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Abstract. To a Boolean inverse monoid S we associate a universal
C*-algebra C∗

B(S) and show that it is equal to Exel’s tight C*-algebra
of S. We then show that any invariant mean on S (in the sense
of Kudryavtseva, Lawson, Lenz and Resende) gives rise to a trace
on C∗

B(S), and vice-versa, under a condition on S equivalent to the
underlying groupoid being Hausdorff. Under certain mild conditions,
the space of traces of C∗

B(S) is shown to be isomorphic to the space of
invariant means of S. We then use many known results about traces
of C*-algebras to draw conclusions about invariant means on Boolean
inverse monoids; in particular we quote a result of Blackadar to show
that any metrizable Choquet simplex arises as the space of invariant
means for some AF inverse monoid S.

2010 Mathematics Subject Classification: 20M18, 46L55, 46L05

1 Introduction

This article is the continuation of our study of the relationship between inverse
semigroups and C*-algebras. An inverse semigroup is a semigroup S for which
every element s ∈ S has a unique “inverse” s∗ in the sense that

ss∗s = s and s∗ss∗ = s∗.

An important subsemigroup of any inverse semigroup is its set of idempotents
E(S) = {e ∈ S | e2 = e} = {s∗s | s ∈ S}. Any set of partial isometries closed
under product and involution inside a C*-algebra is an inverse semigroup, and
its set of idempotents forms a commuting set of projections. Many C*-algebras
A have been profitably studied in the following way:

1Supported by the NSERC grants of Benôıt Collins, Thierry Giordano, and Vladimir
Pestov. cstar050@uottawa.ca.
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810 Charles Starling

1. identify a generating inverse semigroup S,

2. write down an abstract characterization of S,

3. show that A is universal for some class of representations of S.

We say “some class” above because typically considering all representations
(as in the construction of Paterson [Pat99]) gives us a larger C*-algebra than
we started with. For example, consider the multiplicative semigroup inside
the Cuntz algebra O2 generated by the two canonical generators s0 and s1; in
semigroup literature this is usually denoted P2 and called the polycyclic monoid
of order 2. The C*-algebra which is universal for all representations of P2 is
T2, the Toeplitz extension of O2. In an effort to arrive back at the original C*-
algebra in cases such as this, Exel defined the notion of tight representations
[Exe08], and showed that the universal C*-algebras for tight representations
of P2 is O2. See [Sta16], [Sta15], [EP16], [EP14], [EGS12], [COP15] for other
examples of this approach.
Another approach to this issue is to instead alter the inverse semigroup S.
An inverse semigroup carries with it a natural order structure, and when an
inverse semigroup S is represented in a C*-algebra A, two elements s, t ∈ S,
which did not have a lowest upper bound in S, may have one inside A. So,
from P2, Lawson and Scott [LS14, Proposition 3.32] constructed a new inverse
semigroup C2, called the Cuntz inverse monoid, by adding to P2 all possible
joins of compatible elements (s, t are compatible if s∗t, st∗ ∈ E(S)).
The Cuntz inverse monoid is an example of a Boolean inverse monoid, and the
goal of this paper is to define universal C*-algebras for such monoids and study
them. A Boolean inverse monoid is an inverse semigroup which contains joins
of all finite compatible sets of elements and whose idempotent set is a Boolean
algebra. To properly represent a Boolean inverse monoid S, one reasons, one
should insist that the join of two compatible s, t ∈ S be sent to the join of
the images of s and t. We prove in Proposition 3.3 that such a representation
is necessarily a tight representation, and so we obtain that the universal C*-
algebra of a Boolean inverse monoid (which we denote C∗

B(S)) is exactly its
tight C*-algebra, Theorem 3.5. This is the starting point of our study, as
the universal tight C*-algebra can be realized as the C*-algebra of an ample
groupoid.
The main inspiration of this paper is [KLLR16] which defines and studies in-
variant means on Boolean inverse monoids. An invariant mean is a function
µ : E(S) → [0,∞) such that µ(e∨f) = µ(e)+µ(f) when e and f are orthogonal,
and such that µ(ss∗) = µ(s∗s) for all s ∈ S. If one thinks of the idempotents
as clopen sets in the Stone space of the Boolean algebra E(S), such a function
has the flavour of an invariant measure or a trace. We make this precise in
Section 4: as long as S satisfies a condition which guarantees that the induced
groupoid is Hausdorff (which we call condition (H)), every invariant mean on
S gives rise to a trace on C∗

B(S) (Proposition 4.6) and every trace on C∗
B(S)

gives rise to an invariant mean on S (Proposition 4.7). This becomes a one-
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to-one correspondence if we assume that the associated groupoid Gtight(S) is
principal and amenable (Theorem 4.13). We also prove that, whether Gtight(S)
is principal and amenable or not, there is an affine isomorphism between the
space of invariant means on S and the space of Gtight(S)-invariant measures on
its unit space (Proposition 4.11).
In the final section, we apply our results to examples of interest. We study
the AF inverse monoids in detail – these are Boolean inverse monoids arising
from Bratteli diagrams in much the same way as AF C*-algebras. As it should
be, given a Bratteli diagram, the C*-algebra of its Boolean inverse monoid is
isomorphic to the AF algebra it determines (Theorem 5.1). From this we can
conclude, using the results of Section 4 and the seminal result of Blackadar
[Bla80], that any Choquet simplex arises as the space of invariant means for
some Boolean inverse monoid. We go on to consider two examples where there is
typically only one invariant mean, those being self-similar groups and aperiodic
tilings.

2 Preliminaries and notation

We will use the following general notation. If X is a set and U ⊂ X , let IdU
denote the map from U to U which fixes every point, and let 1U denote the
characteristic function on U , i.e. 1U : X → C defined by 1U (x) = 1 if x ∈ U
and 1U (x) = 0 if x /∈ U . If F is a finite subset of X , we write F ⊂fin X .

2.1 Inverse semigroups

An inverse semigroup is a semigroup S such that for all s ∈ S, there is a unique
element s∗ ∈ S such that

ss∗s = s, s∗ss∗ = s∗.

The element s∗ is called the inverse of s. All inverse semigroups in this paper
are assumed to be discrete and countable. For s, t ∈ S, one has (s∗)∗ = s and
(st)∗ = t∗s∗. Although not implied by the definition, we will always assume
that inverse semigroups have a 0 element, that is, an element such that

0s = s0 = 0 for all s ∈ S.

An inverse semigroup with identity is called an inverse monoid. Even though
we call s∗ the inverse of s, we need not have ss∗ = 1, although it is always true
that (ss∗)2 = ss∗ss∗ = ss∗, i.e. ss∗ (and s∗s for that matter) is an idempotent.
We denote the set of all idempotents in S by

E(S) = {e ∈ S | e2 = e}.

It is a nontrivial fact that if S is an inverse semigroup, then E(S) is closed
under multiplication and commutative. It is also clear that if e ∈ E(S), then
e∗ = e.
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Let X be a set, and let

I(X) = {f : U → V | U, V ⊂ X, f bijective}.

Then I(X) is an inverse monoid with the operation of composition on the
largest possible domain, and inverse given by function inverse; this is called the
symmetric inverse monoid on X . Every idempotent in I(X) is given by IdU
for some U ⊂ X . The function IdX is the identity for I(X), and the empty
function is the 0 element for I(X). The fundamental Wagner-Preston theorem
states that every inverse semigroup is embeddable in I(X) for some set X –
one can think of this as analogous to the Cayley theorem for groups.
Every inverse semigroup carries a natural order structure: for s, t ∈ S we say
s 6 t if and only if ts∗s = s, which is also equivalent to ss∗t = s. For elements
e, f ∈ E(S), we have e 6 f if and only if ef = e. As usual, for s, t ∈ S,
the join (or least upper bound) of s and t will be denoted s ∨ t (if it exists),
and the meet (or greatest lower bound) of s and t will be denoted s ∧ t (if
it exists). For A ⊂ S, we let A↑ = {t ∈ S | s 6 t for some s ∈ A} and
A↓ = {t ∈ S | t 6 s for some s ∈ A}.
If s, t ∈ S, then we say s and t are compatible if s∗t, st∗ ∈ E(S), and a set
F ⊂ S is called compatible if all pairs of elements of F are compatible.

Definition 2.1. An inverse semigroup S is called distributive if whenever we
have a compatible set F ⊂fin S, then

∨
s∈F s exists in S, and for all t ∈ S we

have

t

(
∨

s∈F

s

)
=
∨

s∈F

ts and

(
∨

s∈F

s

)
t =

∨

s∈F

st.

