by a vector

v ∈ R
d\{0} and a constant a ∈ R. The hyperplane Ĥ determines two (closed)

halfspaces

Ĥ0 = {x ∈ R
d : 〈x, v〉 ≥ a} and Ĥ1 = {x ∈ R

d : 〈x, v〉 ≤ a}.

Let H = (Ĥ1, . . . , Ĥk) be an arrangement of k affine hyperplanes in R
d, and

let α = (α1, . . . , αk) ∈ (Z/2)k. The orthant determined by the arrangement H
and α ∈ (Z/2)k is the intersection

OH
α = Ĥα1

1 ∩ · · · ∩ Ĥαk

k .

Let M = (µ1, . . . , µj) be a collection of finite Borel probability measures on R
d

such that the measure of each hyperplane is zero. Such measures will be called
masses. The assumptions about the measures guarantee that µi(Ĥ0

s ) depends
continuously on Ĥ0

s .
An arrangement of affine hyperplanes H = (Ĥ1, . . . , Ĥk) equiparts the collection
of masses M = (µ1, . . . , µj) if for every element α ∈ (Z/2)k and every ℓ ∈
{1, . . . , j}

µℓ(O
H
α ) = 1

2k .

2.2 The configuration spaces

The space of all oriented affine hyperplanes (or closed affine halfspaces) in R
d

can be parametrized by the sphere Sd, where the north pole ed+1 and the south
pole −ed+1 represent hyperplanes at infinity. An oriented affine hyperplane in
R
d at infinity is the set R

d or ∅, depending on the orientation. Indeed, embed
R
d into R

d+1 via the map (ξ1, . . . , ξd)
t 7−→ (1, ξ1, . . . , ξd)

t. Then an oriented
affine hyperplane Ĥ in R

d defines an oriented affine (d−1)-dimensional subspace
of Rd+1 that extends (uniquely) to an oriented linear hyperplane H in R

d+1.
The outer unit normal vector that determines the oriented linear hyperplane is
a point on the sphere Sd.
We consider the following configuration spaces that parametrize arrangements
of k oriented affine hyperplanes in R

d:
(1) The join configuration space: Xd,k := (Sd)∗k ∼= S(R(d+1)×k),
(2) The product configuration space: Yd,k := (Sd)k.

The elements of the join Xd,k can be presented as formal convex combinations
λ1v1 + · · ·+ λkvk, where λi ≥ 0,

∑
λi = 1 and vi ∈ Sd.
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2.3 The group actions

The space of all ordered k-tuples of oriented affine hyperplanes in R
d has natural

symmetries: Each hyperplane can change orientation and the hyperplanes can
be permuted. Thus, the group S±

k := (Z/2)k ⋊Sk encodes the symmetries of
both configuration spaces.
The group S±

k acts onXd,k as follows. Each copy of Z/2 acts antipodally on the
appropriate sphere Sd in the join while the symmetric group Sk acts by per-
muting factors in the join product. More precisely, for ((β1, . . . , βk)⋊ π) ∈ S±

k

and λ1v1 + · · ·+ λkvk ∈ Xd,k the action is given by

((β1, . . . , βk)⋊ τ) · (λ1v1 + · · ·+ λkvk) =

λτ−1(1)(−1)β1vτ−1(1) + · · ·+ λτ−1(k)(−1)βkvτ−1(k).

The product space Yd,k is a subspace of the join Xd,k via the diagonal em-
bedding Yd,k −→ Xd,k, (v1, . . . , vk) 7−→

1
kv1 + · · · + 1

kvk. The product Yd,k is
an invariant subspace of Xd,k with respect to the S±

k -action and consequently
inherits the S±

k -action from Xd,k. For k ≥ 2, the action of S±
k is not free on

either Xd,k or Yd,k.
The sets of points in the configuration spaces Xd,k and Yd,k that have non-
trivial stabilizer with respect to the action of S±

k can be described as follows:

X>1
d,k = {λ1v1 + · · ·+ λkvk :

λ1 · · ·λk = 0, or λs = λr and vs = ±vr for some 1 ≤ s < r ≤ k},

and
Y >1
d,k = {(v1, . . . , vk) : vs = ±vr for some 1 ≤ s < r ≤ k}.

2.4 Test spaces

Consider the vector space R
(Z/2)k , where the group element ((β1, . . . , βk)⋊τ) ∈

S±
k acts on a vector (y(α1,...,αk))(α1,...,αk)∈(Z/2)k ∈ R

(Z/2)k by acting on its
indices as

((β1, . . . , βk)⋊ τ) · (α1, . . . , αk) = (β1 + ατ−1(1), . . . , βk + ατ−1(k)). (1)

The subspace of R(Z/2)k defined by

Uk =
{
(yα)α∈(Z/2)k ∈ R

(Z/2)k :
∑

α∈(Z/2)k

yα = 0
}

is S±
k -invariant and therefore an S±

k -subrepresentation.
Next we consider the vector space R

k and its subspace

Wk =
{
(z1, . . . , zk) ∈ R

k :
k∑

i=1

zi = 0
}
.
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The group S±
k acts on R

k by permuting coordinates, i.e., for ((β1, . . . , βk)⋊τ) ∈
S±
k and (z1, . . . , zk) ∈ R

k we have

((β1, . . . , βk)⋊ τ) · (z1, . . . , zk) = (zτ−1(1), . . . , zτ−1(k)). (2)

In particular, the subgroup (Z/2)k of S±
k acts trivially on R

k. The subspace
Wk ⊂ R

k is S±
k -invariant and consequently a S±

k -subrepresentation.

2.5 Test maps

The product test map associated to the collection of j masses M = (µ1, . . . , µj)

from the configuration space Yd,k to the test space U⊕j
k is defined by

φM : Yd,k −→ U⊕j
k ,

(v1, . . . , vk) 7−→
((
µi(H

α1
v1 ∩ · · · ∩Hαk

vk
)− 1

2k

)
(α1,...,αk)∈(Z/2)k

)

i∈{1,...,j}
.

In this paper we mostly work with the join configuration space Xd,k. The corr-
esponding join test map associated to a collection of j masses M = (µ1, . . . , µj)

maps the configuration space Xd,k into the related test space Wk ⊕ U⊕j
k . It is

defined by

ψM : Xd,k −→Wk ⊕ U⊕j
k ,

λ1v1 + · · ·+ λkvk 7−→ (λ1 −
1
k , . . . , λk −

1
k )⊕ (λ1 · · ·λk) · φM(v1, . . . , vk).

Both maps φM and ψM are S±
k -equivariant with respect to the actions defined

in Sections 2.3 and 2.4. Let S(U⊕j
k ) and S(Wk ⊕U⊕j

k ) denote the unit spheres
in the vector spaces U⊕j

k and Wk ⊕ U⊕j
k , respectively. The maps φM and ψM

are called test maps since we have the following criterion, which reduces finding
an equipartition to finding zeros of the test map.

Proposition 2.1. Let d ≥ 1, k ≥ 1, and j ≥ 1 be integers.
(i) Let M be a collection of j masses on R

d, and let

φM : Yd,k −→ U⊕j
k and ψM : Xd,k −→Wk ⊕ U⊕j

k

be the S±
k -equivariant maps defined above. If 0 ∈ im φM, or 0 ∈

imψM, then there is an arrangement of k affine hyperplanes that
equiparts M.

(ii) If there is no S±
k -equivariant map of either type

Yd,k −→ S(U⊕j
k ) or Xd,k −→ S(Wk ⊕ U⊕j

k ),

then ∆(j, k) ≤ d.
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It is worth pointing out that 0 ∈ imφM if and only if 0 ∈ imψM, while the
existence of an S±

k -equivariant map Yd,k −→ S(U⊕j
k ) implies the existence of

a S±
k -equivariant map Xd,k −→ S(Wk ⊕ U⊕j

k ) but not vice versa.
The homotopy class of the restrictions of the test maps φM and ψM on the set
of points with non-trivial stabilizer (as maps avoiding the origin) is independent
of the choice of the masses M, by the following proposition.

Proposition 2.2. Let M and M′ be collections of j masses in R
d. Then

(i) 0 /∈ imφM|Y >1
d,k

and 0 /∈ imψM|X>1
d,k

,

(ii) φM|Y >1
d,k

and φM′ |Y >1
d,k

are S±
k -homotopic as maps Y >1

d,k −→ U⊕j
k \{0},

and
(iii) ψM|X>1

d,k
and ψM′ |X>1

d,k
are S±

k -homotopic as maps X>1
d,k −→ (Wk ⊕

U⊕j
k )\{0}.

Proof. (i) If (v1, . . . , vk) ∈ Y >1
d,k , then vs = ±vr for some 1 ≤ s < r ≤ k. Con-

sequently, the corresponding hyperplanes Hvi and Hvj coincide, possibly with
opposite orientations. Thus some of the orthants associated to the collection of
hyperplanes (Hv1 , . . . , Hvk) are empty. Consequently, Proposition 2.1 implies
that 0 /∈ imφM|Y >1

d,k
.

In the case where λ1v1 + · · ·+λkvk ∈ X>1
d,k the additional case λs = 0 for some

1 ≤ s ≤ k may occur. If λs = 0, then the s-th coordinate of ψ(λ1v1 + · · · +
λkvk) ∈Wk ⊕ U⊕j

k is equal to − 1
k , and hence 0 /∈ imψM|X>1

d,k
.

