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ABSTRACT. In a 1999 paper, Bercovici and Pata showed that a natural
bijection between the classically, free and Boolean irdlgitivisible mea-
sures held at the level of limit theorems of triangular astahis result was
extended to include monotone convolution by the authoidWi14]. In re-
cent years, operator-valued versions of free, Boolean ambitone proba-
bility have also been developed. Belinschi, Popa and Vimnghowed that
the Bercovici-Pata bijection holds for the operator-vdluersions of free
and Boolean probability. In this article, we extend the ddin to include
monotone probability theory even in the operator-valuesdcdo prove this
result, we develop the general theory of composition sesoigs of non-
commutative functions and largely recapture Berkson anthRcclassical
results on composition semigroups of complex functiongiarator-valued
setting. As a byproduct, we deduce that operator-valuedtonically in-
finitely divisible distributions belong to monotone corwtibn semigroups.
Finally, in the appendix, we extend the result of the secarttia on the
classification of Cauchy transforms for non-commutatisgrdiutions to the
Cauchy transforms associated to more general completsliymmaps.
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842 MICHAEL ANSHELEVICH, JOHN D. WILLIAMS

1. INTRODUCTION

Itis aremarkable fact that there are natural bijections/ben the classes of infinitely
divisible measures in each of the four universal non-conatiug probability theories,
which not only arise from the Lévy-HinCin representatiasf the measures, but are
maintained at the level of limit theorems of triangular g&aThis is made precise in
the following theorem:

THeorREM 1.1 Fix a finite positive Borel measure on R, a real numbery,
a sequence of probability measurgs, }, ., and a sequence of positive integers
k1 < ko < ---. The following assertions are equivalent:

(a) (Classical / tensor) The sequengg * ji, * - - - * u,, converges weakly to
N——

kn

v,0.
Ui

(b) (Free) The sequengs, B y,, B - - - B p,, converges weakly tog;”;

kn
(c) (Boolean) The sequengg W u, W - - - & u,, converges weakly to)”;

kn
(d) (Monotone) The sequengsg, > p, &> - - - > p,, cOnverges weakly to'7;

k;TI,

(e) The measures
2
X

kn
2 +1

dun(z) = o
weakly, and

. X
}IITI(?O kn/R:rQ—Hduﬂ(w) =7
Herev)?, v?, vy?, v1’? are probability measures defined explicitly through their
complex-analytic transforms. The equivalence of clagsfcae, and Boolean limit
theorems in partgy(a)lJ(b)a(c) ard (e) was proven in a by nawsat paper due to
Bercovici and Pata [BP99]. The monotone non-commutatiebalility theory is of
more recent provenance [Mur(00, Mur01]. The inclusion ot fidyrwas proven in our
recent paper [AW14].
Voiculescu developed operator-valued notions of non-catative probability
[Moi87] where probability measures are replaced by certampletely positive maps
from the ring of non-commutative polynomials over a-@lgebra. An analogous
theorem in this more general setting, namely the equivalefiparts[(b) andTc), was
proven in [BPV12]. The first main result in this paper is theliusion of [d) at this
level of generality.
In order to study monotone infinitely divisibl8-valued distributions, we must first
develop the theory of composition semigroups of non-conatiug functions in a
manner analogous to Berkson and Porta’s study of these saupig at the level of
complex functions [BP078]. This stems from the fact that¢hevolution operation
for monotone probability theory satisfies the followingatébn for the associatef-
transforms,

FMI>1/ =F,oF,,
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OPERATOR-VALUED MONOTONE CONVOLUTION SEMIGROUPS 843

so that infinitely-divisible distributions form such a coagition semigroup. In the
second main result of the paper, we prove that any monotdimééhy-divisible dis-
tribution can be included in such a semigroup. Note that éwehe scalar-valued
case, this is a recent result, proved by Serban Belinschsithbsis. Finally, we char-
acterize generators of such composition semigroups, anthies set of generators
of composition semigroups df-transforms.

In Sectior 2, we provide background and preliminary resuftsectior 8, we study
composition semigroups of vector-valued and non-comrivetanalytic functions.
The main results of this section are Proposifiod 3.3, whiatws that there is a nat-
ural notion of a time derivative for semigroups of vectolueal analytic functions
{ft}+>0, and Theorer 315, which proves that, in the casé'd¢fansforms and more
general self-maps of the complex upper half plane, theségeraps are in bijection
with certain classes of functions defined through theirgihnd asymptotic proper-
ties. This bijection provides a Lévy-Hin€in represeiaafor these infinitely divisible
distributions. In sectioh]4 we prove the main result of thegzanamely the extension
of Theoreni 11l to the operator-valued case. In contrastegtavious section, this
is achieved through a combinatorial methodology. We clbseplaper with the Ap-
pendix, which is primarily concerned with the extensionte main result in [Wil183],
namely the classification of the Cauchy transforms asstiet B-valued distribu-
tions, to a more general class of functions including thedBgutransforms associated
to more general CP maps.

ACKNOWLEDGEMENTS. We are grateful to the referee for helpful comments.

2. PRELIMINARIES

Let B denote a unital Galgebra andX a self-adjoint symbol. We will define the
ring of noncommutative polynomial$(X) as the algebraic free productBfand X .
By (X) are polynomials i3(X) with zero constant term.

DEFINITION 2.1. Lety : B(X) — B denote a linear map. We say thais exponen-
tially boundedwith constantV/ if

@) [[4(b1 X b2 - - Xbppa )| < M [ba[[[b2] - - 1bn41
We abuse terminology and say that the maip completely positivéCP) if
) (1w 1) ([PXOPF(X)]" ) 20

for every family P;(X) € B(X).
We define a set to be thosd3-bimodular linear mapg satisfying [1) and(2).

For a general introduction to non-commutative functiong refer to [KVV14].

Throughout3, A shall denote unital Galgebras. LeiM/,,(5) denote the: x n ma-

trices with entries in3. We define themoncommutative space ovBrto be the set
Bne = {Mn(B)}>2,. A non-commutative ses a subsef) C B, that respects
direct sums. That is, foX € QN M,(B) andY € QN M,(B) we have that
X @Y € Qn M,,(B). We note that these definitions apply to the more gen-
eral case of3 being any unital, commutative ring, but we focus on @ealgebraic
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844 MICHAEL ANSHELEVICH, JOHN D. WILLIAMS

setting. Giverb € M, (B), the non-commutative babbf radiusd aboutb is the set
Bpe(b) := UL, Bs(%b) whereBs (#*b) C M, (B) is the standard ball of radius
A non-commutativeunction is a magf : Q — A, with the following properties:

(@) f(€2) C My (A)

(b) f respectsdirectsumsf(X @Y) = f(X)® f(Y)

(c) f respects similarities: FoX € Q,, andS € M,,(C) invertible we have that

f(SXS™Y) = Sf(X)s™!
provided thats X S—! € Q,,.

A non-commutative function is said to becally bounded in slices, for everyn and
elementz € Q,, flq, is bounded on some neighborhoodaofn the norm topol-
ogy. It is a remarkable fact originally due to Taylor ([Ta},7Tay73]) that a non-
commutative function that is Gateaux differentiable aowhlly bounded in slices is in
fact analytic. A non-commutative functionuisiformly analyticatb € M,,(B) if itis
analytic and bounded oB’“(b) for somer > 0.

