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Abstract. We study semiprojective, subhomogeneous C∗-algebras
and give a detailed description of their structure. In particular, we
find two characterizations of semiprojectivity for subhomogeneous
C∗-algebras: one in terms of their primitive ideal spaces and one by
means of special direct limit structures over one-dimensional NCCW
complexes. These results are obtained by working out several new
permanence results for semiprojectivity, including a complete de-
scription of its behavior with respect to extensions by homogeneous
C∗-algebras.
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1 Introduction

The concept of semiprojectivity is a type of perturbation theory for C∗-algebras
which has become a frequently used tool in many different aspects of C∗-
algebra theory. Due to a certain kind of rigidity, semiprojective C∗-algebras
are technically important in various situations. In particular, the existence
and comparison of limit structures via approximate interwinings, which is an
integral part of the Elliott classification program, often relies on perturba-
tion properties of this type. This is one of the reasons why direct limits over
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semiprojective C∗-algebras, e.g., AF- or AT-algebras, are particularly tractable
and one therefore constructs models preferably from semiprojective building
blocks. The most popular of those are without doubt the non-commutative
CW-complexes (NCCWs) introduced by Eilers, Loring and Pedersen. These
are in fact semiprojective in dimension one ([ELP98], but see also [End14]). In
this paper, we study semiprojectivity for general subhomogeneous C∗-algebras
and see whether there exist more interesting examples, i.e., besides the one-
dimensional NCCW complexes (1-NCCWs), that could possibly serve as useful
building blocks in the construction of ASH-algebras. In Theorem 5.1.2, we give
two characterizations of semiprojectivity for subhomogenous C∗-algebras: an
abstract one in terms of primitive ideal spaces and a concrete one by means
of certain limit structures. These show that it is quite a restriction for a sub-
homogeneous C∗-algebra to be semiprojective, though many examples beyond
the class of 1-NCCWs exist. On the other hand, a detailed study of the struc-
ture of these algebras further reveals that they can always be approximated
by 1-NCCWs in a very strong sense, see Corollary 5.2.1, and hence essentially
share the same properties.

The work of this paper is based on the characterization of semiprojectivity for
commutative C∗-algebras, which was recently obtained by Sørensen and Thiel
in [ST12]. They showed that a commutative C∗-algebra C(X) is semiprojective
if and only if X is an absolute neighborhood retract of dimension at most
1 (a 1-ANR), thereby confirming a conjecture of Blackadar and generalizing
earlier work of Chigogidze and Dranishnikov on the projective case ([CD10]).
Their characterization further applies to trivially homogeneous C∗-algebras,
i.e. to algebras of the form C(X,Mn). In a first step, we generalize their
result to general homogeneous C∗-algebras. The main difficulty, however, is to
understand which ways of ’gluing together’ several homogeneous C∗-algebras
preserve semiprojectivity, or more precisely: Which extensions of semipro-
jective, homogeneous C∗-algebras are again semiprojective? Conversely, is
semiprojectivity preserved when passing to a homogeneous subquotient? These
questions essentially ask for the permanence behavior of semiprojectivity along
extensions of the form 0→ C0(X,Mn)→ A→ B → 0. While it is known that
the permanence properties of semiprojectivity with respect to extensions are
rather bad in general, we are able to work out a complete description of its
behavior in the special case of extensions by homogeneous ideals, see Theorem
4.3.2. With this permanence result at hand, it is then straightforward to
characterize semiprojectivity for subhomogeneous C∗-algebras in terms of
their primitive ideal spaces. In particular, it is a necessary condition that the
subspaces corresponding to a fixed dimension are all 1-ANRs. Combining this
with the structure result for one-dimensional ANR-spaces from [ST12], we
further obtain a more concrete description of semiprojective, subhomogeneous
C∗-algebras by identifying them with certain special direct limits of 1-NCCWs.

This paper is organized as follows. In section 2, we briefly recall some topo-
logical definitions and results that will be used troughout the paper. We fur-
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ther remind the reader of some facts about semiprojectivity, subhomogeneous
C∗-algebras and their primitive ideal spaces. We then start by constructing
a lifting problem which is unsolvable for strongly quasidiagonal C∗-algebras.
This lifting problem then allows us to extend the results of [ST12] from the
commutative to the homogeneous case.
Section 3 contains a number of new contructions for semiprojective C∗-algebras.
We first introduce a technique to extend lifting problems, a method that can be
used to show that in certain situations semiprojectivity passes to ideals. After
that, we introduce a class of maps which give rise to direct limits that preserve
semiprojectivity. Important examples of such maps are given and discussed.
Section 4 is devoted to the study of extensions by homogeneous C∗-algebras,
i.e. extensions of the form 0 → C0(X,Mn) → A → B → 0. In 4.1, we define
and study a certain set-valued retract map R : Prim(A)→ 2Prim(B) associated
to such an extension. We discuss regularity concepts for R, i.e. continuity and
finiteness conditions, and show how regularity of R relates to lifting properties
of the corresponding Busby map and, by that, to splitting properties of the
extension itself. In particular, we identify conditions under which regularity of
R implies the existence of a splitting map s : B → A with good multiplicative
properties. After that, we verify the required regularity properties for R in the
case of a semiprojective extension A. In section 4.2 it is shown how certain limit
structures for the spaceX give rise to limit structures for the extension A, again
provided that the associated retract map R is sufficiently regular. Putting all
these results together in 4.3, we find a ’2 out of 3’-type statement, Theorem
4.3.2, which gives a complete description for the behavior of semiprojectivity
along extensions of the considered type.
In section 5.1, we use this permanence result to work out two characterizations
of semiprojectivity for subhomogeneous C∗-algebras. These are presented in
Theorem 5.1.2, the main result of this paper. Based on this, we find a number
of consequences for the structure of these algebras, e.g. information about their
K-theory and dimension. Further applications, such as closure and approxi-
mation properties, are discussed in 5.2. We finish by illustrating how this also
gives a simple method to exclude semiprojectivity and show that the higher
quantum permutation algebras are not semiprojective.

2 Preliminaries

2.1 The structure of 1-dimensional ANR-spaces

We are particularly interested in ANR-spaces of dimension at most one. The
structure of these spaces has been studied and described in detail in [ST12,
section 4]. Here we recall the most important notions and results. More in-
formation about ANR-spaces can be found in [Bor67]. For proofs and further
reading on the theory of continua, we refer the reader to Nadler’s book [Nad92].

Definition 2.1.1. A compact, metric space X is an absolute retract (abbrevi-
ated AR-space) if every map f : Z → X from a closed subspace Z of a compact,
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metric space Y extends to a map g : Y → X, i.e. g ◦ ι = f with ι : Z → Y the
inclusion map:

Y
g

~~~
~

~
~

X Z
f

oo

ι

OO

If every map f : Z → X from a closed subspace Z of a compact, metric space
Y extends to a map g : V → X on a closed neighborhood V of Z

Y

V
g

~~~
~

~
~

OO

X Z
f

oo

ι

OO

then X is called an absolute neighborhood retract (abbreviated ANR-space).

A compact, locally connected, metric space is called a Peano space. A con-
nected Peano space is called a Peano continuum. By the Hahn-Mazurkiewicz
Theorem, these continua can be characterized as the continuous images of the
unit interval. In particular, every Peano continuum is path-connected, while
every Peano space is locally path-connected.
Now given an ANR-space X , we can embed it into the Hilbert cube Q and
obtain a retract from a neighborhood of X in Q onto X . Hence an ANR-
space inherits all local properties of the Hilbert cube which are preserved under
retracts. These properties include local connectedness, so that all ANR-spaces
are Peano spaces. The converse, however, is not true in general. But as we will
see, it is possible to identify the ANR-spaces among all Peano spaces, at least
in the one-dimensional case.
A closed subspace Y of a space X is a retract of X if there exists a continuous
map r : X → Y such that r|Y = idY . If the retract map r : X → Y regarded as
a map to X is homotopic to the identity, then Y is called a deformation retract
of X . It is a strong deformation retract if in addition the homotopy can be
chosen to fix the subspace Y . The following concept of a core continuum is due
to Meilstrup. It is crucial for understanding the structure of one-dimensional
ANR-spaces.

Definition + Lemma 2.1.2 ([Mei05]). Let X be a non-contractible one-dimen-
sional Peano continuum. Then there exists a unique strong deformation retract
which contains no further proper deformation retract. We call it the core of X
and denote it by core(X).

As in [ST12], we define the core of a contractible, one-dimensional Peano con-
tinuum to be any fixed point. Many questions about one-dimensional Peano
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continua can be reduced to questions about their cores. This reduction step
uses a special retract map, the so-called first point map.
Recall that an arc between two points x0, x1 ∈ X is a path [0, 1]→ X from x0
to x1 which is a homeomorphism onto its image.

Definition + Lemma 2.1.3 ([ST12, 4.14-16]). Let X be a one-dimensional
Peano continuum and Y a subcontinuum with core(X) ⊂ Y . For each x ∈ X\Y
there is a unique point r(x) ∈ Y such that r(x) is a point of an arc in X from x
to any point of Y . Setting r(x) = x for all x ∈ Y , we obtain a map r : X → Y .
This map is called the first point map, it is continuous and a strong deformation
retract from X onto Y .

The following follows directly from the proof of [ST12, Lemma 4.14].

Lemma 2.1.4. Let X be a one-dimensional Peano continuum, Y ⊆ X a subcon-
tinuum containing core(X) and r : X → Y the first point map onto Y . Then
the following is true:

(i) For every point x ∈ X\Y there exists an arc from x to r(x) ∈ Y which
is unique up to reparametrization.

(ii) If α is a path from x ∈ X\Y to y ∈ Y , then r(im(α)) ⊆ im(α).

The simplest example of a one-dimensional Peano space is a graph, i.e. a finite,
one-dimensional CW-complex. The order of a point x in a graph X is defined
as the smallest number n ∈ N such that for every neighborhood V of x there
exists an open neighborhood U ⊆ V of x with |∂U | = |U\U | ≤ n. We denote
the order of x in X by order(x,X).
Given a one-dimensional Peano continuum X , one can reconstruct the space
X from its core by ’adding’ the arcs which connect points of X\ core(X) with
the core as described in 2.1.4. This procedure yields a limit structure for one-
dimensional Peano spaces which first appeared as Theorem 4.17 of [ST12]. In
the case of one-dimensional ANR-spaces, the core is a finite graph and hence
the limit structure entirely consists of finite graphs.

Theorem 2.1.5 ([ST12, Theorem 4.17]). Let X be a one-dimensional Peano
continuum. Then there exists a sequence {Yk}∞k=1 such that

(i) each Yk is a subcontinuum of X.

(ii) Yk ⊂ Yk+1.

(iii) limk Yk = X.

(iv) Y1 = core(X) and for each k, Yk+1 is obtained from Yk by attaching a
line segment at a single point, i.e., Yk+1\Yk is an arc with end point pk
such that Yk+1\Yk ∩ Yk = {pk}.

(v) letting rk : X → Yk be the first point map for Yk we have that {rk}
∞
k=1

converges uniformly to the identity map on X.
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If X is also an ANR, then all Yk are finite graphs. If X is even contractible
(i.e. an AR), then core(X) is just some point and all Yk are finite trees.

We will need a local criterion for identifying one-dimensional ANR-spaces
among general Peano spaces. It was observed by Ward how to get such a
characterization in terms of embeddings of circles.

Definition 2.1.6. Let X be a compact, metric space, then X does not contain
small circles if there is an ǫ > 0 such that diam(ι(S1)) ≥ ǫ for every embedding
ι : S1 → X.

Note that the property of containing arbitrarily small circles does not depend
on the particular choice of metric.

Theorem 2.1.7 ([War60]). For a Peano space X the following are equivalent:

(i) X does not contain small circles.

(ii) X is an ANR-space of dimension at most one.

This statement can also be interpreted as follows. Non-embeddability of circles
into X is the same as uniqueness of arcs in X , i.e. an arc between to two given
points is unique up to reparametrization. More precisely, a Peano continuum
is a one-dimensional AR-space if and only if there is no embedding S1 →֒ X
if and only if X has unique arcs. Similarly, Theorem 2.1.7 can be read as: A
Peano continuum X is a one-dimensional ANR-space if and only if it has locally
unique arcs, meaning that every point has a neighbouhood in which any two
points can be joined by a unique arc.

2.2 Subhomogeneous C∗-algebras

In this section we collect some well known results on subhomogeneous C∗-
algebras. In particular, we recall some facts on their primitive ideal spaces.
More detailed information can be found in [Dix77, Chapter 3] and [Bla06,
Section IV.1.4].

Definition 2.2.1. Let N ∈ N. A C∗-algebra A is N -homogeneous if all its
irreducible representations are of dimension N . A is N -subhomogeneous if
every irreducible representation of A has dimension at most N .

The standard example of a N -homogeneous C∗-algebra is C0(X,MN ) for some
locally compact space X . As the next proposition shows, subhomogeneous C∗-
algebras can be characterized as subalgebras of such. A proof of this fact can
be found in [Bla06, IV.1.4.3-4].

Proposition 2.2.2. A C∗-algebra A is N -subhomogeneous if and only if it is
isomorphic to a subalgebra of some N -homogeneous C∗-algebra C(X,MN ). If
A is separable, we may choose X to be the Cantor set K.
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Example 2.2.3 (1-NCCWs). One of the most important examples of subhomo-
geneous C∗-algebras is the class of non-commutative CW-complexes (NCCWs)
defined by Eilers, Loring and Pedersen in [ELP98]. The one-dimensional
NCCWs, which we will abbreviate by 1-NCCWs, are defined as pullbacks of
the form

1-NCCW //____

���
�
� G

��
C([0, 1], F )

ev0 ⊕ ev1// F ⊕ F

with F and G finite-dimensional C∗-algebras. These are particularly interesting
since they are semiprojective by [ELP98, Theorem 6.2.2].

For a subhomogeneous C∗-algebra A, the primitive ideal space Prim(A), i.e.
the set of kernels of irreducible representations endowed with the Jacobson
topology, contains a lot of information. Another useful decription of the topol-
ogy on Prim(A) is given by the folllowing lemma which we will make use of
regularly. For an ideal J in a C∗-algebra A we write ‖x‖J to denote the norm
of the image of the element x ∈ A in the quotient A/J .

Lemma 2.2.4 ([Bla06, II.6.5.6]). Let A be a C∗-algebra.

1. If x ∈ A, define x̌ : Prim(A) → R≥0 by x̌(J) = ‖x‖J . Then x̌ is lower
semicontinuous.

2. If {xi} is a dense set in the unit ball of A, and Ui = {J ∈ Prim(A) :
x̌i(J) > 1/2}, then {Ui} forms a base for the topology of Prim(A).

3. If x ∈ A and λ > 0, then {J ∈ Prim(A) : x̌(J) ≥ λ} is compact (but not
necessarily closed) in Prim(A).

Since we will mostly be interested in finite-dimensional representations, we
consider the subspaces

Primn(A) = {ker(π) ∈ Prim(A) : dim(π) = n}

for each finite n. Similarly, we write

Prim≤n(A) = {ker(π) ∈ Prim(A) : dim(π) ≤ n} =
⋃

k≤n
Primk(A).

The following theorem describes the structure of these subspaces of Prim(A)
and the relations between them.

Theorem 2.2.5 ([Dix77, 3.6.3-4]). Let A be a C∗-algebra. The following holds
for each n ∈ N:

(i) Prim≤n(A) is closed in Prim(A).

(ii) Primn(A) is open in Prim≤n(A).
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(iii) Primn(A) is locally compact and Hausdorff.

Now assume that A is a N -subhomogeneous C∗-algebra. In this case Theorem
2.2.5 gives a set-theoretical (but in general not a topological) decomposition of
its primitive spectrum

Prim(A) =

N
⊔

n=1

Primn(A).

While each subspace in this decomposition is nice, in the sense that it is Haus-
dorff, Prim(A) itself is typically non-Hausdorff. In the subhomogeneous setting
it is at least a T1-space, i.e. points are closed. If we further assume A to be sep-
arable and unital, the space Prim(A) will also be separable and quasi-compact.
Given a general C∗-algebra A, there is a one-to-one correspondence between
(closed) ideals J of A and closed subsets of Prim(A). More precisely, one
can identify Prim(A/J) with the closed subset {K ∈ Prim(A) : J ⊆ K}. In
particular, we can consider the quotient A≤n corresponding to the closed sub-
set Prim≤n(A) ⊆ Prim(A). This quotient is the maximal n-subhomogeneous
quotient of A and has the following universal property: Any ∗-homomorphism
ϕ : A→ B to some n-subhomogeneous C∗-algebra B factors uniquely through
A≤n:

A
ϕ //

!! !!CC
CC

CC
CC

B

A≤n

=={
{

{
{

2.3 Semiprojective C∗-algebras

We recall the definition of semiprojectivity for C∗-algebras, the main property
of study in this paper. More detailed information about lifting properties for
C∗-algebras can be found in Loring’s book [Lor97].

Definition 2.3.1 ([Bla85, Definition 2.10]). A separable C∗-algebra A is
semiprojective if for every C∗-algebra B and every increasing chain of ide-
als Jn in B with J∞ =

⋃

n Jn, and for every ∗-homomorphism ϕ : A→ B/J∞
there exist n ∈ N and a ∗-homomorphism ϕ : A → B/Jn making the following
diagram commute:

B

πn
0����

B/Jn

π∞
n

����
A

ϕ //

ϕ
==z

z
z

z
z

B/J∞
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In this situation, the map ϕ is called a partial lift of ϕ. The C∗-algebra A is
projective if, in the situation above, we can always find a lift ϕ : A→ B for ϕ.
Let C be a class of C∗-algebras. A C∗-algebra A is (semi)projective with respect
to C if it satisfies the definitions above with the restriction that the C∗-algebras
B,B/Jn and B/J∞ all belong to the class C.

Remark 2.3.2. One may also define semiprojectivity as a lifting property for
maps to certain direct limits: an increasing sequence of ideals Jn in B gives
an inductive system (B/Jn)n with surjective connecting maps πn+1

n : B/Jn →
B/Jn+1 and limit (isomorphic to) B/J∞. On the other hand, it is easily seen
that every such system gives an increasing chain of ideals (ker(πn0 ))n. Hence,
semiprojectivity is equivalent to being able to lift maps to lim

−→
Dn to a finite

stage Dn provided that all connecting maps of the system are surjective. It is
sometimes more convenient to work in this picture.

