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Abstract. We show that the Gerstenhaber-Schack cohomology of
a Hopf algebra determines its Hochschild cohomology, and in par-
ticular its Gerstenhaber-Schack cohomological dimension bounds its
Hochschild cohomological dimension, with equality of the dimensions
when the Hopf algebra is cosemisimple of Kac type. Together with
some general considerations on free Yetter-Drinfeld modules over ad-
joint Hopf subalgebras and the monoidal invariance of Gerstenhaber-
Schack cohomology, this is used to show that both Gerstenhaber-
Schack and Hochschild cohomological dimensions of the coordinate
algebra of the quantum permutation group are 3.

2010 Mathematics Subject Classification: 16T05, 16E40, 16E10

Keywords and Phrases: Hopf algebra, cohomology, cohomological di-
mension, Yetter-Drinfeld module

1 Introduction

We study homological properties of Hopf algebras by using Yetter-Drinfeld
modules and tensor category techniques. We are especially interested in the
following question:

Question 1.1. If A and B are Hopf algebras having equivalent tensor
categories of comodules, how are their Hochschild cohomologies related? In
particular do A and B have the same cohomological dimension?
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We have seen in [10] that the Hochschild cohomologies of two such Hopf algebras
A and B are indeed closely related, using resolutions of the trivial Yetter-
Drinfeld module over A (or over B) formed by free Yetter-Drinfeld modules.
In the present paper we continue this study along the same line of ideas.

Our first remark in view of Question 1.1 is that there exists at least a coho-
mology theory for Hopf algebras that is known to be well-behaved with respect
to this situation: Gerstenhaber-Schack cohomology [27, 28]. Let A be a Hopf
algebra and let M be a Hopf bimodule over A: the Gerstenhaber-Schack co-
homology H∗

GS(A,M) of A with coefficients in M [28] is defined to be the ho-
mology of an explicit bicomplex whose columns are modeled on the Hochschild
complex of the underlying algebra and rows are modeled on the Cartier com-
plex of the underlying coalgebra. When M = A is the trivial Hopf bimodule,
then H∗

GS(A,A) =: H∗
b (A) is known as the bialgebra cohomology of A. This

cohomology theory, which can also be defined in terms of Yetter-Drinfeld mod-
ules, was first introduced in view of applications to deformation theory, and
has been used as a key tool in the proof of several fundamental results on
finite-dimensional Hopf algebras [55, 23].

If A and B are Hopf algebras having equivalent tensor categories of comod-

ules, then there exists a tensor equivalence F : AAM
A

A → B
BM

B

B between their
categories of Hopf bimodules such that for any Hopf bimodule M over A, we
have H∗

GS(A,M) ≃ H∗
GS(B,F (M)), and in particular H∗

b (A) ≃ H∗
b (B) and

cdGS(A) = cdGS(B) (where cdGS denotes the Gerstenhaber-Schack cohomo-
logical dimension, defined in the obvious way, see Section 5). We call these
properties the monoidal invariance of Gerstenhaber-Schack cohomology.

Going back to Question 1.1, the next question is to study how Hochschild
and Gerstenhaber-Schack cohomologies are related. We show that the
Gerstenhaber-Schack cohomology of a Hopf algebra determines its Hochschild
cohomology. More precisely, we show that if A is a Hopf algebra, then there

exists a functor G :AMA →A
AM

A

A such that for any A-bimodule M , we have

H∗(A,M) ≃ H∗
GS(A,G(M))

In particular we have cd(A) ≤ cdGS(A). Then if A and B are Hopf algebras as
in Question 1.1, combining this with the monoidal invariance of Gerstenhaber-

Schack cohomology, we get the existence of two functors F1 : AMA → B
BM

B

B

and F2 :BMB →A
AM

A

A such that for any A-bimodule M and any B-bimodule
N , we have

H∗(A,M) ≃ H∗
GS(B,F1(M)) and H∗(B,N) ≃ H∗

GS(A,F2(N))

In particular

max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B)

These isomorphisms and this inequality thus provide partial answers to Ques-
tion 1.1. They lead to the following new question:
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Question 1.2. Is it true that cd(A) = cdGS(A) for any Hopf algebra A over a
field of characteristic zero? Is it true at least if A is assumed to be cosemisim-
ple?

A positive answer would give the monoidal invariance of cohomological dimen-
sion and fully answer the last part of Question 1.1, and would also be a natural
infinite-dimensional generalization of a famous result by Larson-Radford [38],
which states that, in characteristic zero, a finite-dimensional cosemisimple Hopf
algebra is semisimple. See Remark 5.8.

We provide (Corollary 5.10) a partial positive answer to Question 1.2 in the
case where A is cosemisimple of Kac type (the square of the antipode is the
identity), and in turn this gives a partial positive answer to Question 1.1 (see
Corollary 5.11).

We then apply our general considerations to quantum symmetry Hopf algebras,
which were the first motivation for this work. Let (R,ϕ) semisimple measured
algebra of dimension ≥ 4, and let Aaut(R,ϕ) be its quantum symmetry Hopf
algebra [61, 8]. We compute, in the cosemisimple case, the bialgebra cohomol-
ogy of Aaut(R,ϕ), and we show that cd(Aaut(R,ϕ)) ≤ cdGS(Aaut(R,ϕ)) = 3,
with equality if ϕ is a trace. These results include in particular the coordinate
algebra of Wang’s quantum permutation group S+

n [61].

As a last comment to further motivate the use of Gerstenhaber-Schack coho-
mology as an appropriate cohomology theory for Hopf algebras (apart from its
use to get information on Hochschild cohomology itself), we would like to point
out that, in the examples computed so far, it also has the merit to avoid the
“dimension drop” phenomenon usually encountered for quantum algebras (see
[31, 32]): the canonical choice of coefficients (the trivial Hopf bimodule) is the
good one to get the cohomological dimension. It would be interesting to know
if this can be further generalized.

The paper is organized as follows. Section 2 consists of preliminaries. In Sec-
tion 3 we discuss the cohomological dimension of a Hopf subalgebra and the
sub-additivity of the cohomological dimension under extensions. Section 4 is
devoted to Yetter-Drinfeld modules: we recall the concept of free (resp. co-
free) Yetter Drinfeld module and we introduce the notion of relative projective
(resp. injective) Yetter-Drinfeld module, which corresponds, via the tensor
equivalence between Yetter-Drinfeld modules and Hopf bimodules [49], to the
notion of relative projective (resp. injective) Hopf bimodule considered in [53].
We show that relative projective (resp. injective) Yetter-Drinfeld modules are
precisely the direct summands of free (resp. co-free) Yetter-Drinfeld modules.
This section also contains some considerations on free Yetter-Drinfeld modules
over adjoint Hopf subalgebras. In Section 5, after having recalled some basic
facts on Gerstenhaber-Schack cohomology, we provide an explicit complex that
computes the Gerstenhaber-Schack cohomology H∗

GS(A, V ), if A is cosemisim-
ple or if the Yetter-Drinfeld module V is relative injective, using results from
[53] in this last case (see Proposition 5.3). We then show that Gerstenhaber-
Schack cohomology determines Hochschild cohomology, and show that Ques-
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tion 1.2 has a positive answer in the case of cosemisimple Hopf algebras of Kac
type. In Section 6 we study the examples mentioned earlier in the introduction.
In Section 7 we discuss the Gerstenhaber-Schack cohomological dimension in
the setting of Hopf algebras having a projection.

2 Preliminaries

In this preliminary section we fix some notation, we recall some basic definitions
and facts on the Hochschild cohomology of a Hopf algebra, and we discuss exact
sequences of Hopf algebras.

2.1 Notations and conventions

We work over C (or over any algebraically closed field of characteristic zero).
This assumption does not affect any of the theoretical results in the paper,
but is important for the examples we consider. We assume that the reader
is familiar with the theory of Hopf algebras and their tensor categories of co-
modules, as e.g. in [34, 35, 42]. If A is a Hopf algebra, as usual, ∆, ε and S
stand respectively for the comultiplication, counit and antipode of A. We use
Sweedler’s notations in the standard way. The category of right A-comodules
is denoted MA, the category of right A-modules is denoted MA, etc... The
trivial (right) A-module is denoted Cε. The set of A-module morphisms (resp.
A-comodule morphisms) between two A-modules (resp. two A-comodules) V
and W is denoted HomA(V,W ) (resp. HomA(V,W )).

2.2 Hochschild cohomology of a Hopf algebra

If A is an algebra and M is an A-bimodule, then H∗(A,M) denotes, as usual,
the Hochschild cohomology of A with coefficients in M . See e.g. [62].

