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Abstract. We define degree two cohomological invariants for G-
Galois algebras over fields of characteristic not 2, and use them to give
necessary conditions for the existence of a self–dual normal basis. In
some cases (for instance, when the field has cohomological dimension
≤ 2) we show that these conditions are also sufficient.

Introduction

Let k be a field of characteristic 6= 2, and let L be a finite degree Galois
extension of k. Let G = Gal(L/k). The trace form of L/k is by definition
the quadratic form qL : L × L → k defined by qL(x, y) = TrL/k(xy). Note
that qL is a G-quadratic form, in other words we have qL(gx, gy) = qL(x, y)
for all x, y ∈ L. A normal basis (gx)g∈G of L over k is said to be self-dual if
qL(gx, gx) = 1 and qL(gx, hx) = 0 if g 6= h. It is natural to ask which extensions
have a self-dual normal basis. This question is investigated in several papers
(see for instance [BL 90], [BSe 94], [BPS 13]). It is necessary to work in a more
general context than the one of Galois extensions, namely that of G-Galois

algebras (see for instance [BSe 94], §1); one advantage being that this category
is stable by base change of the ground field; the notion of a self-dual normal
basis is defined in the same way.

If k is a global field, then the Hasse principle holds : a G-Galois algebra has a
self-dual normal basis over k if and only if such a basis exists everywhere locally
(see [BPS 13]). The present paper completes this result by giving necessary
and sufficient conditions for the existence of a self-dual normal basis when k
is a local field (cf. §7). The conditions are given in terms of cohomological
invariants defined over the ground field k constructed in §3 and §4.
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2 E. Bayer-Fluckiger and R. Parimala

For an arbitrary ground field k, we start with the H1-invariants defined in [BSe
94], §2. Recall from [BSe 94] that the vanishing of these invariants is a necessary
condition for the existence of a self-dual normal basis; it is also sufficient in the
case of fields of cohomological dimension 1 (see [BSe 94], Corollary 2.2.2 and
Proposition 2.2.4).

Let k[G] be the group algebra of G over k, and let J be its radical; the quotient
k[G]s = k[G]/J is a semisimple k-algebra. Let σ : k[G] → k[G] be the k-linear
involution sending g to g−1; it induces an involution σs : k[G]s → k[G]s. The
algebra k[G]s splits as a product of simple algebras. If A is a σs-stable simple
algebra which is a factor of k[G]s, we denote by σA the restriction of σs to
A, and by EA the subfield of the center of A fixed by σA. We say that A
is orthogonal if σA is the identity on the center of A, and if over a separable
closure of k it is induced by a symmetric form, and unitary if σA is not the
identity on the center of A (see 1.3 for details).

Let L be a G-Galois algebra over k, and let us assume that its H1-invariants are
trivial. We then define, for every orthogonal or unitary A as above, cohomology
classes in H2(k, Z/2Z), denoted by cA(L) in the orthogonal case and by dA(L)
in the unitary case (see §3 and §4). They are invariants of the G-Galois algebra
L. They also provide necessary conditions for the existence of a self-dual normal
basis (this involves restriction to certain finite degree extensions of k, namely,
the extensions EA/k; see Propositions 3.5 and 4.7 for precise statements). If
moreover k has cohomological dimension ≤ 2, then these conditions are also
sufficient (Theorem 5.3.). Finally, if k is a local field, then the conditions can
be expressed in terms of the invariants cA(L) and dA(L), without passing to
finite degree extensions (Theorem 7.1). Section 8 applies the results of §7 and
the Hasse principle of [BSP 13] to give necessary and sufficient conditions for
the existence of a self-dual normal basis when k is a global field (Theorem 8.1).

Section 6 deals with the case of cyclic groups of order a power of 2 over arbitrary
fields. We show that at most one of the unitary components A gives rise
to a non-trivial invariant dA(L) (Proposition 6.4 (i)), and that this invariant
provides a necessary and sufficient condition for the existence of a self-dual
normal basis (Corollary 6.5).

Acknowledgment : The first named author is partially supported by grant
200021-163188 of the Swiss National Science Foundation, and the second named
author is partially supported by National Science Foundation grant DMS-
1401319.

§1. Definitions, notation and basic facts

1.1. Galois cohomology

We use standard notation in Galois cohomology. If K is a field, we denote by
Ks a separable closure of K, and by ΓK the Galois group Gal(Ks/K). For any
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discrete ΓK-module C, set Hi(K,C) = Hi(ΓK , C). If Γ is a finite or profinite
group, set Hi(Γ) = Hi(Γ, Z/2Z). If U is a K-group scheme, we denote by
H1(K,U) the pointed set H1(ΓK , U(Ks)).

1.2. Algebras with involution and unitary groups

Let K be a field of characteristic 6= 2, and let R be a finite dimensional algebra
over K. An involution of R is a K-linear anti-automorphism σ : R → R such
that σ2 is the identity.

Let us denote by CommK the category of commutative K-algebras, and by
Group the category of groups. If (R, σ) is an algebra with involution, the
functor CommK → Group given by S 7→ {x ∈ R ⊗K S | xσ(x) = 1} is the
functor of points of a scheme over Spec(K); we denote it by UR,K .

Let h = 〈1〉 be the rank one unit hermitian form over (R, σ), given by h(x, y) =
xσ(y) for all x, y ∈ R. Then UR,K is the scheme of automorphisms of the
hermitian form h. This is a smooth, finitely presented affine group scheme over
Spec(K) (see for instance [BF 15], Appendix A). Moreover, H1(K,UR,K) is
in natural bijection with the set of isomorphism classes of rank one hermitian
forms over (R, σ) that become isomorphic to h over Ks (see [Se 64], chap. III,
§1).
If F is a subfield of K, then UR,F = RK/F (UR,K), where RK/F denotes Weil
restriction of scalars relative to the extension K/F .

Let Z be the center of R, and assume that R is a simple algebra. We say that
(R, σ) is a central simple algebra with involution over K if the fixed field of σ
in Z is equal to K. If (R, σ) is central simple algebra with involution over K,
we set UR = UR,K .

1.3. Dévissage

Let G be a finite group and let k[G] be its group algebra over k. The canonical
involution of k[G] is the k-linear involution σ : k[G] → k[G] such that σ(g) =
g−1 for all g ∈ G. Let J be the radical of k[G], and set k[G]s = k[G]/J ;
it is a semisimple k-algebra. Since J is stable by σ, we obtain an involution
σs : k[G]s → k[G]s. Set UG = Uk[G],k and U rG = Uk[G]s,k. Let N be the kernel
of the natural surjection UG → U rG. Let us define group schemes Ni by setting
Ni(S) = {x ∈ N(S) | x ≡ 1 mod J i ⊗k S}. Then 1 = Nm ⊂ Nm−1 ⊂ · · · ⊂
N1 = N , where m is an integer such that Jm = 0. Note that J i/J i+1 is a
module over the semisimple algebra k[G]s, hence Ni/Ni−1 is isomorphic to a
finite product of additive groups Ga; therefore N is a split unipotent group.
This implies that H1(k, UG) = H1(k, U rG) (see for instance [Sa 81], Lemme
1.13).

The semisimple algebra k[G]s is known to be a direct product of simple algebras.
Note that k[G] comes by scalar extension from k0[G] for k0 = Q or Fp, hence
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the centers of the factors of k[G]s are abelian Galois extensions of k of finite
degree; some are stable under σs (we call them A), and others come in pairs,
interchanged by σs (we call them B).

If A is a σs-stable simple factor of k[G]s, we denote by σA the restriction of σs

to A, by FA the center of A, and by EA the subfield of σA-invariant elements
of FA. Note that UA is a group scheme over Spec(EA). Similarly, if B is
the product of two simple algebras interchanged by σs, we denote by EB the
subfield of the center of B fixed by the involution; UB,EB is a group scheme
over Spec(EB).