In the natural partial order, the idempotents form a meet semilattice, which
is to say that any two elements e, f ∈ E(S) have a meet, namely ef . If
C ⊂ X ⊂ E(S), we say that C is a cover of X if for all x ∈ X there exists
c ∈ C such that cx 6= 0.
In a distributive inverse semigroup each pair of idempotents has a join in ad-
dition to the meet mentioned above, but in general E(S) will not have relative
complements and so in general will not be a Boolean algebra. The case where
E(S) is a Boolean algebra is the subject of the present paper.

Definition 2.2. A Boolean inverse monoid is a distributive inverse monoid S
with the property that E(S) is a Boolean algebra, that is, for every e ∈ E(S)
there exists e⊥ ∈ E(S) such that ee⊥ = 0, e ∨ e⊥ = 1, and the operations
∨,∧,⊥ satisfy the laws of a Boolean algebra [GH09, Chapter 2].

Example 2.3. Perhaps the best way to think about the order structure and
related concepts above is by describing them on I(X), which turns out to be
a Boolean inverse monoid. Firstly, for g, h ∈ I(X), g 6 h if and only if h
extends g as a function. In I(X), two functions f and g are compatible if
they agree on the intersection of their domains and their inverses agree on
the intersection of their ranges. In such a situation, one can form the join
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f ∨ g which is the union of the two functions; this will again be an element of
I(X). Composing h ∈ I(X) with f ∨ g will be the same as hf ∨ hg. Finally,
E(I(X)) = {IdU | U ⊂ X} is a Boolean algebra (isomorphic to the Boolean
algebra of all subsets of X) with Id⊥U = IdUc .

2.2 Étale groupoids

A groupoid is a small category where every arrow is invertible. If G is a groupoid,
the set of elements γγ−1 is denoted G(0) and is called the set of units of G. The
maps r : G → G(0) and d : G → G(0) defined by r(γ) = γγ−1 and d(γ) = γ−1γ
are called the range and source maps, respectively.

The set G(2) = {(γ, η) ∈ G2 | r(η) = d(γ)} is called the set of composable
pairs. A topological groupoid is a groupoid G which is a topological space and
for which the inverse map from G to G and the product from G(2) to G are both
continuous (where in the latter, the topology on G(2) is the product topology
inherited from G2).

We say that a topological groupoid G is étale if it is locally compact, second
countable, G(0) is Hausdorff, and the maps r and d are both local homeomor-
phisms. Note that an étale groupoid need not be Hausdorff. If G is étale, then
G(0) is open, and G is Hausdorff if and only if G(0) is closed (see for example
[EP16, Proposition 3.10]).

For x ∈ G(0), let G(x) = {γ ∈ G | r(γ) = d(γ) = x} – this is a group,
and is called the isotropy group at x. A groupoid G is said to be principal
if all the isotropy groups are trivial, and a topological groupoid is said to
be essentially principal if the points with trivial isotropy groups are dense in
G(0). A topological groupoid is said to be minimal if for all x ∈ G(0), the set
OG(x) = r(d−1(x)) is dense in G(0) (the set OG(x) is called the orbit of x).

If G is an étale groupoid, an open set U ⊂ G is called a bisection if r|U and d|U
are both injective (and hence homeomorphisms). The set of all bisections is
denoted Gop and is a distributive inverse semigroup when given the operations
of setwise product and inverse. We say that an étale groupoid G is ample
if the set of compact bisections forms a basis for the topology on G. The
set of compact bisections is called the ample semigroup of G, is denoted Ga,
and is also a distributive inverse subsemigroup of Gop [LL13, Lemma 3.14].
Since G is second countable, Ga must be countable [Exe10, Corollary 4.3]. If
G(0) is compact, then the idempotent set of Ga is the set of all clopen sets
in G(0), and so Ga is a Boolean inverse monoid (see also [Ste10, Proposition
3.7] which shows that when G is Hausdorff and G(0) is only locally compact,
Ga is a Boolean inverse semigroup, i.e. a distributive inverse semigroup whose
idempotent semilattice is a generalized Boolean algebra).

To an étale groupoid G one can associate C*-algebras through the theory de-
veloped by Renault [Ren80]. Let Cc(G) denote the linear space of continuous
compactly supported functions on G. Then Cc(G) becomes a ∗-algebra with
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product and involution given by

fg(γ) =
∑

γ1γ2=γ

f(γ1)g(γ2), f∗(γ) = f(γ−1).

From this one can produce two C*-algebras C∗(G) and C∗
red(G) (called the

C*-algebra of G and the reduced C*-algebra of G, respectively) by completing
Cc(G) in certain norms, see [Ren80, Definitions 1.12 and 2.8]. There is always a
surjective ∗-homomorphism Λ : C∗(G) → C∗

red(G), and if Λ is an isomorphism
we say that G satisfies weak containment. If G is amenable [ADR00], then
G satisfies weak containment. There is an example of a case where Λ is an
isomorphism for a nonamenable groupoid [Wil15], but under some conditions on
G one has that weak containment and amenability are equivalent, see [AD16b,
Theorem B].
Recall that if B ⊂ A are both C*-algebras, then a surjective linear map E :
A → B is called a conditional expectation if E is contractive, E ◦ E = E,
and E(bac) = bE(a)c for all b, c ∈ B and a ∈ A. Let G be a Hausdorff étale
groupoid with compact unit space, and consider the map E : Cc(G) → C(G(0))
defined by

E(f) = f |G(0) . (1)

Then this map extends to a conditional expectation on both C∗(G) and C∗
red(G),

both denoted E. On C∗
red(G), E is faithful in the sense that if E(a∗a) = 0, then

a = 0.
Let G be an ample étale groupoid. Both C*-algebras contain Cc(G), and hence
if U is a compact bisection, 1U is an element of both C*-algebras. Hence we
have a map π : Ga → C∗(G) given by π(U) = 1U . This map satisfies π(UV ) =
π(U)π(V ), π(U−1), and π(0) = 0, in other words, π is a representation of the
inverse semigroup Ga [Exe10].

2.3 The tight groupoid of an inverse semigroup

Let S be an inverse semigroup. A filter in E(S) is a nonempty subset ξ ⊂ E(S)
such that

1. 0 /∈ ξ,

2. e, f ∈ ξ implies that ef ∈ ξ, and

3. e ∈ ξ, e 6 f implies f ∈ ξ.

The set of filters is denoted Ê0(S), and can be viewed as a subspace of
{0, 1}E(S). For X,Y ⊂fin E(S), let

U(X,Y ) = {ξ ∈ Ê0(S) | X ⊂ ξ, Y ∩ ξ = ∅}.

sets of this form are clopen and generate the topology on Ê0(S) as X and Y

vary over all the finite subsets of E(S). With this topology, Ê0(S) is called the
spectrum of E(S).
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A filter is called an ultrafilter if it is not properly contained in any other filter.
The set of all ultrafilters is denoted Ê∞(S). As a subspace of Ê0(S), Ê∞(S)

may not be closed. Let Êtight(S) denote the closure of Ê∞(S) in Ê0(S) – this is
called the tight spectrum of E(S). Of course, when E(S) is a Boolean algebra,

Êtight(S) = Ê∞(S) by Stone duality [GH09, Chapter 34].
An action of an inverse semigroup S on a locally compact space X is a semi-
group homomorphism α : S → I(X) such that

1. αs is continuous for all s ∈ S,

2. the domain of αs is open for each s ∈ S, and

3. the union of the domains of the αs is equal to X .

If α is an action of S on X , we write α : S y X . The above implies that
αs∗ = α−1

s , and so each αs is a homeomorphism. For each e ∈ E(S), the map
αe is the identity on some open subset Dα

e , and one easily sees that the domain
of αs is Dα

s∗s and the range of αs is Dα
ss∗ , that is

αs : D
α
s∗s → Dα

ss∗ .

There is a natural action θ of S on Êtight(S); this is referred to in [EP16] as

the standard action of S. For e ∈ E(S), let Dθ
e = {ξ ∈ Êtight(S) | e ∈ ξ} =

U({e}, ∅) ∩ Êtight(S). For each s ∈ S and ξ ∈ Dθ
s∗s, define θs(ξ) = {ses∗ | e ∈

ξ}↑ – this is a well-defined homeomorphism from Dθ
s∗s to Dθ

ss∗ , for the details,
see [Exe08].
One can associate a groupoid to an action α : S y X . Let S ×αX = {(s, x) ∈
S × X | x ∈ Dα

s∗s}, and put an equivalence relation ∼ on this set by saying
that (s, x) ∼ (t, y) if and only if x = y and there exists some e ∈ E(S) such
that se = te and x ∈ Dα

e . The set of equivalence classes is denoted

G(α) = {[s, x] | s ∈ S, x ∈ X}

and becomes a groupoid when given the operations

d([s, x]) = x, r([s, x]) = αs(x),

[s, x]−1 = [s∗, αs(x)], [t, αs(x)][s, x] = [ts, x].