Definition 2.1. The Hochschild cohomological dimension of an algebra A is
defined to be

cd(A) = sup{n : Hn(A,M) 6= 0 for some A− bimodule M} ∈ N ∪ {∞}

As noted by several authors (see [25], [29], [31], [13], [17], [10]), the Hochschild
cohomology of a Hopf algebra can be described by using a suitable Ext functor
on the category of left or right A-modules. Indeed, if A is a Hopf algebra and
M is an A-bimodule, we have

H∗(A,M) ≃ Ext∗A(Cε,M
′)

where the above Ext is in the category of right A-modules and M ′ is M
equipped with the right A-module structure given by x← a = S(a(1)) ·x · a(2).
This leads to the following description of the cohomological dimension of a
Hopf algebra.
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Proposition 2.2. Let A be a Hopf algebra. We have

cd(A) = sup{n : ExtnA(Cε,M) 6= 0 for some A−module M}
= inf{n : ExtiA(Cε,−) = 0 for i > n}
= inf{n : Cε admits a projective resolution of length n}

Proof. The previous isomorphism ensures that

cd(A) ≤ sup{n : ExtnA(Cε,M) 6= 0 for some A−module M}

If V is a right A-module, let εV be the A-bimodule whose right structure is
that of V and whose left structure is trivial, i.e. given by ε. Then (εV )′ = V ,
hence the converse inequality holds, and the first equality in the statement is
proved, as well as the second one. The last one is shown similarly as in the
case of group cohomology, see e.g. [14, Chapter VIII, Lemma 2.1].

Examples 2.3. 1. If G is a linear algebraic group, with coordinate algebra
O(G), it is well-known that cd(O(G)) = dimG.

2. If Γ is a (discrete) group, then cd(CΓ) = cdC(Γ), the cohomological
dimension of Γ with coefficients C. We have cd(CΓ) = 0 if and only
if Γ is finite, and if Γ is finitely generated, then cd(CΓ) = 1 if and only if
Γ contains a free normal subgroup of finite index, see [22].

3. If A is a finite-dimensional Hopf algebra, then either cd(A) = 0 (when
A is semisimple) or cd(A) = ∞, a finite-dimensional Hopf algebra being
Frobenius and hence self-injective.

2.3 Exact sequences of Hopf algebras

A sequence of Hopf algebra maps

C→ B
i→ A

p→ L→ C

is said to be exact [3] if the following conditions hold:

1. i is injective and p is surjective,

2. ker p = Ai(B)+ = i(B)+A, where i(B)+ = i(B) ∩Ker(ε),

3. i(B) = AcoL = {a ∈ A : (id ⊗ p)∆(a) = a ⊗ 1} = coLA = {a ∈ A :
(p⊗ id)∆(a) = 1⊗ a}.

Note that condition (2) implies pi = ε1.

Proposition 2.4. Let
C→ B

i→ A
p→ L→ C

be a sequence of Hopf algebra maps where i is injective, p is surjective and pi
= ε1. Assume that the antipode of A is bijective. Consider the following three
assertions.
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1. A is faithfully flat as a right B-module and Ker(p) = Ai(B)+ = i(B)+A.

2. coLA = AcoL = i(B) and p is left or right faithfully coflat.

3. The sequence is exact.

Then we have (1)⇒ (3) and (2)⇒ (3), and if (3) holds, then we have (1) ⇐⇒
(2).

An exact sequence satisfying (1) and (2) is called strict [52]. Note that p is
automatically faithfully coflat if L is cosemisimple.
That (1) ⇒ (3) holds is well-known (see [3, Proposition 1.2.4], [51, Lemma
1.3], [42, Proposition 3.4.3], or more generally [59, Theorem 1]). Also that
(1) ⇐⇒ (2) if (3) holds is known, see [51, Corollary 1.8]. I wish to thank the
referee for pointing out that (2)⇒ (3) follows from [59, Theorem 2], combined
with [44, Remark 1.3].

3 Cohomological dimension of a Hopf subalgebra

In this section we discuss the behavior of cohomological dimension when passing
to a Hopf subalgebra, which, under mild assumptions, is similar to the group
cohomology case.

Proposition 3.1. Let B ⊂ A be a Hopf subalgebra. Assume that one of the
following conditions holds.

1. A is projective as a right B-module.

2. The antipode of A is bijective and A is faithfully flat as a right B-module.

3. A is cosemisimple.

4. The exists a Hopf algebra map π : A→ B such that π|B = idB.

5. The antipode of A is bijective and B is commutative.

Then cd(B) ≤ cd(A).

Proof. If A is projective as a right B-module, any projective right A-module
is projective as a right B-module, thus a resolution of length n of Cε in MA

yields a resolution of length n in MB, and thus Proposition 2.2 ensures that
cd(B) ≤ cd(A). Assuming (2), Corollary 1.8 in [51] yields that A is projective as
a right B-module, and we conclude by (1). If we assume that A is cosemisimple,
then its antipode is bijective and by [16] A is faithfully flat as a right B-module,
and we conclude by (2). If we assume (4), then A is free as a right B-module,
see [47] (we will come back to this situation in Section 7), thus we conclude by
(1). If B is commutative, then A is faithfully flat over B by Proposition 3.12
in [4], and again we conclude by (2).
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The following result is the generalization of the sub-additivity of cohomological
dimension under extensions (see e.g. Proposition 2.4 in [14]) with essentially the
same proof, using Stefan’s spectral sequence [54] as the natural generalization
of the Hochschild-Serre spectral sequence.

Proposition 3.2. Let

C −→ B
i−→ A

p−→ L −→ C

be a strict exact sequence of Hopf algebras , and assume that the antipode of A
is bijective. Then we have cd(B) ≤ cd(A) ≤ cd(B) + cd(L). If moreover L is
semisimple, then cd(B) = cd(A).

Proof. By [51, Lemma 1.3], (or more generally [59, Theorem 1], see also [42,
Proposition 3.4.3]), the canonical map

A⊗B A −→ A⊗ L
a⊗B a′ 7−→ aa′(1) ⊗ p(a′(2))

is bijective. Thus B ⊂ A is an L-Galois extension, and A is faithfully flat both
as a left and right B-module (the antipode of A is bijective). Thus for any
A-A-bimodule M there exists a spectral sequence [54]

Epq
2 = Hp(L;Hq(B,M))⇒ Hp+q(A,M)

The spectral sequence is concentrated in the rectangle 0 ≤ p ≤ cd(L), 0 ≤
q ≤ cd(B), and it follows that for i > cd(L) + cd(B), we have Hi(A,M) = 0,
and this proves the inequality. If L is semisimple, then cd(L) = 0, and hence
cd(B) = cd(A).

4 Yetter-Drinfeld modules

Let A be a Hopf algebra. Recall that a (right-right) Yetter-Drinfeld module
over A is a right A-comodule and right A-module V satisfying the condition,
∀v ∈ V , ∀a ∈ A,

(v ← a)(0) ⊗ (v ← a)(1) = v(0) ← a(2) ⊗ S(a(1))v(1)a(3)

The category of Yetter-Drinfeld modules over A is denoted YDA
A: the mor-

phisms are the A-linear A-colinear maps. Endowed with the usual tensor prod-
uct of modules and comodules, it is a tensor category, with unit the trivial
Yetter-Drinfeld module, denoted C.
An important example of Yetter-Drinfeld module is the right coadjoint Yetter-
Drinfeld module Acoad: as a right A-module Acoad = A and the right A-
comodule structure is defined by

adr(a) = a(2) ⊗ S(a(1))a(3), ∀a ∈ A

The coadjoint Yetter-Drinfeld module has a natural generalization, discussed
in the next subsection.
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4.1 Free and co-free Yetter-Drinfeld modules

We now discuss some important constructions of Yetter-Drinfeld modules (left-
right versions of these constructions were first given in [15], see [53] as well, in
the context of Hopf bimodules).
Let V be a right A-comodule. The Yetter-Drinfeld module V ⊠A is defined as
follows [10]. As a vector space V ⊠ A = V ⊗ A, the right module structure is
given by multiplication on the right, and the right coaction αV ⊠A is defined by

αV⊠A(v ⊗ a) = v(0) ⊗ a(2) ⊗ S(a(1))v(1)a(3)

Note that Acoad = C⊠A.
A Yetter-Drinfeld module is said to be free if it is isomorphic to V ⊠A for some
comodule V .
The construction of the free Yetter-Drinfeld module on a comodule yields a
functor L = −⊠A :MA −→ YDA

A which is left adjoint to the forgetful functor
R : YDA

A −→MA . Indeed we have natural isomorphisms

HomA(V,R(X)) −→ HomYDA
A
(V ⊠A,X)

f 7−→ f̃ , f̃(v ⊗ a) = f(v)← a

for any A-comodule V and any Yetter-Drinfeld module X .
Now let M be a right A-module. The Yetter-drinfeld module M#A is defined
as follows: the underlying vector space isM ⊗A, the right coaction is idM ⊗∆,
while the right action is given by

(x ⊗ a)← b = x · b(2) ⊗ S(b(1))ab(3)

The Yetter-Drinfeld module C#A is the adjoint Yetter-Drinfeld module, de-
noted Aad.
A Yetter-Drinfeld module will be said to be co-free if it is isomorphic to M#A
for some moduleM . The construction of the co-free Yetter-Drinfeld module on
a module yields a functor L = −#A :MA −→ YDA

A which is right adjoint to
the forgetful functor L : YDA

A −→MA. Indeed we have natural isomorphisms

HomYDA
A
(X,M#A) −→ HomA(L(X),M)

f 7−→ (idM ⊗ ε)f,

for any A-module M and any Yetter-Drinfeld module X .