(ii) The equivariant homotopy between φM|Y >1
d,k

and φM′ |Y >1
d,k

is just the lin-

ear homotopy in U⊕j
k . For this the linear homotopy should not have ze-

ros, compare [3, proof of Cor. 5.4]. It suffices to prove that for each point
(v1, . . . , vk) ∈ Y >1

d,k , the points φM(v1, . . . , vk) and φM′(v1, . . . , vk) belong to
some affine subspace of the test space that is not linear.
First, observe that R

(Z/2)k , considered as a real (Z/2)k representation, is the
real regular representation of (Z/2)k and therefore it decomposes into the direct
sum of all real irreducible representations. For this we use the fact that all real
irreducible representations of (Z/2)k are 1-dimensional. The subspace Uk seen
as a real (Z/2)k subrepresentation of (Z/2)k decomposes as follows:

Uk ∼=
⊕

α∈(Z/2)k\{0}

Vα. (3)

Here Vα is the 1-dimensional real representation of (Z/2)k determined by β ·v =
−v for x ∈ Vα if and only if α · β :=

∑
αsβs = 1 ∈ Z/2, for β ∈ (Z/2)k. The

isomorphism (3) is given by the direct sum of the projections πα : Uk −→ Vα,
α ∈ (Z/2)k\{0},

(yβ)β∈(Z/2)k\{0} 7−→
∑

α·β=1

yβ −
∑

α·β=0

yβ .
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Now let vs = ±vr. Consider α ∈ (Z/2)k given by αs = 1 = αr and αℓ = 0 for
ℓ /∈ {s, r}, and the corresponding projection π⊕j

α : U⊕j
k −→ V ⊕j

α . Then

π⊕j
α ◦ φM(v1, . . . , vk) = π⊕j

α ◦ φM′(v1, . . . , vk) = (±1, . . . ,±1).

(iii) Likewise, the linear homotopy between ψM|X>1
d,k

and ψM′ |X>1
d,k

is equiv-

ariant and avoids zero. Let λ1v1 + · · · + λkvk ∈ X>1
d,k. If λ := λ1 · · ·λk 6= 0,

λs = λr and vs = ±vr, then

(π⊕j
α ◦ η ◦ ψM)(λ1v1 + · · ·+ λkvk) =

= (π⊕j
α ◦ η ◦ ψM′)(λ1v1 + · · ·+ λkvk) = (±λ, . . . ,±λ),

where η : Wk ⊕ U⊕j
k −→ U⊕j

k is the projection. Finally, in the case when
λs = 0 for some 1 ≤ s ≤ k, ψM(λ1v1 + · · ·+λkvk) and ψM′(λ1v1 + · · ·+λkvk)
after projection to the sth coordinate of the subrepresentation Wk are equal
to − 1

k .

Denote the radial projections by

ρ : U⊕j
k \{0} −→ S(U⊕j

k ) and ν : (Wk ⊕ U⊕j
k )\{0} −→ S(Wk ⊕ U⊕j

k ).

Note that ρ and ν are S±
k -equivariant maps. Now the criterion stated in

Proposition 2.1 (ii) can be strengthened as follows.

Theorem 2.3. Let d ≥ 1, k ≥ 1 and j ≥ 1 be integers, and let M be a
collection of j masses in R

d. We have the following two criteria:
(i) If there is no S±

k -equivariant map

Yd,k −→ S(U⊕j
k )

whose restriction to Y >1
d,k is S±

k -homotopic to ρ ◦ φM|Y >1
d,k

, then

∆(j, k) ≤ d.
(ii) If there is no S±

k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕j
k )

whose restriction to X>1
d,k is S±

k -homotopic to ν ◦ ψM|X>1
d,k

, then

∆(j, k) ≤ d.

2.6 Applying relative equivariant obstruction theory

In order to prove Theorems 1.4, 1.5, and 1.6 via Theorem 2.3(ii), we study the
existence of an S±

k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕j
k ), (4)

whose restriction to X>1
d,k is S±

k -homotopic to ν ◦ ψM|X>1
d,k

for some fixed col-

lection M of j masses in R
d. If we prove that such a map cannot exist, Theo-

rems 1.4, 1.5, and 1.6 follow.
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Denote by
N1 := (d+ 1)k − 1

the dimension of the sphere Xd,k = (Sd)∗k, and by

N2 := (2k − 1)j + k − 2

the dimension of the sphere S(Wk ⊕ U⊕j
k ).

If N1 ≤ N2, then

dimXd,k = N1 ≤ conn
(
S(Wk ⊕ U⊕j

k )
)
+ 1 = N2.

Consequently, all obstructions to the existence of an S±
k -equivariant map (4)

vanish and so the map exists. Here conn(·) denotes the connectivity of a space.
Therefore, we assume that N1 > N2, which is equivalent to the Ramos lower
bound d ≥ 2k−1

k j. Furthermore, the following prerequisites for applying equiv-
ariant obstruction theory are satisfied:
• The N1-sphere Xd,k can be given the structure of a relative S±

k -CW com-
plex X := (Xd,k, X

>1
d,k) with a free S±

k -action on Xd,k\X
>1
d,k: In Section 3

we construct an explicit relative S±
k -CW complex that models Xd,k.

• The sphere S(Wk ⊕ U⊕j
k ) is path connected and N2-simple, except in the

trivial case of k = j = 1 when N2 = 0. Indeed, the group π1(S(Wk⊕U
⊕j
k ))

is abelian for N2 = 1 and trivial for N2 > 1 and therefore its action on
πN2(S(Wk ⊕ U⊕j

k )) is trivial.
• The S±

k -equivariant map h : X>1
d,k −→ S(Wk ⊕U⊕j

k ) given by the composi-
tion h := ν ◦ ψM|X>1

d,k
, for a fixed collection of j masses M, serves as the

base map for extension.
Since the sphere S(Wk⊕U

⊕j
k ) is (N2−1)-connected, the map h can be extended

to a S±
k -equivariant map from the N2-skeleton X(N2) −→ S(Wk ⊕ U⊕j

k ). A
necessary criterion for the existence of the S±

k -equivariant map (4) extending
h is that the S±

k -equivariant map h = ν ◦ ψM|X>1
d,k

can be extended to a map

from the (N2 + 1)-skeleton X(N2+1) −→ S(Wk ⊕ U⊕j
k ).

Given the above hypotheses, we can apply relative equivariant obstruction the-
ory, as presented by tom Dieck [7, Sec. II.3], to decide the existence of such an
extension.
If g is an equivariant extension of h to the N2-skeleton X(N2), then the ob-
struction to extending g to the (N2 +1)-skeleton is encoded by the equivariant
cocycle

o(g) ∈ CN2+1

S
±

k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕j

k ))
)
.

The S±
k -equivariant map g : X(N2) −→ S(Wk ⊕ U⊕j

k ) extends to X(N2+1) if
and only if o(g) = 0. Furthermore, the cohomology class

[o(g)] ∈ HN2+1

S
±

k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕j

k ))
)
,
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vanishes if and only if the restriction g|X(N2−1) to the (N2 − 1)-skeleton can be
extended to the (N2 + 1)-skeleton X(N2+1). Any two extensions g and g′ of h
to the N2-skeleton are equivariantly homotopic on the (N2 − 1)-skeleton and
therefore the cohomology classes coincide: [o(g)] = [o(g′)]. Hence, it suffices
to compute the cohomology class [o(ν ◦ ψM|X(N2))] for a fixed collection of j
masses M with the property that 0 /∈ im(ψM|X(N2)).
Let f be the attaching map for an (N2 +1)-cell θ and e its corresponding basis
element in the cellular chain group CN2+1(Xd,k, X

>1
d,k). Then

o(ν ◦ ψM|X(N2))(e) = [ν ◦ ψM ◦ f |∂θ]

is the homotopy class of the map represented by the composition

∂θj
f |∂θ

//X(N2)
ν◦ψM|

X(N2)
//S(Wk ⊕ U⊕j

k ).

Since ∂θ and S(Wk⊕U
⊕j
k ) are spheres of the same dimension N2, the homotopy

class [ν ◦ψM ◦f |∂θ] is determined by the degree of the map ν ◦ψM ◦f |∂θ. Here
we assume that the S±

k -CW structure onXd,k is endowed with cell orientations,
and in addition an orientation on the sphere S(Wk ⊕U⊕j

k ) is fixed in advance.
Therefore, the degree of the map ν ◦ ψM ◦ f |∂θ is well-defined.
Let α := ψM ◦ f |∂θ. In order to compute the degree of the map ν ◦ α and con-
sequently the obstruction cocycle evaluated at e, fix the collection of measures
as follows. Let M be the collection of masses (I1, . . . , Ij) where Ir is the mass
concentrated on the segment γ((t1r, t

2
r)) of the moment curve in R

d

γ(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t,

such that
ℓ < t11 < t21 < t12 < t22 < · · · < t1j < t2j ,

for an integer ℓ, 0 ≤ ℓ ≤ d−1. The intervals (I1, . . . , Ij) determined by numbers
t1r < t2r can be chosen in such a way that 0 /∈ im(ψM|X(N2)). For every concrete
situation in Section 4 this is verified directly.
Now consider the following commutative diagram:

∂θ
f |∂θ

//

��

X(N2)
ψM|

X(N2)
//

��

Wk ⊕ U⊕j
k \{0}

��

ν
// S(Wk ⊕ U⊕j

k )

θ
f

// X(N2+1)
ψM|

X(N2+1)
// Wk ⊕ U⊕j

k

where the vertical arrows are inclusions, and the composition of the lower
horizontal maps is denoted by β := ψM|X(N2+1) ◦ f . Furthermore, let Bε(0)
be a ball with center 0 in Wk ⊕ U⊕j

k of sufficiently small radius ε > 0. Set
θ̃ := θ\β−1(Bε(0)). Since dim θ = dimWk ⊕ U⊕j

k we can assume that the set
of zeros β−1(0) ⊂ relint θ is finite, say of cardinality r ≥ 0. Again, in every
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calculation presented in Section 4 this assumption is explicitly verified. The
function β is a restriction of the test map and therefore the points in β−1(0)
correspond to arrangements of k hyperplanes H in relint θ that equipart M.
Moreover, the facts that the measures are intervals on a moment curve and
that each hyperplane of the arrangement from β−1(0) cuts the moment curve
in d distinct points imply that each zero in β−1(0) is isolated and transversal.
The boundary of θ̃ consists of the boundary ∂θ and r disjoint copies of N2-
spheres S1, . . . , Sr, one for each zero of β on θ. Consequently, the fundamental
class of ∂θ is equal to the sum of fundamental classes

∑
[Si] in HN1(θ̃;Z). Here

the fundamental class of ∂θ is determined by the cell orientation inherited from
the S±

k -CW structure on Xd,k. The fundamental classes of [Si] are determined
in such a way that the equality [∂θ] =

∑
[Si] holds. Thus

∑
(ν◦β|θ̃)∗([Si]) = (ν◦β|θ̃)∗([∂θ]) = (ν◦α)∗([∂θ]) = deg(ν◦α)·[S(Wk⊕U

⊕j
k )].