This is called the groupoid of germs of α. Note that above we are making
the identification of the unit space with X , because [e, x] = [f, x] for any
e, f ∈ E(S) with x ∈ Dα

e , D
α
f . For s ∈ S and open set U ⊂ Dα

s∗s we let

Θ(s, U) = {[s, x] | x ∈ U}

and endow G(α) with the topology generated by such sets. With this topology
G(α) is an étale groupoid, sets of the above type are bisections, and if X is
totally disconnected G(α) is ample.
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Let θ : S y Êtight(S) be the standard action, and define

Gtight(S) = G(θ).

This is called the tight groupoid of S. This was defined first in [Exe08] and
studied extensively in [EP16].
Let G be an ample étale groupoid, and consider the Boolean inverse monoid Ga.
By work of Exel [Exe10] if one uses the above procedure to produce a groupoid
from Ga, one ends up with exactly G. In symbols,

Gtight(G
a) ∼= G for any ample étale groupoid G. (2)

We note this result was also obtained in [Len08, Theorem 6.11] in the case

where Êtight(S) = Ê∞(S). In particular,

Gtight(Gtight(S)
a) ∼= Gtight(S) for all inverse semigroups S.

This result can be made categorical [LL13, Theorem 3.26], and has been gen-
eralized to cases where the space of units is not even Hausdorff. This duality
between Boolean inverse semigroups and ample étale groupoids falls under the
broader program of noncommutative Stone duality, see [LL13] for more details.

3 C*-algebras of Boolean inverse monoids

In this section we describe the tight C*-algebra of a general inverse monoid,
define the C*-algebra of a Boolean inverse monoid, and show that these two
notions coincide for Boolean inverse monoids.
If S is an inverse monoid, then a representation of S in a unital C*-algebra A
is a map π : S → A such that π(0) = 0, π(s∗) = π(s)∗, and π(st) = π(s)π(t)
for all s, t ∈ S. If π is a representation, then C∗(π(E(S))) is a commutative
C*-algebra. Let

Bπ = {e ∈ C∗(π(E(S))) | e2 = e = e∗}

Then this set is a Boolean algebra with operations

e ∧ f = ef, e ∨ f = e+ f − ef, e⊥ = 1− e.

We will be interested in a subclass of representations of S. TakeX,Y ⊂fin E(S),
and define

E(S)X,Y = {e ∈ E(S) | e 6 x for all x ∈ X, ey = 0 for all y ∈ Y }

We say that a representation π : S → A with A unital is tight if for all
X,Y, Z ⊂fin E(S) where Z is a cover of E(S)X,Y , we have the equation

∨

z∈Z

π(z) =
∏

x∈X

π(x)
∏

y∈Y

(1 − π(y)). (3)
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The tight C*-algebra of S, denoted C∗
tight(S), is then the universal unital C*-

algebra generated by one element for each element of S subject to the relations
that guarantee that the standard map from S to C∗

tight(S) is tight. The above
was all defined in [Exe08] and the interested reader is directed there for the
details. It is a fact that C∗

tight(S)
∼= C∗(Gtight(S)) where the latter is the full

groupoid C*-algebra (see e.g. [Exe10, Theorem 2.4]).
If S has the additional structure of being a Boolean inverse monoid, then we
might wonder what extra properties π should have, in particular, what is the
notion of a “join” of two partial isometries in a C*-algebra?
Let A be a C*-algebra, and suppose that S is a Boolean inverse monoid of
partial isometries in A. If we have s, t ∈ S such that s∗t, st∗ ∈ E(S), then

tt∗s = tt∗ss∗s = ss∗tt∗s = s(s∗t)(s∗t)∗ = ss∗t

and if we let as,t := s+ t− ss∗t = s+ t − tt∗s, this is a partial isometry with
range ass∗,tt∗ and support as∗s,t∗t. A short calculation shows that as,t is the
least upper bound for s and t in the natural partial order, and so as,t = s ∨ t.
It is also straightforward that r(s∨ t) = rs∨ rt for all r, s, t ∈ S. This leads us
to the following definitions.

Definition 3.1. Let S be a Boolean inverse monoid. A Boolean inverse monoid
representation of S in a unital C*-algebra A is a map π : S → A such that

1. π(0) = 0,

2. π(st) = π(s)π(t) for all s, t ∈ S,

3. π(s∗) = π(s)∗ for all s ∈ S, and

4. π(s ∨ t) = π(s) + π(t)− π(ss∗t) for all compatible s, t,∈ S.

Definition 3.2. Let S be a Boolean inverse monoid. Then the universal C*-
algebra of S, denoted C∗

B(S), is defined to be the universal unital C*-algebra
generated by one element for each element of S subject to the relations which
say that the standard map of S into C∗

B(S) is a Boolean inverse monoid repre-
sentation. The map πu which takes an element s to its corresponding element
in C∗

B(S) will be called the universal Boolean inverse monoid representation of
S, and we will sometimes use the notation δs := πu(s).

The theory of tight representations was originally developed to deal with rep-
resenting inverse semigroups (in which joins may not exist) inside C*-algebras,
because in a C*-algebra two commuting projections always have a join. It
should come as no surprise then that once we are dealing with an inverse semi-
group where we can take joins, the representations which respect joins end up
being exactly the tight representations, see [DM14, Corollary 2.3]. This is what
we prove in the next proposition.

Proposition 3.3. Let S be a Boolean inverse monoid. Then a map π : S → A
is a Boolean inverse monoid representation of S if and only if π is a tight
representation.
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Proof. Suppose that π is a Boolean inverse monoid representation of S. Then
when restricted to E(S), π is a Boolean algebra homomorphism into Bπ, and
so by [Exe08, Proposition 11.9], π is a tight representation.
On the other hand, suppose that π is a tight representation, and first suppose
that e, f ∈ E(S). Then the set {e, f} is a cover for E(S){e∨f},∅, so

π(e) ∨ π(f) = π(e ∨ f).

Now let s, t ∈ S be compatible, so that s∗t = t∗s and st∗ = ts∗ are both
idempotents, and we have

s∗st∗t = s∗ts∗t = s∗t.

Since (s ∨ t)∗(s ∨ t) = s∗s ∨ t∗t, we have

π(s ∨ t) = π(s ∨ t)π(s∗s ∨ t∗t)

= π(s ∨ t)(π(s∗s) + π(t ∗ t)− π(s∗st∗t)

= π(ss∗s ∨ ts∗s) + π(st∗t ∨ tt∗t)− π(ss∗st∗t ∨ tt∗ts∗s))

= π(s ∨ st∗s) + π(ts∗t ∨ t)− π(st∗t ∨ ts∗s)

= π(s) + π(t)− π(ss∗t)

where the last line follows from the facts that st∗s 6 s, ts∗t 6 t and ts∗s =
st∗t = ss∗t = tt∗s.

We have the following consequence of the proof of the above proposition.

Corollary 3.4. Let S be a Boolean inverse monoid. Then a map π : S → A is
a Boolean inverse monoid representation of S if and only if it is a representation
and for all e, f ∈ E(S) we have π(e ∨ f) = π(e) + π(f)− π(ef).

We now have the following.

Theorem 3.5. Let S be a Boolean inverse monoid. Then

C∗
B(S)

∼= C∗
tight(S)

∼= C∗(Gtight(S)).

In what follows, we will be studying traces on C*-algebras arising from Boolean
inverse monoids. However, many of our examples will actually arise from in-
verse monoids which are not distributive, and so the Boolean inverse monoid
in question will actually be Gtight(S)

a, see (2). The map from S to Gtight(S)
a

defined by
s 7→ Θ(s,Dθ

s∗s)

may fail to be injective, and so we cannot say that a given inverse monoid
can be embedded in a Boolean inverse monoid. The obstruction arises from
the following situation: suppose S is an inverse semigroup and that we have
e, f ∈ E(S) such that e 6 f and for all 0 6= k 6 f we have ek 6= 0, in other
words, {e} is a cover for {f}↓. In such a situation, we say that e is dense in
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f2, and by (3) we must have that π(e) = π(f) (see also [Exe09] and [Exe08,
Proposition 11.11]). For most of our examples, we will be considering inverse
semigroups which have faithful tight representations, though we consider one
which does not.
We close this section by recording some consequences of Theorem 3.5. The
tight groupoid and tight C*-algebra of an inverse semigroup were extensively
studied in [EP16] and [Ste16], where they gave conditions on S which imply
that C∗

tight(S) is simple and purely infinite. We first recall some definitions
from [EP16].