2.3.1 An unsolvable lifting problem

In order to show that a C∗-algebra does not have a certain lifting property, we
need to construct unsolvable lifting problems. One such construction by Loring
([Lor97, Proposition 10.1.8]) uses the fact that normal elements in quotient C∗-
algebras do not admit normal preimages in general, e.g. Fredholm operators
of non-zero index. Here, we generalize Loring’s construction and obtain a
version which also works for almost normal elements. Combining this with
Lin’s theorem on almost normal matrices, we are able to construct unsolvable
lifting problems not only for commutative C∗-algebras, as in Loring’s case, but
for the much larger class of strongly quasidiagonal C∗-algebras.
First we observe that almost normal elements in quotient C∗-algebras always
admit (almost as) almost normal preimages. Given an element x of some C∗-
algebra and ǫ > 0, we say that x is ǫ-normal if ‖x∗x− xx∗‖ ≤ ǫ‖x‖ holds.

Lemma 2.3.3. Let A, B be C∗-algebras and π : A→ B a surjective ∗-homomor-
phism. Then for every ǫ-normal element y ∈ B there exists a (2ǫ)-normal
element x ∈ A with π(x) = y and ‖x‖ = ‖y‖.

Proof. Let (uλ)λ∈Λ denote an approximate unit for ker(π) which is quasicentral
for A. Pick any preimage x0 of x with ‖x0‖ = ‖x‖ and set x := (1−uλ0)x0 for
a suitable λ0 ∈ Λ.

The next lemma is due to Halmos. A short proof using the Fredholm alternative
can be found in [BH74, Lemma 2].

Lemma 2.3.4 (Halmos). Let S ∈ B(H) be a proper isometry, then

dist (S, {N +K |N,K ∈ B(H), N normal, K compact}) = 1.

It is a famous result by H. Lin that in matrix algebras almost normal ele-
ments are uniformly close to normal ones ([Lin97]). A short, alternative proof
involving semiprojectivity arguments can be found in [FR01].
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Theorem 2.3.5 (Lin). For every ǫ > 0, there is a δ > 0 so that, for any d and
any X in Md satisfying

‖XX∗ −X∗X‖ ≤ δ and ‖X‖ ≤ 1

there is a normal Y in Md such that

‖X − Y ‖ ≤ ǫ.

The following is the basis for most of our unsolvable lifting problems appearing
in this paper. Recall that a C∗-algebra A is strongly quasidiagonal if every
representation of A is quasidiagonal. See [Bla06, Section V.4.2] or [Bro00] for
more information on quasidiagonality.
In the following, let T denote the Toeplitz algebra C∗(S|S∗S = 1) and ̺ : T →
C(S1) the quotient map given by mapping S to the canonical generator z of
C(S1).

Proposition 2.3.6. There exists δ > 0 such that the following holds for
all n ∈ N: If A is strongly quasidiagonal and ϕ : A → C(S1) ⊗ Mn is any
∗-homomorphism with dist(z ⊗ 1n, im(ϕ)) < δ, then ϕ does not lift to a
∗-homomorphism from A to T ⊗Mn:

T ⊗Mn

̺⊗id

����
A

ϕ //

∄

11

~
x

r
m i e

C(S1)⊗Mn

Proof. Choose δ′ > 0 corresponding to ǫ = 1/6 as in Theorem 2.3.5 and set
δ = δ′/14. Let a′ ∈ A be such that ‖ϕ(a′)−z⊗1n‖ < δ, then ‖[ϕ(a′), ϕ(a′)∗]‖ ≤
2δ(‖ϕ(a′)‖+1) < 5δ‖ϕ(a′)‖. Hence by Lemma 2.3.3 there exists a (10δ)-normal
element a ∈ A with ϕ(a) = ϕ(a′) and 5/6 < ‖a‖ = ‖ϕ(a′)‖ < 6/5. Now if ψ
is a ∗-homomorphism with (̺ ⊗ id) ◦ ψ = ϕ as indicated, we regard ψ as a
representation on H⊕n with T generated by the unilateral shift S on H. By
assumption, ψ is then a quasidiagonal representation. In particular, ψ(a) can
be approximated arbitrarily well by block-diagonal operators ([Bro00, Theorem
5.2]). We may therefore choose a (11δ)-normal block-diagonal operator B with
5/6 ≤ ‖B‖ ≤ 6/5 within distance at most 1/3 from ψ(a). Applying Lin’s The-
orem to the normalized, (14δ)-normal block-diagonal operator ‖B‖−1B shows
the existence of a normal element N ∈ H⊕n with ‖ψ(a)−N‖ ≤ 2/3. But then
we find

‖(N − S ⊗ 1n) +K(H⊕n)‖
≤ ‖N − ψ(a)‖ + ‖(̺⊗ id)(ψ(a) − S ⊗ 1n)‖
≤ 2

3 + ‖ϕ(a′)− z ⊗ 1n‖
≤ 2

3 + δ < 1

in contradiction to Lemma 2.3.4.
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2.3.2 The homogeneous case

In [ST12], A. Sørensen and H. Thiel characterized semiprojectivity for commu-
tative C∗-algebras. Moreover, they gave a description of semiprojectivity for
homogeneous trivial fields, i.e. C∗-algebras of the form C0(X,MN ). Note that
the projective case was settled earlier by A. Chigogidze and A. Dranishnikov
in [CD10]. Their result is as follows.

Theorem 2.3.7 ([ST12]). Let X be a locally compact, metric space and N ∈ N.
Then the following are equivalent:

1. C0(X,MN ) is (semi)projective.

2. The one-point compactification αX is an A(N)R-space and dim(X) ≤ 1.

The work of Sørensen and Thiel will be the starting point for our analysis of
semiprojectivity for subhomogeneous C∗-algebras. In this section, we reduce
the general N -homogeneous case to their result by showing that semiprojectiv-
ity for homogeneous, locally trivial fields implies global triviality. We further
obtain some information about parts of the primitive ideal space for general
semiprojective C∗-algebras.

Lemma 2.3.8. Let I be a N -homogeneous ideal in a C∗-algebra A. If A is
semiprojective with respect to N -subhomogeneous C∗-algebras, then the one-
point compactification αPrim(I) is a Peano space. If A is semiprojective, we
further have dim(αPrim(I)) ≤ 1.

Proof. Let A≤N be the maximal N -subhomogeneous quotient of A, then I is
also an ideal in A≤N . Being N -homogeneous, the ideal I is isomorphic to the
section algebra Γ0(E) of a locally trivial MN -bundle E over the locally com-
pact, second countable, metrizable Hausdorff space Prim(I) by [Fel61, The-
orem 3.2]. Since A≤N is separable and N -subhomogenous, we can embed it
into C(K,MN ) with K the Cantor set by Proposition 2.2.2. Using the well

known middle-third construction of K = lim
←−k

(
⊔2k

[0, 1]), we can write C(K) as

a direct limit lim
−→k

C([0, 1])⊕2k with surjective connecting maps. After tensoring
with MN , we obtain a lifting problem for A and hence can apply semiprojec-
tivity of A with respect to N -subhomogenous C∗-algebras. As the solution to
this lifting problem factors through A≤N , we obtain an embedding of A≤N into

C([0, 1],MN)
⊕2k for some k.

A //____

����

C([0, 1],MN)
⊕2k

����
I

>>~~~~~~~~~
// A≤N //

88

C(K,MN )

The restriction of this embedding to I induces a continuous surjection π of
⊔2k

[0, 1] onto αPrim(I). By the Hahn-Mazurkiewicz Theorem ([Nad92, The-
orem 8.18]), this shows that αPrim(I) is a Peano space. Furthermore, we find
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a basis of compact neighborhoods consisting of Peano continua for any point x
of αPrim(I) by [Nad92, Theorem 8.10].
Now let A be semiprojective and assume that dim(Prim(I)) =
dim(αPrim(I)) > 1. Arguing precisely as in [ST12, Proposition 3.1], we
use our basis of neighborhoods for points of Prim(I) to find arbitrarily small
circles around a point x ∈ Prim(I). Using triviality of E around x, we obtain
a lifting problem for A:

A

��

//_______
(

(
⊕

N T )
+
/ (
⊕n

1 K)
)

⊗MN

����

I //

⊆

99ssssssssssssssss (
⊕

N C(S
1)
)+
⊗MN

(

(
⊕

N T )
+
/ (
⊕

N K)
)

⊗MN

Semiprojectivity of A allows us to solve this lifting problem. Now restrict a
partial lift to the ideal I and consider its coordinates to obtain a commutative
diagram

T ⊗MN

����
I // //

99t
t

t
t

t
t

C(S1)⊗MN .

The map on the bottom is surjective since it is induced by the inclusion of one
of the circles around x. But a diagram like this does not exist by Proposition
2.3.6 because I is homogeneous and by that strongly quasidiagonal.

Corollary 2.3.9. Let A be a semiprojective C∗-algebra, then αPrimn(A) is
a Peano space for every n ∈ N.

Proof. If A is semiprojective, each A≤n is semiprojective with respect to
n-subhomogeneous C∗-algebras. Hence we can apply Lemma 2.3.8 to the
n-homogeneous ideal ker(A≤n → A≤n−1) in A≤n whose primitive ideal space
is homeomorphic to Primn(A).

It is known to the experts that there are no non-trivial Mn-valued fields over
one-dimensional spaces and we are indebted to L. Robert for pointing this fact
out to us. Since we couldn’t find a proof in the literature, we include one here.

Lemma 2.3.10. Let E be a locally trivial field of C∗-algebras over a separable,
metrizable, locally compact Hausdorff space X with fiber MN and Γ0(E) the
corresponding section algebra. If dim(X) ≤ 1, then Γ0(E) is C0(X)-isomorphic
to C0(X,MN ).

Proof. First assume that X is compact. One-dimensionality of X implies that
that the Dixmier-Douady invariant δ ∈ Ȟ3(X,Z) corresponding to Γ0(E) van-
ishes. Therefore Γ0(E) is stably C(X)-isomorphic to C(X,MN) by Dixmier-
Douady classification (see e.g. [RW98, Corollary 5.56]). Let ψ : Γ(E) ⊗ K →
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C(X,MN )⊗K be such an isomorphism and note that Γ(E) ∼= her(ψ(1Γ(E)⊗e))
via ψ with e a minimal projection in K. Equivalence of projections over one-
dimensional spaces is completely determined by their rank by [Phi07, Propo-
sition 4.2]. Since ψ(1Γ(E) ⊗ e) and 1C(X,MN ) ⊗ e share the same rank N
everywhere we therefore find v ∈ C(X,MN ) ⊗ K with v∗v = ψ(1Γ(E) ⊗ e)
and vv∗ = 1C(X,MN ) ⊗ e. But then Ad(v) gives a C(X)-isomorphism from
her(ψ(1Γ(E) ⊗ e)) onto her(1C(X,MN ) ⊗ e) = C(X,MN ).

Now consider the case of non-compact X . Since X is σ-compact, it clearly suf-
fices to prove the following: Given compact subsetsX1 ⊆ X2 of X and a C(X1)-
isomorphism ϕ1 : Γ(E|X1

) → C(X1,MN ) there exists a C(X2)-isomorphism
ϕ2 : Γ(E|X2

) → C(X2,MN ) extending ϕ1. By the first part of the proof there
is a C(X2)-isomorphism ψ2 : Γ(E|X2

) → C(X2,MN ). One-dimensionality of

X1 implies Ȟ2(X1,Z) = 0, which means that every C(X1)-automorphism of
C(X1,MN ) is inner by [RW98, Theorem 5.42]. In particular, ϕ1 ◦ (ψ

−1
2 )|X1

is
of the form Ad(u) for some unitary u ∈ C(X1,MN ). It remains to extend u to
a unitary in C(X2,MN ). This, however, follows from one-dimensionality of X
and [HW48, Theorem VI.4].

We are now able to extend the results of [ST12] to the case of general N -
homogeneous C∗-algebras:

Theorem 2.3.11. Let A be a N -homogeneous C∗-algebra. The following are
equivalent:

1. A is (semi)projective.

2. A ∼= C0(Prim(A),MN ) and αPrim(A) is an A(N)R-space of dimension
at most 1.

Proof. We know that (1) implies A ∼= C0(Prim(A),MN ) by Lemma 2.3.8 and
Lemma 2.3.10. The remaining implications are given by Theorem 2.3.7.

3 Constructions for semiprojective C∗-algebras

Unfortunately, the class of semiprojective C∗-algebras lacks good permanence
properties. In fact, semiprojectivity is not preserved by most C∗-algebraic
standard constructions and the list of positive permanence results, most of
which can be found in [Lor97], is surprisingly short. Here, we extend this list
by a few new results.

3.1 Extending lifting problems

In this section, we introduce a technique to extend lifting problems from ide-
als to larger C∗-algebras. This technique can be used to show that in many
situations lifting properties of a C∗-algebra pass to its ideals.
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Lemma 3.1.1. Given a surjective inductive system of short exact sequences

0 // Cn
ιn //

πn+1
n ����

Dn
̺n //

πn+1
n ����

En //

π
n+1
n ����

0

0 // Cn+1
ιn+1 // Dn+1

̺n+1 // En+1
// 0

and a commutative diagram of extensions

0 // lim
−→

Cn
ι∞ // lim
−→

Dn
̺∞ // lim

−→
En // 0

0 // I
i //

ϕ

OO

A
p //

ϕ

OO

B //

ϕ

OO

0

the following holds: If both A and B are semiprojective, then ϕ lifts to Cn for
some n. If both A and B are projective, then ϕ lifts to C1.

Proof. First observe that we may assume the ∗-homomorphism ϕ to be injective
since otherwise we simply pass to the system of extensions

0 // Cn
ιn // Dn ⊕B

̺n⊕idB// En ⊕ B // 0

and replace ϕ by ϕ⊕ p and ϕ by ϕ⊕ idB. Using semiprojectivity of B, we can
find a partial lift ψ : B → En0 of ϕ for some n0, i.e. π

∞
n0
◦ψ = ϕ. Now consider

the C∗-subalgebras

D′
n := ̺−1

n ((π
n
n0
◦ ψ)(B)) ⊆ Dn

and observe that the restriction of πn+1
n to D′

n surjects onto D′
n+1. We also

find that the direct limit lim
−→

D′
n = π∞

n0
(D′

n0
) of this new system contains ϕ(A).

Hence semiprojectivity of A allows us to lift ϕ (regarded as a map to lim
−→

D′
n) to

D′
n for some n ≥ n0. Let σ : A→ D′

n be a suitable partial lift, i.e. π∞
n ◦σ = ϕ,

then the restriction of σ to the ideal I will be a solution to the original lifing
problem for ϕ: The only thing we need to check is that the image of I under σ
is in fact contained in Cn. But we know that π

∞
n is injective on (̺n ◦ σ)(A) ⊆

(π
n
n0
◦ ψ)(B) since ϕ = π

∞
n ◦ (π

n
n0
◦ ψ) was assumed to be injective. Hence the

identity

(π
∞
n ◦̺n◦σ)(i(I)) = (̺∞ ◦π

∞
n ◦σ)(i(I)) = (̺∞◦ϕ)(i(I)) = (̺∞◦ι∞)(ϕ(I)) = 0

confirms that σ(i(I)) ⊆ in(Cn) holds.

Now assume that we are given an inductive system

· · · // // Cn
πn+1
n // // Cn+1

// // · · ·
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of separable C∗-algebras with surjective connecting homomorphisms. Then
each connecting map πn+1

n canonically extends to a surjective ∗-homomorphism
πn+1
n on the level of multiplier C∗-algebras ([WO93, Theorem 2.3.9]), i.e., we

automatically obtain a surjective inductive system of extensions

0 // Cn //

πn+1
n ����

M(Cn) //

πn+1
n ����

Q(Cn) //

π
n+1
n ����

0

0 // Cn+1
//M(Cn+1) // Q(Cn+1) // 0

.

We would like to apply Lemma 3.1.1 to such a system of extensions. However,
the reader should be really careful when working with multipliers and direct
limits at the same time since these constructions are not completely compatible:
Each π∞

n : Cn → lim
−→

Cn extends to a ∗-homomorphismM(Cn)→M(lim
−→

Cn).
The collection of these maps induces a ∗-homomorphism pM : lim

−→
M(Cn) →

M(lim−→Cn) which is always surjective but only in trivial cases injective. The
same occurs for the quotients, i.e. for the system of corona algebras Q(Cn).
The situation can be summarized in the commutative diagram with exact rows

0 // Cn

����

//M(Cn)

����

// Q(Cn)

����

// 0

0 // lim
−→

Cn // lim−→M(Cn)

pM
����

// lim−→Q(Cn)

pQ
����

// 0

0 // lim
−→

Cn //M(lim−→Cn) // Q(lim−→Cn) // 0

where the quotient maps pM and pQ are the obstacles for an application of
Lemma 3.1.1. The following proposition makes these obstacles more precise.

Proposition 3.1.2. Let A and B be semiprojective C∗-algebras and

0 // I // A // B // 0 [τ ]

a short exact sequence with Busby map τ : B → Q(I). Let I
∼
−→ lim
−→

Cn be
an isomorphism from I to the limit of an inductive system of separable C∗-
algebras Cn with surjective connecting maps. If the Busby map τ can be lifted
as indicated

lim
−→
Q(Cn)

pQ
����

B
τ //

88q
q

q
q

q
q

Q(I) ∼= Q(lim−→
Cn)

,

then I → lim
−→

Cn lifts to Cn for some n. If both A and B are projective, we can
obtain a lift to C1.
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Proof. Keeping in mind that pQ is the Busby map associated to the extension
0 → lim

−→
Cn → lim

−→
M(Cn) → lim

−→
Q(Cn) → 0, the claim follows by combining

Theorem 2.2 of [ELP99] with Lemma 3.1.1.

One special case, in which the existence of a lift for the Busby map τ as
in Proposition 3.1.2 is automatic, is when the quotient B is a projective
C∗-algebra. Hence we obtain a new proof for the permanence result below
which has the advantage that it does not use so-called corona extendability (cf.
[Lor97, Section 12.2]).

Corollary 3.1.3 ([LP98], Theorem 5.3). Let 0 → I → A → B → 0
be short exact. If A is (semi)projective and B is projective, then I is also
(semi)projective.

Another very specific lifting problem for which Proposition 3.1.2 applies, is the
following mapping telescope contruction due to Brown.

Lemma 3.1.4. Let a sequence (Ck)k of separable C∗-algebras be given and con-
sider the telescope system (Tn, ̺

n+1
n ) associated to

⊕∞
k=0 Ck = lim

−→n

⊕n
k=0 Ck,

i.e.

Tn =

{

f ∈ C

(

[n,∞],

∞
⊕

k=0

Ck

)

: t ≤ m⇒ f(t) ∈
m
⊕

k=1

Ck

}

with ̺n+1
n : Tn → Tn+1 the (surjective) restriction maps, so that

lim
−→n

(Tn, ̺
n+1
n ) ∼=

⊕∞
k=1 Ck. Then both canonical quotient maps in the

diagram

0 // lim
−→

Tn // lim
−→
M(Tn) //

pM
����

lim
−→
Q(Tn) //

pQ
����

0

0 // lim
−→

Tn //M(lim
−→

Tn) //

DD

Q(lim
−→

Tn) //

DD

0

split.