4.2 Relative projective and relative injective Yetter-Drinfeld

modules

We will use the following notions.

Definition 4.1. Let V be a Yetter-Drinfeld module over A. Then V is said to
be relative projective if the functor HomYDA

A
(V,−) transforms exact sequences
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of Yetter-Drinfeld modules that split as sequences of comodules to exact se-
quences of vector spaces.
Similarly V is said to be relative injective if the functor HomYDA

A
(−, V ) trans-

forms exact sequences of Yetter-Drinfeld modules that split as sequences of
modules to exact sequences of vector spaces.

Relative projective Yetter-Drinfeld modules have the following characteriza-
tion.

Proposition 4.2. Let P be a Yetter-Drinfeld module over A. The following
assertions are equivalent.

1. P is relative projective.

2. Any surjective morphism of Yetter-Drinfeld modules f : M → P that
admits a section which is a map of comodules admits a section which is
a morphism of Yetter-Drinfeld modules.

3. P is a direct summand of a free Yetter-Drinfeld module.

If A is cosemisimple, these conditions are equivalent to P being a projective
object of YDA

A.

Proof. The proof of (1)⇒(2) is similar to the usual one for modules. Assume
(2), and consider the surjective Yetter-Drinfeld module morphism R(P )⊠A→
P , x ⊗ a 7→ x ← a. The map P → R(P ) ⊠ A, x 7→ x ⊗ 1 is an A-colinear
section, so by (2) P is indeed, as a Yetter-Drinfeld module, a direct summand
of R(P )⊠A.
Assume now that P is free, i.e. P = V ⊠A for some comodule V , and let

0→M
i→ N

p→ Q→ 0

be an exact sequence of Yetter-Drinfeld modules that splits as a sequence of
comodules. The sequence

0→ HomYDA
A
(P,M)

i−−→ HomYDA
A
(P,N)

p−−→ HomYDA
A
(P,Q)

is exact and we have to show the surjectivity of the map on the right. Let
s : Q → N be a morphism of comodules such that ps = idQ. Let ϕ ∈
HomYDA

A
(V ⊠A,Q), and let ϕ0 : V → Q be defined by ϕ0(v) = ϕ(v⊗1): ϕ0 is a

map of comodules, and so is sϕ0. Considering now s̃ϕ0 ∈ HomYDA
A
(V ⊠A,N),

we have ps̃ϕ0 = ϕ, which gives the expected surjectivity result. Now if
V ⊠ A ≃ P ⊕ M as Yetter-Drinfeld modules, then HomYDA

A
(V ⊠ A,−) ≃

HomYDA
A
(P,−)⊕HomYDA

A
(M,−), and the usual argument for projective mod-

ules work to conclude that P is relative projective.
It is clear that a projective Yetter-Drinfeld module is relative projective, and if
A is cosemisimple, a free Yetter-Drinfeld module is a projective object in YDA

A

(Proposition 3.3 in [10]), hence a direct summand of a free Yetter-Drinfeld
module is projective, and so is a relative projective Yetter-Drinfeld module.
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Similarly, relative injective Yetter-Drinfeld modules are characterized as fol-
lows. The proof is similar to the one of the previous result, and is left to the
reader.

Proposition 4.3. Let I be a Yetter-Drinfeld module over A. The following
assertions are equivalent.

1. I is relative injective.

2. Any injective morphism of Yetter-Drinfeld modules f : I → M that ad-
mits a section which is a map of modules admits a section which is a
morphism of Yetter-Drinfeld modules.

3. P is a direct summand of a co-free Yetter-Drinfeld module.

4.3 Yetter-Drinfeld modules and Hopf bimodules

In this subsection we briefly recall the category equivalence between Yetter-
Drinfeld modules and Hopf bimodules [49], and check that the notion of relative
projective objects (resp. relative injective objects) for Yetter-Drinfeld modules
corresponds to that for Hopf bimodules considered in [53].
First recall that a Hopf bimodule over A is an A-bimodule and A-bicomodule
M whose respective left and right coactions λ : M → A ⊗M and ρ : M →
M ⊗A are A-bimodule maps. The category of Hopf bimodules over A, whose

morphisms are the bimodule and bicomodule maps, is denotedA
AM

A

A.
If M is Hopf bimodule over A, then coAM = {x ∈ M | λ(x) = 1 ⊗ x} is
a right subcomodule of M , and inherits a right A-module structure given by
x ← a = S(a(1)).x.a(2), making it into a Yetter-Drinfeld module over A. This
defines a functor

A
AM

A

A −→ YDA
A

M 7−→ coAM

Conversely, starting from a Yetter-Drinfeld module V , one defines a Hopf bi-
module structure on A⊗ V as follows. The bimodule structure is given by

a.(b⊗ v).c = abc(1) ⊗ (v ← c(2))

and the bicomodule structure is given by the following left and right coactions

λ : A⊗ V −→ A⊗A⊗ V ρ : A⊗ V −→ A⊗ V ⊗A
a⊗ v 7−→ a(1) ⊗ a(2) ⊗ v a⊗ v 7−→ a(1) ⊗ v(0) ⊗ a(2)v(1)

If f : V −→W is a morphism of Yetter-Drinfeld module, then idA⊗f : A⊗V →
A⊗W is a morphism of Hopf bimodules, and hence we get a functor

YDA
A −→A

AM
A

A

V 7−→ A⊗ V
The two functors just defined are quasi-inverse equivalences, see [49].
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Lemma 4.4. Relative projective (resp. relative injective) objects in YDA
A corres-

pond, via the category equivalence YDA
A ≃ A

AM
A

A, to relative projective (resp.

relative injective) objects of AAM
A

A
in the sense of [53].

Proof. Let M be a Hopf bimodule over A. That M is relatively projective
means that the functor HomA

AMA

A

(M,−) transforms exact sequences of Hopf

bimodules that split as sequences of bicomodules to exact sequences of vector
spaces. The proof of the lemma easily reduces to the following statement.
Let f : V → W be a surjective morphism of Yetter-Drinfeld modules, inducing
a surjective morphism of Hopf bimodules idA⊗f : A⊗V → A⊗W . Then there
exists an A-comodule section to f if and only if there exists an A-bicomodule
section to idA ⊗ f .
Indeed, if s :W → V is A-colinear with fs = idW , then idA⊗s : A⊗W → A⊗V
is A-bicolinear and is a section to idA ⊗ f . Conversely starting with an A-
bicolinear map T : A ⊗W → A⊗ V with (idA ⊗ f)T = idA⊗W , then the map
s : W → V defined by s(w) = ε ⊗ idV (T (1 ⊗ w)) is A-colinear, and satisfies
fs = idW .
In a similar manner, that M is relatively injective means that the functor
HomA

AMA

A

(−,M, ) transforms exact sequences of Hopf bimodules that split as

sequences of bimodules to exact sequences of vector spaces. The proof that this
corresponds to the notion of relative injective Yetter-Drinfeld module is left to
the reader.

4.4 Adjoint Hopf subalgebras

We now discuss the way to restrict certain free Yetter-Drinfeld to adjoint Hopf
subalgebras.

Proposition 4.5. Let B ⊂ A be a Hopf subalgebra. The following assertions
are equivalent.

1. For any a ∈ A and b ∈ B, we have

a(2) ⊗ S(a(1))ba(3) ∈ A⊗B

2. For any B-comodule W , we have αV⊠A(W ⊠A) ⊂ (W ⊠A)⊗B so that
W ⊠A is an object of YDB

B.

Proof. (1) ⇒ (2) follows from the definition of αV ⊠A. Conversely, assuming
that (2) holds, take W = B the regular B-comodule. Then for any a ∈ A and
b ∈ B, we have

b(1) ⊗ a(2) ⊗ S(a(1))b(2)a(3) ∈ A⊗A⊗B

and hence

a(2) ⊗ S(a(1))ba(3) = a(2) ⊗ S(a1)ε(b(1))b(2)a(3) ∈ A⊗B

Thus (1) holds.

Documenta Mathematica 21 (2016) 955–986



966 Julien Bichon

Definition 4.6. A Hopf subalgebra B ⊂ A is said to be adjoint if it satisfies
the equivalent conditions of Proposition 4.5.

Very often adjoint Hopf subalgebras are obtained in the following way. Recall
that a Hopf algebra map f : A → L is said to be cocentral if f(a(1)) ⊗ a(2) =
f(a(2))⊗ a(1) for any a ∈ A.