Definition 3.6. Let S be an inverse semigroup, let s ∈ S and e 6 s∗s. Then
we say that

1. e is fixed by s if se = e, and

2. e is weakly fixed by s if for all 0 6= f 6 e, fsfs∗ 6= 0.

Denote by Js := {e ∈ E(S) | se = e} the set of all fixed idempotents for s ∈ S.
We note that an inverse semigroup for which Js = {0} for all s /∈ E(S) is called
E*-unitary.

Theorem 3.7. Let S be an inverse semigroup. Then

1. Gtight(S) is Hausdorff if and only if Js has a finite cover for all s ∈ S.
[EP16, Theorem 3.16]

2. If Gtight(S) is Hausdorff, then Gtight(S) is essentially principal if and only
if for every s ∈ S and every e ∈ E(S) weakly fixed by s, there exists a
finite cover for {e} by fixed idempotents. [EP16, Theorem 4.10]

3. Gtight(S) is minimal if and only if for every nonzero e, f ∈ E(S), there
exist F ⊂fin S such that {esfs∗ | s ∈ F} is a cover for {e}.[EP16,
Theorem 5.5]

We translate the above to the case where S is a Boolean inverse monoid.

Proposition 3.8. Let S be a Boolean inverse monoid. Then

1. Gtight(S) is Hausdorff if and only if for all s ∈ S, there exists an idempo-
tent es with ses = es such that if e is fixed by s, then e 6 es.

2. If Gtight(S) is Hausdorff, then Gtight(S) is essentially principal if and only
if for every s ∈ S, e weakly fixed by s implies e is fixed by s.

3. Gtight(S) is minimal if and only if for every nonzero e, f ∈ E(S), there
exist F ⊂fin S such that e 6

∨
s∈F sfs

∗.

2This is the terminology used in [Exe08, Definition 11.10] and [Exe09], though in [LS14,
Section 6.3] such an e is called essential in f .
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Proof. Statements 2 and 3 are easy consequences of taking the joins of the
finite covers mentioned. Statement 1 is central to what follows, and is proven
in Lemma 4.2.

If an étale groupoid G is Hausdorff, then C∗(G) is simple if and only if G
is essentially principal, minimal, and satisfies weak containment, see [BCFS14]
(also see [ES15] for a discussion of amenability of groupoids associated to inverse
semigroups).

4 Invariant means and traces

In this section we consider invariant means on Boolean inverse monoids, and
show that such functions always give rise to traces on the associated C*-
algebras. This definition is from [KLLR16].

Definition 4.1. Let S be a Boolean inverse monoid. A nonzero function
µ : E(S) → [0,∞) will be called an invariant mean if

1. µ(s∗s) = µ(ss∗) for all s ∈ S

2. µ(e ∨ f) = µ(e) + µ(f) for all e, f ∈ E(S) such that ef = 0.

If in addition µ(1) = 1, we call µ a normalized invariant mean. An invariant
mean µ will be called faithful if µ(e) = 0 implies e = 0. We will denote by
M(S) the affine space of all normalized invariant means on S.

We make an important assumption on the Boolean inverse monoids we consider
here. This assumption is equivalent to the groupoid Gtight(S) being Hausdorff
[EP16, Theorem 3.16].3

For every s ∈ S, the set Js = {e ∈ E(S) | se = e} admits a finite cover. (H)

The next lemma records straightforward consequences of condition (H) when
S happens to be a Boolean inverse monoid.

Lemma 4.2. Let S be Boolean inverse monoid which satisfies condition (H).
Then,

1. for each s ∈ S there is an idempotent es such that for any finite cover C
of Js,

es =
∨

c∈C

c. (4)

and Js = Jes ,

3In [Sta15], we define condition (H) for another class of semigroups, namely the right LCM
semigroups. Right LCM semigroups and inverse semigroups are related, but the intersection
of their classes is empty (because right LCM semigroups are left cancellative and we assume
that our inverse semigroups have a zero element). We note that a right LCM semigroup P

satisfies condition (H) in the sense of [Sta15] if and only if its left inverse hull Il(P ) satisfies
condition (H) in the sense of the above.
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2. es∗ = es for all s ∈ S,

3. est 6 ss∗, t∗t for all s, t ∈ S, and

4. es∗tet∗r 6 es∗r for all s, t, r ∈ S.

Proof. To show the first statement, we need to show that any two covers give
the same join. If Js = {0}, there is nothing to do. So suppose that 0 6= e ∈ Js,
suppose that C is a cover for Js, and let eC =

∨
c∈C c. Indeed, the element

ee⊥C must be in Js, and since it is orthogonal to all elements of C and C is a
cover, ee⊥C must be 0. Hence we have

e = eeC ∨ ee⊥C = eeC

and so e 6 eC . Now if K is another cover for Js with join eK and k ∈ K, we
must have that k 6 eC , and so eK 6 eC . Since the argument is symmetric, we
have proven the first statement.
To prove the second statement, if e ∈ Js then we have

ses∗ = es∗ = (se)∗ = e

and so

s∗e = s∗(ses∗) = es∗ss∗ = es∗ = (se)∗ = e

and again by symmetry we have Js = Js∗ and so es = es∗ .
To prove the third statement, we notice

ss∗est = ss∗stest = stest = est

estt
∗t = stestt

∗t = stt∗test = stest = est.

For the fourth statement, we calculate (using 2)

es∗tet∗r = s∗tes∗tet∗r = s∗tt∗res∗tet∗r

= s∗tt∗rr∗tes∗tet∗r = s∗rr∗tes∗tet∗r

= s∗res∗tet∗r

hence es∗tet∗r 6 s∗r and so es∗tet∗r 6 es∗r.

In what will be a crucial step to obtaining a trace from an invariant mean, we
now obtain a relationship between est and ets.

Lemma 4.3. Let S be Boolean inverse monoid which satisfies condition (H).
Then for all s, t ∈ S, we have that s∗ests = ets.

Proof. Suppose that e ∈ Jts. Then tse = e, and so

(st)ses∗ = ses∗
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hence ses∗ ∈ Jst. If C is a cover of Jst and f ∈ Jts, there must exist c ∈ C
such that c(sfs∗) 6= 0. Hence

css∗sfs∗ 6= 0

ss∗csfs∗ 6= 0

s∗csf 6= 0

and so we see that s∗Cs is a cover for Jts. By Lemma 4.2,

ets =
∨

c∈C

s∗cs = s∗

(
∨

c∈C

c

)
s = s∗ests.

Lemma 4.3 and Lemma 4.2.3 imply that for all s, t ∈ S and all µ ∈ M(S), we
have µ(est) = µ(ets).

Remark 4.4. We are thankful to Ganna Kudryavtseva for pointing out to us
that the proofs Lemmas 4.2 and 4.3 can be simplified by using the fact from
[KL14, Theorem 8.20] that a Boolean inverse monoid S satisfies condition (H)
if and only if every pair of elements in S has a meet (see also [Ste10, Proposition
3.7] for another wording of this fact). From this, one can see that for all s ∈ S
we have

es = s ∧ (s∗s) = s ∧ (ss∗).

Definition 4.5. Let A be a C*-algebra. A bounded linear functional τ : A→
C is called a trace if

1. τ(a∗a) ≥ 0 for all a ∈ A,

2. τ(ab) = τ(ba) for all a, b ∈ A.

A trace τ is said to be faithful if τ(a∗a) > 0 for all a 6= 0. A trace τ on a unital
C*-algebra is called a tracial state if τ(1) = 1. The set of all tracial states of a
C*-algebra A is denoted T (A).

We are now able to define a trace on C∗
B(S) for each µ ∈M(S).

Proposition 4.6. Let S be Boolean inverse monoid which satisfies condition
(H), and let µ ∈M(S). Then there is a trace τµ on C∗

B(S) such that

τµ(δs) = µ(es) for all s ∈ S.

If µ is faithful, then the restriction of τµ to C∗
red(Gtight(S)) is a faithful trace.

Proof. We define τµ to be as above on the generators δs of C∗
B(S), and extend

it to B :=span{δs | s ∈ S}, a dense ∗-subalgebra of C∗
B(S).

Documenta Mathematica 21 (2016) 809–840



C*-Algebras of Boolean Inverse Monoids 823

We first show that τµ(δsδt) = τµ(δtδs). Indeed, by Lemmas 4.2 and 4.3, we
have

τµ(δsδt) = µ(est) = µ(estss
∗) = µ(estss

∗est) = µ((ests)(ests)
∗)

= µ((ests)
∗(ests)) = µ(s∗ests) = µ(ets) = τµ(δtδs).