Proof. It suffices to produce a split for pM which is the identity on lim
−→

Tn. Un-

der the identification lim
−→

Tn ∼=
⊕∞

k=0 Ck we have M(lim
−→

Tn) ∼=
∏∞
k=0M(Ck).

One checks that

Tn =

n
⊕

k=0

C([n,∞], Ck)⊕
⊕

k>n

C0((k,∞], Ck)

and hence ∞
∏

k=0

C([max{n, k},∞],M(Ck)) ⊂M(Tn).

It follows that the sum of embeddings as constant functions

∞
∏

k=0

M(Ck)→
∞
∏

k=0

C([max{n, k},∞],M(Ck)) ⊂M(Tn)
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defines a split for the quotient map lim
−→
M(Tn) → M(lim

−→
Tn). It is easily

verified that this split is the identity on
⊕∞

k=1 Ck.

Remark 3.1.5 (Lifting the Busby map). Given an extension 0 → I → A →
B → 0 with both A and B semiprojective, the associated Busby map does in
general not lift as in 3.1.2. However, there are a number of interesting sit-
uations where it does lift and we therefore can use Propostion 3.1.2 to obtain
lifting properties for the ideal I. One such example is studied in [End14], where
it is (implicitly) shown that the Busby map lifts if B is a finite-dimensional C∗-
algebra. This observation leads to the fact that semiprojectivity passes to ideals
of finite codimension. Further examples will be given in section 4, where we
study Busby maps associated to extensions by homogeneous ideals and identify
conditions which guarantee that 3.1.2 applies.

3.2 Direct limits which preserve semiprojectivity

3.2.1 Weakly conditionally projective homomorphisms

The following definition characterizes ∗-homomorphisms along which lifting
solutions can be extended in an approximate manner. This type of maps is
implicitly used in [CD10] and [ST12] in the special case of finitely presented,
commutative C∗-algebras.

Definition 3.2.1. A ∗-homomorphism ϕ : A→ B is weakly conditionally pro-
jective if the following holds: Given ǫ > 0, a finite subset F ⊂ A and a com-
muting square

A

ϕ

��

ψ // D

π
����

B
̺ // D/J,

there exists a ∗-homomorphism ψ′ : B → D as indicated

A

ϕ

��

ψ // D

π
����

B
̺ //

ψ′
=={

{
{

{
D/J

which satisfies π ◦ ψ′ = ̺ and ‖(ψ′ ◦ ϕ)(a)− ψ(a)‖ < ǫ for all a ∈ F .

The definition above is a weakening of the notion of conditionally projective
morphisms, as introduced in section 5.3 of [ELP98], where one asks the homo-
morphism ψ′ in 3.2.1 to make both triangles of the lower diagram to commute
exactly. While conditionally projective morphisms are extremely rare (even
when working with projective C∗-algebras, cf. the example below), there is a
sufficient supply of weakly conditionally projective ones, as we will show in the
next section.
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Example 3.2.2. The inclusion map id⊕ 0: C0(0, 1] → C0(0, 1] ⊕ C0(0, 1] is
weakly conditionally projective but not conditionally projective. This can be
illustrated by considering the commuting square

C0(0, 1]
ψ //

id⊕ 0

��

C0(0, 3)

π
����

C0(0, 1]⊕ C0[2, 3) C0(0, 1]⊕ C0[2, 3)

where π is the restriction map and ψ is given by sending the canonical generator
t of C0(0, 1] to the function

(ψ(t))(s) =











s if s ≤ 1

1− s if 1 < s ≤ 2

0 if 2 ≤ s

.

It is clear that there is no lift for the generator of C0[2, 3) which is orthogonal to
ψ(t). This shows that the map id⊕ 0 is not conditionally projective. However,
after replacing ψ(t) with (ψ(t)−ǫ)+ for any ǫ > 0, finding an orthogonal lift for
the generator of the second summand is no longer a problem. Using this idea,
it will be shown in Proposition 3.2.4 that id⊕ 0 is in fact weakly conditionally
projective.

If A is a (semi)projective C∗-algebra and ϕ : A → B is weakly conditionally
projective, then B is of course also (semi)projective. The next lemma shows
that (semi)projectivity is even preserved along a sequence of such maps. Its
proof is of an approximate nature and relies on a one-sided approximate inter-
twining argument (cf. section 2.3 of [Rør02]), a technique borrowed from the
Elliott classification program.

Lemma 3.2.3. Suppose A1

ϕ2
1 // A2

ϕ3
2 // A3

ϕ4
3 // · · · is an inductive system

of separable C∗-algebras. If A1 is (semi)projective and all connecting maps
ϕn+1
n are weakly conditionally projective, then the limit A∞ = lim

−→
(An, ϕ

n+1
n )

is also (semi)projective.

Proof. We will only consider the projective case, the statement for the semipro-
jective case is proven analogously with obvious modifications. Choose finite
subsets Fn ⊂ An with ϕn+1

n (Fn) ⊆ Fn+1 such that the union
⋃∞
m=n(ϕ

m
n )−1(Fm)

is dense in An for all n. Further let (ǫn)n be a sequence in R>0 with
∑∞

n=1 ǫn <∞. Now let ̺ : A∞ → D/J be a ∗-homomorphism to some quotient
C∗-algebraD/J . By projectivity of A1 there is a

∗-homomorphism s1 : A1 → D
with π ◦ s1 = ̺◦ϕ∞

1 . Since the maps ϕn+1
n are weakly conditionally projective,

we can inductively choose sn+1 : An+1 → D with π ◦ sn+1 = ̺ ◦ϕ∞
n+1 such that

‖sn(a)− (sn+1 ◦ ϕ
n+1
n )(a)‖ < ǫn
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holds for all a ∈ Fn. It is now a standard computation (and therefore ommited)
to check that ((sm ◦ ϕmn )(x))m is a Cauchy sequence in D for every x ∈ Fn.
Furthermore, the induced map ϕ∞

n (x) 7→ limm(sm ◦ ϕmn )(x) extends from the
dense subset

⋃

n ϕ
∞
n (Fn) to a ∗-homomorphism s : A∞ → D.

An
sn //

ϕn+1
n

��

D

π

����

An+1

ϕ∞
n+1

��

sn+1

;;w
w

w
w

w

A∞
̺ //

s

GG

D/J

Since each sn lifts π, the same holds for their pointwise limit, i.e. the limit
map s satisfies π ◦ s = ̺. This shows that A∞ is projective.

3.2.2 Adding non-commutative edges

In order to make Lemma 3.2.3 a useful tool for constructing semipro-
jective C∗-algebras, we have to ensure the existence of weakly projective
∗-homomorphisms as defined in 3.2.1. The examples we work out in this section
arise in special pullback situations where one ’adds a non-commutative edge’
to a given C∗-algebra A. By this we mean that we form the pullback of A
and C([0, 1])⊗Mn over a n-dimensional representation of A and the evaluation
map ev0. In the special case of A = C(X) being a commutative C∗-algebra
and n = 1 this pullback construction already appeared in [CD10] and [ST12]
where it indeed corresponds to attaching an egde [0, 1] at one point to the
space X . Here we show that the map obtained by extending elements of A
as constant functions onto the attached non-commutative edge gives an exam-
ple of a weakly conditionally projective ∗-homomorphism. As an application,
we observe that the AF-telescopes studied in [LP98] arise from weakly pro-
jective ∗-homomorphisms and hence projectivity of these algebras is a direct
consequence of Lemma 3.2.3.

Adapting notation from [ELP98], we set

T (C, G) = {f ∈ C0((0, 2], G) : t ≤ 1⇒ f(t) ∈ C · 1G},

S(C, G) = {f ∈ C0((0, 2), G) : t ≤ 1⇒ f(t) ∈ C · 1G}

for G a unital C∗-algebra. We further write

T (C, G, F ) =

{

f ∈ C0((0, 3], F ) :
t ≤ 2⇒ f(t) ∈ G
t ≤ 1⇒ f(t) ∈ C · 1G

}
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with respect to a fixed inclusion G ⊆ F . We have the diagram

T (C, G, F ) //

��

C([2, 3], F )

ev2

��
T (C, G)

ev2 // F

which is a special case of the pullback situation considered in the next proposi-
tion. However, this example is in some sense generic and implementing it into
the general situation is an essential part of proving the following.

Proposition 3.2.4. Given a (semi)projective C∗-algebra Q and a ∗-homomor-
phism τ : Q→Mn, the following holds:

1. The pullback P over τ and ev0 : C([0, 1],Mn)→Mn, i.e.

P = {(q, f) ∈ Q⊕ C([0, 1],Mn) : τ(q) = f(0)},

is (semi)projective.

2. The canonical split s : Q→ P , q 7→ (q, τ(q)⊗1[0,1]) is weakly conditionally
projective.

Proof. (1) Semiprojectivity of the pullback P follows from [End14, Corollary
3.4]. Since P is homotopy equivalent to Q, the projective statement follows
from the semiprojective one using [Bla12, Corollary 5.2].

(2) For technical reasons we identify the attached interval [0, 1] with [2, 3] and
consider the pullback

P //___

���
�
� C([2, 3],Mn)

ev2

��
Q

τ // Mn

with s : Q → P , q 7→ (q, τ(q) ⊗ 1[2,3]) instead. Denote by G ⊆ Mn the image
of τ . According to [ELP98, Theorem 2.3.3], we can find a ∗-homomorphism
ϕ : T (C, G)→ Q such that

0 // ker(τ) // Q
τ // G // 0

0 // S(C, G) //

OO

T (C, G)

ϕ

OO

ev2 // G // 0

commutes and ϕ|S(C,G) is a proper ∗-homomorphism to ker(τ) (meaning that
the hereditary subalgebra generated by its image is all of ker(τ)). Using the
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pullback property of P , ϕ can be extended to ϕ : T (C, G,Mn)→ P such that

0 // C0((2, 3],Mn) // P // Q //
s

ss
0

0 // C0((2, 3],Mn) // T (C, G,Mn)

ϕ

OO

// T (C, G)

ϕ

OO

//
s′pp

0

commutes. In particular we have ϕ ◦ s′ = s ◦ ϕ, where s′ is the canonical split
which simply extends functions constantly onto [2, 3].
Choose generators f1, ..., fl of norm 1 for C0((2, 3],Mn) and generators g1, ..., gk
of norm 1 for T (C, G). We need the following ’softened’ versions of P : For δ > 0
we consider the universal C∗-algebra

Pδ = C∗ ({f δ, qδ : f ∈ C0((2, 3],Mn), q ∈ Q
}

|RC0((2,3],Mn)&RQ&Rδ
)

which is generated by copies of C0((2, 3],Mn) and Q (here RC0((2,3],Mn),RQ
denote all the relations from C0((2, 3],Mn) resp. fromQ) and additional, finitely
many relations

Rδ =
{

‖f δi (ϕ(gj))
δ − (fi(gj(2)⊗ 1[2,3]))

δ‖ ≤ δ
}

1≤i≤l
1≤j≤k

.

Note that P = lim
−→

Pδ with respect to the canonical surjections pδ,δ′ : Pδ → Pδ′

(for δ > δ′) and denote the induced maps Pδ → P, f δ 7→ f, qδ 7→ s(q) by pδ,0.
Since P is semiprojective by part (1) of this proposition, we can find a partial
lift jδ : P → Pδ for some δ > 0, i.e. pδ,0 ◦ jδ = idP .
Now let a finite set F = {x1, ..., xm} ⊆ Q and ǫ > 0 and be given. Denoting
the inclusions Q → Pδ, q 7→ qδ by sδ, we can (after decreasing δ if necessary)
assume that ‖sδ(xi)− (jδ ◦ s)(xi)‖ ≤ ǫ holds for all 1 ≤ i ≤ m. Now given any
commuting square

Q

s

��

ψ // D

π
����

P
̺ // D/J

it only remains to construct a ∗-homomorphism ψδ : Pδ → D such that in the
diagram

Q
ψ //

s

��

sδ

��@
@@

@@
@@

D

π

����

Pδ

ψδ

==z
z

z
z

pδ,0

����
��

��
��

P

jδ

LL

̺
// D/J
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the upper central triangle and the lower right triangle commute.

We consider the following subalgebras of T (C, G) and S(C, G) for any η > 0:

Tη(C, G) = {f ∈ T (C, G) : f is constant on (0, η] ∪ [2− η, 2]}
Sη(C, G) = {f ∈ S(C, G) : f is constant (=0) on (0, η] ∪ [2− η, 2]}

Since

T (C, G) =
⋃

η>0

Tη(C, G)

we find 0 < η < 1
2 and elements g̃j ∈ Tη(C, G) with g̃j(2) = gj(2) and

‖gj−g̃j‖ < δ for every 1 ≤ j ≤ k. Let h ∈ T (C, G) be the scalar-valued function
which equals 1G on [η, 2−η], satisfies h(0) = h(2) = 0 and is linear in between.
Consider the hereditary C∗-subalgebraD′ = (1− (ψ ◦ ϕ)(h))D(1 − (ψ ◦ ϕ)(h))
and define

D′′ := (ψ ◦ ϕ)(Tη(C, G)) +D′ ⊆ D.

Then (ψ ◦ϕ)(Sη(C, G)) and D′ are orthogonal ideals in D′′ because h is central
in T (C, G). We further have (̺ ◦ ϕ)(C0((2, 3],Mn)) ⊆ π(D′) and hence obtain
a commutative diagram

0 // (ψ ◦ ϕ)(Sη(C, G)) //

π����

D′′ //

π����

HD +D′ //

�����
� 0

0 // (̺ ◦ ϕ ◦ s′)(Sη(C, G)) // π(D′′) // HD/J + π(D′) // 0

0 // s′(Sη(C, G)) //

̺◦ϕ
OO

s′(Tη(C, G)) + C0((2, 3],Mn)

̺◦ϕ
OO

// T̂ (G,Mn) //

OO�
�

0

where HD and HD/J are finite-dimensional C∗-algebras given by

HD = (ψ ◦ ϕ)(Tη(C, G))/(ψ ◦ ϕ)(Sη(C, G)),

HD/J = (̺ ◦ ϕ ◦ s′)(Tη(C, G))/(̺ ◦ ϕ ◦ s
′)(Sη(C, G))

and T̂ (G,Mn) denotes what is called a crushed telescope in [ELP98]:

T̂ (G,Mn) = {f ∈ C([2, 3],Mn) : f(2) ∈ G}

By [ELP98, Proposition 6.1.1], the embedding G → T̂ (G,Mn) as
constant functions is a conditionally projective map (in the sense
of [ELP98, Section 5.3]). It is hence possible to extend the map

G
∼ // Tη(C, G)/Sη(C, G) // HD ⊂ HD +D′ to a ∗-homomorphism
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ψ′ : T̂ (G,Mn)→ HD +D′ such that the diagram with exact rows

0 // D′ //

π
����

HD +D′ //

����

HD
//

����

qq
0

0 // π(D′) // HD/J + π(D′) // HD/J // 0

0 // C0((2, 3],Mn) //

̺◦ϕ

OO

T̂ (G,Mn) ev2

//

ψ′

;
2

(

@@

�
�

�

OO

G

OO

qq
//

??

0

commutes. In particular, ψ′ restricts to a ∗-homomorphism C0((2, 3],Mn)→ D′

which we will also denote by ψ′. But then a diagram chase confirms that

ψ′(fi) · (ψ ◦ ϕ)(g̃j) = ψ′(fi · (g̃j(2)⊗ 1[2,3]))

holds for every i, j. Finally, define ψδ : Pδ → D by

qδ 7→ ψ(q) and f δi 7→ ψ′(fi).

It needs to be checked that ψδ is well-defined, i.e. that the elements ψδ(f
δ
i )

and ψδ(ϕ(gj)
δ) satisfy the relations Rδ:

‖ψδ(f δi )ψδ(ϕ(gj)
δ)− ψδ((fi(gj(2)⊗ 1[2,3]))

δ)‖
= ‖ψ′(fi)((ψ ◦ ϕ)(gj))− ψ′(fi(gj(2)⊗ 1[2,3]))‖
≤ ‖ψ′(fi)(ψ ◦ ϕ)(g̃j)− ψ′(fi(g̃j(2)⊗ 1[2,3]))‖+ ‖fi‖ · ‖gj − g̃j‖ < δ

Since we also have ψδ ◦ sδ = ψ and π ◦ ψδ = ̺ ◦ pδ,0, the proof is hereby
complete.

One example, where pullbacks as in 3.2.4 show up, is the class of so-called
AF-telescopes defined by Loring and Pedersen:

Definition 3.2.5 ([LP98]). Let A =
⋃

An be the inductive limit of an increas-
ing union of finite-dimensional C∗-algebras An. We define the AF-telescope
associated to this AF-system as

T (A) = {f ∈ C0((0,∞], A) : t ≤ n⇒ f(t) ∈ An}.

We have an obvious limit structure for T (A) = lim−→T (Ak) over the finite tele-
scopes

T (Ak) = {f ∈ C0((0, k], Ak)) : t ≤ n⇒ f(t) ∈ An}.

Now the embedding of T (Ak) into T (Ak+1) is given by extending the elements
of T (Ak) constantly onto the attached interval [k, k+1]. This is nothing but a
finite composition of maps as in part (2) of 3.2.4. Hence the connecting maps
in the system of finite telescopes are weakly conditionally projective and using
Lemma 3.2.3 we recover [LP98, Theorem 7.2]:
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Corollary 3.2.6. All AF -telescopes are projective.

In contrast to the original proof we didn’t have to work out any description of
the telescopes by generators and relations. Such a description would have to
encode the structure of each An as well as the inlusions An ⊂ An+1 (i.e., the
Bratteli-diagram of the system). Showing that such an infinite set of generators
and relations gives rise to a projective C∗-algebra is possible but complicated.
Instead we showed that these algebras are build up from the projective C∗-
algebra T (A0)=0 using operations which preserve projectivity.

4 Extensions by homogeneous C∗-algebras

In this section we study extensions by (trivially) homogeneous C∗-algebras, i.e.
extensions of the form

0 // C0(X,MN ) // A // B // 0.

Our final goal is to understand the behavior of semiprojectivity along such
extensions, and we will eventually achieve this in Theorem 4.3.2.

4.1 Associated retract maps

Identifying X with an open subset of Prim(A), we make the following definition
of an associated retract map. This map will play a key role in our study of
extensions.