Proposition 4.7. Let B ⊂ A be a Hopf subalgebra. Assume that there exists
a cocentral and surjective Hopf algebra map p : A → L such that B = AcoL.
Then B ⊂ A is an adjoint Hopf subalgebra. Conversely if B ⊂ A is an adjoint
Hopf subalgebra, if A and B have bijective antipodes and if A is faithfully flat
as a right B-module, then there exists a cocentral surjective Hopf algebra map
p : A→ L such that B = AcoL.

Proof. Let a ∈ A and b ∈ B. Since p(b) = ε(b)1, we have, using the cocentrality
of p,

idA ⊗ idB ⊗ p
(
a(2) ⊗ (S(a(1))ba(3))(1) ⊗ (S(a(1))ba(3))(2)

)

= idA ⊗ idB ⊗ p
(
a(3) ⊗ S(a(2))b(1)a(4) ⊗ S(a(1))b(2)a(5)

)

= a(3) ⊗ S(a(2))b(1)a(4) ⊗ pS(a(1))p(b(2))p(a(5))
= a(3) ⊗ S(a(2))ba(4) ⊗ pS(a(1))p(a(5))
= a(2) ⊗ S(a(1))ba(3) ⊗ 1

Hence a(2) ⊗ S(a(1))ba(3) ∈ A ⊗ AcoL = A ⊗ B: this shows that B ⊂ A is
adjoint.
Conversely, assume that B ⊂ A is adjoint, that A and B have bijective an-
tipodes and that A is faithfully flat as a right B-module. Then for any a ∈ A
and b ∈ B, we have

S(a(1))ba(2) = ε(a(2))ε(b(1))S(a(1))b(2)a(3) ∈ B

It is well-known that this implies B+A ⊂ AB+, and hence AB+ ⊂ B+A by
the bijectivity of the antipodes. It follows that B+A is a Hopf ideal in A, and
we denote by p : A → A/B+A = L the canonical Hopf algebra surjection. By
construction we have B ⊂ AcoL, and for b ∈ B we have p(b) = ε(b). Hence we
have for any a ∈ A, a⊗ 1 = a(2) ⊗ p(S(a(1))a(3)), hence

a(2) ⊗ p(a(1)) = (1 ⊗ p(a(1)))(a(2) ⊗ 1)

= (1 ⊗ p(a(1))(a(3) ⊗ p(S(a(2))a(4))) = a(1) ⊗ p(a(2))

and this shows that p is cocentral. Finally we have B = AcoL by Corollary 1.8
in [51].

We now discuss a condition that ensures that the restriction of a free Yetter-
Drinfeld module to an adjoint Hopf subalgebra as in Proposition 4.5 remains a
relative projective Yetter-Drinfeld module.
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Proposition 4.8. Let B ⊂ A be a Hopf subalgebra with B = AcoL for some
cocentral and surjective Hopf algebra map p : A→ L. Assume that there exists
a linear map σ : L→ A such that

1. pσ = idL;

2. σ(x)(1) ⊗ p(σ(x)(2)) = σ(x(1))⊗ x(2), for any x ∈ L;

3. σ(x)(1)S(σ(x)(3))⊗ σ(x)(2) = 1B ⊗ σ(x), for any x ∈ L.

Then for any B-comodule W , the object W ⊠ A ∈ YDB
B is relative projective.

Such a map σ exists if A is cosemisimple.

Proof. We first claim that for any a ∈ A, we have

σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2) ∈ A⊗B

For any x ∈ L, we have, by (2)

σ(x)(1) ⊗ σ(x)(2) ⊗ p(σ(x)(3)) = σ(x(1))(1) ⊗ σ(x(1))(2) ⊗ x(2)
and hence for any a ∈ A

σp(a)(1) ⊗ σp(a)(2) ⊗ p(σp(a)(3)) = σp(a(1))(1) ⊗ σp(a(1))(2) ⊗ p(a(2))

We have

(idA ⊗ p⊗ idA)(idA ⊗∆)
(
σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2)

)

= σp(a(1))(1) ⊗ Sp(σp(a(1))(3))p(a(2))⊗ S(σp(a(1))(2))a(3)
= σp(a(1))(1) ⊗ Sp(a(2))p(a(3))⊗ S(σp(a(1))(2))a(4)
= σp(a(1))(1) ⊗ 1⊗ S(σp(a(1))(2))a(2)

and this proves our claim.
We thus get for any B-comodule W , a linear map

ι :W ⊠A −→ (W ⊠A)⊠B

w ⊗ a 7−→ w ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(2)
that we claim to be a morphism of Yetter-Drinfeld modules over B. That ι
is a left B-module map is easily checked. Denoting by β the B-coaction on
(W ⊠A)⊠B, we have

βι(w ⊗ a) = w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(5))a(3)⊗
S
(
S(σp(a(1))(6)a(2)

)
S(σp(a(1))(1))w(1)σp(a(1))(3)S(σp(a(1))(4))a(4)

=w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(3))a(3)⊗
S
(
S(σp(a(1))(4))a(2)

)
S(σp(a(1))(1))w(1)a(4)

=w(0) ⊗ σp(a(1))(2) ⊗ S(σp(a(1))(3))a(3)⊗
S(a(2))S

(
σp(a(1))1S(σp(a(1))(4))

)
w(1)a(4)
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By (3), for x ∈ L, we have

σ(x)(2) ⊗ σ(x)(1)S(σ(x)(3)) = σ(x) ⊗ 1B

and hence

σ(x)(2) ⊗ S(σ(x)(3))⊗ σ(x)(1)S(σ(x)(4)) = σ(x)(1) ⊗ S(σ(x)(2))⊗ 1B

Thus

βι(w ⊗ a) = w(0) ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(3) ⊗ S(a(2))w(1)a(4)

Now let γ be the B-coaction on W ⊠A. We have

(ι⊗ idB)γ(w ⊗ a) = ι⊗ idB(w(0) ⊗ a(2) ⊗ S(a(1))w(1)a(3))

= w(0) ⊗ σp(a(2))(1) ⊗ S(σp(a(2))(2))a(3) ⊗ S(a(1))w(1)a(4)

= w(0) ⊗ σp(a(1))(1) ⊗ S(σp(a(1))(2))a(3) ⊗ S(a(2))w(1)a(4) = βι(w ⊗ a)

where we have used the cocentrality of p. It follows that ι is B-colinear, and
hence is a morphism of Yetter-Drinfeld modules over B. Consider now

µ : (W ⊠A)⊠B −→W ⊠A

w ⊗ a⊗ b 7−→ w ⊗ ab

It is straightforward to check that µ is a morphism of Yetter-Drinfeld modules
over B, with µι = idW⊠A and hence we conclude from Proposition 4.2 that
W ⊠A is a relative projective Yetter-Drinfeld module over B.
For the last assertion, note that L and A both admit right Bcop ⊗L-comodule
structures given by

L −→ L⊗ (Bcop ⊗ L), A −→ A⊗ (Bcop ⊗ L)
x 7−→ x(1) ⊗ 1⊗ x(2), a 7−→ a(2) ⊗ a(1)S(a(3))⊗ p(a(4))

and that p is Bcop ⊗ L-colinear. If A is cosemisimple then so is B and so is
L (since p is cocentral), hence Bcop ⊗ L is cosemisimple. Thus there exists a
Bcop ⊗ L-colinear section to p, which satisfies our 3 conditions.

There are also situations where the Hopf algebra in the proposition is not
cosemisimple and the map σ still exists, see Section 6.

5 Gerstenhaber-Schack cohomology.

5.1 Generalities.

Let A be a Hopf algebra and let V be a Yetter-Drinfeld module over A. The
Gerstenhaber-Schack cohomology of A with coefficients in V , that we denote
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H∗
GS(A, V ), was introduced in [27, 28] by using an explicit bicomplex. In fact

Gerstenhaber-Schack used Hopf bimodules instead of Yetter-Drinfeld modules
to define their cohomology, but in view of the equivalence between Hopf bimod-
ules and Yetter-Drinfeld modules, we shall work with the simpler framework of
Yetter-Drinfeld modules (a Yetter-Drinfeld version of the Gerstenhaber-Schack
bicomplex is provided in [45]). A special instance of Gerstenhaber-Schack co-
homology is bialgebra cohomology, given by H∗

b (A) = H∗
GS(A,C).

As an example, we have by [46], H∗
b (CΓ) ≃ H∗(CΓ,C) for any discrete group Γ.

The bialgebra cohomology of O(G) for a connected reductive algebraic group
G is also described in [46], Theorem 9.2, and some finite-dimensional examples
are computed in [58]. Applications to deformations of pointed Hopf algebras
are given in [41].

A key result, due to Taillefer [57, 56], shows that Gerstenhaber-Schack coho-
mology is in fact an Ext-functor:

H∗
GS(A, V ) ≃ Ext∗YDA

A
(C, V )

We will use this description as a definition (we will recall and use the definition
based on a bicomplex in the proof of the forthcoming Proposition 5.3).