Recall, we have fixed the orientation on the sphere S(Wk ⊕ U⊕j
k ) and so the

fundamental class [S(Wk ⊕U⊕j
k )] is also completely determined. On the other

hand,

∑
(ν ◦ β|Si

)∗([Si]) =
(∑

deg(ν ◦ β|Si
)
)
· [S(Wk ⊕ U⊕j

k )].

Hence, deg(ν◦α) =
∑

deg(ν◦β|Si
) where the sum ranges over all arrangements

of k hyperplanes H in relint θ that equipart M; consult [14, Prop. IV.4.5]. In
other words,

o(ν ◦ψM|X(N2))(e) = [ν ◦ψM ◦ f |∂θ] = deg(ν ◦α) · ζ =
∑

deg(ν ◦β|Si
) · ζ, (5)

where ζ ∈ πN2(S(Wk ⊕ U⊕j
k )) ∼= Z is a generator, and the sum ranges over all

arrangements of k hyperplanes H in relint θ that equipart M.
If in addition we assume that all local degrees deg(ν ◦β|Si

) are ±1 and that the
number of arrangements of k hyperplanes H in relint θ that equipart M is odd,
then we conclude that o(ν ◦ ψM|X(N2))(e) 6= 0. It will turn out that in many
situations this information implies that the cohomology class [o(ν ◦ ψM)] is
not zero, and consequently the related S±

k -equivariant map (4) does not exist,
concluding the proof of corresponding Theorems 1.4, 1.5, and 1.6.

3 A regular cell complex model for the join configuration space

In this section, motivated by methods used in [2] and [6], we construct a regular
S±
k -CW model for the join configuration space Xd,k = (Sd)∗k ∼= S(R(d+1)×k)

such that X>1
d,k is a S±

k -CW subcomplex. Consequently, (Xd,k, X
>1
d,k) has the

structure of a relative S±
k -CW complex. For simplicity the cell complex we

construct is denoted by X := (Xd,k, X
>1
d,k) as well. The cell model is obtained

in two steps:
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(1) the vector space R
(d+1)×k is decomposed into a union of disjoint relatively

open cones (each containing the origin in its closure) on which the S±
k -

action operates linearly permuting the cones, and then
(2) the open cells of a regular S±

k -CW model are obtained as intersections of
these relatively open cones with the unit sphere S(R(d+1)×k).

The explicit relative S±
k -CW complex we construct here is an essential object

needed for the study of the existence of S±
k -equivariant maps Xd,k −→ S(Wk⊕

U⊕j
k ) via the relative equivariant obstruction theory of tom Dieck [7, Sec. II.3].

3.1 Stratifications by cones associated to an arrangement

The first step in the construction of the S±
k -CW model is an appropriate strat-

ification of the ambient space R
(d+1)×k. First we introduce the notion of the

stratification of a Euclidean space and collect some relevant properties.

Definition 3.1. Let A be an arrangement of linear subspaces in a Euclidean
space E. A stratification of E (by cones) associated to A is a finite collection
C of subsets of E that satisfies the following properties:

(i) C consists of finitely many non-empty relatively open polyhedral cones
in E.

(ii) C is a partition of E, i.e., E =
⊎
C∈C C.

(iii) The closure C of every cone C ∈ C is a union of cones in C.
(iv) Every subspace A ∈ A is a union of cones in C.
An element of the family C is called a stratum.

Example 3.2. Let E be a Euclidean space of dimension d, let L be a linear
subspace of codimension r, where 1 ≤ r ≤ d, and let A be the arrangement
{L}. Choose a flag that terminates at L, i.e., fix a sequence of linear subspaces
in E

E = L(0) ⊃ L(1) ⊃ · · · ⊃ L(r) = L, (6)

so that dimL(i) = d− i. The family C associated to the flag (6) consists of L
and of the connected components of the successive complements

L(0)\L(1), L(1)\L(2), . . . , L(r−1)\L(r).

A L(i) is a hyperplane in L(i−1), each of the complements L(i−1)\L(i) has two
connected components. This indeed yields a stratification by cones for the
arrangement A in E.

Definition 3.3. Let (A1,A2, . . . ,An) be a collection of arrangements of linear
subspaces in the Euclidean space E and let (C1, C2 . . . , Cn) be the associated
collection of stratifications of E by cones. The common refinement of the
stratifications is the family

C := {C1 ∩C2 ∩ · · · ∩Cn 6= ∅ : Ci ∈ Ci for all i}.

Documenta Mathematica 21 (2016) 735–771



Hyperplane Mass Partitions via Obstruction Theory 749

In order to verify that the common refinement of stratifications is again a
stratification, we use the following elementary lemma.

Lemma 3.4. Let A1, . . . , An be relatively open convex sets in E that have non-
empty intersection, A1∩· · ·∩An 6= ∅. Then the following relation holds for the
closures:

A1 ∩ · · · ∩ An = A1 ∩ · · · ∩ An.

Proof. The inclusion “⊆” follows directly. For the opposite inclusion take x ∈
A1 ∩ · · · ∩ An. Choose a point y ∈ A1 ∩ · · · ∩ An 6= ∅ and consider the line
segment (x, y] := {λx+(1−λ)y : 0 ≤ λ < 1}. As each Ai is relatively open, the
segment (x, y] is contained in each of the Ai and consequently it is contained
in A1 ∩ · · · ∩An. Thus we obtain a sequence in this intersection converging to
x, which implies that x ∈ A1 ∩ · · · ∩ An.

Proposition 3.5. Given stratifications by cones C1, C2 . . . , Cn associated to
linear subspace arrangements A1,A2, . . . ,An, their common refinement is a
stratification by cones associated to the subspace arrangement A := A1 ∪ · · · ∪
An.

Proof. Properties (i) and (ii) of Definition 3.1 follow immediately from the
definition of the common refinement. To verify property (iv), observe that a
subspace At ∈ At is a union of strata from Ct, say At =

⋃
s Ut,s where Ut,s ∈ Ct.

Hence, taking the union of intersections C1 ∩ · · · ∩Ut,s ∩ · · · ∩Cn for all Ci ∈ Ci
where i 6= t, and all Ut,s gives At. Property (iii) follows from Lemma 3.4.

Example 3.6. Let E be a Euclidean space of dimension d and let A =
{L1, . . . , Ls} be an arrangement of linear subspaces of E. As in Example 3.2, for
each of the subspaces Li in the arrangement A fix a flag L(s)

i and form the cor-
responding stratifications C1, . . . , Cs. The common refinement of stratifications
C1, . . . , Cs is a stratification by cones associated to the subspace arrangement A.

An arrangement of linear subspaces is essential if the intersection of the sub-
spaces in the arrangement is {0}.

Proposition 3.7. The intersection of a stratification C of E by cones associ-
ated to an essential linear subspace arrangement with the sphere S(E) gives a
regular CW-complex.

Proof. The elements C ∈ C are relative open polyhedral cones. As {0} is a
stratum by itself, none of the strata contains a line through the origin. Thus
C ∩ S(E) is an open cell, whose closure C ∩ S(E) is a finite union of cells of
the form C′ ∩ S(E), so we get a regular CW complex.

3.2 A stratification of R
(d+1)×k

Now we introduce the stratification of R
(d+1)×k that will give us a S±

k -CW
model forXd,k. One version of it, C, arises from the construction in the previous
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section. However, we also give combinatorial descriptions of relatively-open
convex cones in the stratification C′ directly, for which the action of S±

k is
evident. We then verify that C and C′ coincide.

3.2.1 Stratification

Let elements x ∈ R
(d+1)×k be written as x = (x1, . . . , xk) where xi =

(xt,i)t∈[d+1] is the i-th column of the matrix x. Consider the arrangement
A consisting of the following subspaces:

Lr := {(x1, . . . , xk) ∈ R
(d+1)×k : xr = 0}, 1 ≤ r ≤ k

L+
r,s := {(x1, . . . , xk) ∈ R

(d+1)×k : xr − xs = 0}, 1 ≤ r < s ≤ k

L−
r,s := {(x1, . . . , xk) ∈ R

(d+1)×k : xr + xs = 0}, 1 ≤ r < s ≤ k.

With each subspace we associate a flag:
(i) With Lr = {xr = 0} we associate

R
(d+1)×k ⊃ {x1,r = 0} ⊃ {x1,r = x2,r = 0} ⊃ · · · ⊃

{x1,r = x2,r = · · · = xd+1,r = 0},

(ii) With L+
r,s = {xr − xs = 0} we associate

R
(d+1)×k ⊃ {x1,r−x1,s = 0} ⊃ {x1,r−x1,s = x2,r−x2,s = 0} ⊃ · · · ⊃

{x1,r − x1,s = x2,r − x2,s = · · · = xd+1,r − xd+1,s = 0},

(iii) L−
r,s = {xr + xs = 0} we associate

R
(d+1)×k ⊃ {x1,r+x1,s = 0} ⊃ {x1,r+x1,s = x2,r+x2,s = 0} ⊃ · · · ⊃

{x1,r + x1,s = x2,r + x2,s = · · · = xd+1,r + xd+1,s = 0}.

The construction from Example 3.2 shows how every subspace in A leads to
a stratification by cones of R

(d+1)×k. The stratifications associated to the
subspaces Lr, L+

r,s, L
−
r,s are denoted by Cr, C+

r,s, C
−
r,s, respectively. Now, if we

apply Example 3.6 to this concrete situation we obtain the stratification by
cones C of R(d+1)×k associated to the subspace arrangementA. This means that
each stratum of C is a non-empty intersection of strata from the stratifications
Cr, C

+
r,s, C

−
r,s where 1 ≤ r < s ≤ k.