Let M;~¢(B) C M,(B) denote those elemente M, (B) with S(b) > €1, and
M (B) = Ueso M. We form a non-commutative set

H*(B) = LpZ, M, (B)

and refer to this set as tln-commutative upper half plane
We define a family of sets ifi *(B). Fora,e > 0 define a non-commutative Stolz
angle to be

I = {be M;“(B) : 3(b) > aR(b)}.
Letu € ¥y. We define th€€auchy transfornof i to be the analytic, non-commutative
functionG,, = {G$"}22, such that

n — -1y . -
GMb) = (p®1,)(b— X ®1,)7"): HY(B) = H(B).
From this map, we may construct theoment generating functiothe F-transform
the Voiculescu transformand theR-transform respectively through the following
equalities:
H™ (b)) :=G™ (b~ : H=(B) — H™(B)
FM(b) :=GM™ ()™t HT(B) —» H*(B)
o (0) = (F™) TV (b) = b
n o n —1
RV (b) =@ (b7
where the superscrift-1) refers to the composition inverse. We also note that the
moment generating function extend to a neighborhoot foir 1, € >y and that the
Voiculescu-transform is only defined on a subsetdf (). The following result,

proven in [Wil13] and[[PV18], classifies the-transforms in terms of their analytic
and asymptotic properties.

TueoRrEM 2.1 Letf = (™) : H*(B) — H*(B) denote an analytic, noncommu-
tative function. The following conditions are equivalent.

(a) f = F, forsomeu € %.
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OPERATOR-VALUED MONOTONE CONVOLUTION SEMIGROUPS 845

% . defined by k™ (b) :=
(f™(b=1))~! has uniformly analytic extension to a neighborhoodoMore-
over, for any sequend@y } xen with [|b, ]| 1 0, b, ' £ (by) — 1,, in norm.
(c) There exists an € B and as : B(X) — B which satisfies[{1) and2) such that,
foralln € N,

Fb) =al, +b— (0 ®1,)(b(1 — Xb)™h).

Moreover, the map in (@) is of the formo (P (X)) = p(X P(X)X) for p such that
its restriction to3,(X) is positive.

(b) The noncommutative functiok = (k(™)>

We will require several classical results in complex fumettheory to prove our re-
sults. Theorem 3.16.3ih [HPI74] is a useful analogue of tagsital Cauchy estimates
in complex analysis. We also refer to this reference for aandgew of the differential
structure of vector valued functions, including the higbeter derivative™ utilized
below.

THEOREM 2.2. Let f be Gateaux differentiable i and assume théitf (z)|| < M
forx € Y. Then

[[6" f(a; h)|| < Mn!
fora+h el.

Further, theorem 3.17.17 ih_ [HP74] provides Lipschitzrastes for analytic func-
tions. Indeed, for an analytic functiofithat is locally bounded b}/ (a) in a neigh-
borhood of radius,, we have that

2M (a)|lz — y|

3 ) - @l <—r—
®) 176) = F@)l < 5=

NoTaTION 2.2 We define a familyA of functions® : H+(B) — H—(B) through
the following properties:

(i) The mapR(b) := @(b=') has uniformly analytic continuation to a non-

commutative ball about with R(b)* = R(b)

(if) For any sequencéby }ren € Bwith [|b, "] | 0, we have thab, '®(b;) — 0.
We also define a larger family of functionsby replacing[{i) and{ji) with the follow-
ing weaker conditions

() Foranye > 0, @ is uniformly bounded oni>> , M,F<(B).
(I) Foranya, e > 0and a sequencgy }ren € F&"Z with [|b; ]| | 0, we have that
by, '@ (by) — 0.
DEFINITION 2.3. Letu,v € ¥y. We define thenonotone convolutioto be the non-
commutative operatiofy, v) — u > v € X defined implicitly though the equality

Fupy:=F,0F,.

Note that this definition uses Theordm]2.1 in an essential, w@yshow that a
composition of F-transforms is anF-transform. See Sectidn 4 and references
[Pop08/HS11, Popl2, HS14] for the relation between thisdiefh and monotone
independence of Muraki.
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846 MICHAEL ANSHELEVICH, JOHN D. WILLIAMS

DEeFINITION 2.4. We say thaj is a>-infinitely divisible distribution if, for every,
there exists a distribution,, € 3¢ such that

(4) [= i D i D - D> i,

n times
We define a composition semigroup Bftransforms{ F; },cq+ by letting £/, :=
FgP wherep = pg @ forallp, ¢ € N. We will show in Theorer 315 that this semigroup
extends to alR™ semigroup, which moreover is generated by a funcitog A in a
sense that will be made specific. Moreover, one of the maudtem [Wil13] is that
the setA is exactly the set of Voiculescu transforms associatéfg-iofinitely divisible
distributions. This is not a coincidence and will drive thaimresult of this paper.

3. LEVY-HINCIN REPRESENTATIONS FORSEMIGROUPS OFNON-COMMUTATIVE
FUNCTIONS.

We begin this section with a result showing that the divigdrs -infinitely divisible
distributions maintain the same exponential bound. A simriésult can be proven in
the combinatorial setting of Sectibh 4 in an easier manmgthe bound is less sharp.

ProposITION 3.1 Lety denote a>-infinitely divisible distribution with exponential
boundM. Then, for eaclk, the distributionu;, satisfyingu = M,‘jk has exponential
boundM .

Proof. Let Xb1Xby---b,_1 X = Q(X) S B<X> such that||b1|\ = Hbg” =
--+|lbn—1]] = 1 and assume, for the sake of contradiction, that(Q(X))| > M".
Then, using the Schwarz inequality foipositive maps, we have that

([ (@ (X)QX) e (D = N1 (QX)) x (@7 (X))

= [l (QX))I* > M

Since ux(1) = 1, we may assume that our monomiaP(X) =
Xb1Xby--b,—1 X% X ---b3X has the property thap,(P(X)) > M?".
Define an elemenB € Ma,(B) by

01 0 0 0 0 0 0
1 0 b 00 0 0 0
06 0 1 0 0 0 0
00 1 0 b 0 0 0
g_|lo o 0w o 1 o0 0
00 0 0 1 0 b 0
00 0 0 0 -« b, 0 1
00 0 0 0 -~ 0 1 0

That is, the superdiagonal alternates betwkandb;, the subdiagonal alternates be-
tweenl andb;. Now, let0 < €, and

2n—1
€ n,zn

=1
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wheree is arbitrarily small and is chosen so thaBs . is a strictly positive element.
Moreover, we have that

®)
e1.1(Bs.(X @ 12,)Bs.)*"e11 = e11Bs. [(X ® 1271)335]2”71()( ® lap)Bs.c€1.1
= P(X) 4+ O(max (9, €)).
To see this, note that a non-trivial contribution[td (5) maestof the form
b1=2Xb2=j3bj3-,j4ij4-,j5X Y bj4n71-,2Xb2-,1

Jan—2:Jan—1

where b; ; denotes thei,j entry of Bs.. Now, such a non-zero term isot
O(max (0, €)) means thabj, j,., must equabs, 2, for two distinct/. However, the
only possible way for this to occuris jf. = k for k = 2,...,2n, jon = jon+1 =

Jonye =2nandj, =4n+2—pforp=2n+2,...,4n— 1.

