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Abstract. We use the Perron-Frobenius Theorem to define, study
and, in some sense, classify special simple modules over arbitrary finite
dimensional positively based algebras. For group algebras of finite
Weyl groups with respect to the Kazhdan-Lusztig basis, this agrees
with Lusztig’s notion of a special module introduced in [Lu2].
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1. Introduction and description of the results

In [Lu2, Lu3], Lusztig used combinatorics of generic degrees to define and study
a certain class of Weyl group representations which he called special. These
representations play an important role in the study of Kazhdan-Lusztig left cell
representations, see [KL, Lu5, Ge1].
The present paper proposes an approach to the definition and study of special
modules for arbitrary finite dimensional positively based algebras. By the latter
we mean an algebra over a subfield k of the complex numbers with a fixed basis
such that all structure constants with respect to this basis are non-negative real
numbers. Examples of such algebras include group algebras and semigroup
algebras with the standard basis, but also group algebras of Coxeter groups
and the corresponding Hecke algebras with respect to the Kazhdan-Lusztig
basis.
Our approach is motivated by some techniques originating in the abstract 2-
representation theory of finitary 2-categories developed in the series [MM1,
MM2, MM3, MM4, MM5, MM6] of papers. A major emphasis in these papers
was made on the study of so-called cell 2-representations. On the level of the
Grothendieck group, a cell 2-representation becomes a based module over some
finite-dimensional positively based algebra with various nice properties. For ex-
ample, for the 2-category of Soergel bimodules over the coinvariant algebra of a
finite Coxeter group, the Grothendieck group level of a cell 2-representation is
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exactly the Kazhdan-Lusztig left cell module. In this sense, abstract represen-
tation theory of finitary 2-categories proposes a generalization of the situation
mentioned in the previous paragraph.
A crucial technical tool in this study of cell 2-representations turned out to be
the classical Perron-Frobenius Theorem from [Fr1, Fr2, Pe], see for example
applications of this theorem in [MM4, MM5, MM6]. This theorem also plays a
very important role in some further developments, see for example [CM, MZ,
Zi]. The main point of the present paper is the observation that one can use the
Perron-Frobenius Theorem to define special modules for arbitrary transitive 2-
representations of finitary 2-categories. In fact, the definition does not require
any properties of the 2-layer of the structure and hence can be formulated for
the general setup of positively based algebras.
Given an algebra A with a positive basis B, one can define the notions of
left, right and two-sided orders and cells, similarly to the definition of Green’s
orders and relations for semigroups (see [Gr]) or multisemigroups (see [KuMa]),
or Kazhdan-Lusztig orders and cells in Kazhdan-Lusztig theory (see [KL]).
This can be used to define left cell modules for A. Such a module, denoted
CL, where L is a left cell, is a based module with a fixed basis BL that can
be canonically identified with a subset of B. Now, for any element a ∈ A
which can be written as a linear combination of all elements in B with positive
real coefficients, all entries of the matrix of a in the basis BL are positive
real numbers. This allows us to use the Perron-Frobenius Theorem, namely,
uniqueness and simplicity of the Perron-Frobenius eigenvalue for a, to define
the special subquotient of CL, which is a certain simple module that appears in
CL with multiplicity one. The original definition depends both on the choice of
a and L. However, in Subsection 5.4 we show that the resulting special module
is independent of the choice of a. Further, in Subsection 5.5 we show that it
is also independent of the choice of L inside a fixed two-sided cell. We give
a complete classification of special modules in Corollary 23 by showing that
there is a one-to-one correspondence between special modules and idempotent
two-sided cells.
The paper is organized as follows: In Section 2 we give the definition of pos-
itively based algebras and list several classical examples. In Section 3 we de-
scribe basic properties and combinatorics for positively based algebras. In
Section 4 we recall the Perron-Frobenius Theorem. In Section 5 we introduce
the notion of special modules and study basic properties of such modules, in
particular the independence properties mentioned above. In Section 6 we de-
scribe special modules for our three principal examples: group algebras (in the
standard basis), semigroup algebras, and group algebras of finite Weyl groups
with respect to the Kazhdan-Lusztig basis. In particular, we show that, in the
latter case, our notion of a special module coincides with Lusztig’s definition
of special modules from [Lu2]. In Section 7 we obtain some further properties
of special modules. In Section 8 we define and study the notion of the apex.
Finally, in Section 9, we consider special subquotients for arbitrary transitive
A-modules and give a complete classification of special subquotients in terms
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of idempotent two-sided cells of A. As an application, we obtain an alternative
elementary explanation for the fact that different left Kazhdan-Lusztig cells
inside a given two-sided Kazhdan-Lusztig cell are not comparable with respect
to the Kazhdan-Lusztig left order. As another application, we show that all
Kazhdan-Lusztig two-sided cells are good in the sense of [CM].
Acknowledgment. This research was done during the postdoctoral stay of
the first author at Uppsala University which was supported by the Knut and
Alice Wallenbergs Stiftelse. The second author is partially supported by the
Swedish Research Council. We thank Meinolf Geck for very helpful discussions.
We thank the referee for helpful comments.

2. Positively based algebras: definition and examples

2.1. Algebras with a positive basis. Let k be a unital subring of the field
C of complex numbers. Let A be a k-algebra which is free of finite rank n over
k. A k-basis B = {ai : i = 1, 2, . . . , n} of A will be called positive provided
that all structure constants of A with respect to this basis are non-negative
real numbers, that is, for all i, j ∈ {1, 2, . . . , n}, we have

(1) ai · aj =

n
∑

k=1

γ
(k)
i,j ak, where γ

(k)
i,j ∈ R≥0 for all i, j, k.

An algebra with a fixed positive basis is called a positively based algebra.
The above notion also makes perfect sense for infinite dimensional algebras.
However, in this paper we restrict our study to algebras which are finitely
generated over the base ring. For interesting infinite dimensional examples, see
[Th].

2.2. Example I: group algebras. Let G be a finite group and k[G] the

corresponding group algebra which consists of all elements of the form
∑

g∈G

cgg,

where cg ∈ k. This algebra is positively based with respect to the standard
basis B = {g : g ∈ G}. In fact, all structure constants with respect to this
basis are either zero or one.

2.3. Example II: semigroup algebras. A straightforward generalization of
the previous example is the following. Let S be a finite monoid and k[S] the
corresponding semigroup algebra which consists of all elements of the form
∑

s∈S

css, where cs ∈ k. This algebra is positively based with respect to the

standard basis B = {s : s ∈ S}. In fact, all structure constants with respect to
this basis are either zero or one.

