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Abstract. The question of existence of outer automorphisms of a
simple algebraic group G arises naturally both when working with the
Galois cohomology of G and as an example of the algebro-geometric
problem of determining which connected components of Aut(G) have
rational points. The existence question remains open only for four
types of groups, and we settle one of the remaining cases, type 3D4.
The key to the proof is a Skolem-Noether theorem for cubic étale
subalgebras of Albert algebras which is of independent interest. Nec-
essary and sufficient conditions for a simply connected group of outer
type A to admit outer automorphisms of order 2 are also given.
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1 Introduction

An algebraic group H defined over an algebraically closed field F is a disjoint
union of connected components. The component H◦ containing the identity
element is a normal subgroup in H that acts via multiplication on each of the
other components. Every F -point x in a connected component X of H gives
an isomorphism of varieties with an H◦-action H◦ ∼

−→ X via h 7→ hx.
When F is not assumed to be algebraically closed, the identity component H◦

is still defined as an F -subgroup of H , but the other components need not be.
Suppose X is a connected subvariety of H such that, after base change to the
algebraic closure Falg of F , X × Falg is a connected component of H × Falg.
Then, by the previous paragraph, X is an H◦-torsor, but X may have no F -
points. We remark that the question of whether X has an F -point arises when
describing the embedding of the category of compact real Lie groups into the
category of linear algebraic groups over R, see [Se, §5].

1.1 Outer automorphisms of algebraic groups

We will focus on the case where H = Aut(G) and G is semisimple, which
amounts to asking about the existence of outer automorphisms of G. This
question has previously been studied in [MT], [PrT], [Gar 12], [CKT], [CEKT],
and [KT]. Writing ∆ for the Dynkin diagram of G endowed with the natu-
ral action by the Galois group Gal(Fsep/F ) gives an exact sequence of group
schemes

1 −−−−→ Aut(G)◦ −−−−→ Aut(G)
α

−−−−→ Aut(∆)

as in [DG, Chap. XXIV, Th. 1.3 and §3.6] or [Sp, §16.3], hence a natural map
α(F ) : Aut(G)(F ) → Aut(∆)(F ). Note that Aut(∆)(Falg) is identified with
the connected components of Aut(G) × Falg in such a way that Aut(∆)(F ) is
identified with those components that are defined over F . We ask: is α(F )
onto? That is, which of the components of Aut(G) that are defined over F also
have an F -point?
Sending an element g of G to conjugation by g defines a surjection G →
Aut(G)◦, and the F -points Aut(G)◦(F ) are called inner automorphisms. The
F -points of the other components of Aut(G) are called outer. Therefore, our
question may be rephrased as: Is every automorphism of the Dynkin diagram
that is compatible with the natural action by the Galois group of F induced from
an F -automorphism of G?
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One can quickly observe that α(F ) need not be onto, for example, with the
group SL(A) where A is a central simple algebra of odd exponent, where an
outer automorphism would amount to an isomorphism of A with its opposite
algebra. This is a special case of a general cohomological obstruction. Namely,
writing Z for the scheme-theoretic center of the simply connected cover of G,
G naturally defines an element tG ∈ H2(F,Z) called the Tits class as in [T,
4.2] or [KMRT, 31.6]. (The cohomology used in this paper is fppf.) For every
character χ : Z → Gm, the image χ(tG) ∈ H2(F,Gm) is known as a Tits algebra
of G; for example, when G = SL(A), Z is identified with the group of (degA)-
th roots of unity, the group of characters is generated by the natural inclusion
χ : Z →֒ Gm, and χ(tSL(A)) is the class of A. (More such examples are given
in [KMRT, §27.B].) This example illustrates also the general fact: tG = 0 if
and only if EndG(V ) is a field for every irreducible representation V of G. The
group scheme Aut(∆) acts on H2(F,Z), and it was shown in [Gar 12, Th. 11]
that this provides an obstruction to the surjectivity of α(F ), namely:

im [α : Aut(G)(F )→ Aut(∆)(F )] ⊆ {π ∈ Aut(∆)(F ) | π(tG) = tG}. (1.1.1)

It is interesting to know when equality holds in (1.1.1), because this information
is useful in Galois cohomology computations. (For example, when G is simply
connected, equality in (1.1.1) is equivalent to the exactness of H1(F,Z) →
H1(F,G) → H1(F,Aut(G)).) Certainly, equality need not hold in (1.1.1), for
example when G is semisimple (take G to be the product of the compact and
split real forms of G2) or when G is neither simply connected nor adjoint (take
G to be the split group SO8, for which |imα| = 2 but the right side of (1.1.1)
has 6 elements). However, when G is simple and simply connected or adjoint,
it is known that equality holds in (1.1.1) when G has inner type or for some
fields F . Therefore, one might optimistically hope that the following is true:

Conjecture 1.1.2. If G is an absolutely simple algebraic group that is simply
connected or adjoint, then equality holds in (1.1.1).

The remaining open cases are where G has type 2An for odd n ≥ 3 (the case
where n is even is Cor. 9.1.2), 2Dn for n ≥ 3, 3D4, and

2E6. Most of this paper
is dedicated to settling one of these four cases.

Theorem A. If G is a simple algebraic group of type 3D4 over a field F , then
equality holds in (1.1.1).

One can ask also for a stronger property to hold:

Question 1.1.3. Suppose π is in α(Aut(G)(F )). Does there exist a φ ∈
Aut(G)(F ) so that α(φ) = π and φ and π have the same order?

This question, and a refinement of it where one asks for detailed information
about the possible φ’s, was considered for example in [MT], [PrT], [CKT],
[CEKT], and [KT]. (The paper [Br] considers a different but related question,
on the level of group schemes and not k-points.) It was observed in [Gar 12]
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that the answer to Question 1.1.3 is “yes” in all the cases where Conjecture
1.1.2 is known to hold. However, [KT] gives an example of a group G of type
3D4 that does not have an outer automorphism of order 3, yet the conjecture
holds for G by Theorem A. That is, combining the results of this paper and
[KT] gives the first example where the conjecture holds for a group but the
answer to Question 1.1.3 is “no”, see Example 8.3.1.
In the final section of the paper, §9, we translate the conjecture for groups of
type A into one in the language of algebras with involution as in [KMRT], give
a criterion for the existence of outer automorphisms of order 2 (i.e., prove a
version for type A of the main result of [KT]), and exhibit a group of type 2A
that does not have an outer automorphism of order 2.

1.2 Skolem-Noether Theorem for Albert algebras

In order to prove Theorem A, we translate it into a statement about Albert
F -algebras, 27-dimensional exceptional central simple Jordan algebras. Specif-
ically, we realize a simply connected group G of type 3D4 with tG = 0 as a
subgroup of the structure group of an Albert algebra J that fixes a cyclic cubic
subfield E elementwise, as in [KMRT, 38.7]. For such a group, the right side
of (1.1.1) is Z/3 and we prove equality in (1.1.1) by extending, in a controlled
way, a nontrivial F -automorphism of E to J , see the proof of Prop. 8.2.2. The
desired extension exists by Theorem B below, whose proof is the focus of §§2–7.
We spend the majority of the paper working with Jordan algebras.
Let J be an Albert algebra over a field F and suppose E,E′ ⊆ J are cubic
étale subalgebras. It is known since Albert-Jacobson [AJ] that in general an
isomorphism ϕ : E → E′ cannot be extended to an automorphism of J . Thus
the Skolem-Noether Theorem fails to hold for cubic étale subalgebras of Albert
algebras. In fact, even in the important special case that E = E′ is split and
ϕ is an automorphism of E having order 3, obstructions to the validity of this
result may be read off from [AJ, Th. 9]. We provide a way out of this impasse by
replacing the automorphism group of J by its structure group and allowing the
isomorphism ϕ to be twisted by the right multiplication of a norm-one element
in E. More precisely, referring to our notational conventions in Sections 1.3−3
below, we will establish the following result. For w ∈ E, write Rw : E → E for
the right multiplication e 7→ ew.

Theorem B. Let ϕ : E
∼
−→ E′ be an isomorphism of cubic étale subalgebras

of an Albert algebra J over a field F . Then there exists an element w ∈ E
satisfying NE(w) = 1 such that ϕ◦Rw : E → E′ can be extended to an element
of the structure group of J .

Note that no restrictions on the characteristic of F will be imposed. In order to
prove Theorem B, we first derive its analogue (in fact, a substantial generaliza-
tion of it, see Th. 5.2.7 below) for absolutely simple Jordan algebras of degree
3 and dimension 9 in place of J . This generalization is based on the notions
of weak and strong equivalence for isotopic embeddings of cubic étale algebras
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into cubic Jordan algebras (4.1) and is derived here by elementary manipula-
tions of the two Tits constructions. After a short digression into norm classes
for pairs of isotopic embeddings in § 6, Theorem B is established by combining
Th. 5.2.7 with a density argument and the fact that an isotopy between abso-
lutely simple nine-dimensional subalgebras of an Albert algebra can always be
extended to an element of its structure group (Prop. 7.2.4).

1.3 Conventions.

Throughout this paper, we fix a base field F of arbitrary characteristic. All
linear non-associative algebras over F are tacitly assumed to contain an identity
element. If C is such an algebra, we write C× for the collection of invertible
elements in C, whenever this makes sense. For any commutative associative
algebra K over F , we denote by CK := C ⊗ K the scalar extension (or base
change) of C from F to K, unadorned tensor products always being taken
over F . In other terminological and notational conventions, we mostly follow
[KMRT]. In fact, the sole truly significant deviation from this rule is presented
by the theory of Jordan algebras: while [KMRT, Chap. IX] confines itself to the
linear version of this theory, which works well only over fields of characteristic
not 2 or, more generally, over commutative rings containing 1

2 , we insist on the
quadratic one, surviving as it does in full generality over arbitrary commutative
rings. For convenience, we will assemble the necessary background material in
the next two sections of this paper.

2 Jordan algebras

The purpose of this section is to present a survey of the standard vocabulary
of arbitrary Jordan algebras. Our main reference is [J 81].

2.1 The concept of a Jordan algebra

By a (unital quadratic) Jordan algebra over F , we mean an F -vector space J
together with a quadratic map x 7→ Ux from J to EndF (J) (the U -operator)
and a distinguished element 1J ∈ J (the unit or identity element) such that,
writing

{xyz} := Vx,yz := Ux,zy := (Ux+z − Ux − Uz)y

for the associated triple product, the equations

U1J = 1J ,

UUxy = UxUyUx (fundamental formula), (2.1.1)

UxVy,x = Vx,yUx

hold in all scalar extensions. We always simply write J to indicate a Jordan
algebra over F , U -operator and identity element being understood. A subalge-
bra of J is an F -subspace containing the identity element and stable under the
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operation Uxy; it is then a Jordan algebra in its own right. A homomorphism
of Jordan algebras over F is an F -linear map preserving U -operators and iden-
tity elements. In this way we obtain the category of Jordan algebras over F .
By definition, the property of being a Jordan algebra is preserved by arbitrary
scalar extensions. In keeping with the conventions of Section 1.3, we write JK
for the base change of J from F to any commutative associative F -algebra K.

2.2 Linear Jordan algebras

Assume char(F ) 6= 2. Then Jordan algebras as defined in 2.1 and linear Jordan
algebras as defined in [KMRT, § 37] are virtually the same. Indeed, let J
be a unital quadratic Jordan algebra over F . Then J becomes an ordinary
non-associative F -algebra under the multiplication x · y := 1

2Ux,y1J , and this
F -algebra is a linear Jordan algebra in the sense that it is commutative and
satisfies the Jordan identity x · ((x · x) · y) = (x · x) · (x · y). Conversely, let J
be a linear Jordan algebra over F . Then the U -operator Uxy := 2x · (x · y) −
(x · x) · y and the identity element 1J convert J into a unital quadratic Jordan
algebra. The two constructions are inverse to one another and determine an
isomorphism of categories between unital quadratic Jordan algebras and linear
Jordan algebras over F .