We have U rG ≃ ∏
AREA/k(UA)×

∏
B REB/k(UB,EB ), hence

H1(k, U rG) =
∏

A

H1(k,REA/k(UA))×
∏

B

H1(k,REB/k(UB,EB )).

Note that H1(k,REB/k(UB,EB )) = H1(EB , UB,EB) = 0 (see for instance
[KMRT 98], (29.2)), that H1(k,REA/k(UA)) = H1(EA, UA) (see for instance
[O 84], 2.3), and that H1(k, UG) = H1(k, U rG) (see above). Therefore we have

H1(k, UG) =
∏

A

H1(EA, UA).

The algebras with involution (A, σA) appearing in this product are of three
types :

(a) The involution σA : A → A is not the identity on the center FA of A.
Hence FA/EA is a quadratic extension. Such an algebra with involution is
called unitary; the group scheme UA is of Dynkin type A.

(b) The involution σA : A → A is the identity on FA (which is then equal
to EA), and, over a separable closure of EA, the involution is induced by a
symmetric form. Such an algebra with involution is called orthogonal; the
group scheme UA is of Dynkin type B or D.

(c) The involution σA : A → A is the identity on FA (which is then equal
to EA), and, over a separable closure of EA, the involution is induced by a
skew-symmetric form. Such an algebra with involution is called symplectic; the
group scheme UA is of Dynkin type C.

1.4. G-quadratic forms

A G-quadratic form is a pair (M, q), where M is a k[G]-module that is a finite
dimensional k-vector space, and q :M ×M → k is a non-degenerate symmetric
bilinear form such that

q(gx, gy) = q(x, y)

for all x, y ∈ M and all g ∈ G. We say that two G-quadratic forms (M, q)
and (M ′, q′) are isomorphic if there exists an isomorphism of k[G]-modules
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f : M → M ′ such that q′(f(x), f(y)) = q(x, y) for all x, y ∈ M . If this is
the case, we write (M, q) ≃G (M ′, q′), or q ≃G q′. It is well-known that G-
quadratic forms correspond bijectively to non-degenerate hermitian forms over
(k[G], σ) (see for instance [BPS 13], 2.1, Example on page 441). The unit G-
form is by definition the pair (k[G], q0), where q0 is the G-form characterized
by q(g, g) = 1 and q(g, h) = 0 if g 6= h, for g, h ∈ G.

1.5. Trace forms of G-Galois algebras

If L is an étale k-algebra, we denote by

qL : L× L→ k, qL(x, y) = TrL/k(xy),

its trace form. Then qL is a non-degenerate quadratic form over k; if moreover
L is a G-Galois algebra, then qL is a G-quadratic form.

Let L be a G-Galois algebra; then L has a self-dual normal basis over k if and
only if qL is isomorphic to q0 as a G-quadratic form. Let φ : Γk → G be a
continuous homomorphism corresponding to L (see for instance [BSe 94], 1.3).
Recall that φ is unique up to conjugation. The composition

Γk
φ→ G→ UG(k) → UG(ks)

is a 1-cocycle Γk → UG(ks). Let u(L) be its class in the cohomology set
H1(k, UG); it does not depend on the choice of φ. The G-Galois algebra L has
a self-dual normal basis over k if and only if u(L) = 0, cf. [BSe 94], Corollaire
1.5.2.

Recall from 1.3 that we have

H1(k, UG) =
∏

A

H1(EA, UA).

Let uA(L) be the image of u(L) in H1(EA, UA); note that L has a self-dual
normal basis if and only if uA(L) = 0 for every A.

Let A be as above. Composing the injection G→ UG(k) with the natural map
UG(k) → U rG(k) → REA/k(UA)(k) = UA(EA), we obtain a homomorphism
G→ UA(EA), denoted by iA.

Let φA : ΓEA → Γk → G be the composition of φ : Γk → G with the inclusion
of ΓEA in Γk. Composing φA with the map iA : G→ UA(EA) defined above we
obtain a 1-cocycle ΓEA → UA(ks). The class of this 1-cocycle in H1(EA, UA)
is equal to uA(L).
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§2. The H1-condition

Let L be a G-Galois algebra over k, and let φ : Γk → G be a homomorphism
corresponding to L. Let n be an integer ≥ 1. Then φ induces a homomorphism

φ∗ : Hn(G) → Hn(k, Z/2Z).

Note that φ∗ is independent of the choice of φ in its conjugacy class (see [Se
68], chap. VII, proposition 3). For all x ∈ Hn(G), set xL = φ∗(x).

Proposition 2.1. If L has a self-dual normal basis over k, then for all x ∈
H1(G) we have xL = 0.

Proof. See [BSe 94], Corollaire 2.2.2.

If cd2(Γk) ≤ 1, then L has a self-dual normal basis over k if and only if xL = 0
for all x ∈ H1(G), see [BSe 94], Proposition 2.2.4.

We say that the H1-condition is satisfied if xL = 0 for all x ∈ H1(G). Let G2

be the subgroup of G generated by the squares of elements of G. Note that
G/G2 is an elementary abelian 2-group, and that the H1-condition means that
the homomorphism Γk → G→ G/G2 induced by φ is trivial, i.e. φ(Γk) ⊂ G2.

§3. Orthogonal invariants

We keep the notation of the previous sections. In particular, G is a finite group,
L is a G-Galois algebra, and φ : Γk → G is a homomorphism corresponding to
L. Let us suppose that the H1-condition is satisfied.

Let A be an orthogonal σs-stable central simple factor of k[G]s (see 1.3), and
recall that the center of A is denoted by EA. Let us denote by 〈A〉 the subgroup
of Br(EA) generated by the class of the algebra A. Note that since σA : A→ A
is an orthogonal involution, this class has order at most 2, hence 〈A〉 is a
subgroup of Br2(EA).

The aim of this section is to define two invariants : an invariant cA(L) ∈ H2(k)
of the G–Galois algebra L, and an invariant clifA(qL) ∈ Br2(EA)/〈A〉 of the
G-form qL. We shall compare these two invariants (cf. Theorem 3.3), and give
a necessary condition for the existence of self-dual normal bases (Corollary 3.5).

Let U0
A be the connected component of the identity in UA. Let iA : G →

UA(EA) be the homomorphism defined in 1.5, and let π : UA(EA) →
UA(EA)/U

0
A(EA) be the projection. Since UA(EA)/U

0
A(EA) is of order ≤ 2, we

have π(iA(G
2)) = 0; i.e. iA(G

2) ⊂ U0
A(EA).

Let ŨA be the Spin group of (A, σ); note that if dimk(A) ≥ 3, then ŨA is the
universal cover of U0

A. Let s : ŨA → U0
A be the covering map. We have an

exact sequence of algebraic groups over EA
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1 → Z/2Z → ŨA
s→ U0

A → 1.

Let us consider the associated cohomology exact sequence

ŨA(EA)
s→ U0

A(EA)
δ→ H1(EA).

Lemma 3.1. We have iA(G
2) ⊂ s(ŨA(EA)).

Proof. In view of the above exact sequence, it suffices to prove that
δ(iA(G

2)) = 0. In order to prove this, let us first assume that A is not split.
Then we have UA(EA) = U0

A(EA) (cf. [K 69], Lemma 1 b, see also [B 94], cor.
2). Since H1(EA) is a 2-torsion group and since iA(G

2) ⊂ U0
A(EA), this implies

that δ(iA(G
2)) = 0, as claimed. Assume now that A is split. Then UA is the

orthogonal group of a quadratic form q; let sn : UA(EA) → H1(EA) be the asso-
ciated spinor norm, and note that sn is a group homomorphism (see for instance
[L 05], Chapter 5, Theorem 1.13). The homomorphism sn depends on the choice
of the quadratic form q with orthogonal group UA, but its restriction to U0

A

does not depend on this choice. Note that δ : U0
A(EA) → H1(EA) is the restric-

tion of sn to U0
A(EA). Therefore for all g ∈ G, we have δ(iA(g

2)) = sn(iA(g))
2,

and since H1(EA) is a 2-torsion group, this implies that δ(iA(G
2)) = 0. This

completes the proof of the lemma.