Definition 4.1.1. Let X be locally compact space with connected components
(Xi)i∈I and

0 // C0(X,MN ) // A // B // 0

a short exact sequence of C∗-algebras. We define the (set-valued) retract map
R associated to the extension to be the map

R : Prim(A)→ 2Prim(B)

given by

R(z) =

{

z if z ∈ Prim(B),

∂Xi = Xi\Xi if z ∈ Xi ⊆ X.

Note that R defined as above takes indeed values in 2Prim(B) because the con-
nected components Xi are always closed in X . However, in our cases of interest
the components Xi will actually be clopen in X (e.g. if X is locally connected)
so that we have a topological decomposition X =

⊔

iXi.
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4.1.1 Regularity properties for set-valued maps

LetX,Y be sets and S : X → 2Y a set-valued map. We say that S has pointwise
finite image if S(x) ⊆ Y is a finite set for every x ∈ X . If furthermore X and
Y are topological spaces, we will use the following notion of semicontinuity for
S (cf. [AF90, Section 1.4]).

Definition + Lemma 4.1.2. Let X,Y be topological spaces. A set-valued
map S : X → 2Y is lower semicontinuous if one of the following equivalent
conditions holds:

(i) {x ∈ X : S(x) ⊆ B} is closed in X for every closed B ⊆ Y .

(ii) For every neighborhood N(y) of y ∈ S(x) there exists a neighborhood
N(x) of x with S(x) ∩N(y) 6= ∅ for every x ∈ N(x).

(iii) For every net (xλ)λ∈Λ ⊂ X with xλ → x and every y ∈ S(x) there exists
a net (yµ)µ∈M ⊂ {S(xλ) : λ ∈ Λ} such that yµ → y.

Proof. (i) ⇒ (ii): Let N(y) be an open neighborhood of y ∈ S(x). Then
{x ∈ X : S(x) ⊂ Y \N(y)} is closed and does not contain x. Hence we find
an open neighborhood N(x) of x in X\{x ∈ X : S(x) ⊂ Y \N(y)} = {x ∈ X :
S(x) ∩N(y) 6= ∅}.
(ii)⇒ (iii): Denote by N the family of neighborhoods of y ordered by reversed
inclusion. Set M = {(λ,N) ∈ Λ × N : S(xλ′) ∩ N 6= ∅ ∀ λ′ ≥ λ}, then
by assumption M is nonempty and directed with respect to the partial order
(λ1, N1) ≤ (λ2, N2) iff λ1 ≤ λ2 and N2 ⊆ N1. Now pick a y(λ,N) ∈ S(xλ) ∩N
for each (λ,N) ∈M , then (yµ)µ∈M constitutes a suitable net converging to y.
(iii) ⇒ (i): Let a closed set B ⊆ Y and (xλ)λ∈Λ ⊂ {x ∈ X : S(x) ⊆ B}
with xλ → x be given. Then for any y ∈ S(x) we find a net yµ → y with
(yµ) ⊂ {S(xλ) : λ ∈ Λ} ⊂ B. Since B is closed we have y ∈ B showing that
S(x) ⊂ B.

Remark 4.1.3. An ordinary (i.e. a single-valued) map is evidently lower semi-
continuous in the sense above if and only if it is continuous. If both spaces X
and Y are first countable, we may use sequences instead of nets in condition
(iii).

Examples of set-valued maps that are lower semicontinuous in the sense above
arise from split extensions by homogeneous C∗-algebras as follows.

Example 4.1.4. Let a split-exact sequence of separable C∗-algebras

0 // C0(X,Mn) // A π
// B //

s
}}

0

be given and consider the set-valued map Rs : Prim(A)→ 2Prim(B) given by

Rs(z) =

{

z if z ∈ Prim(B)
{

[πz,1], ..., [πz,r(z)]
}

if z ∈ X
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where πz,1 ⊕ ...⊕ πz,r(z) is the decomposition of B
s
−→ A→ Cb(X,Mn)

evz−−→Mn

into irreducible summands. Then Rs is lower semicontinuous in the sense of
4.1.2.

Proof. We verify condition (ii) of 4.1.2: Let zn → z in Prim(A) and a neigh-
borhood N(y) of y ∈ Rs(z) in Prim(B) be given. By Lemma 2.2.4 we may
assume that N(y) is of the form {z ∈ Prim(B) : b̌(z) > 1/2} for some b ∈ B.
By definition of Rs, we find ˇs(b)(z) = maxy∈Rs(z) b̌(y) for all z ∈ Prim(A).

Hence N(z) = {z ∈ Prim(A) : ˇs(b) > 1/2} constitutes a neighborhood of z in
Prim(A) which satisfies 4.1.2 (ii).

Note that the retract map Rs in 4.1.4 highly depends on the choice of splitting
s while the retract map R from 4.1.1 is associated to the underlying extension
in a natural way. It is the goal of section 4.1.2 to find a splitting s such that
R = Rs holds. This is, however, not always possible. It can even happen that
the underlying extension splits while R is not of the form Rs for any splitting
s (cf. remark 4.3.3). Under suitable conditions, we will at least be able to
arrange R = Rs outside of a compact set K ⊂ X , i.e. we can find a (not

necessarily multiplicative) splitting map s such that B
s
−→ A → Cb(X,Mn) is

multiplicative on X\K so that Rs(x) is still well-defined and coincides with
R(x) for all x ∈ Prim(A)\K.

4.1.2 Lifting the Busby map

In this section we identify conditions on an extension

0 // C0(X,MN ) // A // B //?}}
0 [τ ]

which allow us to contruct a splitting s : B → A. This is evidently the same as
asking for a lift of the corresponding Busby map τ as indicated on the left of
the commutative diagram

C(βX,MN )

̺

����

∏

i∈I
C(βXi,MN )

����

B
τ //

s
77

⊕τi
66

C(χ(X),MN ) // //
∏

i∈I
C(χ(Xi),MN ).

We will produce a suitable lift of τ in two steps:

1. For every component Xi of X , we trivialize the map τi : B →
C(χ(Xi),MN ), i.e. we conjugate it to a constant map, so that it can
be lifted to C(βXi,MN ). This step requires the associated retract map
R from 4.1.1 to have pointwise finite image and the spaces χ(Xi) to be
connected and low-dimensional.
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2. We extend the collection of lifts for the τi’s to a lift for τ . Here we need
the associated retract map R to be lower semicontinuous.

In many cases of interest, the spaces χ(Xi) will not be connected, so that we
have to modify the first step of the lifting process. This results in the fact that
we cannot find a (multiplicative) split s in general. Instead we will settle for a
lift s of τ with slightly weaker multiplicative properties.
First we give the connection between the retract map R and the Busby map τ
of the extension.

Lemma 4.1.5. Let a short exact sequence

0 // I // A
π // B // 0

with Busby map τ : B → Q(I) be given. Identifying Prim(I) with the open sub-
set {J |I * J} of Prim(A) and denoting by ∂ Prim(I) its boundary in Prim(A),
the following statements hold:

(i) J ∈ ∂ Prim(I)⇔ I + I⊥ ⊆ J for every J ∈ Prim(A),

(ii) ∂ Prim(I) = {J : ker(τ ◦ π) ⊆ J} ∼= Prim(τ(B)).

If in addition I is subhomogeneous, we further have

(iii) |∂ Prim(I)| <∞⇔ dim(τ(B)) <∞.

Proof. For (i) it suffices to check that Prim(I⊥) = Prim(A)\Prim(I) where I⊥

denotes the annihilator of I in A. But this follows directly from the definition
of the Jacobson topology on Prim(A):

J /∈ Prim(I) ⇔
⋂

K∈Prim(I)

K * J

⇔ ∃x ∈ A : x /∈ J while ‖x‖K = 0 ∀ K ∈ Prim(I)
⇔ ∃x ∈ I⊥ : x /∈ J
⇔ I⊥ * J
⇔ J ∈ Prim(I⊥).

As I⊥ = ker(A→M(I)), one finds ker(τ ◦ π) = I + I⊥. Together with (i) this
shows

Prim(τ(B)) = Prim((τ ◦ π)(A))
∼= {J ∈ Prim(A) : ker(τ ◦ π) ⊆ J}
= {J ∈ Prim(A) : I + I⊥ ⊆ J}
= ∂ Prim(I).

For the last statement note that if all irreducible representations of I have
dimension at most n, the same holds for all irreducible representations π of
A with ker(π) contained in Prim(I). So by the correspondence described in
(ii), irreducible representations of τ(B) are also at most n-dimensional. Hence,
in this case, finitenesss of ∂ Prim(I) is equivalent to finite-dimensionality of
τ(B).
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For technical reasons we would prefer to work with unital extensions. However,
it is not clear whether unitization preserves the regularity of R, i.e. whether
the retract map associated to a unitized extension 0 → C0(X,MN ) → A+ →
B+ → 0 is lower semicontinuous provided that the retract map associated to
the original extension is. As the next lemma shows, this is true and holds in
fact for more general extensions.

Lemma 4.1.6. Let a locally compact space X with clopen connected components
and a commutative diagram

0

��

0

��
0 // C0(X,MN ) // A //

��

B //

��

0

0 // C0(X,MN ) // C //

π

��

D //

��

0

F

��

F

��
0 0

of short exact sequences of separable C∗-algebras be given. Let R : Prim(A)→
2Prim(B) (resp. S : Prim(C) → 2Prim(D)) be the set-valued retract map asso-
ciated to the upper (resp. the lower) horizontal sequence as in 4.1.1. If the
quotient F is a finite-dimensional C∗-algebra, then the following holds:

1. If R has pointwise finite image, then so does S.

2. If R is lower semicontinuous, then so is S.

Proof. (1) This is immediate since Prim(F ) is a finite set and one easily verifies
S(x) ⊆ R(x) ∪ Prim(F ) for all x ∈ X .
(2) We may assume that F is simple and hence π is irreducible. Note that
S(J) = R(J) for all J ∈ Prim(B) ⊂ Prim(D), while for x ∈ X we have either
S(x) = R(x) or S(x) = R(x) ∪ {[π]}. Given a closed subset K ⊆ Prim(D),
we need to verify that {J ∈ Prim(C) : S(J) ⊆ K} is closed in Prim(C). If
[π] ∈ K, then {J ∈ Prim(C) : S(J) ⊆ K} = {J ∈ Prim(A) : R(J) ⊆ K} ∪ {[π]}
is closed in Prim(C) because {J ∈ Prim(A) : R(J) ⊆ K} is closed in Prim(A)
by semicontinuity of R. Now if [π] /∈ K, the only relevant case to check is a
sequence xn ⊂ X converging to x ∈ Prim(D) with S(xn) ⊆ K for all n. We
then need to show that S(x) = x ∈ K as well. Decompose X =

⋃

i∈I Xi into its
clopen connected components and write xn ∈ Xin for suitable in ∈ I. We may
assume that in 6= im for n 6= m since otherwise x ∈ ∂Xin = S(xn) for some
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n. Since R is lower semicontinuous, we know that the boundary of
⋃

nXin in
Prim(A) is contained in K ∩ Prim(A) and hence ∂ (

⋃

nXin) ⊂ K ∪ {[π]} in
Prim(C).
Let p denote the projection of C0(X,MN ) onto C0(

⋃

nXin ,MN ). This map
canonically extends to p and p making the diagram

0 // C0(X,Mk) //

p
����

C //

p
��

D //

p
��

0

0 //
⊕

n
C0(Xin ,MN ) //

⊆
��

∏

n
C(βXin ,MN ) //

∏
n C(βXin ,MN )⊕
n C0(Xin ,MN )

//

q
����

0

0 //
∏

n
C0(Xin ,MN ) //

∏

n
C(βXin ,MN ) //

∏

n
C(χ(Xin),MN ) // 0

commute. Using Lemma 4.1.5, we can indentify the boundary of
⋃

nXin in
Prim(C) with Prim

(

p(D)
)

. We already know that p factors through DK ⊕
F , where DK denotes the quotient corresponding to the closed subset K of
Prim(D), and denote the induced map by ϕ:

D
p //

πK⊕π
""EE

EE
EE

EE
EE

∏
n C(βXin ,MN)

⊕
n C0(Xin ,MN )

DK ⊕ F

ϕ

88pppppp

We further know that the composition q ◦ ϕ|F : F →
∏

n C(χ(Xin),MN ) van-
ishes because [π] /∈ ∂Xin = R(xn) ⊆ K for all n. Hence the image of F under

ϕ is contained in ker(q) =
∏

n C0(Xin ,MN )⊕
n C0(Xin ,MN ) . But since this C∗-algebra is projec-

tionless and F is finite-dimensional, we find ϕ|F = 0. Consequently, p factors

throughDK which means nothing but x ∈ ∂ (
⋃

nXin) = Prim
(

p(D)
)

⊆ K.

Lemma 4.1.7. Let X be a connected, compact space of dimension at most 1.
For every finite-dimensional C∗-algebra F ⊆ C(X,Mn) there exists a unitary
u ∈ C(X,Mn) such that uFu∗ is contained in the constant Mn-valued functions
on X.

Proof. Since dim(X) ≤ 1, equivalence of projections in C(X,Mn) is completely
determined by their rank ([Phi07, Proposition 4.2]). In particular, the C∗-
algebra C(X,Mn) has cancellation. Hence [RLL00, Lemma 7.3.2] shows that
the inclusion F ⊂ C(X,Mn) is unitarily equivalent to any constant embedding
ι : F → Mn ⊆ C(X,Mn) with rank(ι(p)) = rank(p) for all minimal projections
p ∈ F .
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Lemma 4.1.8. Let X be a connected, locally compact, metrizable space of di-
mension at most 1. Then every unitary in C(χ(X),Mn) lifts to a unitary in
C(βX,Mn).

Proof. By [Phi07, Proposition 4.2], we have K0(C(αX,Mn)) ∼= Z via [p] 7→
rank(p). Using the 6-term exact sequence in K-theory, this shows that the
induced map K1(C(βX,Mn)) → K1(C(χ(X),Mn)) is surjective. Combining
this with K1-bijectivity of C(βX,Mn), which is guaranteed by dim(βX) =
dim(X) ≤ 1 ([Nag70, Thm. 9.5]) and [Phi07, Theorem 4.7], the claim follows.

Proposition 4.1.9. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby invariant τ be given. Assume that X is at most one-dimensional,
has clopen connected components (Xi)i∈I and that every corona space χ(Xi) has
only finitely many connected components. If the associated set-valued retract
map R as in 4.1.1 has pointwise finite image, then there is a unitary U ∈
C(βX,MN ) such that for each i ∈ I the composition

B
τ
−→ C(χ(X),Mn)

Ad(̺(U))
−−−−−−→ C(χ(X),MN )→ C(χ(Xi),Mn)

has image contained in the locally constant MN -valued functions on χ(Xi).

Proof. By Lemma 4.1.5, the image of each τi : B
τ
−→ C(χ(X),MN ) →

C(χ(Xi),MN ) is finite-dimensional. Since by [Nag70, Thm. 9.5] furthermore
dimχ(Xi) ≤ dimβXi = dimXi ≤ dimX ≤ 1, we can apply Lemma 4.1.7
to obtain unitaries ui ∈ C(χ(Xi),MN ) such that uiτi(B)u∗i is contained in
the locally constant functions on χ(Xi). These unitaries can be lifted to uni-
taries Ui ∈ C(βXi,MN ) by Lemma 4.1.8. Now U = ⊕iUi ∈

∏

i C(βXi,MN ) =
C(βX,MN ) has the desired property.

Lemma 4.1.10. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby map τ be given. Assume that X is at most one-dimensional
and that the connected components (Xi)i∈I of X are clopen. Further as-
sume that the image of τ is constant on each χ(Xi) ⊆ χ(X). Denote by
ι : A → M(C0(X,MN )) = C(βX,MN ) the canonical map. If the set-valued
retract map R : Prim(A) → 2Prim(B) as defined in 4.1.1 is lower semicontinu-
ous, the following statement holds:
For every finite set G ⊂ A, every ǫ > 0 and almost every i ∈ I there exists a
unitary Ui ∈ C(αXi,MN ) ⊂ C(βXi,MN ) such that

∥

∥(Uiι(a)|βXi
U∗
i )(x) − ι(a)(y)

∥

∥ < ǫ

holds for all a ∈ G, x ∈ βXi and y ∈ χ(Xi).
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Proof. We may assume that A is unital by Lemma 4.1.6. Let a finite set G ⊂ A
and ǫ > 0 be given. For each x ∈ βX , we write Fx = im(evx ◦ι) ⊆MN and

T1(Fx) = {f ∈ C([0, 1], Fx) : f(0) ∈ C · 1Fx
},

S1(Fx) = {f ∈ C0([0, 1), Fx) : f(0) ∈ C · 1Fx
}.