By assumption, there exists a state B* such thatp(u; (P(X))) > M?2*. Thus, for
e small enough, we have that

(6) P11 0 (1 ® 12n)((Bs,e(X ® 19n)Bs ) *") > M*"

(herep®eq 1 = ¢1,1). Thisimplies that the scalar valued Cauchy transformciated
to this random variable,

Gi:(z) = ¢1,1 0 (s ® Lo)((212n — Bs,e(X ® 12,)Bs.e) ™)

arises from a measure whose support has non-trivial irtéosewith R \ [— M, M],
whereas the (similarly define(‘l;)f;E has support contained |- M, M| (since its mo-
ments have growth rate smaller than powers\ff. Using Stieltjes inversion, this
implies that

7) lim —3G?

iy e (x +it) > 0

for somez > M (or the limit simply does not exist in the atomic case).
Calculating the imaginary part of this Cauchy transform hage
S([pr((212n — Bs. X Bs.) ™) ™Y) = By /Sl (B5 22 — X) 771 Bj !
= B; 'SF{" (2B;?)B; !
< B; 'SF™(2B;2)B;.!
(8) = S([p((2l2n — Bé,eXBé,e)il)]il)

where the inequality follows from the fact thay, = F*~' o F),, and F-transforms
increase the imaginary part.
Rewriting the right hand side dfl(8), we have that

S([((212y — Bé,eXBé,e)_l)]_l)
= [U((Zl% - BJ-,GXB&E)71>*]71'
(9) %(,U/((ZlQn - BJ,GXBé,e)_l))[M((zl%L - BJ,GXBJ,G)_l)]_l

= FJ () S(FS () EY(2)
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848 MICHAEL ANSHELEVICH, JOHN D. WILLIAMS

We conclude that
(10)  S([u((212n — Bs. X Bs.) )] 7H) < Fpe(2)"S(FR(2) Fe(2).
SinceF) extends taR \ [—M, M]
li 5,e .
i Gy (x +1t)
converges to a positive elementthand
. 5,e .
1151?0(1 S(Fy(z+it)) =0
it follows that the right hand side of {I1L0) converge$tm norm, contradicting({7).
This completes our proof. O

ProrosiTioN 3.2. Let u,u; be as in the preceding proposition. We have that
F,, — Idinnormask 1 oo uniformly on A;¢(B), and this convergence is also

uniform overn . Moreover, the function&™ (5=1) — b= and F™ (b=1)~! extend
analytically to B<(0), where the radiusg is dependent only od/ from Proposi-
tion[3.1, and satisfy

n —1 —1
(11) FMOe™) —bt =0,

(12) Fme)t = H,g?(b) —b

where this convergence is uniform @j<(0).
Proof. Consider the Nevanlinna representations of each of thesxifuns
(13) FM(b) = o @ 1 +b— GUM(b)

defined in Theorem 2.1 , where we have adopted the notatiom teau;. We claim
that the distributiong, share a common exponential bouNdor all & € N.

To prove this claim, first observe that, by Theorem 4.1 in [\8]| there exist distribu-
tionsv, such that

b—FM(b) = i (b) = —ap @ L, + G (D).
Moreover, it was shown in [PV13] that if theand thev,, have a common exponential

boundN then the distributiong andp,, have a common exponential bount + 1.
Focusing on they,, we may manipulate equations 13 to conclude that

(14) R (071) = o, (b) = b71 = F, (b71).

Now, expand the moment series
(15) Fi o)™ = HD(0) = Y p((bX)70).
p=0

Note that Proposition 3.1 implies that this function is cemgent and uniformly
bounded fob € B(0), independent of.

Observe that the moment generating function satisfies

(16)

[HM (0)] 7" = 07" = (X)) + 1 (X)bpe (X) — pue (XX )+ = b 4 fM (b, X)
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where f(™) (b, X) is analytic inb and converges foltb|| small, where the radius of
convergence is only dependent 8 Thus,[H{" (b)]~! — b= extends to a neigh-
borhood of) whose radius is independentofindk and agrees wittf " (b=1) — b=
whenb is invertible. Moreover, these observations, combinetl {@#) imply that the
functionsR,, have a commotk, C > 0 such that the functions extend to a common
domainBj©(0) with a common bound’. Now a careful look at the Kantorovich ar-
gument in part 1l of the proof of Theorer1 in [Wil13] allows us to conclude that
the exponential bound on the distributiansdepend only orRR, proving our claim.
Recall thatF,, o ---o F),, = F,, we have that

(17) Gf)") (b) = ng)(b) + GE)Z) o Fﬁ:)(b) NI GE)Z) o F,SZ) 0---0 F,SZ) (b)
————
k—1 times
Lettingb = z1,, for z € C, we have that
1
lim zH(™ (—1n) = lim 2GU(z1,
|z|To0 L z |z|To0 L ( )

k—1

= lim 322G o (F)* (1)
=1

= lm k_le,S’Z) ([(F(">)°@(z1n)]—1)

|zltoo £ H
k—1

= ‘1}?1 > zHM 0 GOV (21,)
z 00@;1

k—1 1 1
=1lim Y —HMoaM (=1,
|w|L0 w Pk ¢ \w
=1
k—1

1
— ] —H™ 5 g 1,
e X LD o B (L)

where[(F{™)°*|-! = @,, is the Cauchy transform of a distribution € %, (this
follows from Theorenh 2]1). Moreover, we have that

so that, passing to limits and utilizing the chain rule arelfdct thatHﬁZ)(On) =0,
, we have that

SH™ (0n; 1n) = kSH (0,3 15,)
Utilizing the main result in our appendix, TheoreEmA.1, waclide that
(18) p(1) = p(X?) = ku(X?) = kpe(1).
so thatpi (1) = O(1/k).
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Now, assume thadt € M, <(B). We claim that]b—!|| < 1/e. Indeed, observe that,
forb = x + iy with y > €l,,,

(19) b=y(i+ (V) 2(Vy) VY
(it follows easily from this equation thatis invertible, but this is known). Thus,
(20) e OV I O OV V7)) I OV

Now, utilizing the spectral mapping theorem and the fadttespectral radius agrees
with the norm for normal operators, we have that/y)~'|| < (v/€)~'. Moreover,
sincei + (/) 'z(y/y)~* is normal and has spectrum with imaginary part larger
than1, we have thati + (/) 'z(,/y)~")~" is normal and, by the same spectral
considerations, has norm bounded hy These observations, combined with1(19)
imply our claim.

Thus, forb € M;F(B), we have

IS (0) = Il < flewe | + Gk @ La) (0 = X) 7|
< lell/k + 110 = X) Ml (o @ 1) (1)
< @ . Hpke(l)ll _ el +kp(1)/6

and the right hand side converges to zero uniformly avgr<(53), independent of..
Regarding the second part of our Proposition, we first olestirat each of the mo-
ments ofu, converges td). Indeed, utilizing the Schwarz inequality ferpositive
maps as well as Propositibn B.1, we have that

1 (X b1 X Do X -0 X)|* < (X )| 1 (X 05X - b3 XbTb1 Xbo X - by X)) |
< 1M b 1212 - - - b1
- k

Moreover, the tail of the series expansion 8f) (b, X) is bounded in norm inde-
pendent ofn and k . the individual entries all go t® so the we conclude that
f@™ (b, X) — 0 uniformly onb € B"¢(0) ask 1 oo so that we can immediately
conclude thatf(12) holds. This completes our proof. O

We next prove a differentiation result for vector valueddtions. We adapt a proof
found in [BP078] of a similar result for complex functions.