Definition 5.1. The Gerstenhaber-Schack cohomological dimension of a Hopf
algebra A is defined to be

cdGS(A) = sup{n : Hn
GS(A, V ) 6= 0 for some V ∈ YDA

A} ∈ N ∪ {∞}

If A and B are Hopf algebras having equivalent tensor categories of comodules,
then the given tensor equivalence F :MA ≃⊗MB induces a tensor equivalence
F̂ : YDA

A ≃⊗ YDB
B (see e.g. [11, 10], this is easy to see thanks to the description

of the category of Yetter-Drinfeld modules as the weak center of the category
of comodules, see [50]). Hence we get, for any Yetter-Drinfeld module V over
A, an isomorphism

H∗
GS(A, V ) ≃ H∗

GS(B, F̂ (V ))

and moreover cdGS(A) = cdGS(B). These properties are what we call the
monoidal invariance of Gerstenhaber-Schack cohomology.

5.2 Complexes to compute Gerstenhaber-Schack cohomology.

We now discuss the description of complexes that compute Gerstenhaber-
Schack cohomology in particular cases.

Recall that a Hopf algebra A is said to be co-Frobenius if there exists a non-
zero A-colinear map A → C. By [39], A is co-Frobenius if and only if the
category MA of right comodules has enough projectives. Finite-dimensional
Hopf algebras are co-Frobenius, as well as cosemisimple Hopf algebras. See
[1, 2] for more examples.
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Proposition 5.2. Let A be a co-Frobenius Hopf algebra and let

P. = · · ·Pn+1 → Pn → · · · → P1 → P0 → 0

be a resolution of C by projective objects of YDA
A. We have, for any Yetter-

Drinfeld module V over A, an isomorphism

H∗
GS(A, V ) ≃ H∗(HomYDA

A
(P., V ))

and we have

cdGS(A) = inf{n : C admits a projective resolution of length n in YDA
A}

Proof. We know, since A is co-Frobenius, that YDA
A has enough projective

objects (Corollary 3.4 in [10]). Thus the description of H∗
GS(A,−) as an Ext

functor [57] yields that if P. is a a resolution of C by projective objects of YDA
A,

we have

H∗
GS(A, V ) ≃ H∗(HomYDA

A
(P., V ))

for any Yetter-Drinfeld module V . The proof of the last statement is similar
to the one for group cohomology, see [14, Chapter VIII, Lemma 2.1].

Recall [10] that for any n ∈ N, the Yetter-Drinfeld module A⊠n is defined as
follows:

A⊠0 = C, A⊠1 = C⊠A = Acoad, A
⊠2 = A⊠1

⊠A, . . . , A⊠(n+1) = A⊠n
⊠A, . . .

After the obvious vector space identification of A⊠n with A⊗n, the right A-
module structure of A⊠n is given by right multiplication and its comodule
structure is given by

ad(n)r : A⊠n −→ A⊠n ⊗A
a1 ⊗ · · · ⊗ an 7−→ a1(2) ⊗ · · · ⊗ an(2) ⊗ S(a1(1) · · · an(1))a1(3) · · · an(3)

Proposition 5.3. Let A be a Hopf algebra and let V be a Yetter-Drinfeld
module over A. Assume that one of the following conditions holds.

1. A is cosemisimple.

2. V is relative injective.

Then the Gerstenhaber-Schack cohomology H∗
GS(A, V ) is the cohomology of the

complex

0→ HomA(C, V )
∂−→HomA(A⊠1, V )

∂→ · · ·
∂→ HomA(A⊠n, V )

∂−→ HomA(A⊠n+1, V )
∂−→ · · ·
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where the differential ∂ : HomA(A⊠n, V ) −→ HomA(A⊠n+1, V ) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1)+
n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1f(a1 ⊗ · · · ⊗ an) · an+1

Proof. By [10], Proposition 3.6, the standard resolution of Cε yields in a fact
resolution of C by free Yetter-Drinfeld modules in the category YDA

A

· · · −→ A⊠n+1 −→ A⊠n −→ · · · −→ A⊠2 −→ A⊠1 −→ 0

where each differential is given by

A⊠n+1 −→A⊠n

a1 ⊗ · · · ⊗ an+1 7−→ε(a1)a2 ⊗ · · · ⊗ an+1+
n∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

If A is cosemimple, then free Yetter-Drinfeld modules are projective, and we
get, after standard identification using the fact that the free functor is left
adjoint, the result by Proposition 5.2.
To prove the result if the second condition holds, we recall the definition of
Gerstenhaber-Schack cohomology using a bicomplex [53]. Let V,W be ob-
jects in YDA

A, let P• → V → 0 be a relative projective resolution of V (this
means that the objects Pq, q ≥ 0, are relative projective and the the sequence
P• → V → 0 splits as a sequence of comodules), and let 0 → W → I• be
a relative injective resolution of W (this means that the objects Ip, p ≥ 0,
are relative injective and the the sequence 0 → W → I• splits as a se-
quence of modules). We then can form, in a standard way, the bicomplex
C•,•(V,W ) = HomYDA

A
(P•, I

•). The uniqueness, up to homotopy, of the previ-

ous resolutions ([53], chapter 10) shows that the cohomology of the bicomplex
C•,•(V,W ) = HomYDA

A
(P•, I

•) is independent of the choice of these resolutions,
and is the Gertenhaber-Schack cohomology of the Yetter-Drinfeld modules V
and W (see [56, 57] as well). When V = C, we get the Gerstenhaber Schack-
cohomology H∗

GS(A,W ) as defined in Subsection 5.1, by [57].
Assuming that W is relative injective, we can use the relative injective resolu-
tion

0→W →W → 0→ · · · → 0 · · ·
together with the standard resolution of the trivial object C as above (which is
indeed a relative projective resolution of C), and we get a bicomplex with only
one non-zero column, which is, again using the fact that the free functor is left
adjoint, easily identified with the complex in the statement of the proposition.
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Remark 5.4. When V = C is the trivial Yetter-Drinfeld module, the complex
in Theorem 5.3 is the same as the one defined in [26] in the study of additive
deformations of Hopf algebras, which are of interest in quantum probability.
This complex is also the complex that defines the so-called Davydov-Yetter
cohomology of the tensor categoryMA ([18, 60], see [24], Chapter 7).

Remark 5.5. Let V be a Yetter-Drinfeld module over A. The complex in
Proposition 5.3 is a subcomplex of the complex that computes the Hochshild
cohomology H∗(A, εV ), where the left A-module structure on εV is the one
induced by the counit and the right module structure is the original one. We
thus have a linear map

H∗
GS(A, V )→ H∗(A, εV ) ≃ ExtA(Cε, V )

which is not injective in general. Indeed for q ∈ C∗ generic (q = ±1
or not a root of unity), we have H3

GS(O(SLq(2)),C) ≃ C (see [10]), while
H3(O(SLq(2)), εCε) = 0 if q2 6= 1 (see e.g. [31]). In Subsection 5.4 we provide
some conditions that ensure that the above map is injective.

5.3 Relation with Hochschild cohomology

We are ready to show that the Gerstenhaber-Schack cohomology of a Hopf
algebra determines its Hochschild cohomology.

Theorem 5.6. Let A be a Hopf algebra and let M be an A-bimodule. Endow
M ⊗A with a Yetter-Drinfeld module structure defined by (a, b ∈ A, m ∈M)

m⊗ a 7→ m⊗ a(1) ⊗ a(2), (m⊗ a)← b = S(b(2)).m.b(3) ⊗ S(b(1))ab(4)

and denote by M ′#A the resulting Yetter-Drinfeld module. Then we have an
isomorphism

H∗(A,M) ≃ H∗
GS(A,M

′#A)

In particular we have cd(A) ≤ cdGS(A).

Proof. The Yetter-Drinfeld module M ′#A is the co-free Yetter-Drinfeld as-
sociated to the right A-module M ′ of Section 2. It is thus a relative injec-
tive Yetter-Drinfeld module (Proposition 4.3), and we can use the complex of
Proposition 5.3 to compute its Gerstenhaber-Schack cohomology.

Recall that since H∗(A,M) ≃ Ext∗A(Cε,M
′) (Section 2), the complex to com-

pute H∗(A,M) is

0 −→Hom(C,M ′)
∂−→ Hom(A,M ′)

∂−→ · · ·

· · · ∂−→ Hom(A⊗n,M ′)
∂−→ Hom(A⊗n+1,M ′)

∂−→ · · ·
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where the differential ∂ : Hom(A⊗n,M ′) −→ Hom(A⊗n+1,M ′) is given by

∂(f)(a1 ⊗ · · · ⊗ an+1) =ε(a1)f(a2 ⊗ · · · ⊗ an+1)

+

n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

+ (−1)n+1S(an+1(1)) · f(a1 ⊗ · · · ⊗ an) · an+1(2)

For all n ≥ 0, we have linear isomorphisms

HomA(A⊠n,M ′#A) −→ Hom(A⊗n,M ′)

f 7−→ (idM ⊗ ε)f

For f ∈ Hom(A⊠n,M ′#A) and a1, . . . , an ∈ A, with f(a1⊗· · ·⊗an) =
∑

imi⊗
bi, we have

idM⊗ε(f(a1 ⊗ · · · ⊗ an)← an+1)

= idM ⊗ ε
(
∑

i

S(an+1(2)).mi.an+1(3) ⊗ S(an+1(1))bian+1(4)

)

=
∑

i

ε(bi)S(an+1(1)).mi.an+1(2)

= S(an+1(1)). ((idM ⊗ ε)(f(a1 ⊗ · · · ⊗ an+1)) .an+1(2)

From this computation it follows easily that the previous isomorphisms com-
mute with the differentials (as already said, the one for Gerstenhaber-Schack
cohomology being given by the complex of Proposition 5.3), and hence the
complexes that define both cohomologies are isomorphic.