2.4. Example III: Hecke algebras. Let (W,S) be a finite Coxeter system
and Hv the corresponding Hecke algebra over Z[v, v−1], in the normalization
of [So]. Specializing v to

z ∈ R>0

⋃

{u ∈ C : |u| = 1 and ℜ(u) > 0},
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we get the algebra Hz defined over the subring of C generated by Z, z and
z−1. Under our above assumptions on z, we have z + z−1 ∈ R>0. Due to
the positivity of coefficients of Kazhdan-Lusztig polynomials, which was es-
tablished in [KL] for Weyl groups and in [EW] in full generality, the inclusion
z + z−1 ∈ R>0 implies that the algebra Hz is positively based with respect to
the Kazhdan-Lusztig basis {Hw : w ∈ W}, as defined in [KL, So]. A special
case of this construction is the group algebra Z[W ] of the Coxeter group W
(which corresponds to the case z = 1).

2.5. Example IV: decategorifications of finitary 2-categories. The
previous example is a special case of the following abstract situation. Let C be
a finitary 2-category in the sense of [MM1]. Consider its decategorification [C ]
defined via split Grothendieck groups of the morphism categories, see [MM2,
Subsection 2.4]. Let AC be the Z-algebra of paths in the category [C ], defined
as

AC :=
⊕

i,j∈C

[C ](i, j),

with multiplication naturally induced from composition in [C ]. Then AC is
positively based with respect to the basis given by isomorphism classes of in-
decomposable 1-morphisms in C .
The example in Subsection 2.4 is obtained as a special case if one considers
the finitary 2-category of Soergel bimodules (over the coinvariant algebra of W )
associated to (W,S), see [MM2, Example 3], [MM4, Subsection 6.4] and [MM5,
Subsection 7.3], see also [EW].

2.6. Positively based algebras and multistructures. Consider the
semiring (Z>0,+, ·, 0, 1) of non-negative integers with respect to the usual ad-
dition and multiplication. For a positive integer n, consider the free module
Zn
>0 over Z>0 of rank n. An Z>0-algebra structure on Zn

>0 is a map

∗ : Zn
>0 × Z

n
>0 → Z

n
>0

which is bilinear and associative in the usual sense. Defining a Z>0-algebra
structure on Zn

>0 is equivalent to defining, on the standard basis of Zn
>0, the

structure of a multisemigroup with multiplicities in Z>0, see [Fo] for details.
Extending scalars to k we get a positively based algebra with the canonical
positive basis being the standard basis of Zn

>0.
Conversely, if A is a finite dimensional k-algebra with a fixed positive basis
B with respect to which all structure constants are integers, then the Z>0-
linear span of B is a free Z>0-module of finite rank with the canonical Z>0-
algebra structure induced from multiplication in A. Extending scalars back to
k recovers A.

3. Positively based algebras: combinatorics and cell modules

3.1. The multisemigroup of A. Let A be a positively based algebra with
a fixed positive basis B = {ai : i = 1, 2, . . . , n} as defined in Subsection 2.1.
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For simplicity, we will always assume that a1 is the unit element in A. For
i, j ∈ {1, 2, . . . , n}, set

i ⋆ j := {k : γ
(k)
i,j > 0}.

This defines an associative multivalued operation on the set n := {1, 2, . . . , n}
and thus turns the latter set into a finite multisemigroup, see [KuMa, Subsec-
tion 3.7].

3.2. Cells in (n, ⋆). For i, j ∈ n, we set i ≤L j provided that there is an s ∈ n

such that j ∈ s ⋆ i. Then ≤L is a partial preorder on n, called the left preorder.
Write i ∼L j provided that i ≤L j and j ≤L i. Then ∼L is an equivalence
relation on n. Equivalence classes for ∼L are called left cells. The preorder ≤L

induces a genuine partial order on the set of all left cells in n (which we denote
also by ≤L, abusing notation).
Similarly one defines the right preorder ≤R, the corresponding equivalence rela-
tion ∼R and right cells, using multiplication with s on the right. Furthermore,
one defines the two-sided preorder ≤J , the corresponding equivalence relation
∼J and two-sided cells, using multiplication with s1 on the left and s2 on the
right. We write i <L j provided that i ≤L j and i 6∼L j, and similarly for
i <R j and i <J j.
A two-sided cell J is said to be idempotent provided that there exist i, j, k ∈ J
such that k ∈ i ⋆ j.

3.3. Cell modules. Let L be a left cell in n and L be the union of all left
cells L′ in n such that L′ ≥ L. Set L := L \L. Consider the regular A-module

AA and the k-submodule ML of AA spanned by all aj , where j ∈ L. Further,

consider the k-submodule NL of ML spanned by all aj , where j ∈ L.

Proposition 1. Both ML and NL are A-submodules of AA.

Proof. We prove that ML is an A-submodule of AA. That NL is an A-
submodule of AA is proved similarly. We need to check that ML is closed
with respect to the left multiplication with all ai, where i ∈ n. For any such
i and any j ∈ L, consider the product ai · aj as given by (1). Note that, for

k ∈ n, our definitions imply γ
(k)
i,j 6= 0 if and only if k ≥L j. Therefore ai · aj is

a k-linear combination of the ak’s, for k ∈ L. The claim follows. �

As NL ⊂ ML, Proposition 1 allows us to define the cell A-module CL associated
to L as the quotient ML/NL. Directly from the definitions we have that the
regular representation AA has a filtration whose subquotients are isomorphic to
cell modules, with each cell module occurring at least once, up to isomorphism.

3.4. Example I: group algebras. For A = k[G], where G is a finite group,
with the standard positive basis as described in Subsection 2.2, we have the
equalities ≤L=≤R=≤J=∼L=∼R=∼J= n×n. In this case, for the unique left
cell L = n, we have CL = AA.

Documenta Mathematica 21 (2016) 1171–1192



1176 Tobias Kildetoft and Volodymyr Mazorchuk

3.5. Example II: semigroup algebras. For A = k[S], where S is a finite
monoid, with the standard positive basis as described in Subsection 2.3, the
relations ∼L, ∼R and ∼J are exactly the corresponding Green’s equivalence
relations as defined in [Gr]. The preorders ≤L, ≤R, and ≤J are the corre-
sponding preorders. For a left cell L, the corresponding cell module CL is the
usual module associated with L, see, for example, [GM, Subsection 11.2].