2.3 Ideals and simplicity

Let J be a Jordan algebra over F . A subspace I ⊆ J is said to be an ideal if
UIJ+UJI+{IIJ} ⊆ J . In this case, the quotient space J/I carries canonically
the structure of a Jordan algebra over F such that the projection J → J/I is
a homomorphism. A Jordan algebra is said to be simple if it is non-zero and
there are no ideals other than the trivial ones. We speak of an absolutely simple
Jordan algebra if it stays simple under all base field extensions. (There is also a
notion of central simplicity which, however, is weaker than absolute simplicity,
although the two agree for char(F ) 6= 2.)

2.4 Standard examples

First, let A be an associative F -algebra. Then the vector space A together with
the U -operator Uxy := xyx and the identity element 1A is a Jordan algebra
over F , denoted by A+. If A is simple, then so is A+ [McC 69b, Th. 4]. Next,
let (B, τ) be an F -algebra with involution, so B is a non-associative algebra
over F and τ : B → B is an F -linear anti-automorphism of period 2. Then

H(B, τ) := {x ∈ B | τ(x) = x}

is a subspace of B. Moreover, if B is associative, then H(B, τ) is a subalgebra
of B+, hence a Jordan algebra which is simple if (B, τ) is simple as an algebra
with involution [McC69b, Th. 5].
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2.5 Powers

Let J be a Jordan algebra over F . The powers of x ∈ J with integer exponents
n ≥ 0 are defined recursively by x0 = 1J , x

1 = x, xn+2 = Uxx
n. Note for

J = A+ as in 2.4, powers in J and in A are the same. For J arbitrary, they
satisfy the relations

Uxmxn = x2m+n, {xmxnxp} = 2xm+n+p, (xm)n = xmn, (2.5.1)

hence force

F [x] :=
∑

n≥0

Fxn

to be a subalgebra of J . In many cases — e.g., if char(F ) 6= 2 or if J is simple
(but not always [J 81, 1.31, 1.32]) — there exists a commutative associative
F -algebra R, necessarily unique, such that F [x] = R+ [McC 70, Prop. 1], [J 81,
Prop. 4.6.2]. By abuse of language, we simply write R = F [x] and say R is a
subalgebra of J .

In a slightly different, but similar, vein we wish to talk about étale subalgebras
of a Jordan algebra. This is justified by the fact that étale F -algebras are
completely determined by their Jordan structure. More precisely, we have the
following simple result.

Lemma 2.5.2. Let E,R be commutative associative F -algebras such that E
is finite-dimensional étale. Then ϕ : E+ ∼

−→ R+ is an isomorphism of Jordan
algebras if and only if ϕ : E

∼
−→ R is an isomorphism of commutative associative

algebras.

Proof. Extending scalars if necessary, we may assume that E as a (unital) F -
algebra is generated by a single element x ∈ E , since this is easily seen to hold
unless F = F2, the field with two elements. But since the powers of x in E
agree with those in E+ = R+, hence with those in R, the assertion follows.

2.6 Inverses and Jordan division algebras

Let J be a Jordan algebra over F . An element x ∈ J is said to be invertible if
the U -operator Ux : J → J is bijective (equivalently, 1J ∈ Im(Ux)), in which
case we call x−1 := U−1

x x the inverse of x in J . Invertibility and inverses
are preserved by homomorphisms. It follows from the fundamental formula
(2.1.1) that, if x, y ∈ J are invertible, then so is Uxy and (Uxy)

−1 = Ux−1y−1.
Moreover, setting xn := (x−1)−n for n ∈ Z, n < 0, we have (2.5.1) for all
m,n, p ∈ Z. In agreement with earlier conventions, the set of invertible elements
in J will be denoted by J×. If J× = J\{0} 6= ∅, then we call J a Jordan division
algebra. If A is an associative algebra, then (A+)× = A×, and the inverses are
the same. Similarly, if (B, τ) is an associative algebra with involution, then
H(B, τ)× = H(B, τ) ∩B×, and, again, the inverses are the same.
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2.7 Isotopes

Let J be a Jordan algebra over F and p ∈ J×. Then the vector space J together

with the U -operator U
(p)
x := UxUp and the distinguished element 1

(p)
J := p−1 is

a Jordan algebra over F , called the p-isotope (or simply an isotope) of J and
denoted by J (p). We have J (p)× = J× and (J (p))(q) = J (Upq) for all q ∈ J×,
which implies (J (p))(q) = J for q := p−2. Passing to isotopes is functorial in
the following sense: if ϕ : J → J ′ is a homomorphism of Jordan algebras, then
so is ϕ : J (p) → J ′(ϕ(p)), for any p ∈ J×.

Let A be an associative algebra over F and p ∈ (A+)× = A×. Then right
multiplication by p in A gives an isomorphism Rp : (A+)(p)

∼
→ A+ of Jordan

algebras. On the other hand, if (B, τ) is an associative algebra with involution,
then so is (B, τ (p)), for any p ∈ H(B, τ)×, where τ (p) : B → B via x 7→
p−1τ(x)p stands for the p-twist of τ , and

Rp : H(B, τ)(p)
∼
−→ H(B, τ (p)) (2.7.1)

is an isomorphism of Jordan algebras.

2.8 Homotopies and the structure group

If J, J ′ are Jordan algebras over F , a homotopy from J to J ′ is a homomorphism
ϕ : J → J ′(p′) of Jordan algebras, for some p′ ∈ J ′×. In this case, p′ = ϕ(1J)

−1

is uniquely determined by ϕ. Bijective homotopies are called isotopies, while
injective homotopies are called isotopic embeddings. The set of isotopies from
J to itself is a subgroup of GL(J), called the structure group of J and denoted
by Str(J). It consists of all linear bijections η : J → J such that some linear
bijection η♯ : J → J satisfies Uη(x) = ηUxη

♯ for all x ∈ J . The structure group
contains the automorphism group of J as a subgroup; more precisely, Aut(J)
is the stabilizer of 1J in Str(J). Finally, thanks to the fundamental formula
(2.1.1), we have Uy ∈ Str(J) for all y ∈ J×.

3 Cubic Jordan algebras

In this section, we recall the main ingredients of the approach to a particu-
larly important class of Jordan algebras through the formalism of cubic norm
structures. Our main references are [McC69a] and [JK]. Systematic use will
be made of the following notation: given a polynomial map P : V → W be-
tween vector spaces V,W over F and y ∈ V , we denote by ∂yP : V → W the
polynomial map given by the derivative of P in the direction y, so (∂yP )(x)
for x ∈ V is the coefficient of the variable t in the expansion of P (x+ ty):

P (x+ ty) = P (x) + t(∂yP )(x) + · · · .
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3.1 Cubic norm structures

By a cubic norm structure over F we mean a quadruple X = (V, c, ♯,N) con-
sisting of a vector space V over F , a distinguished element c ∈ V (the base
point), a quadratic map x 7→ x♯ from V to V (the adjoint), with bilineariza-
tion x× y := (x+ y)♯− x♯− y♯, and a cubic form N : V → F (the norm), such
that, writing

T (y, z) := (∂yN)(c)(∂zN)(c)− (∂y∂zN)(c) (y, z ∈ V )

for the (bilinear) trace ofX and T (y) := T (y, c) for the linear one, the equations

c♯ = c, N(c) = 1 (base point identities), (3.1.1)

c× x = T (x)c− x (unit identity), (3.1.2)

(∂yN)(x) = T (x♯, y) (gradient identity), (3.1.3)

x♯♯ = N(x)x (adjoint identity) (3.1.4)

hold in all scalar extensions. A subspace of V is called a cubic norm sub-
structure of X if it contains the base point and is stable under the adjoint
map; it may then canonically be regarded as a cubic norm structure in its
own right. A homomorphism of cubic norm structures is a linear map of the
underlying vector spaces preserving base points, adjoints and norms. A cubic
norm structure X as above is said to be non-singular if V has finite dimension
over F and the bilinear trace T : V × V → F is a non-degenerate symmetric
bilinear form. If X and Y are cubic norm structures over F , with Y non-
singular, and ϕ : X → Y is a surjective linear map preserving base points and
norms, then ϕ is an isomorphism of cubic norm structures [McC69a, p. 507].

3.2 The associated Jordan algebra

Let X = (V, c, ♯,N) be a cubic norm structure over F and write T for its
bilinear trace. Then the U -operator

Uxy := T (x, y)x− x♯ × y (3.2.1)

and the base point c convert the vector space V into a Jordan algebra over
F , denoted by J(X) and called the Jordan algebra associated with X . The
construction of J(X) is clearly functorial in X . We have

N(Uxy) = N(x)2N(y) (x, y ∈ J). (3.2.2)

Jordan algebras isomorphic to J(X) for some cubic norm structure X over
F are said to be cubic. For example, let J be a Jordan algebra over F that
is generically algebraic (e.g., finite-dimensional) of degree 3 over F . Then
X = (V, c, ♯,N), where V is the vector space underlying J , c := 1J , ♯ is the
numerator of the inversion map, and N := NJ is the generic norm of J , is

Documenta Mathematica 21 (2016) 917–954



926 Skip Garibaldi and Holger P. Petersson

a cubic norm structure over F satisfying J = J(X); in particular, J is a
cubic Jordan algebra. In view of this correspondence, we rarely distinguish
carefully between a cubic norm structure and its associated Jordan algebra.
Non-singular cubic Jordan algebras, i.e., Jordan algebras arising from non-
singular cubic norm structures, by [McC69a, p. 507] have no absolute zero
divisors, so Ux = 0 implies x = 0.

3.3 Cubic étale algebras

Let E be a cubic étale F -algebra. Then Lemma 2.5.2 allows us to identify
E = E+ as a generically algebraic Jordan algebra of degree 3 (with U -operator
Uxy = x2y), so we may write E = E+ = J(V, c, ♯,N) as in 3.2, where c = 1E is
the unit element, ♯ is the adjoint and N = NE is the norm of E = E+. We also
write TE for the (bilinear) trace of E. The discriminant (algebra) of E will be
denoted by ∆(E); it is a quadratic étale F -algebra [KMRT, 18.C].

3.4 Isotopes of cubic norm structures

Let X = (V, c, ♯,N) be a cubic norm structure over F . An element p ∈ V is
invertible in J(X) if and only if N(p) 6= 0, in which case p−1 = N(p)−1p♯.
Moreover,

X(p) := (V, c(p), ♯(p), N (p)),

with c(p) := p−1, x♯
(p)

:= N(p)U−1
p x♯, N (p) := N(p)N , is again a cubic norm

structure over F , called the p-isotope of X . This terminology is justified since
the associated Jordan algebra J(X(p)) = J(X)(p) is the p-isotope of J(X). We
also note that the bilinear trace of X(p) is given by

T (p)(y, z) = T (Upy, z) (y, z ∈ X) (3.4.1)

in terms of the bilinear trace T of X . Combining the preceding considerations
with 3.1, we conclude that the structure group of a non-singular cubic Jordan
algebra agrees with its group of norm similarities.

3.5 Cubic Jordan matrix algebras

Let C be a composition algebra over F , so C is a Hurwitz algebra in the sense of
[KMRT, §33C], with norm nC , trace tC , and conjugation v 7→ v̄ := tC(v)1C−v.
Note in particular that the base field itself is a composition even if it has
characteristic 2. For any diagonal matrix

Γ = diag(γ1, γ2, γ3) ∈ GL3(F ),

the pair

(Mat3(C), τΓ) , τΓ(x) := Γ−1x̄tΓ (x ∈Mat3(C)),
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is a non-associative F -algebra with involution, allowing us to consider the sub-
space Her3(C,Γ) ⊆ Mat3(C) consisting of all elements x ∈ Mat3(C) that are
Γ-hermitian (x = Γ−1x̄tΓ) and have scalars down the diagonal. Note that we
have

Her3(C,Γ) ⊆ H(Mat3(C), τΓ)

in the sense of 2.4, with equality for char(F ) 6= 2 but not in general. In terms
of the usual matrix units eij ∈ Mat3(C), 1 ≤ i, j ≤ 3, we therefore have

Her3(C,Γ) =
∑

(Feii + C[jl]),

the sum on the right being taken over all cyclic permutations (ijl) of (123),
where

C[jl] := {v[jl] | v ∈ C}, v[jl] := γlvejl + γj v̄elj .