Since τµ is extended linearly to B, we have that τµ(ab) = τµ(ba) for all a, b ∈ B.
Let F be a finite index set and take x =

∑
i∈F aiδsi in B. We will show that

τµ(x
∗x) ≥ 0. For i, j ∈ F , we let eij = es∗

i
sj and note that eij = eji. We

calculate:

x∗x =

(
∑

s∈S

aiδs∗i

)
∑

j∈F

ajδsj




=
∑

i,j∈F

aiajδs∗i sj

τµ(x
∗x) =

∑

i,j∈F

aiajµ(eij)

=
∑

i∈F

|ai|
2µ(eii) +

∑

i,j∈F,i6=j

(aiaj + ajai)µ(eij).

We will show that this sum is positive by using an orthogonal decomposition
of the eij . Let F 2

6= = {{i, j} ⊂ F | i 6= j}, and let D(F 2
6=) = {(A,B) | A ∪ B =

F 2
6=, A ∩B = ∅}. For a = {i, j} ∈ F 2

6=, let ea = eij . We have

eij = eij
∨

(A,B)∈D(F 2
6=)


 ∏

a∈A,b∈B

eae
⊥
b




where the join is an orthogonal join. Of course, the above is only nonzero when
{i, j} ∈ A. We also notice that

eii >
∨

(A,B)∈D(F 2
6=)

i∈∪A


 ∏

a∈A,b∈B

eae
⊥
b




and so τµ(x
∗x) is larger than a linear combination of terms of the form

µ
(∏

a∈A,b∈B eae
⊥
b

)
for partitions (A,B) of F 2

6=: specifically, τµ(x
∗x) is greater

than or equal to

∑

(A,B)∈D(F 2
6=)





∑

i∈∪A

|ai|
2 +

∑

a={j,k}∈A

(aiaj + ajai)


µ




∏

a∈A,b∈B

eae
⊥
b




 (5)
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If a term
∏

a∈A,b∈B eae
⊥
b is not zero, then we claim that the relation

i ∼ j if and only if i = j or {i, j} ∈ A

is an equivalence relation on ∪A. Indeed, suppose that i, j, k ∈ ∪A are all
pairwise nonequal and {i, j}, {j, k} ∈ A. By Lemma 4.2.4, eijejk 6 eik and
since the product is nonzero, we must have that {i, k} ∈ A. Writing [∪A] for
the set of equivalence classes, we have

∑

i∈∪A

|ai|
2 +

∑

a={j,k}∈A

(aiaj + ajai) =
∑

C∈[∪A]



∑

i∈C

|ai|
2 +

∑

i,j∈C
i6=j

(aiaj + ajai)




=
∑

C∈[∪A]

∣∣∣∣∣
∑

i∈C

ai

∣∣∣∣∣

2

.

Hence, τµ(x
∗x) ≥ 0, and τµ is positive on B. Hence, τµ extends to a trace on

C∗
B(S).

The above calculation shows that if µ is faithful, then τµ is faithful on B. A
short calculation shows that E(δs) = δes , where E is as in (1). Furthermore,
it is clear that on B we have that τµ = τµ ◦ E, and so we will show that τµ
is faithful on C∗

red(Gtight(S)) if we show that τµ(a) > 0 for all nonzero positive

a ∈ C(Êtight(S)). If a ∈ C(Êtight(S)) is positive, then it is bounded above zero
on some clopen set given by De for some e ∈ E(S). Hence, τµ(a) ≥ τµ(δe) =
µ(e) which must be strictly positive because µ is faithful.

We now show that given a trace on C∗
B(S) we can construct an invariant mean

on S.

Proposition 4.7. Let S be Boolean inverse monoid, let πu : S → C∗
B(S) be

the universal Boolean monoid representation of S, and take τ ∈ T (C∗
B(S)).

Then the map µτ : E(S) → [0,∞) defined by

µτ (e) = τ(πu(e)) = τ(δe)

is a normalized invariant mean on S. If τ is faithful then so is µτ .

Proof. That µτ takes positive values follows from τ being positive. We have

µτ (s
∗s) = τ(πu(s

∗s)) = τ(πu(s
∗)πu(s))

= τ(πu(s)πu(s
∗)) = τ(πu(ss

∗))

= µτ (ss
∗).

Also, if e, f ∈ E(S) with ef = 0, then

µτ (e ∨ f) = τ(πu(e ∨ f)) = τ(πu(e) + πu(f))

= τ(πu(e)) + τ(πu(f))

= µτ (e) + µτ (f).
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If τ is faithful and e 6= 0, τ(δe) > 0 because δe is positive and nonzero, and so
µτ is faithful.

Proposition 4.8. Let S be Boolean inverse monoid which satisfies condition
(H). Then the map

µ 7→ τµ 7→ µτµ

is the identity on M(S).

Proof. This is immediate, since if µ ∈M(S) and e ∈ E(S) we have

µτµ(e) = τµ(πu(e)) = τµ(δe) = µ(e).

Given the above, one might wonder under which circumstances we have that
T (C∗

B(S))
∼=M(S). This is not true in the general situation – take for example

S to be the group Z2 = {1,−1} with a zero element adjoined – this is a Boolean
inverse monoid. HereM(S) consists of one element, namely the function which
takes the value 1 on 1 and the value 0 on the zero element. The C*-algebra of
S is the group C*-algebra of Z2, which is isomorphic to C2, a C*-algebra with
many traces (taking the dot product of an element of C2 with any nonnegative
vector whose entries add to 1 determines a normalized trace on C2).
One can still obtain this isomorphism using the following.

Definition 4.9. Let G be an étale groupoid. A regular Borel probability
measure ν on G(0) is called G-invariant if for every bisection U one has that
ν(r(U)) = ν(d(U)). The affine space of all regular G-invariant Borel probability
measures is denoted IM(G).

The following is a special case of [KR06, Proposition 3.2].

Theorem 4.10. (cf [KR06, Proposition 3.2]) Let G be a Hausdorff principal
étale groupoid with compact unit space. Then

T (C∗
red(G))

∼= IM(G)

For τ ∈ T (C∗
red(G)) the image of τ under the above isomorphism is the regular

Borel probability measure ν whose existence is guaranteed by the Riesz repre-
sentation theorem applied to the positive linear functional on C(G(0)) given by
restricting τ .

For a proof of Theorem 4.10 in the above form, see [Put, Theorem 3.4.5].
For us, the groupoid Gtight(S) satisfies all of the conditions in Theorem 4.10,
except possibly for being principal. Also note that in the general case,
C∗

red(Gtight) may not be isomorphic to C∗
B(S). So if we restrict our attention

to Boolean inverse monoids which have principal tight groupoids and for which
C∗

red(Gtight(S)) ∼= C∗
B(S) (that is to say, Boolean inverse monoids for which

Gtight(S) satisfies weak containment), we can obtain the desired isomorphism.
While this may seem like a restrictive set of assumptions, they are all satisfied
for the examples we consider here.
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Proposition 4.11. Let S be Boolean inverse monoid which satisfies condition
(H), and suppose ν ∈ IM(Gtight(S)). Then the map ην : E(S) → [0,∞) defined
by

ην(e) = ν(Dθ
e)

is a normalized invariant mean on S. The map that sends ν 7→ ην is an affine
isomorphism of IM(Gtight(S)) and M(S).

Proof. That ην(s
∗s) = ην(ss

∗) follows from invariance of ν applied to the
bisection Θ(s,Ds∗s), and that ην is additive over orthogonal joins follows from
the fact that ν is a measure. This map is clearly affine. Suppose that ην = ηκ
for ν, κ ∈ IM(Gtight(S)). Then ν, κ agree on all sets of the form Dθ

e , and since

these sets generate the topology on Êtight(S), ν and κ agree on all open sets.
Since they are regular Borel probability measures they must be equal, and so
ν 7→ ην is injective.
To get surjectivity, let µ be an invariant mean, and let τµ be as in Proposition

4.6. Then restricting τµ to C(Êtight(S)) and invoking the Riesz representation

theorem gives us a regular invariant probability measure ν on Êtight(S), and
we must have ην = µ.

Corollary 4.12. Let G be an ample Hausdorff groupoid. Then IM(G) ∼=
M(Ga).

So the invariant means on the ample semigroup of an ample Hausdorff groupoid
are in one-to-one correspondence with the G-invariant measures.

Theorem 4.13. Let S be Boolean inverse monoid which satisfies condition (H).
Suppose that Gtight(S) is principal, and that C∗

red(Gtight(S)) ∼= C∗
B(S). Then

T (C∗
B(S))

∼=M(S)

via the map which sends τ to µτ as in Proposition 4.7. In addition, both are
isomorphic to IM(Gtight(S)).

Proof. This follows from Theorem 4.10 and Proposition 4.11.