3.2.2 Partition

Let us fix:
• a permutation σ := (σ1, σ2, . . . , σk) ≡ (σ1σ2 . . . σk) ∈ Sk, σ : t 7→ σt,
• a collection of signs S := (s1, . . . , sk) ∈ {+1,−1}k, and
• integers I := (i1, . . . , ik) ∈ {1, . . . , d+ 2}k.
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Furthermore, define x0 to be the origin in R
(d+1)×k, σ0 = 0 and s0 = 1. Define

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) ⊆ R

(d+1)×k

to be the set of all points (x1, . . . , xk) ∈ R
(d+1)×k, xi = (x1,i, . . . , xd+1,i), such

that for each 1 ≤ t ≤ k,
• if 1 ≤ it ≤ d+1, then st−1xit,σt−1 < stxit,σt

with st−1xi′,σt−1 = stxi′,σt
for

every i′ < it,
• if it = d+ 2, then sit−1xσt−1 = sitxσt

.
Any triple (σ|I|S) ∈ Sk × {1, . . . , d + 2}k × {+1,−1}k is called a symbol. In
the notation of symbols we abbreviate signs {+1,−1} by {+,−}. The defining
set of “inequalities” for the stratum CSI (σ) is briefly denoted by:

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R
(d+1)×k : 0 <i1 s1xσ1 <i2 s2xσ2 <i3 · · · <ik skxσk

},

where y <i y′, for 1 ≤ i ≤ d + 1, means that y and y′ agree in the first i − 1
coordinates and at the i-th coordinate yi < y′i. The inequality y <d+2 y

′

denotes that y = y′. Each set CSI (σ) is the relative interior of a polyhedral
cone in (Rd+1)k of codimension (i1 − 1) + · · ·+ (ik − 1), i.e.,

dimCs1,...,ski1,...,ik
(σ1, σ2, . . . , σk) = (d+ 2)k − (i1 + · · ·+ ik).

Let C′ denote the family of strata CSI (σ) defined by all symbols, i.e.,

C′ = {CSI (σ) : (σ|I|S) ∈ Sk × {1, . . . , d+ 2}k × {+1,−1}k}.

Different symbols can define the same set, and

CSI (σ) ∩ C
S′

I′ (σ) 6= ∅ ⇐⇒ CSI (σ) = CS
′

I′ (σ).

In order to verify that the family C′ is a partition of R
(d+1)×k it remains to

prove that it is a covering.

Lemma 3.8.
⋃

C′ = R
(d+1)×k.

Proof. Let (x1, . . . , xk) ∈ R
(d+1)×k. First, choose signs r1, . . . , rk ∈ {+1,−1}

so that the vectors r1x1, . . . , rkxk are greater or equal to 0 ∈ R
(d+1)×k with

respect to the lexicographic order, i.e., the first non-zero coordinate of each of
the vectors rixi is greater than zero. The choice of signs is not unique if one
of the vectors xi is zero. Next, record a permutation σ ∈ Sk such that

0 <lex rσ1xσ1 <lex rσ2xσ2 <lex · · · <lex rσk
xσk

,

where <lex denotes the lexicographic order. The permutation σ is not unique
if rixi = rtxt for some i 6= t. Define si := rσi

. Finally, collect coordinates it
where vectors st−1xσt−1 and stxσt

first differ, or put it = d+2 if they coincide.
Thus, (x1, . . . , xk) ∈ Cs1,...,ski1,...,ik

(σ1, σ2, . . . , σk).
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Example 3.9. Let d = 0 and k = 2. Then the plane R
2 is decomposed into

the following cones. There are 8 open cones of dimension 2:

C+,+
1,1 (12) = {(x1, x2) ∈ R

2 : 0 < x1 < x2},

C−,+
1,1 (12) = {(x1, x2) ∈ R

2 : 0 < −x1 < x2},

C+,−
1,1 (12) = {(x1, x2) ∈ R

2 : 0 < x1 < −x2},

C−,−
1,1 (12) = {(x1, x2) ∈ R

2 : 0 < −x1 < −x2},

C+,+
1,1 (21) = {(x1, x2) ∈ R

2 : 0 < x2 < x1},

C−,+
1,1 (21) = {(x1, x2) ∈ R

2 : 0 < −x2 < x1},

C+,−
1,1 (21) = {(x1, x2) ∈ R

2 : 0 < x2 < −x1},

C−,−
1,1 (21) = {(x1, x2) ∈ R

2 : 0 < −x2 < −x1}.

Furthermore, there are 8 cones of dimension 1:

C+,+
1,2 (12) = C+,+

1,2 (21) = {(x1, x2) ∈ R
2 : 0 < x1 = x2},

C−,+
1,2 (12) = C+,−

1,2 (21) = {(x1, x2) ∈ R
2 : 0 < −x1 = x2},

C+,−
1,2 (12) = C−,+

1,2 (21) = {(x1, x2) ∈ R
2 : 0 < x1 = −x2},

C−,−
1,2 (12) = C−,−

1,2 (21) = {(x1, x2) ∈ R
2 : 0 < −x1 = −x2},

C+,+
2,1 (12) = C−,+

2,1 (12) = {(x1, x2) ∈ R
2 : 0 = x1 < x2},

C+,−
2,1 (12) = C−,−

2,1 (12) = {(x1, x2) ∈ R
2 : 0 = x1 < −x2},

C+,+
2,1 (21) = C−,+

2,1 (21) = {(x1, x2) ∈ R
2 : 0 = x2 < x1},

C+,−
2,1 (21) = C−,−

2,1 (21) = {(x1, x2) ∈ R
2 : 0 = x2 < −x1}.

The origin in R
2 is given by C±,±

2,2 (12) = C±,±
2,2 (21). The example illustrates a

property of our decomposition of R(d+1)×k: There is a surjection from symbals
to cones that is not a bijection, i.e., different symbols can define the same cones.

Example 3.10. Let d = 2 and k = 4. The stratum associated to the symbol
(2143 | 2, 3, 1, 4 | + 1,−1,+1,−1) can be described explicitly as follows.








x1,1 x1,2 x1,3 x1,4
x2,1 x2,2 x2,3 x2,4
x3,1 x3,2 x3,3 x3,4



 ∈ (R3)4 :

0 = x1,2 = −x1,1 < x1,4 = −x1,3
0 < x2,2 = −x2,1 x2,4 = −x2,3

x3,2 < −x3,1 x3,4 = −x3,3



 .

In particular,
C+,−,+,−

2,3,1,4 (2143) = C+,−,−,+
2,3,1,4 (2134).

3.2.3 C and C′ coincide

We proved that C is a stratification by cones of R
(d+1)×k, and that C′ is a

partition of R(d+1)×k. Since both C and C′ are partitions it suffices to prove
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x1

x2

C
+,+

1,1 (12)

C
+,+

1,1 (21)

C
−,+

1,1 (12)

C
+,−

1,1 (21)

C
−,−

1,1 (21) C
−,+

1,1 (21)

C
−,−

1,1 (12) C
+,−

1,1 (12)

Figure 1: Illustration of the stratification in Example 3.9

that for every symbol (σ|I|S) ∈ Sk × {1, . . . , d + 2}k × {+1,−1}k the cone
CSI (σ) ∈ C′ also belongs to C.
Consider the cone CSI (σ) in C′. It is determined by

CSI (σ) = Cs1,...,ski1,...,ik
(σ1, σ2, . . . , σk)

= {(x1, . . . , xk) ∈ R
(d+1)×k : 0 <i1 s1xσ1 <i2 s2xσ2 <i3 · · · <ik skxσk

}.

The defining inequalities for CSI (σ) imply that (x1, . . . , xk) ∈ CSI (σ) if and
only if
• 0 <min{i1,...,ia} saxa for 1 ≤ a ≤ k, and
• saxa <min{ia+1,...,ib} sbxb for 1 ≤ a < b ≤ k,

if and only if
• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

La
(min{i1,...,ia}−1) \ La

(min{i1,...,ia}−2)

of the stratification Ca depending on the sign sa where 1 ≤ a ≤ k, and
• (x1, . . . , xk) belongs to the appropriate one of two strata in the complement

Lsasba,b
(min{ia+1,...,ib}−1) \ Lsasba,b

(min{ia+1,...,ib}−2)

of the stratification Csasba,b depending on the sign of the product sasb where
1 ≤ a < b ≤ k. The product sasb, appearing in the “exponent notation” of
Lsasba,b , is either “+” when the product sasb = 1, or “−” when sasb = −1.

Here we use the notation of Examples 3.2 and 3.6.
Thus we have proved that CSI (σ) ∈ C and consequently C = C′.
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3.3 The S±
k -CW model for Xd,k

The action of the group S±
k on the space R

(d+1)×k induces an action on the
family of strata C by as follows:

π · CSI (σ) = CSI (πσ), (7)

εt · C
S
I (σ) = εt · C

s1,...,sk
i1,...,ik

(σ1, σ2, . . . , σk)

= Cs1,...,−st,...,ski1,...,ik
(σ1, σ2, . . . , σk), (8)

where π ∈ Sk and ε1, . . . , εk are the canonical generators of the subgroup
(Z/2)k of S±

k .
The S±

k -CW complex that models Xd,k = S(R(d+1)×k) is obtained by inter-
secting each stratum CSI (σ) with the unit sphere S(R(d+1)×k). Each stratum is
a relatively open cone that does not contain a line. Therefore the intersection

DS
I (σ) = Ds1,...,sk

i1,...,ik
(σ1, σ2, . . . , σk) := Cs1,...,ski1,...,ik

(σ1, σ2, . . . , σk) ∩ S(R
(d+1)×k)

is an open cell of dimension (d+ 2)k− (i1 + · · ·+ ik)− 1. The action of S±
k is

induced by (7) and (8):

π ·DS
I (σ) = DS

I (πσ), (9)

εt ·D
S
I (σ) = εt ·D

s1,...,sk
i1,...,ik

(σ1, σ2, . . . , σk)

= Ds1,...,−st,...,sk
i1,...,ik

(σ1, σ2, . . . , σk). (10)

Thus we have obtained a regular S±
k -CW model for Xd,k. In particular, the

action of the group S±
k on the space R

(d+1)×k induces a cellular action on the
model.