Now put V := Her3(C,Γ) as a vector space over F , c := 13 (the 3 × 3 unit
matrix) and define adjoint and norm on V by

x♯ :=
∑((

αjαl − γjγlnC(vi)
)
eii +

(
− αivi + γivjvl

)
[jl]

)
,

N(x) := α1α2α3 −
∑

γjγlαinC(vi) + γ1γ2γ3tC(v1v2v3)

for all x =
∑

(αieii+vi[jl]) in all scalar extensions of V . Then X := (V, c, ♯,N)
is a cubic norm structure over F . Henceforth, the symbol Her3(C,Γ) will stand
for this cubic norm structure but also for its associated cubic Jordan algebra.
We always abbreviate Her3(C) := Her3(C,13).

3.6 Albert algebras

Writing Zor(F ) for the split octonion algebra of Zorn vector matrices over F
[KMRT, VIII, Exc. 5], the cubic Jordan matrix algebra Her3(Zor(F )) is called
the split Albert algebra over F . By an Albert algebra over F , we mean an
F -form of Her3(Zor(F )), i.e., a Jordan algebra over F (necessarily absolutely
simple and non-singular of degree 3 and dimension 27) that becomes isomorphic
to the split Albert algebra when extending scalars to the separable closure.
Albert algebras are either reduced, hence have the form Her3(C,Γ) as in 3.5, C
an octonion algebra over F (necessarily unique), or are cubic Jordan division
algebras.

3.7 Associative algebras of degree 3 with unitary involution

By an associative algebra of degree 3 with unitary involution over F we mean a
triple (K,B, τ) with the following properties: K is a quadratic étale F -algebra,
with norm nK , trace tK and conjugation ιK , a 7→ ā, B is an associative algebra
of degree 3 over K and τ : B → B is an F -linear involution that induces the
conjugation of K via restriction. All this makes obvious sense even in the
special case that K ∼= F ×F is split, as do the generic norm, trace and adjoint
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of B, which are written as NB, TB, ♯, respectively, connect naturally with the
involution τ and agree with the corresponding notions for the cubic Jordan
algebra B+. In particular, H(B, τ) is a Jordan algebra of degree 3 over F
whose associated cubic norm structure derives from that of B+ via restriction.
Let (K,B, τ) be an associative algebra of degree 3 with unitary involution
over F . We say (K,B, τ) is non-singular if the corresponding cubic Jordan
algebra B+ has this property, equivalently, if B is free of finite rank over K
and TB : B×B → K is a non-degenerate symmetric bilinear form in the usual
sense. We say (K,B, τ) is central simple if K is the centre of B and (B, τ) is
simple as an algebra with involution. This allows us to speak of (B, τ) as a
central simple associative algebra of degree 3 with unitary involution over F ,
the centre of B (a quadratic étale F -algebra) being understood.

3.8 The second Tits construction

Let (K,B, τ) be an associative algebra of degree 3 with unitary involution over
F and suppose we are given a norm pair (u, µ) of (K,B, τ), i.e., a pair of
invertible elements u ∈ H(B, τ), µ ∈ K such that NB(u) = nK(µ). We put
V := H(B, τ) ⊕ Bj as the external direct sum of H(B, τ) and B as vector
spaces over F , using j as a placeholder. We define base point, adjoint and
norm on V by the formulas

c := 1B + 0 · j, (3.8.1)

x♯ := (v♯0 − vuv̄) + (µ̄v̄♯u−1 − v0v)j, (3.8.2)

N(x) := NB(v0) + µNB(v) + µ̄NB(v) − TB
(
v0, vuτ(v)

)
(3.8.3)

for x = v0+vj, v0 ∈ H(B, τ), v ∈ B (and in all scalar extensions as well). Then
we obtain a cubic norm structure X := (V, c, ♯,N) over F whose associated
cubic Jordan algebra will be denoted by J := J(K,B, τ, u, µ) := J(X) and has
the bilinear trace

T (x, y) = TB(v0, w0) + TB
(
vuτ(w)

)
+ TB

(
wuτ(v)

)

= TB(v0, w0) + tK

(
TB

(
vuτ(w)

))
(3.8.4)

for x as above and y = w0 + wj, w0 ∈ H(B, τ), w ∈ B. It follows that, if
(K,B, τ) is non-singular, then so is J . Note also that the cubic Jordan algebra
H(B, τ) identifies with a subalgebra of J through the initial summand.
If (K,B, τ) is central simple in the sense of 3.7, then K is the centre of B,
J(B, τ, u, µ) := J(K,B, τ, u, µ) is an Albert algebra over F , and all Albert
algebras can be obtained in this way. More precisely, every Albert algebra J
over F contains a subalgebra isomorphic to H(B, τ) for some central simple
associative algebra (B, τ) of degree 3 with unitary involution over F , and ev-
ery homomorphism H(B, τ) → J can be extended to an isomorphism from
J(B, τ, u, µ) to J , for some norm pair (u, µ) of (K,B, τ), with K the centre of
B.
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Our next result is a variant of [PeR84b, Prop. 3.9] which extends the isomor-
phism (2.7.1) in a natural way.

Lemma 3.8.5. Let (K,B, τ) be a non-singular associative algebra of degree 3
with unitary involution over F and suppose (u, µ) is a norm pair of (K,B, τ).
Then, given any p ∈ H(B, τ)×, writing τ (p) for the p-twist of τ in the sense of
2.7 and setting u(p) := p♯u, µ(p) := NB(p)µ, the following statements hold.

a. (K,B, τ (p)) is a non-singular associative algebra of degree 3 with unitary
involution over F .

b. H(B, τ (p)) = H(B, τ)p, and (u(p), µ(p)) is a norm pair of (K,B, τ (p)).

c. The map

R̂p : J(K,B, τ, u, µ)
(p) ∼
−→ J(K,B, τ (p), u(p), µ(p))

defined via v0+vj 7−→ v0p+(p−1vp)j is an isomorphism of cubic Jordan
algebras.

Proof. (a): This follows immediately from 3.7.
(b): The first assertion is a consequence of (2.7.1). As to the second, we
clearly have u(p) ∈ B× and µ(p) ∈ K×. Moreover, from p−1 = NB(p)

−1p♯

we deduce NB(p
♯) = NB(p)

2 and pp♯ = NB(p)1B = p♯p, hence τ (p)(u(p)) =
p−1τ(u)p♯p = NB(p)p

−1u = p♯u = u(p). Thus u(p) ∈ H(B, τ (p))× and
NB(u

(p)) = NB(p)
2nB(u) = NB(u)

2nK(µ) = nK(µ(p)), which completes the
proof.
(c): By (b), (3.4.1) and 3.8, the map R̂p is a linear bijection between non-
singular cubic Jordan algebras preserving base points. By 3.1, it therefore
suffices to show that it preserves norms as well. Writing N (resp. N ′) for the
norm of J(K,B, τ, u, µ) (resp. J(K,B, τ (p), u(p), µ(p))), we let v0 ∈ H(B, τ),
v ∈ B and compute, using (3.8.3),

(N ′ ◦ R̂p)(v0 + vj) = N ′(v0p+ (p−1vp)j)

= NB(p)NB(v0) +NB(p)µNB(v) +NB(p)µ̄NB(v)

− TB
(
v0pp

−1vpp♯uτ (p)(p−1vp)
)

= NB(p)
(
NB(v0) + µNB(v) + µ̄NB(v)− TB

(
v0vuτ(v)

))

= N (p)(v0 + vj),

as desired.

Remark 3.8.6. The lemma holds without the non-singularity condition on
(K,B, τ) but the proof is more involved.

If the quadratic étale F -algebra K in 3.8 is split, there is a less cumbersome
way of describing the output of the second Tits construction.
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3.9 The first Tits construction

Let A be an associative algebra of degree 3 over F and µ ∈ F×. Put V :=
A⊕Aj1 ⊕Aj2 as the direct sum of three copies of A as an F -vector space and
define base point, adjoint and norm on V by the formulas c := 1A+0 ·j1+0 ·j2,

x♯ := (v♯0 − v1v2) + (µ−1v♯2 − v0v1)j1 + (µv♯1 − v2v0)j2, (3.9.1)

N(x) := NA(v0) + µNA(v1) + µ−1NA(v2)− TA(v0v1v2) (3.9.2)

for x = v0+ v1j1+ v2j2, v0, v1, v2 running over all scalar extensions of A. Then
X := (V, c, ♯,N) is a cubic norm structure over F , with bilinear trace given by

T (x, y) = TA(v0, w0) + TA(v1, w2) + TA(v2, w1) (3.9.3)

for x as above and y = w0+w1j1+w2j2, w0, w1, w2 ∈ A. The associated cubic
Jordan algebra will be denoted by J(A, µ) := J(X). The Jordan algebra A+

identifies with a cubic subalgebra of J(A, µ) through the initial summand, and
if A is central simple, then J(A, µ) is an Albert algebra, which is either split
or division.
Now let (K,B, τ) be an associative algebra of degree 3 with unitary involution
over F and suppose (u, µ) is a norm pair of (K,B, τ). If K = F × F is split,
then we have canonical identifications (B, τ) = (A × Aop, ε) for some associa-
tive algebra A of degree 3 over F , where ε denotes the exchange involution,
and H(B, τ) = A+ as cubic Jordan algebras, where the inclusion H(B, τ) ⊆ B
corresponds to the diagonal embedding A+ →֒ A×Aop. Moreover, µ = (α, β),
where α ∈ F is invertible, β = α−1NA(u), and there exists a canonical iso-
morphism J := J(K,B, τ, u, µ) ∼= J(A,α) =: J ′ matching H(B, τ) canonically
with A+ as subalgebras of J, J ′, respectively. On the other hand, if K is a field,
the preceding considerations apply to the base change from F to K and then
yield an isomorphism J(K,B, τ, u, µ)K ∼= J(B, µ).

4 The weak and strong Skolem-Noether properties

As we have pointed out in 1.2, extending an isomorphism between cubic étale
subalgebras of an Albert algebra J to an automorphism on all of J will in gen-
eral not be possible. Working with elements of the structure group rather than
automorphisms, our Theorem B above is supposed to serve as a substitute for
this deficiency. Unfortunately, however, this substitute suffers from deficiencies
of its own since the natural habitat of the structure group is the category of
Jordan algebras not under homomorphisms but, instead, under homotopies.
Fixing a cubic Jordan algebra J over our base field F and a cubic étale F -
algebra E throughout this section, we therefore feel justified in phrasing the
following formal definition.

4.1 Weak and strong equivalence of isotopic embeddings

(a) Two isotopic embeddings i, i′ : E → J in the sense of 2.8 are said to be
weakly equivalent if there exist an element w ∈ E of norm 1 and an element
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ψ ∈ Str(J) such that the diagram

E
Rw

//

i′

��

E

i
��

J
ψ

// J

(4.1.1)

commutes. They are said to be strongly equivalent if ψ ∈ Str(J) can further-
more be chosen so that the diagram commutes with w = 1 (i.e., Rw = IdE).
Weak and strong equivalence clearly define equivalence relations on the set of
isotopic embeddings from E to J .
(b) The pair (E, J) is said to satisfy the weak (resp. strong) Skolem-Noether
property for isotopic embeddings if any two isotopic embeddings from E to J
are weakly (resp. strongly) equivalent. The weak (resp. strong) Skolem-Noether
property for isomorphic embeddings is defined similarly, by restricting the maps
i, i′ to be isomorphic embeddings instead of merely isotopic ones.