Let H be a subgroup of G2. By Lemma 3.1, we have iA(H) ⊂ s(ŨA(EA)). Let

V HA = ŨA(EA)×U0
A
(EA) H

be the fibered product of s : ŨA(EA) → U0
A(EA) and iA : H → U0

A(EA).
Therefore we have a central extension

1 → Z/2Z → V HA
p→ H → 1,

where p is the projection to the factor H . Note that the surjectivity of p follows
from the fact that by Lemma 3.1 every element of iA(H) has a preimage in
ŨA(EA).

Let us denote by
eHA ∈ H2(H)

the cohomology class corresponding to the extension V HA . If φ(Γk) ⊂ H , we
denote by

φ∗ : H2(H) → H2(k)

the homomorphism induced by φ : Γk → H .

Proposition 3.2. Let ψ : Γk → G be another continuous homomorphism

corresponding to the G–Galois algebra L. Set Hφ = φ(Γk) and Hψ = ψ(Γk).
Then we have

φ∗(e
Hφ
A ) = ψ∗(e

Hψ
A ) in H2(k).
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Proof. We have ψ = Int(g) ◦ φ for some g ∈ G. Note that iA(g) ∈ UA(EA),
and that Int(iA(g)) is an automorphism of U0

A(EA). Any automorphism of
U0
A(EA) can be lifted to an automorphism of ŨA(EA); indeed, such a lift exists

over a separable closure, and is unique, hence defined over the ground field. Let
f : ŨA(EA) → ŨA(EA) be a lift of Int(iA(g)). Then f induces an isomorphism

V
Hφ
A → V

Hψ
A , which sends Hφ to Hψ, and is the identity on Z/2Z. This implies

that φ∗(e
Hφ
A ) = ψ∗(e

Hψ
A ) in H2(k).

The invariant cA(L)

Recall that we assume that the H1-condition is satisfied. We now choose for
H the image φ(Γk) of Γk in G, and set VA = V HA , eA = eHA . We denote by
cA(L) the class of φ∗(eA) in H

2(k); Proposition 3.2 shows that this class does
not depend on the choice of φ : Γk → G defining the G–Galois algebra L. Since
H2(k) ≃ Br2(k), we can also consider cA(L) as an element of Br2(k).

Recall that the G-trace form qL determines a rank one hermitian form over
(A, σA). We want to relate cA(L) to the Clifford invariant of this hermitian
form.

The invariant clifA(qL)

The map iA : H → U0
A(EA) induces a map of pointed sets

iA : H1(EA, H) → H1(EA, U
0
A).

Let u0A(L) be the image of [φA] ∈ H1(EA, H) by this map. Then the element
uA(L) defined in 1.5 is the image of u0A(L) under the further composition with
the map H1(EA, U

0
A) → H1(EA, UA).

Let us consider the exact sequence 1 → Z/2Z → ŨA → U0
A → 1, and let δ

be the connecting map H1(EA, U
0
A) → H2(EA) ≃ Br2(EA) of the associated

cohomology exact sequence. Recall that 〈A〉 is the subgroup of Br2(EA) gen-
erated by the class of the algebra A. The Clifford invariant of qL at A is by
definition the image of δ(u0A(L)) in Br2(EA)/〈A〉. Let us denote it by clifA(qL).

Theorem 3.3. The image of ResEA/k(cA(L)) in Br2(EA)/〈A〉 is equal to

clifA(qL).

We need the following lemma :

Lemma 3.4. Let K be a field, let C be a finite group, and let f : ΓK → C be a

continuous homomorphism. Let us denote by [f ] ∈ H1(K,C) the corresponding

cohomology class. Let

1 → Z/2Z → V → C → 1
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be a central extension with trivial ΓK-action. Let [e] ∈ H2(C) be the class of a

2-cocycle e : C × C → Z/2Z representing this extension. Let ∂ : H1(K,C) →
H2(K) be the connecting map associated to the above exact sequence, and let

f∗ : H2(C) → H2(K) be the map induced by f . Then

f∗([e]) = ∂([f ]).

Proof. This follows from a direct computation. For all σ, τ ∈ ΓK , we have
f∗(e)(σ, τ) = e(f(σ), f(τ)) = xf(σ)xf(τ)x

−1
f(στ), where x : C → V is a section.

On the other hand, (∂f)(σ, τ) = xf(σ)
f(σ)(xf(τ))x

−1
f(στ), and this is equal to

xf(σ)xf(τ)x
−1
f(στ), since the action of Γk on V is trivial.

Proof of Theorem 3.3. Let ∂ : H1(EA, H) → H2(EA) be the connecting
map of the cohomology exact sequence associated to the exact sequence

1 → Z/2Z → VA → H → 1

with all the groups having trivial ΓEA-action. Recall that φA : ΓEA → Γk → H
is the composition of φ : Γk → H with the inclusion of ΓEA into Γk. By Lemma
3.4 we have ∂([φA]) = φ∗A(eA) = ResEA/k(φ

∗(eA)) = ResEA/k(cA(L)). In view
of the commutative diagram of ΓEA-groups

1 → Z/2Z → ŨA(ks) → U0
A(ks) → 1

↑ ↑ ↑
1 → Z/2Z → VA → H → 1

we have δ(u0A(L)) = ∂([φA]). Therefore we obtain ResEA/k(cA(L)) = δ(u0A(L)).
Since the class of δ(u0A(L)) in Br2(EA)/〈A〉 is equal to clifA(qL) by definition,
this completes the proof of the theorem.

Proposition 3.5. If L has a self-dual normal basis over k, then

ResEA/k(cA(L)) is trivial in Br2(EA)/〈A〉.

Proof. Since L has a self-dual normal basis over k, the class uA(L) corre-
sponds to the class of the rank one unit hermitian form 〈1〉 in H1(EA, UA).
As 〈1〉 corresponds to the trivial cocycle in Z1(EA, U

0
A), its Clifford invariant

is trivial, in other words, clifA(qL) is trivial. By Theorem 3.3 the image of
ResEA/k(cA(L)) in Br2(EA)/〈A〉 is equal to clifA(qL), hence the proposition is
proved.

We conclude this section with an example where cA(L) 6= 0, but
ResEA/k(cA(L)) = 0 (and hence clifA(qL) = 0) :

Example 3.6. Let G = A5, the alternating group, and assume that k = Q.
Let A be a factor of k[G] corresponding to a degree 3 orthogonal representation
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10 E. Bayer-Fluckiger and R. Parimala

of G; then A =M3(EA) with EA = k(
√
5), and the involution σA is induced by

the unit form 〈1, 1, 1〉. Let ǫ ∈ G be a product of two disjoint transpositions.

Let z ∈ k×, and let ψ : Γk → {1, ǫ} be the corresponding quadratic character.
Let φ : Γk → G be given by φ = ι ◦ ψ, where ι : {1, ǫ} → G is the inclusion.
Let L be the G-Galois algebra corresponding to φ. Set H = {1, ǫ}, and note
that the image of φ is contained in H . Set N = k[X ]/(X2 − z); then we have
L = IndGH(N).

Note that ǫ lifts to an element of order 4 in Ã5, hence also in ŨA(EA). Therefore
the extension 1 → Z/2Z → V HA → H → 1 is not trivial; the group V HA is cyclic
of order 4. Recall that eA is the class of this extension in H2(H); hence eA is
the only non-trivial element of H2(H). By definition, we have cA(L) = φ∗(eA),
and this is equal to the cup product (z)(z) = (−1)(z) in H2(k).