Theorem 3.11. Let d ≥ 1 and k ≥ 1 be integers, and N1 = (d+ 1)k − 1. The
family of cells

{DS
I (σ) : (σ|I|S) 6= (σ|d+ 2, . . . , d+ 2|S)}

forms a finite regular N1-dimensional S±
k -CW complex X := (Xd,k, X

>1
d,k) that

models the join configuration space Xd,k = S(R(d+1)×k). It has
• one full S±

k -orbit in maximal dimension N1, and
• k full S±

k -orbits in dimension N1 − 1.
The (cellular) S±

k -action on Xd,k is given by (9) and (10). Furthermore the
collection of cells

{DS
I (σ) : is = d+ 2 for some 1 ≤ s ≤ k}

is a S±
k -CW subcomplex and models X>1

d,k.

Example 3.12. Let d ≥ 1 and k ≥ 2 be integers with dk = (2k−1)j+ ℓ, where
0 ≤ ℓ ≤ d − 1. Consider the cell θ := D+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) of dimension
N1 − ℓ = N2 + 1 in Xd,k. It is determined by the following inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.
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For the process of determining the boundary of θ, depending on value of ℓ, we
distinguish the following cases.
(1) Let ℓ = 0. Then θ := D+,+,+,...,+

1,1,1,...,1 (1, 2, 3, . . . , k). The cells of codimension
1 in the boundary of θ are obtained by introducing one of the following
extra equalities:

x1,1 = 0 , x1,1 = x1,2 , . . . x1,k−1 = x1,k.

Each of these equalities will give two cells of dimension N2, hence in total
2k cells of codimension 1, in the boundary of θ.
(a) The equality x1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+

2,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Both cells γ1 and γ2 belong
to the linear subspace

V1 = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = 0}.

(b) The equality x1,r−1 = x1,r for 2 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r ·γ2r−1. In these cells the index 2 in the subscript
1, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells belong to the
linear subspace

Vr = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,r−1 = x1,r}.

Let eθ denote a generator in CN2+1(Xd,k, X
>1
d,k) that corresponds to the

cell θ. Furthermore let eγ1 , . . . , eγ2k denote generators in CN2(Xd,k, X
>1
d,k)

related to the cells γ1, . . . , γ2k.
The boundary of the cell θ is contained in the union of the linear subspaces
V1, . . . , Vk. Therefore we can orient the cells γ2i−1, γ2i consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Consequently,

∂eθ = (1 + (−1)dε1) · eγ1 +
k∑

i=2

(1 + (−1)dτi−1,i) · eγ2i−1 . (11)

(2) Let ℓ = 1. Then θ := D+,+,+,...,+
2,1,1,...,1 (1, 2, 3, . . . , k). Now the cells in the

boundary of θ are obtained by introducing extra equalities:

x2,1 = 0 , (0 =)x1,1 = x1,2 , . . . x1,k−1 = x1,k.
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Each of these equalities, except for the second one, will give two cells of
dimension N2, which yields 2(k − 1) cells in total, in the boundary of θ.
The equality x1,1 = x1,2 will give additional four cells in the boundary of θ.
(a) The equality x2,1 = 0 induces cells:

γ1 := D+,+,+,...,+
3,1,1,...,1 (1, 2, 3, . . . , k), γ2 := D−,+,+,...,+

3,1,1,...,1 (1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Notice that both cells γ1
and γ2 belong to the linear subspace

V1 = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = x2,1 = 0}.

(b) The equality x1,1 = x1,2 yields the cells

γ3 := D+,+,+,...,+
2,2,1,...,1 (1, 2, 3, . . . , k), γ31 := D+,−,+,...,+

2,2,1,...,1 (1, 2, 3, . . . , k),

γ32 := D+,+,+,...,+
2,2,1,...,1 (2, 1, 3, . . . , k), γ33 := D−,+,+,...,+

2,2,1,...,1 (2, 1, 3, . . . , k).

They satisfy set identities γ31 = ε2 · γ3, γ32 = τ1,2 · γ3, and γ33 =
ε1τ1,2 · γ3. All four cells belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R
(d+1)×k : 0 = x1,1 = x1,2}.

(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
2,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r · γ2r−1. In these cells the second index 2 in
the subscript 2, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells
belong to the linear subspace

Vr = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = 0, x1,r−1 = x1,r}.

Again eθ denotes a generator in CN2+1(Xd,k, X
>1
d,k) corresponding to θ.

Let eγ1 , eγ2 , eγ3 , eγ31 , eγ32 , eγ33 , eγ4 . . . , eγ2k denote generators in
CN2(Xd,k, X

>1
d,k) related to the cells γ1, γ2, γ3, γ31, γ32, γ33, . . . , γ2k.

The boundary of the cell θ, as before, is contained in the union of the
linear subspaces V1, . . . , Vk. Therefore we can orient cells consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ31 + eγ32 + eγ33) + · · ·+ (eγ2k−1
+ eγ2k).

Consequently,

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (12)

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 +
k∑

i=3

(1 + (−1)dτi−1,i) · eγ2i−1 .
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(3) Let 2 ≤ ℓ ≤ d − 1. Then θ := D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k). The cells in the

boundary of θ are now obtained by introducing following equalities:

xℓ+1,1 = 0 , (0 =)x1,1 = x1,2 , . . . x1,k−1 = x1,k.

Each of them will give two cells of dimension N2 in the boundary of θ, all
together 2k.
(a) The equality xℓ+1,1 = 0 induces cells:

γ1 := D+,+,+,...,+
ℓ+2,1,1,...,1(1, 2, 3, . . . , k), γ2 := D−,+,+,...,+

ℓ+2,1,1,...,1(1, 2, 3, . . . , k)

that are related, as sets, via γ2 = ε1 · γ1. Both cells γ1 and γ2 belong
to the linear subspace

V1 = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = · · · = xℓ+1,1 = 0}.

(b) The equality (0 =)x1,1 = x1,2 gives the cells

γ3 := D+,+,+,...,+
ℓ+1,2,1,...,1(1, 2, 3, . . . , k), γ4 := D+,−,+,...,+

ℓ+1,2,1,...,1(1, 2, 3, . . . , k)

that satisfy γ4 = ε2 · γ3. Both cells belong to the linear subspace

V2 = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = · · · = xℓ,1 = 0, x1,1 = x1,2}.

(c) The equality x1,r−1 = x1,r for 3 ≤ r ≤ k gives cells:

γ2r−1 := D+,+,+,...,+
ℓ+1,...,1,2,1,...,1(1, . . . , r − 1, r, r + 1, . . . , k),

γ2r := D+,+,+,...,+
ℓ+1,...,1,2,1,...,1(1, . . . , r, r − 1, r + 1, . . . , k)

satisfying γ2r = τr−1,r ·γ2r−1. In these cells the index 2 in the subscript
ℓ+1, . . . , 1, 2, 1, . . . , 1 appears at the position r. These cells belong to
the linear subspace

Vr = {(x1, . . . , xk) ∈ R
(d+1)×k : x1,1 = · · · = xℓ,1 = 0, x1,r−1 = x1,r}.

Again eθ denotes a generator in CN2+1(Xd,k, X
>1
d,k) that corresponds to

the cell θ. Furthermore eγ1 , . . . , eγ2k denote generators in CN2(Xd,k, X
>1
d,k)

related to the cells γ1, . . . , γ2k.
As before, the boundary of the cell θ is contained in the union of the linear
subspaces V1, . . . , Vk. Thus we can orient cells γ2i−1, γ2i consistently with
the orientation of Vi, 1 ≤ i ≤ k, that is given in such a way that

∂eθ = (eγ1 + eγ2) + (eγ3 + eγ4) + · · ·+ (eγ2k−1
+ eγ2k).

Hence,

∂eθ = (1+(−1)d−ℓε1)·eγ1+(1+(−1)dε2)·eγ3+
k∑

i=3

(1+(−1)dτi−1,i)·eγ2i−1 .

(13)
The relations (11), (12) and (13) that we have now derived will be essential in
the proofs of Theorems 1.4 and 1.5.
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3.4 The arrangements parametrized by a cell

In this section we describe all arrangements of k hyperplanes parametrized by
the cell

θ := D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k),

where 1 ≤ ℓ ≤ d − 1. This description will be one of the key ingredients in
Section 4 when the obstruction cocycle is evaluated on the cell θ.
Recall that the cell θ is defined as the intersection of the sphere S(R(d+1)×k)
and the cone given by the inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.

Consider the binomial coefficient moment curve γ̂ : R −→ R
d defined by

γ̂(t) = (t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t. (14)

After embedding R
d −→ R

d+1, (ξ1, . . . , ξd)
t 7−→ (1, ξ1, . . . , ξd)

t it corresponds
to the curve γ : R −→ R

d+1 given

γ(t) = (1, t,
(
t
2

)
,
(
t
3

)
, . . . ,

(
t
d

)
)t.

Consider the following points on the moment curve γ:

q1 := γ(0), . . . , qℓ+1 := γ(ℓ). (15)

Next, recall that each oriented affine hyperplane Ĥ in R
d (embedded in R

d+1)
determines the unique linear hyperplane H such that Ĥ = H ∩R

d, and almost
vice versa. Now, the family of arrangements parametrized by the (open) cell θ
is described as follows:

Lemma 3.13. The cell θ = D+,+,+,...,+
ℓ+1,1,1,...,1(1, 2, 3, . . . , k) parametrizes all arrange-

ments H = (H1, . . . , Hk) of k linear hyperplanes in R
d+1, where the order and

orientation are fixed appropriately such that
• Q := {q1, . . . , qℓ} ⊂ H1,
• qℓ+1 /∈ H1,
• q1 /∈ H2, . . . , q1 /∈ Hk, and
• H2, . . . , Hk have unit normal vectors with different (positive) first coordi-

nates, that is, |{〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}| = k − 1.
Here xi ∈ S(R(d+1)×k) is a unit normal vector of the hyperplane Hi, for 1 ≤
i ≤ k.