Remark 4.1.2. In 4.1 we have defined four different properties, depending on
whether one considers the weak or strong Skolem-Noether property for isotopic
or isomorphic embeddings. Clearly the combination weak/isomorphic is the
weakest of these four properties and strong/isotopic is the strongest.
In the case where J is an Albert algebra, Theorem B is equivalent to saying
that the pair (E, J) satisfies the weakest combination, the weak Skolem-Noether
property for isomorphic embeddings. On the other hand, suppose i, i′ : E → J
are isomorphic embeddings and ψ ∈ Str(J) makes (4.1.1) commutative with
w = 1. Then ψ fixes 1J and hence is an automorphism of J . But such an
automorphism will in general not exist [AJ, Th. 9], and if it doesn’t the pair
(E, J) will fail to satisfy the strong Skolem-Noether property for isomorphic
embeddings. In view of this failure, we are led quite naturally to the following
(as yet) open question:

Does the pair (E, J), with J absolutely simple (of degree 3), always
satisfy the weak Skolem-Noether property for isotopic embeddings?

(4.1.3)

This is equivalent to asking whether, given two cubic étale subalgebras E1 ⊆
J (p1), E2 ⊆ J (p2) for some p1, p2 ∈ J×, every isotopy η : E1 → E2 allows a
norm-one element w ∈ E1 such that the isotopy η◦Rw : E1 → E2 extends to an
element of the structure group of J . Regrettably, the methodological arsenal
assembled in the present paper, consisting as it does of rather elementary ma-
nipulations involving the two Tits constructions, does not seem strong enough
to provide an affirmative answer to this question.
But in the case where J is absolutely simple of dimension 9 — i.e., the Jordan
algebra of symmetric elements in a central simple associative algebra of degree
3 with unitary involution over F [McCZ, 15.5] — we will show in Th. 5.2.7 be-
low that the weak Skolem-Noether property for isotopic embeddings does hold.
This result, in turn, will be instrumental in proving Theorem B in §7. Regard-
ing the strong Skolem-Noether property for isomorphic embeddings, Theorem
1.1 in [GanS] gives a way to measure its failure.
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5 Cubic Jordan algebras of dimension 9

Our goal in this section will be to answer Question 4.1.3 affirmatively in case
J is a nine-dimensional absolutely simple cubic Jordan algebra over F . Before
we will be able to do so, a few preparations are required.

5.1 Quadratic and cubic étale algebras

(a) If K and L are quadratic étale algebras over F , then so is

K ∗ L := H(K ⊗ L, ιK ⊗ ιL),

where ιK and ιL denote the conjugations of K and L, respectively. The
composition (K,L) 7→ K ∗ L corresponds to the abelian group structure of
H1(F,Z/2Z), which classifies quadratic étale F -algebras [KMRT, (29.9)].

(b) Next suppose L and E are a quadratic and cubic étale F -algebras, respec-
tively. Then E ⊗ L may canonically be viewed as a cubic étale L-algebra,
whose norm, trace, adjoint will again be denoted by NE , TE, ♯, respectively.
On the other hand, E ⊗L may also be viewed canonically as a quadratic étale
E-algebra, whose norm, trace and conjugation will again be denoted by nL,
tL, and ιL, x 7→ x̄, respectively. We may and always will identify E ⊆ E ⊗ L
through the first factor and then have E = H(E ⊗ L, ιL).

5.2 The étale Tits process

[PeT04a, 1.3] Let L, resp. E, be a quadratic, resp cubic, étale algebra over F
and as in 3.3 write ∆(E) for the discriminant of E, which is a quadratic étale
F -algebra. With the conventions of 5.1 (b), the triple (K,B, τ) := (L,E⊗L, ιL)
is an associative algebra of degree 3 with unitary involution over F in the sense
of 3.7 such that H(B, τ) = E. Hence, if (u, b) is a norm pair of (L,E ⊗ L, ιL),
the second Tits construction 3.8 leads to a cubic Jordan algebra

J(E,L, u, b) := J(K,B, τ, u, b) = J(L,E ⊗ L, ιL, u, b)

that belongs to the cubic norm structure (V, c, ♯,N) where V = E ⊕ (E ⊗ L)j
as a vector space over F and c, ♯,N are defined by (3.8.1)–(3.8.3) in all scalar
extensions. The cubic Jordan algebra J(E,L, u, b) is said to arise from E,L, u, b
by means of the étale Tits process. There exists a central simple associative
algebra (B, τ) of degree 3 with unitary involution over F uniquely determined
by the condition that J(E,L, u, b) ∼= H(B, τ), and by [PeR 84b, Th. 1], the
centre of B is isomorphic to ∆(E) ∗ L (cf. 5.1 (a)) as a quadratic étale F -
algebra.

For convenience, we now recall three results from [PeT04a] that will play a
crucial role in providing an affirmative answer to Question 4.1.3 under the
conditions spelled out at the beginning of this section.
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Theorem 5.2.1. ([PeT04a, 1.6]) Let E be a cubic étale F -algebra, (B, τ) a
central simple associative algebra of degree 3 with unitary involution over F
and suppose i is an isomorphic embedding from E to H(B, τ). Writing K
for the centre of B and setting L := K ∗∆(E), there is a norm pair (u, b) of
(L,E⊗L, ιL) such that i extends to an isomorphism from the étale Tits process
algebra J(E,L, u, b) onto H(B, τ).

Theorem 5.2.2. ([PeT04a, 3.2]) Let E,E′ and L,L′ be cubic and quadratic
étale algebras, respectively, over F and suppose we are given norm pairs (u, b)
of (L,E ⊗ L, ιL) and (u′, b′) of (L′, E′ ⊗ L′, ιL′). We write

J := J(E,L, u, b) = E ⊕ (E ⊗ L)j, J ′ := J(E′, L′, u′, b′) = E′ ⊕ (E′ ⊗ L′)j′

as in 5.2 for the corresponding étale Tits process algebras and let ϕ : E′ ∼
→ E

be an isomorphism. Then, for an arbitrary map Φ: J ′ → J , the following
conditions are equivalent.

(i) Φ is an isomorphism extending ϕ.

(ii) There exist an isomorphism ψ : L′ ∼
→ L and an invertible element y ∈

E ⊗ L such that ϕ(u′) = nL(y)u, ψ(b
′) = NE(y)b and

Φ(v′0 + v′j′) = ϕ(v′0) +
(
y(ϕ⊗ ψ)(v′)

)
j (5.2.3)

for all v′0 ∈ E
′, v′ ∈ E′ ⊗ L′.

Proposition 5.2.4. ([PeT04a, 4.3]) Let E be a cubic étale F -algebra and
α, α′ ∈ F×. Then the following conditions are equivalent.

i. The first Tits constructions J(E,α) and J(E,α′) (cf. 3.9) are isomorphic.

ii. J(E,α) and J(E,α′) are isotopic.

iii. α ≡ α′ε mod NE(E
×) for some ε = ±1.

iv. The identity of E can be extended to an isomorphism from J(E,α) onto
J(E,α′).

Our next aim will be to derive a version of Th. 5.2.1 that works with isotopic
rather than isomorphic embeddings and brings in a normalization condition
already known from [KMRT, (39.2)].

Proposition 5.2.5. Let (B, τ) be a central simple associative algebra of degree
3 with unitary involution over F and write K for the centre of B. Suppose
further that E is a cubic étale F -algebra and put L := K ∗ ∆(E). Given
any isotopic embedding i : E → J := H(B, τ), there exist elements u ∈ E,
b ∈ L such that NE(u) = nL(b) = 1 and i can be extended to an isotopy from
J(E,L, u, b) onto J .
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Proof. By 2.8, some invertible element p ∈ J makes i : E → J (p) an isomorphic
embedding. On the other hand, invoking 2.7 and writing τ (p) for the p-twist of
τ , it follows that

Rp : J
(p) ∼
−→ H(B, τ (p))

is an isomorphism of cubic Jordan algebras, forcing i1 := Rp ◦ i : E →
H(B, τ (p)) to be an isomorphic embedding. Hence Th. 5.2.1 yields a norm
pair (u1, µ1) of (L,E ⊗ L, ιL) such that, adapting the notation of 3.8 to the
present set-up in an obvious manner, i1 extends to an isomorphism

η′1 : J(E,L, u1, b1) = E ⊕ (E ⊗ L)j1
∼
−→ H(B, τ (p)).

Thus η1 := Rp−1 ◦ η′1 : J(E,L.u1, b1)
∼
→ J (p) is an isomorphism, which may

therefore be viewed as an isotopy from J(E,L, u1, b1) onto J extending i. Now
put u := NE(u1)

−1u31, b := b̄1b
−1
1 and y := u1 ⊗ b

−1
1 ∈ (E ⊗ L)× to conclude

NE(u) = nL(b) = 1 as well as nL(y)u1 = u, NE(y)b1 = b. Applying Th. 5.2.2
to ϕ := 1E , ψ := 1L, we therefore obtain an isomorphism

Φ: J(E,L, u, b)
∼
−→ J(E,L, u1, b1), v0 + vj1 7−→ v0 + (yv)j

of cubic Jordan algebras, and η := η1 ◦ Φ: J(E,L, u, b) → J is an isotopy of
the desired kind.

Lemma 5.2.6. Let L, resp. E be a quadratic, resp. cubic étale algebra over F
and suppose we are given elements u ∈ E, b ∈ L satisfying NE(u) = nL(b) = 1.
Then w := u−1 ∈ E has norm 1 and Rw : E → E extends to an isomorphism

R̂w : J(E,L, 1E, b)
∼
−→ J(E,L, u, b)(u), v + xj 7−→ (vw) + xj

of cubic Jordan algebras.

Proof. This follows immediately from Lemma 3.8.5 for (K,B, τ) := (L,E ⊗
L, ιL), µ := b and p := u.

We are now ready for the main result of this section.

Theorem 5.2.7. Let (B, τ) be a central simple associative algebra of degree
3 with unitary involution over F and E a cubic étale F -algebra. Then the
pair (E, J) with J := H(B, τ) satisfies the weak Skolem-Noether property for
isotopic embeddings in the sense of 4.1 (b).

Proof. Given two isotopic embeddings i, i′ : E → J , we must show that they
are weakly equivalent. In order to do so, we write K for the centre of B as
a quadratic étale F -algebra and put L := K ∗∆(E). Then Prop. 5.2.5 yields
elements u, u′ ∈ E, b, b′ ∈ L satisfying

NE(u) = NE(u
′) = nL(b) = nL(b

′) = 1 (5.2.8)
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such that the isotopic embeddings i, i′ can be extended to isotopies

η : J(E,L, u, b) = E ⊕ (E ⊗ L)j −→ J,

η′ : J(E,L, u′, b′) = E ⊕ (E ⊗ L)j′ −→ J, (5.2.9)

respectively. We now distinguish the following two cases.
Case 1: L ∼= F × F is split. As we have noted in 3.9, there exist elements
α, α′ ∈ F× and isomorphisms

Φ: J(E,L, u, b)
∼
−→ J(E,α), Φ′ : J(E,L, u′, b′)

∼
−→ J(E,α′)

extending the identity of E. Thus (5.2.9) implies that Φ ◦ η−1 ◦ η′ ◦
Φ′−1 : J(E,α′) → J(E,α) is an isotopy, and applying Prop. 5.2.4, we find
an isomorphism θ : J(E,α′)

∼
→ J(E,α) extending the identity of E. But then

ϕ := η◦Φ−1◦θ◦Φ′◦η′−1 : J −→ J is an isotopy, hence belongs to the structure
group of J , and satisfies

ϕ ◦ i′ = η ◦ Φ−1 ◦ θ ◦ Φ′ ◦ η′−1 ◦ η′|E = η|E = i.