3.6. Example III: Hecke algebras. For A = Hv, the Hecke algebra of a
finite Coxeter system (W,S) as in Subsection 2.4, with respect to the Kazhdan-
Lusztig basis, the preorders ≤L, ≤R, and ≤J are exactly the Kazhdan-Lusztig
preorders and equivalence classes for ∼L, ∼R and ∼J are exactly the corre-
sponding Kazhdan-Lusztig cells. The cell module CL is the Kazhdan-Lusztig
cell module, see [KL].

3.7. Example IV: decategorifications of finitary 2-categories. For
A = AC , where C is a finitary 2-category, as described in Subsection 2.5, with
respect to the positive basis of indecomposable 1-morphisms, the relations ≤L,
≤R, ≤J , ∼L, ∼R and ∼J are described in [MM1]. The cell module CL is the
decategorification of the cell 2-representationCL of C defined in [MM1, MM2].

4. Perron-Frobenius Theorem

In this section we recall the following theorem, due to Perron and Frobenius,
see [Fr1, Fr2, Pe]. It will be a crucial tool in the definition of special modules
in the next section.

Theorem 2 (Perron-Frobenius). Let M ∈ Matk×k(R>0). Then there is a
positive real number λ, called the Perron-Frobenius eigenvalue of M , such that
the following statements hold:

(i) The number λ is an eigenvalue of M .
(ii) Any other eigenvalue µ ∈ C of M satisfies |µ| < λ.
(iii) The eigenvalue λ has algebraic (and hence also geometric) multiplicity 1.
(iv) There is v ∈ Rk

>0 such that Mv = λv. There is also v̂ ∈ Rk
>0 such that

v̂tM = λv̂t.
(v) Any w ∈ Rk

≥0 which is an eigenvector of M (with some eigenvalue) is a
scalar multiple of v, and similarly for v̂.

(vi) If v and v̂ above are chosen such that v̂tv = (1), then

lim
n→∞

Mn

λn
= vv̂t.

The vector v ∈ Rk
>0 from Theorem 2(iv) is called a Perron-Frobenius eigenvec-

tor. By Theorem 2(v), a Perron-Frobenius eigenvector is defined uniquely up
to a positive scalar.
Perron-Frobenius Theorem appeared in the study of total positivity, see [Lu7],
and in the study of tensor categories, see [EGNO, Section 3] and references
therein. After publication of the preprint version of this paper, Perron-
Frobenius Theorem also appeared in the study of special representations of
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Weyl groups in [Lu9]. For other applications of Perron-Frobenius Theorem
in representation theory, see, for example, [DGFKK] or [Ma] and references
therein.

5. Special modules: definition and basic properties

5.1. Perron-Frobenius elements for based modules and special sub-

quotients. Let k be a subfield of C. Consider a finite dimensional k-algebra
A and a finite dimensional A-module V with a fixed basis v = {v1, v2, . . . , vm}.
We will call the pair (V,v) a based A-module. An element a ∈ A is called a
Perron-Frobenius element for a based A-module (V,v) provided that all entries
of the matrix of the action of a on V with respect to the basis v are positive
real numbers.
Given a Perron-Frobenius element a ∈ A for a based A-module (V,v), let λ
be the Perron-Frobenius eigenvalue of the linear operator a on V . A simple
A-subquotient L of V is called a special subquotient with respect to a, provided
that λ is an eigenvalue of a acting on L. As a consequence of the Perron-
Frobenius Theorem, we record the following:

Corollary 3. Given a Perron-Frobenius element a ∈ A for a based A-module
(V,v), there is a unique, up to isomorphism, special subquotient L of V with
respect to a, moreover, [V : L] = 1.

5.2. Perron-Frobenius elements for cell modules. Let k be a subfield
of C and A a k-algebra (of finite dimension n over k) with a fixed positive basis
B. For a left cell L in n, consider the corresponding cell module CL as defined
in Subsection 3.3. Denote by BL the standard basis of CL given by the images
of the elements ai, where i ∈ L.
For i = 1, 2, . . . , n, fix some positive real numbers ci ∈ k. Set c :=
(c1, c2, . . . , cn) and

(2) a(c) :=

n
∑

i=1

ciai ∈ A.

Lemma 4. The element a(c) is a Perron-Frobenius element for the based mod-
ule (CL,BL).

Proof. Since B is a positive basis, it follows that all entries of the matrix of
the action of each ai, where i ∈ n, on CL in the basis BL are non-negative real
numbers.
Let i, j ∈ L. Then there is k ∈ n such that γ

(i)
k,j 6= 0, which implies that the

(i, j)-th entry in the matrix of the action of ak on CL is positive. As ck > 0,
combined with the previous paragraph, we get that the (i, j)-th entry in the
matrix of the action of a(c) on CL is positive. As i and j were arbitrary, the
claim follows. �

5.3. Special subquotients of cell modules. For each left cell L and each
c ∈ (R>0 ∩ k)n, the discussion above allows us to define the corresponding
special subquotient LL,c of CL.
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5.4. Independence of c. Our first main observation is the following:

Theorem 5. For a fixed left cell L and any c, c′ ∈ (R>0 ∩ k)n, there is an
isomorphism LL,c

∼= LL,c′ .

Proof. Assume first that k = C. Consider the map λ : Rn
>0 → R>0 which sends

c to the Perron-Frobenius eigenvalue of a(c) on CL. This map is, obviously,
continuous. Let Irr(A) be the set of isomorphism classes of simple A-modules.
Consider the map LL,− : Rn

>0 → Irr(A) which sends c to LL,c. For L ∈ Irr(A),
consider its preimage XL under the latter map and assume it is non-empty.
We claim that from Theorem 2 it follows thatXL is closed in Rn

>0. Indeed, let ci
be a sequences in R

n
>0∩XL which converges to c ∈ R

n
>0. Let L1, L2, . . . , Lk = L

be the list of simple subquotients of CL. By Theorem 2, for each i, the value
λ(ci) is the maximal absolute value of an eigenvalue of a(ci) on Lk and is
strictly bigger than the absolute value of any other eigenvalue of a(ci) on any
of the Lj ’s. Taking the limit, we get that the maximal absolute value of an
eigenvalue of a(c) on Lk is not less than the supremum of the absolute values
over all other eigenvalues of a(c) on any of the Lj’s. Since the Perron-Frobenius
eigenvalue has multiplicity one, it follows that LL,c is still isomorphic to L.
By noting that Irr(A) is finite with discrete topology, we see that the preimage
of a closed set under LL,− is closed. Therefore LL,c is continuous and thus
must be constant since Rn

>0 is connected.
If k 6= C and the assertion of the theorem fails, then we can extend scalars from
k to C and, because of the multiplicity one property established in Corollary 3,
obtain that the assertion of the theorem must also fail for the case k = C,
which contradicts the above. This completes the proof. �

As LL,c does not really depend on c by Theorem 5, we will denote this module
by LL. In this way, we define a map from the set of left cells in n to the set
Irr(A) of isomorphism classes of simple A-modules. In general, this map is
neither injective nor surjective.