We get the results announced in the introduction, providing a partial answer
to Question 1.1.

Corollary 5.7. Let A and B be Hopf algebras such that there exists an equiv-
alence of linear tensor categories MA ≃⊗MB. Then there exist two functors

F1 :AMA → YDB
B and F2 :BMB → YDA

A

such that for any A-bimodule M and any B-bimodule N , we have

H∗(A,M) ≃ H∗
GS(B,F1(M)) and H∗(B,N) ≃ H∗

GS(A,F2(N))

In particular we have max(cd(A), cd(B)) ≤ cdGS(A) = cdGS(B).

Proof. The construction in the previous theorem clearly yields a functor

AMA → YDA
A, that we compose with the functor YDA

A → YDB
B from the

discussion at the end of subsection 5.1, to get the announced functor F1, and
similarly the functor F2. The last claim follows immediately.
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Remark 5.8. Recall that Question 1.2, motivated by Theorem 5.6, asks if
cd(A) = cdGS(A) for any Hopf algebraA. Question 1.2 has indeed a positive an-
swer in the finite-dimensional case: if A is semisimple, then it is cosemisimple by
the Larson-Radford theorem [38], and hence YDA

A is semisimple (since the Drin-
feld doubleD(A) is then semisimple, see [48]), so we have cd(A) = 0 = cdGS(A).
If A is not semisimple, then cd(A) = ∞ = cdGS(A). It thus follows that a
positive answer to Question 1.2 would provide a natural infinite-dimensional
generalization to the above mentioned Larson-Radford theorem.

The characteristic zero assumption is indeed necessary: if A is a finite-
dimensional semisimple non cosemisimple Hopf algebra, the base field being
then necessarily of characteristic > 0 [38], then cd(A) = 0 < cdGS(A) =∞.

See the next subsection for some partial results in the cosemisimple case.

5.4 Cosemisimple Hopf algebras

We now provide some more precise partial answers to Questions 1.1 and 1.2
when the Hopf algebra is cosemisimple and of Kac type (recall that this means
that S2 = id).

Proposition 5.9. Let A be a cosemisimple Hopf algebra of Kac type, and let
V be a Yetter-Drinfeld module over A. Then the natural linear map

H∗
GS(A, V )→ H∗(A, εV )

arising from Proposition 5.3 is injective.

Proof. Let h be the Haar integral on A. Recall that for any A-comodules V
and W , we have a surjective averaging operator

M : Hom(V,W ) −→ HomA(V,W )

f 7−→M(f), M(f)(v) = h
(
f(v(0))(1)S(v(1))

)
f(v(0))(0)

with f ∈ HomA(V,W ) if and only if M(f) = f . Now let V be our given
Yetter-Drinfeld module, and let f ∈ Hom(A⊗n, V ). We thus have M(f) ∈
HomA(A⊠n, V ), with

M(f)(a1 ⊗ · · · ⊗ an) =
h
(
f(a1(2) ⊗ · · · ⊗ an(2))(1)S(a1(3) · · · an(3))S2(a1(1) · · · an(1))

)

f(a1(2) ⊗ · · · ⊗ an(2))(0)

It is a tedious but straightforward verification to check that, under our as-
sumption, we have ∂(M(f)) = M(∂(f)). To convince the reader, we present
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the verification at n = 2. Let f ∈ Hom(A⊗2, V ). We have

∂(M(f))(a⊗ b⊗ c) =
ε(a)h

(
f(b(2) ⊗ c(2))(1)S(b(3)c(3))S2(b(1)c(1))

)
f(b(2) ⊗ c(2))(0)

− h
(
f(a(2)b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2)b(2) ⊗ c(2))(0)

+ h
(
f(a(2) ⊗ b(2)c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2) ⊗ b(2)c(2))(0)

− h
(
f(a(2) ⊗ b(2))(1)S(a(3)b(3))S2(a(1)b(1))

)
f(a(2) ⊗ b(2))(0) · c

On the other hand we have

M(∂(f))(a⊗ b ⊗ c) =
h
(
∂(f)(a(2) ⊗ b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)

∂(f)(a(2) ⊗ b(2) ⊗ c(2))(0)
= h

(
ε(a(2))f(b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(b(2) ⊗ c(2))(0)

− h
(
f(a(2)b(2) ⊗ c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2)b(2) ⊗ c(2))(0)

+ h
(
f(a(2) ⊗ b(2)c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)
f(a(2) ⊗ b(2)c(2))(0)

− h
(
(f(a(2) ⊗ b(2)) · c(2))(1)S(a(3)b(3)c(3))S2(a(1)b(1)c(1))

)

((f(a(2) ⊗ b(2)) · c(2))(0)

Using the Yetter-Drinfeld condition, the last expression equals

h
(
S(c(2))f(a(2) ⊗ b(2))(1)c(4)S(a(3)b(3)c(5))S2(a(1)b(1)c(1))

)
(f(a(2)⊗b(2))(0)·c(3)

The fact that S2 = id and that the Haar integral is a trace (since S2 = id)
then shows that this last expression equals the last one in the computation of
∂(M(f))(a⊗ b⊗ c), and shows that indeed ∂(M(f)) =M(∂(f)).

Now let f ∈ HomA(A⊠n, V ) be such that f = ∂(µ) for some µ ∈
Hom(A⊗n−1, V ). Then M(f) = M(∂(µ)) = ∂(M(µ))), with M(µ) ∈
HomA(A⊠n−1, V ), and hence f = 0 in Hn

GS(A, V ): our claim is proved.

We thus get the following partial answers to Questions 1.2 and 1.1.

Corollary 5.10. Let A be cosemisimple Hopf algebra of Kac type. Then
cd(A) = cdGS(A).

Proof. We have cd(A) ≤ cdGS(A) by Theorem 5.6, and the previous proposition
ensures that cdGS(A) ≤ cd(A).

Corollary 5.11. Let A and B be cosemisimple Hopf algebras such that there
exists an equivalence of linear tensor categories MA ≃⊗ MB. If A is of Kac
type, then we have cd(A) ≥ cd(B), and if A and B both are of Kac type, then
cd(A) = cd(B).
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Proof. We have, combining Theorem 5.6 and the previous corollary,

cd(A) = cdGS(A) = cdGS(B) ≥ cd(B)

with cd(B) = cdGS(B) if B is of Kac type as well.

See the next section for examples that are not of Kac type.

6 Application to quantum symmetry algebras

In this section we provide applications of the previous considerations to quan-
tum symmetry algebras.

6.1 The universal Hopf algebra of a non-degenerate bilinear

form and its adjoint subalgebra

Let E ∈ GLn(C). Recall that the algebra B(E) [21] is presented by generators
(uij)1≤i,j≤n and relations

E−1utEu = In = uE−1utE,

where u is the matrix (uij)1≤i,j≤n. It has a Hopf algebra structure defined by

∆(uij) =

n∑

k=1

uik ⊗ ukj , ε(uij) = δij , S(u) = E−1utE

The Hopf algebra B(E) represents the quantum symmetry group of the bilinear
form associated to the matrix E. It can also be constructed as a quotient of the
FRT bialgebra associated to Yang-Baxter operators constructed by Gurevich
[30]. For the matrix

Eq =

(
0 1
−q−1 0

)

we have B(Eq) = O(SLq(2)), and thus the Hopf algebras B(E) are natural
generalizations of O(SLq(2)). It is shown in [9] that for q ∈ C∗ satisfying
tr(E−1Et) = −q − q−1, the tensor categories of comodules over B(E) and
O(SLq(2)) are equivalent. Thus B(E) is cosemisimple if and only if the corre-
sponding q is not a root of unity or q = ±1.
It was proved in [10] that if n ≥ 2, then cd(B(E)) = 3 (Theorem 6.1 and
Proposition 6.4 in [10], see e.g. [31] for the case E = Eq and [17] for the case
E = In), and the bialgebra cohomology of B(E) was computed there in the
cosemisimple case.
As a preliminary step towards the study of quantum symmetry algebras of
semisimple algebras, we now study the adjoint subalgebra B+(E) of B(E).
The algebra B+(E) is, by definition, the subalgebra of B(E) generated by the
elements uijukl, 1 ≤ i, j, k, l ≤ n. It is easily seen to be a Hopf subalgebra.
Also it is easily seen that B+(E) = B(E)coCZ2 , where p is the cocentral Hopf
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algebra map B(E)→ CZ2, uij 7→ δijg, where g stands for the generator of Z2,
the cyclic group of order 2. The Hopf algebra B+(E) is cosemisimple if and
only if B(E) is.