Thus i and i′ are even strongly equivalent.
Case 2: L is a field. Since J(E,L, u, b) and J(E,L, u′, b′) are isotopic (via
η′−1 ◦ η), so are their scalar extensions from F to L. From this and 3.9 we
therefore conclude that J(E⊗L, b) and J(E⊗L, b′) are isotopic over L. Hence,
by Prop. 5.2.4,

b = b′εNE(z) (5.2.10)

for some ε = ±1 and some z ∈ (E ⊗ L)×. Now put ϕ := 1E , ψ := ιL and
y := u′ ⊗ 1L ∈ (E ⊗ L)×. Making use of (5.2.8) we deduce nL(y)u

′−1 = u′,
NE(y)b

′−1 = b̄′. Hence Th. 5.2.2 shows that the identity of E can be extended
to an isomorphism

θ : J(E,L, u′, b′)
∼
−→ J(E,L, u′−1, b′−1),

and we still have NE(u
′−1) = nL(b

′−1) = 1. Thus, replacing η′ by η′ ◦ θ−1 if
necessary, we may assume ε = 1 in (5.2.10), i.e.,

b = b′NE(z). (5.2.11)

Next put ϕ := 1E, ψ := 1L and y := z ∈ (E ⊗ L)×, u1 := nL(y)u
′, b1 :=

NE(y)b
′ = b (by (5.2.11)). Taking L-norms in (5.2.11) and observing (5.2.8),

we conclude NE(y)NE(y) = nL
(
NE(z)) = 1, and since u1 = yȳu′, this implies

NE(u1) = 1. Hence Th. 5.2.2 yields an isomorphism

θ : J(E,L, u1, b1)
∼
−→ J(E,L, u′, b′)

extending the identity of E, and replacing η′ by η′ ◦ θ if necessary, we may and
from now on will assume

b = b′. (5.2.12)

Documenta Mathematica 21 (2016) 917–954



936 Skip Garibaldi and Holger P. Petersson

Setting w := u−1 and consulting Lemma 5.2.6, we have NE(w) = 1 and obtain
a commutative diagram

E
Rw

//
� _

��

E
i

//
� _

��

J

J(E,L, 1E, b)
R̂w

// J(E,L, u, b),
η

55jjjjjjjjjjjjjj

where η ◦ R̂w : J(E,L, 1E, b) → J is an isotopy and the isotopic embeddings
i, i ◦Rw from E to J are easily seen to be weakly equivalent. Hence, replacing
i by i ◦Rw and η by η ◦ R̂w if necessary, we may assume u = 1E. But then, by
symmetry, we may assume u′ = 1E as well, forcing

η, η′ : J(E,L, 1E, b) −→ J

to be isotopies extending i, i′, respectively. Thus ψ := η◦η′−1 ∈ Str(J) satisfies
ψ ◦ i′ = η ◦ η′−1 ◦ η′|E = η|E = i, so i and i′ are strongly, hence weakly,
equivalent.

6 Norm classes and strong equivalence

6.1

Let (B, τ) be a central simple associative algebra of degree 3 with unitary
involution over F and E a cubic étale F -algebra. Then the centre, K, of B and
the discriminant, ∆(E), of E are quadratic étale F -algebras, as is L := K∗∆(E)
(cf. 5.1 (a)). To any pair (i, i′) of isotopic embeddings from E to J := H(B, τ)
we will attach an invariant, belonging to E×/nL((E⊗L)×) and called the norm
class of (i, i′), and we will show that i and i′ are strongly equivalent if and only
if their norm class is trivial. In order to achieve these objectives, a number of
preparations will be needed.
We begin with an extension of Th. 5.2.2 from isomorphisms to isotopies.

Proposition 6.1.1. Let E,E′ and L,L′ be cubic and quadratic étale algebras,
respectively, over F and suppose we are given norm pairs (u, b) of (L,E⊗L, ιL)
and (u′, b′) of (L′, E′ ⊗ L′, ιL′). We write

J := J(E,L, u, b) = E ⊕ (E ⊗ L)j, J ′ := J(E′, L′, u′, b′) = E′ ⊕ (E′ ⊗ L′)j′

as in 5.2 for the corresponding étale Tits process algebras and let ϕ : E′ ∼
→ E

be an isotopy. Then, letting Φ: J ′ → J be an arbitrary map and setting p :=
ϕ(1E′)−1 ∈ E×, the following conditions are equivalent.

i. Φ is an isotopy extending ϕ.

ii. There exist an isomorphism ψ : L′ ∼
→ L and an invertible element y ∈

E ⊗ L such that ϕ(u′) = nL(y)p
♯p−3u, ψ(b′) = NE(y)b and

Φ(v′0 + v′j′) = ϕ(v′0) +
(
y(ϕ⊗ ψ)(v′)

)
j (6.1.2)

for all v′0 ∈ E
′, v′ ∈ E′ ⊗ L′.
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Proof. ϕ1 := Rp ◦ ϕ : E′ → E is an isotopy preserving units, hence is an
isomorphism. By 5.2 we have

J := J(E,L, u, b) = J(L,E ⊗ L, ιL, u, b),

and in obvious notation, setting u(p) := p♯u, b(p) := NE(p)b, Lemma 3.8.5
yields an isomorphism

R̂p : J
(p) ∼
−→ J1 := J(L,E ⊗ L, ιL, u

(p), b(p)) = J(E,L, u(p), b(p)),

v0 + vj 7−→ (v0p) + vj1

Thus R̂p : J → J1 is an isotopy and Φ1 := R̂p ◦Φ is a map from J ′ to J1. Since
ϕ1 preserves units, this leads to the following chain of equivalent conditions.

Φ is an isotopy extending ϕ⇐⇒ Φ1 is an isotopy extending ϕ1

⇐⇒ Φ1 is an isotopy extending ϕ1

and preserving units

⇐⇒ Φ1 is an isomorphism extending ϕ1.

By Th. 5.2.2, therefore, (i) holds if and only if there exist an element y1 ∈
(E ⊗ L)× and an isomorphism ψ : L′ → L such that ϕ1(u

′) = nL(y1)u
(p),

ψ(b′) = NE(y1)b
(p) and

Φ1(v
′
0 + v′j′) = ϕ1(v

′
0) +

(
y1(ϕ1 ⊗ ψ)(v

′)
)
j1

for all v′0 ∈ E
′, v′ ∈ E′ ⊗ L′. Setting y := y1p, and observing (ϕ1 ⊗ ψ)(v′) =

(ϕ ⊗ ψ)(v′)p for all v′ ∈ E′ ⊗ L′, it is now straightforward to check that the
preceding equations, in the given order, are equivalent to the ones in condition
(ii) of the theorem.

With the notational conventions of 5.1 (b), we next recall the following result.

Lemma 6.1.3. ([PeT04a, Lemma 4.5]) Let L (resp. E) be a quadratic (resp.
a cubic) étale F -algebra. Given y ∈ E ⊗ L such that c := NE(y) satisfies
nL(c) = 1, there exists an element y′ ∈ E ⊗ L satisfying NE(y

′) = c and
nL(y

′) = 1.

6.2 Notation

For the remainder of this section we fix a central simple associative algebra
(B, τ) of degree 3 with unitary involution over F and a cubic étale F -algebra
E. We write K for the centre of B, put J := H(B, τ) and L := K ∗∆(E) in
the sense of 5.1.

Theorem 6.2.1. Let i : E → J be an isotopic embedding and suppose w ∈ E
has norm 1. Then the isotopic embeddings i and i◦Rw from E to J are strongly
equivalent if and only if w ∈ nL((E ⊗ L)×).
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Proof. By Prop. 5.2.5, we find a norm pair (u, b) of (L,E ⊗ L, ιL) such that i
extends to an isotopy η : J1 := J(E,L, u, b) → J . On the other hand, i and
i ◦Rw are strongly equivalent by definition (cf. 4.1) if and only if there exists
an element Ψ ∈ Str(J) making the central square in the diagram

J1

η
((PPPPPPPPPPPPP E?
_oo

Rw

//

i
��

E

i
��

� � // J1

η
vvmmmmmmmmmmmmm

J
Ψ

// J .
(6.2.2)

commutative, equivalently, the isotopy ϕ := Rw : E → E can be extended
to an element of the structure group of J1. By Prop. 6.1.1 (with p = w−1),
this in turn happens if and only if some invertible element y ∈ E ⊗ L has
uw = nL(y)(w

−1)♯w3u = nL(y)w
4u, i.e., w = nL(w

2y), and eitherNE(y) = 1
or NE(y) = b̄b−1. Replacing y by w2y, we conclude that i and i ◦ Rw are
strongly equivalent if and only

some y ∈ E ⊗ L satisfies (i) nL(y) = w and (ii) NE(y) ∈ {1, b̄b
−1}. (6.2.3)

In particular, for i and i ◦ Rw to be strongly equivalent it is necessary that
w ∈ nL((E ⊗ L)×). Conversely, let this be so. Then some y ∈ E ⊗ L satisfies
condition (i) of (6.2.3), so we have w = nL(y) and nL(NE(y)) = NE(nL(y)) =
NE(w) = 1. Hence Lemma 6.1.3 yields an element y′ ∈ E ⊗ L such that
NE(y

′) = NE(y) and nL(y
′) = 1. Setting z := yy′−1 ∈ E ⊗ L, we conclude

nL(z) = nL(y) = w and NE(z) = NE(y)NE(y
′)−1 = 1, hence that (6.2.3) holds

for z in place of y. Thus i and i ◦Rw are strongly equivalent.

6.3 Norm classes

Let i, i′ : E → J be isotopic embeddings. By Th. 5.2.7, there exist a norm-one
element w ∈ E as well as an element ψ ∈ Str(J) such that the left-hand square
of the diagram

E
Rw

//

i′

��

E

i
��

E
Rw′

oo

i′

��
J

ψ
// J J

ψ′

oo

commutes. Given another norm-one element w′ ∈ E and another element
ψ′ ∈ Str(J) such that the right-hand square of the above diagram commutes as
well, then the isotopic embeddings i′ and i′ ◦Rww′−1 from E to J are strongly
equivalent (via ψ′−1 ◦ ψ), and Th. 6.2.1 implies w ≡ w′ mod nL((E ⊗ L)×).
Thus the class of w mod nL((E⊗L)×) does not depend on the choice of w and
ψ. We write this class as [i, i′] and call it the norm class of (i, i′); it is clearly
symmetric in i, i′. We say i, i′ have trivial norm class if

[i, i′] = 1 in E×/nL((E ⊗ L)
×).

For three isotopic embeddings i, i′, i′′ : E → J , it is also trivially checked that
[i, i′′] = [i, i′][i′, i′′].
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Corollary 6.3.1. Two isotopic embeddings i, i′ : E → J are strongly equiva-
lent if and only if [i, i′] is trivial.

Proof. Let i, i′ : E → J be isotopic embeddings. By Th. 5.2.7, they are weakly
equivalent, so some norm-one element w ∈ E makes i′ and i ◦ Rw strongly
equivalent. Thus i and i′ are strongly equivalent if and only if i and i ◦Rw are
strongly equivalent, which by Th. 6.2.1 amounts to the same as w ∈ nL((E ⊗
L)×), i.e., to i and i′ having trivial norm class.

Remark 6.3.2. When confined to isomorphic rather than isotopic embeddings,
Cor. 6.3.1 reduces to [PeT04a, Th. 4.2].

6.4 The connection with Jordan pairs.

We are grateful to a referee for having suggested to phrase some of the preceding
results in the language of Jordan pairs. Her or his arguments may be sketched
as follows.
Referring to Loos [Loos] for the necessary background material, we consider cu-
bic étale F -algebras E,E′, a central simple associative algebra (B, τ) of degree
3 with unitary involution over F , put J := H(B, τ) and write E := (E+, E+),
E ′ := (E′+, E′+), J := (J, J) for the Jordan pairs corresponding to the Jordan
algebra E+, E′+, J , respectively. Then we make the following observations.