Set z = 11. Then cA(L) = (−1)(11) is not trivial in H2(k). On the other hand,
since EA = k(

√
5), we have ResEA/k(cA(L)) = 0 in H2(EA). Note that the

subgroup 〈A〉 of Br2(EA) is trivial, and recall that clifA(qL) = ResEA/k(cA(L))
in Br2(EA) ≃ H2(EA) by Theorem 3.3; therefore we have clifA(qL) = 0.

§4. Unitary invariants

We keep the notation of the previous sections : G is a finite group, L is a
G–Galois algebra, and φ : Γk → G is a homomorphism associated to L. We
suppose that the H1-condition is satisfied by φ : Γk → G, hence φ(Γk) is a
subgroup of G2. Let A be a unitary σs-stable central simple factor of k[G]s

(see 1.3). We denote by FA be the center of A; note that FA is a quadratic
extension of EA.

Using the same strategy as in §3, we first define an element of H2(k) which is
an invariant of the G-Galois algebra L. We then consider the hermitian form
hA over (A, σ) determined by qL, and recall the definition of the discriminant
of this form, thereby obtaining an element of Br2(EA). This is an invariant of
the hermitian form hA, and hence also of the G–form qL. We then show that
the restriction of the first invariant to H2(EA) is equal to the second one (see
Theorem 4.5).

We start by recording some facts from Galois cohomology.

Let E be a field of characteristic 6= 2, and let Es be a separable closure of E.
Let F be a quadratic extension of E, let x 7→ x the non-trivial automorphism
of F over E, and let F×1 be the subgroup of F× consisting of the x ∈ F
such that xx = 1. Let N : F → E, given by N(x) = xx, be the norm map.
We denote by [F ] the class of the quadratic extension F/E in H1(E). For all
x ∈ E×, we denote by (x) the class of x in E×/E×2, and by [x] the class of x
in E×/N(F×).
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Lemma 4.1. (a) The connecting homomorphism E× → H1(E,R1
F/EGm) as-

sociated to the exact sequence 1 → R1
F/EGm → RF/EGm

N→ Gm → 1 induces

an isomorphism α : E×/N(F×) → H1(E,R1
F/EGm).

(b) Let x ∈ E×, and let fx : ΓE → R1
F/EGm(Es) be defined by fx(γ) = y−1γ(y),

where y ∈ (F ⊗E Es)× is such that N(y) = x. Then we have α((x)) = [fx].

Proof. (a) follows from Hilbert’s theorem 90, and (b) from the definition of
the connecting homomorphism.

¿From now on, we identify E×/N(F×) and H1(E,R1
F/EGm) via the isomor-

phism α.

Lemma 4.2. Let 1 → Z/2Z → R1
F/EGm

s→ R1
F/EGm → 1 be the exact sequence

of linear algebraic groups with s the squaring map. Let δ : H1(E,R1
F/EGm) →

H2(E) be the connecting homomorphism associated to this exact sequence.

Identifying H1(E,R1
F/EGm) with E×/N(F×) via α, we have

δ([x]) = (x)[F ] ∈ H2(E)

for all x ∈ E×, where (x)[F ] denotes the cup product of (x), [F ] ∈ H1(E).

Proof. A 2-cocycle associated to (x)[F ] ∈ H2(E) is given by f(σ, τ) such
that f(σ, τ) = 1 if the restriction of σ to E(

√
x) is the identity, or if the

restriction of τ to F is the identity, and f(σ, τ) = −1 otherwise. Let us check
that the cohomology class of f in H2(E) is equal to δ([x]). Let y ∈ (F ⊗EEs)×
be such that NF⊗EEs/Es(y) = yy = x. A 1-cocycle g in Z1(E,R1

F/EGm)

associated to [x] is given by g(σ) = y−1σ(y) for σ ∈ ΓE . For all τ ∈ ΓE ,
set zτ = y−1

√
x if the restriction of τ to F is not the identity, and zτ = 1

otherwise. Then NF⊗EEs/Es(zτ ) = zτzτ = (y−1√x)(y−1√x) if the restriction
of τ to F is not the identity. Since yy = x, we have zτ ∈ R1

F/EGm(Es).

Further, s(zτ ) = y−2x = y−1τ(y) if the restriction of τ to F is not the identity,
and s(zτ ) = 1 = y−1τ(y) otherwise. Thus δ(g)(σ, τ) = zσ

σ(zτ )z
−1
στ . It is

straightforward to check that δ(g)(σ, τ) = 1 if the restriction of σ to E(
√
x) is

the identity, or the restriction of τ to F is the identity, and that δ(g)(σ, τ) = −1
otherwise. This is precisely the cocycle f , hence we have δ([x]) = (x)[F ] in
H2(E). This concludes the proof of the lemma.

Lemma 4.3. We have an injective homomorphism E×/N(F×) → Br2(E) de-

fined by [x] 7→ (x, F/E).

Proof. Indeed, the class of the quaternion algebra (x, F/E) is trivial in Br2(E)
if and only if x ∈ N(F×).

We now define an invariant dA(L) ∈ H2(k, Z/2Z) of the G-Galois algebra L.

The invariant dA(L)

Recall that F×1
A is the subgroup of F×

A consisting of the x ∈ FA such
that xσA(x) = 1; in other words, F×1

A = R1
FA/EA

Gm(EA). We denote by
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12 E. Bayer-Fluckiger and R. Parimala

s : R1
FA/EA

Gm → R1
FA/EA

Gm the squaring map, and by n : UA → R1
FA/EA

Gm
the reduced norm. Recall that iA : G→ UA(EA) is the homomorphism defined
in 1.5; we have n(iA(G

2)) ⊂ s(F×1
A ).

Let H be a subgroup of G2. Let V HA = F×1
A ×F×1

A

H be the fibered product of

s : F×1
A → F×1

A and n ◦ iA : H → F×1
A . Then the sequence

1 → Z/2Z → V HA → H → 1

is exact. Note that the surjectivity follows from the fact that n(iA(H)) ⊂
s(F×1

A ). Therefore V HA is a central extension of H by Z/2Z. Recall that the
H1-condition implies that φ(Γk) ⊂ G2.

Proposition 4.4. Let ψ : Γk → G be another continuous homomorphism

corresponding to the G–Galois algebra L. Set Hφ = φ(Γk) and Hψ = ψ(Γk).
Then we have

φ∗(e
Hφ
A ) = ψ∗(e

Hψ
A ) in H2(k).

Proof. We have ψ = Int(g) ◦ φ for some g ∈ G. The map F×1
A ×F×1 Hφ →

F×1
A ×F×1 Hψ, given by (x, y) → (x, gyg−1), gives rise to an isomorphism

V
Hφ
A → V

Hψ
A that is the identity on Z/2Z and sends Hφ to Hψ. This implies

that φ∗(e
Hφ
A ) = ψ∗(e

Hψ
A ) in H2(k).

We now choose for H the image φ(Γk) of Γk in G, and set VA = V HA , eA = eHA .

Notation. Let us denote by dA(L) the class of φ∗(eA) in H
2(k); Proposition

4.4 shows that this class is independent of the choice of φ : Γk → G defining
the G–Galois algebra L.

We define the discriminant of the G-form qL at A, and compare it with the
cohomology class dA(L).

The invariant discA(qL)

Recall that composing φA : ΓEA → H with the map iA : H → UA(ks)
we obtain a 1-cocycle ΓEA → UA(ks), the class of which in H1(EA, UA)
is uA(L). The reduced norm n : UA → R1

FA/EA
Gm induces a map n :

H1(EA, UA) → E×
A/N(F

×
A ).

Notation. Set discA(qL) = (n(uA(L)), FA/EA) in Br2(EA).