Further let hη ∈ C0[0, 1) denote the function t 7→ max{1 − t − η, 0}. Using
the Urysohn-type result [ELP98, Theorem 2.3.3], we find for each x ∈ βX a
commuting diagram

0 // Jx // A
evx ◦ι // Fx // 0

0 // S(C, Fx)

ϕx

OO

// T (C, Fx)

ϕx

OO

ev1

// Fx //

sx
ww

0

such that ϕx is unital and ϕx is proper. Let sx : Fx → T (C, Fx) be any map
satisfying sx(b)(t) = b for t ≥ 1/2, so that in particular ev1 ◦sx = idFx

holds.
Now consider

Vx,δ = {y ∈ βX : (evy ◦ι)(ϕx(hδ)) = 0}

which is, for δ > 0, a closed neighborhood of x in βX . Note that by assumption
χ(Xi) ∩ Vx,δ 6= ∅ implies χ(Xi) ⊆ Vx,δ. We further claim the following: For
almost every i ∈ I the inclusion χ(Xi) ⊆ Vx,δ implies Xi ⊂ Vx,2δ. Assume
otherwise, then we find pairwise different in ∈ I, points xn ∈ Xin such that
χ(Xin) ⊆ Vx,δ while xn /∈ Vx,2δ for all n. We may assume that evxn

◦ι converges
pointwise to a representation π. Then

‖π(ϕx(hδ))‖ = lim
n
‖(evxn

◦ι ◦ ϕx)(hδ)‖ ≥ δ

since xn 6= Vx,2δ implies that evxn
◦ι ◦ ϕ contains irreducible summands cor-

responding to evaluations at points t with t < 1 − 2δ. On the other hand,
since the retract map R is lower semicontinuous, we find each irreducible sum-
mand of π to be the limit of irreducible subrepresentations ̺n of evyn ◦ι where
yn ∈ χ(Xin) ⊆ Vx,δ. Hence

‖π(ϕx(hδ))‖ ≤ lim inf
n
‖̺n(ϕx(hδ))‖ = 0

by 2.2.4, giving a contradiction and thereby proving our claim.
Since ϕx is proper, we have Jx =

⋃

η>0 her(ϕx(hη)). Hence there exists 1/2 >
δ(x) > 0 such that

inf
{

‖(a− (ϕx ◦ sx ◦ evx ◦ι)(a))− b‖ : b ∈ her(ϕx(h2δ(x)))
}

<
ǫ

2

for all a ∈ G. By compactness of χ(X), we find x1, ..., xm such that

χ(X) ⊆
m
⋃

j=1

Vxj ,δ(xj).
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Then by the claim proved earlier, for almost every i with χ(Xi) ⊆ Vxj ,δ(xj) we
have a factorization as indicated

A

evxj
◦ι

��

πj

)) ))RRRRRRRRRRRRRRRRR
ι //

∏

i C(αXi,MN ) // C(αXi,MN ),

Fxj
πj◦ϕxj

◦sxj

// A/〈ϕxj
(h2δ(xj))〉

ιi

66mmmmmmm

where 〈ϕxj
(h2δ(xj))〉 denotes the ideal generated by ϕxj

(h2δ(xj)) and πj the
corresponding quotient map. By the choice of δ(xj), the lower left triangle
commutes up to ǫ/2 on the finite set G. Also note that the map πj ◦ ϕxj

◦ sxj

is multiplicative.
Finally, by Lemma 4.1.7 there exists a unitary Ui ∈ C(αXi,MN ) such that
Ad(Ui) ◦ (ιi ◦ πj ◦ ϕxj

◦ sxj
) is a constant embedding. Of course, we may

arrange U(∞) = 1. We then verify

‖(Uiι(a)|βXi
U∗
i )(x) − ι(a)(y)‖

≤ ‖(Ui(ιi ◦ πj ◦ ϕxj
◦ sxj

)((evxj
◦ι)(a))U∗

i )(x) − (ιi ◦ πj)(a)(y)‖ +
ǫ
2

≤ ‖(Ui(ιi ◦ πj ◦ ϕxj
◦ sxj

)((evxj
◦ι)(a))U∗

i )(y)− (ιi ◦ πj)(a)(y)‖ +
ǫ
2

= ‖(ιi ◦ (πj ◦ ϕxj
◦ sxj

) ◦ (evxj
◦ι))(a)(y) − (ιi ◦ πj)(a)(y)‖ +

ǫ
2

≤ ǫ.

Applying this procedure to each of the finitely many points x1, ..., xm, the
statement of the lemma follows.

Using Lemma 4.1.10 we can now construct a split for our sequence of interest
- at least in the case of τ(B) being constant on each χ(Xi).

Corollary 4.1.11. If 0→ C0(X,MN )→ A→ B → 0 is a short exact sequence
of separable C∗-algebras such that the assumptions of Lemma 4.1.10 hold, then
this sequence splits.

Proof. Let τ : B → Q(C0(X,MN )) = C(χ(X),MN ) denote the Busby map of
the sequence. We have the canonical commutative diagram

0 // ⊕
i C0(Xi,MN ) // C(βX,MN )

̺ // C(χ(X),MN ) // 0

0 // C0(X,MN ) // A
π //

ι

OO

B //

τ

OO

0.

Choose points yi ∈ χ(Xi) for every i ∈ I. Using separability of A and Lemma
4.1.10, we find a unitary U ∈

∏

i C(αXi,MN ) ⊂
∏

i C(βXi,MN ) = C(βX,MN )
with

Uι(a)U∗ −
∏

i

ι(a)(yi) · 1αXi
∈
⊕

i

C0(Xi,MN )
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for all a ∈ A (where ι(a)(yi) · 1αXi
denotes the function on αXi with constant

value ι(a)(yi)). By setting s(π(a)) = U∗ (
∏

i(ι(a)(yi) · 1αXi
)U we find s : B →

C(βX,MN ) with (̺ ◦ s)(π(a)) = (̺ ◦ ι)(a) = τ(π(a)) by the formula above.
Identifying A with the pullback over ̺ and τ , we can regard s as a map from
B to A with π ◦ s = idB, i.e. we have constructed a split for the sequence.

As the example 0 → C0(0, 1) → C[0, 1] → C2 → 0 shows, we cannot expect
extensions by C0(X,MN) to split if the corona space of X (or of one of its
components) is not connected. We will now deal with these components and
show that one can still obtain a split s : B → A which, though not multiplicative
in general, has still good multiplicative properties.

Lemma 4.1.12. Let 0 → C0(X,MN ) → A → B → 0 be a short exact sequence
with Busby map τ . Assume that the corona space χ(X) of X has only finitely
many connected components and that the image of τ is contained in the locally
constant functions on χ(X). Then there exists a compact set K ⊂ X and a
completely positive split s : B → C(βX,MN ) which is multiplicative outside of
an open set U ⊂ K.

Proof. Let χ(X) =
⋃K
k=1 Yk be the decomposition of the corona space into its

connected components. By assumption τ decomposes as ⊕Kk=1τk with im(τk) ⊂
MN ·1Yk

⊆ C(χ(X),MN ). Lift the indicator functions 1Y1 , · · · , 1YK
to pairwise

orthogonal contractions h1, · · · , hK in C(βX,C · 1MN
) and let f : [0, 1]→ [0, 1]

be the continuous function which equals 1 on
[

1
2 , 1
]

, satisfies f(0) = 0 and is
linear in between. We define a completely positive map s : B → C(βX,MN ) by

s(b)(x) =
∑K

k=1 τk(b) · f(hk)(x) and check that in the diagram

A
ι //

��

C(βX,MN )

��
B

τ //

s

99sss
sss
C(χ(X),MN )

the right triangle commutes. Set K =
⋂K
k=1 h

−1
k ([0, 12 ]) ⊂ X , then s is multi-

plicative outside of the open set U =
⋂K
k=1 h

−1
k ([0, 12 )) ⊂ K ⊂ X .

Proposition 4.1.13. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of separable C∗-algebras with Busby map τ . Assume that X is at
most one-dimensional and has clopen connected components (Xi)i∈I . Further
assume that each corona space χ(Xi) has only finitely many connected compo-
nents and that χ(Xi) is connected for almost all i ∈ I. If for each i ∈ I the

image of τi : B
τ
−→ C(χ(X),MN )→ C(χ(Xi),MN ) is locally constant on χ(Xi)

and the set-valued retract map R : Prim(A) → 2Prim(B) as in 4.1.1 is lower
semicontinuous, the following holds: There exists a compact set K ⊂ X and a
completely positive split s : B → C(βX,MN ) which is multiplicative outside of
an open set U ⊂ K.
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Proof. Let I0 ⊆ I be a finite set such that χ(Xi) is connected for every i ∈
I1 := I\I0. We may then study the extensions (∗ = 0 or 1)

0 //
⊕

i∈I
C0(Xi,MN ) //

prI∗
����

A // B //

ϕ∗

��

0

0 //
⊕

i∈I∗
C0(Xi,MN ) // A //

ι∗

��

A/
⊕

i∈I∗
C0(Xi,MN ) //

τ∗

��

s∗

wwp p p p p p
0

0 //
⊕

i∈I∗
C0(Xi,MN ) //

∏

i∈I∗
C(βXi,MN ) //

∏
i∈I∗

C(βXi,MN )
⊕

i∈I∗
C0(Xi,MN )

// 0

with Busby maps τ∗. Denote the map B → A/
⊕

i∈I∗ C0(Xi,MN ) induced
by the projection prI∗ by ϕ∗. It is now easy to check that for ∗ = 1 the short
exact sequence in the middle row satisfies the assumptions of Lemma 4.1.10 and
hence admits a splitting s1 by Corollary 4.1.11. For ∗ = 0, we apply Lemma
4.1.12 to obtain a compact set K ⊂

⊔

i∈I0 Xi and a completely positive split
s0 which is multiplicative outside of an open set U ⊂ K ⊂

⊔

i∈I0 Xi. Setting
s = s0 ◦ϕ0⊕ s1 ◦ϕ1, we now get a split for the original sequence. In particular,
̺ ◦ s = τ holds due to the commutative diagram

0 // C0(X,MN ) // A //

ι0⊕ι1
��

B //

τ0⊕τ1
��

s

vvm m m m m m m m

τ

��

0

0 //
⊕

∗=0,1

⊕

i∈I∗
C0(Xi,MN ) //

⊕

∗=0,1

∏

i∈I∗
C(βXi,MN ) //

⊕

∗=0,1

∏
i∈I∗

C(βXi,MN )
⊕

i∈I∗
C0(Xi,MN )

// 0

0 //
⊕

i∈I
C0(Xi,MN ) //

∏

i∈I
C(βXi,MN ) ̺ //

∏
i∈I C(βXi,MN )

⊕
i∈I C0(Xi,MN)

// 0.

Summarizing the results of this section, we obtain the following.

Theorem 4.1.14. Let a short exact sequence of separable C∗-algebras

0 // C0(X,MN ) // A // B // 0 [τ ]

with Busby map τ be given. Assume that X satisfies the conditions

1. dimX ≤ 1,

2. the connected components (Xi)i∈I of X are clopen,

3. each χ(Xi) has finitely many connected components,
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4. almost all χ(Xi) are connected,

then the following holds: If the associated set-valued retract map
R : Prim(A)→ 2Prim(B) given as in 4.1.1 by

R(z) =

{

z if z ∈ Prim(B)

∂Xi = Xi\Xi if z ∈ Xi ⊆ X

is lower semicontinuous and has pointwise finite image, then there exists a
compact set K ⊂ X and a completely positive split s : B → A for the sequence
such that the composition

B
s // A //M(C0(X,MN )) = Cb(X,MN )

is multiplicative outside of an open set U ⊂ K.

Proof. Note that we can replace the given extension by any strongly unitarily
equivalent one (in sense of [Bla06, II.8.4.12]) without changing the retract map
R. Hence, by Proposition 4.1.9, we may assume that the image of τ is locally
constant on each χ(Xi). Now Proposition 4.1.13 provides a split s with the
desired properties.

4.1.3 Retract maps for semiprojective extensions

We now verify the regularity properties for the set-valued retract map
R : Prim(A) → 2Prim(B) associated to an extension 0 → C0(X,MN ) → A →
B → 0 in the case that both the ideal C0(X,MN ) and the extension A are
semiprojective C∗-algebras.

First we need the following definition which is an adaption of 2.1.2 and 2.1.3
to the setting of pointed spaces.

Definition 4.1.15. Let (X, x0) be a pointed one-dimensional Peano continuum
and r : X → core(X) the first point map onto the core of X as in 2.1.3 (where
we choose core(X) to be any point x 6= x0 if X is contractible). Denote the
unique arc from x0 to r(x0) by [x0, r(x0)], then we say that

core(X, x0) := core(X) ∪ [x0, r(x0)]

is the core of (X, x0). It is the smallest subcontinuum of X which contains both
core(X) and the point x0.

Now let X be a non-compact space with the property that its one-point com-
pactification αX = X ∪ {∞} is a one-dimensional ANR-space. We are inter-
ested in the structure of the space X at around infinitity (i.e. outside of large
compact sets) which is reflected in its corona space χ(X) = βX\X . At least
some information about χ(X) can be obtained by studying neighborhoods of
the point∞ in αX . The following lemma describes some special neighborhoods
which relate nicely to the finite graph core(αX,∞).
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Lemma 4.1.16. Let X be a connected, non-compact space such that its one-
point compactification αX = X ∪ {∞} is a one-dimensional ANR-space. Fix
a geodesic metric d on αX (which exists by [Bin49], [Moi49]), then for any
compact set C ⊂ αX\{∞} there exists a closed neighborhood V of ∞ with the
following properties:

(i) {x ∈ X : d(x,∞) ≤ ǫ} ⊆ V ⊆ X\C for some ǫ > 0.

(ii) V ∩core(αX,∞) is homeomorphic to the space of K many intervals [0, 1]
glued together at the 0-endpoints with K = order(∞, core(αX,∞)). The
gluing point corresponds to ∞ under this identification.

Let D(k) ⊆ V denote the k-th copy of [0, 1] under the identification described
above and let r be the first point map onto core(αX,∞). We can further ar-
range:

(iii) V =
⋃K
k=1 r

−1
(

D(k)
)

and r−1
(

D(k )
)

∩ r−1
(

D(k′)
)

= {∞} for k 6= k′.

(iv) The connected components of V \{∞} are given by V (k) :=
r−1

(

D(k)\{∞}
)

.

(v) Every path in V from x ∈ V (k) to x′ ∈ V (k′) with k 6= k′ contains ∞.

Proof. We first note that r−1({∞}) ∩X is open. Assume there is x ∈ X with
r(x) = ∞ and d(x,∞) = r > 0. Then given any y ∈ X with d(x, y) < r we
choose an isometric arc α : [0, d(x, y)] → αX from x to y. Now the arc from y
to ∞ given by first following α in reverse direction and then going along the
unique arc from x to ∞ must run through r(y) by 2.1.3. Since every point
on the second arc gets mapped to ∞ by r, we find either r(y) = ∞ or there
is 0 < t < d(x, y) such that α(t) = r(y) ∈ core(αX,∞). In the second case,
the arc α|[0,t] must run through r(x) = ∞ which, using the fact that α was
isometric, gives the contradiction d(x,∞) < t < d(x, y) < r. Since r−1({∞})
is also closed, connectedness of X implies in fact r−1({∞}) = {∞}.
By definition ofK (see section 2.1), the closed set {x ∈ core(αX,∞) : d(x,∞) ≤
ǫ} satisfies the description in (ii) for all sufficiently small ǫ > 0. We set

V = {x ∈ αX : d(r(x),∞) ≤ ǫ},

then V ∩core(αX,∞) = r(V ) = {x ∈ core(αX,∞) : d(x,∞) ≤ ǫ} so that condi-
tion (ii) is satisfied. For (i), we observe that d(x,∞) ≤ ǫ implies d(r(x),∞) ≤ ǫ
since d is geodesic and every arc from x to ∞ runs through r(x). Since
∞ /∈ r(C), we have min{d(r(x),∞) : x ∈ C} > 0 and therefore V ∩ C = ∅
for ǫ sufficiently small. Condition (iii) follows immediately from the definition
of V . The sets V (k) are connected and open by construction, so that (iv) holds.
(v) follows from (iv).

We now collect some information about the corona space χ(X) in the case
of connected X . These observations are mostly based on the work of Grove
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and Pedersen in [GP84] and the graph-like structure of one-dimensional ANR-
spaces.

Lemma 4.1.17. Let X be a connected, non-compact space such that its one-
point compactification αX is a one-dimensional ANR-space. Then the corona
space χ(X) has covering dimension at most 1 and its number of connected
components is given by K = order(∞, core(αX,∞)) <∞. In particular, if αX
is a one-dimensional AR-space, then χ(X) is connected.

Proof. Apply Lemma 4.1.16 to (αX,∞). It is straightforward to check that
the map

C(χ(X)) = Cb(X)/C0(X)→
K
⊕

k=1

Cb(V
(k))/C0(V

(k)) =

K
⊕

k=1

C(χ(V (k)))

is an isomorphism. Therefore we find χ(X) =
⊔K
k=1 χ(V

(k)) and it suffices to
check that each χ(V (k)) is connected. By Proposition 3.5 of [GP84], it is now
enough to show that each V (k) is connected at infinity. So let a compact set
C1 ⊂ V (k) be given and denote by r : V (k) ∪ {∞} → D(k) the first point map.
Using the identification [0, 1] ∼= D(k) where the point 0 corresponds to the point
∞, we find t > 0 such that r(C1) ⊂ [t, 1]. But C2 := r−1([t, 1]) is easily seen to
be compact while V (k)\C2 = r−1((0, t)) is path-connected by definition of r.
For the dimension statement we note that dim(χ(X)) ≤ dim(βX) = dim(X) ≤
1 by [Nag70, Theorem 9.5].

Remark 4.1.18. The assumption that X is connected in 4.1.17 is necessary.
If we drop it, the corona space χ(X) may no longer have finitely many con-
nected components, but the following weaker statement holds: If αX is a one-
dimensional ANR-space, so will be αXi for any connected component Xi of X.
However, it follows from 2.1.7 that all but finitely many components lead to
contractible spaces αXi, i.e. to one-dimensional AR-spaces. Since in this case
core(αXi,∞) is just an arc [x,∞] for some x ∈ Xi, we see from Lemma 4.1.17
that χ(Xi) is connected for almost every component Xi of X.

We will now see that, in the situation described in the beginning of this section,
the set-valued retract map R has pointwise finite image, i.e. |R(z)| <∞ for all
z ∈ Prim(A). The cardinality of these sets is in fact uniformly bounded and we
give an upper bound which only depends on N and the structure of the finite
graph core(αX,∞).

Proposition 4.1.19. Let A be a semiprojective C∗-algebra containing an ideal
of the form C0(X,MN ). If αX = X ∪ {∞} is a one-dimensional ANR-space,
then every connected component C of X has finite boundary ∂C = C\C in
Prim(A). More precisely, we find

|∂C| ≤ N · order(∞, (αC,∞)) <∞.
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Proof. Since X is locally connected, the connected components of X are clopen
and αC is again a one-dimensional ANR-space for every component C of X .
Hence we may assume that C = X . Fix a geodesic metric d on αX = X ∪{∞}
([Bin49], [Moi49]) and let V be a neighborhood of∞ as constructed in Lemma
4.1.16, satisfying {x ∈ αX : d(x,∞) ≤ ǫ} ⊆ V for some ǫ > 0. We further

choose sequences (x
(k)
n )n ⊆ D(k)\{∞} converging to ∞ and write x

(1)
∞ = · · · =

x
(K)
∞ = ∞. By compactness of the unit ball in MN and separability of A, we

may assume that the representation

π(k) : A→MN , a 7→ lim
n→∞

a(x(k)n )

exists for all 1 ≤ k ≤ K. Here, a(x) denotes the image of a ∈ A under the
extension of the point evaluation evx : C0(X,MN )→MN to A. For a sequence
(xn)n in X ⊆ Prim(A) we write Lim(xn) = {z ∈ Prim(A) : xn → z}. Our goal
is then to show that there exists a finite set S ⊂ Prim(A) such that Lim(xn) ⊂ S
for every sequence (xn)n ⊂ X with xn → ∞ in αX . We will show that each

S(k) := Lim(x
(k)
n ) consists of at most N elements and that S :=

⋃K
k=1 S

(k) has
the desired property described above. First observe that

S(k) =
{[

π
(k)
1

]

, . . . ,
[

π
(k)
r(k)

]}

holds, where π(k) ≃ π
(k)
1 ⊕· · ·⊕π

(k)
r(k) is the decomposition of π(k) into irreducible

summands. The ⊇-inclusion is immediate, for the other direction assume that

x
(k)
n → ker(̺) for some irreducible representation ̺ with ̺ 6≃ π

(k)
i for all i. Since

all x
(k)
n correspond to N -dimensional representations, we also have dim(̺) ≤ N .