Proof. Observe that {q1, . . . , qℓ} ⊂ H1 holds if and only if 〈x1, q1〉 = 〈x1, q2〉 =
· · · = 〈x1, qℓ〉 = 0 if and only if x1,1 = x2,1 = · · · = xℓ,1 = 0: This is true
since we have the binomial moment curve, so qi = γ(i− 1) has only the first i
coordinates non-zero.
Furthermore, qℓ+1 /∈ H1 holds if and only if xℓ+1,1 6= 0; choosing an appropriate
orientation for H1 we can assume that xℓ+1,1 > 0.
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The third condition is equivalent to 0 /∈ {〈x2, q1〉, 〈x3, q1〉, . . . , 〈xk, q1〉}, that
is, x1,2, x1,3, . . . , x1,k 6= 0. Choosing orientations of H2, . . . , Hk suitably this
yields x1,2, x1,3, . . . , x1,k > 0.
Since the values x1,2 = 〈x2, q1〉, x1,3 = 〈x3, q1〉, . . . , x1,k = 〈xk, q1〉 are positive
and distinct, we get 0 < x1,2 < x1,3 < · · · < x1,k by choosing the right order
on H2, . . . , Hk.

4 Proofs

4.1 Proof of Theorem 1.3

Let d ≥ 1, j ≥ 1, ℓ ≥ 0 and k ≥ 2 be integers with the property that dk =
j(2k − 1) + ℓ for 0 ≤ ℓ ≤ d− 1.
Consider a collection of j ordered disjoint intervals M = (I1, . . . , Ij) along the
moment curve γ. Let Q = {q1, . . . , qℓ} ⊂ γ be a set of ℓ predetermined points
that lie to the left of the interval I1. We prove Theorem 1.3 in two steps.

Lemma 4.1. Let A be an ℓ-equiparting matrix, that is, a binary matrix of size
k × j2k with one row of transition count d− ℓ and all other rows of transition
count d such that A = (A1, . . . , Aj) for Gray codes A1, . . . , Aj with the property
that the last column of Ai is equal to the first column of Ai+1 for 1 ≤ i < j.
Then A determines an arrangement H of k affine hyperplanes that equipart
M = (I1, . . . , Ij) and one of the hyperplanes passes through each point in Q.

Proof. Without loss of generality we assume that the first row of the matrix A
has transition count d− ℓ while rows 2 through k have transition count d. For
a row as of the matrix A, denote by ts its transition count, 1 ≤ s ≤ k.
Place j(2k + 1) ordered points qℓ+1, . . . , qℓ+j(2k+1) on γ, such that

Ii = [qℓ+(i−1)2k+i, qℓ+i2k+i]

and each sequence of 2k+1 points divides Ii into 2k subintervals of equal length.
Ordered refers to the property that qr = γ(tr) if t1 < t2 < · · · < tj(2k+1).
We now define the hyperplanes in H by specifying which of the points they pass
through and then choosing their orientations. Force the affine hyperplane H1

to pass through all of the points in Q. For s = 1, . . . , i, the affine hyperplane
Hs passes through xℓ+r+i if there is a bit change in row as from entry r to entry
r + 1 for (i − 1)2k < r ≤ i2k. Orient Hs such that the subinterval [qr, qr+1]
is on the positive side of Hs if it corresponds to a 0-entry in as. Since each
A1, . . . , Aj is a Gray code, the arrangement H is indeed an equipartition.

Lemma 4.2. Every arrangement of k affine hyperplanes H that equiparts M =
(I1, . . . , Ij) and where one of the hyperplanes passes through each point of Q
induces a unique binary matrix A as in Lemma 4.1.

Proof. Since dk = j(2k − 1) + ℓ and 0 ≤ ℓ ≤ d − 1, the hyperplanes in H
must pass through the points qℓ+(i−1)2k+i+1, . . . , qℓ+i2k+i−1 of the intervals Ii
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for i ∈ {1, . . . , j}. Recording the position of the subintervals [qℓ+r, qℓ+r+1], for
r 6= i2k + i, with respect to each hyperplane leads to a matrix as in described
in Lemma 4.1.

q10 q11

q19

q12q9

q18

I1 I2

q1

H1

q2 q3

Figure 2: Illustration of one step in the proof of Lemma 4.1. Here H1 is an affine

hyperplane bisecting two intervals I1 and I2 on the 5-dimensional moment curve.

Thus the number of non-equivalent ℓ-equiparting matrices is the same as the
number of arrangements of k affine hyperplanes H that equipart the collection
of j disjoint intervals on the moment curve in R

d, up to renumbering and
orientation change of hyperplanes in H, when one of the hyperplanes is forced
to pass through ℓ prescribed points on the moment curve lying to the left of
the intervals. This concludes the proof of Theorem 1.3.

4.2 Proof of Theorem 1.4

Let j ≥ 1 and k ≥ 3 be integers with d = ⌈ 2k−1
k j⌉ and ℓ = dk − (2k − 1)j. In

addition, assume that the number of non-equivalent ℓ-equiparting matrices of
size k × j2k is odd.
In order to prove that ∆(j, k) ≤ d it suffices by Theorem 2.3 to prove that
there is no S±

k -equivariant map

Xd,k −→ S(Wk ⊕ U⊕j
k ),

whose restriction to X>1
d,k is S±

k -homotopic to ν ◦ψM|X>1
d,k

for M = (I1, . . . , Ij).
Following Section 2.6 we verify that the cohomology class

[o(g)] ∈ HN2+1

S
±

k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕j

k ))
)
,

does not vanish, where g = ν ◦ ψM|X(N2) .
Consider the cell θ := D+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) of dimension (d+1)k−1− ℓ =
N2 + 1 in Xd,k, as in Example 3.12. Let eθ denote the corresponding basis
element of the cell θ in the cellular chain group CN2+1(Xd,k, X

>1
d,k), and let hθ

be the attaching map of θ. This cell is cut out from the unit sphere S(R(d+1)×k)
by the following inequalities:

0 <ℓ+1 x1 <1 x2 <1 · · · <1 xk.

In particular, this means that the first ℓ coordinates of x1 are zero, i.e., x1,1 =
x2,1 = x3,1 = · · · = xℓ,1 = 0, and xℓ+1,1 > 0.
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Let us fix ℓ points Q = {q1, . . . , qℓ} on the moment curve (14) in R
d+1 as

it was done in (15): q1 := γ(0), . . . , qℓ := γ(ℓ − 1). Then, by Lemma 3.13,
the relative interior ofD+,+,+,...,+

ℓ+1,1,1,...,1(1, 2, 3, . . . , k) parametrizes the arrangements
H = (H1, . . . , Hk) for which orientations and order of the hyperplanes are fixed
with H1 containing all the points from Q. According to the formula (5) we have
that

o(g)(eθ) = [ν ◦ ψM ◦ hθ|∂θ] =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si
) · ζ,

where as before ζ ∈ πN2(S(Wk⊕U
⊕j
k )) ∼= Z is a generator, and the sum ranges

over all arrangements of k hyperplanes in relint θ that equipart M. Here, as be-
fore, Si denotes a smallN2-sphere around a root of the function ψM|X(N2+1)◦hθ,
i.e., the point that parametrizes an arrangements of k hyperplanes in relint θ
that equipart M.
Now, the local degrees of the function ν ◦ ψM|X(N2+1) ◦ hθ are ±1. Indeed, in
a small neighborhood U ⊆ relint θ around any root the test map ψM is a con-
tinuous bijection. Thus ψM|∂U is a continuous bijection into some N2-sphere
around the origin in Wk⊕U

⊕j
k and by compactness of ∂U is a homeomorphism.

Consequently,

o(g)(eθ) =
∑

deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si
) · ζ =

(∑
±1

)
· ζ = a · ζ, (16)

where the sum ranges over all arrangements of k hyperplanes in relint θ that
equipart M. According to Theorem 1.3 the number of (±1)’s in the sum (16) is
equal to the number of non-equivalent ℓ-equiparting matrices of size k×j2k. By
our assumption this number is odd and consequently a ∈ Z is an odd integer.
We obtained that

o(g)(eθ) = a · ζ, (17)

where a ∈ Z is an odd integer.

Remark 4.3. It is important to point out that the calculations and formulas
up to this point also hold for k = 2. The assumption k ≥ 3 affects the S±

k =

(Z/2)k ⋊ Sk module structure on πN2(S(Wk ⊕ U⊕j
k )) ∼= Z. For k ≥ 2 every

generator εi of the subgroup (Z/2)k acts trivially, while each transposition τi,t,
a generator of the subgroup Sk, acts as multiplication by −1 in the case k ≥ 3,
and as multiplication by (−1)j+1 in the case k = 2.

Finally, we prove that [o(g)] does not vanish and conclude the proof. This will
be achieved by proving that the cocycle o(g) is not a coboundary.
Let us assume to the contrary that o(g) is a coboundary. Thus there exists a
cochain

h ∈ CN2

S
±

k

(
Xd,k, X

>1
d,k ; πN2(S(Wk ⊕ U⊕j

k ))
)

such that o(g) = δh, where δ denotes the coboundary operator. In the case
when
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(1) ℓ = 0 the relation (11) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) +
k∑

i=2

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d) · h(eγ1) +
k∑

i=2

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for some integer b. Since a is an odd integer this is not possible, and
therefore o(g) is not a coboundary.

(2) ℓ = 1 the relation (12) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3) +
k∑

i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+1 − 1) · h(eγ3) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= (1 + (−1)d−1) · h(eγ1) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for b ∈ Z. Again we reached a contradiction, so o(g) is not a coboundary.
(3) 2 ≤ ℓ ≤ d− 1 the relation (13) implies that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−ℓε1) · h(eγ1) + (1 + (−1)dε2) · h(eγ3) +
k∑

i=3

(1 + (−1)dτi−1,i) · h(eγ2i−1)

= (1 + (−1)d−ℓ) · h(eγ1) + (1 + (−1)d) · h(eγ3) +
k∑

i=3

(1 + (−1)d+1) · h(eγ2i−1)

= 2b · ζ,

for an integer b. Since a is an odd integer this is not possible. Again, o(g)
is not a coboundary.
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4.3 Proof of Theorem 1.5

Let j ≥ 1 be an integer with d = ⌈ 3
2j⌉ and ℓ = 2d− 3j ≤ 1.