There are many results in the literature concerning traces which now apply to
our situation.

Corollary 4.14. Let S be Boolean inverse monoid which satisfies condition
(H). If S admits a faithful invariant mean, then C∗

red(Gtight(S)) is stably finite.
If in addition Gtight(S) satisfies weak containment, C∗

B(S) is stably finite.

Proof. If µ is a faithful invariant mean, then after normalizing one obtains a
faithful trace on C∗

red(Gtight(S)) by Proposition 4.6. Now the result is standard,
see for example [LLR00, Exercise 5.2].

Corollary 4.15. Let S be Boolean inverse monoid which satisfies condition
(H). If C∗

B(S) is stably finite and exact, then S has an invariant mean.
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Proof. This is a consequence of the celebrated result of Haagerup [Haa91] when
applied to Proposition 4.7

For the undefined terms above, we direct the interested reader to [BO08]. We
also note that exactness of C∗

B(S) has recently been considered in [Li16] and
[AD16a].

5 Examples

5.1 AF inverse monoids

This is a class of Boolean inverse monoids introduced in [LS14] motivated by
the construction of AF C*-algebras from Bratteli diagrams.
A Bratteli diagram is an infinite directed graph B = (V,E, r, s) such that

1. V can be written as a disjoint union of finite sets V = ∪n≥0Vn

2. V0 consists of one element v0, called the root,

3. for all edges e ∈ E, s(e) ∈ Vi implies that r(e) ∈ Vi+1 for all i ≥ 0, and

4. for all i ≥ 1 and all v ∈ Vi, both r−1(v) and s−1(v) are finite and
nonempty.

We also denote s−1(Vi) := Ei, so that E = ∪n≥0En. Let E∗ be the set of all
finite paths in B, including the vertices (treated as paths of length zero). For
v, w ∈ V ∪ E, let vE∗ denote all the paths starting with v, let E∗w be all the
paths ending with w, and let vE∗w be all the paths starting with v and ending
with w.
Given a Bratteli diagram B = (V,E, r, s) we construct a C*-algebra as follows.
We let

A0 = C

A1 =
⊕

v∈V1

M|r−1(v)|,

and define k1(v) = |r−1(v)| for all v ∈ V1. For an integer i > 1 and v ∈ Vi, let

ki(v) =
∑

γ∈r−1(v)

ki−1(s(γ)). (6)

Define
Ai =

⊕

v∈Vi

Mki(v)

Now for all i ≥ 0, one can embed Ai →֒ Ai+1 by viewing, for each v ∈ Vi+1

⊕

γ∈r−1(v)

Mki(s(γ)) ⊂ Mki+1(v)
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where the algebras in the direct sum are orthogonal summands along the di-
agonal in Mki+1(v). So A0 →֒ A1 →֒ A1 →֒ · · · can be viewed as an increasing
union of finite dimensional C*-algebra, all of which can be realized as subal-
gebras of B(H) for the same H, and so we can form the norm closure of the
union

AB :=
⋃

n≥0

An.

This C*-algebra is what is known as an AF algebra, and every unital AF algebra
arises this way from some Bratteli diagram.
The AF algebra AB can always be described as the C*-algebra of a principal
groupoid derived from B, see [Ren80] and [ER06]. We reproduce this construc-
tion here. Let XB denote the set of all infinite paths in B which start at the
root. When given the product topology from the discrete topologies on the
En, this is a compact Hausdorff totally disconnected space. For α ∈ v0E

∗, we
let C(α) = {x ∈ XB | xi = αi for all i = 0, . . . , |α| − 1}. Sets of this form are
clopen and form a basis for the topology on XB. For n ∈ N, let

R
(n)
B = {(x, y) ∈ X ×X | xi = yi for all i ≥ n+ 1}

so a pair of infinite paths (x, y) is in R
(n)
B if and only if x and y agree after the

vertices on level n. Clearly, R
(n)
B ⊂ R

(n+1)
B , and so we can form their union

RB =
⋃

n∈N

R
(n)
B .

This is an equivalence relation, known as tail equivalence on XB. For v ∈
V \ {v0} and α, β ∈ v0E

∗v, define

C(α, β) = {(x, y) ∈ RB | x ∈ C(α), y ∈ C(β)}

sets of this type form a basis for a topology on RB , and with this topology RB

is a principal Hausdorff étale groupoid with unit space identified with XB, and

C∗(RB) ∼= C∗
red(RB) ∼= AB.

In [LS14], a Boolean inverse monoid is constructed from a Bratteli diagram,
mirroring the above construction. We will present this Boolean inverse monoid
in a slightly different way which may be enlightening. Let B = (V,E, r, s) be
a Bratteli diagram. Let S0 be the Boolean inverse monoid (in fact, Boolean
algebra) {0, 1}. For each i ≥ 1, let

Si =
⊕

v∈Vi

I(v0E
∗v)

where as in Section 2.1, I(X) denotes the set of partially defined bijections on
X .
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If v ∈ Vi+1 and γ ∈ r−1(v) then one can view I(v0E∗γ) as a subset of I(v0E∗v),
and if η ∈ r−1(v) with γ 6= η, I(v0E∗γ) and I(v0E∗η) are orthogonal. Fur-
thermore, I(v0E∗γ) can be identified with I(v0E∗s(γ)) Hence the direct sum
over r−1(v) can be embedded into I(v0E∗v):

⊕

γ∈r−1(v)

I(v0E
∗s(γ)) →֒ I(v0E

∗v). (7)

This allows us to embed Si →֒ Si+1

⊕

v∈Vi

I(v0E
∗v) →֒

⊕

w∈Vi+1

I(v0E
∗w)

where an element φ in a summand I(v0E∗v) gets sent to |s−1(v)| summands
on the right, one for each γ ∈ s−1(v): φ will be sent to the summand inside
I(v0E∗s(γ)) corresponding to v in left hand side of the embedding from (7).
We then define

I(B) = lim
→

(Si →֒ Si+1)

This is a Boolean inverse monoid [LS14, Lemma 3.13]. As a set I(B) is the
union of all the Si, viewed as an increasing union via the identifications above.
In [LS14, Remark 6.5], it is stated that the groupoid one obtains from I(B)
(i.e., Gtight(I(B))) is exactly tail equivalence. We provide the details of that
informal discussion here.
We will describe the ultrafilters in E(I(B)), a Boolean algebra. For v ∈ Vi and
a path α ∈ v0E

∗v, let eα = Id{α} ∈ I(v0E∗v). As v ranges over all of Vi and α
ranges over all of v0E

∗v, these idempotents form a orthogonal decomposition
of the identity of I(B). Hence, given an ultrafilter ξ and i > 0 there exists

one and only one path, say α
(i)
ξ ending at level i with e

α
(i)
ξ

∈ ξ. Furthermore,

if j > i, we must have that α
(i)
ξ is a prefix of α

(j)
ξ , because products in an

ultrafilter cannot be zero. So for x ∈ XB, if we define

ξx = {eα | α is a prefix of x}

then we have that
Ê∞(I(B)) = {ξx | x ∈ XB}

By [EP16, Proposition 2.6], the set

{U({eα}, ∅) | α is a prefix of x}

is a neighbourhood basis for ξx. The map λ : XB → Ê∞(I(B)) given by λ(x) =
ξx is a bijection, and since U({eα}, ∅) = λ(C(α)), it is a homeomorphism. If
φ ∈ Si such that φ∗φ ∈ ξx, then we must have that one component of φ is in
I(v0E∗r(xi)), and we must have that

θφ(ξx) = ξφ(x0x1...xi)xi+1xi+2... (8)
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Finally, we claim that RB is isomorphic to Gtight(I(B)). We define a map

Φ : Gtight(I(B)) → RB

Φ([φ, ξx]) 7→ (φ(x0x1 . . . xi)xi+1xi+2 . . . , x)

where φ and x are as in (8). If Φ([φ, ξx]) = Φ([ψ, ξy ]), then clearly we must
have ξx = ξy . We must also have that φ, ψ ∈ Si, and φex0x1...xi

= ψex0x1...xi
,

hence [φ, ξx] = [ψ, ξy]. It is straightforward to verify that Φ is surjective and
bicontinuous, and so RB

∼= Gtight(I(B)). Since they are both étale, their C*-
algebras must be isomorphic. Hence with the above discussion, we have proven
the following.

Theorem 5.1. Let B be a Bratteli diagram. Then

C∗
B(I(B)) ∼= AB.

Furthermore, every unital AF algebra is isomorphic to the universal C*-algebra
of a Boolean inverse monoid of the form I(B) for some B.