ProrosiTioN 3.3. Let A and5 denote unital Banach algebras. Consider an open
subsef) C A. Let f; : Q — Bforall ¢t > 0 be a composition semigroup of analytic
functions. Assume that for eveby € (2, there exists @ > 0 such that

(@) limyyo fi(b) — b — 0 uniformly overb € B;s(b)
(b) ForanyT’ > 0, we have thaf;(b) — b is uniformly bounded ovels € B;s(d’) and
t €10,T].
Then, there exists an analytic: Q2 — B such that
dfi(b)

(22) g —®(fi(b)).
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Proof. Fix &' € Q. We first claim that there exists an> 0 such that

(22) 1 720(8) — 2£(8) + bl < =1 u(b) — b

forallt € [0,a] andb € Bs/,(b") where the value of comes from the statement .
Indeed, fixb € Bj/»(b'). We first consider the simple case when there exists a se-
quence, | 0 such thatf; (b) = b. Since{f;} form a composition semigroup, this
property then holds for a dense set’'sf and by continuity assumption in part (a), for
all ¢ > 0. So [22) holds trivially.
Thus, suppose thgt(b) # b fort € [0, a]. Define a family of complex functiong
through the following equalities:
_ Ji()—b — .

hy = )=o) 9t(¢) := fe(b+Chy) —b: Bs/2(0) — B.
where B2 (0) refers to the neighborhood of zero in the complex plane. Nudé
since we are taking a ball of radidg2, we may definé:, for all suchb provided that
our choice ofn is small enough.
Consider the vector valued complex integral

Ife@)=bll g
(23) [ - chac.
0 dg
By @) and the Cauchy estimates in Theofem 2.2, the integrambe made arbitrarily
small fort small. By the fundamental theorem, this integral is equal to

gt(Hft(b> - b”) - gt(O) - (ft(b) - b) =
= fi(b+ (fe(b) = b)) — b—2(ft(b) — b) = far(b) — 2f+() + b.

Using our bound on the integrand, equatiod (22) follows irdiagly.
We now usel(22) to prove that far > 0 there exists ad/ > 0 such that

(24) f2(b) = bl| < Mt*/®
forallt € [0,a] andb € Bs/o(V'). Indeed, pickt € [0,a] andm € N such that
2™mt < a < 2™7T1¢. Note that inequality{22) and the triangle inequality inpiat
1
2(1£2(0) = Bll = [1f2e(b) = Bl < Ilf2¢(0) — 2£e(b) + bl < 511 /e(b) = ]

so that

10 _
(25) 1£(0) = bl < 351l f2e(b) = bl| < 2 23| fa+(b) — |
Using this estimate inductively, we have

1 \2/3

15081 < 225 l0)-b] < - < 22l i) -0) = £ () 0
where M’ is a bound on| fs(b) — b|| for s < 2 which exists by[(b). Equation (24)
follows with M = 22/3M" /a.
Now, revisiting the argument fof(22), inequalify {24) irgd that the integrand in

(23) has bound equal to
2Mt*/3

DOCUMENTA MATHEMATICA 21 (2016) 841-871



852 MICHAEL ANSHELEVICH, JOHN D. WILLIAMS

as a result of the Cauchy estimates. Thus, we have the folgpwi
(26) 1f2e(b) = 2u(b) + bl < 26*/2(1 £,(b) — b]| < 2Mt"/°,
We may further conclude that

fu®) =b  [iB) =
2t t -

27) ‘

Thus, we have that
(28) i 2%(fy-1.(6) )

converges uniformly o3; 5 (b') and we refer to this limit as-®(b).
Using [2T), we note thab is locally bounded. Indeed, we have that

127 f1 /20 (b) = b) + O)I| < D 1125(f1 /20 (b) = b) = 2571 (1 jorsa (0) = )|
k=p

oo

M 1\"
(29) <3 (505) =MCO).
> (am)

forall b € B;/5(b'). Local boundedness df follows since(f;2»(b) — b) is locally
bounded. Also note th&t(p) — 0 asp 1 co.

Regarding analyticity ofo, consider a state € B*, b € Bs/»('), and an element
h € B with ||h|| < 1. We define complex maps

H,(z): B(;/Q(O) cC—C
for m > 0 through the equalities:
Hy(z) == o®(b+ zh); Hp(z):=2"po (fo-m(b+ 2zh) — (b+ zh)).

By @8), H,, — Hy for z € Bs/»(0), and by [29), the limit is bounded on this set.
Thus, Hy is analytic inz. By Dunford’s theorem ([Dun38)), it follows thab(b +
zh) is analytic inz and, therefore, Gateaux differentiable. As this funci®locally
bounded, it is analytic.

Regarding[(211), observe théf:(b)}.>0 is compact since it is the continuous image
of [0, ¢]. As @) and[(b) hold on neighborhoods of every point in thista&ing a finite
cover, we have thagi(a) and| (b) holds uniformly on a neighbodof this set and,
after a close look at the relevant constariis] (29) is alsotaiaied on this set. Now,
fix t > 0 andleté,/2? — t asp 1 .

ZP
fe(0) = b= (fe(b) = fis, 20 (b)) + Z(fj/zp (b) = f(j—1y/20 (D))

= (fe(b) = fi—e,/20 (b)) + Z 2p 2P[fj 20 (b) = f(j—1)/20 (b)])

Asp T oo,
fi(b) — Ji—e, /20 (b) = Je, 20 0 feu, o0 (b) — Jt—e,)2r (b) =0
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since (@) holds on the entire path. Moreover, the remainimgnsand is simply a
Riemann sum approximation of a sequence of functions cginguniformly to—®o
fs(b) for s € [0, t]. The following equation follows immediately:

t
fi(b) = b—/ Do fy(b)ds.
0
We conclude thaf(21) holds, completing our proof. O

COROLLARY 3.4. Let. A andB denote Banach algebras afd- LIS° , M, (A) anon-
commutative set. Leff; : Q — LI ; M, (B) forall ¢ > 0 and assume that they form a
composition semigroup of analytic non-commutative fumsi. Assume that, for each
n, the composition semigroup of vector valued analytic fums{Ft(”)}tzo satisfies
the hypotheses of Proposition13.3. Then there exists agtimyaloncommutative map
O Q — LS, M, (B) such that

dF" (b)

i = e Er )

(30)

foralln e N,b € Q,,.
Moreover, if we strengthen these assumptions so that, fon@mdb € M,,(B), there
exists & > 0 with
(@) limy o Fy — Id — 0 uniformly overB3©(b).
(b) ForanyT' > 0, we have thaff,(b) — b is uniformly bounded orB}<(b) and
t e [0,T].
then® is uniformly analytic.

Proof. We showed in Propositidn_3.3 this mdpexists. We must show that it is a
non-commutative function. However, this is immediate sinfor b, € M, (B) and
by € M,(B), we have

D) (by @ by) = lim 28 (FP) (b1 @ bo) — by @ bo)

T n) n)
= lim 28 ([F," (b1) — b1] @ [F, " (ba) — ba])

=3 (b)) & dP(by).

A similar proof shows that it also satisfies the defining iisace property so that our
first claim holds.

With respect to the uniform analyticity, we refer to the grobPropositior 3.B. Ob-
serve that inequality (22) holds far small enough. This is only dependent on the
convergence of the integrand in {23). This converge® tmiformly on B}<(b) by
assumptionffa) and the same Cauchy estimate so that theedfaids also uniform
on this set. Moreover, the constaht in (24) is equal t2%/M’/a where M’ is
the upper bound o; — Id for s < a. Assumption[(b) implies that this bound is
uniform onB§“(b). Thus, inequality[(29) holds on all of this set, implying famim
analyticity. O

THEOREM 3.5. Let {F}};cq+ denote a composition semigroup of non-commutative
functionsF; : H*(B) — H™(B) such that
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() HFt(")(b) — b|]| = 0 uniformly on M,<(B) for all ¢ > 0, independent of: as
t]o0.
(i) For any o,e > 0 and sequencé;, < F((QZ with |[b. || | 0, we have that
b 'F™ (b)) — 1, ask 1 oo
(i) SF™(b) > Sbforallb e M+(B) andt > 0.
Then{F;};cq+ extends to a semigrouF; },>o and the mag from Proposition 3.4
is an element oA\.
Since, by Proposition 3.2, the conditions above are sati¢fie/ -transforms, this
implies that a>-infinitely divisible distributionu as in Definitio 2.4 can be realized
asp = pp for a monotone convolution semigroyp, },-.,. For such a semigroup,
¢ c A
Conversely, given a map € A we may construct a semigroup of non-commutative
functions satisfying the hypotheses above as well as tferdiftial equation

(31) O~ _amm)

If & € A then the semigroup arises fronpainfinitely divisible distribution.