10. Isotopic embeddings from E to J are basically the same as embeddings
(i.e., injective homomorphisms) of Jordan pairs from E to J . Indeed, let
ϕ : E+ → J be an isotopic embedding, so some p ∈ J× makes ϕ : E+ → J (p)

an injective homomorphism. Arguing as in the proof of [Loos, 1.8], it then
follows that (ϕ,Upϕ) : E → J is an embedding of Jordan pairs. Conversely, let
h = (h+, h−) : E → J be an embedding of Jordan pairs.. Then e := (e+, e−) :=
(h+(1J ), h−(1J)) is an idempotent of J such that h(E) ⊆ J2(e). We will be
through once we have shown J2(e) = J since this implies, again following the
proof of loc.cit., that p := e− is invertible in J and h+ is an injective homo-
morphism from from E+ to J (p), hence an isotopic embedding from E to J . In
order to show J2(e) = J , we may extend scalars if necessary to the algebraic
closure of F to obtain a frame X = (e1, e2, e3) in J2(e) satisfying e =

∑
ei.

But since J has degree three, X is also a frame of J , forcing e ∈ J to be a
maximal idempotent. Now [Pe 78, Cor. 4] implies the assertion.

20. Let w ∈ E×. Then it is straightforward to check that Rw : E → E belongs
the structure group of E+, and the automorphism of E it corresponds to via
[Loos, 1.8] is Rw := (Rw, Rw−1).

30. We claim that the isomorphisms from E to E ′ are precisely the pairs of
maps (ϕ ◦ Rw, ϕ ◦ Rw−1) = (ϕ, ϕ) ◦ Rw, where ϕ : E → E′ is an isomorphism
of cubic étale F -algebras and w ∈ E×. By 20, maps of this form are clearly
isomorphisms from E to E ′. Conversely, let h = (h+, h−) : E → E ′ be an iso-
morphism. Then v := h−1

+ (1E′) ∈ E× and ϕ := h+ ◦ Rw−1 : E+ → E′+ with
w := v−1 is an isotopy preserving units, hence an isomorphism of cubic étale
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F -algebras (Lemma 2.5.2) such that h+ = ϕ ◦Rw. Now [Loos, 1.8] yields also
h− = ϕ ◦Rw−1 .

40. We denote by EAut(J ) the elementary automorphism group of J , meaning
the group of automorphisms (h+, h−) of J such that both h+ and h− leave the
norm of J invariant. Under the correspondence of [Loos, 1.8], EAut(J ) identi-
fies canonically with the elementary structure group of J , denoted by EStr(J)
and defined to be the group of all g ∈ Str(J) that leave the norm of J invariant.

50. We are now in a position to phrase, e.g., the weak Skolem-Noether property
for isotopic embeddings (cf. 4.1) in the language of Jordan pairs as follows:
given any two isomorphic embeddings j, j′ : E → J , there exist an invertible
element w ∈ E and an elementary automorphism Ψ of J such that the diagram

E
Rw

//

j′

��

E

j
��

J
Ψ

// J

commutes. Note that we have replaced the normalization condition NE(w) = 1
of 4.1 by the equivalent one of Ψ being an elementary (rather than arbitrary)
automorphism of J . Combining Th. 5.2.7 with 30 we also see that two maximal
tori of J are conjugate under EAut(J ) if and only if they are isomorphic.

7 Albert algebras: proof of Theorem B

7.1

It would be interesting to know whether Th. 5.2.7, the notion of norm class
as defined in 6.3, or Cor. 6.3.1 can be extended from absolutely simple Jordan
algebras of degree 3 and dimension 9 to Albert algebras. Unfortunately, we
have neither been able either to answer this question in the affirmative nor
to exhibit a counter example. Therefore, we will have to be more modest
by settling with Theorem B, i.e., with the weak Skolem-Noether property for
isomorphic rather than arbitrary isotopic embeddings. Given a cubic étale
algebra E and an Albert algebra J over F , the idea of the proof is to factor
two isomorphic embeddings from E to J through the same absolutely simple
nine-dimensional subalgebra of J , which by structure theory will have the form
H(B, τ) for some central simple associative algebra (B, τ) of degree 3 with
unitary involution over F , allowing us to apply Th. 5.2.7 and reach the desired
conclusion. The fact that we have not succeeded in extending the preceding
factorization property from isomorphic to isotopic embeddings from E to J is
the main reason for the deficiencies alluded to at the beginning of this section.

Throughout, we fix an arbitrary Albert algebra J and a cubic étale algebra
E over F . In order to carry out the procedure we have just described, a few
preparations will be needed.
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Lemma 7.1.1. Assume F is algebraically closed and denote by E1 :=
Diag3(F ) ⊆ Mat3(F )

+ the cubic étale subalgebra of diagonal matrices. Then
there exists a cubic étale subalgebra E2 ⊆ Mat3(F )

+ such that Mat3(F )
+ is

generated by E1 and E2 as a cubic Jordan algebra over F .

Proof. We realize Mat3(F )
+ as a first Tits construction

J1 := Mat3(F )
+ = J(E1, 1),

with adjoint ♯, norm N , trace T , and identify the diagonal matrices on the
left with E1 viewed canonically as a cubic subalgebra of J(E1, 1). Since F is
infinite, we find an element u0 ∈ E1 satisfying E1 = F [u0]. Letting α ∈ F×,
we put

y := u0 + αj1 ∈ J1.

Since u0 and j1 generate J1 as a cubic Jordan algebra, so do u0 and y, hence
E1 and E2 := F [y]. It remains to show that, for a suitable choice of α, the
F -algebra E2 is cubic étale. We first deduce from (3.9.1) and (3.9.3) that

y♯ = u♯0 + (−αu0)j1 + α2j2,

T (y) = TE1(u0),

T (y♯) = TE1(u
♯
0),

N(y) = NE1(u0) + α3.

Thus y has the generic minimum (= characteristic) polynomial

t3 − TE1(u0)t
2 + TE1(u

♯
0)t−

(
NE1(u0) + α3

)
∈ F [t],

whose discriminant by [Lang, IV, Exc. 12(b)] is

∆y := TE1(u0)
2TE1(u

♯
0)

2 − 4TE1(u
♯
0)

3 − 4TE1(u0)
3(NE1(u0) + α3)

− 27(NE1(u0) + α3)2 + 18TE1(u0)TE1(u
♯
0)(NE1(u0) + α3)

= ∆u0 −
(
4TE1(u0)

3 + 54NE1(u0)− 18TE1(u0)TE1(u
♯
0)
)
α3 − 27α6,

where ∆u0 6= 0 is the discriminant of the minimum polynomial of u0. Regard-
less of the characteristic, we can therefore choose α ∈ F× in such a way that
∆y 6= 0, in which case E2 is a cubic étale F -algebra.

7.2 Digression: pointed quadratic forms

By a pointed quadratic form over F we mean a triple (V, q, c) consisting of an
F -vector space V , a quadratic form q : V → F , with bilinearization q(x, y) =
q(x + y)− q(x) − q(y), and an element c ∈ V that is a base point for q in the
sense that q(c) = 1. Then V together with the U -operator

Uxy := q(x, ȳ)x− q(x)ȳ (x, y ∈ V ), (7.2.1)
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where ȳ := q(c, y)c − y, and the unit element 1J := c is a Jordan algebra
over F , denoted by J := J(V, q, c) and called the Jordan algebra of the pointed
quadratic form (V, q, c). It follows immediately from (7.2.1) that the subalgebra
of J generated by a family of elements xi ∈ J , i ∈ I, is Fc+

∑
i∈I Fxi.

Lemma 7.2.2. Assume F is infinite and let i, i′ : E → J be isomorphic embed-
dings. Then there exist isomorphic embeddings i1, i

′
1 : E → J such that i (resp.,

i′) is strongly equivalent to i1 (resp., i′1) and the subalgebra of J generated by
i1(E) ∪ i′1(E) is absolutely simple of degree 3 and dimension 9.

Proof. We proceed in two steps. Assume first that F is algebraically closed.
Then E = F × F × F and J = Her3(C) are both split, C being the octonion
algebra of Zorn vector matrices over F . Note that Mat3(F )

+ ∼= Her3(F × F )
may be viewed canonically as a subalgebra of J . By splitness of E, there are
frames (i.e., complete orthogonal systems of absolutely primitive idempotents)
(ep)1≤p≤3, (e

′
p)1≤p≤3 in J such that i(E) =

∑
Fep, i

′(E) =
∑
Fe′p. But frames

in the split Albert algebra are conjugate under the automorphism group. Hence
we find automorphisms ϕ, ψ of J satisfying ϕ(ep) = ψ(e′p) = epp for 1 ≤ p ≤ 3.
Applying Lemma 7.1.1, we find a cubic étale subalgebra E2 ⊆ Mat3(F )

+ ⊆ J
that together with E1 := Diag3(F ) = (ϕ◦ i)(E) generates Mat3(F )

+ as a cubic
Jordan algebra over F . Again, the cubic étale E2 is split, so we find a frame
(cp)1≤p≤3 in J satisfying E2 =

∑
Fcp. This in turn leads to an automorphism

ψ′ of J sending epp to cp for 1 ≤ p ≤ 3. Then i1 := ϕ◦ i and i′1 := ψ′ ◦ψ ◦ i′ are
strongly equivalent to i, i′, respectively, and satisfy i1(E) = E1, i

′
1(E) = E2,

hence have the desired property.

Now let F be an arbitrary infinite field and write F̄ for its algebraic closure.
We have E = F [u] for some u ∈ E and put x := i(u), x′ := i′(u) ∈ J .
We write k-alg for the category of commutative associative k-algebras with 1,
put G := Aut(J) × Aut(J) as a group scheme over F and, given R ∈ k-alg,
(ϕ, ϕ′) ∈ G(R), write xm := xm(ϕ, ϕ′), 1 ≤ m ≤ 9, in this order for the
elements

x1 := 1JR
, x2 := ϕ(xR), x3 := ϕ(x♯R),

x4 := ϕ′(xR), x5 := ϕ′(x♯R), x6 := ϕ(xR)× ϕ
′(xR),

x7 := ϕ(x♯R)× ϕ
′(xR), x8 := ϕ(xR)× ϕ

′(x♯R), x9 := ϕ(x♯R)× ϕ
′(x♯).

By a result of Brühne (cf. [Pe 15, Prop. 6.6]), the subalgebra of JR generated
by (ϕ ◦ iR)(ER) and (ϕ′ ◦ i′R)(ER) is spanned as an R-module by the elements
x1, . . . , x9. Now consider the open subscheme X ⊆ G defined by the condition
that X(R), R ∈ k-alg, consist of all elements (ϕ, ϕ′) ∈ G(R) satisfying

det
(
TJ

(
xm(ϕ, ϕ′), xn(ϕ, ϕ

′)
))

1≤m,n≤9
∈ R×.

By what we have just seen, this is equivalent to saying that the subalgebra of
JR generated by (ϕ ◦ iR)(ER) and (ϕ′ ◦ i′R)(ER) is a free R-module of rank 9
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and has a non-singular trace form. By the preceding paragraph, X(F̄ ) ⊆ G(F̄ )
is a non-empty (Zariski-) open, hence dense, subset. On the other hand, by
[Sp, 13.3.9(iii)], G(F ) is dense in G(F̄ ). Hence so is X(F ) = X(F̄ ) ∩G(F ). In
particular, we can find elements ϕ, ϕ′ ∈ Aut(J)(F ) such that the subalgebra
J ′ of J generated by (ϕ ◦ i)(E) and (ϕ′ ◦ i′)(E) is non-singular of dimension
9. This property is preserved under base field extensions, as is the property of
being generated by two elements. Hence, if J ′ were not absolutely simple, some
base field extension of it would split into the direct sum of two ideals one of
which would be the Jordan algebra of a pointed quadratic form of dimension 8
[R, Th. 1]. On the other hand, the property of being generated by two elements
is inherited by this Jordan algebra, which by 7.2 is impossible. Thus i1 := ϕ◦ i
and i′1 := ϕ′ ◦ i′ satisfy all conditions of the lemma.