Lemma 6.1. Assume that tr(E−1Et) 6= 0. Then there exists a linear map
σ : CZ2 → B(E) satisfying the conditions of Proposition 4.8.

Proof. Consider the matrix F = E(Et)−1 = (αij). We have tr(F ) =
tr(E−1Et) = t 6= 0. Consider the element x = t−1

∑
ij αijuij ∈ B(E) and

let σ : CZ2 → B(E) be the unique linear map such that σ(1) = 1 and σ(g) = x.
It is straightforward to check that σ indeed satisfies the conditions of Proposi-
tion 4.8.

Theorem 6.2. Let E ∈ GLn(C) with n ≥ 2. Then we have cd(B+(E)) = 3 ≤
cdGS(B+(E)), and if moreover B+(E) is cosemisimple, then cdGS(B+(E)) = 3.

Proof. We have, by Proposition 2.4, a strict exact sequence of Hopf algebras

C→ B+(E)→ B(E)→ CZ2 → C

so it follows from Proposition 3.2 that cd(B+(E)) = cd(B(E)) = 3. By Theo-
rem 5.6 we have cdGS(B+(E)) ≥ 3.
Consider now the exact sequence of free Yetter-Drinfeld modules over B(E)
from [10]:

0→ C⊠B(E)
φ1→ (V ∗

E⊗VE)⊠B(E)
φ2→ (V ∗

E⊗VE)⊠B(E)
φ3−→ C⊠B(E)

ε−→ C→ 0

All the B(E)-comodules involved in the left terms are in fact comodules over
B+(E), so we have, by Proposition 4.5, an exact sequence of Yetter-Drinfeld
modules over B+(E). Assume now that B+(E) is cosemisimple. The previous
lemma ensures that we are in the situation of Proposition 4.8, so all the terms
in the sequence (except the last one of course) are projective Yetter-Drinfeld
modules over B+(E). We conclude from Proposition 5.2 that cdGS(B+(E)) ≤ 3,
and hence that cdGS(B+(E)) = 3.

To compute the bialgebra cohomology of B+(E) in the cosemisimple case, we

need some preliminaries. We specialize at Eq =

(
0 1
−q−1 0

)
and we put A =

B(Eq) = O(SLq(2)) (with its standard generators a, b, c, d) and B = B+(Eq).
In the next lemma we only assume that q + q−1 6= 0. Recall from Subsection
4.4 that if W is a B-comodule, then W ⊠ A is a Yetter-Drinfeld module over
B.

Lemma 6.3. We have, for any B-comodule W , a vector space isomorphism

HomYDB
B
(W ⊠A,C) −→ HomB(W,C)⊕HomB(W,C)

ψ 7−→ (ψ(− ⊗ 1), ψ(−⊗ χ))

where χ = q−1a+ qd.
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Proof. Let ψ ∈ HomYDB
B
(W ⊠ A,C). That both ψ(− ⊗ 1) and ψ(− ⊗ χ) are

B-comodule maps follow from the fact that 1 and χ are coinvariant for the
co-adjoint action of A. We have, for any w ∈W , using the B-linearity

ψ(w ⊗ b) = ψ(w ⊗ b(ad− q−1bc)) = ψ(w ⊗ bad) = qψ(w ⊗ abd) = 0

and similarly ψ(w ⊗ c) = 0. We also have

ψ(w ⊗ d) = ψ(w ⊗ d(ad− q−1bc))) = ψ(w ⊗ dad) = ψ(w ⊗ ad2) = ψ(w ⊗ a)

These identities, together with the fact that A = B ⊕B′, where B′ = XB and
X = {a, b, c, d}, show that the map in the statement of the lemma is injective.
For (ψ1, ψ2) ∈ HomB(W,C)⊕HomB(W,C), we define a linear map ψ : W⊗A→
C by

ψ(w ⊗ (y + y′)) = ψ1(w)ε(y) + (q + q−1)−1ψ2(w)ε(y
′), y ∈ B, y ∈ B′

It is clear that ψ is A-linear and a direct verification to check that ψ is a map
of B-comodules, for the co-action ofW ⊠A. Hence we have ψ ∈ HomYDB

B
(W ⊠

A,C), and clearly ψ(− ⊗ 1) = ψ1 and ψ(− ⊗ χ) = ψ2. Therefore our map is
surjective, and we are done.

Theorem 6.4. Let E ∈ GLn(C) with n ≥ 2. If B+(E) is cosemisimple, then

Hn
b (B+(E)) ≃

{
0 if n 6= 0, 3

C if n = 0, 3

Proof. The monoidal invariance of bialgebra cohomology enables us to assume
that E = Eq as in the previous discussion, of which we keep the notations.
We denote by V the fundamental A-comodule of dimension 2, of which we fix
a basis e1, e2. We have an exact sequence of Yetter-Drinfeld modules over A
(and over B)

0→ C⊠A
φ1−→ (V ∗ ⊗ V )⊠A

φ2−→ (V ∗ ⊗ V )⊠A
φ3−→ C⊠A

ε−→ C→ 0

with for any x ∈ A (see the proof of Lemma 5.6 in [10])

φ1(x) = e∗1 ⊗ e1⊗((−q−1 + qd)x) + e∗1 ⊗ e2 ⊗ (−cx)
+ e∗2 ⊗ e1 ⊗ (−bx) + e∗2 ⊗ e2 ⊗ ((−q + q−1a)x)

φ2(e
∗
1 ⊗ e1 ⊗ x) = e∗1 ⊗ e1 ⊗ x+ e∗2 ⊗ e1 ⊗ (−qbx) + e∗2 ⊗ e2 ⊗ ax

φ2(e
∗
1 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ bx+ e∗1 ⊗ e2 ⊗ (1− q−1a)x

φ2(e
∗
2 ⊗ e1 ⊗ x) = e∗2 ⊗ e1 ⊗ (1− qd)x+ e∗2 ⊗ e2 ⊗ cx

φ2(e
∗
2 ⊗ e2 ⊗ x) = e∗1 ⊗ e1 ⊗ dx+ e∗1 ⊗ e2 ⊗ (−q−1cx) + e∗2 ⊗ e2 ⊗ x

φ3(e
∗
1 ⊗ e1 ⊗ x) = (a− 1)x, φ3(e

∗
1 ⊗ e2 ⊗ x) = bx,

φ3(e
∗
2 ⊗ e1 ⊗ x) = cx, φ3(e

∗
2 ⊗ e2 ⊗ x) = (d− 1)x
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and by Lemma 6.3, Proposition 4.8 and Proposition 5.2, the bialgebra coho-
mology of B is the cohomology of the complex

0→HomYDB
B
(C⊠A,C)

φt
3→ HomYDB

B
(V ∗ ⊗ V )⊠A,C)

φt
2→ HomYDB

B
(V ∗ ⊗ V )⊠A,C)

φt
1→ HomYDB

B
(C⊠A,C)→ 0

We have, by the previous lemma, HomYDB
B
(C⊠A,C) ≃ C2, and

HomYDB
B
(V ∗ ⊗ V )⊠A,C) ≃ HomB(V ∗ ⊗ V,C)⊕HomB(V ∗ ⊗ V,C) ≃ C

2

Therefore the previous complex is isomorphic to a complex of the form

0 −→ C
2 −→ C

2 −→ C
2 −→ C

2 −→ 0

The reader will easily write down explicitly this complex and compute its coho-
mology, yielding the announced result for the bialgebra cohomology of B.

6.2 Bialgebra cohomology and cohomological dimensions of

Aaut(R,ϕ)

Let (R,ϕ) be a finite-dimensional measured algebra: this means that R is a
finite-dimensional algebra and ϕ : R→ C is a linear map (a measure on R) such
that the associated bilinear map R×R→ C, (x, y) 7→ ϕ(xy) is non-degenerate.
Thus a finite-dimensional measured algebra is a Frobenius algebra together
with a fixed measure. A coaction of a Hopf algebra A on a finite-dimensional
measured algebra (R,ϕ) is an A-comodule structure on R making it into an
A-comodule algebra and such that ϕ : R → C is A-colinear. It is well-known
that there exists a universal Hopf algebra coacting on (R,ϕ) (see [61] in the
compact case with R semisimple and [8] in general), that we denote Aaut(R,ϕ)
and call the quantum symmetry algebra of (R,ϕ). The following particular
cases are of special interest.