Note that this is well–defined by Lemma 4.3. Since we have Br2(EA) ≃
H2(EA), we can also consider discA(qL) as an element of H2(EA). Then
discA(qL) is given by the cup product n(uA(L)).[FA] in H

2(EA). This invariant
is related to the previously defined invariant dA(L) as follows :

Theorem 4.5. We have discA(qL) = ResEA/k(dA(L)) in H
2(EA).
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Proof. Let ∂ : H1(EA, H) → H2(EA) be the connecting map of the exact
sequence

1 → Z/2Z → VA → H → 1

with all the groups having trivial ΓEA-action. By Lemma 3.4 we have

∂([φA]) = φ∗A(eA) = ResEA/k(φ
∗(eA)) = ResEA/k(dA(L)).

We have the commutative diagram

1 → Z/2Z → VA → H → 1
↓ ↓ ↓

1 → Z/2Z → R1
FA/EA

Gm(ks)
s→ R1

FA/EA
Gm(ks) → 1

where the second vertical map is the projection on the first factor, and the

third one is H
iA→ UA(EA)

n→ R1
FA/EA

Gm(EA).

Let δ : H1(E,R1
FA/EA

Gm) → H2(EA) be the connecting homomorphism asso-
ciated to the exact sequence

1 → Z/2Z → R1
FA/EA

Gm
s→ R1

FA/EA
Gm → 1.

By the commutativity of the above diagram, we have δ([n(uA(L))]) = ∂([φA]).
Hence we have ResEA/k(dA(L)) = δ([n(uA(L)]). We have δ([n(uA(L))]) =
(n(uA(L))).[FA] by Lemma 4.2 and hence ResEA/k(dA(L)) = discA(qL), as
claimed.

Lemma 4.6. If qL corresponds to the hermitian form 〈zA〉 over (A, σA), then
we have

discA(qL) = (n(zA), FA/EA) in Br2(EA).

Proof. Set z = zA. Let z = wσA(w) with w ∈ A ⊗EA ks. The
cocycle τ 7→ w−1τ(w) represents the class of the hermitian form 〈z〉 in
H1(EA, UA). Let us denote this class by uz ∈ H1(EA, UA), and note that
we have uz = uA(L) by definition. The cocycle τ 7→ n(w)−1τ(n(w)) rep-
resents the class n(uz) ∈ H1(EA,R

1
FA/EA

Gm). By Lemma 4.1 this class is

mapped by α−1 to [n(z)] ∈ E×
A/N(F

×
A ). Therefore we have (n(z), FA/EA) =

(n(uA(L)), FA/EA) = discA(qL), as claimed.

Proposition 4.7. If L has a self-dual normal basis over k, then

ResEA/k(dA(L)) is trivial in Br2(EA).

Proof. Since L has a self-dual normal basis, qL corresponds to the hermitian
form 〈1〉 over (A, σA). By Lemma 4.6 this implies that discA(qL) is trivial.
Since by Theorem 4.5 we have discA(qL) = ResEA/k(dA(L)), the Proposition
is proved.
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14 E. Bayer-Fluckiger and R. Parimala

Remark. There are examples where dA(L) 6= 0 but ResEA/k(dA(L)) = 0
(hence also discA(qL) = 0); see for instance Example 5.2 (i).

§5. Self-dual normal bases

We keep the notation of the previous sections. In particular, G is a finite group,
L is a G-Galois algebra over k, and φ : Γk → G is a homomorphism associated
to L. We now apply the results of the previous sections to give necessary
conditions for the existence of a self-dual normal basis, and to show that these
are also sufficient when k has cohomological dimension ≤ 2, see Proposition
5.1 and Theorem 5.3.

Putting together the results of §2 - §4, we have the following :

Proposition 5.1. Suppose that L has a self-dual normal basis over k. Then

the H1-condition is satisfied, and

(i) For all orthogonal σs-stable central simple factors A of k[G]s, we have

ResEA/k(cA(L)) = 0 in Br2(EA)/〈A〉.
(ii) For all unitary σs-stable central simple factors A of k[G]s, we have

ResEA/k(dA(L)) = 0 in Br2(EA).

Proof. This follows from Propositions 2.1, 3.5 and 4.7.

Example 5.2. (i) The aim of this example is to reinterpret and complete
Exemple 10.2 of [BSe 94] using the results of the present paper. Assume that
G is cyclic of order 8, and let s be a generator of G; let ǫ = s4 be the element of
order 2 ofG. Let z ∈ k×, and let σ : Γk → {1, ǫ} be the corresponding quadratic
character. Let φ : Γk → G be given by φ = ι ◦ σ, where ι : {1, ǫ} → G is the
inclusion. Let L be the G-Galois algebra corresponding to φ. Set H = {1, ǫ},
and note that the image of φ is contained in H . Set N = k[X ]/(X2 − z); then
we have L = IndGH(N). Set A = k[X ]/(X4+1), and let us write k[G] = A′×A.
It is easy to see that the image of H in A′ is trivial. The involution σA sends
the class of X to the class of X−1. If k contains the 4th roots of unity, then A
is a product of two factors exchanged by the involution, hence there k[G] has
no involution invariant factor in which the image of H is non trivial. In this
case, L has a self-dual normal basis. Assume that k does not contain the 4th
roots of unity. Then A is a field; we have FA = A, and EA = k[X ]/(X2 − 2).
Note that A is unitary. We have iA(ǫ) = −1, hence iA(H) = {1,−1}.
Let i ∈ FA be a primitive 4th root of unity. By the definition of the extension

1 → Z/2Z → VA → H → 1
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(cf. §4), we see that VA = {(1, 1), (−1, 1), (i, ǫ), (−i, ǫ)}, a cyclic group of order
4. Recall that eA is the class of this extension in H2(H); hence eA is the only
non-trivial element of H2(H). We have dA(L) = φ∗(eA) = (z, z) = (z,−1),
and ResEA/k(dA(L)) = (z,−1)E = (z, FA/EA). Therefore we have

dA(L) = 0 ⇐⇒ z is a sum of two squares in k,
and

ResEA/k(dA(L)) = 0 ⇐⇒ z is a sum of two squares in EA = k(
√
2).

It is easy to find examples where dA(L) 6= 0 and ResEA/k(dA(L)) = 0; for
instance, we can take k = Q and z = 3.

By Proposition 5.1 the existence of a self-dual normal basis implies that we
have ResEA/k(dA(L)) = 0. On the other hand, in [BSe 94], Exemple 10.2 it is

checked by direct computation that if z is a sum of two squares in k(
√
2), then

L has a self-dual normal basis. Hence we have

L has a self-dual normal basis over k ⇐⇒ z is a sum of two squares in k(
√
2).

(ii) Assume that G = D4, the dihedral group of order 8. Then a G-Galois
algebra L has a self-dual normal basis if and only if either L is split or L =
IndGH(N) with H of order 2, and N = k[X ]/(X2 − z) for some z ∈ k× such
that z is a sum of two squares in k.

Indeed, let φ : Γk → G be a homomorphism associated to L. Note that G2 is
of order 2, hence the H1-condition holds if and only if the image of φ is trivial,
or equal to G2; in other words, L is split, or induced from a G2-Galois algebra.
If L is split, then L has a self-dual normal basis. Set H = G2, and assume that
L = IndGH(N), with N = k[X ]/(X2 − z) for some z ∈ k×. It remains to show
that L has a self-dual normal basis if and only if z is a sum of two squares in
k.

The group G has one degree 2 and four degree 1 orthogonal representations.
Since the H1-condition holds, the image of G is trivial in the factors of k[G]
corresponding to the degree 1 representations. Let A = M2(k), and let σA be
the involution induced by the 2-dimensional unit form; then the factor of k[G]
corresponding to the degree 2 orthogonal representation of G is equal to A.