We shall refer to this elemeft as thegeneratoror the semigroug F; }+>o.

Proof. First, let® € A. We will produce the semigroup it generates by the method of
successive approximations.

Consider a sequence of non-commutative functipfigt, -) }+>o, ren defined as fol-
lows:

t
(32) R0 =b; 7 (,0) =b— /0 O\ (s,b))ds.

We claim thatf (¢, -) is convergent and satisfies the semigroup property withrgene
tor ®.

Observe that sincé is uniformly bounded by a constanf on setMJ’E/Q(B) and
f1(t,-) maps the sed;<(B) to itself since

®: HY(B)— H™(B)
we have that
(33) SFM(Eb) = S(b).
By @3), this implies tha;f,i") (t,-) is Lipschitz on the seB, /»(b) C M,T’S/Q(B) for all

b € M, <(B), and the Lipschitz constart is uniform over bothk, b and bounded.
Moreover, we may extend the Lipschitz inequality

1£s(t,0) = fi(t, )] < Lo — |

to all b,b’ € M, <(B) by taking a pathh + s(b' — b) for s € [0, 1] and using the
Lipschitz estimate on intervals of distang since the distances are additive on this
path. Using this Lipschitz estimate in the integrand_of (3& conclude that

(34) 175 (t,b) — 17 (t,0)]| = tl|@(b)]| < tML
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and we may conclude that

15 (1.b) é’”(t,b)nH [ 008 5.0 — 001 s,

t
<L /[fé")(s,b)ffl(”)(s,b)]ds
0

t 212
SL/ [LMs]ds < LM
0
Continuing inductively, we have that
k41
() (4 p) _ M) o M(L)
For any choice of € [0, ], we have that
N
(36) S0 —b =" (1) - £ 0)
k=0

is a convergent series @ 1 oo and we may conclude thgiy (¢, -) converges to a
function f (¢, -) uniformly on M F¢(B), independent ofi.

It is clear thatf(¢, -) satisfies[(3[l). Regarding the asymptotics,det > 0 and fix
a sequencé, € T'") with [[b;*]| | 0. Note thath, ' £ (¢,b,) = 1, and satisfies
1A, be) |7 L 0 as byt L 0. We claimb, £ (t,b;) — 1, and satisfies
£ (8, be)|| 72 L 0 @s|by || 4 0 for all k, uniformly overt € [0, a].

Proceeding by induction, we have that for fixed

t

(37) b S (8 be) = 1o — / (b7 £ (5, b)) (F™ (,b0) 1 R(f™ (5, be) )ds.
0

We bound the integrand by

1167 1 (5, b (5, be) L@ (f™ (5, b)) |

which converges t6 uniformly overs € [0, «] by induction, so thaf(37) converges to
1,,. Moreover,

LA, (b)) 1< 107 M1l (8, b)) 72 = .

Thus, eactyy (¢, -) has the appropriate asymptotics and, sifige-) is a uniform limit
of these functions oi/,", our claim holds Condition (i) follows fron{(33).

In order to complete our proof, we further assume that A and prove that the
functions f (¢, -) are in fact thef'-transforms of noncommutative distributiops
Y. To do so we must show that the functigit, 5=1)~! has a uniformly analytic
extension to a neighborhood offor all ¢ > 0. Note that, sincé € A, there exists
ad > 0 and constantd/, L > 0 such thatb(™ (b~1) extends taB2¢(0) with upper
boundM and Lipschitz constant.

Now fix a > 0. We claim that, fory > 0 small enough we have thﬁﬁ")(t, b=1)~1

extends taB, (0,,) C M, (B) for all n and satisfieg™ (t,b=1)~1 € Bs(0,,) for all
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b € B,(0,). Choose any € [0, a] andb € B,(0,) wherey < ¢ is yet unspecified.

We have
t —1
l(1n—/ b(I)(b_l)ds) —1,11 b
0
e t

WA R AR (N Rl [

il

<Y (YMa)"
_ Y’Ma
11— Mo
Deriving a similar inequality for gener&l we have that
(38)
[ e P (TR

(blfottl)o ,§">(s,b1)ds> - (bl/otQDo ,g@l(s,bl)ds)
_ H(ln— [ ot ,i’”(t,bl)))_l (0 [ @07 - 207
(1n—/0tb<1>( ™) (1,4~ )))_117

1 2
< 27, n)y p—1 (n) -1
< (o) LA 07 = A0

By induction, we have that

—1 —1

k 207 0—1, 0

(n) (4 p—1y—1 _ MA™"L™ a

||fk+1(ﬁ’b ) b” - é_zl (1 7’}/M04)2271

This is convergent as 1 oo for v small and converges tbas~ | 0. Thus, fory small
enough, we have tha’;gi)l (t,b=1) € Bs(0,) for all k andn and, therefore, converges
to a limit function onB, (0,,) (since the differences if_(B8) are Cauchy). This limit
function must agree witlf (¢, -) by analytic continuation. This completes our proof
that f (¢, -) is an F-transform for allt.
To address the converse, consider a semigfdup, o+ satisfying the[{i) and{ii) in
the statement of the theorem. First note that this easibneld to alR™ composition
semigroup. Indeed, defing (b) = lim,,/,_,, F},/4(b). To see that this is well defined,
note that, a®/q,p’ /¢’ — t, we have

15370 ®) = E i O = oy © Byl (8) = By ()] = 0

uniformly on M;1¢(B) by property[(i) and{ii) . It isimmediate that this is a compo
sition semigroup oveR ™ satisfying i), (1) and[{id).
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By Corollary(3.4, this semigroup may be differentiated togwce a non-commutative
function® . Regarding the asymptotics @f consider the inequality

b (F™ (b) — b) (F™ (b) = b)

—_ My
" ; (b)

(39) [Ip~re™ (1) < + 671

Utilizing inequality [29) in the proof of Propositidn 3.3quuces
(Fi% (b) = 1) =1
— <M Z 5173

QN

k=N+1
where thisM = 2M’/a . As was noted in the proof of Corollafy 3.4, uniform
convergence in the sense Of (i) ahd (i) implies a uniformrgbon M. Thus, [40)
converges td uniformly on M,F¢(B) so that, for fixed small enough, second term
on the right hand side of(B9) is smaller than any 0 for b € M;¢(B). Letting
by € F&"Q satisfy||b;, || J 0, the first term on the right hand side Bf139) converges to
0 by assumptiori{ii), and it follows tha € A.
If {F}}:>0 arises from a>-infinitely divisible measure, then it follows from Propesi
tion[3.1 and Theorem 2.1 thh;lF,S?) (br) — 1, for any sequenck; € M, (B) with
bz 1|l 4 0 and a similar proof allows one to conclude tiasatisfies conditiori{ii) in
the definition ofA.
It remains to show tha® satisfies[{i). However, Proposition 8.2 implies that there
exists a fixed' > 0 such that each functioR\"” (b=1) — b1 extends taB,({0}) and
converges td® uniformly on this set. Thus, the strengthened hypothes€oiollary
[3.3 hold so that the non-commutative function defined by thebties

(n) -1 -1
R (b) = lim Fu (077) — b7
t10 t

(40) — o™ (p)

is uniformly analytic ab and, by continuation, is an extension®f*) (b—') for each
n. Thus,® € A, completing our proof. O

The following proposition establishes continuity in geatéarg the semigroups, and
may be useful in future applications.