The proof of this theorem is done in the footsteps of the proof of Theorem 1.4.
In all three cases we rely on Theorem 2.3 and prove
• the non-existence of S±

2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j
2 ) whose

restriction to X>1
d,2 is S±

2 -homotopic to ν ◦ ψM|X>1
d,2

for M = (I1, . . . , Ij)

• by evaluating the obstruction cocycle o(g) for g = ν ◦ ψM|X(N2) on cells
D+,+

1,1 (1, 2) or D+,+
2,1 (1, 2), depending on ℓ being 0 or 1, using Theorem 1.3;

and then
• prove that the cocycle o(g) cannot be a coboundary, utilizing boundary

formulas from Example 3.12.

4.3.1 2-bit Gray codes

In order to evaluate the obstruction cocycle o(g) on the relevant cells in the
case k = 2 we need to understand (2 × 4)-Gray codes. These correspond to
equipartitions of an interval I on the moment curve into four equal orthants
by intersecting with two hyperplanes H1 and H2 in altogether three points
of the interval. There are two such configurations: either H1 cuts through
the midpoint of I and H2 separates both halves of I into equal pieces by two
additional intersections, or the roles of H1 and H2 are reversed. In terms of
Gray codes we can express this as follows.

Lemma 4.4. There are two different 2-bit Gray codes that start with the zero
column (or any other fixed binary vector of length 2):

(
0 1 1 0
0 0 1 1

)
and

(
0 0 1 1
0 1 1 0

)

Proof. The second column of the Gray code determines the rest of the code,
and there are only two choices for a bit flip.

This means that in the case k = 2 an ℓ-equiparting matrix A has a more
compact representation: it is determined by the first column – a binary vector
of length 2 – and j additional bits, one for each Ai, encoding whether the
first bit flip in Ai is in the first or second row. These j bits cannot be chosen
independently since there are restrictions imposed by the transition count.

Lemma 4.5. Let j ≥ 1 be an integer with d = ⌈ 3
2j⌉ and ℓ = 2d− 3j ≤ 1.

(1) If ℓ = 0, then the number of non-equivalent 0-equiparting matrices is equal
to

1
2

(
j
j
2

)
.

(2) If ℓ = 1, then the number of non-equivalent 1-equiparting matrices is equal
to (

j
j+1
2

)
.
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Proof. We count the number of non-equivalent ℓ-equiparting matrices of the
form A = (A1, . . . , Aj) where Ai is a 2-bit Gray code. A (2 × 4)-Gray code
with the first bit flip in the first row has in total two bit flips in the first row
and one bit flip in the second row.
(1) Let ℓ = 0. Then 2d = 3j and consequently j has to be even. The matrix A
must have transition count d in each row. Thus, half of the Ai’s have the first
bit flip in the first row. Consequently, 0-equiparting matrices A with a fixed
first column are in bijection with j

2 -element subsets of a set with j elements.
By inverting the bits in each row we can fix the first column of A to be the
zero vector. Additionally, we are allowed to interchange the rows. Up to this
equivalence there are 1

2

(
j
j/2

)
such matrices.

(2) Let ℓ = 1. Then 2d = 3j + 1 and so j is odd. The matrix A must have
transition count d in one row while transition count d − 1 in the remaining
row. Without loss of generality we can assume that A have transition count
d in the first row. Assume that r of the Ai’s have the first bit flip in the first
row. Consequently, j − r of the Ai’s have the first bit flip in the second row.
Now the transition count of the first row is 2r + j − r while the transition
count of the second row is r + 2(j − r). The system of equations 2r + j − r =
d, r+2(j− r) = d− 1 yields that r = j+1

2 . Therefore, up to equivalence, there
are

(
j
r

)
such matrices.

4.3.2 The case ℓ = 0 ⇔ 2d = 3j

Let θ := D+,+
1,1 (1, 2), and let eθ denote the related basis element of the cell θ in

the top cellular chain group C2d+1(Xd,2, X
>1
d,2) which, in this case, is equivari-

antly generated by θ. According to equation (16), which also holds for k = 2
as explained in Remark 4.3,

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (18)

where ζ ∈ π2d+1(S(W2 ⊕ U⊕j
2 )) ∼= Z is a generator, and the sum ranges

over all arrangements of two hyperplanes in relint θ that equipart M. Since
θ parametrizes all arrangements H = (H1, H2) where orientations and order
of hyperplanes are fixed, the sum in (18) ranges over all arrangements of two
hyperplanes that equipart M where orientation and order of hyperplanes are
fixed. Therefore, by Theorem 1.3, the number of (±1)’s in the sum of (18) is
equal to the number of non-equivalent 0-equiparting matrices of size 2 × 4j.
Now, Lemma 4.5 implies that the number of (±1)’s in the sum of (18) is 1

2

(
j
j/2

)
.

Consequently, integer a is odd if and only if 1
2

(
j
j/2

)
is odd.

Assume that the cocycle o(g) is a coboundary. Hence, there exists a cochain

h ∈ C2d
S

±

2

(
Xd,2, X

>1
d,2 ; π2d(S(W2 ⊕ U⊕j

2 ))
)

with the property that o(g) = δh. The relation (11) for k = 2 transforms into

∂eθ = (1 + (−1)dε1) · eγ1 + (1 + (−1)dτ1,2) · eγ3 .
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Thus we have that

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)dε1) · h(eγ1) + (1 + (−1)dτ1,2) · h(eγ3)

= (1 + (−1)d) · h(eγ1) + (1 + (−1)d+j+1) · h(eγ3)

= 2b · ζ.

Consequently, o(g) is not a coboundary if and only if a is odd if and only if
1
2

(
j
j/2

)
is odd. Having in mind the Kummer criterion stated below we conclude

that: A S±
2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j

2 ) whose restriction to X>1
d,2

is S±
2 -homotopic to ν ◦ ψM|X>1

d,2
does not exists if and only is o(g) is not a

coboundary if and only if a is an odd integer if and only if 1
2

(
j
j/2

)
is odd if and

only if j = 2t for t ≥ 1.

Lemma 4.6 (Kummer [12]). Let n ≥ m ≥ 0 be integers and let p be a prime.
The maximal integer k such that pk divides

(
n
m

)
is the number of carries when

m and n−m are added in base p.

Thus we have proved the case (ii) of Theorem 1.5. Moreover, since the primary
obstruction o(g) is the only obstruction, we have proved that a S±

2 -equivariant
map Xd,2 −→ S(W2 ⊕ U⊕j

2 ) whose restriction to X>1
d,2 is S±

2 -homotopic to
ν ◦ ψM|X>1

d,2
exists if and only if j, an even integer, is not a power of 2.

4.3.3 The case ℓ = 1 ⇔ 2d = 3j + 1

Let θ := D+,+
2,1 (1, 2), and again let eθ denote the related basis element of the

cell θ in the cellular chain group C2d(Xd,2, X
>1
d,2) which, in this case, is equiv-

ariantly generated by two cells D+,+
2,1 (1, 2) and D+,+

1,2 (1, 2). Again, the equation
(16) implies that

o(g)(eθ) =
(∑

±1
)
· ζ = a · ζ, (19)

where ζ ∈ π2d+1(S(W2 ⊕ U⊕j
2 )) ∼= Z is a generator, and the sum ranges over

all arrangements of k hyperplanes in relint θ that equipart M. The cell θ
parametrizes all arrangementsH = (H1, H2) whereH1 passes through the given
point on the moment curve and orientations and order of hyperplanes are fixed.
Thus, the sum in (19) ranges over all arrangements of two hyperplanes that
equipart M whereH1 passes through the given point on the moment curve with
order and orientation of hyperplanes being fixed. Therefore, by Theorem 1.3,
the number of (±1)’s in the sum of (19) is the same as the number of non-
equivalent 1-equiparting matrices of size 2 × 4j. Again, Lemma 4.5 implies
that the number of (±1)’s in the sum of (19) is

(
j

(j+1)/2

)
. The integer a is odd

if and only if
(

j
(j+1)/2

)
is odd if and only if j = 2t − 1 for t ≥ 1.

Assume that the cocycle o(g) is a coboundary. Then there exists a cochain

h ∈ C2d−1

S
±

2

(
Xd,2, X

>1
d,2 ; π2d−1(S(W2 ⊕ U⊕j

2 ))
)
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with the property that o(g) = δh. Now, the relation (12) for k = 2 transforms
into

∂eθ = (1 + (−1)d−1ε1) · eγ1 + (1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · eγ3 .

Thus, having in mind that j has to be odd, we have

a · ζ = o(g)(eθ) = δh(eθ) = h(∂eθ)

= (1 + (−1)d−1ε1) · h(eγ1) +

(1 + (−1)dε2 + (−1)dτ1,2 + (−1)d+dε1τ1,2) · h(eγ3)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d+j+1 + (−1)j+1) · h(eγ3)

= (1 + (−1)d−1) · h(eγ1) + (1 + (−1)d + (−1)d + 1) · h(eγ3)

=

{
2h(eγ1), d odd
4h(eγ3), d even.

(20)

Now, we separately consider cases depending on parity of d and value of j.

(1) Let d be odd. Recall that a is odd if and only if j = 2t − 1 for t ≥ 1.
Since d = 1

2 (3j + 1) = 3 · 2t−1 − 1 and d is odd we have that for j = 2t − 1,
with t ≥ 2, the integer a is odd and consequently o(g) is not a coboundary.
Thus a S±

2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j
2 ) whose restriction to X>1

d,2

is S±
2 -homotopic to ν ◦ ψM|X>1

d,2
does not exists. We have proved the case (ii)

of Theorem 1.5 for t ≥ 2.

(2) Let d = 2 and j = 1 = 21 − 1. Then the integer a is again odd and conse-
quently cannot be divisible by 4 implying again that o(g) is not a coboundary.
Therefore a S±

2 -equivariant map X2,2 −→ S(W2 ⊕ U2) whose restriction to
X>1

2,2 is S±
2 -homotopic to ν ◦ψM|X>1

2,2
does not exists. This concludes the proof

of the case (ii) of Theorem 1.5.