Therefore all π
(k)
i and ̺ drop to irreducible representations of the maximal N -

subhomogeneous quotient A≤N of A (cf. section 2.2). Because Prim(A≤N ) is

a T1-space, the finite set {[π
(k)
1 ], . . . , [π

(k)
r(k)]} is closed and [̺] can be separated

from it. In terms of 2.2.4, this means that there exists a ∈ A such that ‖̺(a)‖ >

1 while ‖π
(k)
i (a)‖ ≤ 1 for all i. On the other hand, we find

‖̺(a)‖ ≤ lim inf
n→∞

∥

∥

∥
a(x(k)n )

∥

∥

∥
=
∥

∥

∥
π(k)(a)

∥

∥

∥
= max

i=1...r(k)

∥

∥

∥
π
(k)
i (a)

∥

∥

∥
≤ 1,

using 2.2.4 again. Hence [̺] = [π
(k)
i ] for some i and in particular

∣

∣S(k)
∣

∣ =
r(k) ≤ N for every k.

It now suffices to show that Lim(xn) ⊆ S(k) for sequences (xn) ⊂ X with
xn → ∞ such that r(xn) ∈ D(k) for some fixed k and all n. Let such a
sequence (xn)n for some fixed k be given and pick z ∈ Lim(xn). In order to
show that z ∈ S(k), we consider the compact spaces

Yn :=

{

(t, t)|0 ≤ t ≤
1

n

}

∪
⋃

m≥n

({

1

m

}

×

[

0,
1

m

])

⊂ R2.
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Note that Yn+1 ⊂ Yn and
⋂

n Yn = (0, 0). We will now ’glue’ C(Yn,MN ) to
A in the following way: As before, we may assume that xn → z in Prim(A)
and that π∞(a) = limn a(xn) exists for every a ∈ A. In particular, we find
z = [πi,∞] for some i where π∞ ≃ π1,∞ ⊕ · · · ⊕ πr∞,∞ is the decomposition
of π∞ into irreducible summands. Let c denote the C∗-algebra of convergent
MN -valued sequences, we can then form the pullback An := A ⊕c C(Yn,MN )
over the two ∗-homomorphisms

A −→ c
a 7→ (a(xn), a(xn+1), a(xn+2), . . . )

and
C(Yn,MN ) −→ c.

f 7→ f(( 1n , 0), f(
1

n+1 , 0), f(
1

n+2 , 0), . . . )

These pullbacks form an inductive system in the obvious way. Further note
that the connecting maps An → An+1 are all surjective. The limit lim

−→
An can

be identified with A via the isomorphism induced by the projections An =
A⊕c C(Yn,MN )→ A onto the left summand. Using semiprojectivity of A, we
can find a partial lift to some finite stage An of this inductive system:

An = A⊕c C(Yn,MN ) //

����

C(Yn,MN )

C0(X,MN )
⊆ // A

∼= //

77ooooooo lim−→An

Let ϕ : A → C(Yn,MN ) be the composition of this lift with the projection
An → C(Yn,MN ) to the right summand. The restriction of ϕ to the ideal
C0(X,MN ) then induces a continuous map ϕ∗ : Yn → αX with ϕ∗ ( 1

m , 0
)

= xm
for all m ≥ n and ϕ∗(0, 0) = ∞. Denote by h the strictly positive element of
C0(X,MN ) given by h(x) = d(x,∞) · 1MN

. After increasing n, we may assume
that ‖ϕ(h)‖ < ǫ holds. For m ≥ n, we consider the paths αm :

[

0, 2
m

]

→ Yn
given by

αm(t) =

{

(

1
m , t

)

if 0 ≤ t ≤ 1
m

(

2
m − t,

2
m − t

)

if 1
m ≤ t ≤

2
m .

Set t∞,m = min{t : ϕ(h)(αm(t)) = 0}, then 0 < t∞,m ≤ 2
m because

of ‖ϕ(h)(αm(0))‖ = ‖ϕ(h)( 1
m , 0)‖ = ‖h(xm)‖ = d(xm,∞) > 0 and

ϕ(h)(αm( 2
m)) = ϕ(h)(0, 0) = h(∞) = 0. By setting βm(t) = ϕ∗(αm(t)) we

obtain paths βm : [0, t∞,m]→ αX which have the properties

(1) βm(0) = xm,
(2) βm(t) =∞ if and only if t = t∞,m,
(3) im(βm) ⊆ V (k) for all m,

(4) x
(k)
l ∈ im(βm) for fixed m and all sufficiently large l.
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The first property is clear while the second one follows directly from the def-
inition of t∞,m. In order to verify properties (3) and (4) we have to in-
volve the structure of the neighborhood V and by that the special struc-
ture of αX as a one-dimensional ANR-space. From ‖ϕ(h)‖ < ǫ we obtain
im(βm) ⊆ im(αm) ⊆ {x ∈ αX : d(x,∞) ≤ ǫ} ⊆ V , it then follows from (1),
(2) and property (v) in Lemma 4.1.16 that im(βm) ⊆ V (k). For (4), observe
that im(βm) contains r(im(βm)) by part (ii) of Lemma 2.1.4, where r is the
first-point map αX → core(αX,∞). Under the identification D(k) ∼= [0, 1],
the connected set r(im(βm)) corresponds to a proper interval containing the

0-endpoint and hence it contains x
(k)
l for almost every l.

Now set πm = evβ(t∞,m) ◦ϕ : A→MN and let πm ≃ π1,m ⊕ · · · ⊕ πrm,m be the
decomposition into irreducible summands. We claim that the identity

S(k) = {[π1,m] , · · · , [πrm,m]}

holds for all m. Involving property (4) for the path βm, we find

‖πm(a)‖ = lim
tրt∞,m

∥

∥(evβ(t) ◦ϕ)(a)
∥

∥ = lim
l→∞

∥

∥

∥
a
(

x
(k)
l

)∥

∥

∥
=
∥

∥

∥
π(k)(a)

∥

∥

∥

for every fixed m and all a ∈ A. Now the same separation argument as in the
beginning of the proof shows that the finite-dimensional representations π(k)

and πm share the same irreducible summands for every m. Since βm(t∞,m)→
(0, 0) in Yn, we find πm = evβ(t∞,m) ◦ϕ → ev(0,0) ◦ϕ = π∞ pointwise. Hence

by the above identity, π∞ and π(k) also share the same irreducible summands.
In particular, we find z ∈ S(k) which finishes the proof.

Next, we show that in our situation the set-valued retract map R is also lower
semicontinuous in the sense of 4.1.2.

Proposition 4.1.20. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of separable C∗-algebras. If αX is a one-dimensional ANR-space and
A is semiprojective, then the associated retract map R as in 4.1.1 is lower
semicontinuous.

Proof. Let X =
⊔

i∈I Xi denote the decomposition of X into its connected
components. By separability of A it suffices to verify condition (iii) of Lemma
4.1.2 for a given sequence xn → z in Prim(A). The case z ∈ X is trivial since
X is locally connected and therefore has open connected components. The
critical case is when xn ∈ X for all n but z ∈ Prim(B). In this case, we write
xn ∈ Xin and we may assume that π∞(a) = limn a(xn) is well defined for all
a ∈ A. In particular, z corresponds to the kernel of an irreducible summand
πj,∞ of π∞ ≃ π1,∞ ⊕ · · · ⊕ πr,∞, as we have already seen in the beginning of
the proof of Proposition 4.1.19. Using exactly the same construction of ’gluing
the space Y to A along the sequence (xn)’ as in the proof of 4.1.19, one now
shows that

{[π1,∞], · · · , [πr,∞]} ⊆
⋃

n

∂Xin .
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Hence we find yn ∈ ∂Xin = R(xn) with yn → [πj,∞] = z showing that the
retract map R is in fact lower semicontinuous.

4.2 Existence of limit structures

Consider an extension of separable C∗-algebras

0→ C0(X,MN )→ A→ B → 0

where the one-point compactification of X is assumed to be a one-dimensional
ANR-space. We know from Theorem 2.1.5 that in this case αX comes as a
inverse limit of finite graphs over a surprisingly simple system of connecting
maps. Here we show that under the right assumptions on the set-valued re-
tract map R : Prim(A)→ 2Prim(B) associated to the sequence above, this limit
structure for αX is compatible with the extension of B by C0(X,MN ) in the
following sense: We prove the existence of a direct limit structure for A which
describes it as the C∗-algebra B with a sequence of non-commutative finite
graphs (1-NCCW’s) attached. The connecting maps of this direct system are
obtained from the limit structure for αX and hence can be described in full
detail.

Lemma 4.2.1. Let a short exact sequence of separable C∗-algebras
0 → C0(X,MN ) → A → B → 0 with Busby map τ be given. Assume
that αX is a one-dimensional ANR-space and that the associated set-valued
retract map R : Prim(A) → 2Prim(B) as in 4.1.1 is lower semicontinuous
and has pointwise finite image. Then A is isomorphic to the direct limit
B∞ = lim

−→

(

Bi, s
i+1
i

)

of an inductive system

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

66

ri−1
i

}}}}
· · · // B∞

ri∞

vvvv

where

• B0 is given as a pullback B ⊕F D with D a 1-NCCW and dim(F ) <∞.
Furthermore, if αX is contractible, we may even arrange B0

∼= B.

and

• for every i ∈ N there is a representation πi : Bi →MN such that Bi+1 is

defined as the pullback Bi+1

rii+1
����

// C([0, 1],MN)

ev0
����

Bi

si+1
i

CC

πi // MN .

The map si+1
i : Bi → Bi+1 is given by a 7→ (a, πi(a) ⊗ 1[0,1]) and hence

satisfies rii+1 ◦ s
i+1
i = idBi

.
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Proof. Let X =
⊔

j∈J Cj be the decomposition of X into its clopen connected
components. Denote by J1 ⊆ J the subset of those indices for which the corona
space χ(Cj) is connected and note that J0 := J\J1 is finite by Remark 4.1.18.
We have the canonical commutative diagram

0 // C0(X,MN ) // A //

ι0⊕ι1
��

B //

τ0⊕τ1
��

0

0 //
⊕

∗=0,1
j∈J∗

C0(Cj ,MN ) //
⊕

∗=0,1

∏

j∈J∗

C(βCj ,MN )q0⊕q1//
⊕

∗=0,1

∏
j∈J∗

C(βCj ,MN )
⊕

j∈J∗
C0(Cj,MN )

// 0

where τ0 ⊕ τ1 is the Busby map τ and the right square is a pullback diagram.
Since we can pass to any strongly unitarily equivalent extension (in the sense of
[Bla06, II.8.4.12]) without changing the retract map R, we can, by Proposition
4.1.9 and the finiteness condition on R, assume that for every j the image of

τj : B
τ
−→

∏

j′ C(βCj′ ,MN )
⊕

j′ C0(Cj′ ,MN )
→
C(βCj ,MN )

C0(Cj ,MN )
= C(χ(Cj),MN )

is locally constant on χ(Cj), and even constant if j ∈ J1. Furthermore, using
lower semicontinuity of R and arguing as in the proof of Corollary 4.1.11, we
may assume that

ι1(A) ⊆
∏

j∈J1

MN · 1βCj
+
⊕

j∈J1

C0(Cj ,MN ).

Next, we write αX = X ∪ {∞} as a limit of finite graphs. By Theorem
2.1.5 we can find a sequence of finite graphs Xi ⊂ Xi+1 ⊂ αX such that
X0 = core(αX,∞) (in the sense of 4.1.15) and each Xi+1 is obtained from
Xi by attaching a line segment [0, 1] at the 0-endpoint to a single point yi of
Xi. Furthermore we have lim

←−
Xi = αX along the sequence of first point maps

̺i∞ : αX → Xi. We need to fix some notation: Denote the inclusion of Xi

into Xi+1 by ιi+1
i and the retract from Xi+1 to Xi by collapsing the attached

interval to the attaching point yi by ̺
i
i+1. An analogous notation is used for

the inclusion Xi ⊆ αX :

Xi
ιi+1
i

// Xi+1

̺ii+1

yyyy

ι∞i+1

// αX

̺i+1
∞

yyyy

Now for every pair of indices i, j we have Xi ∩ Cj sitting inside Cj . Note that
Xi+1\Xi ∩ Cj(i) 6= ∅ for a unique j(i) ∈ J since ∞ ∈ X0. We define suitable
compactifications αj(Xi ∩ Cj) of Xi ∩ Cj as follows: if X0 ∩ Cj = ∅, we let
αj(Xi ∩ Cj) = α(Xi ∩ Cj) be the usual one-point compactification for any
i ∈ N. In the case X0 ∩ Cj 6= ∅, which will occur only finitely many times,
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we have an inclusion Cb(Xi ∩ Cj) ⊆ Cb(Cj) induced by the surjective retract
̺i∞|Cj

: Cj → Xi ∩ Cj and we define αj(Xi ∩Cj) via

C(αj(Xi ∩Cj)) =







f ∈ Cb(Xi ∩ Cj) ⊆ Cb(Cj) = C(βCj) :
f is locally
constant
on χ(Cj)







.

Since the corona space χ(Cj) has only finitely many connected components by
Lemma 4.1.17, αj(Xi ∩ Cj) will be a finite-point compactification of Xi ∩ Cj
(meaning that αj(Xi∩Cj)\(Xi∩Cj) is a finite set). In particular, αj(Xi∩Cj)
is a finite graph for any pair of indices i and j. We are now ready to iteratively
define the C∗-algebras Bi as the pullbacks over

Bi //

��

B

τ
��

∏

j C(αj(Xi ∩Cj),MN )
q //

∏
j C(βCj,MN )

⊕
j C0(Cj ,MN )

with respect to the inclusions (̺i∞|Cj
)∗ ⊗ idMN

: C(αj(Xi ∩ Cj),MN ) ⊆

C(βCj ,MN ). Let us first simplify the description ofBi. For every fixed i, the set
Xi∩Cj is empty for almost every j ∈ J so that C(αj(Xi∩Cj),MN ) = MN ·1βCj

for almost every j. Given ((fj)j , b) ∈ Bi, this implies fj = τj(b)·1βCj
for almost

every j. Hence Bi is isomorphic to the pullback

Bi //

��

B

⊕
j∈J(i)

τj

��
⊕

j∈J(i)
C(αj(Xi ∩Cj),MN ) q //

⊕

j∈J(i)

C(βCj,MN )
C0(Cj,MN )

for the finite set J(i) = {j ∈ J : Xi ∩ Cj 6= ∅} ⊆ J . Since every α(Xi ∩ Cj)
is a finite graph, the C∗-algebra on the lower left side is a 1-NCCW. One also
checks that the pullbacks are taken over finite-dimensional C∗-algebras because
(⊕j∈J(i)τj)(B) consists of locally constant functions on the space

⊔

j∈J(i) χ(Cj)
which has only finitely many connected components by Lemma 4.1.17.
Next, we specify the inductive structure, i.e. the connecting maps si+1

i : Bi →
Bi+1 and retracts rii+1 : Bi+1 → Bi. By definition, we find Bi ⊆ Bi+1 ⊆ A
with the inclusions coming from (̺ii+1)

∗ ⊗ idMN
resp. by (̺i+1

∞ )∗ ⊗ idMN
.

We denote them by si+1
i resp. by s∞i . Since

⋃

i C(αj(Xi ∩ Cj),MN ) ⊇
⋃

i C0(Xi ∩ Cj ,MN ) = C0(X ∩ Cj ,MN ) for every j ∈ J , we find C0(X,MN ) ⊆
⋃

iBi. One further checks that
⊕

j∈J0
C(αj(X0 ∩ Cj),MN ) surjects via q

onto the locally constant functions on
⊔

j∈J0
χ(Cj). Together with τ1(B) ⊆

q1(
∏

j∈J1
MN · 1βCj

) ⊆ q1(
∏

j∈J1
C(αj(X0 ∩ Cj),MN )) it follows that

⋃

iBi is

the pullback over τ and q, and hence
⋃

iBi = A.
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It remains to verify the description of the connecting maps si+1
i . We have

Xi ∩ Cj = Xi+1 ∩ Cj if j 6= j(i) and αj(Xi ∩ Cj(i)) ⊆ αj(Xi+1 ∩ Cj(i)) ∼=
αj(Xi ∩ Cj(i)) ∪{yi}={0} [0, 1]. This means there is a pullback diagram

C(αj(Xi+1 ∩ Cj(i)),MN ) //

����

C([0, 1],MN )

ev0

����
C(αj(Xi ∩ Cj(i)),MN )

evyi //

(̺ii+1)
∗⊗idMN

DD

MN

where (̺ii+1)
∗ ⊗ idMN

corresponds to f 7→ (f, f(yi) ⊗ 1[0,1]) in the pullback
picture and the downward arrow on the left side comes from the inclusion
αj(Xi ∩ Cj(i)) ⊆ αj(Xi+1 ∩ Cj(i)). This map induces a surjection Bi+1 → Bi
which will be denoted by rii+1 and gives the claimed pullback diagram.

Finally, if αX is an AR-space, the core X0 = core(αX,∞) = [x0,∞] is nothing
but an arc from some point x0 ∈ X to∞. In this case the finite set J(0) consists
of a single element j(0), namely the index corresponding to the component
containing x0. By definition, B0 comes as a pullback

B0
//

��

B

τj(0)

��
C([x0,∞],MN )

ev∞ // MN · 1χ(Cj(0))

and hence an index shift allows us to start with B0
∼= B.

The procedure of forming extensions by C∗-algebras of the form C0(X,MN )
can of course be iterated. The next proposition shows that, if all the attached
spacesX are one-dimensional ANRs up to compactification, the limit structures
which we get from Lemma 4.2.1 for each step can be combined into a single
one.

Proposition 4.2.2. Let a short exact sequence of separable C∗-algebras 0 →
C0(X,MN ) → A → B → 0 be given. Assume that αX is a one-dimensional
ANR-space and that the associated set-valued retract map R : Prim(A) →
2Prim(B) as in 4.1.1 is lower semicontinuous and has pointwise finite image.
Further assume that there exists a direct limit structure for B

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

77

ri−1
i

}}}}
· · · // B

ri∞

vvvv

such that all Bi are 1-NCCWs and at each stage there is a representation
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pi : Bi →Mni
such that Bi+1 is defined as the pullback

Bi+1

rii+1
����

ti+1 // C([0, 1],Mni
)

ev0

����
Bi

si+1
i

CC

pi // Mni

and si+1
i : Bi → Bi+1 is given by a 7→ (a, pi(a)⊗ 1[0,1]).