PROPOSITION 3.6. Assume thatb;, ®, € A generate the semigroups of noncom-
mutative functions{F; (¢, -) }+>0 and {Fx(¢,-)}+>0. If we assume thaﬂ@ﬁ”)(b) -
@é”)(b)ﬂ < eforallb € Bs(b') C M,(B), a ball of radius) whereS(b') > 91,
then we may conclude th4F™ (1,b) — F{™ (1,b)|| < Ce for all b € Bs(b') where

C depends only o, .

Proof. To prove our claim, we first note that, by the vector-valuegichule,
52F ™ (t,b) 5
o5 LY spm) [ p) 2 pn)
50 ] ( (L), 5 (0,1)
so thatF;(t, b) is twice differentiable irt and has uniformly bounded derivative for

b € H™¢(B) andt € [0,1]. We refer to the maximum of this bound ove= 1,2 as
Mos.
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Using the remainder estimates for the Taylor series adsocia F;, we have the
following:

My~?

(41) [Fi(b, t +) — Fi(b, 1) = y®(Fi(b, 1)) || <

Let M, = supbeMi,g(B)_’n€N|\5<I>(")(b,-)H. Utilizing the estimate[{41) withy =
1/N, we produce the following inequalities:

IE™ (b,t0 + 1/N) = FS™ (b, to + 1/N)||
+IE (b, t0) — F (b, to)|
I (E 0, 10)) — 7 (F b, t0)) | 4+ 1 F (b t0) — S (0, 10)]

M2 € M1 n n
<mtEt (1 + W) 1F{ (b, o) — F3™ (b, t0) |

1 n n n n
+ 12 (F (0, 10)) - @57 (FS" (b, 10)|

1 n n n n
+ 19 (" (0, 10)) — @7 (F5" (b,10)|

Using this estimate inductively, we have that
N-1

M. M\F o eM 1
F0 10— F™e )< (£ 42 14+ L
H 1 ( ) ) 2 ( ’ )H — N + N2 kZ:O + N - ]\41 €

where the convergence occurs/as! co. This implies our result.

4. THE BERCOVICI-PATA BIJECTION.

DEFINITION 4.1. Let (S, <) be a poset (partially ordered set). Arderon S is an
order-preserving bijection
f08,=) = ({L,2,....I8]},<).
Denote byo(.S) the number of different orders df
LEMMA 4.2, Let(S, <) be a poset, and = U UV a partition of S. U andV are
posets with the induced order.
(&) Suppose thatforath € U andv € V, u < v. Then

o(S) = o(U)o(V).

(b) Suppose that for all € U andv € V, v andv are unrelated to each other.
Then
o(S)  o(U)o(V)

Bl
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Proof. Part (a) is obvious. It is also clear that under the assumgtid part (b), there
is a bijection between the orders Srand triples

{order onU, order onV/, a subset of1, 2, ...,|S|} of cardinality|U|} .

Therefore S
)
o(S) = o(U)o(V).
8= (o0
This implies part (b). O
DEFINITION 4.3, For a non-crossing partition = {V1, Vs, ..., V}}, define a partial

order on it as follows: fot/, V € =, U < V if for somei, j € U and anyv € V', we
havei < v < j. In this case we say thét coversV. Minimal elements with respect
to this order are called theuterblocks ofr; the rest are thaaner blocks.

See|[HS11, HS14] for more on orders on non-crossing parstio

DEFINITION 4.4. Lety : B{X) — B be a-bimodule map; at this point no positivity
assumptions are made. it®notone cumulant functionialthe3-bimodule mapK* :
Bo(X) — B defined implicitly by

42)  ulboXbiX .. by Xb )= Y 0(”') K" boXb1 X ... bu_1 Xby].

7TENC(n) |7T|
Here for a non-crossing partition, K* is defined in terms ok* in the usual way
as in [Speg8] (see Section 3 6f [ABEN13] for a detailed diseus), ando(n) is the
number of orders om considered as a poset (as in the preceding definition). The
implicit definition determines the monotone cumulants uely since

(43)
K [boX ... by -1 Xbn] = pfboX ... bn 1 Xbp]— > @K#[box...bn,l)(bn],

!
TENC(n)
n#1,

and the second term on the right-hand side can be expresseminis of lower-order
moments.

REMARK 4.5. For N € N, we note that
KHOIN — K1 @ 1y.

The proof of this fact is identical to that of Proposition 6{JPV13].

It follows that the generating function arguments in thet @ sthis section work
equally well for eachu ® 15, and so the corresponding generating functions com-
pletely determine the states.

LEMMA 4.6. For B-bimodule mapsy; — p if and only if K#i — K*.
Proof. By assumption;[b] = b = u[b]. Forn > 1, clearly if
KFi[boXb1 X ... .bp_1Xbp] = KH[boXb1 X ...b,_1Xby)
then
wilbo X1 X .. by 1Xby] = plboXb1 X ... bp—1Xby]
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from equation[(4R). The other implication follows by indioct on n, using equa-

tion (43). O
DEFINITION 4.7. Foryu as above ang : B — B a linear map, defing®>" via
K" o Xb1X .. bu_1Xby] = bon (K*[Xb1X ... bp_1X]) by.

Define the formal generating functions
H*(b) =) ulb(Xb)"]
n=0
and
K*(b) = K"b(Xb)"].
n=1

Note that as formal series,

H"(b) = GH(b™1),
SO our notation is consistent with the analytic functioration in the rest of the article,
except that we use superscripts for formal series. Note thlsbthese generating
functions differ by a factor of from the more standard ones, and are more appropriate
for the computations with monotone convolution.

REMARK 4.8. Fixn € Nandr € NC(n). Denote byl;, ... ., Vi the outer blocks of
m, by ¢(V;) the partition consisting df; and the inner blocks it covers, and by(V;),

Jj =1,2,...,|V;| — 1 the partition consisting of the inner blocks lying betweka t
jth and the(j + 1)st elements of/;. By Lemmd4.P part (b),

’
(44) ™ 11 7(6(%))

By part (a) of that lemma,

[Vil—1 [Vil—1
o<c<w>>=o<{vi}>o(‘ cj<vz->)=o(} W))

and so by part (b),
ole(Vi)) T ole;(Vh)
“o or-o - L o

The following results may be contained in [Pop08], and aosaly related to Propo-
sition 3.5 in [HS14]. We provide a purely combinatorial direroof.

ProposITION 4.9. Lety : B(X) — B be an exponentially bounddébimodule
map. Then for each
dH )™ ()

G = e ),
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Proof. It suffices to prove the result fa¥ = 1. We begin by proving this equality for
each of the coefficients of the series expansiond6f andK* o H*™". Since

(X)) = & ZC()t'” |<|,> “BXDX .. bX]

> t‘”"lo(iﬂ)'Kg[bXbX...bXb],
TENC(n) (|7T| N 1)

%M
(46)

the coefficient ofi 2 [b(:Xb)"] in its expansion igI™! ! -2 ”1), On the other hand,

K* {H“N(b) (XH”N(b))l}
— K~ [H“Dt(b)XH“M(b)X g (b)XH#D‘(b)}

Z flmol © o(mo )K“X

|mol!
ko,....k1 >0 70 E€NC(ko)

[
g
g

Z t"fl‘( )K“X...X Z ¢ml 2 ofmi )K“

| |
T ENC(k1) ! mENC (k1) !