5.5. J-invariance of special subquotients. Our second main observation
is the following:

Theorem 6. For any two left cells L and L′ which belong to the same two-sided
cell, we have LL

∼= LL′ .

Proof. Denote by J the two-sided cell containing both L and L′. Without
loss of generality, we may assume that the cell L′ is minimal, with respect
to ≤L, in the set of all left cells contained in J . Consider the element a =
a1 + a2 + · · ·+ an ∈ A and the cell modules CL and CL′ .

Lemma 7. For any i ∈ L, the set i⋆n intersects all left cells which are minimal,
with respect to ≤L, in the set of all left cells contained in J .

Proof. Since J is a two-sided cell, the set n⋆i⋆n contains J . For any j ∈ i⋆n,
any element s ∈ n⋆ j satisfies s ≥L j. This implies the claim of the lemma. �
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From Lemma 7, we have that there is j ∈ n such that i⋆j contains some element
in L′. Now, right multiplication with aj followed by the projection onto CL′ ,
defines an A-module homomorphism ϕ from CL to CL′ . This homomorphism is
non-zero by our choice of j and it sends, by construction, any linear combination
of elements in BL with positive coefficients to a non-zero element in CL′ .
Let v ∈ CL be an eigenvector of a which is a linear combination of elements in
BL with positive coefficients. Note that v exists by Theorem 2(iv) and is unique
up to a positive scalar by Theorem 2(v). Then ϕ(v) is a non-zero eigenvector
of a in CL′ . Since v determines the subquotient LL uniquely, it follows that
this subquotient is not annihilated by ϕ. On the other hand, by construction,
ϕ(v) is a non-zero linear combination of elements in BL′ with non-negative
coefficients. Therefore the corresponding eigenvalue is the Perron-Frobenius
eigenvalue of a for CL′ by Theorem 2(v). Combined with the definition of
special subquotient, it follows that ϕ(LL) ∼= LL′ , completing the proof. �

6. Special subquotients of cell modules: examples

6.1. Group algebras. Let G be a finite group and A = k[G] the corre-
sponding group algebra. Then we have the unique left cell L = n and the
corresponding cell module is just the left regular module AA. The element

a :=
∑

g∈G

g,

considered as an element of the algebra A, is a Perron-Frobenius element for
the module AA. On the other hand, the same element can be considered as
an element of CL and we have a · a = |G|a. Therefore, by Theorem 2(v),
the value |G| is the Perron-Frobenius eigenvalue of A on AA and hence the
special subquotient of AA is the trivial A-module (represented inside AA as
the submodule ka).
The above admits the following generalization. Let H be a subgroup of G and
k[G/H ] ∼= IndGH(trivH) be the corresponding permutation module given by the
left action of G on the set of all cosets gH , where g ∈ G. The action of G
on the set of all such cosets is transitive and hence a is a Perron-Frobenius
element for the module k[G/H ] with respect to the canonical basis given by
the cosets. The sum of all basis elements spans a submodule isomorphic to the
trivial G-module and is an eigenvector for a. Therefore the special subquotient
of k[G/H ] is again the trivial A-module.

6.2. Semigroup algebras. Let S be a finite monoid with |S| = n and fix
the standard positive basis B = {s : s ∈ S} in the semigroup algebra k[S].
In this setup, cells in n correspond to Green’s equivalence relations on S, see
[Gr] or [GM, Chapter 4]. Let L be a left cell and J be the apex of CL as
defined in Section 8. Then J is a regular J-class (see Proposition 14 below)
and hence contains an idempotent, say e, see also [GMS]. Let Le be the left
cell containing e. Let G be the maximal subgroup of S which corresponds to e.
Right multiplication with elements of G induces on the k[S]-module CLe

the
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structure of a k[S]-k[G]-bimodule. Let ktriv denote the trivial G-module, that
is the vector space k on which all elements of G act as the identity operator.
Then, by adjunction, the S-module

∆(Le, ktriv) := CLe

⊗

k[G]

ktriv

has simple top which we denote by Le, see [GMS] or [GM, Chapter 11].

Proposition 8. The simple k[S]-module Le is the special subquotient of CL.

Proof. Denote by L the special subquotient of CL. Take any

a =
∑

s∈S

ass, where as ∈ R>0 ∩ k,

and let v ∈ CL be a corresponding Perron-Frobenius eigenvector. Consider the
element

b =
∑

g∈G

g ∈ A.

Because of our definition of G, the element bv is a non-zero linear combination
of elements in BL with non-negative real coefficients. From Proposition 12 we
thus obtain that the image of bv in L is non-zero. Therefore bL 6= 0.
Note that xb = b, for any x ∈ G, by construction. Therefore xbv = bv, for all
x ∈ G. This means that ResSG(L) contains a submodule isomorphic to ktriv.
By adjunction, it follows that ∆(Le, ktriv) surjects onto L. This implies Le = L
and completes the proof. �

6.3. Group algebras of finite Weyl groups. For a finite Weyl group
W , consider the group algebra A := C[W ]. It is positively based with respect
to the Kazhdan-Lusztig basis B := {Hw : w ∈ W} (we follow the normal-
ization of [So]). Left cell representations of A in this setup are exactly the
Kazhdan-Lusztig left cell modules. By [Lu5] (see also [Ge1, Ge2] for alter-
native approaches and further details), the class of Kazhdan-Lusztig left cell
modules coincides with the class of cells or constructible representations as de-
fined in [Lu3]. In [Lu2], Lusztig defines in this setup the class of so-called special
representations and in [Lu3] shows that each constructible representation has
exactly one special subquotient (occurring with multiplicity one). The aim of
this subsection is to compare Lusztig’s notion of special representation with
the one defined in Section 5.