1. For R = C
n and ϕ = ϕn the canonical integration map (with ϕn(ei) = 1

for e1, . . . , en the canonical basis of Cn), we have Aaut(C
n, ϕn) =: As(n),

the coordinate algebra on the quantum permutation group [61], presented
by generators xij , 1 ≤ i, j ≤ n, submitted to the relations

n∑

l=1

xli = 1 =

n∑

l=1

xil, xikxij = δkjxij , xkixji = δkjxji, 1 ≤ i, j, k ≤ n

Its Hopf algebra structure is defined by

∆(xij) =

n∑

k=1

xik ⊗ xkj , ε(xij) = δij , S(xij) = xji

The Hopf algebra As(n) is infinite-dimensional if n ≥ 4 [61].
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2. For R = M2(C) and q ∈ C∗, let trq : M2(C) → C be the q-trace,
i.e. trq(g) = qg11 + q−1g22 for g = (gij) ∈ M2(C). Then we have
Aaut(M2(C), trq) ≃ O(PSLq(2)), the latter algebra being B+(Eq) in the
notation of the previous subsection (it is often denoted O(SOq1/2(3)),
see e.g. [35]). The above isomorphism Aaut(M2(C), trq) → O(PSLq(2))
is constructed using the universal property of Aaut(M2(C), trq), and the
verification that it is indeed injective is a long and tedious computation,
as in [20].

Let (R,ϕ) be a finite-dimensional measured algebra. Since ϕ ◦ m is non-
degenerate, where m is the multiplication of R, there exists a linear map
δ : C→ R⊗R such that (R,ϕ ◦m, δ) is a left dual for R, i.e.

((ϕ ◦m)⊗ idR) ◦ (idR ⊗ δ) = idR = (idR ⊗ (ϕ ◦m)) ◦ (δ ⊗ idR)

Following [43], we put

ϕ̃ = ϕ ◦m ◦ (m⊗ idR) ◦ (idR ⊗ δ) : R→ C

and we say that (R,ϕ) (or ϕ) is normalizable if ϕ(1) 6= 0 and if there exists
λ ∈ C∗ such that ϕ̃ = λϕ. Using the definition of Frobenius algebra in terms of
coalgebras, the coproduct is ∆ = (m⊗ idR) ◦ (idR⊗ δ) = (idR⊗m) ◦ (δ⊗ idR),
and we have ϕ̃ = ϕ ◦m ◦∆.
The condition that ϕ is normalizable is equivalent to require, in the language of
[33, Definition 3.1], that R/C is a strongly separable extension with Frobenius
system (ϕ, xi, yi), where δ(1) =

∑
i xi ⊗ yi. It thus follows that if ϕ is normal-

izable, then R is necesarily a separable (semisimple) algebra. Conversely, if R
is semisimple, writing R as a direct product of matrix algebras, one easily sees
the conditions that ensure that ϕ is normalizable, see [43].
It is shown in [43] (Corollary 4.9), generalizing earlier results from [5, 6, 19], that
if (R,ϕ) is a finite-dimensional semisimple measured algebra with dim(R) ≥ 4
and ϕ normalizable, then there exists q ∈ C∗ with q + q−1 6= 0 such that

MAaut(R,ϕ) ≃⊗MO(PSLq(2))

The parameter q is determined as follows. First consider λ ∈ C
∗ such that

ϕ̃ = λϕ and choose µ ∈ C∗ such that µ2 = λϕ(1). Then q is any solution of the
equation q+ q−1 = µ (recall that O(PSLq(2)) = O(PSL−q(2)), so the choice of
µ does not play any role).
As an example, for (Cn, ϕn) as above (and n ≥ 4), ϕn is normalizable with the
corresponding λ equal to 1, and q is any solution of the equation q+q−1 =

√
n.

Theorem 6.5. Let (R,ϕ) be a finite-dimensional semisimple measured algebra
with dim(R) ≥ 4 and ϕ normalizable. Assume that Aaut(R,ϕ) is cosemisimple.
Then we have

Hn
b (Aaut(R,ϕ)) ≃

{
0 if n 6= 0, 3

C if n = 0, 3
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and cd(Aaut(R,ϕ)) ≤ cdGS(Aaut(R,ϕ)) = 3, with equality if ϕ is a trace. In
particular we have cd(As(n)) = 3 = cdGS(As(n)) for any n ≥ 4.

Proof. The proof follows immediately from the combination of the above
monoidal equivalence, the monoidal invariance of Gerstenhaber-Schack co-
homology, Theorem 6.2, Theorem 6.4, Theorem 5.6, and Corollary 5.10
(Aaut(R,ϕ) being of Kac type when ϕ is a trace).

Note that the length 3 resolution of the trivial Yetter-Drinfeld module over
O(PSLq(2)) by relative projective Yetter-Drinfeld modules considered in the
previous subsection (see the proof of Theorem 6.4) transports to a length 3
resolution of the trivial Yetter-Drinfeld module over Aaut(R,ϕ) by relative
projective Yetter-Drinfeld modules (see Theorem 4.1 in [10]), and in partic-
ular this yields a length 3 projective resolution of the trivial module over
Aaut(R,ϕ). We have not been able to write down this resolution explicitly
enough to compute Hochschild cohomology groups and show that one always
has cd(Aaut(R,ϕ)) = 3. We believe that this is true however.

Remark 6.6. It follows that the L2-Betti numbers ([36]) β
(2)
k (As(n)) vanish

for k ≥ 4, and we have as well β
(2)
0 (As(n)) = 0 by [37].

7 Hopf algebras with a projection

It is natural to ask whether similar results to those of Section 2 hold for
Gerstenhaber-Schack cohomological dimension. A positive answer to Question
1.2 would of course provide an affirmative answer. So far, our only positive
result in this direction is the following one, in the setting of Hopf algebras with
a projection [47, 40].

Proposition 7.1. Let B ⊂ A be a Hopf subalgebra. Assume that there exists a
Hopf algebra map π : A→ B such that π|B = idB and that A is cosemisimple.
Then we have cdGS(B) ≤ cdGS(A).

Proof. The inclusion B ⊂ A together with the Hopf algebra map π : A → B
induce a vector space preserving linear exact tensor functor

F : YDA
A −→ YDB

B

where if V is Yetter-Drinfeld module over A, then F (V ) = V as a vector space,
the B-module structure is the restriction of that of A, and the B-comodule
structure is given by (idV ⊗π)α, where α is the original co-action of A. We claim
that it is enough to show that F sends (relative) projective Yetter-Drinfeld
modules overA to (relative) projective Yetter-Drinfeld modules overB. Indeed,
if we have a length n resolution of the trivial Yetter-Drinfeld module over A by
(relative) projectives, the functor F will transform it into a a length n resolution
of the trivial Yetter-Drinfeld module over B by (relative) projectives, and hence
by Proposition 5.2, we have cdGS(B) ≤ cdGS(A).
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As usual, put R = coBA = {a ∈ A | π(a(1))⊗a(2) = 1⊗a}. This is a subalgebra
of A and we have (id ⊗ π)∆(R) ⊂ R ⊗ B, which endows R with a right B-
comodule structure. For any a ∈ A, we have a(2)πS

−1(a(1)) ∈ R (since A is
cosemisimple, its antipode is bijective), and thus we have a linear isomorphism
[47, 40]

A −→ R⊗B
a 7−→ a(3)πS

−1(a(2))⊗ π(a(1))

whose inverse is the restriction of the multiplication of A. Let V be a right
A-comodule: it also has a right B-comodule structure obtained using the pro-
jection π : A→ B, that we denote Vπ . Consider now the map

F (V ⊠A) −→ (Vπ ⊗R)⊠B

v ⊗ a 7−→ v ⊗ a(3)πS−1(a(2))⊗ π(a(1))

This is an isomorphism by the previous considerations, and it is a direct verifi-
cation to check that it is a morphism of Yetter-Drinfeld modules over B. Hence
the functor F sends free Yetter-Drinfeld modules over A to free Yetter-Drinfeld
modules over B, and since it is additive, it sends, by Proposition 4.2, projective
Yetter-Drinfeld modules over A to projective Yetter-Drinfeld modules over B.
This concludes the proof.

As an illustration, consider the hyperoctahedral Hopf algebra Ah(n) [7]. This is
the algebra presented by generators aij , 1 ≤ i, j ≤ n, submitted to the relations

n∑

l=1

a2li = 1 =
n∑

l=1

a2il, aikaij = 0 = ajiaki if j 6= k, 1 ≤ i, j, k ≤ n

Its Hopf algebra structure is given by the same formulas as those for As(n).
There exist Hopf algebra maps i : As(n) → Ah(n), xij 7→ a2ij , π : Ah(n) →
As(n), aij 7→ xij , such that πi = id. Hence we deduce from the previous
proposition that cdGS(Ah(n)) ≥ cdGS(As(n)), and hence by Theorem 6.5, if
n ≥ 4, we have cdGS(Ah(n)) ≥ cdGS(As(n)) = 3 (since Ah(n) is cosemisimple
of Kac type, this could be deduced as well from the combination of Proposition
3.1 and Corollary 5.10).
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