Then A is isomorphic to the limit A∞ of an inductive system

A0
σ1
0

// A1
σ2
1

//

̺01
{{{{

A2
//

̺12
{{{{

· · ·
σi
i−1

//
{{{{

Ai //

σ∞
i

66

̺i−1
i

}}}}
· · · // A∞

̺i∞

vvvv

where all Ai are 1-NCCWs and at each stage there is a representation πi : Ai →
Mmi

such that Ai+1 is defined as the pullback

Ai+1

̺ii+1
����

// C([0, 1],Mmi
)

ev0

����
Ai

σi+1
i

CC

πi // Mmi

and σi+1
i : Ai → Ai+1 is given by a 7→ (a, πi(a)⊗ 1[0,1]). Furthermore, if αX is

an AR-space we may even arrange A0
∼= B0.

Proof. By Lemma 4.2.1, we know that A can be written as an inductive limit

A0
s10

// A1
s21

//

r01yyyy
A2

//

r12yyyy
· · ·

sii−1

//
zzzz

Ai
//

s∞i

77

ri−1
i

}}}}
· · · // A

ri∞

wwww

with a pullback structure

Ai+1

rii+1
����

// C([0, 1],MN )

ev0

����
Ai

si+1
i

DD

pi // MN

at every stage and si+1
i : Ai → Ai+1 given by a 7→ (a, pi(a) ⊗ 1[0,1]). The

starting algebra A0 comes as a pullback

A0
//

��

D

ϕ

��
B

ψ // F
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with D a 1-NCCW and dim(F ) < ∞. In the case of αX being an AR-space,
we may choose A0 = B, i.e. D = 0. For j ∈ N we now define A0,j to be the
pullback

A0,j //

̺0,j

��

D

ϕ

��
Bj

ψ◦s∞j // F.

The maps sj+1
j ,s∞j homomorphisms σ0,j+1

0,j : A0,j → A0,j+1 and σ0,∞
0,j : A0,j →

A0, leading to an inductive limit structure with lim
−→j

(A0,j , σ
0,j+1
0,j ) = A0. We

proceed iteratively, defining Ai+1,j to be the pullback

Ai+1,j //

̺i,ji+1,j

��

C([0, 1],MN)

ev0

��
Ai,j

pi◦σi,∞
i,j

//

σi+1,j
i,j

CC

MN

with σi+1,j
i,j : Ai,j → Ai+1,j given by a 7→ (a, (pi ◦ σ

i,∞
i,j )(a) ⊗ 1[0,1]).

It is then checked that σi,j+1
i,j and σi,∞i,j induce compatible homomor-

phisms σi+1,j+1
i+1,j : Ai+1,j → Ai+1,j+1 and σi+1,∞

i+1,j : Ai+1,j → Ai+1 with

lim
−→j

(Ai+1,j , σ
i+1,j+1
i+1,j ) = Ai+1. Observing that for every i and j

Ai,j+1

tj+1◦̺0,j+1◦̺0,j+1
i,j+1 //

̺i,ji,j+1

��

C([0, 1],Mnj
)

ev0

��
Ai,j

pj◦̺0,j◦̺0,ji,j

//

σi,j+1
i,j

DD

Mnj

is indeed a pullback diagram, we get the desired limit structure for A by fol-
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lowing the diagonal in the commutative diagram

A00
//

��

A01
//

��

A02
//

��

A03
//

��

· · · // A0

��
A10

//

��

A11
//

��

A12
//

��

A13
//

��

· · · // A1

��
A20

//

��

A21
//

��

A22
//

��

A23
//

��

· · · // A2

��
A30

//

��

A31
//

��

A32
//

��

A33
//

��

· · · // A3

��
...

...
...

...
. . .

...

as indicated. Note that, since all connecting maps are injective, the limit over
the diagonal equals lim

−→
An = A.

4.3 Keeping track of semiprojectivity

We now reap the fruit of our labor in the previous sections and work out a ’2
out of 3’-type statement describing the behavior of semiprojectivity with re-
spect to extensions by homogeneous C∗-algebras. While for general extensions
the behavior of semiprojectivity is either not at all understood or known to be
rather bad, Theorem 4.3.2 gives a complete and satisfying answer in the case of
homogeneous ideals. It is the very first result of this type and allows to under-
stand semiprojectivity for C∗-algebras which are built up from homogeneous
pieces, see chapter 5.1.

Proposition 4.3.1. Let 0 → C0(X,MN ) → A → B → 0 be a short exact
sequence of C∗-algebras. If both A and B are (semi)projective, then the one-
point compactification αX is a one-dimensional A(N)R-space.

Proof. The projective case follows directly from Corollary 3.1.3 and Theorem
2.3.7 while the semiprojective case requires some more work. By Lemma 2.3.8
we know that αX is a Peano space of dimension at most 1. The proof of 2.3.8
further shows that there are no small circles accumulating in X . However,
in order to show that αX is an ANR-space we have to exclude the possi-
bility of smaller and smaller circles accumulating at ∞ ∈ αX , see Theorem
2.1.7. Assume that we find a sequence of circles with diameters converging
to 0 (with respect to some fixed geodesic metric ([Bin49], [Moi49])) at around
∞ ∈ αX . After passing to a subsequence, there are two possible situations:
either each circle contains the point ∞ or none of them does. Both cases are
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treated exactly the same, for the sake of brevity we only consider the situa-
tion where ∞ is contained in all circles. In this case have a ∗-homomorphism
ϕ : C0(X,MN ) →

⊕∞
n=1 C0((0, 1)n,MN ) where (0, 1)n ∼= (0, 1) is the part of

the n-th circle contained in X . Note that each coordinate projection gives
a surjection ϕn : C0(X,MN ) → C0((0, 1),MN ) while ϕ itself is not necessarily
surjective (because the circles might intersect in X). We make use of Brown’s
mapping telescope associated to

⊕∞
n=1 C0((0, 1)n,MN ), i.e.

Tk =

{

f ∈ C([k,∞],

∞
⊕

n=1

C0((0, 1)n,MN )) : t ≤ l⇒ f(t) ∈
l
⊕

n=1

C0((0, 1)n,MN )

}

with the obvious (surjective) restrictions as connecting maps giving lim
−→

Tk =
⊕∞

n=1 C0((0, 1)n,MN ). Using Lemma 3.1.4, we find a commutative diagram

0 // lim
−→

Tk // lim
−→
M(Tk) // lim

−→
Q(Tk) // 0

0 // C0(X,MN ) //

ϕ

OO

A //

ϕ

OO

B //

ϕ

OO

0

.

It now follows from the semiprojectivity assumptions and Lemma 3.1.1 that ϕ
lifts to Tk for some k, which is equivalent to a solution of the original lifting
problem

k
⊕

n=1
C0((0, 1)n,MN )

⊆
��

C0(X,MN )
ϕ //

66

∞
⊕

n=1
C0((0, 1)n,MN )

up to homotopy. This, however, implies

im(K1(ϕ)) ⊆ K1

(

k
⊕

n=1
C0((0, 1)n,MN )

)

=
k
∑

n=1
Z

⊂
∞
∑

n=1
Z = K1

( ∞
⊕

n=1
C0((0, 1)n,MN )

)

which gives a contradiction as follows. Because ϕk+1 is surjective and
dim(αX) ≤ 1, we can extend the canonical unitary function from α((0, 1)n) to
a unitary u on all of αX by [HW48, Theorem VI.4]. This unitary then satisfies
u − 1 ∈ C0(X) and K1(ϕ)([u ⊗ 1MN

]) = N ∈ Z = K1(C0((0, 1)k+1,MN )). This
shows that there are no small circles at around ∞ in αX and hence that αX
is a one-dimensional ANR-space by Theorem 2.1.7.
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Theorem 4.3.2. Let a short exact sequence of C∗-algebras 0 → I → A →
B → 0 be given and assume that the ideal I is a N -homogeneous C∗-algebra
with Prim(I) = X. Denote by (Xi)i∈I the connected components of X and
consider the following statements:

(I) I is (semi)projective.

(II) A is (semi)projective.

(III) B is (semi)projective and the set-valued retract map R : Prim(A) →
2Prim(B) given as in 4.1.1 by

R(z) =

{

z if z ∈ Prim(B),

∂Xi = Xi\Xi if z ∈ Xi ⊆ X = Prim(I)

is lower semicontinuous and has pointwise finite image.

If any two of these statements are true, then the third one also holds.

Proof. (I)+(II)⇒(III): By Theorem 2.3.11, we know that the sequence is iso-
morphic to an extension

0 // C0(X,MN ) // A
π // B // 0

with the one-point compactification of X a one-dimensional A(N)R-space. The
set-valued retract map R is then lower semicontinuous by Proposition 4.1.20
and has pointwise finite image by Proposition 4.1.19. But now Theorem 4.1.14
applies and shows that there is a completely positive split s for the quotient
map π such that the composition B

s
−→ A

ι
−→ Cb(X,MN ) is multiplicative outside

of an open set U ⊂ K ⊂ X where K is compact.

Let a lifting problem ϕ : B
∼
−→ D/J = lim

−→
D/Jn be given. Since A is

semiprojective, we can solve the resulting lifting problem for A, meaning
we find ψ : A → D/Jn for some n with πn ◦ ψ = ϕ ◦ π. Restricting to
herD/Jn

(ψ(C0(X,MN ))) + ψ(A) ⊆ D/Jn, we may assume that ψ|C0(X,MN ) is
proper as a ∗-homomorphism to J/Jn and hence induces a mapM(ψ) between
multiplier algebras. Since the restriction of πn ◦ ψ to the ideal C0(X,MN )
vanishes, we may use compactness of K to assume that ψ maps C0(U,MN )
to 0 (after increasing n if necessary). This further implies thatM(ψ) factors
through r : Cb(X,MN ) → Cb(X\U,MN). We then find s′ := r ◦ ι ◦ s to be
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multiplicative and hence a ∗-homomorphism:

A

ι

$$IIIIIIIIII

π

��

ψ // D/Jn
ιn

%%KKKKKKKKK

πn

����

Cb(X,MN )

r

$$ $$JJJJJJJJJ

M(ψ) //M(J/Jn)

̺n

����

Cb(X\U,MN)

M(ψ)′

44hhhhhhhhh

B
ϕ //

s

DD

s′
44hhhhhhhhhhh D/J

τn // Q(J/Jn)

The inclusion of J/Jn as an ideal in D/Jn gives canonical ∗-homomorphisms ιn
and τn as in the diagram above. One now checks that ̺n ◦ (M(ψ)′ ◦s′) = τn ◦ϕ
holds. Combining this with the fact that the trapezoid on the right is a pullback
diagram, we see that the pair (ϕ, (M(ψ)′ ◦ s′)) defines a lift B → D/Jn for ϕ.
This shows that the quotient B is semiprojective.
For the projective version of the statement, one uses Corollary 4.1.11 to see
that the sequence admits a multiplicative split s : B → A rather than just a
completely positive one.

(I)+(III)⇒(II): We know that I ∼= C0(X,MN ) with αX a one-dimensional
A(N)R-space by Theorem 2.3.11. Now Lemma 4.2.1 applies and we obtain a
limit structure for A

B0
s10

// B1
s21

//

r01
{{{{

B2
//

r12
{{{{

· · ·
sii−1

//
{{{{

Bi //

s∞i

22

ri−1
i

}}}}
· · · // lim

−→

(

Bi, s
i+1
i

)

∼= A

ri∞

uuuu

with B0 given as a pullback of B and a 1-NCCW D over a finite-dimensional
C∗-algebra. In particular, B0 is semiprojective by [End14, Corollary 3.4]. In
the projective case, we can take B0 = B to be projective. In both cases, the
connecting maps in the system above arise from pullback diagrams

Bi+1

rii+1
����

// C([0, 1],MN)

ev0

����
Bi

si+1
i

CC

πi // MN

with si+1
i (a) = (a, πi(a) ⊗ 1[0,1]). Since these maps are weakly conditionally

projective by Proposition 3.2.4, we obtain (semi)projectivity of A from Lemma
3.2.3.
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(II)+(III)⇒(I): This implication holds under even weaker hypothesis. More
precisely, we show that (semi)projectivity of both A and B implies I to be
(semi)projective. The assumption on the retract map R is not needed here.

First we apply Lemma 2.3.8 to find the one-point compactification of Prim(I) to
be a Peano space of dimension at most 1, and hence I is trivially homogeneous
by Lemma 2.3.10. Now Proposition 4.3.1 shows that αX is in fact an ANR-
space which, together with Theorem 2.3.11, means that I is semiprojective.
The projective version is Corollary 3.1.3.

Remark 4.3.3. Theorem 4.3.2 shows that regularity properties of the retract
map R : Prim(A) → 2Prim(B) are crucial for semiprojectivity to behave nicely
with respect to extensions by homogeneous C∗-algebras. This can already be
observed and illustrated in the commutative case. Given an extension of com-
mutative C∗-algebras

0→ C0(X)→ C0(Y )→ C0(Y \X)→ 0,

the following holds: If both the ideal C0(X) and the quotient C0(Y \X) are
(semi)projective, then the extension C0(Y ) is (semi)projective if and only if
the retract map R : Y → 2Y \X is lower semicontinuous and has pointwise fi-
nite image. The following examples show that both properties for R are not
automatic:

(a) An examples with R not having pointwise finite image is contained as exam-
ple 5.5 in [LP98], we include it here for completeness. Let X = {(x, sinx−1) :
0 < x ≤ 1} ⊂ R2 and Y = X ∪{(0, y) : − 1 ≤ y < 1}, then we get an extension
isomorphic to

0→ C0(0, 1]→ C0(Y )→ C0(0, 1]→ 0.

Here both the ideal and the quotient are projective, but the extension C0(Y ) is
not (because αY is not locally connected and hence not an AR-space). In this
example, we find R(x) = {(0, y) : − 1 ≤ y < 1} to be infinite for all x ∈ X.

(b) The following is an example where R fails to be lower semicontinuous.
Consider Y = {(x, 0): 0 ≤ x < 1}∪

⋃

n Cn ⊂ R2 with Cn = {(t, (1− t)/n) : 0 ≤
t < 1} the straight line from (0, 1/n) to (1, 0) with the endpoint (1, 0) removed.
With X =

⋃

n Cn ⊂ Y we obtain an extension isomorphic to

0→
⊕

n

C0(0, 1]→ C0(Y )→ C0(0, 1]→ 0.

Here both the ideal and the quotient are projective while the extension C0(Y )
is not (again because αY is not locally connected). We also find (0, 1/n) →
(0, 0) in Y but R((0, 1/n)) = ∅ for all n, which shows that R is not lower
semicontinuous. The descriptive reason for C0(Y ) not being projective in this
case is that the length of the attached intervals Cn does not tend to 0 as n goes
to infinity.
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5 The structure of semiprojective subhomogeneous C∗-algebras

5.1 The main result

With Theorem 4.3.2 at hand, we are now able to keep track of semiprojec-
tivity when decomposing a subhomogeneous C∗-algebra into its homogeneous
subquotients. On the other hand, Theorem 4.3.2 also tells us in which man-
ner homogeneous, semiprojective C∗-algebras may be combined in order to give
subhomogeneous C∗-algebras which are again semiprojective. This leads to the
main result of this chapter, Theorem 5.1.2, which gives two characterizations
of projectivity and semiprojectivity for subhomogeneous C∗-algebras.

Lemma 5.1.1. Let A be a N -subhomogeneous C∗-algebra. If A is semiprojec-
tive, then the maximal N -homogeneous ideal of A is also semiprojective.

Proof. By Lemma 2.3.8 we know that the one-point compactification of
X = PrimN (A) is a one-dimensional Peano space. Since any locally trivial
MN -bundle over X is globally trivial by Lemma 2.3.10, we are concerned with
an extension of the form

0 // C0(X,MN ) // A
π // A≤N−1 // 0

where A≤N−1 denotes the maximal (N -1)-subhomogeneous quotient of A.
Since A is semiprojective, A≤N−1 will be semiprojective with respect to
(N -1)-subhomogeneous C∗-algebras. In order to show that C0(X,MN ) is
semiprojective, it remains to show that αX = X ∪ {∞} does not contain
small circles at around ∞, cf. Theorem 2.1.7. The proof for this is similar to
the one of 4.3.1. We use notations from 2.3.8 and follow the proof there to
arrive at a commutative diagram

0 // lim
−→

Tk // lim
−→
M(Tk) // lim

−→
Q(Tk) // 0

0 // C0(X,MN ) //

ϕ

OO

A
π //

ϕ

OO

A≤N−1 //

ϕ

OO

0

.

We may not solve the lifting problem for A≤N−1 directly since the algebras
Q(Tk) are not (N -1)-subhomogeneous. Instead we will replace the Q(Tk) by
suitable (N -1)-subhomogeneous subalgebras which will then lead to a solvable
lifting problem for A≤N−1. Let ιn denote the n-th coordinate of the map
A→ Cb(X,MN )→

∏

n Cb((0, 1)n,MN ). We then have a lift of ϕ given by

A → C([k,∞],
∏

n Cb((0, 1),MN )) → M(Tk)
a 7→ 1[k,∞] ⊗ (ιn(a))

∞
n=1

where the map on the right is induced by the inclusion of Tk as an ideal in
C([k,∞],

∏

n Cb((0, 1),MN )). Consider in there the central element f = (fn)
∞
n=1
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with fn the scalar function that equals 0 on [k, n], 1 on [n + 1,∞] and which
is linear in between. Then

ψ : A → C([k,∞],
∏

n Cb((0, 1),MN )) → M(Tk)
a 7→ (fn ⊗ ιn(a))∞n=1

is a completely positive lift of ϕ which sends C0(X,MN ) to Tk. Hence ψ in-
duces a completely positive lift ψ′ : A≤N−1 → Q(Tk) of ϕ. We claim that
C∗(ψ′(A≤N−1)) is in fact (N -1)-subhomogeneous. To see this, we use the al-
gebraic characterization of subhomogenity as described in [Bla06, IV.1.4.6].
It suffices to check that γ(C∗(ψ′(A≤N−1))) satisfies the polynomial relations
pr(N−1) for every irreducible representation γ of Q(Tk). By definition of ψ,
we find γ ◦ ψ′(π(a)) = t · γ′(ι(a)) for some representation γ′ of ι(A), some
t ∈ [0, 1] and every a ∈ A. Moreover, since ψ′ maps C0(X,MN ) to 0, we
obtain γ ◦ ψ′(π(a)) = t · γ′′(π(a)) for some representation γ′′ of A≤N−1. Us-
ing (N -1)-subhomogeneity of A≤N−1, it now follows easily that the elements
of γ(C∗(ψ′(A≤N−1))) satisfy the polynomial relations pr(N−1) from [Bla06,
IV.1.4.6]. Knowing that the image of ϕ has a (N -1)-subhomogenous preimage
in Q(Tk), we may now solve the lifting problem for A≤N−1. It then follows
from Lemma 3.1.1 (and its proof) that ϕ lifts to Tk for some k. The remainder
of the proof is exactly the same as the one of Proposition 4.3.1.