Proposition 9. Let L be a left cell in A. The LL is a special representation
in the sense of Lusztig.

Proof. It is enough to consider the case of irreducible W . If W is of type G2,
the assertion is proved by a direct calculation. If W is of type F4, then from
the lists in [Lu3] it follows that, for each two-sided cell J in W , the special
representation in the sense of Lusztig is the only simple representation which
appears with multiplicity one in all constructible representations associated to
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J . This implies the claim of the proposition for type F4. Therefore, from now
on, we assume that W is not of type G2 or F4.
Let J be the two-sided cell containing L and L = L1, L2,. . . , Lk be a complete
list of all left cells in J . By Theorem 6, we know that LL = LLi

for all
i = 1, 2, . . . , k. Therefore the assertion of our proposition follows directly from
the following lemma:

Lemma 10. Assume W is irreducible and not of type G2 or F4. Let J be a
two-sided cell in W and L1, L2,. . . , Lk be a complete list of all left cells in J .
Then the A-modules CL1

, CL2
,. . . , CLk

have exactly one simple subquotient in
common.

We note that Lemma 10 fails if W is of type G2 or F4, as follows easily from
the lists of constructible characters given in [Lu3].

Proof. For all exceptional types the assertion follows from the lists of con-
structible characters given in [Lu3]. In type A, all LLi

are simple and isomor-
phic (see [Lu3]) and hence the assertion is obvious. It remains to consider the
types B and D. In both cases the assertion follows from the description of
constructible representations given in [Lu3]. We outline the argument for type
B and leave type D as an exercise for the reader.
It type Bn, following [Lu1], irreducible representations are indexed by certain
(equivalence classes of) arrays of the form

(

λ

µ

)

=

(

λ1 λ2 . . . λm λm+1

µ1 µ2 . . . µm

)

,

called symbols. These symbols have, among others, the following properties:

• all entries are non-negative integers which add up to n+m2 for some
m;

• each integer appears in the array at most twice and, in case some integer
appears twice, it appears both in the first and in the second rows;

• elements in both rows increase from left to right.

Such an array indexes a special representation in the sense of [Lu2] if and only
if

(3) λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λm+1.

We will say that such a symbol is special.
Let us fix a special symbol as above and let

(4) γ1 < γ2 < γ3 < · · · < γ2k+1

be the sequence obtained from (3) be deleting all elements which appear twice.
Constructible representations containing the special representation correspond-
ing to the special symbol above are indexed by certain partitions of elements in
(4) in pairs which leave one singleton, as described in [Lu3]. Each pair contains
exactly one entry in the first row and exactly one entry in the second row of
our special symbol. All other subquotients of the corresponding constructible
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representation are obtained by swapping entries in some of these pairs. This
gives exactly 2k subquotients.
Consider the two constructible representations corresponding to the partitions

{γ1, γ2} {γ3, γ4} . . . {γ2k−1, γ2k} {γ2k+1}

and

{γ1} {γ2, γ3} {γ4, γ5} . . . {γ2k, γ2k+1}.

From the above it is straightforward that the special representation is the only
common composition subquotient of these two constructible representations.
This completes the proof in type Bn. �

This completes the proof of Proposition 9. �

7. Special modules: further properties

7.1. Projection of the positive cone. Let L be a left cell in (n, ⋆). Con-
sider the modules CL and LL. Let PL denote the indecomposable projective
cover of LL in A-mod. Then dimHomA(PL, CL) = 1 and we can denote by
VL the image in CL of any non-zero homomorphism from PL. The A-module
VL has simple top LL by construction, and we denote by KL the kernel of the
canonical projection VL ։ LL. Note that both VL and KL are submodules of
CL.
For c ∈ (R>0 ∩ k)n, consider the corresponding element a(c) ∈ A as defined
in (2). Let λ(c) denote the Perron-Frobenius eigenvalue of a(c) on CL. Let,
further, v(c) ∈ CL be a Perron-Frobenius eigenvector for a(c).

Lemma 11. We have VL = Av(c), in particular, the submodule Av(c) of CL

does not depend on the choice of c.

Proof. On the one hand, we have v(c) ∈ VL by construction and hence Av(c) ⊂
VL. On the other hand, VL has simple top LL and the latter simple has
multiplicity one in VL. By construction, LL also has a non-zero multiplicity in
Av(c). Therefore VL = Av(c) and the claim follows. �

Denote by B
+
L the subset of CL consisting of all possible linear combinations

of elements in BL with non-negative coefficients.

Proposition 12. We have KL ∩B
+
L = 0.

Proof. We assume k = R, all other cases follow from this one by restricting
and extending scalars. We have KL ∩B

+
L 6= B

+
L since any v(c) as above is in

B
+
L and, certainly, is not in KL. Assume that X := KL ∩ B

+
L contains some

non-zero v. Then X contains all λv, where λ ∈ R>0.
AsKL is a submodule, it follows thatX is invariant under the action of any a(c)
as above. Consider the inner product in CL for which BL is an orthonormal
basis. Let X1 be the subset of X consisting of all elements of length one
in X . Let X2 be the convex hull of X1. Clearly, X1 is compact and non-
empty. Therefore X2 is compact, convex and non-empty. Since X1 does not
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contain zero, X2 does not contain zero either, by construction. Consider the
transformation

(5) v 7→
a(c) · v

|a(c) · v|

of X2 which is well-defined and continuous as |a(c) · v| 6= 0 since 1 appears
in a(c) with a non-zero coefficient. By the Schauder fixed point theorem, see
[Sch], the transformation (5) must have a fixed point. Any such fixed point
is, by construction, an eigenvector of a(c) lying in B

+
L and different from the

Perron-Frobenius eigenvector (since it is in KL). This contradicts uniqueness
of the Perron-Frobenius eigenvector in Theorem 2(v). Therefore X1 = ∅. �

7.2. Special modules for semi-simple algebras.

Proposition 13. Assume that k is algebraically closed and A is semi-simple.

(i) Each two-sided cell for A is idempotent.
(ii) Let L be a left cell and J a two-sided cell containing L. Then the dimen-

sion of LL equals the number of left cells in J .
(iii) Any simple subquotient of CL different from LL is not isomorphic to LL′

for any left cell L′.