Recall that a compact convex metrizable subset X of a locally convex space is
a Choquet simplex if and only if for each x ∈ X there exists a unique measure ν
concentrated on the extreme points of X for which x is the center of gravity of
X for ν [Phe01]. Now we can use the following seminal result of Blackadar to
make a statement about the set of normalized invariant means for AF inverse
monoids.

Theorem 5.2. (Blackadar, see [Bla80, Theorem 3.10]) Let ∆ be any metriz-
able Choquet simplex. Then there exists a unital simple AF algebra A such
that T (A) is affinely isomorphic to ∆.

Corollary 5.3. Let ∆ be any metrizable Choquet simplex. Then there exists
an AF inverse monoid S such that M(S) is affinely isomorphic to ∆.

Proof. This result follows from Theorem 4.13 because Gtight(S) is Hausdorff,
amenable, and principal for every AF inverse monoid S.

5.2 The 3× 3 matrices

This example is a subexample of the previous example, but it will illustrate
how we approach the following two examples.
Let I3 denote the symmetric inverse monoid on the three element set {1, 2, 3}.
This is a Boolean inverse monoid which satisfies condition (H), and we define
a map π : I3 → M3 by saying that

π(φ)ij =

{
1 if φ(j) = i

0 otherwise.
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Then it is straightforward to verify that π is in fact the universal Boolean
inverse monoid representation of I3.
Now instead consider the subset R3 ⊂ I3 consisting of the identity, the empty
function, and all functions with domain consisting of one element. Then R3

is an inverse monoid, and π(R3) is the set of all matrix units together with
the identity matrix and zero matrix. When restricted to R3, π is the universal
tight representation of R3. Hence C

∗
tight(R3) ∼= C∗

B(I3)
∼= M3.

There is only one invariant mean µ on I3 – for an idempotent IdU ∈ I3, we
have µ(IdU ) = 1

3 |U |. The tight groupoid of R3 is the equivalence relation
{1, 2, 3} × {1, 2, 3}, which is principal – we also have that Gtight(R3)

a ∼= I3.
The unique invariant mean on I3 is identified with the unique normalized trace
on M3.
Our last two examples follow this mold, where we have an inverse monoid S
which generates a C*-algebra C∗

tight(S), and we relate the traces of C∗
tight(S)

to the invariant means of Gtight(S)
a.

5.3 Self-similar groups

Let X be a finite set, let G be a group, and let X∗ denote the set of all words
in elements of X , including an empty word ∅. Let Xω denote the Cantor
set of one-sided infinite words in X , with the product topology of the discrete
topology on X . For α ∈ X∗, let C(α) = {αx | x ∈ Xω} – sets of this type are
called cylinder sets and form a clopen basis for the topology on X .
Suppose that we have a faithful length-preserving action of G on X∗, with
(g, α) 7→ g · α, such that for all g ∈ G, x ∈ X there exists a unique element of
G, denoted g|x, such that for all α ∈ X∗

g(xα) = (g · x)(g|x · α).

In this case, the pair (G,X) is called a self-similar group. The map G×X → G,
(g, x) 7→ g|x is called the restriction and extends to G×X∗ via the formula

g|α1···αn
= g|α1

|α2
· · · |αn

and this restriction has the property that for α, β ∈ X∗, we have

g(αβ) = (g · α)(g|α · β).

The action of G on X∗ extends to an action of G on Xω given by

g · (x1x2x3 . . . ) = (g · x1)(g|x1
· x2)(g|x1x2

· x3) · · ·

In [Nek09], Nekrashevych associates a C*-algebra to (G,X), denoted OG,X ,
which is the universal C*-algebra generated by a set of isometries {sx}x∈X and
a unitary representation {ug}g∈G satisfying

(i) s∗xsy = 0 if x 6= y,
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(ii)
∑

x∈X sxs
∗
x = 1,

(iii) ugsx = sg·xu g|x
.

One can also express OG,X as the tight C*-algebra of an inverse semigroup.
Let

SG,X = {(α, g, β) | α, β ∈ X∗, g ∈ G} ∪ {0}.

This set becomes an inverse semigroup when given the operation

(α, g, β)(γ, h, ν) =





(α(g · γ′), g|γ′ h, ν), if γ = βγ′,

(α, g(h−1
∣∣
β′)

−1, ν(h−1 · β′)), if β = γβ′,

0 otherwise

with
(α, g, β)∗ = (β, g−1, α).

Here, E(SX,G) = {(α, 1G, α) | α ∈ X∗}, and the tight spectrum Êtight(SG,X)
is homeomorphic Xω by the identification

x ∈ Xω 7→ {(α, 1G, α) ∈ E(SG,X) | α is a prefix of x} ∈ Êtight(SG,X).

If θ is the standard action of SG,X on Êtight(SG,X), then Dθ
(α,1G,α) = C(α). If

s = (α, g, β) ∈ SX,G, then
θs : C(β) → C(α)

θs(βx) = α(g · x)

It is shown in [EP14] that OG,X is isomorphic to C∗
tight(SG,X).

We show that the universal tight representation of SG,X is faithful. This will
be accomplished if we can show that the map from SG,X to Gtight(SG,X)a given
by

s 7→ Θ(s,Dθ
s∗s)

is injective. If s = (α, g, β), then

Θ(s,Dθ
s∗s) = {[(α, g, β), βx] | x ∈ Xω}.

It is straightforward that d(Θ(s,Dθ
s∗s)) = C(β) and r(Θ(s,Dθ

s∗s)) = C(α).
Suppose we have another element t = (γ, h, η) such that Θ(s,Dθ

s∗s) =
Θ(t,Dθ

t∗t). Since these two bisections are equal, their sources (resp. ranges)
must be equal, so C(β) = C(η) (resp. C(α) = C(γ)). Hence, α = γ and
β = η. Since r and d are both bijective on these slices, we must have that for
all βx ∈ C(β), α(g · x) = α(h · x). Hence for all x ∈ Xω, we must have that
g · x = h · x. The action of G on X∗ is faithful, so the induced action of G on
Xω is also faithful, hence g = h and so t = s.
As it stands, the Boolean inverse monoid Gtight(SG,X)a cannot have any invari-
ant means. This is because the subalgebra of OG,X generated by {sx | x ∈ X}
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is isomorphic to the Cuntz algebra O|X|, and a trace on OG,X would have to
restrict to a trace on O|X|, which is purely infinite and hence has no traces.
To justify the inclusion of this example in this paper about invariant means,
we restrict to an inverse subsemigroup of SG,X whose corresponding ample
semigroup will admit an invariant mean. Let

S=
G,X = {(α, g, β) ∈ SG,X | |α| = |β|} ∪ {0}.

One can easily verify that this is closed under product and involution, and so
is a inverse subsemigroup of SG,X , with the same set of idempotents as SG,X .
If α, β ∈ X∗, |α| = |β|, and g ∈ G, then

(α, g, β)∗(α, g, β) = (β, 1G, β), (α, g, β)(α, g, β)∗ = (α, 1G, α).

If µ were an invariant mean on Gtight(S
=
G,X)a, then we would have to have, for

all α, β ∈ X∗ and |α| = |β|, that µ(C(α)) = µ(C(β)). Moreover, for a given
length n, the set {C(α) | |α| = n} forms a disjoint partition of Xω, and so we
must have

µ(C(α)) = |X |−|α|. (9)

Any clopen subset of Xω must be a finite disjoint union of cylinders. Hence
the map µ on E(Gtight(S

=
G,X)a) determined by (9) is an invariant mean, and is

in fact the unique invariant mean on Gtight(S
=
G,X)a.

In the general case, it is possible for Gtight(S
=
G,X) to be neither Hausdorff nor

principal. We now give an explicit example where we get a unique trace to go
along with our unique invariant mean.

Example 5.4. (The 2-odometer)
Let X = {0, 1} and let Z = 〈z〉 be the group of integers with identity e written
multiplicatively. The 2-odometer is the self-similar group (Z, X) determined
by

z · 0 = 1 z|0 = e

z · 1 = 0 z|1 = z.

If one views a word α ∈ X∗ as a binary number (written backwards), then z ·α
is the same as 1 added to the binary number for α, truncated to the length
of α if needed. If such truncation is not needed, z|α = e, but if truncation is
needed, z|α = z.
The action of Z on {0, 1}ω induced by the 2-odometer is the familiar Cantor
minimal system of the same name. For x ∈ {0, 1}ω we have

z · x =

{
000 · · · if xi = 1 for all i

00 · · · 01xi+1xi+2 · · · if xi = 0 and xj = 1 for all j < i

This action of Z is free (i.e. zn · x = x implies n = 0) and minimal (i.e. the set
{zn · x | n ∈ Z} is dense in {0, 1}ω for all x ∈ {0, 1}ω).
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Lemma 5.5. The groupoid of germs Gtight(S
=
Z,X) is principal.