We now present two characterizations of projectivity and semiprojectivity for
subhomogeneous C∗-algebras. The first one describes semiprojectivity of these
algebras in terms of their primitive ideal spaces. The second description char-
acterizes them as those C∗-algebras which arise from 1-NCCWs by adding a
sequence of non-commutative edges (of bounded dimension), cf. section 3.2.2.

Theorem 5.1.2. Let A be a N -subhomogeneous C∗-algebra, then the following
are equivalent:

(1) A is semiprojective (resp. projective).

(2) For every n = 1, ..., N the following holds:

• The one-point compactification of Primn(A) is an ANR-space (resp.
an AR-space) of dimension at most 1.

• If (Xi)i∈I denotes the family of connected components of Primn(A),
then the set-valued retract map

Rn : Prim≤n(A)→ 2Prim≤n−1(A)

given by

z 7→

{

z if z ∈ Prim≤n−1(A)

∂Xi if z ∈ Xi ⊂ Primn(A)

is lower semicontinuous and has pointwise finite image.
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(3) A is isomorphic to the direct limit lim
−→k

(Ak, s
k+1
k ) of a sequence of

1-NCCWs

· · · // Ak
sk+1
k

//
}}}}

Ak+1
//

rkk+1

yyyy
· · ·

yyyy

(with A0 = 0) such that for each stage there is a pullback diagram

Ak+1
//

rkk+1
����

C([0, 1],Mn)

ev0

��
Ak

πk //

sk+1
k

CC

Mn

with n ≤ N and sk+1
k given by a 7→ (a, πk(a)⊗ 1[0,1]).

Proof. (1) ⇒ (2): We prove the implication by induction over N . The base
case N = 1 is given by Theorem 2.3.7. Now given a N -subhomogeneous,
(semi)projective C∗-algebra A, we know by Lemma 5.1.1 that the maxi-
mal N -homogeneous ideal AN of A is (semi)projective as well. This forces
αPrimN (A) to be a one-dimensional A(N)R-space by Theorem 2.3.11. Apply-
ing Theorem 4.3.2 to the sequence

0→ AN → A→ A≤N−1 → 0

now shows that the retract map RN : PrimN (A) → 2Prim≤N−1(A) is lower
semicontinuous, has pointwise finite image and that the maximal (N -1)-
subhomogeneous quotient A≤N−1 is (semi)projective. The remaining state-
ments follow from the induction hypothesis applied to A≤N−1.
(2) ⇒ (3): By Lemma 2.3.10, we know that the maximal N -homogeneous
ideal AN of A is of the form C0(PrimN (A),MN ). Using induction over N , the
statement then follows from Proposition 4.2.2 applied to the sequence

0→ C0(PrimN (A),MN )→ A→ A≤N−1 → 0.

The base case N = 1 is given by Theorem 2.1.5.
(3)⇒ (1): Note that the connecting maps are weakly conditionally projective
by Proposition 3.2.4, then apply Lemma 3.2.3.

Remark 5.1.3. The most prominent examples of subhomogeneous, semipro-
jective C∗-algebras are the one-dimensional non-commutative CW-complexes
(1-NCCWs, see Example 2.2.3). The structure theorem 5.1.2 shows that these
indeed play a special role in the class of all subhomogeneous, semiprojective
C∗-algebras. By part (2) of 5.1.2, they are precisely those subhomogeneous,
semiprojective C∗-algebras for which the spaces αPrimn are all finite graphs
rather than general one-dimensional ANR-spaces. Hence 1-NCCWs should
be thought of as the elements of ’finite type’ in the class of subhomogeneous,
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semiprojective C∗-algebras. Moreover, part (3) of 5.1.2 shows that every sub-
homogeneous, semiprojective C∗-algebra can be constructed from 1-NCCWs in
a very controlled manner. Therefore these algebras share many properties with
1-NCCWs, as we will see in section 5.2.1 in more detail.

5.2 Applications

Now we discuss some consequences of Theorem 5.1.2. First we collect some
properties of semiprojective, subhomogeneous C∗-algebras which follow from
the descriptions in 5.1.2. This includes information about their dimension and
K-theory as well as details about their relation to 1-NCCWs and some further
closure properties.
At least in principle one can use the structure theorem 5.1.2 to test any given
subhomogeneous C∗-algebra A for (semi)projectivity. Since this would require
a complete computation of the primitive ideal space of A, it is not recommended
though. Instead one might use 5.1.2 as a tool to disprove semiprojectivity for a
candidate A. In fact, showing directly that a C∗-algebraA is not semiprojective
can be surprisingly difficult. One might therefore take one of the conditions
from 5.1.2 which are easier to verify and test A for those instead. We illustrate
this strategy in section 5.2.2 by proving the quantum permutation algebras to
be not semiprojective. This corrects a claim in [Bla04] on semiprojectivity of
universal C∗-algebras generated by finitely many projections with order and
orthogonality relations.

5.2.1 Further structural properties

By part (3) of Theorem 5.1.2, we know that any semiprojective, subhomoge-
neous C∗-algebra comes as a direct limit of 1-NCCWs. Since the connecting
maps are explicitly given and of a very special nature, it is possible to show
that these limits are approximated by 1-NCCWs in a very strong sense. The
following corollary makes this approximation precise.

Corollary 5.2.1 (Approximation by 1-NCCWs). Let A be a subhomogeneous
C∗-algebra. If A is semiprojective, then for every finite set G ⊂ A and every
ǫ > 0 there exist a 1-NCCW B ⊆ A and a ∗-homomorphism r : A → B such
that G ⊂ǫ B and r is a strong deformation retract for B, meaning that there
exists a homotopy Ht from H0 = idA to H1 = r with Ht|B = idB for all t.
In particular, A is homotopy equivalent to a one-dimensional non-commutative
CW-complex.

Proof. Use part (3) of Theorem 5.1.2 to write A = lim
−→

An and find a suitable
1-NCCW B = An0 which almost contains the given finite set G. It is straight-
forward to check that the strong deformation retracts rn0

n : An → An0 give rise
to a strong deformation retract r : lim

−→
An → An0 .

In particular, 1-NCCWs and semiprojective, subhomogeneous C∗-algebras
share the same homotopy invariant properties. For example, we obtain the
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following restrictions on the K-theory of these algebras:

Corollary 5.2.2. Let A be a subhomogeneous C∗-algebra. If A is semipro-
jective, then its K-theory is finitely generated and K1(A) is torsion free.

Another typical phenomenon of (nuclear) semiprojective C∗-algebras is that
they appear to be one-dimensional in some sense. In the context of subho-
mogeneous C∗-algebras, we can now make this precise using the notion of
topological dimension which, for subhomogeneous A, is given by topdim(A) =
maxn dim(αPrimn(A)).

Corollary 5.2.3. Let A be a subhomogeneous C∗-algebra. If A is semipro-
jective, then A has stable rank 1 and topdim(A) ≤ 1.

Proof. The statement on the stable rank of A follows from Corollary 5.2.1,
while the topological dimension can be estimated using part (2) of Theorem
5.1.2.

Our structure theorem can also be used to study permanence properties of
semiprojectivity when restricted to the class of subhomogeneous C∗-algebras.
In fact, these turn out to be way better then in the general situation. This can
be illustrated by the following longstanding question by Blackadar and Loring:
Given a short exact sequence of C∗-algebras

0 // I // A // F // 0

with finite-dimensional F , does the following hold?

I semiprojective⇔ A semiprojective

While we showed the ’⇐’-implication to hold in general in [End14], S. Eilers
and T. Katsura proved the ’⇒’-implication to be wrong ([EK]), even in the case
of split extensions by C. We refer the reader to [Sør12] for counterexamples
which involve infinite C∗-algebras. However, when one restricts to the class of
subhomogeneous C∗-algebras, this implication holds:

Corollary 5.2.4. Let a short exact sequence of C∗-algebras

0 // I // A
π // F // 0

with finite-dimensional F be given. If I is subhomogeneous and semiprojective,
then A is also semiprojective.

Proof. We verify condition (2) in Theorem 5.1.2 for A. By assumption, each
Primk(I) is a one-dimensional ANR-space after compactification and the same
holds for any space obtained from Primk(I) by adding finitely many points
([ST12, Theorem 6.1]). Hence the one-point compactifications of Primk(A)
are 1-dimensional ANRs for all k. If we assume F = Mn, then the set-valued
retract maps Rk are unchanged for k < n. For k = n, regularity of Rk follows
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from regularity of the retract map for I and the fact that {[π]} is closed in
Prim≤k(A) = Prim≤k(I) ∪ {[π]}. For k > n, we apply Lemma 4.1.6 to

0

��

0

��
0 // C0(Primk(I),Mk) // I≤k //

��

I≤k−1 //

��

0

0 // C0(Primk(A),Mk) // A≤k //

π

��

A≤k−1 //

��

0

F

��

F

��
0 0

and see that Rk : Prim≤k(A) → 2Prim≤k−1(A) is again lower semicontinuous
and has pointwise finite image.

5.2.2 Quantum permutation algebras

We are now going to demonstrate how the structure theorem 5.1.2 can be used
to show that certain C∗-algebras fail to be semiprojective. We would like to
thank T. Katsura for pointing out to us the quantum permutation algebras
([Wan98], [BC08]) as a testcase:

Definition 5.2.5 ([BC08]). For n ∈ N, the quantum permutation algebra
As(n) is the universal C∗-algebra generated by n2 elements uij, 1 ≤ i, j ≤ n,
with relations

uij = u∗ij = u2ij &
∑

j uij =
∑

i uij = 1.

It is not clear from the definition whether the C∗-algebras As(n) are semipro-
jective or not. For n ∈ {1, 2, 3} one easily finds As(n) ∼= Cn! so that we have
semiprojectivity in that cases. For higher n one might expect semiprojectivity
of As(n) because of the formal similarity to graph C∗-algebras. In fact, their
definition only involves finitely many projections and orthogonality resp. order
relations between them. Since graph C∗-algebras associated to finite graphs are
easily seen to be semiprojective, one might think that we also have semipro-
jectivity for the quantum permutation algebras. This was even erroneously
claimed to be true in [Bla04, example 2.8(vi)]. In this section we will show
that the C∗-algebras As(n) are in fact not semiprojective for all n ≥ 4.
One can reduce the question for semiprojectivity of these algebras to the case
n = 4. The following result of Banica and Collins shows that the algebra As(4)
is 4-subhomogeneous, so that our machinery applies. The idea is to get enough
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information about the primitive spectrum of As(4) to show that it contains
closed subsets of dimension strictly greater than 1. This will then contradict
part (2) of 5.1.2, so that As(4) cannot be semiprojective.

We follow notations from [BC08] and denote the Pauli matrices by

c1 =

(

1 0
0 1

)

, c2 =

(

i 0
0 −i

)

, c3 =

(

0 1
−1 0

)

, c4 =

(

0 i
i 0

)

.

Set ξxij = cixcj and regard M2 as a Hilbert space with respect to the scalar
product < a|b >= tr(b∗a). Then for any x ∈ SU(2) we find {ξxij}j=1..4 and
{ξxij}i=1..4 to be a basis for M2. Under the identification M4

∼= B(M2), Banica
and Collins studied the following representation of As(4):

Proposition 5.2.6 (Theorem 4.1 of [BC08]). The ∗-homomorphism given by

π : As(4) −→ C(SU(2),M4)
uij 7→

(

x 7→ rank one projection onto C · ξxij
)

is faithful. It is called the Pauli representation of As(4).

For the remainder of this section let S denote the following subset of SU(2):

S :=

{(

λ −µ
µ λ

)

∈ SU(2) : min

{

|Re(λµ)|, | Im(λµ)|, |Re(λµ)|,
| Im(λµ)|, ||λ| − |µ||

}

= 0

}

We will now study the representations of As(4) obtained by composing the
Pauli representation with a point evaluation. As we will see, most points of
SU(2) lead to irreducible representations which are furthermore locally pairwise
inequivalent.

Lemma 5.2.7. The representation πx = evx ◦π : As(4)→ M4 is irreducible for
every x ∈ SU(2)\S.

Proof. Let x =

(

λ −µ
µ λ

)

∈ SU(2)\S be given, we show that the com-

mutant of πx(As(4)) equals the scalars. Therefore we will check the ma-
trix entries of the elements πx(uij) with respect to the orthonormal basis
{

1√
2
ξx11,

1√
2
ξx12,

1√
2
ξx13,

1√
2
ξx14

}

of M2
∼= C4. Since in this picture πx(u1i) equals

the elementary matrix eii, every element in (πx(As(4)))
′
is diagonal. But we

also find

(πx(u23))12 = 1
2 < πx(u23)ξ

x
12|ξ

x
11 >

= 1
4 < ξx12|ξ

x
23 >< ξx23|ξ

x
11 >= 4 · Re(λµ)Im(λµ) 6= 0,

(πx(u22))13 = 1
4 < ξx13|ξ

x
22 >< ξx22|ξ

x
11 >= 2 · Re(λµ)(|λ|2 − |µ|2) 6= 0,

(πx(u22))14 = 1
4 < ξx14|ξ

x
22 >< ξx22|ξ

x
11 >= −2 · Im(λµ)(|λ|2 − |µ|2) 6= 0.

So the only elements ofM4 commuting with all of πx(As(4)) are the scalars.
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Proposition 5.2.8. Every x ∈ SU(2)\S admits a small neighborhood V ⊆
SU(2)\S such that for all distinct y, y′ ∈ V the representations πy and πy′ are
not unitarily equivalent.

Proof. Let x =

(

λ0 −µ0

µ0 λ0

)

∈ SU(2)\S be given, then

ǫ := min

{

|Re(λ0µ0)|, | Im(λ0µ0)|, |Re(λ0µ0)|,
| Im(λ0µ0)|, ||λ0| − |µ0|| , |λ0|

}

> 0.

Define a neighborhood V ⊆ SU(2)\S of x by

V =

{(

λ −µ
µ λ

)

∈ SU(2)\S : |λ− λ0| <
ǫ

3
, |µ− µ0| <

ǫ

3

}

.

Now let y, y′ ∈ V with unitarily equivalent representations πy and πy′ be given.
We compute the value

‖πy(u11u22)‖ = 1
4‖(< − |ξ

y
11 > ξy11) ◦ (< − |ξ

y
22 > ξy22)‖

= 1
4 | < ξy22|ξ

y
11 > | · ‖(< − |ξ

y
22 > ξy11)‖

= 1
4 | < ξy22|ξ

y
11 > | · ‖ξ

y
22‖‖ξ

y
11‖

=
∣

∣|λ|2 − |µ|2
∣

∣

which is invariant under unitary equivalence. So we find
∣

∣|λ|2 − |µ|2|
∣

∣ =
∣

∣|λ′|2 − |µ′|2
∣

∣. This implies

(|λ| = |λ′| ∧ |µ| = |µ′|) ∨ (|λ| = |µ′| ∧ |µ| = |λ′|)

because of |λ|2 + |µ|2 = 1 = |λ′|2 + |µ′|2. By definition of V we have

||λ| − |µ′|| ≥ ||λ0| − |µ0|| − ||λ| − |λ0|| − ||µ
′| − |µ0|| >

ǫ

3
> 0,

so that we can exclude the second case. Analogously, computing the invariants
‖πy(u13u22)‖ and ‖πy(u14u22)‖ gives

|Re(λµ)| = |Re(λ′µ′)| and | Im(λµ)| = | Im(λ′µ′)|

and checking ‖πy(u11u42)‖ and ‖πy(u11u32)‖ shows

|Re(λµ)| = |Re(λ′µ′)| and | Im(λµ)| = | Im(λ′µ′)| .

The last four equalities imply λµ = λ′µ′ and λµ = λ′µ′ by the choice of V .
Together with |λ| = |λ′| and |µ| = |µ′| we find (λ, µ) = (λ′, µ′) or (λ, µ) =
(−λ′,−µ′). In the second case we get |λ − λ′| = 2|λ| ≥ 2|λ0| − 2|λ − λ0| ≥

4ǫ
3

contradicting |λ− λ′| ≤ |λ− λ0|+ |λ′ − λ0| <
2ǫ
3 by the choice of V . It follows

that y = y′.

By now we have obtained enough information about Prim(As(4)) to show that
it does not satisfy condition (2) of Theorem 5.1.2. Hence we find:

Documenta Mathematica 21 (2016) 987–1049



1046 Dominic Enders

Theorem 5.2.9. The C∗-algebra As(4) is not semiprojective.

Proof. Choose a point x0 ∈ SU(2)\S and a neighborhood V of x0 as in Propo-
sition 5.2.8. Since SU(2) is a real 3-manifold, there is a neighborhood of x0
contained in V which is homeomorphic to D3 = {x ∈ R : ‖x‖ ≤ 1}. The restric-
tion of the Pauli representation π to this neighborhood gives a ∗-homomorphism
ϕ : As(4)→ C(D3,M4) with the property that evx ◦ϕ and evy ◦ϕ are irreducible
but not unitarily equivalent for all distinct x, y ∈ D3. The pointwise surjec-
tivity of ϕ given by Lemma 5.2.7 and a Stone-Weierstraß argument ([Kap51,
Theorem 3.1]) show that ϕ is in fact surjective. This implies that Prim4(As(4))
contains a closed 3-dimensional subset and hence dim(Prim4(As(4))) ≥ 3. As
a consequence, As(4) cannot be semiprojective because it is subhomogeneous
by Proposition 5.2.6 but fails to satisfy condition (2) of Theorem 5.1.2.

It is not hard to show that semiprojectivity of As(n) for some n > 4 would
force As(4) to be semiprojective. Since we have just shown that this is not the
case, we obtain:

Corollary 5.2.10. The C∗-algebras As(n) are not semiprojective for n ≥ 4.

Proof. For n ≥ 4 there is a canonical surjection ̺n : As(n)→ As(4) given by

u
(n)
ij 7→











u
(4)
ij if 1 ≤ i, j ≤ 4

1 if i = j > 4

0 otherwise

.

The kernel of ̺n is generated by the finite set of projections
{

u
(n)
ij : ̺n

(

u
(n)
ij

)

= 0
}

. It follows from [Sør12, Proposition 3], which ex-

tends the idea of [Neu00, Proposition 5.19], that semiprojectivity of As(n)
would imply semiprojectivity of ̺n(As(n)) = As(4). Since this is not the case
by Theorem 5.2.9, As(n) cannot be semiprojective for all n ≥ 4.
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