Proof. Let J be a two-sided cell in A. As all quotients of semi-simple algebras
are semi-simple, by taking an appropriate quotient of A we may assume that J
is maximal with respect to ≤J . If J is not idempotent, then the linear span of
all ai, where i ∈ J , is a nilpotent ideal of A. This contradicts semi-simplicity
of A and proves claim (i).
Fix an ordering J1,J2, . . . ,Jk of two-sided cells such that i < j implies Ji 6≥J

Jj . For i = 1, 2, . . . , k, denote by Ii the linear span of all aj , where aj ∈ Js

and s ≤ i. Then

(6) 0 = I0 ⊂ I1 ⊂ · · · ⊂ Ik = A

is a filtration of A by two-sided ideals. As A is semi-simple, each simple A-
module L appears in AA with multiplicity dim(L). As (6) is a filtration by
two-sided ideals, there is i ∈ {1, 2, . . . , k} such that L appears with multiplicity
dim(L) in Ii/Ii−1. At the same time, the A-module Ii/Ii−1 is isomorphic to
the direct sum of CL′′ , where L′′ runs through the set of all left cells in Ji.
This implies claim (iii). Claim (ii) now follows from the observation that LL

appears exactly once in each CL′ if L and L′ belong to the same two-sided
cell. �

8. The apex

8.1. The apex of a cell module. Given a left cell L, consider the set XL

of all two-sided cells J in (n, ⋆) for which there exists i ∈ J with the property
that ai · CL 6= 0. The set XL is partially ordered with respect to ≤J .

Proposition 14. Let L be a left cell in (n, ⋆).

(i) The set XL contains a maximum element, denoted J (L).
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(ii) The two-sided cell J (L) is idempotent.
(iii) For any i ≤J J (L), we have ai · CL 6= 0.

Proof. Let J be a maximal element in XL and i ≤J J . We first show the
inequality ai ·CL 6= 0. In particular, given claim (i), this would imply claim (iii).
Assume that ai · CL = 0 for some i ≤J J . Then AaiA · CL = 0.
As J ∈ XL, there is j ∈ J such that aj · CL 6= 0. Let s, t ∈ n be such
that aj appears in asaiat with a non-zero coefficient. Note that the matrix
of the action of each aq, where q ∈ n, on CL in the basis BL has only non-
negative coefficients. Putting this together with the fact that asaiat is a linear
combination of the aq’s with non-negative coefficients, we have that asaiat ·
CL = 0 implies aj · CL = 0, a contradiction. This shows that ai · CL 6= 0.
Assume now that J and J ′ are two different maximal elements in XL. Let
i ∈ J and j ∈ J ′. Then the product aiaj is a linear combination of aq, where
q >J J . Hence aiaj · CL = 0. On the other hand, let B be the subspace
of A spanned by all aj , where j ∈ J ′. Then each element of AB is a linear
combination of aq, where q ≥J J ′. Therefore AB · CL = B · CL. Now, from
aiaj · CL = 0 (for all i ∈ J and j ∈ J ′), we have aiB · CL = 0, for all i ∈ J .
Below we show that this leads to a contradiction.
Consider some non-zero v = aj · ap ∈ CL, where j ∈ J ′ and p ∈ L and write
it as a linear combination of elements in BL. Assume that some as appears in
this linear combination with a non-zero coefficient. Consider now at · v, for all
t ∈ n for which at · v 6= 0. Positivity of the basis B and the fact that L is a left
cell imply that, for each q ∈ L, there is some t ∈ n such that aq appears with
a non-zero coefficient in at · v.
Take now any i ∈ J . Then, because of the first claim, there must exist q ∈ L
such that ai · aq 6= 0 in CL. Positivity of the basis B now implies aiat · v 6= 0,
a contradiction. This proves claim (i) and hence also claim (iii) because of the
argument above.
Claim (ii) is proved by a slight modification of the above argument used to
prove claim (i). In more details, in the above argument take J = J ′ = J (L)
and assume that aiaj · CL = 0, for all i, j ∈ J (L). Following the argument all
the way through, we get a contradiction. This completes the proof. �

The two-sided cell J (L) is called the apex of CL. In the case of semigroups, the
notion of the apex of a simple module is standard, see [Mu, GMS]. In our case,
however, we do not know whether one could define a sensible notion of apex
for all simple A-modules. Our arguments in Proposition 14 rely heavily on the
fact that CL has a positive basis, that is a basis in which the action of all ai is
given by a matrix with non-negative coefficients. In the setup of 2-categories,
the notion of apex is discussed in [CM, Section 4].

8.2. J -invariance.

Proposition 15. Let L and L′ be two left cells in (n, ⋆) which belong to the
same two-sided cell. Then J (L) = J (L′).

Documenta Mathematica 21 (2016) 1171–1192



Special Modules over Positively Based Algebras 1185

Proof. We use the same trick as in the proof of Theorem 6. Let I be the two-
sided cell containing both L and L′. Without loss of generality, we may assume
that L′ is minimal, with respect to ≤L, in the set of all left cells contained in
I. Let ϕ : CL → CL′ be the homomorphism constructed in the proof of
Theorem 6.
Fix some c ∈ Rn

>0 and let vc ∈ CL and v′
c
∈ CL′ be Perron-Frobenius eigenvec-

tors for a(c). We may assume that ϕ(vc) = v′
c
. Note that all elements in BL

appear in the expression of vc with positive coefficients and similarly for BL′

and v′
c
. Because of the positivity property of the basis B, we see that an ele-

ment ai annihilates CL if and only if it annihilates vc. Similarly, ai annihilates
CL′ if and only if it annihilates v′

c
. This implies J (L′) ≤J J (L).

To prove equality, let L1 be a left cell in J (L) which is maximal with respect
to ≤L. Consider the element

a =
∑

i∈L1

ai.

Let j ∈ L be such that aiaj 6= 0 in CL for some (and hence for all) i ∈
L1. Consider the non-zero element aaj ∈ CL. The latter element is a linear
combination of elements in BL with non-negative coefficients. Let X ⊂ L be
the set of all indexes for which the corresponding basis vectors appear in aaj
with positive coefficients. Because of the maximality of L1 with respect to ≤L,
the linear combination of all ax, where x ∈ X , is A-invariant. Now, the fact
that L is a left cell, implies X = L. Consequently, because of the positivity
property of the basis B, we have ϕ(avc) 6= 0. This means that a does not
annihilate CL′ and thus implies J (L′) = J (L). �

Because of Proposition 15, we may define the apex J (I), for any two-sided cell
I, via J (I) := J (L), where L is a left cell in I.