> > O(WOP O(m') . O(m') K"
ko,...,ki >0 m; ENC(ky), [mol! [m! | !
0<i<l

[KEXKE X .. XKE] tlmoltml+etim|
o T ™ 9

whereKy(b) = b. Fixingn = ko + ... + k; + [, each term in this expansion is a
multiple of K#[b(Xb)"], wherer is constructed from partitionsy, 1, ..., 7, and
an additional outer block dfelements:

={ko+ L ko+ki+2,....k0+...+ ki1 +1}en
and
m; = restrictionofrto [ko+...+ ki1 +i+1,ko+...+k+i], i=0,1,...,1

Note that|mg| + |m1| + ... + |m| = || — 1. This identification has an inverse, which
requires first choosing one of thieouter blocks ofr. Order the outer blocks left-

to-right and call the specially chosen blogk Using the notation from Remakk 4.8,
we see that the coefficient &f~[b(X )] in the expansion of#(H"" " (b)) is tI71—1
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times

> 2 (Ussset%) (V o(cm-») 0 (Upsi ()
i=1 ’UmC(Vj)’! ‘UM c(vj)’!

Here we used equation (45), and equatlon (44) applied tdIipastUKi ¢(V;) and
Ujs, ¢(Vj), in the first line, and again_{#4) in the last line. Since weagi#d the
same coefficient as in expansi®nl(46), the result is prove@doh of the individual
components of the respective series expansions forreach.
Extending this to the series expansions and, thereforéjtietions, observe that all of
the sets over which the sums occur have cardinality whosethnate is exponential
overn. Thus, for||b]| small enough, the exponential boundednesg ofiplies that
the respective series are absolutely convergent. We magftiie conclude that the
coefficients of the series expansions agree, providedtkaB;(0) for § > 0 small
enough. Thus,
>t

clH*:ilf (b) _ KM(HMM(b)).
forb € B;s(0).
To extend to arbitrary bounded setsiin, consider the net of difference quotients

H " (b) — HY ()

Db, t) = -

for¢ > 0. We have just shown that

lim DY (b, t) — K*(H" ' (b))

h—0
uniformly on B5(0). By Theoren®.10 in [BPV12], this implies that the same is true
on all bounded sets iB~. Thus, at the level of functions,

dH"" (b)
dt

proving our result. O

= K"(H"" (b)),

COROLLARY 4.10
H(H®1n)l>(s+t) (b) _ H(P‘@ln)bs (H('Ll‘@l")bt(b)) .
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In particular,

P ) = P ()
so the combinatorial definition of monotone convolution emacoincides with the
complex analytic one in Definiti¢dn 2.3.

Proof. By Propositioid0H """ (H“Dt (b)), as a function of, satisfies

d%HHDS (H“M(b)) — K# (HM“ (H“M(b))) :
HM® (H“Dt(b)) = H' (b).

Since, by the same propositioH,“D(S”) (b) also satisfies this differential equation
with this initial condition, they coincide for all positive
For the second statement, we observe that

o (F“M(b)) _ o ((G“M(b)) ) _ g (H“Dt(b_l)) _

> (s+t)
U

;U'I>(S+t)

—H by =G (b).

O

PropPOSITION 4.11 If p,v € ¥p andu > p = v > v, theny = v. In particular, if
the square root with respect to the monotone convolutiost®xt is unique.

Proof. Under the given assumption,
KH = EKMDM = KV
2 )
and therefore: = v. O

REMARK 4.12 Lety € B be self-adjoint, and : B({X) — B be a completely
positive butnot necessarily #-bimodule map. Define}? via its Boolean cumulant
functional

B" [boXby] = boyby, B [boXb1X ... by_1Xby] = boo[b1 X ... bp_1]bn.
It is known [BPVI2[ABFN13] that/° is a completely positivés-bimodule map.
Similarly, definev’” via its monotone cumulant functional

K" [boXb1] = boyby, K2 [boXb1X ... bp_1Xby] = boo[b1 X ... bp_1]bn.
We could also define};” via its free cumulant functional

RYE [boXby] = boyby, R'E [boXb1X ...bp_1Xbp] =boo[by X ...by_1]bn.

LEMMA 4.13 Letk; — oo be a numerical sequencéy; : B(X) — B};-, a se-
guence of linea3-bimodule maps, and : By(X) — B a linear B-bimodule map.
The following are equivalent.
(@) kipi[P(X)] = p[P(X)] for all P(X) € Bo(X).
(b) k;RM[P(X)] — p[P(X)] forall P(X) € Bo(X).
(¢) kiB*[P(X)] — p[P(X)]forall P(X) € Bo(X).
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(d) k; K+ [P(X)] — p[P(X)] forall P(X) € Bo{(X).
Here in all cases, the convergence is in normn

Proof. We will prove the equivalence between (a) and (d); the restsanilar, and
were proved in[[BPV12]. Indeed, df,(X),

kipi[boXb1 X .. b1 Xby] = ki KM [boXb1 X .. .bp—1Xby]

1 o(m .
+ E F%(MJ(M)W [boXle...bn_len].
TeNC(n) i ’
iss”

It follows immediately that (d) implies (a). The conversepiiation follows by in-
duction onn. O

COROLLARY 4.14 For linear 5-bimodule mapg; : B(X) — B, the following are
equivalent.

(@)
(b)

ulE-Ek"' —vg°.
(©)

uf’” — .
(d)

>k; V50
pst = vl

Proof. We will prove the equivalence between (a) and (d); the restsanilar, see
Lecture 13 in[[NSO6]. Indeed, by Lemrha}t.6, the statemenatim (a) is equivalent
to

kiKMo — K2
which by definition ofy’” means
kiKHi [X] -, kZKMZ [Xle R bnle] — J[le R bnfl]

This is equivalent to (a) by the preceding lemma. O

CoROLLARY 4.15 v’ is a completely positive map.

Proof. We can choose completely positiug such that.¥* — 1’7, for example by

1,1, o - . » i
takingu; = v "7 7. Thenyl'? is the limit of completely positive maps?, and as
such is completely positive (monotone convolution of twongbetely positive maps
is known to be positive, see Proposition 6.2/ of [Pdp08] asd &Pop1?2]). O

ProrosITION 4.16. Monotone convolution semigroups of completely posiive
bimodule maps are in a one-to-one correspondence with fairs) as above.
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Proof. {ytg’t" it > 0} form a one-parameter monotone convolution semigroup of
completely positivés-bimodule maps. Conversely {if:; } is such a semigroup, define

d
y=Sl X =KM[X] e B,
dt =g
d
O’[le e bnfl] = E ,LLt[Xle e bnle] = K" [Xle .. .bnle].
t=0
Since forP; € B(X) andc; € B,
N d N
> ol Pe; = R Y GXPIPiXc;| =
i,j=1 t=0 i,j=1
1 N
= lim 1 ”Z:l cEXPrPjXcj| >0,
o is completely positive O

REMARK 4.17. A short calculation shows that

®(b) = v+ G, (b).
This, combined with Theorein 2.1, gives an alternative pafahe result in Theo-
rem[3.5 that generators of semigroups arising frefimfinitely divisible distributions
coincide with the sel\. One can also use a standard combinatorial argument to show
thatr>-infinitely divisible distributions belong to such one-pareter semigroups. At

this point, we do not know how to obtain the more general tssnlTheoreni 315 by
combinatorial methods.

APPENDIXA. CHARACTERIZATION OF GENERALCAUCHY TRANSFORMS

In this appendix, we extend the main result(in [Wil13], naynttle classification of
the Cauchy transforms associated to distributions ¥y, to the Cauchy transforms
associated to more general CP maps.