Let qA(L) be the 2-dimensional quadratic form corresponding to the coho-
mology class uA(L). Note that L has a self-dual normal basis if and only if
qA ≃ 〈1, 1〉; this is equivalent with qA having trivial determinant and trivial
Hasse-Witt invariant. Recall that the H1-condition is satisfied by hypothesis;
hence we have uA(L) ∈ H1(k, U0

A), and this implies that det(qA(L)) = 1 in
k×/k×2. Since A is a matrix algebra over k, we have w2(qA(L)) = clif(qA(L)).
By Theorem 3.3, this implies that w2(qA(L)) = cA(L); hence it remains to
prove that cA(L) = 0 if and only if z is a sum of two squares in k.

If k contains the 4-th roots of unity, then U0
A = ŨA = Gm. If k does not contain

the 4-th roots of unity, then U0
A = ŨA = R1

K/kGm, where K = k[X ]/(X2 + 1).
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16 E. Bayer-Fluckiger and R. Parimala

In both cases, s : ŨA → U0
A is the squaring map. Using this, we see that the

extension 1 → Z/2Z → VA → H → 1 is non-trivial, and that cA(L) = (z,−1).
Therefore cA(L) = 0 if and only if z is a sum of two squares in k, and hence

L has a self-dual normal basis over k ⇐⇒ z is a sum of two squares in k.

(iii) Let G = A4, the alternating group of order 12, and assume for simplicity
that char(k) 6= 3 and that k contains the third roots of unity. Then k[G] =
k×k×k×M3(k), where the first factor corresponds to the unit representation,
the second and the third to the two representations of degree 1 with image of
order 3, and the fourth one to the irreducible representation of degree 3. Let
A = M3(k) be the fourth factor, and note that the restriction of σ to A is
induced by the 3-dimensional unit form. The extension 1 → Z/2Z → VA →
G→ 1 defined in §3 is

1 → Z/2Z → Ã4 → A4 → 1,

corresponding to the unique non-trivial element e ∈ H2(A4) (see [Se 84], 2.3).
Let L be a G-Galois algebra, and note that the H1-condition is satisfied, since
G has no quotient of order 2. Let E be the subalgebra of L fixed by the
subgroup A3 of G = A4; then E is an étale algebra of rank 4. Let φ : Γk → A4

be a homomorphism corresponding to L. By [Se 84], Theorem 1 we have
φ∗(e) = w2(qE), the Hasse-Witt invariant of the quadratic form qE ; hence the
invariant cA(L) is equal to w2(qE). Let qA(L) be the 3-dimensional quadratic
form corresponding to the cohomology class uA(L). Then qE ≃ qA(L) ⊕ 〈1〉,
and it is easy to check that qA(L) ≃ 〈1, 1, 1〉 ⇐⇒ w2(qE) = 0, hence uA(L) = 0
⇐⇒ w2(qE) = 0. Therefore we have

L has a self-dual normal basis over k ⇐⇒ w2(qE) = 0,

recovering a result of [BSe 94] (see [BSe 94], Exemple 1.6).

The case of cyclic groups of order a power of 2 is further developed in §6;
we now look at fields of low cohomological dimension. Recall that the 2-

cohomological dimension of Γk, denoted by cd2(Γk), is the smallest integer
d such that Hi(k, C) = 0 for all i > d and for every finite 2-primary Γk-module
C. For fields of cohomological dimension ≤ 1, the question of existence of
self-dual normal bases is settled in [BSe 94], 2.2.

Theorem 5.3. Assume that cd2(Γk) ≤ 2. Then L has a self-dual normal basis

over k if and only if the H1-condition is satisfied, and the conditions (i) and

(ii) below hold :

(i) For all orthogonal σs-stable central simple factors A of k[G]s, we have

ResEA/k(cA(L)) = 0 in Br2(EA)/〈A〉.
(ii) For all unitary σs-stable central simple factors A of k[G]s, we have

ResEA/k(dA(L)) = 0 in Br2(EA).
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Proof. If L has a self-dual normal basis over k, then by Proposition 5.1
the H1-condition, as well as conditions (i) and (ii) are satisfied. Conversely,
let us assume that the H1-condition, as well as conditions (i) and (ii) hold.
Since the H1-condition holds, we can define cA(L) and dA(L), cf. §3 and
§4. By Theorems 3.3 and 4.5 we have clifA(qL) = ResEA/k(cA(L)) and
discA(qL) = ResEA/k(dA(L)). Therefore, conditions (i) and (ii) imply that
clifA(qL) is trivial for all orthogonal factors A, and discA(qL) is trivial for all
unitary factors A. Let us prove that L has a self-dual normal basis over k. Let
us denote by hA the hermitian form over (A, σA) corresponding to uA(L). It is
enough to show that for all factors A, the class uA(L) is trivial; this is equiva-
lent with saying that the hermitian form hA is isomorphic to the unit form 1A
over (A, σA). By Witt cancellation (see for instance [BPS 13], Theorem 2.5.2)
this in turn is equivalent to saying that hA ⊕ −1A is hyperbolic. Let us prove
this successively for symplectic, orthogonal and unitary characters.

Assume first that A is symplectic. Then by [BP 95], Theorem 4.3.1 every even
dimensional non-degenerate hermitian form over a central simple algebra with
involution is hyperbolic. This implies that hA ⊕ −1A is hyperbolic. Assume
now that A is orthogonal, and note that the H1-condition implies that uA(L) is
the image of a class u0A(L) of H

1(EA, U
0
A). This implies that hA has trivial dis-

criminant. As we saw above, clifA(qL) is trivial, hence the form hA ⊕−1A has
trivial Clifford invariant. By [BP 95], Theorem 4.4.1 every even dimensional
non-degenerate hermitian form over a central simple algebra having trivial dis-
criminant and trivial Clifford invariant is hyperbolic, hence hA⊕−1A is hyper-
bolic. Assume finally that A is a unitary character. We have seen above that
discA(qL) is trivial, therefore the form hA ⊕ −1A has trivial discriminant. By
[BP 95], Theorem 4.2.1 every even dimensional non-degenerate hermitian form
over a central simple algebra having trivial discriminant is hyperbolic, hence
hA ⊕−1A is hyperbolic.

This implies that L has a self-dual normal basis over k, hence the theorem is
proved.

Recall that φ : Γk → G is a homomorphism associated to the G-Galois algebra
L, and that for all x ∈ Hn(G), we denote by xL the image of x by φ∗ :
Hn(G) → Hn(k). Let H = φ(Γk). For n = 2, we also need the image of x by
the homomorphism φ∗ : Hn(H) → Hn(k); we denote this image by xHL .

Corollary 5.4. Assume that cd2(Γk) ≤ 2, that the H1-condition is satisfied,

and that we have xHL = 0 for all x ∈ H2(H). Then L has a self-dual normal

basis over k.

Proof. This follows immediately from Theorem 5.3. Indeed, the H1-condition
is satisfied by hypothesis. Moreover, the classes cA(L) and dA(L) are by defini-
tion in the image of φ∗ : H2(H) → H2(k), hence the hypothesis xHL = 0 for all
x ∈ H2(H) implies that cA(L) = 0 for all orthogonal factors A, and dA(L) = 0
for all unitary factors A. Therefore conditions (i) and (ii) of Theorem 5.3 are
satisfied, and hence L has a self-dual normal basis over k.
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Remarks. (i) Corollary 5.4 suggests the following question : Assume that
cd2(Γk) ≤ 2, and that theH1-condition is satisfied. If xL = 0 for all x ∈ H2(G),
does it follow that L has a self-dual normal basis over k ? This follows from
Corollary 5.4 when L is a field extension, in other words, when φ is surjective
: indeed, then H = G.

(ii) The question above (see (i)) has a negative answer for fields of higher
cohomological dimensions. Indeed, by [BSe 94], III. 10.1, there exist examples
of G-Galois algebras L over fields of cohomological dimension 3 such that for
all n > 0 we have xL = 0 for all x ∈ Hn(G), but L does not have a self-dual
normal basis over k.