8.3. The apex and special modules.

Corollary 16. Let L be a left cell in (n, ⋆). Then, for i ∈ n, the element ai
does not annihilate LL if and only if i ≤J J (L).

Proof. If i 6≤J J (L), then, by construction, ai annihilates CL and hence also
LL.
If i ≤J J (L), then ai does not annihilate CL. Consider some c ∈ (R>0∩k)

n and
the corresponding a(c) as in (2). Let v(c) be a Perron-Frobenius eigenvector for
a(c) in CL. Then v(c) is a linear combination of elements in BL with positive
coefficients. As A is positively based and i ≤J J (L), the element aiv(c) is a
non-zero linear combination of elements in BL with non-negative coefficients.
By construction, aiv(c) ∈ Av(c) = VL. Now, that the image of aiv(c) in LL is
non-zero, follows from Proposition 12. �

8.4. The apex for idempotent J -cells.

Proposition 17. For an idempotent two-sided cell I, we have J (I) = I.
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Proof. Without loss of generality we may assume that I is maximal with re-
spect to ≤J since all ai with i >J I annihilate CL by definition. As I is
idempotent, the set I ⋆ I is non-empty and hence coincides with I, because of
the maximality of the latter. Let L be a left cell in I which is minimal with
respect to ≤L. Then L ⊂ I ⋆ I. We have

L ⊂ I ⋆ I = I ⋆
(

L ∪ (I \ L)
)

= (I ⋆ L) ∪ (I ⋆ (I \ L)).

Because of the minimality of L, it cannot have common elements with I⋆(I\L).
Therefore L ⊂ I ⋆L which implies J (L) = I. Now the claim of our proposition
follows from Proposition 15. �

9. Transitive modules and classification of special modules

9.1. Positively based modules. Let (A,B) be a positively based algebra
and (V,v) a basedA-module. We will say that (V,v) is positively based provided
that, for any ai ∈ B and any vs ∈ v, the element ai · vs ∈ V is a linear
combination of elements in v with non-negative real coefficients. For example,
the left regular A-module AA is positively based with respect to the basis B.
For vs, vt ∈ v, we write vs → vt provided that there is ai ∈ B such that the
coefficient at vt in ai · vs is non-zero. The relation → is, clearly, reflexive and
transitive. A based A-module (V,v) will be called transitive provided that →
is the full relation. For example, each CL, where L is a left cell, is a transitive
A-module with respect to the basis BL.
An interesting question seems to be how to decide whether a given A-module
has a basis which makes this module into a transitive module.

9.2. Special modules for transitive representations. Let (V,v) be a
transitive A-module. Then, for every c ∈ (R>0∩k)

n, the corresponding element
a(c) from (2) is a Perron-Frobenius element for (V,v). Therefore we can define
the corresponding special subquotient L(V,v, c). Exactly the same argument
as in the proof of Theorem 5 shows that L(V,v, c) is independent of c. Hence
we may denote L(V,v, c) simply by L(V,v).
Similarly to Section 8, we can define the notion of the apex for any transi-
tive A-module and appropriate versions of Propositions 14 and 12 and also of
Corollary 16 remain true for any transitive A-module.

9.3. Idempotents related to the apex. Let L be a left cell and J :=
J (L). Then J is an idempotent two-sided cell in (n, ⋆). Let IJ be the linear
span in A of all ai such that i 6≤J J . Then IJ is an ideal in A. The quotient
AJ := A/IJ is positively based with respect to the basis BJ consisting of
images aj in AJ of all the aj for which j ≤J J . Denote by I the two-sided
ideal of AJ spanned by aj , where j ∈ J .

Proposition 18.

(i) There is an idempotent e ∈ AJ which can be written as a linear combi-
nation of aj, for j ∈ J , with positive real coefficients.

(ii) The idempotent e is primitive (for AJ ).
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(iii) The simple top of AJ e is isomorphic to LL.

Proof. Consider the A-module CL. As IJ · CL = 0, the A-module CL is also,
naturally, an AJ -module. Let a be the sum of all aj , where j ∈ J . Let [a] be
the matrix of the action of a on CL in the basis BL.
We claim that all entries in [a] are positive. First of all, we claim that all
columns in [a] are non-zero. Indeed, if [a] has a zero column, then there is
i ∈ L such that ajai = 0, for all j ∈ J . This means that Iai = 0 and hence
IAJ ai = 0 as I is a two-sided ideal in AJ . However, each as, where s ∈ L,
appears with a non-zero coefficient in uai, for some u ∈ AJ , by transitivity
of CL. Therefore we must have ICL = 0 which contradicts J = J (L). This
shows that each column in [a] is non-zero.
Next we claim that all entries in every column in [a] are non-zero. Consider
the column corresponding to aj, for some j ∈ L. Then aaj 6= 0 by the previous
paragraph. Let X ⊂ L be the set of all those ai which appear in aaj with
non-zero coefficients. On the one hand, X is non-empty. On the other hand,
the fact that I is a two-sided ideal in AJ , implies that the linear span of X
is AJ -invariant. From the transitivity of CL, it thus follows that X contains
all ai, where i ∈ L. Therefore all entires in [a] are positive. Let λ be the
Perron-Frobenius eigenvalue of [a].
Let us now assume that k = R, all other cases can be dealt with by restriction
and extension of scalars. Consider the matrix

M := lim
m→∞

[a]m

λm
.

From Theorem 2(vi), it follows that M is positive and M2 = M .
For m ≥ 1, consider the element

am

λm
=

∑

i∈J

ci,mai,

where ci,m ∈ R>0. As the matrix of the action of each ai on CL is non-zero
and has non-negative entries, from the existence of the limit M it follows that,
for each i ∈ J , the sequence {ci,m : m ≥ 1} converges, say to some ci ∈ R≥0.
Let

e =
∑

i∈J

ciai.