THEOREM A.1. The following are equivalent:
(I) The analytic non-commutative functiai = (G™),,>, : H*(B) — H~(B)
has the property thdf = (H(™),,>; defined through the equalitié&™ (b) :=
G™ (b=1) foralln € N andb € M, (B) has uniformly analytic extension to a
neighborhood 06 satisfyingH (™ (0) = 0.
() There exists aC-linear mapo : B(X) — B satisfying [1) and[{2) such that
G (b) = o((b — X)),

Proof. We begin with[[)= (). Let ¢ satisfy [1) and[(2). By [PV13], Lemm&as,
we may conclude that there existshainfinitely divisible distributiony € 3y such
thatp,(XP(X)X) = o(P(X)) for all P(X) € B(X) (here,p, denotes the free
cumulant function associated ). Thus, the Voiculescu transform pfsatisfies the
following equality:

(47) oM (b) = —o((b— X))
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for all n € N and where the inverse in the equality is considered as a georseries,
so that the right hand side is convergent fiér || small enough dependent di (1).
Sincey is B-infinitely divisible, by Propositiors.1 in [Wil13], we have that the left
hand side of[(47) extends to

H*(B)UH™(B) [ J{be Mu(B): [|b7"] < C}

n=1

whereC' is a fixed constant, independentraf
Now, by Propositiori.2 in [PV13], the fact thaj: € X, implies thaty is realized as
the distribution arising from a non-commutative probap#ipace A, E, B). That s,

u(P(X)) = E(P(a))
for a fixed self-adjoint element € B and allP(X) € B(X). Thus,o((b — X)™!) =
pu(a(b—a)~'a) and, sincé — a € M,F(B) andp,, is a CP map o8(X ), we may
conclude thatthe (b — X)~1) € M, (B) forall b € M, (B).
Further note that

H(b)=o((b7' = X)7) = a((bX)"b)
k=0

is convergent in a neighborhood of zero simacsatisfies[(]l). It is also immediate that
H(0) = 0. This completes one direction of our proof.
We now prove[{l)= (). We will follow the proof of Theorem 4.1 in([Wil13] and
refer to this paper for the appropriate terminology.
We recover our operater through the differential structure @f. Indeed, we define
the mapo by letting
(0@1,) (b1 (X @1,)ba - - (X @1,)bes) := AFTH™(0,...,0 )(b1,ba, ..., beg1)

N——

£+2 — times
for elementsy, by, -+ ,ber1 € M, (B). Itis a consequence of Propositi8rl in
[Wil13] and [KVV14], Theorem 3.10 that this is a well definederator. Moreover,
the equality

1 d€+1
L+1 pr(n) S = {C) _
AZTH™(0,...,0 )(b,b,...,b) = dt“lH (0 + tb)|t=0
{42 — times
and the fact that the function is analytic in a neighborhao@ionplies that
(48) H™(0) = (0@ 1,)((bX)"D)
k=0
once we show that satisfies[(l). Continuation will allow us to conclude that
49) G0 =) (0@ L) X)) = (@@ 1a)((b- X)),
k=0

Thus, our theorem will follow when we can show thasatisfies propertie§](1) and

Q).
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To prove[1), we note that this is equivalent to showing that
(b1 Xbg -+ - Xboir)|| < OMT!

for a fixedC' > 0, provided that||b;|| = -+ = |beg1|| = 1. This will follow
from uniform analyticity and matches the proof of the sanw fia [Wil13]. Indeed,
consider the element ;12 (B)

0 by 0 0 0

0 0 by 0 0

0 0 0 b 0
B =

00 0 0 - beyy

00 0 0 - 0

Note thatH “+1) has a bound of' on a ball of radiug- about0, independent of
since we are assuming thétis uniformly analytic. Thus,

H58+1H(4+2) (0; B)||
((+1)!
= |AG HED(0,...,0)(B,...,B)|
= |r DAL HE (0, 0)(rB,...,rB)|
(T e HED 0,rB) |
- €+ 1)

[o(b1Xba - Xbeir)|| =

r

41
<C <—1>
= r

where the last inequality follows from the Cauchy estimateBheorem 2.P.
We must prove the technical fact that fact that

(50) ol ) =0

Assume that'(P) < 0 for someP € M, (B) where we can assume that> 41 for
somes > 0. Note thatG(™ (zP~1) € M (B) for all z € C* by assumption so that
AGM (iAP~Y) € M (B) for all A € R*. Utilizing the series expansion in_{49) as
well as the exponential bound that we have just proven, welade that the

lim AGM (iIAP~Y) = %P) = —io(P) ¢ M (B).

This contradiction implieg (30).
It remains to show{2). Once again, this will closely folldvetproof of the analogous
fact in Theorem 4.1 in [Wil13]. Indeed, we will first show that

for any monomialP(X) = b1(X ® 1,)bz--- X ® 1,ber1 € M,(B)(X) andby €
M, (B). We also assume th#i, 1| > el,, and the general case follows by letting
€l 0.
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Towards this end, we consider elemefitsty, £y € M,,(,41)(B) defined as follows:

0 ¢4 0 O 0o - 0

g 0 e 0 0 . 0

0 ¢ 0 ¢ 0 - 0

0 0 o 0 0271 0 ¢ ¢ times

0 0 - 0 0 ¢ |ef
andE; = 1,,p41)— Eo wherec; = db; fori =1,...,/andcy 1 = bg+1/54 ford >0
to be specified. Note that Xbs - - - Xbpr1 = c1 X o - -+ Xegy1. We define a function

gD (0) =GPV (b —bo) s M S0y (B) = My, (B)

The following properties are rather trivial and their prosdtches those of Theorem
4.1in [Wil13].
(@) C + eFy > v1,, for somey > 0 provided that) > 0 is small enough.
(b) Then x n minor in the top left corner of
[(C + €Eo)(X @ Luges1) + bo @ Leg1)* 1 (C + eEp)
is equal toP (X + bo) P*(X + bg) + O(e).
(©) g DI(b) =302 ([0 H(X @ Ly (g1) +bo @ 1e41)]Pb ") for b1 in a neigh-
borhood of0.
(d) We have thatg™(“+1)(2b) — o(b=1) in norm aslz| 1 oo forb > ~1,,.
(e) h(+D)(p) .= g(n(¢+1)(ph=1) has analytic extension to a neighborhood of zero.

The only one of these properties that differs from the prédfteeorem 4.1 in[[Wil13]
is (d). It follows immediately from the series expansiondg)

We now have the pieces in place to prdve (51). Note that (aiégsthatC + ¢Ej is
invertible so that the map

2 gD ((C 4 eEp)™Y)

sendsC™* into M,,(B)~. LetB, ; € M, (B) fori,j = 1,...,¢+ 1 and consider the
elementB = (Bl-_,j)fjil € My ¢4+1)(B). Given a statef € M, (B)* we define a new
state

fl,l(B) = f(Bl,l) : Mn(g+1)(B) — C.
We may define a map

Gfoe(z)=fi10 G ((C + eBy)™) : CT > C.
Propertiesrtc) and]d) imply the following farc C*:
llﬁn 2Gr.0.(2) :llﬁn fia [ng(ul))(Z(CﬂEO)fl)
= f1.1(c(C +€Ep)) > 0

where the last inequality will follow from the fact tht ; is a state, propertyi(a) and

©0).
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Now, observe that the coefficient af2‘*! in the functionGc . is equal to
p(t**=1)) > 0. Furthermore, since

s 1
Groc(z) =Go(z) = Z Zgil)

=0

¢
_ i J1.1(0([(C + €Eo)(X & 141) + b0)](C + €Ep)))
]

=0
we may conclude that

fraoo([(C+ €Eo)(X @ Ly(pq) + bo)* "V (C + eEy)) = p(t*~1) > 0.

Recalling [(b), it follows thatf o o([P(X + bo)P*(X + bo) + O(e)]) > 0. Letting
¢ | 0 and noting thaif was an arbitrary state, we have proven that

(0@ 1,)(P(X +bo)P*(X +bp)) >0

for any monomialP(X) € M, (B)(X).

The extension from the case of monomials to general elene#$X ) follows the
proof in [Wil13] exactly so we will refrain from repeating itThis implies [2) and,
therefore, our theorem. O
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