Proposition 7.2.3. Suppose J is split (which holds automatically if F is a
finite field) and let i : E → J be an isomorphic embedding. Writing K := ∆(E)
for the discriminant of E, there exists a subalgebra J1 ⊆ J such that

i(E) ⊆ J1 ∼= Her3(K,Γ), Γ := diag(1,−1, 1).

Proof. Replacing E by i(E) if necessary, we may assume E ⊆ J and that
i : E →֒ J is the inclusion. We write E⊥ ⊆ J for the orthogonal complement
of E in J relative to the bilinear trace and, for all v ∈ E⊥, denote by qE(v) the
E-component of v♯ relative to the decomposition J = E ⊕ E⊥. By [PeR84a,
Prop. 2.1], E⊥ may be viewed as an E-module in a natural way, and qE : E⊥ →
E is a quadratic form over E. Moreover, combining [PeR 84a, Cor. 3.8] with a
result of Engelberger [E, Prop. 1.2.5], we conclude that there exists an element
v ∈ E⊥ that is invertible in J and satisfies qE(v) = 0. Now [PeR84a, Prop. 2.2]
yields a non-zero element α ∈ F such that the inclusion E →֒ J can be extended
to an isomorphic embedding from the étale first Tits construction J(E,α) into
J . Write J1 ⊆ J for its image. Then E ⊆ J1 ∼= J(E,α), and from [PeR84b,
Th. 3] we deduce J(E,α) ∼= Her3(K,Γ) with Γ := diag(1,−1, 1) as above.

Proposition 7.2.4. Let J1, J
′
1 be nine-dimensional absolutely simple subalge-

bras of J . Then every isotopy J1 → J ′
1 can be extended to an element of the

structure group of J .

Proof. Let η1 : J1 → J ′
1 be an isotopy. Then some w ∈ J×

1 makes η1 : J
(w)
1 →

J ′
1 an isomorphism. On the other hand, structure theory yields a central simple

associative algebra (B, τ) of degree 3 with unitary involution over F and an
isomorphism ϕ : H(B, τ) → J1 which, setting p := ϕ−1(w) ∈ H(B, τ)×, may
be regarded as an isomorphism

ϕ : H(B, τ)(p)
∼
−→ J

(w)
1 .

On the other hand, following (2.7.1),

Rp : H(B, τ)(p)
∼
−→ H(B, τ (p))
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is an isomorphism as well, and combining, we end up with an isomorphism

ϕ′ := η1 ◦ ϕ ◦R
−1
p : H(B, τ (p))

∼
−→ J ′

1.

Writing K for the centre of B and consulting 3.8, we now find a norm pair
(u, µ) of (B, τ) such that ϕ extends to an isomorphism

Φ: J(B, τ, u, µ)
∼
−→ J.

Similarly, we find a norm pair (u′, µ′) of (B, τ (p)) such that ϕ′ extends to an
isomorphism

Φ′ : J(B, τ (p), u′, µ′)
∼
−→ J.

Next, setting u1 := p♯−1u′, µ1 := NB(p)
−1µ′, we apply Lemma 3.8.5 to obtain

an isotopy

R̂p : J(B, τ, u1, µ1)→ J(B, τ (p), u′, µ′), v0 + vj 7→ (v0p) + (p−1vp)j,
(7.2.5)

and combining, we end up with an isotopy

R̂−1
p ◦ Φ

′−1 ◦ Φ: J(B, τ, u, µ) −→ J(B, τ, u1, µ1).

Hence [Pe 04, Th. 5.2] yields an isomorphism

Ψ: J(B, τ, u, µ)
∼
−→ J(B, τ, u1, µ1)

inducing the identity on H(B, τ). Thus

η := Φ′ ◦ R̂p ◦Ψ ◦ Φ
−1 : J −→ J

is an isotopy that fits into the diagram

J(B, τ, u1, µ1)

R̂p

((QQQQQQQQQQQQQ

J(B, τ, u, µ)

Φ

��

Ψ

OO

J(B, τ (p), u′, µ′)

Φ′

��

H(B, τ)
Rp

//
?�

OO

ϕ

��

H(B, τ (p))
?�

OO

ϕ′

��
J1 η1

//
� _

��

J ′
1� _

��
J η

// J,

whose arrows are either inclusions or isotopies. Now, since η◦Φ = Φ′◦R̂p◦Ψ by

definition of η, and R̂p agrees with Rp on H(B, τ) by (7.2.5), simple diagram
chasing shows that η ∈ Str(J) is an extension of η1.
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We can now prove Theorem B in a form reminiscent of Th. 5.2.7.

Theorem 7.2.6. Let J be an Albert algebra over F and E a cubic étale F -
algebra. Then the pair (E, J) satisfies the weak Skolem-Noether property for
isomorphic embeddings.

Proof. Leit i, i′ : E → J be two isomorphic embeddings. We must show that
they are weakly equivalent and first claim that we may assume the following:
there exist a central simple associative algebra (B, τ) of degree 3 with unitary
involution over F and a subalgebra J1 ⊆ J such that J1 ∼= H(B, τ) and i, i′

factor uniquely through J1 to isomorphic embeddings i1 : E → J1, i
′
1 : E → J1.

Indeed, replacing the isomorphic embeddings i, i′ by strongly equivalent ones
if necessary, this is clear by Lemma 7.2.2 provided F is infinite. On the other
hand, if F is finite, Prop. 7.2.3 leads to absolutely simple nine-dimensional sub-
algebras J1, J

′
1 ⊆ J that are isomorphic and have the property that i, i′ factor

uniquely through J1, J
′
1 to isomorphic embeddings i1 : E → J1, i

′
1 : E → J ′

1,
respectively. But every isomorphism from J ′

1 to J1 extends to an automorphism
of J [KMRT, 40.15], [Pe 04, Remark 5.6(b)]. Hence we may assume J ′

1 = J1,
as desired.
With J1, i1, i

′
1 as above, Th. 5.2.7 yields elements w ∈ E of norm 1 and ϕ1 ∈

Str(J1) such that i1◦Rw = ϕ1◦i′1. Using Prop. 7.2.4, we extend ϕ1 to an element
ϕ ∈ Str(J) and therefore conclude that the diagram (4.1.1) commutes.

8 Outer automorphisms for type 3D4: proof of Theorem A

In this section, we apply Theorem B to prove Theorem A.

8.1 A subgroup of Str(J)

Let E be a cubic étale subalgebra of an Albert algebra J and write H for the
subgroup of h ∈ Str(J) that normalize E and such thatNh = N . Note that, for
ϕ ∈ Aut(E), the element ψ ∈ Str(J) provided by Theorem B to extend ϕ ◦Rw
to all of J belongs to H . Indeed, as ψ ∈ Str(J), there is a µ ∈ F× such that
Nψ = µN , but for e ∈ E we have N(ψ(e)) = N(ϕ(ew)) = N(ϕ(e))N(ϕ(w)) =
N(e).
We now describe H in the case where J is a matrix Jordan algebra as in §3.5
with Γ = 13 and E is the subalgebra of diagonal matrices. We rely on some
facts that are only proved in the literature under the hypothesis charF 6= 2, 3.
This hypothesis is not strictly necessary but we adopt it for now in order to ease
the writing. Fix h ∈ H . The norm N restricts to E as N(

∑
αieii) = α1α2α3,

so h permutes the three singular points [eii] in the projective variety N |E = 0
in P(E). There is an embedding of the symmetric group on 3 letters, Sym3, in
H acting by permuting the eii by their indices, see [Gar 06, §3.2] for an explicit
formula, and consequently H ∼= H0 ⋊ Sym3, where H0 is the subgroup of H
of elements normalizing Feii for each i. For w := (w1, w2, w3) ∈ (F×)×3 such
that w1w2w3 = 1, it follows that Uw ∈ H (cf. (3.2.2)) sends eii 7→ w2

i eii.
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Assuming now that F is algebraically closed, after multiplying h by a suitable
Uw, we may assume that h restricts to be the identity on E. The subgroup
of such elements of Str(J) is identified with the Spin(C) which acts on the
off-diagonal entries in J as a direct sum of the three inequivalent minuscule
8-dimensional representations, see [KMRT, 36.5, 38.6, 38.7] or [J 71, p. 18,

Prop. 6]. Thus, we may identify H with (R
(1)
E/F (Gm) · Spin(C))⋊ Sym3, where

Sym3 acts via outer automorphisms on Spin(C) as in [Gar 06, §3] or [KMRT,
35.15].

8.2 The Tits class

Recall from §1.1 that the Dynkin diagram of a group G is endowed with an
action by the absolute Galois group of F , and elements of Aut(∆)(F ) act nat-
urally on H2(F,Z), for Z the scheme-theoretic center of the simply connected
cover of G.

Lemma 8.2.1. Let G be a group of type D4 over a field F with Dynkin diagram
∆. If there is a π ∈ Aut(∆)(F ) of order 3 such that π(tG) = tG, then G has
type 1D4 or 3D4 and tG = 0.

Proof. For the first claim, if G has type 2D4 or 6D4, then Aut(∆)(F ) = Z/2
or 1.
Now suppose that G has type 1D4. We may assume that G is simply connected.
The center Z of G is µ2×µ2, with automorphism group Sym3 and π acts on Z
with order 3. The three nonzero characters χ1, χ2, χ3 : Z → Gm are permuted
transitively by π, so by hypothesis the element χi(tG) ∈ H2(F,Gm) does not
depend on i. As the χi’s satisfy the equations χ1 + χ2 + χ3 = 0 and 2χi = 0
(compare [T, 6.2] or [KMRT, 9.14]), it follows that χi(tG) = 0 for all i, hence
tG = 0 by [Gar 12, Prop. 7].
If G has type 3D4, then there is a unique cyclic cubic field extension E of
F such that G × E has type 1D4. By the previous paragraph, restriction
H2(F,Z)→ H2(E,Z) kills tG. That map is injective because Z has exponent
2, so tG = 0.

In the next result, the harder, “if” direction is the crux case of the proof of
Theorem A and is an application of Theorem B. The easier, “only if” direction
amounts to [CEKT, Th. 13.1] or [KT, Prop. 4.2]; we include it here as a
consequence of the (a priori stronger) Lemma 8.2.1.

Proposition 8.2.2. Let G be a group of type D4 over a field F . The image of
α(F ) : Aut(G)(F ) → Aut(∆)(F ) contains an element of order 3 if and only if
G has type 1D4 or 3D4, G is simply connected or adjoint, and tG = 0.