Then e2 = e and M is the matrix of the action of e on CL.
Since 1 is a simple eigenvalue for e by the Perron-Frobenius Theorem, the left
projective AJ -module AJ e has simple top (cf. Subsection 7.1 and the corre-
sponding property for VL). This means that e is primitive, proving claim (ii).
To prove claim (iii), it is enough to show that e does not annihilate LL. This
follows by combining Proposition 12 with Corollary 16.
To prove claim (i), it remains to show that all ci are non-zero. Let
L1,L2, . . . ,Lk be an ordering of the left cells in J such that Li ≥L Lj im-
plies i ≤ j, for all i, j. Let N be the matrix of the action of e on I in the basis
ai, where i ∈ J , which is ordered respecting the ordering of the Lp’s. Then,
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combining Propositions 15, 17 and the arguments in the first part of the proof,
we see that the matrix N has the upper-triangular block form















N1 ∗ ∗ . . . ∗
0 N2 ∗ . . . ∗
0 0 N3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . Nk















,

where each Np is a positive matrix. As N is idempotent, from [Fl, Theorem 2]
it follows that all off-diagonal blocks of N are zero. Therefore N is a direct sum
of positive idempotent matrices. From Theorem 2(iv) and (v) it follows that
the only (up to scalar) non-negative eigenvector of N has positive coefficients.
This means that all ci are positive and completes the proof. �

For a two-sided cell J , let X denote the k-span in A of all ai, where i ≥J J
and Y denote the k-span in A of all ai, where i >J J . Set M(J ) = X/Y ,
which is, naturally, a left A-module.
The following result follows from the proof of Proposition 18. It is interesting
because it, in combination with Proposition 17, in particular, provides an al-
ternative elementary explanation for the corresponding phenomenon for Hecke
algebras of Weyl groups (where all two-sided cells are idempotent), see [Lu6,
(5.1.13)] and the remark after it. The original proof (which is due to Lusztig)
of this result in the case of Hecke algebras of finite Weyl groups uses the inter-
pretation of the left Kazhdan-Lusztig order in terms of inclusions of primitive
ideals in the universal enveloping algebra of the associated semi-simple com-
plex Lie algebra. In [Lu4, Corollary 6.3], Lusztig gave an elementary proof for
Weyl groups, see also [Lu8, Chapter 15]. Thanks to the results of [EW], these
arguments also work for finite Coxeter groups. Our proof is different and very
general, it covers both Hecke algebras of all finite Coxeter groups (the latter fit
in our setup thanks to [EW]) and decategorifications of all fiat 2-categories.

Corollary 19. Let I be a two-sided cell and J = J (I). Assume that M(I)
is an AJ -module. Then all left cells in I are not comparable with respect to
the left order.

Proof. Let L1,L2, . . . ,Lk be an ordering of the left cells in I such that Li ≥L Lj

implies i ≤ j, for all i, j. Consider the idempotent e ∈ AJ constructed in the
proof of Proposition 18. As M(I) is an AJ -module by assumption, the action
of e on M(I) is well-defined. Let N be the matrix of this action, namely,
the matrix of multiplicities of ai, where i ∈ I, in aaj , where j ∈ I, written
similarly to the proof of Proposition 18. Similarly to the arguments in the proof
of Proposition 18, N is an idempotent non-negative upper-triangular matrix
with positive diagonal blocks and hence it must be a direct sum of positive
idempotent matrices by [Fl, Theorem 2].
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Fix q ∈ {1, 2, . . . , k}. From the diagonal form of N , we have that, for any
i ∈ Lq, all aj , where j ∈ Lq, appear with non-zero coefficients in elements of
the form uai, where u ∈ I. Moreover, no other as appear in this way.
Let now j ∈ Lq and as be arbitrary. If some at appears with a non-zero
coefficient in asaj , it also appears with a non-zero coefficient in asuai, where i
is as in the previous paragraph and for some u ∈ I. As I is a two-sided ideal of
AJ , from the previous paragraph it follows that t ∈ Lq. The claim follows. �

In [CM, Subsection 4.3], a two-sided cell J is called good provided that there
is a linear combination a of all aj , where j ∈ J , with positive real coefficients,
such that

an + vn−1a
n−1 + · · ·+ vk+1a

k+1 = vka
k + vk−1a

k−1 + · · ·+ vla
l

for some n, k, l ∈ {1, 2, . . .} and some non-negative real numbers vn−1,
vn−2, . . . , vl such that vl 6= 0.

Corollary 20. Let L be a left cell and J = J (L). Then J is good.

Proof. We can take a = e which satisfies a2 = a. �

For another interesting application of Proposition 18, see [KMMZ, Theorem 11].

9.4. Classification of special modules. Now we are ready to classify all
special modules appearing in all transitive modules.

Theorem 21. Let (V,v) be a transitive A-module with apex J . Then L(V,v)
∼=

LL, for any left cell L in J .

Proof. We may assume A = AJ . Let L be a left cell in J which is maximal
with respect to ≤L. Let e be an idempotent given by Proposition 18. From
the transitive versions of Proposition 12 and Corollary 16 it follows that e does
not annihilate L(V,v). As e is primitive by Proposition 18(iii), it follows that
L(V,v)

∼= LL. �

As an immediate consequence from Theorem 21, we have:

Corollary 22. Let (V,v) be a transitive A-module with apex J . Then L(V,v)

does not depend on v.

Proof. The apex J of (V,v) does not depend on v and hence neither does the
special module L(V,v)

∼= LL. �

Therefore, to list all special A-modules one has to do the following:

• identify all idempotent two-sided cells;
• in each idempotent two-sided cell J fix a left cell, maximal with respect
to ≤L among all left cells in J ;

• compute the corresponding primitive idempotent e for AJ ;
• the corresponding special module is AJ e/Rad(AJ e).

Let us call a simple A-module special if it is isomorphic to a special module
for some transitive A-module. As an immediate corollary from the above, we
have:
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Corollary 23. The above defines a one-to-one correspondence between the set
of isomorphism classes of special A-modules and the set of idempotent two-sided
cells for A.

We do not know whether, for a non-semi-simple A, a cell module CL might
contain LL′ for some left cell L′ such that J (L′) 6= J (L). One observation is
that general transitive representations might contain subquotients which are
special for some other two-sided cells:

Example 24. For S2 = {e, s}, consider A = C[S2] with the Kazhdan-Lusztig
basis {e = e, s = e + s}. We have two different two-sided cells and hence
both simple A-modules are special (the sign module is special for {e} while the
trivial module is special for {s}). Setting

s 7→

(

1 1
1 1

)

,

defines a transitive A-module. It contains both special A-modules as compo-
sition subquotients (however, the special module for this particular transitive
module is the trivial module).

Another interesting question is how to decide whether a given simple module
V over a positively based algebra A is special or not.
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