(iii) The converse of the question raised in (i) also has a negative answer :
indeed, there exist examples of G-Galois algebras L over Q having a self-dual
normal basis such that there exists x ∈ H2(G) with xL 6= 0 (see [BSe 94], III.
10.2).

The following result was proved in [BSe 94], Corollaire 3.2.2 in the case where k
is an imaginary number field; the proof also applies for fields of cohomological
dimension ≤ 2, using the results of [BP 95]. We give here an alternative proof.

Corollary 5.5. Assume that cd2(Γk) ≤ 2, and that

H1(G) = H2(G) = 0.

Then L has a self-dual normal basis over k.

Proof. Since H1(G) = 0, we have G = G2. Let A be orthogonal or unitary,
and let us construct a central extension V ′

A of G by Z/2Z, as follows. If A
is orthogonal, set V ′

A = V GA = ŨA(EA) ×U0
A
(EA) G, with the notation of §3.

If A is unitary, then we set V ′
A = V GA = F×1

A ×F×1
A

G, the notation being

as in §4. In each case, we get a central extension V ′
A of G by Z/2Z. Since

H2(G) = 0, this extension is split. Note that the central extension VA of H by
Z/2Z constructed in §3 and §4 is a subgroup of V ′

A, and that the restriction
of the projection V ′

A → G is the projection VA → H . Hence the extension
VA is also split. This implies that we have cA(L) = 0 for every orthogonal A,
and dA(L) = 0 for every unitary A. By Theorem 5.3 this implies that L has a
self-dual normal basis over k.

§6. Cyclic groups of 2-power order

In this section, G is assumed to be cyclic of order 2n, with n ≥ 2. We start
by giving necessary and sufficient conditions for two G–Galois algebras to have
isomorphic trace forms in terms of cohomological invariants of degree 1 and 2
(see Proposition 6.2), namely the degree 1 invariants introduced in [BSe 94],
and the discriminants of the hermitian forms at the unitary factors (see §4).
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We then use the invariants defined in the first part of §4 to give necessary and
sufficient conditions for the existence of a self–dual normal basis. We start with
settling the case where k contains the 4th roots of unity :

Proposition 6.1. Assume that k contains the 4th roots of unity. Let L and

L′ be two G–Galois algebras. Then qL ≃G qL′ if and only if xL = xL′ for all

x ∈ H1(G).

Proof. The algebra k[G] has two orthogonal factors k; since k contains the
4th roots of unity, there are no other involution invariant factors. Therefore
u(L) = u(L′) if and only if the cohomology classes u associated to the two
degree 1 orthogonal factors coincide, and this is equivalent with the condition
xL = xL′ for all x ∈ H1(G). Hence, by [BSe 94], Proposition 1.5.1, we have
qL ≃G qL′ .

More generally, we have :

Proposition 6.2. Let L and L′ be two G–Galois algebras. Then qL ≃G qL′ if

and only if the following conditions hold :

(i) xL = xL′ for all x ∈ H1(G).

(ii) discA(qL) = discA(qL′) for all unitary factors A of k[G].

Before proving Proposition 6.2, note that when k contains the 4th roots of
unity, then Proposition 6.2 follows from Proposition 6.1. Hence we only need
to prove the proposition when k does not contain the 4th roots of unity.

From now on, we assume that k does not contain the 4th roots of unity. We start
by introducing some notation. Set A(i) = k[X ]/(X2i−1

+ 1), for i = 1, . . . , n;
then the factors of k[G] are k, and A(1), . . . , A(n). Note that k and A(1)
are orthogonal, and A(2), . . . , A(n) are unitary. For i = 2, . . . , n, we have
A(i) = FA(i).

Proof of Proposition 6.2. Recall that we are assuming that k does not
contain the 4th roots of unity (otherwise, the proposition follows from Propo-
sition 6.1). For all factors A of k[G], let us denote by hA, respectively h

′
A, the

hermitian form over (A, σA) determined by qL, respectively qL′ .

Assume that qL ≃G qL′ . Then (i) holds by [BSe 94], Proposition 2.2.1. Let A
be a unitary factor; then the hermitian forms hA and h′A are isomorphic. Since
discA(qL) and discA(qL′) are invariants of these hermitian forms, condition (ii)
holds as well.

Conversely, suppose that (i) and (ii) hold. Let us show that uA(L) = uA(L
′)

for all factors A. Condition (i) implies that this is true for A = k and A = A(1);
indeed, in both cases the group UA is of order 2. Let us assume that A is a
unitary factor, that is, A = A(i) for some i = 2, . . . , n. Note that A = FA,
hence the hermitian forms hA and h′A are one dimensional hermitian forms
over the commutative field FA. Such a form is determined up to isomorphism
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by its discriminant; hence condition (ii) implies that hA ≃ h′A. Therefore
we have uA(L) = uA(L

′) for all factors A, hence u(L) = u(L′), and by [BSe
94], Proposition 1.5.1 we have qL ≃G qL′ . This completes the proof of the
Proposition.

Let us recall a notation from [Se 84], 1.5 or [Se 92], 9.1.3 : if m is an integer,
m ≥ 1, we denote by sm ∈ H2(Sm) the element of H2(Sm) corresponding to
the central extension

1 → Z/2Z → S̃m → Sm → 1

which is characterized by the properties :

1. A transposition in Sm lifts to an element of order 2 in S̃m.
2. A product of two disjoint transpositions lifts to an element of order 4 in S̃m.

Note that sm = 0 if and only if m ≤ 3 (see [Se 84], 1.5).

If m is a power of 2, m ≥ 2, let us denote by Cm the cyclic group of order m,
and by em be the unique non-trivial element of H2(Cm). Sending a generator
of Cm to an m-cycle of Sm defines an injective homomorphism f : Cm → Sm;
we denote by f∗ : H2(Sm) → H2(Cm) the homomorphism induced by f .

If q is a quadratic form over k, we denote by w2(q) its Hasse-Witt invariant
(see for instance [Se 84], 1.2 or [Se 92], 9.1.2); it is an element of H2(k).

Lemma 6.3. Let m be a power of 2.

(i) We have f∗(sm) = em in H2(Cm).

(ii) Let ψ : Γk → Cm be a continuous homomorphism, and let K be the étale

algebra over k corresponding to φ. Then the obstruction to the lifting of φ to a

homomorphism Γk → C2m is

w2(qK) + (2)(DK)

where DK is the discriminant of K, and (2)(DK) denotes the cup product of

the elements (2) and (DK) of H1(k).

Proof. (i) Let C̃m be the inverse image of Cm in S̃m; it suffices to show that
C̃m ≃ C2m, in other words that C̃m is a non-trivial extension of Cm. Raising an
m-cycle of Sm to the m

2 -th power yields a product of m2 disjoint transpositions,

and the inverse image of such an element in S̃m is of order 4. Hence C̃m is a
non-trivial extension of Cm.

(ii) The obstruction to the lifting of ψ is ψ∗(em) ∈ H2(k). Since f∗(sm) = em
by (i), we have

(f ◦ ψ)∗(sm) = ψ∗(em).

On the other hand, (f ◦ ψ)∗(sm) = w2(qK) + (2)(DK) by [Se 84], Theorem 1.
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Proposition 6.4. Let L be a G-Galois algebra, and assume that the H1–

condition holds. Then we have

(i) Let A be a unitary factor of k[G]. If A 6= A(n), then dA(L) = 0.

(ii) Let L = K × · · · ×K, where K is a field extension of k. Then

dA(n)(L) = w2(qK) + (2)(DK).

Proof. Let φ : Γk → G be a homomorphism associated to L, let H = φ(Γk),
and let us denote by |H | its order. Recall from §4 that the extension

(∗) 1 → Z/2Z → VA → H → 1

is defined by VA = {(x, h) ∈ F×1
A × H | x2 = iA(h)}. Let us show that this

extension is split if A 6= A(n). Note that the group VA is abelian, and hence
(∗) is not split if and only if VA is a cyclic group of order 2|H |. On the other
hand, if A 6= A(n), then the order of iA(H) is strictly less than |H |, hence the
group VA does not have any elements of order 2|H |. Therefore the extension
(∗) is split, and hence dA(L) = 0; this completes the proof of (i).