Proof. “If” : We may assume that G is simply connected. If G has type 1D4,
then G is Spin(q) for some 3-Pfister quadratic form q, and the famous triality
automorphisms of Spin(q) as in [SpV, 3.6.3, 3.6.4] are of order 3 and have image
in Aut(∆)(F ) of order 3. So assume G has type 3D4.
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Assume for this paragraph that charF 6= 2, 3. There is a uniquely determined
cyclic Galois field extension E of F such that G×E has type 1D4. By hypoth-
esis, there is an Albert F -algebra J with norm form N such that E ⊂ J and
we may identify G with the algebraic group with K-points

{g ∈ GL(J ⊗K) | Ng = N and g|E⊗K = IdE⊗K}

for every extensionK of F . Take now ϕ to be a non-identity F -automorphism of
E and w ∈ E of norm 1 and ψ ∈ Str(J) to be the elements given by Theorem
B such that ψ|E = ϕ ◦ Rw. As ψ normalizes E and preserves N , it follows
immediately that ψ normalizes G as a subgroup of Str(J). (Alternatively this
is obvious from the fact that in subsection 8.1, Spin(C) is the derived subgroup
of H◦.) Tracking through the description of H in subsection 8.1, we find that
conjugation by ψ is an outer automorphism of G such that ψ3 is inner.
In case F has characteristic 2 or 3, one can reduce to the case of characteristic
zero as follows. Find R a complete discrete valuation ring with residue field F
and fraction field K of characteristic zero. Lifting E to R allows us to construct
a quasi-split simply connected group scheme Gq over R whose base change to
F is the quasi-split inner form Gq of G. We have maps

H1(F,Gq)
∼
←− H1

ét(R,G
q) →֒ H1(K,Gq ×K)

where the first map is an isomorphism by Hensel and the second map is injective
by [BT]. Twisting by a well chosen Gq-torsor, we obtain

H1(F,G)
∼
←− H1

ét(R,G) →֒ H1(K,G ×K)

where G × K has type 3D4 and zero Tits class and G ∼= G × F . Now in
Aut(G)(F ) → Aut(∆)(F ) = Z/3, the inverse image of 1 is a connected com-
ponent X of Aut(G) defined over F , a G-torsor. Lifting X to H1(K,G ×K),
we discover that this G-torsor is trivial (by the characteristic zero case of the
theorem), hence X is F -trivial, i.e., has an F -point.

“Only if” : Let φ ∈ Aut(G)(F ) be such that α(φ) has order 3. In view of the

inclusion (1.1.1), Lemma 8.2.1 applies. If G has type 3D4, then it is necessarily
simply connected or adjoint, so assume G has type 1D4. Then φ lifts to an
automorphism of the simply connected cover G̃ of G, hence acts on the center
Z of G̃ in such a way that it preserves the kernel of the map Z → G. As Z
is isomorphic to µ2 × µ2 and φ acts on it as an automorphism of order 3, the
kernel must be 0 or Z, hence G is simply connected or adjoint.

8.3 Proof of Theorem A

Let G be a group of type 3D4, so Aut(∆)(F ) = Z/3; put π for a generator. If
π(tG) 6= tG, then the right side of (1.1.1) is a singleton and the containment is
trivially an equality, so assume π(tG) = tG. Then tG = 0 by Lemma 8.2.1 and
the conclusion follows by Proposition 8.2.2.
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Example 8.3.1. Let F0 be a field with a cubic Galois extension E0. For the
split adjoint group PSO8 of type D4 over F , a choice of pinning gives an
isomorphism of Aut(PSO8) with PSO8 ⋊ Sym3 , such that elements of Sym3

normalize the Borel subgroup appearing in the pinning. Twisting Spin8 by
a 1-cocycle with values in H1(F0, Sym3) representing the class of E0 gives a
simply connected quasi-split group Gq of type 3D4. As in [GarMS, pp. 11, 12],
there exists an extension F of F0 and a versal torsor ξ ∈ H1(F,Gq); define
G to be Gq × F twisted by ξ. As ξ is versal, the Rost invariant rGq (ξ) ∈
H3(F,Z/6Z) has maximal order, namely 6 [GarMS, p. 149]. Moreover, the
map α(F ) : Aut(G)(F )→ Aut(∆)(F ) = Z/3 is onto by Theorem A.
In case charF0 6= 2, 3, G is Aut(Γ) for some twisted composition Γ in the
sense of [KMRT, §36]. As rGq (ξ) is not 2-torsion, by [KMRT, 40.16], Γ is not
Hurwitz, and by [KT], Aut(G)(F ) contains no outer automorphisms of order
3. This is a newly observed phenomenon, in that in all other cases where α(F )
is known to be onto, it is also split.

9 Outer automorphisms for type A

9.1 Groups of type An

We now consider Conjecture 1.1.2 and Question 1.1.3 for groups G of type An.
If G has inner type (i.e., is isogenous to SL1(B) for a degree d central simple
F -algebra) then equality holds in (1.1.1) and the answer to Question 1.1.3 is
“yes” as in [Gar 12, p. 232].
So assume that G has outer type and in particular n ≥ 2. The simply connected
cover of G is SU(B, τ) for B a central simple K-algebra of degree d := n + 1,
where K is a quadratic étale F -algebra, and τ is a unitary K/F -involution.
(This generalizes the (K,B, τ) defined in §3.7 by replacing 3 by d.) As the
center Z of SU(B, τ) is the group scheme (µd)[K] of d-th roots of unity twisted
by K in the sense of [KMRT, p. 418] (i.e., is the Cartier dual of the finite étale
group scheme (Z/d)[K]), every subgroup of Z is characteristic, hence (1.1.1) is
an equality for G if and only if it is so for SU(B, τ) and similarly the answers
to Question 1.1.3 are the same for G and SU(B, τ). Therefore, we need only
treat SU(B, τ) below.
The automorphism group Aut(∆)(F ) is Z/2 and its nonzero element π acts on
H2(F,Z) as −1, hence π(tSU(B,τ)) = −tSU(B,τ) and the right side of (1.1.1)
is a singleton (if 2tSU(B,τ) 6= 0) or has two elements (if 2tSU(B,τ) = 0). These
cases are distinguished by the following lemma.

Lemma 9.1.1. In case d is even (resp., odd): 2tSU(B,τ) = 0 if and only if
B ⊗K B (resp., B) is a matrix algebra over K.

Proof. The cocenter Z∗ := Hom(Z,Gm) is (Z/d)[K]; put χi ∈ Z
∗ for the el-

ement corresponding to i ∈ (Z/d)[K]. If d = 2e for some integer e, then the
element χe is fixed by Gal(F ) and 2χe = χd = 0, regardless of B or tSU(B,τ).
All other χi have stabilizer subgroup Gal(K) and χi(2tSU(B,τ)) ∈ H2(K,Z)
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can be identified with the class of B⊗2i in the Brauer group of K, cf. [KMRT,
p. 378].
The algebra B ⊗K B is a matrix algebra, then, if and only if χi vanishes on
2tSU(B,τ) for all i. This is equivalent to 2tSU(B,τ) = 0 by [Gar 12, Prop. 7].
When the degree d of B is odd, B ⊗K B is a matrix algebra if and only if B is
such.

Corollary 9.1.2. If G is a group of type An for n even, then equality holds
in (1.1.1) and the answer to Question 1.1.3 is “yes”.

Proof. We may assume that G has outer type and is SU(B, τ). If 2tSU(B,τ) 6= 0,
then the right side of (1.1.1) is a singleton and the claim is trivial. Otherwise,
by Lemma 9.1.1, B is a matrix algebra, i.e., SU(B, τ) is the special unitary
group of a K/F -hermitian form, and the claim follows.

9.2

The algebraic group Aut(SU(B, τ)) has two connected components: the iden-
tity component, which is identified with the adjoint group of SU(B, τ), and the
other component, whose F -points are the outer automorphisms of SU(B, τ).

Theorem 9.2.1. There is an isomorphism between the F -variety of K-linear
anti-automorphisms of B commuting with τ and the non-identity component
of Aut SU(B, τ), given by sending an anti-automorphism ψ to the outer auto-
morphism g 7→ ψ(g)−1.

Clearly, such an anti-automorphism provides an isomorphism of B with its
opposite algebra, hence can only exist when B has exponent 2. This is a
concrete illustration of the inclusion (1.1.1).

Proof. First suppose that F is separably closed, in which case we may iden-
tify K = F × F , B = Md(F ) × Md(F ), and τ(b1, b2) = (bt2, b

t
1). A K-

linear anti-automorphism ψ is, by Skolem-Noether, of the form ψ(b1, b2) =
(x1b

t
1x

−1
1 , x2b

t
2x

−1
2 ) for some x1, x2 ∈ PGLd(F ), and the assumption that

ψτ = τψ forces that x2 = x−t1 .
As NrdB/K ψ = NrdB/K , it follows that ψ is an automorphism of the variety
SU(B, τ), hence φ defined by φ(g) := ψ(g)−1 is an automorphism of the group.
As φ(b) = b−1 for b ∈ K×, i.e., φ acts nontrivially on the center, φ is an outer
automorphism.
We have shown that there is a well-defined morphism from the variety of anti-
automorphisms commuting with τ to the outer automorphisms of SU(B, τ),
and it remains to prove that it is an isomorphism. For this, note that PGLd
acts on SU(B, τ) where the group action is just function composition, that
this action is the natural action of the identity component of SU(B, τ) on its
other connected component, and that therefore the outer automorphisms are
a PGLd-torsor. Furthermore, the first paragraph of the proof showed that the
anti-automorphisms commuting with τ also make up a PGLd-torsor, where the
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actions are related by y.ψ = y−1.φ for y ∈ PGLd. This completes the proof for
F separably closed.
For general F , we note that the map ψ 7→ φ is F -defined and gives an isomor-
phism over Fsep, hence is an isomorphism over F .

9.3

We do not know how to prove or disprove existence of an anti-automorphism
commuting with τ in general, but we can give a criterion for Question 1.1.3
that is analogous to the one given in [KT] for groups of type 3D4.

Corollary 9.3.1. A group SU(B, τ) of outer type A has an F -defined outer
automorphism of order 2 if and only if there exists a central simple algebra
(B0, τ0) over F with τ0 an involution of the first kind such that (B, τ) is iso-
morphic to (B0 ⊗K, τ0 ⊗ ι), for ι the non-identity F -automorphism of K.

Proof. The bijection in Theorem 9.2.1 identifies outer automorphisms of order
2 with anti-automorphisms of order 2. If such a (B0, τ0) exists, then clearly τ0
provides an anti-automorphism of order 2.
Conversely, given an anti-automorphism τ0 of order 2, define a semilinear auto-
morphism of B via ι := τ0τ . Set B0 := {b ∈ B | ι(b) = b}; it is an F -subalgebra
and τ0 restricts to be an involution on B0.

Example 9.3.2. We now exhibit a (B, τ) with B of exponent 2, but such that
SU(B, τ) has no outer automorphism of order 2 over F . The paper [ART]
provides a field F and a division F -algebra C of degree 8 and exponent 2 such
that C is not a tensor product of quaternion algebras. Moreover, it provides a
quadratic extension K/F contained in C. It follows that C ⊗K has index 4,
and we set B to be the underlying division algebra. As corK/F [B] = 2[C] = 0
in the Brauer group, B has a unitary involution τ .
For sake of contradiction, suppose that SU(B, τ) had an outer automorphism
of order 2, hence there exists a (B0, τ0) as in Corollary 9.3.1. Then B0 has
degree 4, so B0 is a biquaternion algebra. Moreover, C ⊗ B0 is split by K,
hence is Brauer-equivalent to a quaternion algebra Q. By comparing degrees,
we deduce that C is isomorphic to B0 ⊗Q, contradicting the choice of C.

9.4 Type 2E6

Results entirely analogous to Theorem 9.2.1, Corollary 9.3.1, and Example 9.3.2
also hold for groups G of type 2E6, using proofs of a similar flavor. The Dynkin
diagram of type E6 has automorphism group Z/2 = {Id, π}, and arguing as
in Lemmas 8.2.1 or 9.1.1 shows that π(tG) = tG if and only if tG = 0. So
for addressing Conjecture 1.1.2 and Question 1.1.3, it suffices to consider only
those groups with zero Tits class, which can be completely described in terms
of the hermitian Jordan triples introduced in [GarP, §4] or the Brown algebras
studied in [Gar 01]. We leave the details to the interested reader.
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Does Conjecture 1.1.2 hold for every group of type 2E6? One might hope to
imitate the outline of the proof of Theorem A. Does an analogue of Theorem
B hold, where one replaces Albert algebras, cubic Galois extensions, and the
inclusion of root systems D4 ⊂ E6 by Brown algebras or Freudenthal triple
systems, quadratic Galois extensions, and the inclusion E6 ⊂ E7?
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