Proof. Take x, y ∈ {0, 1}ω and suppose that we have α, β ∈ {0, 1}∗ with |α| =
|β| and n ∈ Z such that [(α, zn, β), x] ∈ Gtight(S

=
Z,X) and r([(α, zn, β), x]) =

y. This implies that x = βv for some v ∈ {0, 1}ω, and that y = α(zn · v).
Suppose we can find another germ from x to y, that is, suppose we have γ, η ∈
{0, 1}∗ with |γ| = |η| and m ∈ Z such that [(γ, zn, η), x] ∈ Gtight(SZ,X) and
r([(γ, zn, η), x]) = y. Again we can conclude that x = ηu for some u ∈ {0, 1}ω,
and that y = γ(zm · u). There are two cases.
Suppose first that β = ηδ for some δ ∈ {0, 1}∗. Then ηδv = x = ηu, and so
δv = u. We also have α(zn · v) = y = γ(zm · u). Because |α| = |β| ≥ |η| = |γ|,
this implies that there exists ν ∈ {0, 1}∗ with |ν| = |δ| and α = γν. Hence
ν(zn · v) = zm · u = (zm · δ) zm|δ · v, which gives us that ν = zm · δ and
zn · v = zm|δ · v, and since the action on {0, 1}ω is free we have zn = zm|δ.
So we have that x ∈ C(β) = Dθ

(β,e,β), and we calculate

(γ, zn, η)(β, e, β) = (γ(zm · δ), zm|δ , β) = (γν, zn, β) = (α, zn, β)

= (α, zn, β)(β, e, β)

where the first equality is by the definition of the product. Hence
[(α, zn, β), x] = [(γ, zn, η), x]. The case where β is shorter than η is similar.
Hence, Gtight(S

=
Z,X) is principal.

It is routine to check that S=
Z,X satisfies condition (H) (in fact, it is E*-unitary,

see [ES16, Example 3.4]). The groupoid Gtight(S
=
Z,X) is amenable, see [ADR00,

Proposition 5.1.1] and [EP13, Corollary 10.18]. Hence Theorem 4.13 applies,
and there is only one normalized trace on C∗

tight(S
=
Z,X), the one arising from

the invariant mean.
As the observant reader is no doubt aware at this point, C∗

tight(S
=
Z,X) is nothing

more than the crossed product C({0, 1}ω)⋊Z arising from the usual odometer
action [Nek04, Theorem 7.2], which has a unique normalized trace due to the
dynamical system ({0, 1}ω,Z) having a unique invariant measure (given by (9)).

5.4 Aperiodic tilings

We close with another example where the traces on the relevant C*-algebras
are known beforehand, and hence give us invariant means.
A tile is a closed subset of Rd homeomorphic to the closed unit ball. A partial
tiling is a collection of tiles in Rd with pairwise disjoint interiors, and the support
of a partial tiling is the union of its tiles. A patch is a finite partial tiling, and
a tiling is a partial tiling with support equal to Rd. If P is a partial tiling and
U ⊂ Rd, then let P (U) be the partial tiling of all tiles in P which intersect U .
A tiling T is called aperiodic if T + x 6= T for all 0 6= x ∈ Rd.
Let T be a tiling. We form an inverse semigroup ST from T as follows.
For a patch P ⊂ T and tiles t1, t2 ∈ P we call the triple (t1, P, t2) a dou-
bly pointed patch. We put an equivalence relation on such triples, by say-
ing that (t1, P, t2) ∼ (r1, Q, r2) if there exists a vector x ∈ Rd such that
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(t1 + x, P + x, t2 + x) = (r1, Q, r2), and let [t1, P, t2] denote the equivalence
class of such a triple – this is referred to a doubly pointed patch class. Let

ST = {[t1, P, t2] | (t1, P, t2) is doubly pointed patch } ∪ {0}

be the set of all doubly pointed patch classes together with a zero element. If
[t1, P, t2], [r1, Q, r2] are two elements of ST , we let

[t1, P, t2][r1, Q, r2] =





[t1, P ∪Q′, r′2] if there exists (r′1, Q
′, r′2) ∈ [r1, Q, r2]

such that r′1 = t2 and P ∪Q′ is

a patch in T + x for some x ∈ R
d

0 otherwise,

and define all products involving 0 to be 0. Also, let [t1, P, t2]
∗ = [t2, P, t1].

With these operations, ST is an inverse semigroup. This inverse semigroup was
defined by Kellendonk [Kel97a] [Kel97b], and is E*-unitary.
Suppose there exists a finite set P of tiles each of which contain the origin in
the interior such that for all t ∈ T , there exists xt ∈ Rd and p ∈ P such that
t = p+xt. In this case, P is called a set of prototiles for T . By possibly adding
labels, we may assume that xt and p are unique – we call xt the puncture of t.
Consider the set

XT = {T − xt | t ∈ T }

and put a metric on XT by setting

d(T1, T2) = inf{1, ǫ | T1(B1/ǫ(0)) = T1(B1/ǫ(0))}

and let Ωpunc denote the completion of XT in this metric (above, Br(x) denotes
the open ball in Rd of radius r around x ∈ R). One can show that all elements
of Ωpunc are tilings consisting of translates of P which also contain an element
of P and that the metric above extends to the same metric on Ωpunc – this is
called the punctured hull of T .
We make the following assumptions on T :

1. T has finite local complexity if for any r > 0, there are only finitely
many patches in T with supports having outer radius less than r, up to
translational equivalence.

2. T is repetitive if for every patch P ⊂ T , there exists R > 0 such that
every ball of radius R in R

d contains a translate of P .

3. T is strongly aperiodic if all elements of Ωpunc are aperiodic.

In this case Ωpunc is homeomorphic to the Cantor set. For a patch P ⊂ T and
tile t ∈ P , let

U(P, t) = {T ′ ∈ Ωpunc | P − xt ⊂ T ′}.
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Figure 1: In the Robinson triangles version of the Penrose tiling, each triangle
is always next to a similar triangle with which it forms a rhombus. Let P be
the dark gray patch, and let P ′ be the patch with the lighter gray tiles added.
Then for any dark gray tile t, U(P, t) = U(P ′, t)

Then these sets are clopen in Ωpunc and generate the topology. Let

Rpunc = {(T1, T1 + x) ∈ Ωpunc × Ωpunc | x ∈ R
d}

and view this equivalence relation as a principal groupoid. Endow it with the
topology inherited by viewing it as a subspace of Ωpunc × Rd. For a patch
P ⊂ T and t1, t2 ∈ P , let

V (t1, P, t2) = {(T1, T2) ∈ Rpunc | T1 ∈ U(P, t1), T2 = T1 + xt1 − xt2}

Then these sets are compact bisections in Rpunc, and generate the topology
on Rpunc. This groupoid is Hausdorff, ample, and amenable [PS99]. The C*-
algebra of Rpunc was defined by Kellendonk in [Kel95] (denoted there AT ) and
studied further in [KP00], [Put00], [Put10], [Phi05], [Sta14].
We proved in [EGS12, Theorem 3] that Gtight(ST ) ∼= Rpunc – the univer-
sal tight representation of ST maps [t1, P, t2] to the characteristic function
of V (t1, P, t2).

4 It is interesting to note that in this case that the universal
tight representation may not be faithful. Suppose that we could find P ⊂ P ′,
both patches in T , and that P + x ⊂ T can only happen if P ′ + x ⊂ T . Then

4The same result follows from [Len08, Section 9] combined with the fact that Lenz’s

groupoid coincides with the tight groupoid when Êtight(S) = Ê∞(S), see [LL13, Theorem
5.15].

Documenta Mathematica 21 (2016) 809–840



C*-Algebras of Boolean Inverse Monoids 837

for a tile t ∈ P , the two idempotents [t, P, t], [t, P ′, t] are different elements in
ST , but are both mapped to the characteristic function of U(P, t) = U(P ′, t)
under the universal tight representation – indeed, [t, P ′, t] is dense in [t, P, t],
see Figure 1. We note that [Len08], [Exe09], and [LL13] address other cases
where the tight representation may not be faithful.

The C*-algebra AT can be seen as the C*-algebra of a Boolean inverse monoid,
namely Gtight(ST )

a – one could then rightly call this the Boolean inverse monoid
associated to T . The traces of AT are already well-studied, see [KP00], [Put00].
Often, as is the case with the Penrose tiling, there is a unique trace, see [Put00].

Theorem 5.6. Let T be a tiling which satisfies conditions 1–3 above,
and let Gtight(ST )

a be the Boolean inverse monoid associated to T . Then
M(Gtight(ST )

a) ∼= T (AT ) ∼= IM(Rpunc).
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