Let us prove (ii). If L is split, then (ii) obviously holds, hence we may assume
that |H | ≥ 2. If A = A(n), then the group VA is cyclic of order 2|H |, and
the extension (∗) is not split. Recall that we denote by eA ∈ H2(H) the class
of this extension, and that dA = φ∗(eA) ∈ H2(k). Note that φ∗(eA) is also
the obstruction for the lifting of φ : Γk → H to a continuous homomorphism
Γk → VA; by Lemma 6.3 (ii) this obstruction is equal to w2(qK) + (2)(DK),
hence (ii) is proved.

Corollary 6.5. Let L be a G-Galois algebra, and assume that the

H1–condition holds. Then L has a self–dual normal basis if and only if

ResEA(n)/k(dA(n)(L)) = 0 in Br2(EA(n)).

Proof. Proposition 6.2 implies that L has a self-dual normal basis if and only
if the H1-condition holds and if discA(qL) = 0 for all unitary factors A of k[G].
By Theorem 4.5 we have ResEA/k(dA(L)) = discA(qL), and Proposition 6.4 (i)
implies that dA(L) = 0 if A 6= A(n). This completes the proof of the corollary.

Corollary 6.6. Let L be a G-Galois algebra, and assume that the H1–

condition holds. Let L = K × · · · × K, where K is a field extension of k,
with Gal(K/k) cyclic of order m. If K can be embedded in a Galois extension

of k with cyclic Galois group of order 2m, then L has a self-dual normal basis.

Proof. Assume that K can be embedded in a Galois extension of k with
cyclic Galois group of order 2m. Then by Lemma 6.3 (ii) we have w2(qK) +
(2)(DK) = 0. By Proposition 6.4 (ii), this implies that dA(n)(L) = 0, and hence
by Corollary 6.5 the G-Galois algebra L has a self-dual normal basis.
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Example 6.7. Assume that G is of order 8. Let a, b, c, ǫ ∈ k with a2−b2ǫ = c2ǫ;
assume c non-zero, and ǫ not a square. Set x =

√
ǫ, and let K = k(

√
a+ bx);

note that DK = ǫ, and that K/k is a cyclic extension of degree 4 (see for
instance [Se 92], Theorem 1.2.1). Let L be the G-Galois algebra induced from
K. Let us prove that

L has a self-dual normal basis ⇐⇒ a is a sum of two squares in k(
√
2).

Indeed, set A = A(3); by Corollary 6.5 the G-Galois algebra L has a self-
dual normal basis if and only if ResEA/k(dA(L)) = 0. We have dA(L) =
w2(qK) + (2)(ǫ) by Proposition 6.4 (ii).

Let us show that w2(qK) = (−1)(a). Set y =
√
a+ bx. Then {1, x, y, xy} is a

basis ofK over k, and in this basis the quadratic form qK is the orthogonal sum
of the diagonal form 〈1, ǫ〉 and of the quadratic form q given by aX2+2bǫXY +
aǫY 2. The form q represents a, and its determinant is ǫ(a2− b2ǫ) = c2ǫ2, hence
det(q) = 1 in k2/k×2. This implies that q ≃ 〈a, a〉, hence qK ≃ 〈1, ǫ, a, a〉, and
w2(qK) = (a)(a) = (−1)(a).

Therefore dA(L) = (−1)(a) + (2)(ǫ). Note that EA = k(
√
2); hence

ResA/k(dA(L)) = Resk(
√
2)/k((−1)(a)), and this element is 0 if and only if

a is a sum of two squares in k(
√
2).

Note that combining this example with Example 5.2 (i) we get a necessary and
sufficient condition for a C8-Galois algebra to have a self-dual normal basis.

§7. Self-dual normal bases over local fields

We keep the notation of the previous sections, and assume that k is a (non-
archimedean) local field. The aim of this section is to give a necessary and
sufficient condition for the existence of self-dual normal bases in terms of in-
variants defined over k.

We say that A is split if it is a matrix algebra over its center.

Theorem 7.1. The G-Galois algebra L has a self-dual normal basis if and

only if the H1-condition holds, and

(i) For all orthogonal A such that [EA : k] is odd and A is split, we have

cA(L) = 0 in Br2(k).

(ii) For all unitary A such that [EA : k] is odd, we have dA(L) = 0 in Br2(k).

Proof. Assume that the H1-condition is satisfied and that (i) and (ii) hold.
Note that if A is not split, then we have Br2(EA)/〈A〉 = 0, and that if [EA : k]
is even, then the map ResEA/k : Br2(k) → Br2(EA) is trivial. Therefore for all
orthogonal A we have ResEA/k(cA(L)) = 0 in Br2(EA)/〈A〉, and for all unitary
A we have ResEA/k(dA(L)) = 0 in Br2(EA). By Theorem 5.3, this implies that
L has a self-dual normal basis.
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Conversely, suppose that L has a self-dual normal basis. Then theH1-condition
holds by Proposition 2.1. By Theorem 5.1 we have ResEA/k(cA(L)) = 0 in
Br2(EA)/〈A〉 for all orthogonal A. Since ResEA/k : Br2(k) → Br2(EA) is
injective if [EA : k] is odd, condition (i) holds. Moreover, Theorem 5.1 implies
that if A is unitary, then ResEA/k(dA(L)) = 0 in Br2(EA). Applying again
the injectivity of ResEA/k when [EA : k] is odd, we obtain condition (ii). This
completes the proof of the theorem.

§8. Self-dual normal bases over global fields

We keep the notation of the previous sections. Assume that k is a global field,
and let Ωk be the set of places of k. For all v ∈ Ωk, we denote by kv the
completion of k at v. For all k-algebras R, set Rv = R ⊗k kv. We say that a
G-Galois algebra is split if it is isomorphic to a direct product of copies of k
permuted by G. We now apply the Hasse principle of [BPS 13] together with
Theorem 7.1 above to give necessary and sufficient conditions for the existence
of a self-dual normal basis over k.

Note that the fields EA are abelian Galois extensions of k (cf. 1.2).

For all finite places v, let us write EvA = KA(v)× · · · ×KA(v), where KA(v) is
a field extension of kv. Set n

v
A = [KA(v) : kv].

We need additional notation in the case when A is unitary. Note that while
A is a central simple algebra over FA, and FA/EA is a quadratic extension,
for some places v ∈ Ωk we may have F vA = EvA × EvA with σA permuting the
components, and Av = B×B for some kv-algebra B. In order to take this into
account, we set ǫvA = 0 if F vA = EvA × EvA, and ǫ

v
A = 1 otherwise.

Theorem 8.1. The G-Galois algebra L has a self-dual normal basis if and

only if the H1-condition holds, if Lv is split for all real places v, and if for all

finite places v we have

(i) For all orthogonal A such that nvA is odd and Av is split, we have cA(L) = 0
in Br2(kv).

(ii) For all unitary A such that nvA is odd and ǫvA = 1, we have dA(L) = 0 in

Br2(kv).

Proof. If L has a self-dual normal basis, then Lv is split for all real places v
by [BSe 94], Corollaire 3.1.2, and conditions (i) and (ii) hold for all finite places
v by Theorem 7.1. Conversely, assume that Lv is split for all real places v, and
that for all finite places v conditions (i) and (ii) hold. Then [BSe 94], Corollary
3.1.2 (for real places) and Theorem 7.1 (for finite places) imply the existence of
a self-dual normal basis for Lv, for all v ∈ Ωk. By the Hasse principle result of
[BPS 13], Theorem 1.3.1, the G-Galois algebra L has a self-dual normal basis
over k.
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