(3) Let d ≥ 4 be even. Now we determine the integer a by computing lo-
cal degrees deg(ν ◦ ψM|X(N2+1) ◦ hθ|Si

); see (16) and (19). We prove, almost
identically as in [3, Proof of Lem. 5.6], that all local degrees equal, either 1
or −1.
That local degrees of ν ◦ψM|θ are ±1 is simple to see since in a small neighbor-
hood U in relint θ around any root λu+ (1− λ)v the test map ψM|θ is a con-
tinuous bijection. Indeed, for any vector w ∈W2 ⊕U⊕j

2 , with sufficiently small
norm, there is exactly one λu′ + (1− λ)v′ ∈ U with ψM(λu′ + (1− λ)v′) = w.
Thus ψM|∂U is a continuous bijection into some 3j-sphere around the origin of
W2 ⊕ U⊕j

2 and by compactness of ∂U is a homeomorphism.
Next we compute the signs of the local degrees. First we describe a neighbor-
hood of every root of the test map ψM in relint θ. Let λu+ (1− λ)v ∈ relint θ
with ψM(λu+ (1− λ)v) = 0. Consequently λ = 1

2 . Denote the intersections of
the hyperplane Hu with the moment curve by x1, . . . , xd in the correct order
along the moment curve. Similarly, let y1, . . . , yd be the intersections of Hv

with the moment curve. In particular, x1 is the point q1 that determines the
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cell θ, see Lemma 3.13. Choose an ǫ > 0 such that ǫ-balls around x2, . . . , xd and
around y1, . . . , yd are pairwise disjoint with the property that these balls inter-
sect the moment curve only in precisely one of the intervals I1, . . . , Ij . Pairs
of hyperplanes (Hu′ , Hv′) with λu′ + (1 − λ)v′ ∈ relint θ that still intersect
the moment curve in the corresponding ǫ-balls parametrize a neighborhood
of 1

2u + 1
2v. The local neighborhood consisting of pairs of hyperplanes with

the same orientation still intersecting the moment curve in the corresponding
ǫ-balls where the parameter λ is in some neighborhood of 1

2 . For sufficiently
small ǫ > 0 the neighborhood can be naturally parametrized by the product

(12 − ǫ, 12 + ǫ)×
2d∏

i=2

(−ǫ, ǫ),

where the first factor relates to λ, the next d − 1 factors correspond to neigh-
borhoods of the x2, . . . , xd and the last d factors to ǫ-balls around y1, . . . , yd. A
natural basis of the tangent space at 1

2u+
1
2v is obtained via the push-forward

of the canonical basis of R2d as tangent space at (12 , 0, . . . , 0)
t.

Consider the subspace Z ⊆ relint θ that consists all points λu+(1−λ)v associ-
ated to the pairs of hyperplanes (Hu, Hv) such that both hyperplanes intersect
the moment curve in d points. In the space Z the local degrees only depend
on the orientations of the hyperplanes Hu and Hv, but these are fixed since
Z ⊆ relint θ. Indeed, any two neighborhoods of distinct roots of the test map
ψM can be mapped onto each other by a composition of coordinate charts since
their domains coincide. This is a smooth map of degree 1: the Jacobian at the
root is the identity map. Let 1

2u + 1
2v and 1

2u
′ + 1

2v
′ be roots in Z of the test

map ψM and let Ψ be the change of coordinate chart described above. Then
ψM and ψM ◦Ψ differ in a neighborhood of 1

2u+
1
2v just by a permutation of

coordinates. This permutation is always even by the following:

Claim. Let A and B be finite sets of the same cardinality. Then the cardinality
of the symmetric sum A △ B is even.

The orientations of the hyperplanes Hu and Hv are fixed by the condition that
1
2u + 1

2v ∈ relint θ. Thus, Hu and Hv are completely determined by the set of
intervals that Hu cuts once. Let A ⊆ {1, . . . , j} be the set of indices of intervals
I1, . . . , Ih that Hu intersects once, and let B ⊆ {1, . . . , j} be the same set for
Hv. Then Ψ is a composition of a multiple of A △ B transpositions and, hence,
an even permutation. This means that all the local degrees (±1’s) in the sum
(19) are of the same sign, and consequently a = ±

(
j

(j+1)/2

)
.

Now, since d is even the equality (20) implies that

a · ζ = 4b · ζ.

Thus, if o(g) is a coboundary a is divisible by 4. In the case j = 2t + 1
where t ≥ 2, and d = 3 · 2t−1 + 2 the Kummer criterion implies that the
binomial coefficient

(
j

(j+1)/2

)
is divisible by 2 but not by 4. Hence, o(g) is
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not a coboundary and a S±
2 -equivariant map Xd,2 −→ S(W2 ⊕ U⊕j

2 ) whose
restriction to X>1

d,2 is S±
2 -homotopic to ν ◦ ψM|X>1

d,2
does not exist.

This concludes the final instance (iii) of Theorem 1.5.

4.4 Proof of Theorem 1.6

We prove both instances of the Ramos conjecture ∆(2, 3) = 5 and ∆(4, 3) = 10
using Theorem 1.4. Thus in order to prove that
• ∆(2, 3) = 5 it suffices to show that the number of non-equivalent

1-equiparting matrices of size 3× 2 · 23 is odd, Proposition 4.8;
• ∆(4, 3) = 10 it suffices to show that the number of non-equivalent

2-equiparting matrices of size 3× 4 · 23 is also odd, Enumeration 4.9.
Consequently we turn our attention to 3-bit Gray codes. It is not hard to see
that the following lemma holds.

Lemma 4.7. Let c1 ∈ {0, 1}3 be a choice of first column.
(i) There are 18 different 3-bit Gray codes A = (c1, c2, . . . , c8) ∈ {0, 1}3×8

that start with c1. They have transition counts (3, 2, 2), (3, 3, 1), or
(4, 2, 1).

(ii) There are 3 equivalence classes of Gray codes that start with with c1. The
three classes can be distinguished by their transition counts.

Proof. (i): Starting at a given vertex of the 3-cube, there are precisely 18
Hamiltonian paths. This can be seen directly or by computer enumeration.
(ii): Follows directly from (i), as all equivalence classes have size 6: If c1 =
(0, 0, 0)t then all elements in a class are obtained by permutation of rows. For
other choices of c1, they are obtained by arbitrary permutations of rows followed
by the “correct” row bit-inversions to obtain c1 in the first column.

Proposition 4.8. There are 13 non-equivalent 1-equiparting matrices that are
of size 3× (2 · 23).

Proof. Let A = (A1, A2) be a 1-equiparting matrix. This means that both A1

and A2 are 3-bit Gray codes and the last column of A1 is equal to the first
column of A2. In addition, the transition counts cannot exceed 5 and must
sum up to 14. Having in mind that A is a 1-equiparting matrix it follows
that A must have transition counts {5, 5, 4}. Hence two of its rows must have
transition count 5 and one row must have transition count 4. In the following
a realization of transition counts is a Gray code with the prescribed transition
counts.
Since we are counting 1-equiparting matrices up to equivalence we may fix the
first column of A, and hence first column of A1, to be (0, 0, 0)t and choose for
A1 one of the matrices from each of the 3 classes of 3-bit Gray codes described
in Lemma 4.7(ii).
If A1 has transition counts (3, 2, 2), i.e., the first row has transition count 3 while
remaining rows have transition count 2, then its last column is (1, 0, 0)t. The
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next Gray code A2 in the matrix a can have transition counts (2, 3, 2), (2, 2, 3),
or (1, 3, 3), each having 2 realizations A2, each with first column (1, 0, 0)t.
If A1 has transition (3, 3, 1), then its last column is (1, 1, 0)t. The Gray code
A2 can have transition counts (2, 2, 3), having 2 realizations, or (1, 2, 4), having
1 realization, or (2, 1, 4), having 1 realization, each with first column (1, 1, 0)t.
If A1 has transition counts (4, 2, 1), then its last column is (0, 0, 1)t. The Gray
code A2 can have transition counts (1, 2, 4), having 1 realization, or (1, 3, 3),
having 2 realizations, each with first column (0, 0, 1)t.
In total we have 6 + 4 + 3 = 13 non-equivalent 1-equiparting matrices A =
(A1, A2).

Enumeration 4.9. There are 2015 non-equivalent 2-equiparting matrices that
are of size 3× 4 · 23.

Proof. Using Lemma 4.7 we enumerate non-equivalent 2-equiparting matrices
by computer. Let A = (A1, A2, A3, A4) be a 2-equiparting matrix. It must have
transition counts {10, 10, 8}. Similarly as above, A is constructed by fixing the
first column to be (0, 0, 0)t and A1 to be one representative from each of the 3
classes of Gray codes. Then all possible Gray codes for A2, A3, A4 are checked,
making sure that the last column of Ai is equal to the first column of Ai+1 and
that the transition counts of A1, . . . , A4 sum up to {10, 10, 8}. This leads to
2015 possibilities.

This concludes the proof of Theorem 1.6.

Remark 4.10. By means of a computer we were able to calculate the number
N(j, k, d) of non-equivalent ℓ-equiparting matrices for several values of j ≥ 1

and k ≥ 3, where d = ⌈ 2k−1
k j⌉ and ℓ = dk − (2k − 1)j. See Table 1.

Number N(j, k, d) of non-equiv ℓ-equiparting matrices
given j ≥ 2, and k ≥ 3.

j k ℓ d N(j, k, d)

2 3 1 5 13
3 3 0 7 60
4 3 2 10 2015
5 3 1 12 35040
6 3 0 14 185130
7 3 2 17 7572908
8 3 1 19 132909840
9 3 0 21 732952248
1 4 1 4 16
2 4 2 8 37964

Table 1: Number N(j, k, d) of non-equivalent ℓ-equiparting matrices given j ≥ 2 and

k ≥ 3, where d = ⌈ 2
k
−1

k
j⌉ and ℓ = dk − (2k − 1)j.
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